WorldWideScience

Sample records for laboratory experimental investigation

  1. Laboratory investigations

    Our task is to design mined-repository systems that will adequately secure high-level nuclear waste for at least 10,000 yr and that will be mechanically stable for 50 to 100-yr periods of retrievability during which mistakes could be corrected and a valuable source of energy could be reclaimed, should national policy on the reprocessing of spent fuel ever change. The only credible path for the escape of radionuclides from the repository to the biosphere is through ground-water, and in hard rock, bulk permeability is largely governed by natural and artificial fracture systems. Catastrophic failure of an excavation in hard rock is likely to occur at the weakest links - the discontinuities in the rock mass that is perturbed first by mining and then by radiogenic heating. The laboratory can contribute precise measurements of the pertinent thermomechanical, hydrological and chemical properties and improve our understanding of the fundamental processes through careful experiments under well controlled conditions that simulate the prototype environment. Thus laboratory investigations are necessary, but they are not sufficient, for conventional sample sizes are small relative to natural defects like joints - i.e., the rock mass is not a continuum - and test durations are short compared to those that predictive modeling must take into account. Laboratory investigators can contribute substantially more useful data if they are provided facilities for testing large specimens(say one cubic meter) and for creep testing of all candidate host rocks. Even so, extrapolations of laboratory data to the field in neither space nor time are valid without the firm theoretical foundations yet to be built. Meanwhile in-situ measurements of structure-sensitive physical properties and access to direct observations of rock-mass character will be absolutely necessary

  2. Laboratory experimental investigations of braid theory using the rotor-oscillator flow

    Filippi, Margaux; Atis, Séverine; Allshouse, Michael; Jacobs, Gustaaf; Budišić, Marko; Thiffeault, Jean-Luc; Peacock, Thomas

    2015-11-01

    Interpreting ocean surface dynamics is crucial to many areas of oceanography, ranging from marine ecology to pollution management. Motivated by this, we investigated the braid theory method to detect transport barriers bounding coherent structures in two-dimensional flows. Whereas most existing techniques rely on an extensive spatiotemporal knowledge of the flow field, we sought to identify these structures from sparse data sets involving trajectories of a few tracer particles in a two-dimensional flow. We present the results from our laboratory experiments, which were based on investigations using the rotor-oscillator flow, as a stepping stone towards oceanic applications.

  3. A Laboratory Investigation of Supersonic Clumpy Flows: Experimental Design and Theoretical Analysis

    Poludnenko, A. Y.; Dannenberg, K. K.; Drake, R. P.; Frank, A.; Knauer, J.; Meyerhofer, D. D.; Furnish, M.; Asay, J. R.; Mitran, S.

    2004-03-01

    We present a design for high energy density laboratory experiments studying the interaction of hypersonic shocks with a large number of inhomogeneities. These ``clumpy'' flows are relevant to a wide variety of astrophysical environments, including the evolution of molecular clouds, outflows from young stars, planetary nebulae, and active galactic nuclei. The experiment consists of a strong shock (driven by a pulsed-power machine or a high-intensity laser) impinging on a region of randomly placed plastic rods. We discuss the goals of the specific design and how they are met by specific choices of target components. An adaptive mesh refinement hydrodynamic code is used to analyze the design and establish a predictive baseline for the experiments. The simulations confirm the effectiveness of the design in terms of articulating the differences between shocks propagating through smooth and clumpy environments. In particular, we find significant differences between the shock propagation speeds in a clumpy medium and those in a smooth one with the same average density. The simulation results are of general interest for foams in both inertial confinement fusion and laboratory astrophysics studies. Our results highlight the danger of using average properties of inhomogeneous astrophysical environments when comparing timescales for critical processes, such as shock crossing and gravitational collapse.

  4. A Laboratory Investigation of Supersonic Clumpy Flows: Experimental Design and Theoretical Analysis

    Poludnenko, A Y; Drake, R P; Frank, A; Knauer, J P; Meyerhofer, D D; Furnish, M; Asay, J R

    2004-01-01

    We present a design for high energy density laboratory experiments studying the interaction of hypersonic shocks with a large number of inhomogeneities. These ``clumpy'' flows are relevant to a wide variety of astrophysical environments including the evolution of molecular clouds, outflows from young stars, Planetary Nebulae and Active Galactic Nuclei. The experiment consists of a strong shock (driven by a pulsed power machine or a high intensity laser) impinging on a region of randomly placed plastic rods. We discuss the goals of the specific design and how they are met by specific choices of target components. An adaptive mesh refinement hydrodynamic code is used to analyze the design and establish a predictive baseline for the experiments. The simulations confirm the effectiveness of the design in terms of articulating the differences between shocks propagating through smooth and clumpy environments. In particular, we find significant differences between the shock propagation speeds in a clumpy medium comp...

  5. Active pCO2-Control of Seawater Culture Systems for Laboratory-Based Biogeochemical Experimentation Investigating Global Ocean Acidification

    Hintz, C. J.; Chandler, G. T.; Shaw, T. J.; McCorkle, D. C.

    2007-12-01

    The large-scale effects of anthropogenic CO2 rise and global ocean acidification on calcifying and photosynthetic organisms are not well understood. This ongoing uncertainty fundamentally limits our ability to fully understand global carbon cycling. Field-based studies are limited to the current environmental chemistries observed throughout the world's oceans - a prohibitively resource-intensive platform for manipulative experimentation. Moreover, complex carbonate system equilibria decoupled from the atmosphere are difficult to poise and maintain in laboratory seawater-based experiments lasting longer than a few hours or days. This severely limits the scope of biogeochemical experimentation for simulating past or future ocean chemistries. To address these experimental shortcomings we developed a novel system for the stringent control of pCO2 in culture aeration and seawater. A custom CO2 scrubbing system was designed which removes > 99.8% of atmospheric CO2 at 3-4 L min-1 aeration rate. High precision mass flow controllers integrated with a modular programmable process controller precisely mix high-purity (99.95%) compressed CO2 with the preconditioned CO2-free air stream for aeration into the culture system. Long-term maintenance of experimental CO2 is within ± 2 μatm when operating between 150- 2000 μatm pCO2. The system, in its current configuration, has the ability to simultaneously manipulate and maintain 3 separate carbonate chemistries using aeration pCO2 and seawater alkalinity in independent 400-L seawater reservoirs. Future system expansion can easily maintain 5 or more separate chemistries. The goal of this research is to develop stringent control of seawater carbonate system chemistries for the deep- sea benthic foraminifera cultures housed at the University of South Carolina Arnold School of Public Health. Current experiments are investigating trace metal foraminiferal paleoproxy signatures that appear correlated with [CO32-] very near calcite

  6. Experimental methods for the simulation of supercritical CO2 injection at laboratory scale aimed to investigate capillary trapping

    Trevisan, L.; Illangasekare, T. H.; Rodriguez, D.; Sakaki, T.; Cihan, A.; Birkholzer, J. T.; Zhou, Q.

    2011-12-01

    Geological storage of carbon dioxide in deep geologic formations is being considered as a technical option to reduce greenhouse gas loading to the atmosphere. The processes associated with the movement and stable trapping are complex in deep naturally heterogeneous formations. Three primary mechanisms contribute to trapping; capillary entrapment due to immobilization of the supercritical fluid CO2 within soil pores, liquid CO2 dissolving in the formation water and mineralization. Natural heterogeneity in the formation is expected to affect all three mechanisms. A research project is in progress with the primary goal to improve our understanding of capillary and dissolution trapping during injection and post-injection process, focusing on formation heterogeneity. It is expected that this improved knowledge will help to develop site characterization methods targeting on obtaining the most critical parameters that capture the heterogeneity to design strategies and schemes to maximize trapping. This research combines experiments at the laboratory scale with multiphase modeling to upscale relevant trapping processes to the field scale. This paper presents the results from a set of experiments that were conducted in an intermediate scale test tanks. Intermediate scale testing provides an attractive alternative to investigate these processes under controlled conditions in the laboratory. Conducting these types of experiments is highly challenging as methods have to be developed to extrapolate the data from experiments that are conducted under ambient laboratory conditions to high temperatures and pressures settings in deep geologic formations. We explored the use of a combination of surrogate fluids that have similar density, viscosity contrasts and analogous solubility and interfacial tension as supercritical CO2-brine in deep formations. The extrapolation approach involves the use of dimensionless numbers such as Capillary number (Ca) and the Bond number (Bo). A set of

  7. 3D PiC code simulations for a laboratory experimental investigation of Auroral Kilometric Radiation mechanisms

    Gillespie, K. M.; Speirs, D. C.; Ronald, K.; McConville, S. L.; Phelps, A. D. R.; Bingham, R.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; He, W.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.

    2008-12-01

    Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE0,1 and TE0,3 modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.

  8. 3D PiC code simulations for a laboratory experimental investigation of Auroral Kilometric Radiation mechanisms

    Gillespie, K M; Speirs, D C; Ronald, K; McConville, S L; Phelps, A D R; Bingham, R; Cross, A W; Robertson, C W; Whyte, C G; He, W [SUPA Department of Physics, John Anderson Building, 107 Rottenrow, University of Strathclyde, Glasgow, G4 0NG (United Kingdom); Vorgul, I; Cairns, R A [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Kellett, B J [Space Science and Technology Department, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom)], E-mail: karen.gillespie@strath.ac.uk

    2008-12-15

    Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE{sub 0,1} and TE{sub 0,3} modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.

  9. 3D PiC code simulations for a laboratory experimental investigation of Auroral Kilometric Radiation mechanisms

    Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE0,1 and TE0,3 modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.

  10. Experimental investigation of the formation and propagation of plasma jets created by a power laser: application to laboratory astrophysics

    Plasma jets are often observed in the polar regions of Young Stellar Objects (YSO). For a better understanding of the whole processes at the origin of their formation and evolution, this research thesis aims at demonstrating the feasibility of a plasma jet generation by a power laser, and at investigating its characteristics. After a detailed description of Young Stellar Objects jets and an overview of theoretical models, the author describes some experiments performed with gas guns, pulsed machines and power lasers. He describes means of generation of a jet by laser interaction via strong shock propagation. He reports experimental work, describing the target, laser operating conditions and the determination of jet parameters: speed, temperature, density. Then, he introduces results obtained for plasma jet propagation in vacuum, describes their evolution with respect to initial conditions (target type, laser operating conditions), and identifies optimal conditions for generating a jet similar to that in astrophysical conditions. He considers their propagation in ambient medium like for YSO jets in interstellar medium. Two distinct cases are investigated: collision of two successive shocks in a gaseous medium, and propagation of a plasma jet in a gas jet

  11. An Experimental Investigation of the Role of Radiation in Laboratory Bench-Top Experiments in Thermal Physics

    Twomey, Patrick; O'Sullivan, Colm; O'Riordan, John

    2009-01-01

    A simple undergraduate experiment designed to study cooling purely by radiation and cooling by a combination of convection and radiation is described. Results indicate that the contribution from radiative cooling in normal laboratory experiments is more significant than students often realize, even in the case of forced cooling. (Contains 1…

  12. LABORATORY SETUP FOR EXPERIMENTAL INVESTIGATIONS OF INNOVATIVE ENERGY-EFFICIENT SYSTEMS’ EQUIPMENT EXAMPLES OF AGRICULTURAL ENTERPRISES OFF-LINE POWER SUPPLY ON THE BASIS OF HELIOMODULUSES

    Braginets A. V.

    2015-09-01

    Full Text Available The development of laboratory setup is connected with a necessity of designing and experimental investigation of equipment examples for innovative energy efficient system of agricultural enterprises off-line power supply on the basis of helio moduluses and is stipulated by needs of efficient heat electro supply of agricultural enterprises working in climatic regions with low and short-term solar activity. Operating regimes, matching and justification of necessary elements for the construction of the energy efficient helio system and the most efficient their arrangement are determined based on preliminary experiments. Geographical location of agricultural enterprise (the principal checkpoints should be insolation intencity and solstice angle typical for the region and social-economic development level of the region should be taken into consideration at forming demands to the constructions and abilities of heat water supply helio modules. The necessity of investigations at laboratory setup with artificial heat sources, simulating solar heat, is explained by impossibility of experiments’ carrying out in the real nature conditions, notably because of weather inconstancy and climate in tote, because of impossibility of setups exact placement on ground location, because of helio collector’s modes of operation limitation by the range of solar activity only in the investigated region etc. The list of technological parameters and helio water heating process factors, which are measured and controlled during the experiments, is built into the designing of the setup. These parameters are based on the statistical data given by meteorological stations of late years. All that will ease the designing of manufacturing helio collectors and will allow to get more precise information, oriented to the maintenance of energy efficient equipment in different zones of researched region with highest possible usage of their potential. With a glance of foresaid, we

  13. Experimental investigations on desiccant wheels

    Experimental investigations on several commercially available and newly fabricated rotors are conducted in two different laboratories to evaluate performance trends. Experimental uncertainties are analysed and the parameters determining the rotor performance are investigated. It is found that the optimal rotation speed is lower for lithium chloride or compound rotors than for silica gel rotors. Higher regeneration air temperatures lead to higher dehumidification potentials at almost equal dehumidification efficiencies, but with increasing regeneration specific heat input and enthalpy changes of the process air. The influence of the regeneration air humidity was also notable and low relative humidities increase the dehumidification potential. Finally, the measurements show that rising water content in the ambient air causes the dehumidification capacity to rise, while the dehumidification efficiency is not much affected and both specific regeneration heat input and latent heat change of the process air decrease. For desiccant cooling applications in humid climates this is a positive trend. - Highlights: ► New experimental results on a range of desiccant wheels. ► High dehumidification capacities and low enthalpy changes for process air high water content. ► Higher regeneration temperature increases capacity, but lowers energy efficiency.

  14. Solid Oxide Fuel Cell Experimental Laboratory

    Federal Laboratory Consortium — NETL’s Solid Oxide Fuel Cell Experimental Laboratory in Morgantown, WV, gives researchers access to models and simulations that predict how solid oxide fuel cells...

  15. Experimental investigation of wave boundary layer

    Sumer, B. Mutlu

    2003-01-01

    A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank with an ...

  16. Transformative geomorphic research using laboratory experimentation

    Bennett, Sean J.; Ashmore, Peter; Neuman, Cheryl McKenna

    2015-09-01

    Laboratory experiments in geomorphology is the theme of the 46th annual Binghamton Geomorphology Symposium (BGS). While geomorphic research historically has been dominated by field-based endeavors, laboratory experimentation has emerged as an important methodological approach to study these phenomena, employed primarily to address issues related to scale and the analytical treatment of the geomorphic processes. Geomorphic laboratory experiments can result in transformative research. Several examples drawn from the fluvial and aeolian research communities are offered as testament to this statement, and these select transformative endeavors often share very similar attributes. The 46th BGS will focus on eight broad themes within laboratory experimentation, and a diverse group of scientists has been assembled to speak authoritatively on these topics, featuring several high-profile projects worldwide. This special issue of the journal Geomorphology represents a collection of the papers written in support of this symposium.

  17. The Mica Creek Experimental Watershed: An Outdoor Laboratory for the Investigation of Hydrologic Processes in a Continental/Maritime Mountainous Environment

    Link, T. E.; Gravelle, J.; Hubbart, J.; Warnsing, A.; Du, E.; Boll, J.; Brooks, E.; Cundy, T.

    2004-12-01

    Experimental catchments have proven to be extremely useful for investigations focused on fundamental hydrologic processes and on the impacts of land cover change on hydrologic regimes and water quality. Recent studies have illustrated how watershed responses to experimental treatments vary greatly between watersheds with differing physical, ecological and hydroclimatic characteristics. Meteorological and hydrological data within catchments are needed to help identify how hydrologic mechanisms may be altered by land cover alterations, and to both constrain and develop spatially-distributed physically based models. Existing instrumentation at the Mica Creek Experimental Watershed (MCEW) in northern Idaho is a fourth-order catchment that is undergoing expansion to produce a comprehensive dataset for model development and testing. The experimental catchments encompass a 28 km2 area spanning elevations from 975 to 1725 m msl. Snow processes dominate the hydrology of the catchment and climate conditions in the winter alternate between cold, dry continental and warm, moist maritime weather systems. Landcover is dominated by 80 year old second growth conifer forests, with partially cut (thinned) and clear-cut sub-catchments. Climate and precipitation data are collected at a SNOTEL site, three primary, and seven supplemental meteorological stations stratified by elevation and canopy cover. Manual snow depth measurements are recorded every 1-2 weeks during snowmelt, stratified by aspect, elevation and canopy cover. An air temperature transect spans three second-order sub-catchments to track air temperature lapse rate dynamics. Precipitation gauge arrays are installed within thinned and closed-canopy stands to track throughfall and interception loss. Nine paired and nested sub-catchments are monitored for flow, temperature, sediment, and nutrients. Hydroclimatic data are augmented by LiDAR and hyperspectral imagery for determination of canopy and topographic structure

  18. Laboratory measurements of Vp and Vs in a porosity-developed crustal rock: Experimental investigation into the effects of porosity at deep crustal pressures

    Saito, Satoshi; Ishikawa, Masahiro; Arima, Makoto; Tatsumi, Yoshiyuki

    2016-05-01

    In order to evaluate the influence of porosity on the elastic properties of crustal rocks at deep crustal pressures, we performed laboratory measurements of compressional-wave (Vp) and shear-wave (Vs) velocities in a porosity-developed gabbro sample up to 1.0 GPa at room temperature. Based on the measured Vp and Vs data, we evaluated the changes in velocities, Vp/Vs, Poisson's ratio (σ), and total porosity of the rock as a function of pressure. Compared with the 'porosity-free' intrinsic elastic values of the gabbro sample, our results suggest that the development of porosity in crustal rocks lowers their Vp, Vs, Vp/Vs, and Poisson's ratio. Deviations (ΔVp, ΔVs, ΔVp/Vs, and Δσ) of the measured values from the intrinsic values are enhanced with increasing porosity. We evaluated the ΔVp from previous experimental study on the rocks of Tanzawa plutonic complex providing constraints on interpretation of the seismic velocity profiles of the Izu-Bonin-Mariana (IBM) arc and found a large negative ΔVp (up to - 22.7%) at lower pressures. The intrinsic velocity combined with the measured velocity data at in situ pressure conditions suggest that the ranges of Vp (6.0-6.5 km/s) in the middle crust of the IBM arc reflect the presence of considerable porosity and its closure in intermediate rocks and/or the change of composition from felsic to intermediate in mid-crustal rocks.

  19. Emissions from waste combustion. An application of statistical experimental design in a laboratory-scale boiler and an investigation from large-scale incineration plants

    Zhang Xiaojing

    1997-05-01

    The aim of this thesis is a study of the emissions from the combustion of household refuse. The experiments were both on a laboratory-scale boiler and on full-scale incineration plants. In the laboratory, an artificial household refuse with known composition was fed into a pilot boiler with a stationary grate. Combustion was under non-optimum conditions. Direct sampling with a Tenax adsorbent was used to measure a range of VOCs. Measurements were also made of incompletely burnt hydrocarbons, carbon monoxide, carbon dioxide, oxygen and flue gas temperature. Combustion and emission parameters were recorded continuously by a multi-point data logger. VOCs were analysed by gas chromatography and mass spectrometry (GC/MS). The full-scale tests were on seven Swedish incineration plants. The data were used to evaluate the emissions from large-scale incineration plants with various type of fuels and incinerators, and were also compared with the laboratory results. The response surface model developed from the laboratory experiments was also validated. This thesis also includes studies on the gasification of household refuse pellets, estimations of particulate and soot emissions, and a thermodynamic analysis of PAHs from combustion flue gas. For pellet gasification, experiments were performed on single, well characterised refuse pellets under carefully controlled conditions. The aim was to see if the effects of pellets were different from those of untreated household refuse. The results from both laboratory and full-scale tests showed that the main contributions to emissions from household refuse are plastics and moisture. 142 refs, 82 figs, 51 tabs

  20. Experimental investigation of cavity flows

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  1. Experimental investigations of ICRF effects

    The goal of the Phaedrus program is to establish the relative efficiency of helicity and momentum current drive for rf near and below omegaci and compare to theory. This paper discusses major accomplishments in the rf program; extension of operating parameters; facility improvements; and additional experimental activities

  2. Experimental investigation of plasmofluidic waveguides

    Ku, Bonwoo; Kwon, Min-Suk, E-mail: mskwon@unist.ac.kr [School of Electrical and Computer Engineering, UNIST, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Shin, Jin-Soo [Department of Electrical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2015-11-16

    Plasmofluidic waveguides are based on guiding light which is strongly confined in fluid with the assistance of a surface plasmon polariton. To realize plasmofluidic waveguides, metal-insulator-silicon-insulator-metal (MISIM) waveguides, which are hybrid plasmonic waveguides fabricated using standard complementary metal-oxide-semiconductor technology, are employed. The insulator of the MISIM waveguide is removed to form 30-nm-wide channels, and they are filled with fluid. The plasmofluidic waveguide has a subwavelength-scale mode area since its mode is strongly confined in the fluid. The waveguides are experimentally characterized for different fluids. When the refractive index of the fluid is 1.440, the plasmofluidic waveguide with 190-nm-wide silicon has propagation loss of 0.46 dB/μm; the coupling loss between it and an ordinary silicon photonic waveguide is 1.79 dB. The propagation and coupling losses may be reduced if a few fabrication-induced imperfections are removed. The plasmofluidic waveguide may pave the way to a dynamically phase-tunable ultracompact device.

  3. Quantifying the accuracy of laboratory SIP experimental set ups

    Ntarlagiannis, D.; Slater, L. D.

    2014-12-01

    Over the last decade the spectral induced polarization (SIP) method has reemerged as a promising method for subsurface investigations. The sensitivity of SIP to bulk and interfacial physicochemical properties permits a wider range of hydrogeophysical and environmental applications, including monitoring of subsurface biogeochemical transformations. Improvements in instrumentation and experimental designs, along with faster acquisition capabilities and easy access to processing routines are encouraging novel applications of the method, and support quantitative interpretation of the data acquired. Motivated by recent research that focus on small scale changes, over large frequency ranges, we performed a series of experiments to identify the accuracy of common laboratory SIP experimental set ups. We performed measurements on resistor - capacitor (RC) networks, to identify the instrumentation accuracy, and also on standard laboratory columns filled with materials of known SIP response, primarily on well characterized fluids of different conductivity. Early results show small errors in the low frequency range, attributed to electrode polarization; in higher frequencies, typically above 1000 Hz, the errors may become significant limiting the meaningful interpretation of small phase angles at these frequencies. The data will be compared with published data using comparable experimental set ups, and could be used to set realistic expectations on future SIP experiments and applications. With this work we aim at developing a best practices document that can aid the SIP user in collecting meaningful and repeatable results.

  4. Investigating Coccolithophorid Biology in the Sedimentary Laboratory

    McClelland, H. L. O.; Barbarin, N.; Beaufort, L.; Hermoso, M.; Rickaby, R. E. M.

    2014-12-01

    Coccolithophores are the ocean's dominant calcifying phytoplankton; they play an important, but poorly understood, role in long-term biogeochemical climatic feedbacks. Calcite producing marine organisms are likely to calcify less in a future world where higher carbon dioxide concentrations will lead to ocean acidification (OA), but coccolithophores may be the exception. In coccolithophores calcification occurs in an intracellular vesicle, where the site of calcite precipitation is buffered from the external environment and is subject to a uniquely high degree of biological control. Culture manipulation experiments mimicking the effects of OA in the laboratory have yielded empirical evidence for phenotypic plasticity, competition and evolutionary adaptation in asexual populations. However, the extent to which these results are representative of natural populations, and of the response over timescales of greater than a few hundred generations, is unclear. Here we describe a new sediment-based proxy for the PIC:POC (particulate inorganic to particulate organic carbon ratio) of coccolithophore biomass, which is equivalent to the fractional energy contribution to calcification at constant pH, and a biologically meaningful measure of the organism's tendency to calcify. Employing the geological record as a laboratory, we apply this proxy to sedimentary material from the southern Pacific Ocean to investigate the integrated response of real ancient coccolithophore populations to environmental change over many thousands of years. Our results provide a new perspective on phenotypic change in real populations of coccolithophorid algae over long timescales.

  5. Experimental Results in DIS from Jefferson Laboratory

    Sebastian Kuhn

    2009-10-01

    We are summarizing the experimental program of Jefferson Lab (Thomas Jefferson National Accelerator Facility in Newport News, VA) in deep inelastic electron scattering. We show recent results and discuss future plans for both the present 6 GeV era and the 12 GeV energy-upgraded facility.

  6. Laboratory Investigation of the Airglow Bands

    Drouin, Brian; Yu, Shanshan; Crawford, Timothy J.; Miller, Charles E.; Yee, Jeng-Hwa

    2013-06-01

    We report the first high spectral resolution laboratory measurements of oxygen A-band night glow simulated using a static discharge cell. Our static discharge system reproduces the conditions of the mesospheric oxygen night glow - suggesting O(^1D) + O_2 as the primary source of the emission. Additionally, use of the static cell has enabled us to collect spectra for rare molecular oxygen isotopologues using isotopically enriched samples. The (0,0), (0,1), and (1,1) b-Xvibrational bands were observed with a Bruker 125 HR for all six isotopologues. The (1,2) and (2,2) bands were observed also for the main isotopologue. The frequencies of the observed (0,1) transitions resolved discrepancies in Raman data for (16-17, 17-17, and 17-18), enabling us to improve the vibrational parameterization of the ground electronic state in the global fit of Yu et al. Rotationally resolved intensities were determined for the (0,0), (0,1) and (1,1) bands. The experimental band intensity ratios I(0,0)/I(0,1) = 13.6 and I(0,0)/I(1,1) = 60 are in excellent agreement with the recent mesospheric remote sensing data. S. Yu, C.E. Miller, B.J. Drouin, H.S.P. Müller, J. Chem. Phys. 136, 024304, 2012

  7. Pressure laboratories for parameter controlled experimentation of deep sea environments

    Steffen, H.; Holscher, B.; Gust, G.; Thomsen, L.

    2003-04-01

    The in-situ examination of deep sea environments poses many challenges and cannot always be optimised which places the researcher at a disadvantage upon encountering high costs, few possibilities of controlling the naturally given parameters such as temperature, pressure or hydrodynamic conditions, and weather conditions while at sea. To overcome these limitations, pressure laboratories are emerging tools for biological, chemical and geological studies. The Department of Ocean Engineering 1 of the Technical University Hamburg-Harburg has been developing different types of pressure laboratories to meet the needs of the natural sciences. Three types of experimental settings were identified for examination and manipulation: experiments with artificial samples, natural samples that have been decompressed during recovery and re-pressurised, and, finally, natural samples in their original, undamaged state. We concentrate on the latter type of settings. For the laboratory simulations, different transfer units are needed for the decompression-free transfer from field site to laboratory, depending on sample type consisting of either fluids, solid-liquid suspensions including small particles and living organisms, or sediment cores. The pressure labs are thus linked to the in-situ site through special sample and transfer units which collect the undisturbed deep sea samples. As a result, laboratory investigation, after sample transfer, is very similar to in-situ analysis, but with the advantage of perfect control of the sample's environment and condition including the hydrodynamics at the sea bed. Two pressure laboratories that accomplish the given investigation tasks with different types of samples for depths down to 5500 m will be presented together with the related technology for sample acquisition. The latest system will be mobile, fully modular, and container based. Examples of experiments, some completed and some in progress, will be shown: Biological experiments include

  8. Epistemological Dizziness in the Psychology Laboratory: Lively Subjects, Anxious Experimenters, and Experimental Relations, 1950-1970.

    Morawski, Jill

    2015-09-01

    Since the demise of introspective techniques in the early twentieth century, experimental psychology has largely assumed an administrative arrangement between experimenters and subjects wherein subjects respond to experimenters' instructions and experimenters meticulously constrain that relationship through experimental controls. During the postwar era this standard arrangement came to be questioned, initiating reflections that resonated with Cold War anxieties about the nature of the subjects and the experimenters alike. Albeit relatively short lived, these interrogations of laboratory relationships gave rise to unconventional testimonies and critiques of experimental method and epistemology. Researchers voiced serious concerns about the honesty and normality of subjects, the politics of the laboratory, and their own experimental conduct. Their reflective commentaries record the intimacy of subject and experimenter relations and the plentiful cultural materials that constituted the experimental situation, revealing the permeable boundaries between laboratory and everyday life. PMID:26685518

  9. Preliminary rock mechanics laboratory: Investigation plan

    This document presents the rationale for rock mechanics laboratory testing (including the supporting analysis and numerical modeling) planned for the site characterization of a nuclear waste repository in salt. This plan first identifies what information is required for regulatory and design purposes, and then presents the rationale for the testing that satisfies the required information needs. A preliminary estimate of the minimum sampling requirements for rock laboratory testing during site characterization is also presented. Periodic revision of this document is planned

  10. Experimental investigation of quadrupole virtual photon spectrum

    To test experimentally the quadrupole virtual photon spectrum calculation, the (e,α) excitation function of an isolated 2+ level at 20.14 MeV in 24Mg was measured. The most recent calculations in DWBA, including nuclear size effects, are compared to this experimental curve. The differential cross section d2σ/dΩdE was measured 480, 900, 1320 in the laboratory system, for total electron energies of 20.0, 20.8, 21.5, 24.0, 26.0, 28.0, 30.0, 32.0, 36.0, and 40.0 MeV. The reduced matrix element B(E2) of the 20,14 MeV level is extracted as a secondary product of this work. (author)

  11. Experimental investigation of thermal barriers. Final report

    During this contract period, we completed the following small scale laboratory experiments: (a) plasma confinement by picket fence cusp magnetic fields. (b) Electrostatic plugging of picket fence cusps. (c) Investigations of sheath phenomena including: characteristics of probe sheaths, secondary electrons in a plasma-wall sheath, and end wall characteristics in TMX. (d) Suppression of secondary electron emission by permanent magnet produced multidipole magnetic field. (e) Electron thermal insulation by double layers and multiple double layers. Many of these investigations have already had important consequences in the development of improvement for neutral beam sources

  12. Mars Science Laboratory Mission and Science Investigation

    Grotzinger, John P.; Crisp, J.; Vasavada, A R; Anderson, R.C.; Baker, C J; Barry, R.; Ferdowski, B.; Gilbert, J. B.; Golombek, M.; Jandura, L.; Maki, J; Simmonds, J. J.; Welch, R. V.

    2012-01-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (∼23 months), and drive capability of at least 20 km. Curiosity’s science payload was specifically assembled to assess habitability and inclu...

  13. The European Network of Analytical and Experimental Laboratories for Geosciences

    Freda, Carmela; Funiciello, Francesca; Meredith, Phil; Sagnotti, Leonardo; Scarlato, Piergiorgio; Troll, Valentin R.; Willingshofer, Ernst

    2013-04-01

    Integrating Earth Sciences infrastructures in Europe is the mission of the European Plate Observing System (EPOS).The integration of European analytical, experimental, and analogue laboratories plays a key role in this context and is the task of the EPOS Working Group 6 (WG6). Despite the presence in Europe of high performance infrastructures dedicated to geosciences, there is still limited collaboration in sharing facilities and best practices. The EPOS WG6 aims to overcome this limitation by pushing towards national and trans-national coordination, efficient use of current laboratory infrastructures, and future aggregation of facilities not yet included. This will be attained through the creation of common access and interoperability policies to foster and simplify personnel mobility. The EPOS ambition is to orchestrate European laboratory infrastructures with diverse, complementary tasks and competences into a single, but geographically distributed, infrastructure for rock physics, palaeomagnetism, analytical and experimental petrology and volcanology, and tectonic modeling. The WG6 is presently organizing its thematic core services within the EPOS distributed research infrastructure with the goal of joining the other EPOS communities (geologists, seismologists, volcanologists, etc...) and stakeholders (engineers, risk managers and other geosciences investigators) to: 1) develop tools and services to enhance visitor programs that will mutually benefit visitors and hosts (transnational access); 2) improve support and training activities to make facilities equally accessible to students, young researchers, and experienced users (training and dissemination); 3) collaborate in sharing technological and scientific know-how (transfer of knowledge); 4) optimize interoperability of distributed instrumentation by standardizing data collection, archive, and quality control standards (data preservation and interoperability); 5) implement a unified e-Infrastructure for data

  14. The Locust Jump: An Integrated Laboratory Investigation

    Scott, Jon

    2005-01-01

    The locust is well known for its ability to jump large distances to avoid predation. This class sets out a series of investigations into the mechanisms underlying the jump enabling students to bring together information from biomechanics, muscle physiology, and anatomy. The nature of the investigation allows it to be undertaken at a number of…

  15. A Novel Experimental Technique to Simulate Pillar Burst in Laboratory

    He, M. C.; Zhao, F.; Cai, M.; Du, S.

    2015-09-01

    Pillar burst is one type of rockburst that occurs in underground mines. Simulating the stress change and obtaining insight into the pillar burst phenomenon under laboratory conditions are essential for studying the rock behavior during pillar burst in situ. To study the failure mechanism, a novel experimental technique was proposed and a series of tests were conducted on some granite specimens using a true-triaxial strainburst test system. Acoustic emission (AE) sensors were used to monitor the rock fracturing process. The damage evolution process was investigated using techniques such as macro and micro fracture characteristics observation, AE energy evolution, and b value analysis and fractal dimension analysis of cracks on fragments. The obtained results indicate that stepped loading and unloading simulated the pillar burst phenomenon well. Four deformation stages are divided as initial stress state, unloading step I, unloading step II, and final burst. It is observed that AE energy has a sharp increase at the initial stress state, accumulates slowly at unloading steps I and II, and increases dramatically at peak stress. Meanwhile, the mean b values fluctuate around 3.50 for the first three deformation stages and then decrease to 2.86 at the final stage, indicating the generation of a large amount of macro fractures. Before the test, the fractal dimension values are discrete and mainly vary between 1.10 and 1.25, whereas after failure the values concentrate around 1.25-1.35.

  16. Preparation of bentonites for laboratory investigations

    A project study on behalf of Nagra for high radioactive waste disposal in deep geological formations as well as literature studies have shown that bentonite could be a suitable filling and sealing material. The Institute for Foundation and Soil Mechanics of the Swiss Institute of Technology has been given a contract by Nagra to investigate different bentonites. The investigations concentrate on the Na-bentonite MX-80 from Wyoming, which is foreseen by the Swedes, and on the geographically more favorable Ca-bentonite Montigel from Bavaria. Montigel powder and granulate, which show certain manufacturing advantages, were investigated. The quality of the bentonites was examined especially to ascertain whether the bentonites were homogeneous with respect to composition and properties. Montmorillonite, carbonate, oxidizing substances and exchangeable ions were quality content criteria for bentonite. The investigations showed that these bentonites are typical Na- and Ca-bentonites. A representative sample of 500 kg weight (250 kg for Montigel K) was largely homogeneous. The samples were analysed by x-rays and thermoanalysis. Additionally grain size, carbonate content, methylene blue value, yield point, exchange capacity and exchangeable ions were determined. 5 refs., 2 figs., 2 tabs

  17. Failure investigations in the nuclear materials laboratory

    A report is given of damage to hydrostatic floating seals (with a single-stage pressure drop of 155 bar) from pressurized water reactors. The seals were manufactured from the steel X 22 CrNi 17 and plasmacoated with a layer of Cr2O3. The types of damage occurring (green discoloration and hump formation) are discussed in terms of their mechanistic causes. A further investigation involved metallographic examination with optical and scanning electron microscopes of seven specimens from thin-walled piping made of the finegrained, structural steel 17 MnMoV 6,4 in which cracking had occurred in weld regions, in particular, crack growth and the form of cracking at the weld root were investigated. (orig.)

  18. Open-ended versus guided laboratory activities: Impact on students' beliefs about experimental physics

    Wilcox, Bethany R

    2016-01-01

    Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the process of experimental physics. Alternatively, open-ended laboratory activities can provide a more authentic learning environment by, for example, allowing students to exercise greater autonomy in what and how physical phenomena are investigated. Engaging in authentic practices may be a critical part of improving students' beliefs around the nature of experimental physics. Here, we investigate the impact of open-ended activities in undergraduate lab courses on students' epistemologies and expectations about the nature of experimental physics, as well as their confidence and affect, as measured by the Colorado Learning Attitudes about Science Survey for Experimental Ph...

  19. Experimental Investigation of a Rectangular Airlift Pump

    I. I. Esen

    2010-01-01

    Hydraulic performance of an airlift pump having a rectangular cross-section 20 mm × 80 mm was investigated through an experimental program. The pump was operated at six different submergence ratios and the liquid flow rate was measured at various flowrates of air injected. The effectiveness of the pump, defined as the ratio of the mass of liquid pumped to the mass of air injected, was determined as a function of the mass of air injected for different submergence ratios. Results obtained were ...

  20. Experimental Investigation of Shock Wave Surfing

    Parziale, N J; Hornung, H G; Shepherd, J E

    2010-01-01

    Shock wave surfing is investigated experimentally in GALCIT's Mach 4.0 Ludwieg Tube. Shock wave surfing occurs when a secondary free-body follows the bow shock formed by a primary free-body; an example of shock wave surfing occurs during meteorite breakup. The free-bodies in the current investigation are nylon spheres. During each run in the Ludwieg tube a high speed camera is used to capture a series of schlieren images; edge tracking software is used to measure the position of each sphere. Velocity and acceleration are had from processing the position data. The radius ratio and initial orientation of the two spheres are varied in the test matrix. The variation of sphere radius ratio and initial angle between the centers of gravity are shown to have a significant effect on the dynamics of the system.

  1. Experimental and theoretical investigations of falling film evaporation

    Pehlivan, Hüseyin; Özdemir, Mustafa

    2012-06-01

    In this study, a mathematical model was developed for falling film evaporation in vacuum using heat transfer relations. An experimental device was designed. experimental set-up which was used was equipped with a triangular weir distribution device and it had the ability to record data up to 3 m. Experiments were performed in a single-effect process with sucrose-water solution varying from 3 to 20% concentration rate of sucrose and we used a vertical tube evaporator with the dimensions of laboratory scale. The model that was developed considers convection, shear stress, viscosity and conjugate heat transfer while most of the previous works ignored these factors. The main factors influencing the heat transfer mechanism performance of the unit were investigated and analyzed. We concluded that the experimental studies are verified by the developed model. Furthermore, it was also concluded that, the heat transfer is affected by the mass flow rate, sucrose concentration rate in solution, film thickness and pressure.

  2. Experimental investigation of magnetically confined plasma loops

    Tenfelde, Jan

    2012-12-11

    Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion

  3. Experimental investigation of magnetically confined plasma loops

    Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion

  4. Storage of high-level wastes, investigations in underground laboratories

    This article reviews the different collaborations made by ANDRA (national agency for the management of radioactive wastes) in the fields of underground radioactive waste storage. ANDRA has taken part in various experimental research programs performed in laboratories such as Mol in Belgium, Aspo in Sweden, Pinawa in Canada and Grimsel in Switzerland. This article details the experiments led at Mol since 1984. ANDRA is commissioned by the 30.12.91 decree to study the possibility of storage in deep geological layers. A thorough knowledge of the matter requires the building of underground laboratories in order to test and validate technological choices on a real scale. 6 themes will have to be investigated: 1) the capacity to seal up the storage facility after its use in order to assure the protection of man and environment, 2) the effects of geological perturbations on the confining properties of the site, 3) the confining ability of the Callovian-Oxfordian geological formation, 4) the transfer of radionuclides from the geological formation to the biosphere, 5) the constructing possibility of an underground storage facility, and 6) the possibility of retrieving the stored packages. (A.C.)

  5. Mars Science Laboratory Mission and Science Investigation

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (˜23 months), and drive capability of at least 20 km. Curiosity's science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity's field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate

  6. Comparison of Laboratory Experimental Data to XBeach Numerical Model Output

    Demirci, Ebru; Baykal, Cuneyt; Guler, Isikhan; Sogut, Erdinc

    2016-04-01

    generating data sets for testing and validation of sediment transport relationships for sand transport in the presence of waves and currents. In these series, there is no structure in the basin. The second and third series of experiments were designed to generate data sets for development of tombolos in the lee of detached 4m-long rubble mound breakwater that is 4 m from the initial shoreline. The fourth series of experiments are conducted to investigate tombolo development in the lee of a 4m-long T-head groin with the head section in the same location of the second and the third tests. The fifth series of experiments are used to investigate tombolo development in the lee of a 3-m-long rubble-mound breakwater positioned 1.5 m offshore of the initial shoreline. In this study, the data collected from the above mentioned five experiments are used to compare the results of the experimental data with XBeach numerical model results, both for the "no-structure" and "with-structure" cases regarding to sediment transport relationships in the presence of only waves and currents as well as the shoreline changes together with the detached breakwater and the T-groin. The main purpose is to investigate the similarities and differences between the laboratory experimental data behavior with XBeach numerical model outputs for these five cases. References: Baykal, C., Sogut, E., Ergin, A., Guler, I., Ozyurt, G.T., Guler, G., and Dogan, G.G. (2015). Modelling Long Term Morphological Changes with XBeach: Case Study of Kızılırmak River Mouth, Turkey, European Geosciences Union, General Assembly 2015, Vienna, Austria, 12-17 April 2015. Gravens, M.B. and Wang, P. (2007). "Data report: Laboratory testing of longshore sand transport by waves and currents; morphology change behind headland structures." Technical Report, ERDC/CHL TR-07-8, Coastal and Hydraulics Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS. Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de

  7. Investigating Student Perceptions of the Chemistry Laboratory and Their Approaches to Learning in the Laboratory

    Berger, Spencer Granett

    laboratory procedures. In order to test the effects of the intervention, an experimental group (N=87) completed these supplementary questions during two laboratory experiments while a control group (N=84) performed the same experiments without these additional questions. The effects of the intervention on laboratory exam performance were measured. Students in the experimental group had a higher average on the laboratory exam than students in the control group.

  8. Experimental investigations of MFCI in Russia

    This report contains a review of the experimental investigations of MFCI which are carried out as applied to the safety problems of LMFBR, mainly in IPPE. Until the present time these investigations have been performed in out of pile conditions, using different substances for molten fuel simulation. A brief description of the experimental installations and results obtained in the course of experimental program realization is given. In particular the results are presented on the study of MFCI phenomenology with regards to the influence on the interaction energy release of such factors as: type of molten fuel-coolant contact, temperature conditions, ratio of interacted masses, scale factor. Simulation experiments have been effectuated using the following pairs of interaction media: low-melting metals (Lead, Tin, Bismuth, Aluminium)/water; molten Titan and Stainless steel/water; molten Titan and Stainless steel/sodium, eutectic alloy potassium-sodium; alumina/sodium; thermite mixture (Zr + Fe2O3)/water, sodium. The experiments were carried out mainly with the melts masses below 1 kg, except for some series of the experiments on molten Lead-water interaction, where the melt masses as big as 40 kg were used. Initial temperatures of low-melting metals have not exceeded 800 deg. C, while for the Stainless steel, Titan melts and alumina they were equal to 2200 deg. and 2500 deg. C respectively. The temperature of the melt, obtained by combustion of the thermite mixture Zr + Fe2O3, was about 3000 deg. C. The first part of the MFCI investigation program has been completed for the present time. A set of the data on the dynamical characteristics of interactions (time delays, amplitudes and shape of interaction pressure pulses, duration of interaction stage) and conversion coefficients of melt thermal energy into mechanical one was obtained. Analysis of these results has shown an essentially milder interaction energetics in the case of alkali metals coolants as compared with

  9. Modelling and laboratory investigation of microbial enhanced oil recovery

    Desouky, S.M. [King Saud University, College of Engineering, Riyadh (Saudi Arabia); Abdel-Daim, M.M.; Sayyouh, M.H.; Dahab, A.S. [Cairo University, College of Engineering and Petroleum Engineering Department, Giza (Egypt)

    1996-08-15

    A one-dimensional model was developed to simulate the process of enhanced oil recovery by microorganisms. The model involves five components (oil, water, bacteria, nutrient and metabolites), with adsorption, diffusion, chemotaxis, growth and decay of bacteria, nutrient consumption, permeability damage and porosity reduction effects. Experiments were conducted to identify the parameters affecting the transport and growth of three bacterial strains: Streptococcus, Staphylococcus and Bacillus in porous media. Several correlations were developed from the experimental laboratory data and were used in the simulator. Comparison between the experimental and simulated results emphasized the validity of the developed simulator and determined its degree of accuracy (average absolute relative error=8.323%). The simulator was used to investigate the effects of indigenous bacteria, slug size, incubation time, residual oil saturation, absolute permeability, and injection flow rate on oil recovery. Results show that more oil can be recovered by using Streptococcus with molasses as a medium. Oil recovery is sensitive to variation in concentration of injected indigenous bacteria, size of bacterial culture slug, incubation time and residual oil saturation. The change of absolute permeability, or injection flow rate, has no effect on oil recovery efficiency by bacteria

  10. Experimental investigation of the role of ions in aerosol nucleation

    Enghoff, Martin Andreas Bødker

    nucleation theory. Several ideas have been put forward to solve this nucleation problem, e.g. Ion-Induced Nucleation (Raes & Janssens 1985) and Ternary Nucleation (Kulmala et al. 2000). Experimental investigations exploring the role of ions in particle production are scarce, and often at conditions far...... energetic cosmic rays can promote the production of cloud condensation nuclei at low altitudes constitutes a link between cosmic rays and Earth's climate and there is thus a need to corroborate the results in a different experiment The present results are obtained in the same laboratory, but using a new...

  11. Experimental investigation of passive pool mixing

    After the initial blow-down phase of a hypothetical design basis accident or severe accident in the General Electric Simplified Boiling Water Reactor (SBWR), heat is added to the suppression pool by gas-vapor flow through the isolation condenser (IC) and passive containment cooler (PCC) vent lines. The exit of the vent lines is fairly shallow (on the order of 0.75 meters) in order to enhance IC/PCC operation. The surface temperature of a pool increases when heat is injected. The magnitude of increase depends on the amount of the pool involved in heat absorption and thermal gradients in the absorbing region. Thermal stratification occurs because a rising plume carries the energy of the vented gas-vapor to the pool surface and, as a result, only the region of the pool above the injection point is involved in heat absorption. This experimental investigation demonstrated the feasibility of using the IC/PCC vent flow to drive pool mixing. A passive mixer was designed and constructed on the basis of buoyancy and momentum utilization. The mixer was sized to represent one in a system of several mixers which could be implemented in the SBWR. The experimental results show that the potential exists to involve a significant amount of the suppression pool in heat absorption using a passive mixer

  12. Propane hydrate nucleation: Experimental investigation and correlation

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2008-01-01

    In this work the nucleation kinetics of propane gas hydrate has been investigated experimentally using a stirred batch reactor. The experiments have been performed isothermally recording the pressure as a function of time. Experiments were conducted at different stirring rates, but in the same...... supersaturation region. The experiments showed that the gas dissolution rate rather than the induction time of propane hydrate is influenced by a change in agitation. This was especially valid at high stirring rates when the water surface was severely disturbed.Addition of polyvinylpyrrolidone (PVP...... the presence of additives. In most cases reasonable agreement between the data and the model could be obtained. The results revealed that especially the effective surface energy between propane hydrate and water is likely to change when the stirring rate varies from very high to low. The prolongation...

  13. [LABORATORY AND EXPERIMENTAL STUDY OF THE COMPLEX PROBIOTIC PREPARATION "BIFILACT-BILS" IN CAPSULATED FORM].

    Neschislyaev, V A; Stolbova, M G; Mokin, P A; Orlova, E V; Ershov, A E

    2016-01-01

    The composition and technology of complex probiotic in hard gelatin capsules was developed in Perm Branch "Biomed" of "Microgen" State Company. The preparation contains three production strains: Lactobacillus plantarum 8P-A3, L. acidophilus K3W24 and Bifidobacterium bifidum 1. Laboratory and experimental (preclinical) study of the probiotic included investigation of the antagonistic activity, "acute" and "chronic" toxicity, the effect of the preparation on histology and hematology of laboratory animals. The result of these studies suggested of the probiotic had high inhibitory activity against pathogenic microflora when compared with probiotic monopreparations and had no toxic effects on laboratory animals. PMID:27301138

  14. An Investigative, Cooperative Learning Approach to the General Microbiology Laboratory

    Seifert, Kyle; Fenster, Amy; Dilts, Judith A.; Temple, Louise

    2009-01-01

    Investigative- and cooperative-based learning strategies have been used effectively in a variety of classrooms to enhance student learning and engagement. In the General Microbiology laboratory for juniors and seniors at James Madison University, these strategies were combined to make a semester-long, investigative, cooperative learning experience…

  15. A Vodcasted, Cross-Disciplinary, Behavioral Neuroscience Laboratory Exercise Investigating the Effects of Methamphetamine on Aggression

    Shanks, Ryan A.; Southard, E. Megan; Tarnowski, Laura; Bruster, Matthew; Wingate, Stacia W.; Dalman, Nancy; Lloyd, Steven A.

    2011-01-01

    This article describes a laboratory experience utilizing videos to engage students in hypothesis-driven experimentation in behavioral neuroscience. It provides students with an opportunity to investigate the effects of chronic methamphetamine exposure on aggression in adult mice using a resident-intruder paradigm. Instructors and students only…

  16. An Experimental Investigation of Cognitive Defusion

    Pilecki, Brian C.; McKay, Dean

    2012-01-01

    The current study compared cognitive defusion with other strategies in reducing the impact of experimentally induced negative emotional states. Sixty-seven undergraduates were assigned to one of three conditions (cognitive defusion, thought suppression, or control) and instructed in standardized approaches relevant to each condition before viewing…

  17. Experimental investigation of gas aerostatic bearings

    Steinbauer, P.; Šika, Z.; Kozánek, Jan; Šimek, J.

    2008-01-01

    Roč. 3, - (2008), s. 769-776. ISSN 1335-2393 R&D Projects: GA ČR GA101/06/1787 Institutional research plan: CEZ:AV0Z20760514 Keywords : aerostatic bearing * experimental identification * measurement Subject RIV: BI - Acoustics

  18. Structural failures and experimental investigations of lightweightstructures

    Drdácký, Miloš

    Varšava: Wydawnictwo naukowe, 2002 - (Obrebski, J.), s. 613-622 ISBN 83-908867-6-6. [Lightweight structures in civil engineering. Varšava (PL), 24.06.2002-28.06.2002] R&D Projects: GA MK PK99P04OPP006 Keywords : structural failures, forensic engineering, experimental mechanics Subject RIV: JN - Civil Engineering

  19. Experimental Investigation on Hydrodynamic Behavior of the Geometric Spar Platform

    ZHANG Fan; YANG Jian-min; LI Run-pei; CHEN Gang

    2006-01-01

    In recent years, attention has been focused on the spar platform for gas and oil exploitation in deep water. With the development of offshore technology, many new spar concepts have been put forward and fully studied. This paper presents the results of an experimental investigation on the hydrodynamic behavior of a new spar concept from Novellent Offshore LLC, USA, which is called Geometric Spar (G-spar). A new type of buoyancy can concept from the same company, viz. Integrated Buoyancy Can (IBC), is researched in the meantime. The G-spar and IBC models with a 1:70 scale are tested in the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University for the global performance of the spar hull, in which the second-order wave drift force is involved, as well as the effect of heave plates on the motion characteristics and mooring force of the G-spar platform.

  20. Extra-terrestrial sprites: laboratory investigations in planetary gas mixtures

    Dubrovin, D.; Yair, Y.; Price, C.; Nijdam, S.; Clevis, T.T.J.; Veldhuizen, E.M. van; Ebert, U.

    2012-01-01

    We investigate streamers in gas mixtures representing the atmospheres of Jupiter, Saturn (H2-He) and Venus (CO2-N2). Streamer diameters, velocities, radiance and overall morphology are investigated with fast ICCD camera images. We confirm experimentally the scaling of streamer diameters in these gas

  1. Experimental facilities for plate-out investigations and future work

    The safety of HTR under normal operation and accident conditions, the possibility of inspection, maintenance and repair or decontamination of single primary components as well as the safety of maintenance personnel are essentially determined by the transport- and deposition behaviour of the non gaseous fission - and activation products in the primary loop of the reactor. A comprehensive program has been started in 1969 in KFA in collaboration with various industrial firms and foreign institutions to investigate these problems. The program includes in-pile and out-pile experiments, simulating reactor conditions and also different laboratory experiments and extensive theoretical investigations. The aim of these efforts is to test experimentally the models and computercodes, which are used for prediction of transport and deposition behaviour of fission products for HTR's as well under normal as under accident conditions. Further more a verified dataset is to be established. In this paper a survey is given of the experimental facilities carried out by KFA or in cooperation with KFA

  2. The Experimental Investigation of Supersymmetry Breaking

    Peskin, Michael E.

    1996-01-01

    If Nature is supersymmetric at the weak interaction scale, what can we hope to learn from experiments on supersymmetric particles? The most mysterious aspect of phenomenological supersymmetry is the mechanism of spontaneous supersymmetry breaking. This mechanism ties the observable pattern of supersymmetric particle masses to aspects of the underlying unified theory at very small distance scales. In this article, I will discuss a systematic experimental program to determine the mechanism of s...

  3. Experimental investigation of a control synthetic jet

    Němcová, L.; Kordík, Jozef; Trávníček, Zdeněk; Kopecký, V.

    Vol. 1. Liberec : TU Liberec, 2011 - (Vít, T.; Dančová, P.; Novotný, P.), s. 315-322 ISBN 978-80-7372-784-0. [Experimental Fluid Mechanics 2011. Jičín (CZ), 22.11.2011-25.11.2011] R&D Projects: GA ČR(CZ) GA101/09/1959 Institutional research plan: CEZ:AV0Z20760514 Keywords : flow control * synthetic jet * jet flow Subject RIV: BK - Fluid Dynamics

  4. Experimental Investigation of Thermal Conductivity through Nanofluids

    Abid, Muhammad

    2012-01-01

    ABSTRACT: The method used in this experimental work is the Temperature Oscillation Technique (TOT). Thermal conductivity measurement through Temperature Oscillation Technique is to fill the cylinder with the nanofluids, and apply the temperature oscillations at both ends of the cylinder. It measures the phase and amplitude of the temperature oscillation in the center and at both ends of the cylinder. Thermal diffusivity is calculated from the phase and amplitude values. Furthermore, thermal c...

  5. Theoretical and experimental investigations of Chinese evacuated tubular solar collectors

    Qin, Lin; Furbo, Simon

    1999-01-01

    Four different marketed Chinese evacuated tubular solar collectors have been investigated both theoretically and experimentally. The advantages of the investigated solar collectors compared to normal flat plate collectors were elucidated.......Four different marketed Chinese evacuated tubular solar collectors have been investigated both theoretically and experimentally. The advantages of the investigated solar collectors compared to normal flat plate collectors were elucidated....

  6. Environmental epidemiology applied to urban atmospheric pollution: a contribution from the Experimental Air Pollution Laboratory (LPAE)

    André Paulo Afonso de; Braga Alfésio Luis Ferreira; Lin Chin An; Conceição Gleice Margarete de Souza; Pereira Luiz Alberto Amador; Miraglia Simone Georges El Khouri; Böhm György Miklos

    2000-01-01

    Systematic investigation on the effects of human exposure to environmental pollution using scientific methodology only began in the 20th century as a consequence of several environmental accidents followed by an unexpected mortality increase above expected mortality and as a result of observational epidemiological and toxicological studies conducted on animals in developed countries. This article reports the experience of the Experimental Air Pollution Laboratory at the School of Medicine, Un...

  7. High range electromagnetic fields. Experimental investigations

    It has been often discussed on the health effects from the electromagnetic fields, and nowadays this theme is particularly controlled and studied by the research-workers. It needs to know what is the risk connected to the exposure to the electromagnetism during a short or a long quantity of time and what are the health pathologies caused by the continue exposure. On one hand the results from epidemiological research can not still define the effect of the dose, on the other hand the legislative frame is variously fragmented and based on cautious concepts. But in this work, under the collaboration of Energy Resources Laboratory in Lausanne and the Geo resources and Territory Department in Turin University, are presented the early results on the experiments got out on high frequency (950 MHZ) in order to give a contribution to the debate between the scientific community and the public opinion

  8. The experimental investigation of supersymmetry breaking

    If Nature is supersymmetric at the weak interaction scale, what can we hope to learn from experiments on supersymmetric particles? The most mysterious aspect of phenomenological supersymmetry is the mechanism of spontaneous supersymmetry breaking. This mechanism ties the observable pattern of supersymmetric particle masses to aspects of the underlying unified theory at very small distance scales. In this article, I will discuss a systematic experimental program to determine the mechanism of supersymmetry breaking. Both pp and e+e- colliders of the next generation play an essential role

  9. Theoretical And Experimental Investigation Of Reditrons

    Kwan, T. J.; Davis, H. A.; Fulton, R. D.; Sherwood, E. G.

    1988-05-01

    We have carried out theoretical and experimental study to optimize the efficiency of microwave production of the reditron. In the optimal configuration, we have achieved the production of 3.3 GW of microwave radiation at 10.0% efficiency with a very narrow spectrum centered at 2.15 GHz. This is roughly a factor of 3.5 increase in efficiency and about 3 in bandwidth narrowing over conventional vircators. In additon, we found that the use of cavities can achieved bandwidth narrowing, stability of frequency during repeated operation, improvement of mode selectivity.

  10. Numerical and experimental investigations on catalytic recombiners

    Numerous containments of European light water reactors (LWR) are equipped with passive auto-catalytic recombiners (PAR). These devices are designed for the removal of hydrogen generated during a severe accident in order to avoid serious damage caused by a detonation. PARs make use of the fact that hydrogen and oxygen react exothermally on catalytic surfaces generating steam and heat even below conventional ignition concentrations and temperatures. Activities at ISR aim at overcoming existing limitations of today's systems. These are e.g. limited conversion capacity or unintended ignition of the gaseous mixture due to overheating of the catalyst elements caused by strong reaction heat generation. Experiments at the REKO facilities are conducted in order to achieve a profound understanding of the processes inside a recombiner, such as reaction kinetics or heat and mass transfer. Innovative PAR designs which may overcome existing limitations can be developed based on the knowledge obtained from these experiments. For the analysis of the processes inside a PAR the numerical code REKO-DIREKT is being developed. The code calculates the local catalyst temperatures and the concentration regression along the catalyst plates. For the validation of the model numerous experiments have been performed with different types of coating and different plate arrangements. The first calculations fit well with the experimental results indicating a proper understanding of the fundamental processes. The paper describes the experiments as well as the numerical model and presents model calculations in comparison with experimental results. (authors)

  11. Investigation of Appropriate Refractory Material for Laboratory Electritic Resistrance Furnance

    J.B Agboola

    2009-07-01

    Full Text Available There have been numerous efforts to increase the local content of furnaces; hence the choice of appropriate refractory material for lining of locally manufactured furnaces has remained a major concern. This research work investigates the choice of appropriate local refractory material for the lining of laboratory electric resistance furnace.Electric resistance furnaces are extensively used in the laboratory for heat treatment of metals and alloys. Refractory binders such as silicon carbide were experimented upon for strength and resistance to high temperature.The results obtained showed that Kankara fireclay containing 15% SiC ( 5.70 % linear shrinkage , 46.2% apparent porosity, 1.77gkm³ Bulk density, 18 cycles of spalling tests at 1300°C, 5.253KN/m² of cold strength has appropriate properties for producing grooved bricks for lining of laboratory electric resistance Furnace.

  12. Experimental Investigation of Wetting with Magnetic Fluids.

    Manukyan, Selin; Schneider, Marius

    2016-05-24

    Here we report the experimental results of the general wetting behavior of an oil-based ferrofluid and a water-based magnetic paint droplet on a hydrophobic surface under the effect of an external magnetic field. By increasing the magnetic field in the vertical direction, the height of the oil-based ferrofluid droplet increases while the width decreases; on the contrary, under the same circumstances, the height of the water-based magnetic paint droplet decreases whereas the width increases. The wetting behavior of the oil-based ferrofluid and the water-based magnetic paint droplets is evaluated as a function of the contact angle, contact line diameter, and hysteresis curve alterations. Conclusively, a general explanation is given for the contrary behavior of both liquids, and some application processes for future implementations are introduced. PMID:27119597

  13. Experimental investigations of active air bearings

    Santos, Ilmar; Morosi, Stefano

    2012-01-01

    greatest challenges in a high-speed gas bearing design. A great deal of research is devoted to attack such issues, where most propose passive designs such as compliant foil bearings, tilting pad and flexure pivot gas bearings. These solutions proved to be effective in improving static and dynamic......Along with traditional oil lubrication, increasing demand for high-speed applications has renewed attention to gas bearings technology. Traditional aerostatic and aerodynamic gas lubrication has been widely used in a variety of applications, ranging from high-speed spindles to micro and meso......-scale turbomachinery. The present paper deals with experimental rotordynamic testing of a flexible rotor supported by hybrid aerostaticaerodynamic gas journal bearing equipped with an electronic radial air injection system. From a rotordynamic point of view there are two phenomena that limit the widespread of...

  14. Biomass granular screw feeding: An experimental investigation

    Dai, Jianjun; Grace, John R. [Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6 T 1Z3 (Canada)

    2011-02-15

    Successful feeding is critical to biomass utilization processes, but difficult due to the heterogeneity, physical properties and moisture content of the particles. The objectives of the present study were to find the mechanisms of blockage in screw feeding and to determine the effects of particle mean size (0.5-15 mm), size distribution, shape, moisture content (10-60%), density and compressibility on biomass particle feeding at room temperature. Wood pellets, sawdust, hog fuel and wood shavings were tested in a screw feeder/lock hopper system previously employed to feed sawdust into a pilot-scale circulating fluidized-bed gasifier. Experimental results showed that large particles, wide size distributions, large bulk densities and high moisture contents generally led to larger torque requirements for screw feeding. The ''choke section'' and seal plug play important roles in determining the torque requirements. (author)

  15. Experimental investigation of turbine-structure interaction

    Fabre, Romain

    2015-01-01

    This project concerns the fast growing sector of tidal energy. It is carried out with the company Sustainable Marine Energy Ltd currently developing a new concept of tidal turbines. The main purpose of the research is to investigate a phenomenon that was noticed in previous researches: the increase of performances of the turbine due to the presence of the turbine support structure. For this purpose, a physical model was manufactured; it is design to recreate the turbine-p...

  16. Exploratory experimental investigation of a wave propeller

    Dane, Carl W.

    1992-01-01

    Approved for public release; distribution is unlimited A low-speed wind tunnel investigation was conducted to determine if a small secondary airfoil or wave propeller, oscillating in a rotary plunging motion, could significantly affect the airflow over a lifting airfoil surface to delay the onset of stall. The lifting airfoil shape was a NACA 66(215)-216, chosen for its chordwise pressure port instrumentation. Testing consisted of measuring the pressure distribution of the NACA 66(215)-2...

  17. Electrically Responsive Surfaces: Experimental and Theoretical Investigations

    2016-01-01

    orientation of the surface-tethered molecules under electroinduced switching, but also provided an in-depth characterization of the system reversibility. Furthermore, the unique support from molecular dynamics (MD) simulations is highlighted. MD simulations with polarizable force fields (FFs), which could give proper description of the charge polarization caused by electrical stimulus, have helped not only back many of the experimental observations, but also to rationalize the mechanism of switching behavior. More importantly, this polarizable FF-based approach can efficiently be extended to light or pH stimulated surfaces when integrated with reactive FF methods. The interplay between experimental and theoretical studies has led to a higher level of understanding of the switchable surfaces, and to a more precise interpretation and rationalization of the observed data. The perspectives on the challenges and opportunities for future progress on stimuli-responsive surfaces are also presented. PMID:27268783

  18. Electrically Responsive Surfaces: Experimental and Theoretical Investigations.

    Cantini, Eleonora; Wang, Xingyong; Koelsch, Patrick; Preece, Jon A; Ma, Jing; Mendes, Paula M

    2016-06-21

    the surface-tethered molecules under electroinduced switching, but also provided an in-depth characterization of the system reversibility. Furthermore, the unique support from molecular dynamics (MD) simulations is highlighted. MD simulations with polarizable force fields (FFs), which could give proper description of the charge polarization caused by electrical stimulus, have helped not only back many of the experimental observations, but also to rationalize the mechanism of switching behavior. More importantly, this polarizable FF-based approach can efficiently be extended to light or pH stimulated surfaces when integrated with reactive FF methods. The interplay between experimental and theoretical studies has led to a higher level of understanding of the switchable surfaces, and to a more precise interpretation and rationalization of the observed data. The perspectives on the challenges and opportunities for future progress on stimuli-responsive surfaces are also presented. PMID:27268783

  19. Experimental investigation of planar ion traps

    Pearson, C E; Brown, K R; Chuang, I L; Leibrandt, D R; Mallard, W J

    2005-01-01

    Chiaverini et al. [Quant. Inf. Comput. 5, 419 (2005)] recently suggested a linear Paul trap geometry for ion trap quantum computation that places all of the electrodes in a plane. Such planar ion traps are compatible with modern semiconductor fabrication techniques and can be scaled to make compact, many zone traps. In this paper we present an experimental realization of planar ion traps using electrodes on a printed circuit board to trap linear chains of tens of 0.44 micron diameter charged particles in a vacuum of 15 Pa (0.1 torr). With these traps we address concerns about the low trap depth of planar ion traps and develop control electrode layouts for moving ions between trap zones without facing some of the technical difficulties involved in an atomic ion trap experiment. Specifically, we use a trap with 36 zones (77 electrodes) arranged in a cross to demonstrate loading from a traditional four rod linear Paul trap, linear ion movement, splitting and joining of ion chains, and movement of ions through in...

  20. Experimental investigation on flow modes of electrospinning

    Ting Si; Guang-Bin Li; Xing-Xing Chen; Rui-Jun Tian; Xie-Zhen Yin

    2012-01-01

    Electrospinning experiments are performed by using a set of experimental apparatus,a stroboscopic system is adopted for capturing instantaneous images of the conejet configuration.The cone and the jet of aqueous solutions of polyethylene oxide (PEO) are formed from an orifice of a capillary tube under the electric field.The viscoelastic constitutive relationship of the PEO solution is measured and discussed.The phenomena owing to the jet instability are described,five flow modes and corresponding structures are obtained with variations of the fluid flow rate Q,the electric potential U and the distance h from the orifice of the capillary tube to the collector.The flow modes of the cone-jet configuration involves the steady bending mode,the rotating bending mode,the swinging rotating mode,the blurring bending mode and the branching mode.Regimes in the Q-U plane of the flow modes are also obtained.These results may provide the fundamentals to predict the operating conditions expected in practical applications.

  1. Experimental investigation of hydrogen peroxide RF plasmas

    Barni, R.; Decina, A.; Zanini, S.; D'Orazio, A.; Riccardi, C.

    2016-04-01

    This work reports a detailed experimental study of the plasma properties in low pressure RF discharges in hydrogen peroxide and a comparison with argon under the same operating conditions. H2O2 plasmas have been proposed for sterilization purposes. Electrical properties of the discharge were shown to be similar, as for the RF and DC voltages of the driving electrode. Bulk plasma volume remains stable, concentrated in an almost cylindrical region between the two facing electrodes. It was found that the electron temperature is almost uniform across the plasma and independent of the power level. This is higher than in argon discharges: T e  =  4.6  ±  0.9 eV versus T e  =  3.3  ±  1.1 eV. The plasma density increases almost linearly with the power level and a substantial negative ion component has been ruled out in hydrogen peroxide. Dissociation in the plasma gas phase was revealed by atomic hydrogen and hydroxyl radical emission in the discharge spectra. Emission from hydroxyl and atomic oxygen demonstrates that oxidizing radicals are produced by hydrogen peroxide discharges, revealing its usefulness for plasma processing other than sterilization, for instance to increase polymer film surface energy. On the other hand, argon could be considered as a candidate for the sterilization purposes due to the intense production of UV radiation.

  2. Experimental investigation on fracture of layered plates

    Agnihotri, Servesh; Parameswaran, Venkitanarayanan

    2015-03-01

    Layered structures, used in many applications such as windshields, thermal protection systems, heavy armor etc., are comprised of layers having different elastic and fracture properties. Present study focuses on understanding the behavior of cracks in a layered plate oriented in such a way that there are property jumps across the crack front. Two layer plates were fabricated by joining Polymethylmethacrylate (PMMA) and epoxy sheets using an epoxy based adhesive (Araldite). Single edge notched specimens were subjected to mixed mode loading using the asymmetric four point bending configuration. The results of the study indicated that the failure in two layer plates is progressive in nature. Crack extension starts in the most vulnerable layer (epoxy) first and the crack grows in a sequence of jumps and arrests in this layer. Once this crack reaches a particular length the crack in the second layer starts extending resulting in final failure of the plate. Similar sequence of events was observed in the case of dynamically loaded samples. The predictions of the load at which epoxy crack starts growing and the angle at which the crack grows using the maximum tensile stress criteria were in reasonable agreement with the experimentally observed values.

  3. Experimental Investigation of the Loss Coefficients in a Linear Cascade

    Taghavi-Zenouz, Reza; Etemadi, Majed; Nabati, Mehdi

    2014-06-01

    This paper reports results of experimental investigations on a linear cascade of axial compressor blades. Experiments were conducted in an open circuit subsonic wind tunnel of Aerodynamics Research Laboratory of the Iran University of Science and Technology. Different Reynolds numbers based on the blade chord length were examined, ranging from 80,000 to 500,000. Flow incidences were changed between -8 to +8 degrees with 2 degrees intervals. Freestream turbulence intensity was changed between 1.25 to 4 percent corresponding to different mesh screens mounted upstream of the test model. All the above flow conditions provided to establish various flow regimes, in terms of fully laminar and transitional flows, around the blades. At a specified range of Reynolds numbers laminar separation bubble/bubbles occurred over the blade solid walls. Surface pressure distributions were measured utilizing a computerized data acquisition system. Fluctuating velocities were also measured at various positions around the separation bubble zone, using hot film anemometry. Surface oil flow visualization was carried out for some selected flow conditions. Experimental results were used to study boundary layer characteristics and to determine variations of loss coefficient with each of Reynolds number, flow incidence and turbulence intensity parameters for the test model.

  4. Experimental Investigation of Thruster Cathode Physics

    Crofton, Mark

    2004-11-01

    Advanced ion propulsion technologies are being developed under the Nuclear Electric Xenon Ion System (NEXIS) program for use in outer planet exploration. A revolutionary approach to thruster cathode design is dictated by the very high lifetime and propellant throughput requirements for nuclear electric applications. In conventional dispenser hollow cathodes used in thrusters, processes leading to depletion, inadequate transport, or insufficient production of barium are among those limiting the lifetime. A reservoir hollow cathode is being developed to address each of these failure mechanisms, exploiting four design variables - matrix material, source material, geometry, and thermal design - to essentially eliminate established failure modes. The very long anticipated lifetime necessitates new life validation methods to augment or replace the conventional lifetest approach. One important tool for quickly evaluating design changes is the ability to measure barium density inside a hollow cathode and/or in the plume. The dependence of barium density on temperature and other factors is an extremely important indicator of cathode health, particularly if the ratio Ba:BaO is also obtained. Comparison of barium production for reservoir and conventional cathodes will enable an assessment of the efficacy of reservoir designs and the goal of reducing barium consumption at a given emission current level. This study describes benchmark measurements made on a conventional cathode previously operated in a 20-kW NEXIS laboratory engine. Data on cathode operation and life-limiting processes were obtained through direct, real-time monitoring of atoms and molecules. A high-resolution, tunable laser system was employed to detect absorption of the low-density barium atoms inside the cathode. The plume was monitored also, using a quadrupole mass spectrometer to monitor multiple species and measure ion charge ratios. Data obtained with retarding potential analyzers or other means are

  5. Experimental Investigation of Particle Deagglomeration using Turbulence

    The effect of turbulence on powder aerosol deagglomeration was investigated. Two impinging jets were used to generate turbulence. Lactose particles, whose fully dispersed fine particle fraction (FPF) - number percentage of the particles whose diameter smaller than 5 μm- is above 90 %, were applied as aerosol powder. The particle size distribution after the dispersion unit were measured by using phase Doppler anemometer (PDA) and turbulence level were quantified at the impingement point of two jets with laser Doppler anemometer. As the turbulence level increases turbulent time and length scales decrease, and the ratio of fine particle fraction (FPF) increases from 36% to 86%.

  6. Experimental Investigation of Using Fuel Additives - Alcohol

    S.M. Fayyad

    2010-01-01

    This research presents an investigation of the effects of ethanol addition to low octane numbergasoline, on the fuel octane number and on the performance of the engine. In this study, the tested gasoline(octane number = 90) is blended with five different percentages of ethanol, namely 3, 6, 9, 12 and 15% onvolume basis. Then these fuel blends, as well as the base gasoline fuel, w ere burnt in the tested engine. It isfound that the octane number of gasoline increases continuously and linearly ...

  7. Experimental Investigation of Using Fuel Additives - Alcohol

    S.M. Fayyad

    2010-03-01

    Full Text Available This research presents an investigation of the effects of ethanol addition to low octane numbergasoline, on the fuel octane number and on the performance of the engine. In this study, the tested gasoline(octane number = 90 is blended with five different percentages of ethanol, namely 3, 6, 9, 12 and 15% onvolume basis. Then these fuel blends, as well as the base gasoline fuel, w ere burnt in the tested engine. It isfound that the octane number of gasoline increases continuously and linearly with increasing the ethanolpercentage in gasoline. Hence, ethanol is an effective compound for increasing the value of the octane numberof gasoline. Also, it is also noticed that the best performance of the engine was obtained when 15% of ethanolwas used in the gasoline blend.

  8. Students' assessment of interactive distance experimentation in nuclear reactor physics laboratory education

    Malkawi, Salaheddin; Al-Araidah, Omar

    2013-10-01

    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research reactors limit their accessibility to few educational programmes around the world. The concept of the Internet Reactor Laboratory (IRL) was introduced earlier as a new approach that utilises distance education in nuclear reactor physics laboratory education. This paper presents an initial assessment of the implementation of the IRL between the PULSTAR research reactor at North Carolina State University in the USA and the Department of Nuclear Engineering at Jordan University of Science and Technology (JUST) in Jordan. The IRL was implemented in teaching the Nuclear Reactor laboratory course for two semesters. Feedback from surveyed students verifies that the outcomes attained from using IRL in experimentation are comparable to that attainable from other on-campus laboratories performed by the students.

  9. Experimental investigation of a flapping wing model

    Hubel, Tatjana Y.; Tropea, Cameron

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  10. Experimental investigation of a flapping wing model

    Hubel, Tatjana Y.; Tropea, Cameron [Technische Universitaet Darmstadt, Fachgebiet Stroemungslehre und Aerodynamik, Darmstadt (Germany)

    2009-05-15

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle. (orig.)

  11. Experimental Investigation of the Decay from A Ship's Propeller

    W. Lam; G. A. Hamill; SONG Yong-chen; D. J. Robinson; S. Raghunathan

    2011-01-01

    In the present study, an experimental investigation of the decay of the maximum velocity and its turbulent characteristics behind a ship propeller, in "bollard pull" condition (zero speed of advance), is reported. Velocity measurements were performed in laboratory by use of a Laser Doppler Anemometry (LDA) measurement system. Earlier researchers described that the maximum axial velocity is constant at the initial stage of a ship's propeller jet (Fuehrer and Romisch, 1977; Blaauw and van de Kaa, 1978; Berger et al., 1981; Verhey, 1983) as reported in a pure water jet (Albert.son et al., 1950; Lee et al., 2002; Dai, 2005), but a number of researchers disagreed with the constant velocity assumption. The present study found that the maximum axial velocity decays in the zone of flow establishment and the zone of established flow with different rates. The investigation provides an insight into the decays of both the maximum velocity and the maximum turbulent fluctuation in axial, tangential and radial components and the decay of the maximum turbulent kinetic energy. Empirical equations are proposed to allow coastal engineers to estimate the jet characteristics from a ship's propeller.

  12. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    Nix, Andrew Carl [West Virginia Univ., Morgantown, WV (United States)

    2015-03-23

    The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in

  13. Road Traffic Congestion and Public Information: An Experimental Investigation

    Anthony Ziegelmeyer; Frédéric Koessler; Kene Boun My; Laurent Denant-Boèmont

    2007-01-01

    This paper reports two laboratory studies designed to study the impact of public information about past departure rates on congestion levels and travel costs. Our experimental design is based on a discrete version of Arnott, de Palma, and Lindsey’s (1990) bottleneck model where subjects have to choose their departure time in order to reach a common destination. Experimental treatments in our first study differ in terms of the level of public information on past departure rates and the relativ...

  14. Experimental and numerical investigation of non-neutral complex plasmas

    A plasma of particles with the same sign of charge, can be easily confined under ultra-high vacuum conditions in Penning-Malmberg traps, where the time evolution of the system is monitored for very long times by means of electrostatic and optical diagnostic systems. Complex (dusty) plasmas are ionized gases that contain a distribution of micrometer-sized particles with a surface charge of the order of a few thousand electron charges. The interplay between a wide range of scales in time and space gives rise to new characteristic physical phenomena. Laboratory complex plasmas generally satisfy a global (quasi-)neutrality condition. A different concept is represented by a non-neutral complex plasma. To investigate the dynamics of this system, we are currently developing the DuEl (Dust-Electron) device, where negatively charged dust particles will be present together with a population of electrons. The experimental set-up will include a dust injection system and a Penning-Malmberg trap for the confinement of the dust-contaminated electron plasma. We describe here the main physical aims of the project and the present design of the apparatus. To support the experimental project, we have been developing a specifically tailored two-dimensional 'hybrid' Particle-In-Cell code. Using polar cylindrical coordinates, the code aims to investigate the transverse dynamics of a magnetized electron plasma contaminated by a massive, charged species. A mass-less fluid approximation for the electron population is exploited, while the dust component is treated with a kinetic description, also including the gravitational force. The preliminary results of systematic studies on the effects of heavy (magnetized or non-magnetized) dust grains on the equilibrium and stability properties of the electron fluid are presented. The implementation of other characteristic phenomena of interest, e.g. residual gas friction and dust charge fluctuations, is also under development.

  15. Experimental and numerical investigation of non-neutral complex plasmas

    Romé, M.; Cavaliere, F.; Cavenago, M.; Ikram, M.; Lepreti, F.; Maero, G.; Paroli, B.; Pozzoli, R.

    2013-03-01

    A plasma of particles with the same sign of charge, can be easily confined under ultra-high vacuum conditions in Penning-Malmberg traps, where the time evolution of the system is monitored for very long times by means of electrostatic and optical diagnostic systems. Complex (dusty) plasmas are ionized gases that contain a distribution of micrometer-sized particles with a surface charge of the order of a few thousand electron charges. The interplay between a wide range of scales in time and space gives rise to new characteristic physical phenomena. Laboratory complex plasmas generally satisfy a global (quasi-)neutrality condition. A different concept is represented by a non-neutral complex plasma. To investigate the dynamics of this system, we are currently developing the DuEl (Dust-Electron) device, where negatively charged dust particles will be present together with a population of electrons. The experimental set-up will include a dust injection system and a Penning-Malmberg trap for the confinement of the dust-contaminated electron plasma. We describe here the main physical aims of the project and the present design of the apparatus. To support the experimental project, we have been developing a specifically tailored two-dimensional 'hybrid' Particle-In-Cell code. Using polar cylindrical coordinates, the code aims to investigate the transverse dynamics of a magnetized electron plasma contaminated by a massive, charged species. A mass-less fluid approximation for the electron population is exploited, while the dust component is treated with a kinetic description, also including the gravitational force. The preliminary results of systematic studies on the effects of heavy (magnetized or non-magnetized) dust grains on the equilibrium and stability properties of the electron fluid are presented. The implementation of other characteristic phenomena of interest, e.g. residual gas friction and dust charge fluctuations, is also under development.

  16. Experimental and numerical investigation of non-neutral complex plasmas

    Rome, M.; Cavaliere, F.; Maero, G.; Paroli, B.; Pozzoli, R. [INFN Sezione di Milano and Dipartimento di Fisica, Universita degli Studi di Milano, Via Celoria 16, I-20133 Milano (Italy); Cavenago, M. [INFN Laboratori Nazionali di Legnaro, Viale dell' Universita 2, I-35020 Legnaro (Italy); Ikram, M. [INFN Sezione di Milano and Dipartimento di Fisica, Universita degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy and Department of Physics, Hazara University, 21300 Mansehra (Pakistan); Lepreti, F. [Dipartimento di Fisica, Universita della Calabria and CNISM Unita di Cosenza, Ponte P. Bucci 31C, I-87036 Rende (Italy)

    2013-03-19

    A plasma of particles with the same sign of charge, can be easily confined under ultra-high vacuum conditions in Penning-Malmberg traps, where the time evolution of the system is monitored for very long times by means of electrostatic and optical diagnostic systems. Complex (dusty) plasmas are ionized gases that contain a distribution of micrometer-sized particles with a surface charge of the order of a few thousand electron charges. The interplay between a wide range of scales in time and space gives rise to new characteristic physical phenomena. Laboratory complex plasmas generally satisfy a global (quasi-)neutrality condition. A different concept is represented by a non-neutral complex plasma. To investigate the dynamics of this system, we are currently developing the DuEl (Dust-Electron) device, where negatively charged dust particles will be present together with a population of electrons. The experimental set-up will include a dust injection system and a Penning-Malmberg trap for the confinement of the dust-contaminated electron plasma. We describe here the main physical aims of the project and the present design of the apparatus. To support the experimental project, we have been developing a specifically tailored two-dimensional 'hybrid' Particle-In-Cell code. Using polar cylindrical coordinates, the code aims to investigate the transverse dynamics of a magnetized electron plasma contaminated by a massive, charged species. A mass-less fluid approximation for the electron population is exploited, while the dust component is treated with a kinetic description, also including the gravitational force. The preliminary results of systematic studies on the effects of heavy (magnetized or non-magnetized) dust grains on the equilibrium and stability properties of the electron fluid are presented. The implementation of other characteristic phenomena of interest, e.g. residual gas friction and dust charge fluctuations, is also under development.

  17. Experimental and Theoretical Investigations of Wet Flue Gas Desulphurisation

    Kiil, Søren

    temperature in the interval 313 - 333 K, pertinent for full-scale wet FGD packed towers. The possibility of co-firing straw and coal was investigated in a full-scale power plant. No ef-fects on the overall performance of the wet FGD plant were observed, though laboratory ex-periments with fine dust and fly......-scale experiments. In the theoretical part of the work, the laboratory and pilot plant observations are investigated using mathematical modelling.The mechanism underlying the rate of dissolution of finely grinded limestone particles was examined in a laboratory batch apparatus using acid titration. Three Danish...

  18. Experimental methods for laboratory-scale ensilage of lignocellulosic biomass

    Anaerobic fermentation is a potential storage method for lignocellulosic biomass in biofuel production processes. Since biomass is seasonally harvested, stocks are often dried or frozen at laboratory scale prior to fermentation experiments. Such treatments prior to fermentation studies cause irreversible changes in the plant cells, influencing the initial state of biomass and thereby the progression of the fermentation processes itself. This study investigated the effects of drying, refrigeration, and freezing relative to freshly harvested corn stover in lab-scale ensilage studies. Particle sizes, as well as post-ensilage drying temperatures for compositional analysis, were tested to identify the appropriate sample processing methods. After 21 days of ensilage the lowest pH value (3.73 ± 0.03), lowest dry matter loss (4.28 ± 0.26 g. 100 g-1DM), and highest water soluble carbohydrate (WSC) concentrations (7.73 ± 0.26 g. 100 g-1DM) were observed in control biomass (stover ensiled within 12 h of harvest without any treatments). WSC concentration was significantly reduced in samples refrigerated for 7 days prior to ensilage (3.86 ± 0.49 g. 100 g−1 DM). However, biomass frozen prior to ensilage produced statistically similar results to the fresh biomass control, especially in treatments with cell wall degrading enzymes. Grinding to decrease particle size reduced the variance amongst replicates for pH values of individual reactors to a minor extent. Drying biomass prior to extraction of WSCs resulted in degradation of the carbohydrates and a reduced estimate of their concentrations. The methods developed in this study can be used to improve ensilage experiments and thereby help in developing ensilage as a storage method for biofuel production. -- Highlights: ► Laboratory-scale methods to assess the influence of ensilage biofuel production. ► Drying, freezing, and refrigeration of biomass influenced microbial fermentation. ► Freshly ensiled stover exhibited

  19. Experimental and analytical investigation of a fluidic power generator

    Sarohia, V.; Bernal, L.; Beauchamp, R. B.

    1981-01-01

    A combined experimental and analytical investigation was performed to understand the various fluid processes associated with the conversion of flow energy into electric power in a fluidic generator. Experiments were performed under flight-simulated laboratory conditions and results were compared with those obtained in the free-flight conditions. It is concluded that the mean mass flow critically controlled the output of the fluidic generator. Cross-correlation of the outputs of transducer data indicate the presence of a standing wave in the tube; the mechanism of oscillation is an acoustic resonance tube phenomenon. A linearized model was constructed coupling the flow behavior of the jet, the jet-layer, the tube, the cavity, and the holes of the fluidic generator. The analytical results also show that the mode of the fluidic power generator is an acoustical resonance phenomenon with the frequency of operation given by f approx = a/4L, where f is the frequency of jet swallowing, a is the average speed of sound in the tube, and L is the length of the tube. Analytical results further indicated that oscillations in the fluidic generator are always damped and consequently there is a forcing of the system in operation.

  20. Experimental investigation of surface litter ignition by bark firebrands

    Filkov, Alexander; Kasymov, Denis; Zima, Vladislav; Matvienko, Oleg

    2016-01-01

    Probability and conditions for ignition of surface litter (pine needles) caused by firebrands is studied in the laboratory conditions. For modeling of firebrands, pine bark of various sizes 10×10, 15×15, 20×20, 25×25, 30×30 mm2 and 5 mm in thickness is used. The experiment was conducted in the absence of wind and at different wind velocities: 1, 1.5, 2 and 3 m/s. To conduct investigations, an experimental setup was constructed for generation of firebrands and their impact on surface litter. The results of experiments have shown that the increase in air velocity leads to the increase in probability of surface litter ignition. Thus, wind plays a role of catalyst in the ignition process, bringing an oxidizing agent to firebrands and supporting the process of smoldering. However, if the wind velocity is insufficient for ignition, then there is only the process of smoldering. The area of "uncertainty", where there is smoldering of surface litter without transition to ignition, is found to decrease with increasing the wind velocity. Based on the received results, it can be concluded that the ignition curve of surface liter by firebrands is nonlinear and depends on the wind velocity. At the same time, there is no smoldering and ignition of surface litter for all the wind velocities and the particles with a size of 10 × 10 mm2, regardless of their number.

  1. Experimental investigation of jet pulse control on flexible vibrating structures

    Karaiskos, Grigorios; Papanicolaou, Panos; Zacharopoulos, Dimitrios

    2016-08-01

    The feasibility of applying on-line fluid jet pulses to actively control the vibrations of flexible structures subjected to harmonic and earthquake-like base excitations provided by a shake table is explored. The operating principles and capabilities of the control system applied have been investigated in a simplified small-scale laboratory model that is a mass attached at the top free end of a vertical flexible slender beam with rectangular cross-section, the other end of which is mounted on an electrodynamic shaker. A pair of opposite jets placed on the mass at the top of the cantilever beam applied the appropriate forces by ejecting pressurized air pulses controlled by on/off solenoid electro-valves via in house developed control software, in order to control the vibration caused by harmonic, periodic and random excitations at pre-selected frequency content provided by the shaker. The dynamics of the structure was monitored by accelerometers and the jet impulses by pressure sensors. The experimental results have demonstrated the effectiveness and reliability of Jet Pulse Control Systems (JPCS). It was verified that the measured root mean square (RMS) vibration levels of the controlled structure from harmonic and earthquake base excitations, could be reduced by approximately 50% and 33% respectively.

  2. Children's recantation of adult wrongdoing: An experimental investigation.

    Malloy, Lindsay C; Mugno, Allison P

    2016-05-01

    Child maltreatment cases often hinge on a child's word versus a defendant's word, making children's disclosures crucially important. There is considerable debate concerning why children recant allegations, and it is imperative to examine recantation experimentally. The purpose of this laboratory analogue investigation was to test (a) how often children recant true allegations of an adult's wrongdoing after disclosing and (b) whether children's age and caregiver supportiveness predict recantation. During an interactive event, 6- to 9-year-olds witnessed an experimenter break a puppet and were asked to keep the transgression a secret. Children were then interviewed to elicit a disclosure of the transgression. Mothers were randomly assigned to react supportively or unsupportively to this disclosure, and children were interviewed again. We coded children's recantations (explicit denials of the broken puppet after disclosing) and changes in their forthcomingness (shifts from denial or claims of lack of knowledge/memory to disclosure and vice versa) in free recall and in response to focused questions about the transgression. Overall, 23.3% of the children recanted their prior disclosures (46% and 0% in the unsupportive and supportive conditions, respectively). No age differences in recantation rates emerged, but 8- and 9-year-olds were more likely than 6- and 7-year-olds to maintain their recantation throughout Interview 2. Children whose mothers reacted supportively to disclosure became more forthcoming in Interview 2, and those whose mothers reacted unsupportively became less forthcoming. Results advance theoretical understanding of how children disclose negative experiences, including sociomotivational influences on their reports, and have practical implications for the legal system. PMID:26771375

  3. Laboratory Investigations on Estuary Salinity Mixing: Preliminary Analysis

    F. H. Nuryazmeen

    2014-05-01

    Full Text Available Estuaries are bodies of water along the coasts that are formed when fresh water from rivers flows into and mixes with salt water from the ocean. The estuaries serve as a habitat to some aquatic lives, including mangroves. Human-induced activities such as dredging of shipping lanes along the bottom estuarine, the disposal of industrial wastes into the water system and shoreline development influence estuarine dynamics which include mixing process. These activities might contribute to salinity changes and further adversely affect the estuarine ecosystem. In order to study at the characteristics of the mixing between salt water (estuary and freshwater (river, a preliminary investigation had been done in the laboratory. Fresh water was released from one end of the flume and overflowing at weir at the other end. Meanwhile, salt water was represented by the red dye tracer released through a weir and intruded upstream as a gravity current. The isohalines are plotted to see the salinity patterns. Besides, to examine the spatial and temporal salinity profiles along the laboratory investigations, the plotted graphs have been made. The results show that the changes in salinity level along the flume due to mixing between fresh water and salt water. This showed typical salt-wedge estuary characteristics.

  4. Randomized block experimental designs can increase the power and reproducibility of laboratory animal experiments.

    Festing, Michael F W

    2014-01-01

    Randomized block experimental designs have been widely used in agricultural and industrial research for many decades. Usually they are more powerful, have higher external validity, are less subject to bias, and produce more reproducible results than the completely randomized designs typically used in research involving laboratory animals. Reproducibility can be further increased by using time as a blocking factor. These benefits can be achieved at no extra cost. A small experiment investigating the effect of an antioxidant on the activity of a liver enzyme in four inbred mouse strains, which had two replications (blocks) separated by a period of two months, illustrates this approach. The widespread failure to use these designs more widely in research involving laboratory animals has probably led to a substantial waste of animals, money, and scientific resources and slowed down the development of new treatments for human and animal diseases. PMID:25541548

  5. Numerical and experimental investigation of geometric parameters in projection welding

    Kristensen, Lars; Zhang, Wenqi; Bay, Niels

    2000-01-01

    parameters by numerical modeling and experimental studies. SORPAS, an FEM program for numerical modeling of resistance welding, is developed as a tool to help in the phase of product design and process optimization in both spot and projection welding. A systematic experimental investigation of projection...

  6. An Inquiry-Based Density Laboratory for Teaching Experimental Error

    Prilliman, Stephen G.

    2012-01-01

    An inquiry-based laboratory exercise is described in which introductory chemistry students measure the density of water five times using either a beaker, a graduated cylinder, or a volumetric pipet. Students are also assigned to use one of two analytical balances, one of which is purposefully miscalibrated by 5%. Each group collects data using…

  7. Field studies, laboratory experiments, and modeling investigations in fractured media

    Groundwater flow and radionuclide migration are two critical factors in determining the performance of a high-level nuclear waste (HLW) repository. Flow and transport in fractured media is a complex problem that must be addressed by both the site characterization programs and predictive models. The Repository Technology Program is investigating three aspects of the problem in cooperative efforts with Canada and Sweden as well as in international programs such as INTRAVAL. The methodologies and techniques developed in these programs can be applied to any site investigation that must consider fracture flow and transport of radionuclides along discrete fractures. Laboratory experiments are being performed in cooperation with Atomic Energy of Canada, Limited (AECL) on a large block of granite (∼1 m square) with a discrete fracture to investigate dispersion and diffusion along the fracture. Nonreactive and reactive tracers are used in the experiments. Tracers that include uranine, iodine, and cesium are injected under controlled gradients and sampled uniformly along the fracture discharge surface. Results of the nonreactive tracer experiments will be used to calibrate a radionuclide transport code (FRACFLO) recently developed at Battelle's Office of Waste Technology Development. The calibrated models will then be used to predict the results of experiments that use reactive tracers. The experiment and associated modeling are being considered for use as a test case in the INTRAVAL program

  8. Experimental econophysics properties and mechanisms of laboratory markets

    Huang, Ji-Ping

    2015-01-01

    Experimental Econophysics describes the method of controlled human experiments, which is developed by physicists to study some problems in economics or finance, namely, stylized facts, fluctuation phenomena, herd behavior, contrarian behavior, hedge behavior, cooperation, business cycles, partial information, risk management, and stock prediction. Experimental econophysics together with empirical econophysics are two branches of the field of econophysics. The latter one has been extensively discussed in the existing books, while the former one has been seldom touched. In this book, the author will focus on the branch of experimental econophysics. Empirical econophysics is based on the analysis of data in real markets by using some statistical tools borrowed from traditional statistical physics. Differently, inspired by the role of controlled experiments and system modelling (for computer simulations and/or analytical theory) in developing modern physics, experimental econophysics specially relies on controlle...

  9. Experimental investigation of subsonic combustion driven MHD generator performance

    McClaine, A. W.; Swallom, D. W.; Kessler, R.

    1984-01-01

    Future mature combined cycle MHD/steam electrical power plants may use subsonic flow trains. To provide a data base of subsonic generator design and operating experience an experimental program was begun in 1977 at the Avco Everett Research Laboratory. During this program an MHD generator was operated with a subsonic flow train under both Faraday and diagonal loads. This paper reviews the work performed under this program and the results obtained.

  10. Experimental investigation of rubble mound breakwaters for wave energy conversion

    Luppa, C.; Contestabile, P.; Cavallaro, L.;

    2015-01-01

    The paper describes recent laboratory investigation on the breakwater integrated device named “OBREC” (Overtopping BReakwater for Energy Conversion). This technology recently appeared on the wave energy converter scene as an executive outcome of improving composite seawalls by including overtoppi...

  11. Requirements for Real-Time Laboratory Experimentation over the Internet.

    Salzmann, C.; Latchman, H. A.; Gillet, D.; Crisalle, O. D.

    A prototype system based on an inverted pendulum is used to study the Quality of Service and discuss requirements of remote-experimentation systems utilized for carrying out control engineering experiments over the Internet. This class of applications involves the transmission over the network of a variety of data types with their own peculiar…

  12. Experimental Methods in Neuroscience: An Undergraduate Neuroscience Laboratory Course for Teaching Ethical Issues, Laboratory Techniques, Experimental Design, and Analysis

    Hall, Adam C.; Harrington, Mary E.

    2003-01-01

    We have developed and recently taught a 200 level undergraduate course entitled, ‘Experimental Methods in Neuroscience’. This is a required course in an increasingly popular Neuroscience major at Smith College. Students are introduced initially to issues of animal ethics and experimentation, and are familiarized with our Animal Care Facility. Using an open field and rotarod apparatus, and the elevated plus and Barnes mazes, they conduct behavioral testing of two strains of mice, C57/BL/6J and...

  13. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    The Oak Ridge National Laboratory has three multipurpose research reactors which accommodate testing loops, target irradiations, and beam-type experiments. Since the experiments must share common or similar facilities and utilities, be designed and fabricated by the same groups, and meet the same safety criteria, certain standards for these have been developed. These standards deal only with those properties from which safety and economy of time and money can be maximized and do not relate to the intent of the experiment or quality of the data obtained. The necessity for, and the limitations of, the standards are discussed; and a compilation of general standards is included

  14. New experimental tools for bioassays with whitefly in laboratory

    Thiago Luis Martins Fanela

    2012-12-01

    Full Text Available The objective of this work was to develop an experimental kit for assessments of repellency, deterrence for oviposition, and insecticidal activity on adults of the whitefly Bemisia tabaci biotype B. The kit, which consisted of arenas and nebulizer, was effective for conducting bioassays, and the application of aqueous extracts by inhaler was adequate. The techniques are simple, cheap, and may contribute to research on this insect.

  15. An open microcomputer-based laboratory system for perceptional experimentality

    Hamalainen, Ari

    A computer, equipped with hardware for acquiring data about the properties of a physical system and programs for processing that data, is a powerful tool for physics research and instruction. There is strong evidence that utilizing microcomputer-based laboratories (MBLs) in instruction can lead to significantly improved learning. The perceptional approach is a method for physics instruction, developed at the Department of Physics, University of Helsinki. Its main arguments are that the meanings of the concepts must be learnt before their formal definitions and adoption, and that learning and research are fundamentally similar concept formation processes. Applying the perceptional approach requires the ability to perform quantitative experiments, either as students' laboratory exercises or as lecture demonstrations, and to process their results. MBL tools are essential for this. In student's laboratory exercises, they reduce the routine work and leave more time for the actual learning. In lecture demonstrations, they make it possible to perform the experiments in the tight time limits. At a previous stage of the research, a set of requirements was found that the perceptional approach places on MBL systems. The primary goal of this thesis is to build a prototype of a MBL system that would fulfil these requirements. A secondary goal is to describe technical aspects of a computerized measurement system from the standpoint of educational use. The prototype was built using mostly commercial sensors and data acquisition units. The software was written with a visual programming language, designed for instrumentation applications. The prototype system was developed and tested with a set of demonstrations of various topics in the Finnish high school physics curriculum, which were implemented according to the perceptional approach. Limited usability tests were also performed. The prototype was improved, until it could perform the test demonstrations. It was found to meet the

  16. Experimental investigation of coarse-grained particles in pipes

    Vlasák, P.; Chára, Z.; Konfršt, J. (Jiří); Kysela, B. (Bohuš)

    2013-01-01

    The effect of solid concentration and mixture velocity on the flow behaviour and pressure drops of coarse-grained particle-water mixtures in the turbulent flow was experimentally investigated. Concentration distribution in the pipe cross-section was also studied. Graded basalt pebbles as a model of solid particles were studied on an experimental pipe loop with horizontal, vertical, and inclined sections of smooth stainless steel pipes of inner diameter D = 100 mm. The study revealed that the ...

  17. Experimental investigations of thermal interaction between corium and coolants

    Zagorul'ko, Yu. I.; Zhmurin, V. G.; Volov, A. N.; Kovalev, Yu. P.

    2008-03-01

    We present a generalized analysis of the experimental results from investigations of thermal interaction in corium simulators (melts of thermite mixtures U + Mo3 and Zr + Fe2O3)-coolant (Na and H2O) systems. We also present the results from experimental assessments of the kinematic characteristics pertinent to the displacement of materials during the thermal interaction process and the coefficients for conversion of the corium thermal energy into mechanical work.

  18. Investigation of Sulfate Attack by Experimental and Thermodynamic Means

    Kunther, Wolfgang

    2012-01-01

    This work investigates sulfate attack in complex sulfate environments by exposing different binder types to various sulfate solutions and comparing predicted phase and volume changes with experimental data. The most important aspects of this work can be grouped in three topics: The comparison of the predicted volume increase with the experimentally observed length changes. This part of the work shows that volume increase cannot be linked direct...

  19. Possible experimental investigation of the phenomenon of anomalous ionization

    We discuss the possibility of investigating experimentally in the upper ionosphere the critical velocity phenomenon. This occurs when a cloud of neutral gas interacts with plasma in a transverse magnetic field. We determine the region in experimental parameter space (flow rate of the gas, plasma density, etc.) where we might anticipate the occurrence of a self-sustaining beam-plasma discharge. We consider quantitatively the dynamics of the discharge process

  20. Laboratory investigation of axisymmetric single vacuum well point

    VU Van-tuan; YAO Lei-hua; WEI Ying-jie

    2016-01-01

    Vacuum well point is a new but faint soft ground treatment method. This work focuses on the consolidation behavior of a reconstituted soft clayey specimen under vacuum well point combined with surcharge loading. The laboratory test was conducted through a vacuum-surcharge consolidation apparatus, and the vacuum loading scheme was adopted for vacuum pressure application to investigate the vacuum effect on soil consolidation. In the testing process, some key parameters such as vacuum pressure, pore water pressure and settlement deformation were timely recorded. Furthermore, the water content, void ratio and permeability coefficient of samples collected after loading were measured to reflect the consolidation characteristics. By comparing with the membrane system and membraneless system, something different was found for the vacuum well point method. The results indicate that the consolidation behavior of an axisymmetric single vacuum well point is almost identical to the behavior of vacuum preloading combined with prefabricated vertical drain (PVD), except for the distribution of the vacuum pressure along the well drain due to the structure of the vacuum well point. And the vacuum well point method may be useful for the improvement of soft clayey deposit in a certain depth.

  1. EXPERIMENTAL INVESTIGATION OF AN AIR CHARGED LOW POWERED STIRLING ENGINE

    Can ÇINAR

    2004-01-01

    Full Text Available In this study, an air charged, low powered manufactured ? type Stirling engine was investigated experimentally. Tests were conducted at 800, 900 and 1000 °C hot source temperatures, 1, 1.5, 2, 2.5, 3, 3.5 bars air charge pressure. The variation of engine power depending on the charge pressure and hot source temperature for two different heat transfer area was investigated experimentally. Maximum output power was obtained at 1000 °C and 3 bars charge pressure as 58 W at 441 rpm. Engine speed was reached at 846 rpm without load.

  2. EXPERIMENTAL INVESTIGATION OF AN AIR CHARGED LOW POWERED STIRLING ENGINE

    Can ÇINAR

    2004-01-01

    In this study, an air charged, low powered manufactured ? type Stirling engine was investigated experimentally. Tests were conducted at 800, 900 and 1000 °C hot source temperatures, 1, 1.5, 2, 2.5, 3, 3.5 bars air charge pressure. The variation of engine power depending on the charge pressure and hot source temperature for two different heat transfer area was investigated experimentally. Maximum output power was obtained at 1000 °C and 3 bars charge pressure as 58 W at 441 rpm. Engine speed w...

  3. EXPERIMENTAL INVESTIGATION OF CAVITATION IN A SUDDEN EXPANSION PIPE

    ZHANG Jian-min; YANG Qing; WANG Yu-rong; XU Wei-lin; CHEN Jian-gang

    2011-01-01

    For sudden expansion pipes, experiments were carried out to study the cavitation inception for various enlargement ratios in high speed flows.The flow velocity of the prototype reaches 50 m/s in laboratory.The relationship between the expansion ratio and the incipient cavitation number is obtained.The scale and velocity effects are revealed.It is shown that Keller's revised formula should be modified to calculate the incipient cavitation number when the forecasted velocity of the flows in the prototype exceeds the experimental velocity.

  4. The role of laboratory investigations in evaluating abdominal tuberculosis

    Sherwani Rana

    2015-01-01

    Full Text Available Background and Objectives: Tuberculosis (TB continues to be a major health problem in developing countries like India. Abdominal TB is defined as an infection of the peritoneum, or hollow or solid abdominal organs with Mycobacterium tuberculosis (Mtb. The gastrointestinal tract is one of the most frequent sites of extrapulmonary involvement in TB. The present study was undertaken to evaluate the role of laboratory investigations in the diagnosis of abdominal TB. Materials and Methods: The study was conducted on 300 patients admitted to various departments of our hospital from November 2005 to October 2007. Detailed histories and thorough clinical examinations together with relevant hematological, biochemical, cytological, radiological, and histopathological investigations were carried out in suspected cases of Koch′s abdomen. Results: Erythrocyte sedimentation rates with positive results were seen in 79.3% patients. Serological test enzyme-linked immunosorbent assay was performed on only 30 patients and was found to be positive for IgG, and IgM in 25 cases with a sensitivity of 83%. Thirteen out of 15 cases were positive for adenosine deaminase done on ascitic fluid. The results of the two patients who underwent Mtb polymerase chain reaction (PCR were consistent with TB. Out of 21 image-guided fine-needle aspiration cytology (FNAC cases, 10 (48% of the positive cases showed caseating necrosis while 7 (33% had noncaseous necrosis. Stain for acid-fast bacilli (AFB was performed on all cases and was positive in 42 cases (38.8%. Lymph node biopsy was done in 95% of the cases. Conclusions: Serological investigations have a limited value, while PCR is a highly specific test. Since cost restricts its use, only two patients in our study could afford it. BACTEC is more sensitive and faster than culture techniques for the diagnosis of mycobacterial infections. FNAC is a reliable, cost effective alternative, and 81% diagnostic yield in the present study

  5. Experimental investigations of overvoltages in neutral isolated networks

    Vukelja, P.I.; Naumov, R.M.; Vucinic, M.M.; Budisin, P.B. (Electrotechnicki Inst. ' Nikola Tesla' , Belgrade (Yugoslavia))

    1993-09-01

    For more than a decade, the Nikola Tesla Institute has worked intensively on experimental investigations of transient voltages and currents in neutral isolated networks, usually at 6 kV. The paper presents the results of investigations of overvoltages at the instant of appearance of an earth fault and during its interruption, the earth-fault currents and overvoltages during ferroresonance. Investigations were performed on cable station service networks in hydro- and thermal-power plants, industrial and similar installations in Yugoslavia. On the basis of these investigations, some measures are suggested for improving the reliability of operation of neutral isolated networks. (author)

  6. Choice of experimental venue matters in ecotoxicology studies: Comparison of a laboratory-based and an outdoor mesocosm experiment.

    Mikó, Zsanett; Ujszegi, János; Gál, Zoltán; Imrei, Zoltán; Hettyey, Attila

    2015-10-01

    The heavy application of pesticides and its potential effects on natural communities has attracted increasing attention to inadvertent impacts of these chemicals. Toxicologists conventionally use laboratory-based tests to assess lethal concentrations of pesticides. However, these tests often do not take into account indirect, interactive and long-term effects, and tend to ignore different rates of disintegration in the laboratory and under natural conditions. Our aim was to investigate the importance of the experimental venue for ecotoxicology tests. We reared tadpoles of the agile frog (Rana dalmatina) in the laboratory and in outdoor mesocosms and exposed them to three initial concentrations of a glyphosate-based herbicide (0, 2 and 6.5 mg a.e./L glyphosate), and to the presence or absence of caged predators (dragonfly larvae). The type of experimental venue had a large effect on the outcome: The herbicide was less lethal to tadpoles reared in outdoor mesocosms than in the laboratory. Further, while the herbicide had a negative effect on development time and on body mass in the laboratory, tadpoles exposed to the herbicide in mesocosms were larger at metamorphosis and developed faster in comparison to those reared in the absence of the herbicide. The effect of the herbicide on morphological traits of tadpoles also differed between the two venues. Finally, in the presence of the herbicide, tadpoles tended to be more active and to stay closer to the bottom of laboratory containers, while tadpole behaviour shifted in the opposite direction in outdoor mesocosms. Our results demonstrate major discrepancies between results of a classic laboratory-based ecotoxicity test and outcomes of an experiment performed in outdoor mesocosms. Consequently, the use of standard laboratory tests may have to be reconsidered and their benefits carefully weighed against the difficulties of performing experiments under more natural conditions. Tests validating experimentally estimated

  7. Laboratory investigation of antenna signals from dust impacts on spacecraft

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  8. An investigation into stent expansion using numerical and experimental techniques

    Toner, Deborah

    2009-01-01

    Extensive finite element analyses have been carried out by researchers to investigate the difference in the mechanical loading induced in vessels stented with various different stent designs and the influence of this loading on restenosis outcome. This study investigates the experimental validation of these numerical stent expansions using compliant mock arteries. The development of this in-vitro validation test has the prospect of providing a fully validated preclinical testing tool which ca...

  9. An Experimental Investigation of Secure Communication With Chaos Masking

    Dhar, Sourav

    2007-01-01

    The most exciting recent development in nonlinear dynamics is realization that chaos can be useful. One application involves "Secure Communication". Two piecewise linear systems with switching nonlinearities have been taken as chaos generators. In the present work the phenomenon of secure communication with chaos masking has been investigated experimentally. In this investigation chaos which is generated from two chaos generators is masked with the massage signal to be transmitted, thus makes communication is more secure.

  10. Laboratory investigation of crushed salt consolidation and fracture healing

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from -5 md to 110 md, respectively. The lowest final porosity (0.05) and permeability (-5 md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing

  11. Laboratory investigation of crushed salt consolidation and fracture healing

    1987-01-01

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

  12. Integrating Laboratory and Numerical Decompression Experiments to Investigate Fluid Dynamics into the Conduit

    Spina, Laura; Colucci, Simone; De'Michieli Vitturi, Mattia; Scheu, Bettina; Dingwell, Donald Bruce

    2015-04-01

    The study of the fluid dynamics of magmatic melts into the conduit, where direct observations are unattainable, was proven to be strongly enhanced by multiparametric approaches. Among them, the coupling of numerical modeling with laboratory experiments represents a fundamental tool of investigation. Indeed, the experimental approach provide invaluable data to validate complex multiphase codes. We performed decompression experiments in a shock tube system, using pure silicon oil as a proxy for the basaltic melt. A range of viscosity comprised between 1 and 1000 Pa s was investigated. The samples were saturated with Argon for 72h at 10MPa, before being slowly decompressed to atmospheric pressure. The evolution of the analogue magmatic system was monitored through a high speed camera and pressure sensors, located into the analogue conduit. The experimental decompressions have then been reproduced numerically using a multiphase solver based on OpenFOAM framework. The original compressible multiphase Openfoam solver twoPhaseEulerFoam was extended to take into account the multicomponent nature of the fluid mixtures (liquid and gas) and the phase transition. According to the experimental conditions, the simulations were run with values of fluid viscosity ranging from 1 to 1000 Pa s. The sensitivity of the model has been tested for different values of the parameters t and D, representing respectively the relaxation time for gas exsolution and the average bubble diameter, required by the Gidaspow drag model. Valuable range of values for both parameters are provided from experimental observations, i.e. bubble nucleation time and bubble size distribution at a given pressure. The comparison of video images with the outcomes of the numerical models was performed by tracking the evolution of the gas volume fraction through time. Therefore, we were able to calibrate the parameter of the model by laboratory results, and to track the fluid dynamics of experimental decompression.

  13. Numerical and experimental investigation of bump foil mechanical behaviour

    Larsen, Jon Steffen; Cerda Varela, Alejandro Javier; Santos, Ilmar

    2014-01-01

    Corrugated foils are utilized in air foil bearings to introduce compliance and damping thus accurate mathematical predictions are important. A corrugated foil behaviour is investigated experimentally as well as theoretically. The experimental investigation is performed by compressing the foil......, between two parallel surfaces, both statically and dynamically to obtain hysteresis curves. The theoretical analysis is based on a two dimensional quasi static FE model, including geometrical non-linearities and Coulomb friction in the contact points and neglects the foil mass. A method for implementing...... the friction is suggested. Hysteresis curves obtained via the FE model are compared to the experimental results obtained. Good agreement is observed in the low frequency range and discrepancies for higher frequencies are thoroughly discussed....

  14. METHODS OF EXPERIMENTAL VERIFICATION OF STEINER THEOREM IN PHYSICAL PRACTICUM AND LABORATORY WORK

    Zharilkasin Iskakov

    2014-07-01

    Full Text Available In this paper, the technique of laboratory work on experimental verification of Steiner’s Theorem in laboratory conditions is developed. To do this, specially designed experimental device was used. The main part of such device is a simple physical pendulum, swinging freely about the axis of suspension, consisting of a cylindrical disc set on a thin rod. To determine the moment of inertia of cylindrical body about the axis of vibrations, property of a physical quantity additivity was used. When processing experimental results, functional approximation by a least squares method was applied; as a result, the empirical expression of Steiner’s Theorem was achieved. Results of experimental studies were very close to the results of theoretical calculations. Laboratory work can be easily repeated for a body of arbitrary shape. The methodology used can be recommended for physical practicum in universities as an effective and easy way of experimental verification of Steiner’s theorem.

  15. Field and Laboratory Investigations of Organic Photochemistry on Urban Surfaces

    Styler, S. A.; Baergen, A.; van Pinxteren, D.; Donaldson, D. J.; Herrmann, H.

    2014-12-01

    In polluted urban environments, windows and building surfaces rapidly become coated with a complex film of chemicals, which enhances the dry deposition of particles and the partitioning of semi-volatile organic species to the surface. Despite its high surface-to-volume ratio and direct exposure to sunlight, few studies have directly investigated the role that this "urban film" may play in promoting the photooxidative processing of semi-volatile organics contained within it. The present study represents a comprehensive field- and laboratory-based investigation of the film-phase photochemistry of polycyclic aromatic hydrocarbons (PAH), here used as proxies for light-absorbing semi-volatile organics present within the film. Urban film sampling was conducted using a custom-built three-stage sampler housing, which was deployed in a central, high-traffic area in Leipzig, Germany. The sampler itself employs small glass beads as surrogate window surfaces and is designed such that only its uppermost stage is exposed to sunlight. Each stage is subdivided into 16 compartments, which allows for the study of film formation and evolution. In the first phase of the study, the role of urban film as a photochemical sink for reactive organic species was determined by measuring total film PAH content and PAH abundance ratios as a function of atmospheric exposure time under both light and dark conditions. In the second, more general, phase of the study, the organic and inorganic composition of collected film samples was compared to that of co-located PM10 samples, and differences between the two sample types were used to gain insight into the relative importance of heterogeneous photochemical oxidation within the particle and film phases. In the third phase of the study, film samples grown under dark conditions were exposed to gas-phase ozone in an atmospheric-pressure flat-bed reactor, and the kinetics of ozone-induced PAH loss were studied under both dark and illuminated conditions

  16. Experimental Investigation of the Wind Turbine Blade Root Flow

    Akay, B.; Ferreira, C.S.; Van Bussel, G.J.W.

    2010-01-01

    Several methods from experimental to analytical are used to investigate the aerodynamics of a horizontal axis wind turbine. To understand 3D and rotational effects at the root region of a wind turbine blade, correct modeling of the flow field is essential. Aerodynamic models need to be validated by

  17. Investigating Electromagnetic Induction through a Microcomputer-Based Laboratory.

    Trumper, Ricardo; Gelbman, Moshe

    2000-01-01

    Describes a microcomputer-based laboratory experiment designed for high school students that very accurately analyzes Faraday's law of electromagnetic induction, addressing each variable separately while the others are kept constant. (Author/CCM)

  18. Experimental and numerical investigation on two-phase flow instabilities

    Ruspini, Leonardo Carlos

    2013-03-01

    Two-phase flow instabilities are experimentally and numerically studied within this thesis. In particular, the phenomena called Ledinegg instability, density wave oscillations and pressure drop oscillations are investigated. The most important investigations regarding the occurrence of two-phase flow instabilities are reviewed. An extensive description of the main contributions in the experimental and analytical research is presented. In addition, a critical discussion and recommendations for future investigations are presented. A numerical framework using a hp-adaptive method is developed in order to solve the conservation equations modelling general thermo-hydraulic systems. A natural convection problem is analysed numerically in order to test the numerical solver. Moreover, the description of an adaptive strategy to solve thermo-hydraulic problems is presented. In the second part of this dissertation, a homogeneous model is used to study Ledinegg, density wave and pressure drop oscillations phenomena numerically. The dynamic characteristics of the Ledinegg (flow excursion) phenomenon are analysed through the simulation of several transient examples. In addition, density wave instabilities in boiling and condensing systems are investigated. The effects of several parameters, such as the fluid inertia and compressibility volumes, on the stability limits of Ledinegg and density wave instabilities are studied, showing a strong influence of these parameters. Moreover, the phenomenon called pressure drop oscillations is numerically investigated. A discussion of the physical representation of several models is presented with reference to the obtained numerical results. Finally, the influence of different parameters on these phenomena is analysed. In the last part, an experimental investigation of these phenomena is presented. The designing methodology used for the construction of the experimental facility is described. Several simulations and a non

  19. The hot cell laboratories for material investigations of the Institute for Safety Research

    Viehrig, H.W.

    1998-10-01

    Special facilities for handling and testing of irradiated specimens are necessary, to perform the investigation of activated material. The Institute for Safety Research has two hot cell laboratories: - the preparation laboratory and - the materials testing laboratory. This report is intended to give an overview of the available facilities and developed techniques in the laboratories. (orig.)

  20. Investigation of high purity beryllium for the International Thermonuclear Experimental Reactor (ITER), Task 002. Final report

    The report includes a description of experimental abilities of Solid Structure Research Laboratory of IAE NNC RK, a results of microstructural characterization of A-4 grade polycrystal Beryllium produced at the Ulba metal plant and a technical project-for irradiation experiments. Technical project contains a detailed description of five proposed experiments, clearing behavior of Beryllium materials under the influence of irradiation, temperature, helium and hydrogen accumulation. Complex irradiation jobs, microstructural investigations and mechanical tests are planned in the framework of these experiments

  1. Experimental investigation on the natural convection flow in pool boiling

    Kim, Seok, E-mail: seokim@kaeri.re.kr [Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero989beongil, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Dong Eok [Department of Precision Mechanical Engineering, Kyungpook National University, 386 Gajang-dong, Sangju, Gyeongsangbuk-do 742-711 (Korea, Republic of); Ryu, Sung Uk; Lee, Seung Tae; Euh, Dong-Jin [Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero989beongil, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-12-15

    Highlights: • The velocity field measurements conducted on the subject of a single and two-phase natural convection flow. • Experimental results show a large natural convection flow at the region above the heater rod. • The thermal stratification is shown at the region below the heater rod. • The results contribute to provide the benchmark data of a thermal hydraulic system analysis code. - Abstract: In the present study, the key thermal hydraulic phenomena within a passive condensate cooling tank (PCCT) of a small-scale pool test rig with a single heater rod are experimentally investigated. The volumetric scaling ratio of the test rig is 1/910 the size of the passive auxiliary feedwater system (PAFS) condensing heat removal assessment loop (PASCAL), which is a PAFS performance evaluation test facility. The two-dimensional velocity vector fields that occur as the water level decreases are experimentally investigated in a pool that contains a horizontal heater rod. The 2D particle image velocimetry (PIV) measurement technique is adopted to determine the velocity vector field of the natural convection flow. The experimental results indicate that a large natural convection flow occurs above the heater rod and that thermal stratification occurs below the heater rod. The thermal stratification and the stagnant region begin to disappear when the pool temperature reaches approximately 90 °C. The experimental results can provide benchmark data to validate computational fluid dynamics (CFD) calculations of thermal hydraulic phenomena that occur in a pool with a heat source.

  2. Experimental investigations on dynamic effects in impact notch bending tests

    The dynamic behaviour of three point bending samples under impact stresses is examined experimentally. Various measuring processes, above all the shadow optics etching process are used. A quasi-static analysis is made by a simple spring/mass model to describe the stress behaviour quantitatively. Based on this, the dynamic effects in model experiments are measured quantitatively with dynamic correction functions and are discussed with reference to the wave processes in the sample. A systematic view of the effect of the many system parameters on the dynamic stress behaviour is obtained. Finally, examples show that the results of this model investigation can be transferred to other experimental conditions. (orig./HP)

  3. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  4. Experimental techniques for the investigation of coupled phenomena in geomaterials

    Romero E.

    2010-06-01

    Full Text Available The paper describes different experimental setups and techniques used to investigate coupled stress, fluid (water and air and temperature effects on geomaterials. Two temperature controlled cells are described: a a constant volume cell in which thermal pulses can be performed under controlled hydraulic conditions to induce pore pressure build-up during quasi-undrained heating and later dissipation; and b an axisymmetric triaxial cell with controlled suction and temperature to perform drained heating and cooling paths under partially saturated states. The paper also presents an experimental setup to perform controlled flow-rate gas injection experiments on argillaceous rocks using a high-pressure triaxial cell. This cell is used to study gas migration phenomena and the conditions under which gas breakthrough processes occur. Selected test results are presented, which show the capabilities of the different experimental setups described to capture main behavioural features.

  5. A Collaborative, Investigative Recombinant DNA Technology Course with Laboratory

    Pezzementi, Leo; Johnson, Joy F.

    2002-01-01

    A recombinant DNA technology course was designed to promote contextual, collaborative, inquiry-based learning of science where students learn from one another and have a sense of ownership of their education. The class stressed group presentations and critical reading and discussion of scientific articles. The laboratory consisted of two research…

  6. Ribose 5-Phosphate Isomerase Investigations for the Undergraduate Biochemistry Laboratory

    Jewett, Kathy; Sandwick, Roger K.

    2011-01-01

    The enzyme ribose 5-phosphate isomerase (RpiA) has many features that make it attractive as a focal point of a semester-long, advanced biochemistry laboratory for undergraduate students. The protein can easily and inexpensively be isolated from spinach using traditional purification techniques. Characterization of RpiA enzyme activity can be…

  7. Laboratory investigations of effective flow behavior in unsaturated heterogeneous sands

    Wildenschild, Dorthe; Høgh Jensen, Karsten

    1999-01-01

    controlled method. The heterogeneous sand systems were established in a laboratory tank for three realizations of random distributions of the homogeneous sands comprising a system of 207 grid cells. The water flux was controlled at the upper boundary, while a suction was applied at the lower boundary such...

  8. Experimental and numerical investigation on an innovative solar chimney

    Highlights: • Intensifiers were applied to increase heat flux. • Numerical and experimental data were compered. • We investigated the rotational pattern of the air inside the SC. • This chimney is equipped with a container, placed exactly beneath the collector. - Abstract: A novel small scale model of solar chimney was investigated experimentally and numerically. Air flow, heat transfer and flow characteristics were numerically calculated and compared with the experimental results in this paper. Two intensifiers were used to intensify the heat flux radiated by the sun all around the solar chimney in the experimental case. An air tank was located downside the system to increase the absorption of the solar radiation reflected by the intensifiers. RNG k–ε model was chosen to simulate the turbulence and the well-known SIMPLE algorithm was used to solve the coupled velocity and pressure equations. Results show that utilization of intensifiers caused an increase in velocity magnitude in the chimney and consequently more power was generated. The maximum velocity of 5.12 m/s was reached which is remarkable, considering the small size of the SC structure

  9. COMPARATIVE FIELD EXPERIMENTAL INVESTIGATIONS OF DIFFERENT FLAT PLATE SOLAR COLLECTORS

    Guangming Chen

    2015-12-01

    Full Text Available Full-scale traditional metal solar collectors and solar collector specimens fabricated from polymeric materials were investigated in the present study. A polymeric collector is 67.8% lighter than a traditional metal solar collector, and a metal solar collector with transparent plastic covering is 40.3% lighter than a traditional metal solar collector. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. A test rig for the natural circulation of the working fluid in a solar collector was built for a comparative experimental investigation of various solar collectors operating at ambient conditions. It was shown experimentally that the efficiency of a polymeric collector is 8–15% lower than the efficiency of a traditional collector.

  10. Experimental and theoretical investigation of high gradient acceleration

    Wurtele, J.S.; Bekefi, G.; Chen, C.; Chen, S.C.; Temkin, R.J.

    1993-01-01

    This report contains a technical progress summary of the research conducted under the auspices of DOE Grant No. DE-AC02-91-ER40648, Experimental and Theoretical Investigations of High Gradient Acceleration''. This grant supports three research tasks: Task A consists of the design, fabrication and testing of a 17GHz RF photocathode gun, which can produce 2ps electron pulses with up to 1nC of charge at 2MeV energy and at a 1OHz repetition rate. Task B supports the testing of high gradient acceleration at 33GHz structure, and Task C comprises theoretical investigations, both in support of the experimental tasks and on critical physics issues for the development of high energy linear colliders.

  11. Experimental and theoretical investigation of high gradient acceleration

    This report contains a technical progress summary of the research conducted under the auspices of DOE Grant No. DE-AC02-91-ER40648, ''Experimental and Theoretical Investigations of High Gradient Acceleration''. This grant supports three research tasks: Task A consists of the design, fabrication and testing of a 17GHz RF photocathode gun, which can produce 2ps electron pulses with up to 1nC of charge at 2MeV energy and at a 1OHz repetition rate. Task B supports the testing of high gradient acceleration at 33GHz structure, and Task C comprises theoretical investigations, both in support of the experimental tasks and on critical physics issues for the development of high energy linear colliders

  12. Experimental and theoretical investigation of high gradient acceleration

    This report contains a technical progress summary of the research conducted under the auspices of DOE Grant No. DE-FG0291ER-40648. ''Experimental and Theoretical Investigations of High Gradient Acceleration.'' This grant supports three research tasks: Task A consists of the design and fabrication of a 17GHz of photocathode gun, Task B supports the testing of high gradient acceleration using a 33GHz structure, and Task C comprises theoretical investigations, both in support of the experimental tasks and on critical physics issues for the development of high energy linear colliders. This report is organized as follows. The development of an rf gun design and research progress on the picosecond laser system is summarized in Sec. 2, the status of the studies of the LBL/Haimson high gradient structure, using a 50 MW free-electron laser is summarized in Sec. 3, and theoretical research progress is described in Sec. 4. Supporting material is contained in Appendices A-G

  13. Experimental Investigation of a W-Band Gyroklystron Amplifier

    Blank, Monica; Danly, Bruce; Levush, Baruch; Latham, Peter

    1997-05-01

    A four cavity W-band gyroklystron amplifier experiment is currently underway at the Naval Research laboratory. The gyroklystron has produced 55.5 kW peak output power and 23.5% efficiency in the TE_01 mode with a 56 kV, 4.2 A electron beam. The -3 dB bandwidth is greater than 400 MHz. The small signal and saturated gains are 36 dB and 28 dB, respectively. A time dependent version of the non-linear code MAGYKL (P.E. Latham, W. Lawson, V. Irwin, IEEE Trans. Plasma Sci., Vol. 22, No. 5, pp. 804-817, 1994.) was developed to design the interaction circuit. Theoretical performance predictions are in good agreement with experimental results. Details of the circuit design, comparisons of theory with measured data, and plans for future experiments will be presented.

  14. Experimental investigation of the serum albumin fascia microstructure

    Buzoverya, M. E.; Shcherbak, Yu. P.; Shishpor, I. V.

    2012-09-01

    The results of theoretical and experimental investigation of biological liquids are reported. Structural effects observed in fascias are considered with account of the molecular features of albumin and the concept of supramolecular organization of polymers. It is revealed that the morphology of human serum albumin fascias depends on the concentration and quality of the solvent. It is shown that the water-salt fascias of albumin are more structured than water solutions with the same concentration.

  15. An Experimental Investigation on Inclined Negatively Buoyant Jets

    Bashitialshaaer, Raed; Larson, Magnus; Persson, Kenneth M.

    2012-01-01

    An experimental study was performed to investigate the behavior of inclined negatively buoyant jets. Such jets arise when brine is discharged from desalination plants. A turbulent jet with a specific salinity was discharged through a circular nozzle at an angle to the horizontal into a tank with fresh water and the spatial evolution of the jet was recorded. Four different initial jet parameters were changed, namely the nozzle diameter, the initial jet inclination, the jet density and the flow...

  16. An experimental method for coating-substrate interface investigation

    Wänstrand, Olle; Podgornik, Bojan

    2015-01-01

    Investigations of coated surfaces indicate that in many cases the coating-substrate interface is the weakest part of the coated component, with the coating-to-substrate adhesion being used to evaluate the strength of the coating-substrate interface. While modeling of the coated surface depends on coating and substrate material properties, which are not easy to determine, standard experimental methods do not allow a direct study of the interface. The aim of the present paper is to describe a s...

  17. Experimental Investigation On Design Of High Pressure Steam Turbine Blade

    SUBRAMANYAM PAVULURI, DR. A. SIVA KUMAR

    2013-01-01

    The Experimental investigation on design of high pressure steam turbine blade addresses the issue of steam turbine efficiency. A specific focus on aerofoil profile for high pressure turbine blade, and it evaluates the effectiveness of certain Chromium and Nickel in resisting creep and fracture in turbine blades. The capable of thermal and chemical conditions in blade substrate from to prevent the corrosion when exposed to wet steam. The efficiency of the steam turbine is a key factor in both ...

  18. Experimental and numerical investigation of thermal flow meter

    Cebula Artur

    2015-01-01

    The paper presents analytical and numerical model calculation results of the temperature distribution along the thermal flow meter. Results show a very good conformity between numerical and analytical model. Apart from the calculation results the experimental investigations are presented. The author performed the test where a temperature of duct wall surface was measured. The relation between mass flow rate in terms of the duct surface temperature difference was developed.

  19. Characteristics of Constrained Handwritten Signatures: An Experimental Investigation

    Donato, Impedovo; Pirlo, Giuseppe; Rizzi, Fabrizio

    2015-01-01

    Handwritten signatures are considered one of the most useful biometric traits for personal verification. In the networked society, in which a multitude of different devices can be used for signature acquisition, specific research is still needed to determine the extent to which features of an input signature depend on the characteristics of the signature apposition process. In this paper an experimental investigation was carried out on constrained signatures, which were acquired using writing...

  20. Experimental and numerical investigations on adhesively bonded joints

    Negru, R.; Marsavina, L.; Hluscu, M.

    2016-04-01

    Two types of adhesively bonded joints were experimental and numerical investigated. Firstly, the adhesives were characterized through a set of tests and the main elastic and mechanical properties were obtained. After that, the stress distributions at interface and middle of adhesive layer were determined using a linear elastic FEA. The numerical data were fitted by a power law in order to determine the critical values of intensity of stress singularity.

  1. Experimental Investigation on Selective Laser Melting of Glass

    Fateri, Miranda; Gebhardt, Andreas; Thuemmler, Stefan; Thurn, Laura

    Although laser-based Additive Manufacturing (AM) processes have been investigated extensively for use with different materials, fabrication of 3D glass objects using Selective Laser Melting (SLM) technology is not well developed even though it has many applications. As such an experimental investigation on the process parameters of glass powder using SLM process was conducted and the results are summarized in this paper. Multiple 3D objects were fabricated and analyzed. Lastly Scanning Electron Microcopy (SEM) of the manufactured objects as well as effect of process parameters on dimensional accuracy, surface quality, and the density of the fabricated parts are presented in this paper.

  2. Experimental investigation on SPS casing treatment with bias flow

    Dong Xu

    2014-12-01

    Full Text Available Generally, casing treatment (CT is a passivity method to enhance the stall margin of fan/compressor. A novel casing treatment based on the small disturbance theory and vortex and wave interaction suggestion is a method combining passive control and active control, which has been proved effective at enhancing the stall margin of fan/compressor in experiment. In order to investigate the mechanism of this kind of casing treatment, an experimental investigation of a stall precursor-suppressed (SPS casing treatment with air suction or blowing air is conducted in the present paper. The SPS casing treatment is designed to suppressing stall precursors to realize stall margin enhancement in turbomachinery. The experimental results show that the casing treatment with blowing air of small quantity can improve the stall margin by about 8% with about 1% efficiency loss. By contrast, the SPS casing treatment with micro-bias flow does not improve the stall margin much more than that without bias flow, even worse. Meanwhile, the present investigation has also attempted to reveal the mechanism of stall margin improvement with the casing treatment. It is found that the stall margin improvements vary with the modification of the unsteady shedding flow and the unsteady wall boundary impedance. The experimental results agree fairly well with the theoretical prediction using a flow stability model of rotating stall.

  3. Experimental and numerical investigation of a draft tube cone at lower runner speeds

    Bosioc, Alin I.; Tanasa, Constantin

    2016-06-01

    The variable demand on the energy market enforces that hydraulic turbine to operate at different regimes, far from the best efficiency point. An experimental test rig was developed in our laboratory in order to reproduce these regimes. As a result, the investigated flow regimes allow us to quantify the flow behavior from part load operation to full load operation. The paper focuses on experimental and numerical investigations of mean velocity profiles and of stagnant region developed in the centre of draft tube cone. First the numerical results are validated against experimental results. At the end a qualitative analysis of the streamline pattern is complemented, giving us an evaluation of the stagnant region from the draft tube cone at different runner speeds.

  4. Laboratory Investigations of the Assessment and Preconcentration of Coastal Sillimanite

    Rao, R. Bhima

    1998-01-01

    India has a high demand for refractory minerals. Sillimanite is one of the minerals having high refractory characteristics. In this paper, the availability of sillimanite along the coastal belt of Orissa coast and its laboratory beneficiation tests are discussed. The results indicate that +0.5 mm contain shell, 2.8 s.g. floats contain quartz, magnetic heavies contain ilmenite and garnet and the non—magnetic heavies contain mainly sillimanite. The raw sand contains 4% sillimanite and the preco...

  5. Numerical and laboratory investigations of transient and steady-state flow in a fractured core

    Kwicklis, E.M.; Thamir, F.; Healy, R.W.; Boughton, C.J. [Geological Survey, Lakewood, CO (United States); Anderton, S. [SAIC, Golden, CO (United States)

    1993-06-01

    An improved understanding of the ability of fractures to transmit water at matric potentials less than zero is essential for evaluating the ability of the rocks of Yucca Mountain, Nevada, to safely isolate nuclear waste. Numerical and experimental investigations of this subnuclear waste. Numerical and experimental investigations of this subject will help substantiate flux estimates of both liquid water and water vapor at Yucca Mountain, aid in assessing the effectiveness of capillary barriers at the contact between nonwelded and fractured welded units, and may provide insight as to the manner in which flow may become concentrated along specific pathways through a network of fractures under conditions of partial saturation. This paper summarizes some of the numerical and laboratory investigations that have been conducted at the US Geological Survey in Denver on a core of welded tuff containing a single fracture parallel to the core axis. The objectives of these investigations were to (1) explore the possibility that the unsaturated hydrologic properties of a fracture could be estimated by applying inverse techniques to the results of transient imbibition experiments, and (2) evaluate the accuracy of estimates of unsaturated fracture hydrologic properties derived from transient tests or numerical modeling through direct steady-state measurements. The core examined in these experiments is 0.0699 m long and has a radius of 0.0208 m. It was obtained from the {open_quotes}columnar zone{close_quotes} of the Tiva Canyon member of the Paintbrush Tuff near Wren Wash on Yucca Mountain. 10 refs., 12 figs.

  6. Mizunami Underground Research Laboratory project (rock mechanical investigations). MIZ-1 borehole investigations

    In order to establish the scientific and technical basis of geological disposal of high level radioactive waste, Japan Atomic Energy Agency (JAEA) is advancing the geo-scientific research at the Mizunami Underground Laboratory (MIU). In this project, the surface-based investigation phase (Phase I) was finished in fiscal year 2004. Rock mechanics investigations were conducted in Phase I using the MIZ-1 borehole in order to understand the rock mechanical conditions deep underground and to construct a rock mechanical model of the MIU construction site. This report describes the results of these investigations. A brief summary is shown as follows. 1) Determining the average rock physical and mechanical properties using core from Toki Granite are: - apparent specific gravity: 2.62; - unconfined compressive strength (U.C.S.): 173Mpa; - tangent modulus at 50% U.C.S: 51.8Gpa; - poisson's ratio: 0.265. These results are consistent with the results of similar investigations in the nearby Shobasama site. 2) Estimation of in situ stress by stress measurements using cores. Four different methods (AE, DRA, ASR, and DSCA) were applied to estimate the in situ stress state. However the results are very low confidence due to very small deformation during drilling, excepting DSCA. 3) Determining of in situ stress by hydraulic fracturing. The horizontal, maximum principal stress is oriented to NW-SE (using north magnetic pole). Above six hundred meters depth, the in situ stress state is reverse fault type (SH > Sh ≥ Sv overburden pressure ρgh as Sv). But below it, the in situ stress state changed to a wrench or normal fault type (SV ≥ SH > Sh). 4) Rock mechanical model. In consideration of the investigations and geological model, we proposed a rock mechanical model consisting of two in situ stress states and homogeneous, rock mechanical properties. (author)

  7. Experimental investigations on fiber laser color marking of steels

    Highlights: • We develop an experimental approach with the aim to bring a contribution to the comprehension of the occurring phenomena during laser color marking of steels. • We have used a home-made marking device composed of a pulsed fiber laser and galvanometric mirrors. • Both commercial and elaborated in laboratory steels have been used as samples. • The experiments have been performed for different laser beam operating parameters, under normal atmospheric conditions. • The treated samples were analyzed either by optical and scanning electronic microscopy, as well as by energy dispersion spectroscopy. - Abstract: We develop an experimental approach with the aim to bring a contribution to the comprehension of the occurring phenomena during laser color marking of steels. A home-made marking device using a pulsed fiber laser has been used to treat steel samples under different laser beam operating parameters, for different compositions of the processed steel, and at normal atmospheric conditions. The treated samples were analyzed either by optical and scanning electronic microscopy, as well as by energy dispersion spectroscopy. The results show the influence of the operating parameters on the obtained colors

  8. Environmental epidemiology applied to urban atmospheric pollution: a contribution from the Experimental Air Pollution Laboratory (LPAE

    André Paulo Afonso de

    2000-01-01

    Full Text Available Systematic investigation on the effects of human exposure to environmental pollution using scientific methodology only began in the 20th century as a consequence of several environmental accidents followed by an unexpected mortality increase above expected mortality and as a result of observational epidemiological and toxicological studies conducted on animals in developed countries. This article reports the experience of the Experimental Air Pollution Laboratory at the School of Medicine, University of São Paulo, concerning the respiratory system and pathophysiological mechanisms involved in responses to exposure to pollution using toxicological and experimental procedures, complemented by observational epidemiological studies conducted in the city of São Paulo. It also describes these epidemiological studies, pointing out that air pollution is harmful to public health, not only among susceptible groups but also in the general population, even when the concentration of pollutants is below the limits set by environmental legislation. The study provides valuable information to support the political and economic decision-making processes aimed at preserving the environment and enhancing quality of life.

  9. Assessment of experimental research techniques for the investigation of radionuclide migration in aquifers

    The objectives of this work have been to contribute to a better understanding of the transport behaviour of the actinides using Eu as a homologue and, in addition, to compare the different laboratory techniques used in migration studies - batch, column and diffusion tests. The experimental work was focused on the radioisotopes of (Na), (Ca), Sr, Zr, (Nb), Tc, Eu and (Pu) and investigated the essential influences on the transport behaviour, exerted by redox conditions, the formation of complexes with natural humic acid as well as the formation and/or presence of colloids. Samples from the Gorleben and Drigg sites were investigated

  10. Experimental investigation of interaction processes between droplets and hot walls

    Karl, A.; Frohn, A.

    2000-04-01

    A detailed experimental investigation of interaction processes of small liquid droplets with hot walls well above the Leidenfrost temperature has been carried out. The experimental method which uses monodisperse droplet streams in combination with a standard video camera allows very detailed observations and measurements with very high time resolution. The main intent of this paper is to study the mechanical behavior of liquid droplets impacting on hot walls well above the Leidenfrost temperature. A better understanding of this process may lead to a better modeling of two-phase flows, especially for applications in fuel preparation processes, combustion processes, and spray cooling. The loss of momentum of the droplets, the droplet deformation, and the onset of droplet disintegration have been investigated. For all experimental results correlations have been developed, which can be used to improve the numerical modeling of two-phase flows. Using the correlation for the loss of momentum a theoretical approximation for the maximum droplet deformation has been deduced, which yields a very good agreement with our own measurements as well as with results reported in the literature. A minimum impinging angle for droplet disintegration has been discovered for small impinging angles. Below this impinging angle no droplet disintegration is observed. This phenomenon is directly related to the energy dissipation at the wall during the interaction process. With the presented work the understanding of basic interaction processes between droplets and hot walls may be improved.

  11. Experimental Investigation of Optimal Adhesion of Mushroomlike Elastomer Microfibrillar Adhesives.

    Marvi, Hamidreza; Song, Sukho; Sitti, Metin

    2015-09-22

    Optimal fiber designs for the maximal pull-off force have been indispensable for increasing the attachment performance of recently introduced gecko-inspired reversible micro/nanofibrillar adhesives. There are several theoretical studies on such optimal designs; however, due to the lack of three-dimensional (3D) fabrication techniques that can fabricate such optimal designs in 3D, there have not been many experimental investigations on this challenge. In this study, we benefitted from recent advances in two-photon lithography techniques to fabricate mushroomlike polyurethane elastomer fibers with different aspect ratios of tip to stalk diameter (β) and tip wedge angles (θ) to investigate the effect of these two parameters on the pull-off force. We found similar trends to those predicted theoretically. We found that β has an impact on the slope of the force-displacement curve while both β and θ play a role in the stress distribution and crack propagation. We found that these effects are coupled and the optimal set of parameters also depends on the fiber material. This is the first experimental verification of such optimal designs proposed for mushroomlike microfibers. This experimental approach could be used to evaluate a wide range of complex microstructured adhesive designs suggested in the literature and optimize them. PMID:26322396

  12. Students' Assessment of Interactive Distance Experimentation in Nuclear Reactor Physics Laboratory Education

    Malkawi, Salaheddin; Al-Araidah, Omar

    2013-01-01

    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of…

  13. Investigations of Solar Prominence Dynamics Using Laboratory Simulations

    Laboratory experiments simulating many of the dynamical features of solar coronal loops have been carried out. These experiments manifest collimation, kinking, jet flows, and S-shapes. Diagnostics include high-speed photography and x-ray detectors. Two loops having opposite or the same magnetic helicity polarities have been merged and it is found that counter-helicity merging provides much greater x-ray emission. A non-MHD particle orbit instability has been discovered whereby ions going in the opposite direction of the current flow direction can be ejected from a magnetic flux tube.

  14. Experimental Investigation of the Rayleigh-Taylor Instability

    White, Jeremy

    2011-12-01

    A series of experiments have been carried out to study the behavior of the Rayleigh-Taylor instability. The experiments cover a wide range of Atwood (A = (rho2-rho1)/(rho 2-rho1)) numbers, 0.28 ≤ A ≤ 1 using immiscible fluids, with Reynolds numbers spanning four orders of magnitude, ˜ 10 ≤ Re ≤ 10000. Multiple 2D interface shapes have been studied along with a single 3D configuration. The unique properties of magnetorheological fluids are exploited to generate well defined, static initial conditions for both single and multi-mode sinusoidal perturbations as well as isolated wavelengths of single-mode perturbations protruding from flat interfaces. The magnetic properties of the fluid are used to hold these shapes static prior to running, as well as to suspend them above a lighter fluid to allow gravity to provide acceleration to drive the mixing. The 2D experimental results corroborate some of the limitations of the non-linear analytical models, which have been recently investigated numerically, as well as observed in 3D experiments, but not reported in 2D experiments before. The unbounded growth of the Rayleigh-Taylor spikes at late times has been experimentally confirmed for both the 3D condition, where this is predicted to occur for all Atwood numbers, and for the A = 1 limit in the 2D configuration. Preliminary testing with multi-mode interface shapes with high viscosity, high surface tension MR fluids demonstrate the feasibility of extending this unique experimental technique to the more complicated multi-mode/broadband initial conditions more commonly present in applications. Further extension to lower viscosity and surface tension MR fluids for higher Reynolds number flows has proven difficult with the experimental design, yet has revealed the future changes that will be needed to apply this unique experimental idea to the study of the turbulent mix regime. Finally, 3D simulations using the 2D experimental conditions have demonstrated the importance

  15. The colloid investigations conducted at the Aespoe Hard Rock Laboratory during 2000-2004

    Laaksoharju, Marcus [Geopoint AB, Stockholm (Sweden); Wold, Susanna [Royal Inst. of Tech., Stockholm (Sweden). School of Chemical Science and Engineering, Nuclear Chemistry] (eds.)

    2005-12-15

    In 2000, SKB decided to initiate an international colloid project at the Aespoe Hard Rock Laboratory in Sweden. The objectives of the colloid project are to: (i) study the role of bentonite as a colloid source, (ii) verify the background colloid concentration at Aespoe HRL and, (iii) investigate the potential for colloid formation/transport in natural groundwater concentrations. The experimental concepts for the colloid project are: laboratory experiments with bentonite, background field measurements of natural colloids, borehole specific bentonite colloid stability experiments and a fracture specific transport experiment. The activities concerning the laboratory experiments and background field measurements are described in this work; the other activities are ongoing or planned. The following conclusions were made: The bentonite colloid stability is strongly dependent on the groundwater ionic strength. Natural colloids are organic degradation products such as humic and fulvic acids, inorganic colloids (clay, calcite, iron hydroxide) and microbes. Microbes form few but large particles and their concentration increase with increasing organic carbon concentrations. The small organic colloids are present in very low concentrations in deep granitic groundwater. The concentrations can be rather high in shallow waters. The colloid concentration decreases with depth and salinity, since colloids are less stable in saline waters. The colloid content at Aespoe is less than 300 ppb. The colloid content at repository level is less than 50 ppb. The groundwater variability obtained in the boreholes reflects well the natural groundwater variability along the whole HRL tunnel.

  16. The colloid investigations conducted at the Aespoe Hard Rock Laboratory during 2000-2004

    In 2000, SKB decided to initiate an international colloid project at the Aespoe Hard Rock Laboratory in Sweden. The objectives of the colloid project are to: (i) study the role of bentonite as a colloid source, (ii) verify the background colloid concentration at Aespoe HRL and, (iii) investigate the potential for colloid formation/transport in natural groundwater concentrations. The experimental concepts for the colloid project are: laboratory experiments with bentonite, background field measurements of natural colloids, borehole specific bentonite colloid stability experiments and a fracture specific transport experiment. The activities concerning the laboratory experiments and background field measurements are described in this work; the other activities are ongoing or planned. The following conclusions were made: The bentonite colloid stability is strongly dependent on the groundwater ionic strength. Natural colloids are organic degradation products such as humic and fulvic acids, inorganic colloids (clay, calcite, iron hydroxide) and microbes. Microbes form few but large particles and their concentration increase with increasing organic carbon concentrations. The small organic colloids are present in very low concentrations in deep granitic groundwater. The concentrations can be rather high in shallow waters. The colloid concentration decreases with depth and salinity, since colloids are less stable in saline waters. The colloid content at Aespoe is less than 300 ppb. The colloid content at repository level is less than 50 ppb. The groundwater variability obtained in the boreholes reflects well the natural groundwater variability along the whole HRL tunnel

  17. Investigating true and false confessions within a novel experimental paradigm.

    Russano, Melissa B; Meissner, Christian A; Narchet, Fadia M; Kassin, Saul M

    2005-06-01

    The primary goal of the current study was to develop a novel experimental paradigm with which to study the influence of psychologically based interrogation techniques on the likelihood of true and false confessions. The paradigm involves guilty and innocent participants being accused of intentionally breaking an experimental rule, or "cheating." In the first demonstration of this paradigm, we explored the influence of two common police interrogation tactics: minimization and an explicit offer of leniency, or a "deal." Results indicated that guilty persons were more likely to confess than innocent persons, and that the use of minimization and the offer of a deal increased the rate of both true and false confessions. Police investigators are encouraged to avoid interrogation techniques that imply or directly promise leniency, as they appear to reduce the diagnostic value of any confession that is elicited. PMID:15943675

  18. Experimental investigation of cyclic hygrothermal aging of hybrid composite

    El Yagoubi, Jalal

    2013-04-05

    This work provides an experimental investigation of the cyclic hygrothermal aging of a hybrid composites. We aimed to propose a general framework in the view to further optimize polymer-based composites. It reports experimental data and relevant observations collected during an aging campaign (up to 2000 cycles) where anhydride-cured epoxy samples as well as composites samples are exposed to environmental conditions. The data gathered during the whole campaign reveals that (1) the polymer displays a non-classical sorption behavior (2) the volume change is correlated to the mass uptake (3) the elastic modulus is correlated to the glass transition temperature. Matrix and interface degradation of the hybrid composite is monitored by means of microstructural observations. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

  19. Experimental investigation of synthetic aperture flow angle estimation

    Oddershede, Niels; Jensen, Jørgen Arendt

    2005-01-01

    Currently synthetic aperture flow methods can find the correct velocity magnitude, when the flow direction is known. To make a fully automatic system, the direction should also be estimated. Such an approach has been suggested by Jensen (2004) based on a search of the highest cross-correlation as a...... function of velocity and angle. This paper presents an experimental investigation of this velocity angle estimation method based on a set of synthetic aperture flow data measured using our RASMUS experimental ultrasound system. The measurements are performed for flow angles of 60, 75, and 90 deg. with...... respect to the axial direction, and for constant velocities with a peak of 0.1 m/s and 0.2 m/s. The implemented synthetic aperture imaging method uses virtual point sources in front of the transducer, and recursive imaging is used to increase the data rate. A 128 element linear array transducer is used...

  20. Students' Written Arguments in General Chemistry Laboratory Investigations

    Choi, Aeran; Hand, Brian; Greenbowe, Thomas

    2012-11-01

    This study aimed to examine the written arguments developed by college freshman students using the Science Writing Heuristic approach in inquiry-based general chemistry laboratory classrooms and its relationships with students' achievement in chemistry courses. Fourteen freshman students participated in the first year of the study while 19 freshman students participated in the second year of the study. Two frameworks, an analytical and a holistic argument framework, were developed to evaluate the written argument generated by students. The analytical framework scored each argument component separately and allocated a Total Argument score while the holistic framework evaluated the arguments holistically. Three hundred and sixty-eight samples from 33 students were evaluated. Stepwise regression analyses revealed that the evidence and the claims-evidence relationship components were identified as the most important predictors of the Total Argument and the Holistic Argument scores. Students' argument scores were positively correlated with their achievement, as measured by the final grade received for the general chemistry laboratory and the general chemistry lecture course.

  1. Experimental investigation of resonant MEMS switch with ac actuation

    Pal, Jitendra; Zhu, Yong; Wang, Boyi; Lu, Junwei; Khan, Fahimullah; Viet Dao, Dzung; Wang, Yifan

    2016-06-01

    In this letter, modeling, analysis, and experimental investigation for a resonant MEMS switch are presented. The resonant switch harnesses its mechanical resonance to lower the required actuation voltage by a substantial factor over the switch with static actuation. With alternating actuation voltage at its mechanical resonance frequency of 6.6 kHz, the average capacitance is tuned by changing the gap between fixed and movable electrodes. Based on the proposed actuation method, the device offers 57.44% lower actuation voltage compared with the switch with static actuation.

  2. Experimental investigation of edge localised modes in JET

    Edge Localised Modes (ELMs) in the JET tokamak have been studied experimentally, using density profile and fluctuation data from a multichannel reflectometer and temperature profile data from an ECE heterodyne radiometer. The following topics have been investigated: The radial extent and localisation of the density and temperature profile perturbations caused by the ELMs. Fluctuations in the density and magnetic field in connection with the ELMs. The correlation between the repetition frequency of the L-H transition ELMs, and the plasma edge temperature and density. Trajectories in n-T space prior to ELMs later in the H-mode. (au) (39 refs.)

  3. Experimental and Numerical Investigation of Condensation Shock in Shock Tube

    F.Marsik; P.Sopuch; 等

    1997-01-01

    The homogeneous nucleation with subsequent spontaneous condensation of water,pentanol,and ethanol vapors in a carrier gas are investigated experimentally and theoretically in the expansion part of a shock tube.The precise pressure and MCW measurements give additional information about the wetness,so that the nucleation and condensation rates which are closely coupled for stronger expansion rates are determied more accurately,Predictions of the principle of the minimum of entropy production are compared with experiments performed for water,ethanol and pentanol at different pressures.

  4. Experimental investigation of system effects in stressed-skin elements

    Dela Stang, B.; Isaksson, T.; Hansson, M.

    What kind of behaviour can be expected from stressed-skin elements at failure? To answer this question was a primary objective of the experimental investigation presented in this report. Systems of 3 roof units, each made of 5 parallel beams, have been tested for load-carrying capacity and...... behaviour at failure. Test results are compared with analytical calculations estimating the load-bearing capacity from predicted bending strength of each beam used in the system. The test results show that failure of one beam does not necessarily lead to failure of the whole system. This is an important...

  5. NUMERICAL AND EXPERIMENTAL INVESTIGATION OF FTOW OVER A SEMTCIRCULAR WEIR

    刘春嵘; 呼和敖德; 马文驹

    2002-01-01

    The water flow over a semicircular weir is investigated numericallyand experimentally in this paper. The numerical model solves the Reynolds equationfor a mean flow field with the κ-ε turbulent model. To trace the motion of the freesurface, the VOF method with geometric reconstruction is employed. The velocity ofthe flow is measured by means of LDV technique. Four types of flow patterns, theposition of the separation and reattachment point, the distribution of shear stresson the bed at downstream of the weir are presented and discussed. The numericalresults agree well with the experiment data.

  6. Experimental investigation of fast ion dynamics in TORPEX toroidal plasmas

    Roulet, Boris

    2010-01-01

    The goal of the present diploma work is to experimentally investigate the fast ion physics in TORPEX plasmas, in which interchange modes with flute characteristics and intermittent transport events, i.e. blobs, are observed to dominate the plasma dynamics. During the first part of the diploma, the Candidate will test different fast ion emitters on a test bench, which will be then mounted into the BN casing to form the fast ion source. In parallel, the Candidate will design an innovative in-ve...

  7. Numerical and experimental investigation into the aerodynamics of dragonfly flight.

    Russell, David; Wang, Z. Jane

    2004-11-01

    Dragonflies have a unique feature in that they drive two pairs of wings independently and modulate the phase delay between them during different modes of flight. To investigate the role of fore-hind wing interactions, we developed a computational tool to simulate flows around multiple wings. We also performed an experiment on tethered dragonflies in order to measure the 3D wing motions and vertical forces. In this talk we report on the comparison of the computed and experimental forces, wing inertia and fluid forces, the passive mechanism of wing rotation, and the effect of fore-hind wing interactions.

  8. Experimental Investigation of a Novel Blast Wave Mitigation Device

    Su, Zhenbi; Peng, Wen; Zhang, Zhaoyan; Gogos, George; Skaggs, Reed; Cheeseman, Bryan; Yen, Chian Fong

    2009-01-01

    A novel blast wave mitigation device was investigated experimentally in this paper. The device consists of a piston-cylinder assembly. A shock wave is induced within the cylinder when a blast wave impacts on the piston. The shock wave propagates inside the device and is reflected repeatedly. The shock wave propagation process inside the device lengthens the duration of the force on the base of the device to several orders of magnitude of the duration of the blast wave, while it decreases the ...

  9. Laboratory Investigation of the Electromagnetic Electron-Ion Hybrid Instability

    Enloe, C. Lon; Tejero, Erik; Amatucci, Bill; Crabtree, Chris; Ganguli, Guru

    2015-11-01

    The electromagnetic to electrostatic transition of the electron-ion hybrid instability is currently being studied in the Space Physics Simulation Chamber at NRL. It has been shown by theory that strong gradients in plasma flows perpendicular to the magnetic field can drive electromagnetic waves in the whistler branch. Velocity-sheared flows of this type may naturally arise in the boundary layer between plasmas of different characteristics, such as in the plasma sheet in the Earth's magnetosphere and laser produced plasma expansions across a magnetic field. When the wave vector normalized to the electron skin depth is much larger than 1, the waves are predominantly electrostatic in character and electromagnetic otherwise. These waves are eigenmodes in the direction of the velocity shear and demonstrate a dramatic increase in width after transitioning to an electromagnetic wave. Results from recent experiments will be presented in which this transition is observed. Work supported by the Naval Research Laboratory Base Program.

  10. Integral Test Facility PKL: Experimental PWR Accident Investigation

    Klaus Umminger

    2012-01-01

    Full Text Available Investigations of the thermal-hydraulic behavior of pressurized water reactors under accident conditions have been carried out in the PKL test facility at AREVA NP in Erlangen, Germany for many years. The PKL facility models the entire primary side and significant parts of the secondary side of a pressurized water reactor (PWR at a height scale of 1 : 1. Volumes, power ratings and mass flows are scaled with a ratio of 1 : 145. The experimental facility consists of 4 primary loops with circulation pumps and steam generators (SGs arranged symmetrically around the reactor pressure vessel (RPV. The investigations carried out encompass a very broad spectrum from accident scenario simulations with large, medium, and small breaks, over the investigation of shutdown procedures after a wide variety of accidents, to the systematic investigation of complex thermal-hydraulic phenomena. This paper presents a survey of test objectives and programs carried out to date. It also describes the test facility in its present state. Some important results obtained over the years with focus on investigations carried out since the beginning of the international cooperation are exemplarily discussed.

  11. The Monotonicity Puzzle: An Experimental Investigation of Incentive Structures

    Jeannette Brosig

    2010-05-01

    Full Text Available Non-monotone incentive structures, which - according to theory - are able to induce optimal behavior, are often regarded as empirically less relevant for labor relationships. We compare the performance of a theoretically optimal non-monotone contract with a monotone one under controlled laboratory conditions. Implementing some features relevant to real-world employment relationships, our paper demonstrates that, in fact, the frequency of income-maximizing decisions made by agents is higher under the monotone contract. Although this observed behavior does not change the superiority of the non-monotone contract for principals, they do not choose this contract type in a significant way. This is what we call the monotonicity puzzle. Detailed investigations of decisions provide a clue for solving the puzzle and a possible explanation for the popularity of monotone contracts.

  12. Further laboratory and theoretical investigations of ammonium dinitramide

    Tulis, A.J.; Snelson, A. [IIT Research Institut, Chicago (United States); Heberlein, C.; Patel, D.L. [U.S. Army Cecom RD et E Center, NVESD (United States)

    1996-12-31

    Hydrogen and deuterated ammonium dinitramide have been vaporized under high vacuum and the IR matrix isolation spectra of the decomposition products obtained. Tentative vibration assignments have been made for HN(NO{sub 2}){sub 2} and DN(NO{sub 2}){sub 2} assuming a symmetrical non-planar structure in which the H or D is bonded to the central nitrogen atom. Other structures are also possible. Ab initio calculations have been made for the various structural isomers of hydrogen dinitramide. Vibration frequencies calculated for the hydrogenated and deuterated species are compared with the experimental values with the object of identifying the molecules` structure. (authors) 3 refs.

  13. An Experimental Investigation of Hydrogen Production from Biomass

    吕鹏梅; 常杰; 付严; 王铁军; 陈勇; 祝京旭

    2003-01-01

    In gaseous products of biomass steam gasification, there exist a lot of CO, CH4 and other hydrocarbons that can be converted to hydrogen through steam reforming reactions. There exists potential hydrogen production from the raw gas of biomass steam gasification. In the present work, the characteristics of hydrogen production from biomass steam gasification were investigated in a small-scale fluidized bed. In these experiments, the gasifying agent (air) was supplied into the reactor from the bottom of the reactor and the steam was added into the reactor above biomass feeding location. The effects of reaction temperature, steam to biomass ratio, equivalence ratio (ER) and biomass particle size on hydrogen yield and hydrogen yield potential were investigated. The experimental results showed that higher reactor temperature, proper ER, proper steam to biomass ratio and smaller biomass particle size will contribute to more hydrogen and potential hydrogen yield.

  14. Experimental investigation of transitional flow in a toroidal pipe

    Kühnen, J; Hof, B; Kuhlmann, H

    2015-01-01

    The flow instability and further transition to turbulence in a toroidal pipe (torus) with curvature (tube-to-coiling diameter) 0.049 is investigated experimentally. The flow inside the toroidal pipe is driven by a steel sphere fitted to the inner pipe diameter. The sphere is moved with constant azimuthal velocity from outside the torus by a moving magnet. The experiment is designed to investigate curved pipe flow by optical measurement techniques. Using stereoscopic particle image velocimetry, laser Doppler velocimetry and pressure drop measurements, the flow is measured for Reynolds numbers ranging from 1000 to 15000. Time- and space-resolved velocity fields are obtained and analysed. The steady axisymmetric basic flow is strongly influenced by centrifugal effects. On an increase of the Reynolds number we find a sequence of bifurcations. For Re=4075 a supercritical bifurcation to an oscillatory flow is found in which waves travel in the streamwise direction with a phase velocity slightly faster than the mean...

  15. Drag reduction by dimples? - A complementary experimental/numerical investigation

    The paper is concerned with an experimental and numerical investigation of the turbulent flow over dimpled surfaces. Shallow dimples distributed regularly over the wall of a plane channel with large aspect ratio are used to study their effect on the friction drag. The resulting pressure drop in the channel was measured for smooth and dimpled walls. In addition to these investigations on internal flows, an external flow study was performed and boundary-layer profiles were measured using a Pitot-tube rake. Complementary to the measurements, direct numerical simulations for the internal flow configuration with and without dimples were carried out for two different grid resolutions and analyzed in detail. The objective was to clarify whether or not dimples cause reduction of the skin-friction drag

  16. Experimental investigation and performance test of heavy duty torque converter

    The present study is an investigation on the characteristics of heavy load toque converter by experimental process. To get the dynamic performance, the dynamometer was used with a parameters of speed, torque, oil pressure and oil flux, etc. The torque converter was tested for various input speed, output oil pressure and input oil flow rate. All experiments were investigated in case that the speed ratio is increased. The torque ratio and capacity factor was in inverse proportion to speed. Engine revolution had a more effects at region of low speed ratio. But, the opposite phenomena were represented increase of efficiency. In result of this experiments, the characteristics of torque converter were not influenced by oil pressure and oil flux

  17. Experimental Investigation of Piston Rings for Internal Combustion Engines

    Klit, Peder; Vølund, Anders

    2008-01-01

    conditions, but this is not the case in real life operation. These problems forms the basis for the experimental investigation. In large two-stroke engines the cylinder oil is supplied to the bearing at discrete locations on the cylinder liner at a specific rate at a certain time. The shifting in lubrication...... assembly. The aim of this paper is to investigate the tribological condition between a piston ring and cylinder. A test apparatus is used to study the interaction between a piston ring and a cylinder liner. In large two stroke engines with cross head bearings the piston height is small compared to smaller...... four stroke engines where the skirt transfers the guide forces to the cylinder liner. The power loss due to piston skirt friction is estimated by comparing two different piston designs. The piston ring experiences hydrodynamic, mixed and boundary lubrication and the squeeze effect of the piston ring is...

  18. EXPERIMENTAL INVESTIGATION OF EMERGENCY GATE SHUTTING FOR ORIFICE TUNNEL

    2002-01-01

    In the process of the emergence gate shutting of one orifice tunnel, a big noise and great vibration may be observed in the mid gate chamber. In order to guarantee the working safety of orifice tunnels, an experimental investiga-tion is carried out in Sichuan University. In the investigation,the fluctuation pressure along the tunnel and the wind velocity in the entry of emergency gate are measured. In the mean time, the fluid state in orifice tunnel is carefully observed and analyzed. The reasons of the noise and vibration in the mid gate chamber are found out and some countermeasures are presented in this paper. The conclusions are useful to the ori-fice tunnels with high water head and huge discharge.

  19. Experimental and Theoretical Status of Borromean Halo Nuclei Structure Investigation

    Petrascu, Marius

    2006-08-01

    An introduction to the work performed in pre-emission of neutrons from 11Li halo nuclei will be presented. The standing present problems in the investigation of the structure of Borromean halo nuclei by means of the Cnn correlation function are outlined. An investigation of the target screening effect on the pre-emission of halo neutrons will be briefly described. It is shown that due to the diminishing of the screening effect the yield of neutron pair pre-emission is expected to be much larger in the case of 12C than in the case of Si target. It is shown that a new experiment on l2C target will allow to solve the standing problems of Cnn and also to test experimentally a recent new theory of Cnn [10 ].

  20. An Experimental and Theoretical Investigation of Electrostatically Coupled Cantilever Microbeams

    Ilyas, Saad

    2016-06-16

    We present an experimental and theoretical investigation of the static and dynamic behavior of electrostatically coupled laterally actuated silicon microbeams. The coupled beam resonators are composed of two almost identical flexible cantilever beams forming the two sides of a capacitor. The experimental and theoretical analysis of the coupled system is carried out and compared against the results of beams actuated with fixed electrodes individually. The pull-in characteristics of the electrostatically coupled beams are studied, including the pull-in time. The dynamics of the coupled dual beams are explored via frequency sweeps around the neighborhood of the natural frequencies of the system for different input voltages. Good agreement is reported among the simulation results and the experimental data. The results show considerable drop in the pull-in values as compared to single microbeam resonators. The dynamics of the coupled beam resonators are demonstrated as a way to increase the bandwidth of the resonator near primary resonance as well as a way to introduce increased frequency shift, which can be promising for resonant sensing applications. Moreover the dynamic pull-in characteristics are also studied and proposed as a way to sense the shift in resonance frequency.

  1. Experimental investigation of effects of external loads on erosive wear

    H. Imrek

    2009-01-01

    Full Text Available Purpose: The purpose of the paper is to investigate effects of external loads on erosive wear.Design/methodology/approach: In this experimental study, specimens were placed on specially designed a specimen holder and then, external tensile loads corresponding to 0%, 20%, 40% and 60% of the specimen’s yield strength were applied on the specimens. For every load step, the specimens were subjected to 15º, 30º, 45º, 60º, 75º and 90º of erodent impact angles. At the end of the tests, effects of external loads and impingement angles on erosive wear were studied. In the experimental set, dry and compressed air was used to impinge erodents onto the test specimens and subsequent wear was investigated. During the tests, the impingement angles were adjusted by turning the specimen holder around its axis. Erodent particles used were SAE G40 having internal uniform martensitic structure and angular geometry. Determination of erodents speed was achieved with the help of the Rotating Double Disc Method. The speed used in the tests was 30 m/s.Findings: At the end of the tests, erosive wear rates were obtained as functions of stresses and impingement angles. Graphs showing variations of erosive wear rates for load values obtained against every impingement angle and yield stress were drawn. Critical impingement angle and load values at which maximum erosion rate was obtained were determined.Research limitations/implications: In researches made on erosive wears so far; there are only few studies dealing with the effects of external loads on the specimens subjected to erosive wear. By considering that stresses may affect the erosive wear, the stress state around contact area as well as material properties, this experimental study has thus, investigated likely effects of stresses on the erosive wear. With the help of the designed special specimen holder, the specimens were subjected to tensile stresses that are lower than the yield strength of the material

  2. Does magical thinking produce neutralising behaviour? An experimental investigation.

    Bocci, Laura; Gordon, P Kenneth

    2007-08-01

    Magical thinking is of relevance to obsessive compulsive disorder (OCD), and has been most widely investigated in relation to the cognitive bias known as thought-action fusion (TAF). This is seen as playing a role in the formation of fears about responsibility for harm. We suggest that magical thinking may also characterise some types of neutralising behaviour, which arise in response to those fears, and are a hallmark of the disorder. In an experimental study of 51 undergraduate students, we assessed whether the use of neutralising behaviours in response to an induction of fears of increasing likelihood for harm is related to a propensity for magical thinking. The 75.5% of participants demonstrated at least one form of neutralising behaviour in response to a TAF-induction task. Neutralising was associated with stronger and more persistent responses to the task, and with questionnaire measures of magical ideation. Those who neutralised did not report higher levels of OCD symptoms. It appears that neutralising is a common response in circumstances that provoke a sense of responsibility for harm. Its occurrence may be linked to magical thinking, however, the results from this experimental investigation suggested that this process may not be specific to OCD. PMID:17403518

  3. Alternate Methods to Experimentally Investigate Shock Initiation Properties of Explosives

    Svingala, Forrest; Lee, Richard; Sutherland, Gerrit; Samuels, Philip

    2015-06-01

    Reactive flow models are desired for many new explosives early in the formulation development stage. Traditionally, these models are parameterized by carefully-controlled 1-D shock experiments, including gas-gun testing with embedded gauges and wedge testing with explosive plane wave lenses (PWL). These experiments are easy to interpret, due to their 1-D nature, but are generally expensive to perform, and cannot be performed at all explosive test facilities. We investigate alternative methods to probe shock-initiation behavior of new explosives using widely-available pentolite gap test donors and simple time-of-arrival type diagnostics. These methods can be performed at a low cost at virtually any explosives testing facility, which allows experimental data to parameterize reactive flow models to be collected much earlier in the development of an explosive formulation. However, the fundamentally 2-D nature of these tests may increase the modeling burden in parameterizing these models, and reduce general applicability. Several variations of the so-called modified gap test were investigated and evaluated for suitability as an alternative to established 1-D gas gun and PWL techniques. At least partial agreement with 1-D test methods was observed for the explosives tested, and future work is planned to scope the applicability and limitations of these experimental techniques.

  4. Experimental investigation of turbulent mixing by Rayleigh-Taylor instability

    A key feature of compressible turbulent mixing is the generation of vorticity via the ∇px ∇(1/ρ) term. This source of vorticity is also present in incompressible flows involving the mixing of fluids of different density, for example Rayleigh-Taylor unstable flows. This paper gives a summary of an experimental investigation of turbulent mixing at a plane boundary between two fluids, of densities ρ1, and ρ2. (ρ1 > ρ2) due to Rayleigh-Taylor instability. The two fluids are near incompressible and mixing occurs when an approximately constant acceleration, g, is applied normal to the interface with direction from fluid 2 to fluid 1. Full details of the experimental programme are given in a set of three reports. Some of the earlier experiments are also described by Read. Previous experimental work and much of the theoretical research has concentrated on studying the growth of the instability from a single wavelength perturbation rather than turbulent mixing. Notable exceptions are published in the Russian literature. A related process, turbulent mixing induced by the passage of shock waves though an interface between fluids of different density is described by Andronov et al. The major purpose of the experiments described here was to study the evolution of the instability from small random perturbations where it is found that large and larger structures appear as time proceeds. A novel technique was used to provide the desired acceleration. The two fluids were enclosed in a rectangular tank, the lighter fluid 2 initially resting on top of the denser fluid 1. One or more rocket motors were then used to drive the tank vertically downwards. The aim of the experimental programme is to provide data for the calibration of a turbulence model used to predict mixing in real situations

  5. Biodiesel from soybean oil: experimental procedure of transesterification for organic chemistry laboratories

    The transesterification procedure of triacylglycerides from soybean oil (in natura and waste oil) to give biodiesel was adapted to semi-micro laboratory scale as an additional experimental technique of nucleophilic acyl substitution for undergraduate courses in Chemistry and related areas. (author)

  6. Experimental investigation of the acceleration of deflagration in wake flow

    In real gas cloud explosions turbulence is produced by the flow field caused by the combustion process. But also turbulence can be produced by an initial flow field due to atmospheric wind or technical devices. This turbulence may lead to an increased rate of chemical reaction connected with high pressure levels. The reported laboratory-scale experiments are particularly designed in order to investigate the influence of a flow field present at the moment of ignition inside a partially confined hydrocarbon-air gas cloud. Experiments have been done using a flow channel capable to produce an unsteady flow field of combustible gas independent of the combustion process itself. The parameters which have been varied in these tests are the initial flow velocity, the gas-mixture composition and the geometry. The tests have been carried out mainly with stoichiometric ethylene-air and propane-air mixtures. The measured quantities are: pressure time history inside the test section, CH-radical radiation and also high speed photographs have been taken. The results show that the initial flow speed and the reactivity of the gas mixture investigated have a strong influence on the maximum overpressure and the duration of the positive pressure phase but also quenching effect may become important for high flow velocities and mixtures of low reactivity. (author)

  7. Experimental investigation of dispersion phenomenon in a fractured porous medium

    Ali Sanati

    2015-02-01

    Full Text Available Dispersion of fluids flowing through porous media is an important phenomenon in miscible displacement. Dispersion causes instability of miscible displacement flooding; therefore, to obtain and maintain the miscibility zone, the porous medium dispersivity should be considered in displacing fluid volume calculation. Many works have been carried out to investigate the dispersion phenomenon in porous media in terms of theory, laboratory experiments and modeling. What is still necessary is to study the effects of presence of fracture in a porous medium on dispersion coefficient or dispersivity. In this work dispersion phenomenon in a fractured porous medium has been investigated through a series of miscible displacement tests on homogeneous sandstone core samples. Tests were repeated on the same core samples with induced fracture in the flow direction. The effects of fracture on miscible displacement flooding have been studied by comparison of the results of dispersion tests in the absence and presence of fracture. In the presence of fracture, breakthrough time reduced and the tail of effluent S-shaped curve smeared. Moreover, the slope of S-shaped curve at 1 pore volume of injected fluid was lower than homogeneous case which means dispersion coefficient increased. The results presented in this work provide an insight to the understanding of dispersion phenomenon for modeling of miscible displacement process through naturally fractured reservoirs.

  8. Experimental Investigation of Biogas Reforming in Gliding Arc Plasma Reactors

    P. Thanompongchart

    2014-01-01

    Full Text Available Biogas is an important renewable energy source. Its utilization is restricted to vicinity of farm areas, unless pipeline networks or compression facilities are established. Alternatively, biogas may be upgraded into synthetic gas via reforming reaction. In this work, plasma assisted reforming of biogas was investigated. A laboratory gliding arc plasma setup was developed. Effects of CH4/CO2 ratio (1, 2.33, 9, feed flow rate (16.67–83.33 cm3/s, power input (100–600 W, number of reactor, and air addition (0–60% v/v on process performances in terms of yield, selectivity, conversion, and energy consumption were investigated. High power inputs and long reaction time from low flow rates, or use of two cascade reactors were found to promote dry reforming of biogas. High H2 and CO yields can be obtained at low energy consumption. Presence of air enabled partial oxidation reforming that produced higher CH4 conversion, compared to purely dry CO2 reforming process.

  9. Laboratory Investigation of Noise-Canceling Headphones Utilizing ``Mr. Blockhead''

    Koser, John

    2013-09-01

    While I was co-teaching an introductory course in musical acoustics a few years ago, our class investigated several pieces of equipment designed for audio purposes. One piece of such equipment was a pair of noise-canceling headphones. Our students were curious as to how these devices were in eliminating background noise and whether they indeed block low-frequency sounds as advertised.

  10. Clinical and laboratory investigation of experimentaly infected broilers with CIAV

    Kapetanov Miloš C.

    2004-01-01

    Full Text Available Chicken infectious anemia (CIA is widespread viral disease in countries with the intensive poultry industry. In susceptible birds CIAV causes anemia subcutaneous and intramuscular hemorrhages, lymphoid tissue atrophy immunosuppression, cachexia and increased mortality. Protection of progeny relies not only on age resistance but also on maternally delivered antibodies (Mabs so possessing the information on level and persistence of Mabs is of great significance. In our study experimental infection with CIAV was performed on one and seven days old broiler chickens from naturally infected parent flock during the rearing period. In infected birds, clinical signs hematological findings and humoral immune response were examined. After euthanasia, we looked for specific pathomorphological and histopathological changes that indicate the presence of CIAV infection. In all one and seven days old chickens maternally derived antibodies were established. No clinical signs of CIA were observed, hematological findings showed no deviation from referent values, and there were no specific pathomorphological and histopathological changes at postmortem examination. According to previous knowledge, only serological negative flock if infected in time of laying represent risk for vertical transmission to progeny where typical disease with mortality will appear. The absence of Mabs in one day old chickens is critical point in break of disease. Typical clinical picture in day old chickens rises only when vertical transmission occurs.

  11. Laboratory Investigation of Entrainment and Mixing in Oceanic Overflows

    Philippe, Odier; Ecke, Robert E

    2013-01-01

    We present experimental measurements of a wall-bounded gravity current, motivated by characterizing natural gravity currents such as oceanic overflows. We use particle image velocimetry and planar laser-induced fluorescence to simultaneously measure the velocity and density fields as they evolve downstream of the initial injection from a turbulent channel flow onto a plane inclined at 10$^\\circ$ with respect to horizontal. The turbulence level of the input flow is controlled by injecting velocity fluctuations upstream of the output nozzle. The initial Reynolds number based on Taylor microscale of the flow, R$_\\lambda$, is varied between 40 and 120, and the effects of the initial turbulence level are assessed. The bulk Richardson number $Ri$ for the flow is about 0.3 whereas the gradient Richardson number $Ri_g$ varies between 0.04 and 0.25, indicating that shear dominates the stabilizing effect of stratification. Kelvin-Helmholtz instability results in vigorous vertical transport of mass and momentum. We pres...

  12. Zirconia abutments and restorations: from laboratory to clinical investigations.

    Ferrari, M; Vichi, A; Zarone, F

    2015-03-01

    In last years the use of zirconia in dentistry has become very popular. Unfortunately, the clinical indications for a dental use of zirconia are not completely clear yet, neither are their limitations. The objective of this review was to evaluate the basic science knowledge on zirconia and to discuss some aspects of the clinical behavior of zirconia-based restorations. In particular, one of the goals was highlighting the possible correlation between in vitro and in vivo studies. The definition of concepts like success, survival and failure was still debated and the correlation between in vitro results and predictability of clinical behavior was investigated. PMID:25576437

  13. Experimental investigation of the Richtmyer-Meshkov instability.

    Weber, Christopher R. (University of Wisconsin-Madison, Madison, WI)

    2011-09-01

    The Richtmyer-Meshkov instability (RMI) is experimentally investigated using several different initial conditions and with a range of diagnostics. First, a broadband initial condition is created using a shear layer between helium+acetone and argon. The post-shocked turbulent mixing is investigated using planar laser induced fluorescence (PLIF). The signature of turbulent mixing is present in the appearance of an inertial range in the mole fraction energy spectrum and the isotropy of the late-time dissipation structures. The distribution of the mole fraction values does not appear to transition to a homogeneous mixture, and it is possible that this effect may be slow to develop for the RMI. Second, the influence of the RMI on the kinetic energy spectrum is investigated using particle image velocimetry (PIV). The influence of the perturbation is visible relatively far from the interface when compared to the energy spectrum of an initially flat interface. Closer to the perturbation, an increase in the energy spectrum with time is observed and is possibly due to a cascade of energy from the large length scales of the perturbation. Finally, the single mode perturbation growth rate is measured after reshock using a new high speed imaging technique. This technique produced highly time-resolved interface position measurements. Simultaneous measurements at the spike and bubble location are used to compute a perturbation growth rate history. The growth rates from several experiments are compared to a new reshock growth rate model.

  14. Diesel Engine Emission Reduction Using Catalytic Nanoparticles: An Experimental Investigation

    Ajin C. Sajeevan

    2013-01-01

    Full Text Available Cerium oxide being a rare earth metal with dual valance state existence has exceptional catalytic activity due to its oxygen buffering capability, especially in the nanosized form. Hence when used as an additive in the diesel fuel it leads to simultaneous reduction and oxidation of nitrogen dioxide and hydrocarbon emissions, respectively, from diesel engine. The present work investigates the effect of cerium oxide nanoparticles on performance and emissions of diesel engine. Cerium oxide nanoparticles were synthesized by chemical method and techniques such as TEM, EDS, and XRD have been used for the characterization. Cerium oxide was mixed in diesel by means of standard ultrasonic shaker to obtain stable suspension, in a two-step process. The influence of nanoparticles on various physicochemical properties of diesel fuel has also been investigated through extensive experimentation by means of ASTM standard testing methods. Load test was done in the diesel engine to investigate the effect of nanoparticles on the efficiency and the emissions from the engine. Comparisons of fuel properties with and without additives are also presented.

  15. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  16. Experimental investigations in turbulent buoyant jets of sodium

    Axisymmetric, turbulent buoyant jets are investigated in the sodium test section TEFLU. The character of the flow is divided into three regimes depending on the densimetric Froude number: the pure jet, the buoyant jet in the transition regime and the pure plume. By means of a temperature compensated Miniature Permanentmagnet Flowmeter Probe the mean velocity, mean temperature and intensity of temperature fluctuations are measured simultaneously at axial distances between 3 and 40 initial jet diameters from the orifice. The functional principle of the Miniature Permanentmagnet Flowmeter Probe which allows velocity measurements to be made in the presence of a temperature gradient is described in detail. For all three regimes both the decay laws of the quantities measured along the axis of the containment pipe and the radial profiles are indicated and discussed. With the help of the radial profiles of the mean quantities the axial development of the half-width radii and the axial development of the momentum, buoyancy and volume fluxes are calculated. In addition, the time history of the temperature fluctuations is recorded at several radial positions. The data are analysed according to characteristic values of statistical signal analysis such as minimum value, maximum value, skewness, flatness and according to characteristic functions such as probability density function, autopower spectrum density and autocorrelation function. The experimental results for the axisymmetric, turbulent buoyant jets of sodium are compared with experimental results from the literature and with fluids of molecular Prandtl numbers greater than or equal to 0.7. The basic differences betwen the experimental results obtained for water and for sodium are outlined. Statements are formulated which allow thermo- and fluiddynamic diffusion processes to be transferred from water to sodium. (orig.)

  17. Experimental investigation of bond strength under high loading rates

    Michal Mathias

    2015-01-01

    Full Text Available The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw and the Joint Research Centre (JRC in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  18. Experimental investigations on vessel-hole ablation during severe accidents

    This report presents experimental results, and subsequent analyses, of scaled reactor pressure vessel (RPV) failure site ablation tests conducted at the Royal Institute of Technology, Division of Nuclear Power Safety (RIT/NPS). The goal of the test program is to reduce the uncertainty level associated with the phase-change-ablation process, and, thus, improve the characterization of the melt discharge loading on the containment. In a series of moderate temperature experiments, the corium melt is simulated by the binary oxide CaO-B2O3 or the binary eutectic and non-eutectic salts NaNO3-KNO3, while the RPV head steel is represented by a Pb, Sn or metal alloys plate. A complementary set of experiments was conducted at lower temperatures, using water as melt and salted ice as plate material. These experiments scale well to the postulated prototypical conditions. The multidimensional code HAMISA, developed at RIT/NPS, is employed to analyze the experiments with good pre- and post-test predictions. The effects of melt viscosity and crust surface roughness, along with failure site entrance and exit frictional losses on the ablation characteristics are investigated. Theoretical concept was proposed to describe physical mechanisms which govern the vessel-hole ablation process during core melt discharge from RPV. Experimental data obtained from hole ablation tests and separate-effect tests performed at RIT/NPS were used to validate component physical models of the HAMISA code. It is believed that the hole ablation phenomenology is quite well understood. Detailed description of experiments and experimental data, as well as results of analyses are provided in the appendixes

  19. Experimental investigation of bond strength under high loading rates

    Michal, Mathias; Keuser, Manfred; Solomos, George; Peroni, Marco; Larcher, Martin; Esteban, Beatriz

    2015-09-01

    The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw) and the Joint Research Centre (JRC) in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  20. Numerical and experimental investigation of the TRIP strain

    In the first part a comprehensive experimental program is presented involving differential thermo-analyses (DTA) as well as dilatation tests under various non-proportional mechanical as well as thermal loading paths with the objective to measure the additional inelastic strain contribution due to transformation induced plasticity (TRIP). A maraging steel exhibiting complete martensitic transformation in a temperature interval ranging from around 150 oC down to about 70 oC is chosen as an appropriate testing material, since its comparatively low martensite start temperature (MS) facilitates measuring and precludes undesirable creep effects. A concept on how to isolate the TRIP strain contribution from the overall strain monitored by the multiaxial testing device is discussed. Particular attention is paid to the evolution of the martensite fraction during transformation and its dependence on the type and the magnitude of the applied mechanical load. The second part deals with the numerical simulation of the thermo-mechanical material behavior using an elastic predictor - radial return algorithm based on the underlying thermodynamic principles as the starting point. A user supplied subroutine has been developed that provides a commercial finite element solver with the proper material response to a given strain increment. The behavior of a three dimensional unit cell consisting of a regular array of cubic elements, each representing a single, arbitrarily oriented grain of a polycrystal is investigated. The good agreement of the numerical results with the experimental data backs the notion of a transformation related backstress is proposed. Refs. 3 (author)

  1. Experimental investigation of resonance curves in dynamic force microscopy

    Polesel-Maris, Jérôme; Piednoir, Agnès; Zambelli, Tomaso; Bouju, Xavier; Gauthier, Sébastien

    2003-09-01

    A precise experimental investigation of the amplitude and phase resonance curves of a driven dynamic force microscope (DFM) cantilever interacting with an Al2O3(0001) surface in ultra-high vacuum is reported. The large amplitude (a few tens of nanometres), high cantilever stiffness (25 N m-1) and high quality factor (a few 104) characterizing these experiments are typical of the frequency modulation (FM) mode of DFM. The whole range of tip-substrate distances where a stationary oscillation of the cantilever can be maintained is explored. It covers two different regimes: a large distance regime where only long range conservative van der Waals interactions contribute and a small distance regime where short range interactions play a significant role. A comparison is made with frequency shift and excitation amplitude curves as a function of the distance acquired in the FM mode. It is also shown that approach-retract amplitude and phase curves usually obtained in the amplitude modulation mode can be extracted from these data. These experimental results are compared with analytical predictions reported in the literature. An excellent agreement is found in the van der Waals domain, allowing us to evaluate the Hamaker constant for the alumina-vacuum-silicon system.

  2. Numerical simulation and experimental investigation of incremental sheet forming process

    HAN Fei; MO Jian-hua

    2008-01-01

    In order to investigate the process of incremental sheet forming (ISF) through both experimental and numerical approaches, a three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those of experiment. The results of numerical simulations, such as the strain history and distribution, the stress state and distribution, sheet thickness distribution, etc, were discussed in details, and the influences of process parameters on these results were also analyzed. The simulated results of the radial strain and the thickness distribution are in good agreement with experimental results. The simulations reveal that the deformation is localized around the tool and constantly remains close to a plane strain state. With decreasing depth step, increasing tool diameter and wall inclination angle, the axial stress reduces, leading to less thinning and more homogeneous plastic strain and thickness distribution. During ISF, the plastic strain increases stepwise under the action of the tool. Each increase in plastic strain is accompanied by hydrostatic pressure, which explains why obtainable deformation using ISF exceeds the forming limits of conventional sheet forming.

  3. Experimental investigation of thermal neutron analysis based landmine detection technology

    Background: Recently, the prompt gamma-rays neutron activation analysis method is wildly used in coal analysis and explosive detection, however there were less application about landmine detection using neutron method especially in the domestic research. Purpose: In order to verify the feasibility of Thermal Neutron Analysis (TNA) method used in landmine detection, and explore the characteristic of this technology. Methods: An experimental system of TNA landmine detection was built based on LaBr3 (Ce) fast scintillator detector and 252Cf isotope neutron source. The system is comprised of the thermal neutron transition system, the shield system, and the detector system. Results: On the basis of the TNA, the wide energy area calibration method especially to the high energy area was investigated, and the least detection time for a typical mine was defined. In this study, the 72-type anti-tank mine, the 500 g TNT sample and several interferential objects are tested in loess, red soil, magnetic soil and sand respectively. Conclusions: The experimental results indicate that TNA is a reliable demining method, and it can be used to confirm the existence of Anti-Tank Mines (ATM) and large Anti-Personnel Mines (APM) in complicated condition. (authors)

  4. An experimental investigation of the dielectric properties of electrorheological fluids

    A home-made electrorheological (ER) fluid, known as ETSERF, has been created with suspension-based powders dispersed in silicone oil. Because of the special structure of their particles, ETSERF suspensions present a complex behavior. In the absence of an electric field, the ETSERF fluid manifests a near-Newtonian behavior, but when an electric field is applied, it exhibits a pseudoplastic behavior with yield stress. The ER effect under DC electric fields has been experimentally investigated using both hydrous and anhydrous ER fluids. The ER properties are strongly dependent on the dielectric properties of ETSERF suspensions, and hydrous ER fluids have a high dielectric constant and a high relaxation frequency which show a strong electrorheological effect. The relationship between the electrorheological effect and the permittivity of ER fluids has also been extensively studied. Experimental results show that the interfacial polarization plays an important role in the electrorheological phenomenon. The ageing of ETSERF fluids was also studied and it was found that the dielectric properties (mainly the dielectric loss tangent) and ER properties are strongly related to the duration of ageing. A fresh ETSERF suspension exhibits high relaxation frequency and high dielectric constant. These results are mainly explained by the effect of interfacial polarizations

  5. Experimental Investigation and Theoretical Modeling of Nanosilica Activity in Concrete

    Han-Seung Lee

    2014-01-01

    Full Text Available This paper presents experimental investigations and theoretical modeling of the hydration reaction of nanosilica blended concrete with different water-to-binder ratios and different nanosilica replacement ratios. The developments of chemically bound water contents, calcium hydroxide contents, and compressive strength of Portland cement control specimens and nanosilica blended specimens were measured at different ages: 1 day, 3 days, 7 days, 14 days, and 28 days. Due to the pozzolanic reaction of nanosilica, the contents of calcium hydroxide in nanosilica blended pastes are considerably lower than those in the control specimens. Compared with the control specimens, the extent of compressive strength enhancement in the nanosilica blended specimens is much higher at early ages. Additionally, a blended cement hydration model that considers both the hydration reaction of cement and the pozzolanic reaction of nanosilica is proposed. The properties of nanosilica blended concrete during hardening were evaluated using the degree of hydration of cement and the reaction degree of nanosilica. The calculated chemically bound water contents, calcium hydroxide contents, and compressive strength were generally consistent with the experimental results.

  6. Experimental investigation into scaling models of methane hydrate reservoir

    Highlights: • The scaling criteria for methane hydrate reservoir are built. • The scaling criteria are verified by the experiments in two 3-D simulators. • The scaling criteria are used for predicting gas production of real hydrate reservoir. • Methane of 1.168 × 106 m3 is produced from the hydrate reservoir after 13.9 days. - Abstract: The Cubic Hydrate Simulator (CHS), a three-dimensional 5.8 L cubic pressure vessel, and the Pilot-Scale Hydrate Simulator (PHS), a three-dimensional 117.8 L pressure vessel, are used for investigating the production processes of hydrate. The gas production behaviors of methane hydrate in the porous media using the thermal stimulation method with a five-spot well system are studied. The experimental conditions are designed by a set of scaling criteria for the gas hydrate reservoir. The experimental results verify that the scaling criteria for gas hydrate production are reliable. The scaling criteria are used for predicting the production behavior of the real-scale hydrate reservoir. In the model of the real-scale hydrate reservoir with the size of 36 m × 36 m × 36 m, methane of 1.168 × 106 m3 (STP) is produced from the hydrate reservoir during 13.9 days of gas production. It is obtained that the gas recovery is 0.73, and the final energy efficiency is 9.5

  7. Experimental investigations of the functional morphology of dragonfly wings

    H.Rajabi; A.Darvizeh

    2013-01-01

    Nowadays,the importance of identifying the flight mechanisms of the dragonfly,as an inspiration for designing flapping wing vehicles,is well known.An experimental approach to understanding the complexities of insect wings as organs of flight could provide significant outcomes for design purposes.In this paper,a comprehensive investigation is carried out on the morphological and microstructural features of dragonfly wings.Scanning electron microscopy (SEM) and tensile testing are used to experimentally verify the functional roles of different parts of the wings.A number of SEM images of the elements of the wings,such as the nodus,leading edge,trailing edge,and vein sections,which play dominant roles in strengthening the whole structure,are presented.The results from the tensile tests indicate that the nodus might be the critical region of the wing that is subjected to high tensile stresses.Considering the patterns of the longitudinal corrugations of the wings obtained in this paper,it can be supposed that they increase the load-bearing capacity,giving the wings an ability to tolerate dynamic loading conditions.In addition,it is suggested that the longitudinal veins,along with the leading and trailing edges,are structural mechanisms that further improve fatigue resistance by providing higher fracture toughness,preventing crack propagation,and allowing the wings to sustain a significant amount of damage without loss of strength.

  8. Experimental Investigation on Performance of Pulse Detonation Rocket Engine Model

    LI Qiang; FAN Wei; YAN Chuan-jun; HU Cheng-qi; YE Bin

    2007-01-01

    The PDRE test model used in these experiments utilized kerosene as the fuel, oxygen as oxidizer, and nitrogen as purge gas. The solenoid valves were employed to control intermittent supplies of kerosene, oxygen and purge gas. PDRE test model was 50 mm in inner diameter by 1.2 m long. The DDT (defiagration to detonation transition) enhancement device Shchelkin spiral was used in the test model.The effects of detonation frequency on its time-averaged thrust and specific impulse were experimentally investigated. The obtained results showes that the time-averaged thrust of PDRE test model was approximately proportional to the detonation frequency. For the detonation frequency 20 Hz, the time-averaged thrust was around 107 N, and the specific impulse was around 125 s. The nozzle experiments were conducted using PDRE test model with three traditional nozzles. The experimental results obtained demonstrated that all of those nozzles could augment the thrust and specific impulse. Among those three nozzles, the convergent nozzle had the largest increased augmentation, which was approximately 18%, under the specific condition of the experiment.

  9. Experimental investigation of the Mg-Al-Ca system

    This work focuses on the experimental investigation of the ternary Mg-Al-Ca system using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and metallographic techniques. DSC has permitted real time measurement of the temperature and enthalpy of the phase transformations. One of the invariant transformations predicted by thermodynamic modeling was verified experimentally and found to occur at 513 oC with composition close to 10.8 at.% Ca, 79.5 at.% Mg and 9.7 at.% Al. Three binary compounds are found to have an extended solid solubility into the ternary system: (Mg2Ca) where Al substitute Mg in the binary compound Mg2Ca (Al2Ca) and (Al3Ca8) where Mg substitute Al in the binary compounds Al2Ca and Al3Ca8, respectively. Two morphologies of eutectic structure were observed in the micrographs and supported by solidification curves; a coarse and fine eutectic microstructures due to the existence of Al2Ca and Mg2Ca, respectively

  10. Experimental investigations of a chimney-dependent solar crop dryer

    Afriyie, J.K.; Nazha, M.A.A.; Rajakaruna, H. [School of Engineering and Technology, De Montfort University, Queens Building, The Gateway, Leicester LE1 9BH (United Kingdom); Forson, F.K. [Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana)

    2009-01-15

    An experimental investigation into the performance of a solar crop dryer with solar chimney and no air preheating is described. Tests were first performed on the cabinet dryer, using a normal chimney. The trials were repeated with a solar chimney. Still with the solar chimney, further trials were carried out with the roof of the drying chamber inclined further to form a tent dryer. The described tests include no-load tests for airflow rate measurements and drying tests, with cassava as the crop. Air velocities, temperatures, ambient relative humidity and the drop in crop moisture contents at different stages of the drying process are also presented. The effects of the various configurations described above on the drying process are deduced and discussed while comparing the experimental results with one another. In addition, the performance of the dryer in relation to other natural convection dryers is discussed. The results show that the solar chimney can increase the airflow rate of a direct-mode dryer especially when it is well designed with the appropriate angle of drying-chamber roof. However, the increase in flow rate only increases the drying rate when the relative humidity (RH) of the ambient air is below a certain mark (60% for cassava). (author)

  11. Experimental Investigation of Exhaust Thermoelectric System and Application for Vehicle

    Liu, X.; Deng, Y. D.; Wang, W. S.; Su, C. Q.

    2015-06-01

    In this case study, an energy harvesting system using a thermoelectric power generator (TEG) has been constructed. Experimental investigation of the hot and cold sides of the thermoelectric modules (TMs) in this system has been undertaken to assess the feasibility for automotive applications. Two test benches have been developed to analyze the TM performance and the TEG system characteristics, especially the temperature difference, open-circuit voltage, and maximum power output of the TM and TEG system. As the performance of a TM is most influenced by the applied pressure and the temperature difference, a thermostatic heater, thermostatic water tank, and clamping devices are used in our experimental apparatus, increasing the output power of the TEG system. Based on the test bench, a new system called the "four-TEGs" system was designed and assembled into a prototype vehicle called "Warrior," and the characteristics of the system such as the maximum power output have been studied in road tests. The results show great potential for application of this technology in future vehicles.

  12. Experimental investigation of coarse particle conveying in pipes

    Vlasak Pavel

    2015-01-01

    Full Text Available The advanced knowledge of particle-water mixture flow behaviour is important for safe, reliable, and economical design and operation of the freight pipelines. The effect of the mixture velocity and concentration on the coarse particle – water mixtures flow behaviour was experimentally investigated on an experimental pipe loop of inner diameter D = 100 mm with horizontal, vertical, and inclined pipe sections. Narrow particle size distribution basalt pebbles were used as model of coarse-grained solid particles. The radiometric method was used to measure particle concentration distribution in pipe cross-section. Mixture flow behaviour and particles motion along the pipe invert were studied in a pipe viewing section. The study revealed that the coarse particlewater mixtures in the horizontal and inclined pipe sections were significantly stratified. The particles moved principally in a layer close to the pipe invert. However, for higher and moderate flow velocities the particles moved also in the central part of the pipe cross-section, and particle saltation was found to be dominant mode of particle conveying.

  13. NUMERICAL AND EXPERIMENTAL INVESTIGATION OF BEVELED TRAILING EDGE FLOW FIELDS

    MOSALLEM M. M.

    2008-01-01

    The characteristics of flow past beveled trailing edges attached to flat plates have been investigated numerically and experimentally. The test models used in the present study were two 2D blunt-faced flat plates having asymmetric beveled trailing edges of angles 27° and 60°. The numerical simulation results display an asymmetric wake behind the 27° beveled trailing edge and von karmen street vortices behind the 60° beveled trailing edge. The flow visualization using cavitation technique showed the same observations of the numerical simulation. Therefore, it is obvious that the trailing edge geometry has a pronounced effect on the wake development and vortex shedding. Also, it is concluded that the cavitation phenomenon can be used as a visualization technique at high flow velocities.

  14. An experimental-differential investigation of cognitive complexity

    2009-12-01

    Full Text Available Cognitive complexity as defined by differential and experimental traditions was explored to investigate the theoretical advantage and utility of relational complexity (RC theory as a common framework for studying fluid cognitive functions. RC theory provides a domain general account of processing demand as a function of task complexity. In total, 142 participants completed two tasks in which RC was manipulated, and two tasks entailing manipulations of complexity derived from the differential psychology literature. A series of analyses indicated that, as expected, task manipulations influenced item difficulty. However, comparable changes in a psychometric index of complexity were not consistently observed. Active maintenance of information across multiple steps of the problem solving process, which entails strategic coordination of storage and processing that cannot be modelled under the RC framework was found to be an important component of cognitive complexity.

  15. An experimental investigation of glare and restructured fiber metal laminates

    Benedict, Adelina Vanessa

    Fiber Metal Laminates (FMLs) are a group of materials fabricated by bonding glass/epoxy layers within metal layers. This class of materials can provide good mechanical properties, as well as weight savings. An FML known as Glass Laminate Aluminum Reinforced Epoxy (GLARE) was studied. An experimental investigation comprising of microscopy and tensile testing was carried out using different grades of GLARE. Microscopy revealed the construction details of GLARE, while tensile testing provided means of measuring and analyzing its stress-strain responses. Next, different metal surface pretreatment methods were explored. These included sandblasting, Phosphoric Acid Anodizing (PAA), and AC-130 Sol-Gel treatment. Woven S-2 glass, an epoxy adhesive, and aluminum alloy sheet metal were used to fabricate restructured FMLs using time and cost effective procedures. Additional microscopy and tensile testing allowed for comparisons with GLARE and aircraft grade aluminum alloys. The restructured FMLs showed similar behaviors to GLARE with potential significant improvements in fabrication efficiency.

  16. Experimental Investigation of Turbulence Specifications of Turbidity Currents

    B Firoozabadi

    2010-01-01

    Full Text Available The present study investigates the turbulence characteristic of turbidity current experimentally. The three-dimensional Acoustic-Doppler Velocimeter (ADV was used to measure the instantaneous velocity and characteristics of the turbulent flow. The experiments were conducted in a three-dimensional channel for different discharge flows, concentrations, and bed slopes. Results are expressed at various distances from the inlet, for all flow rates, slopes and concentrations as the distribution of turbulence energy, Reynolds stress and the turbulent intensity. It was concluded that the maximum turbulence intensity happens in both the interface and near the wall. Also, it was observed that the turbulence intensity reaches its minimum where maximum velocity occurs.

  17. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling

    The paper aims to investigate and model cracking development in beams and deep-beams made of autoclaved aerated concrete (AAC). Fracture mechanics of AAC has been first studied by performing three-point bending tests on beams, similar to those commonly used for ordinary concrete elements. In some of these tests, crack growth has been also monitored by using ESPI laser technique. In this way, it has been possible to calibrate the main parameters of a proper cohesive law by means of extended finite element inverse analysis. Subsequently, cracking tests have been also performed on deep-beams, whose behavior is more representative of full scale walls. To validate the proposed cohesive law, deep-beam experimental behavior has been finally simulated through XFEM

  18. Experimental Investigation of Software Testing and Reliability Assessment Methods (EISTRAM)

    The Experimental Investigation of Software Testing and Reliability Assessment Methods (EISTRAM) project builds on experiences from the RESTRAM review project, which pinpointed certain reliability assessment methods as particularly interesting. The focus for the EISTRAM project is the PIE-technique, proposed by Jeffrey Voas, a technique to estimate the sensitivity of programs. PIE is a reverse acronym for Execution, Infection and Propagation, the three stages needed for a code error to produce a program failure. This progress report contains a description of the PIE-technique and the statistical fundament of the technique. It presents a classification of the syntactic mutants, and criteria for the selection of mutants to use in the PIE analysis. Issues concerning implementation of the technique are described, as well as results from using the technique on three test programs. (author)

  19. EXPERIMENTAL AND NUMERICAL INVESTIGATIONS ON HORIZONTAL OIL-GAS FLOW

    2007-01-01

    Experiments were carried out to investigate the characteristics of oil-gas flow in a horizontal pipe on a large scale (with the inner diameter D = 125 mm). With the experimental data, the flow patterns were presented. Through the analyses for the flow regime transition, it was found that there was a critical superficial velocity of liquid phase for the flow regime transiting from stratified flow to slug flow. The slug flow could not occur until the superficial velocity of liquid phase was higher than the critical velocity. For the flow pattern transiting from stratified to slug flow, the transmitting velocity of gas phase decreases with the augmentation of superficial velocity of liquid phase. On the basis of the experiments, numerical simulations of different flow patterns and their transitions were performed with the use of the Volume Of Fluid (VOF) technique. The results of the computations are shown to match well with the measured data in the experiments.

  20. A Novel Experimental Setup to Investigate Magnetized Dusty Plasmas

    Romero-Talamas, C. A.; Larocque, P.; Alvarez, J.; Sardin, J.

    2013-10-01

    Progress on the design and construction of a novel experimental setup to investigate dusty plasmas at the University of Maryland, Baltimore County (UMBC) is presented. The setup includes separation adjustability of discharge electrodes and their orientation with respect to gravity without breaking vacuum, and a pair of water-cooled coils to produce magnetic fields with strengths of up to several Tesla. The coils' orientation is also designed to be adjustable with respect to gravity. A pulse-forming network to power the coils with flattop times of several seconds is under design. The setup is mounted inside a large glass bell jar to provide wide optical access to the dusty plasmas, and to minimize interference of chamber walls and mounts with imposed electric or magnetic fields. Planned experiments include crystallization and wave propagation under strong magnetic fields.

  1. Experimental Investigation of Piston Rings for Internal Combustion Engines

    Christiansen, Jens; Klit, Peder; Vølund, Anders; Hwang, Jong-Hyun

    One of the major prerequisites for calculating piston ring friction is a good description of the tribological situation. A very important condition for describing the frictional behavior of a piston ring correctly is knowledge about the amount of lubricant present. For piston rings the external...... conditions, but this is not the case in real life operation. These problems forms the basis for the experimental investigation. In large two-stroke engines the cylinder oil is supplied to the bearing at discrete locations on the cylinder liner at a specific rate at a certain time. The shifting in lubrication...... regimes and the non-uniform oil distribution opens for the possibility of starved conditions for the piston ring bearing. Therefore it is important to measure the oil distribution on the liner as a function of the operating conditions. The amount of lubricant available is reflected in the friction...

  2. Experimental investigation of air bubble flows in a water pool

    This paper presents experimental results on rising bubbles in the wetwell of a boiling water reactor (BWR) in a loss-of-coolant accident in the pressure suppression pool (PSP). This accident scenario includes three processes: blowdown and associated water slug phenomena, bubble dynamics and related water flow during continuous release of gases and development of a thermal stratification. The paper covers the middle phase where air is fed through a downcomer. The developments of bubble formation and bubble flow are investigated by means of high speed videos. Diameter, velocity, formation frequency and breakup distance of bubbles are evaluated using automated image evaluation procedures. The experiments have been performed in the cylindrical vessel of the THAI test facility with a height of 9.2 m and a diameter of 3.2 m. (author)

  3. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  4. Experimental investigation of turbulent flows in pipe junctions

    Branching, three-dimensional, incompressible internal flows are examined in detail in circular pipe configurations at an experimental plant for water and at a test bench for air. Laminar and turbulent flows are made visible in water for Re4. Typical phenomena are described in detail, e.g. separations, secondary flows and locally non-stationary behavior under stationary inflow conditions and outflow conditions. Wall pressure distributions for turbulent flows up to Re=105 measured at the same test bench supply a good explanation for a number of observed effects. A quantitative investigation of turbulent velocity fields of selected flow cases up to outflow lengths of 10D is carried out in air with the aid of hot-wire anemometry. (orig./DG)

  5. Experimental Investigation into Magnetortheological Damper Subjected to Impact Loads

    XIANG Hengbo; FANG Qin; GONG Ziming; WU Hao

    2008-01-01

    A good mechanical model of magnetorheological damper (MRD) is essential to predict the shock isolation performance of MRD in numerical simulation.But at present,the mechanical models of MRD were all derived from the experiment subjected to harmonic vibration loads.In this paper,a commercial MRD (type RD-1005-3) manufactured by Lord Corporation was studied experimentally in order to investigate its isolation performance under the impact loads.A new mechanical model of MRD was proposed according to the data obtained by impact test.A good agreement between the numerical results and test data was observed,which showed that the model was good to simulate the dynamic properties of MRD under impact loads.It is also demonstrated that MRD can improve the acceleration and displacement response of the structure obviously under impact loads.

  6. Border Collision Route to Quasiperiodicity: Numerical Investigation and Experimental Confirmation

    Zhusubaliyev, Zhanybai; Mosekilde, Erik; Maity, S.; Mohanan, S.; Banerjee, S.

    2006-01-01

    Numerical studies of higher-dimensional piecewise-smooth systems have recently shown how a torus can arise from a periodic cycle through a special type of border-collision bifurcation. The present article investigates this new route to quasiperiodicity in the two-dimensional piecewise-linear normal...... periodicity, e.g., a period-5 focus. This article also contains a discussion of torus destruction via a homoclinic bifurcation in the piecewise-linear normal map. Using a dc–dc converter with two-level control as an example, we report the first experimental verification of the direct transition to...... quasiperiodicity through a border-collision bifurcation. ©2006 American Institute of Physics...

  7. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling

    Ferretti, D., E-mail: daniele.ferretti@unipr.it [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, P.co Area delle Scienze 181/A, 43124 Parma (Italy); Michelini, E. [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, P.co Area delle Scienze 181/A, 43124 Parma (Italy); Rosati, G. [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2015-01-15

    The paper aims to investigate and model cracking development in beams and deep-beams made of autoclaved aerated concrete (AAC). Fracture mechanics of AAC has been first studied by performing three-point bending tests on beams, similar to those commonly used for ordinary concrete elements. In some of these tests, crack growth has been also monitored by using ESPI laser technique. In this way, it has been possible to calibrate the main parameters of a proper cohesive law by means of extended finite element inverse analysis. Subsequently, cracking tests have been also performed on deep-beams, whose behavior is more representative of full scale walls. To validate the proposed cohesive law, deep-beam experimental behavior has been finally simulated through XFEM.

  8. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  9. Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors

    M. Fuentes

    2009-09-01

    Full Text Available This work presents an experimental and theoretical investigation of anaerobic fluidized bed reactors (AFBRs. The bioreactors are modeled as dynamic three-phase systems. Biochemical transformations are assumed to occur only in the fluidized bed zone. The biofilm process model is coupled to the system hydrodynamic model through the biofilm detachment rate; which is assumed to be a first-order function of the energy dissipation parameter and a second order function of biofilm thickness. Non-active biomass is considered to be particulate material subject to hydrolysis. The model includes the anaerobic conversion for complex substrate degradation and kinetic parameters selected from the literature. The experimental set-up consisted of two mesophilic (36±1ºC lab-scale AFBRs (R1 and R2 loaded with sand as inert support for biofilm development. The reactor start-up policy was based on gradual increments in the organic loading rate (OLR, over a four month period. Step-type disturbances were applied on the inlet (glucose and acetic acid substrate concentration (chemical oxygen demand (COD from 0.85 to 2.66 g L-1 and on the feed flow rate (from 3.2 up to 6.0 L d-1 considering the maximum efficiency as the reactor loading rate switching. The predicted and measured responses of the total and soluble COD, volatile fatty acid (VFA concentrations, biogas production rate and pH were investigated. Regarding hydrodynamic and fluidization aspects, variations of the bed expansion due to disturbances in the inlet flow rate and the biofilm growth were measured. As rate coefficients for the biofilm detachment model, empirical values of 3.73⋅10(4 and 0.75⋅10(4 s² kg-1 m-1 for R1 and R2, respectively, were estimated.

  10. A Global Remote Laboratory Experimentation Network and the Experiment Service Provider Business Model and Plans

    Tor Ivar Eikaas

    2003-07-01

    Full Text Available This paper presents results from the IST KAII Trial project ReLAX - Remote LAboratory eXperimentation trial (IST 1999-20827, and contributes with a framework for a global remote laboratory experimentation network supported by a new business model. The paper presents this new Experiment Service Provider business model that aims at bringing physical experimentation back into the learning arena, where remotely operable laboratory experiments used in advanced education and training schemes are made available to a global education and training market in industry and academia. The business model is based on an approach where individual experiment owners offer remote access to their high-quality laboratory facilities to users around the world. The usage can be for research, education, on-the-job training etc. The access to these facilities is offered via an independent operating company - the Experiment Service Provider. The Experiment Service Provider offers eCommerce services like booking, access control, invoicing, dispute resolution, quality control, customer evaluation services and a unified Lab Portal.

  11. Site Safety Plan for Lawrence Livermore National Laboratory CERCLA investigations

    Bainer, R.; Duarte, J.

    1993-07-01

    The safety policy of LLNL is to take every reasonable precaution in the performance of work to protect the environment and the health and safety of employees and the public, and to prevent property damage. With respect to hazardous agents, this protection is provided by limiting human exposures, releases to the environment, and contamination of property to levels that are as low as reasonably achievable (ALARA). It is the intent of this Plan to supply the broad outline for completing environmental investigations within ALARA guidelines. It may not be possible to determine actual working conditions in advance of the work; therefore, planning must allow the opportunity to provide a range of protection based upon actual working conditions. Requirements will be the least restrictive possible for a given set of circumstances, such that work can be completed in an efficient and timely fashion. Due to the relatively large size of the LLNL Site and the different types of activities underway, site-specific Operational Safety Procedures (OSPs) will be prepared to supplement activities not covered by this Plan. These site-specific OSPs provide the detailed information for each specific activity and act as an addendum to this Plan, which provides the general plan for LLNL Main Site operation.

  12. LABORATORY INVESTIGATIONS OF SILICATE MUD CONTAMINATION WITH CALCIUM

    Nediljka Gaurina-Međimurec

    2004-12-01

    Full Text Available The silicate-based drilling fluid is a low solids KCl/polymer system with the addition of soluble sodium or potassium silicate to enhance inhibition and wellbore stability. Silicate-based drilling fluids exhibit remarkable shale and chalk stabilizing properties, resulting in gauge hole and the formation of firm cuttings when drilling reactive shales and soft chalks. Silicates protect shales by in-situ gellation when exposed to the neutral pore fluid and precipitation, which occurs on contact with divalent ions present at the surface of the shale. Also, silicates prevent the dispersion and washouts when drilling soft chalk by reacting with the Ca2+ ions present on chalk surfaces of cutting and wellbore to form a protective film. The silicate-based drilling fluid can be used during drilling hole section through shale interbeded anhydrite formations because of its superior shale stabilizing characteristics. However, drilling through the anhydrite can decrease the silicate concentration and change rheological and filtration fluid properties. So, the critical concentration of calcium ions should be investigated by lab tests. This paper details the mechanism of shale inhibition using silicate-based drilling fluid, and presents results of lab tests conducted to ascertain the effect of Ca2+ ions on silicate level in the fluid and the fluid properties.

  13. Current and Emerging Legionella Diagnostics for Laboratory and Outbreak Investigations

    Mercante, Jeffrey W.

    2015-01-01

    SUMMARY Legionnaires' disease (LD) is an often severe and potentially fatal form of bacterial pneumonia caused by an extensive list of Legionella species. These ubiquitous freshwater and soil inhabitants cause human respiratory disease when amplified in man-made water or cooling systems and their aerosols expose a susceptible population. Treatment of sporadic cases and rapid control of LD outbreaks benefit from swift diagnosis in concert with discriminatory bacterial typing for immediate epidemiological responses. Traditional culture and serology were instrumental in describing disease incidence early in its history; currently, diagnosis of LD relies almost solely on the urinary antigen test, which captures only the dominant species and serogroup, Legionella pneumophila serogroup 1 (Lp1). This has created a diagnostic “blind spot” for LD caused by non-Lp1 strains. This review focuses on historic, current, and emerging technologies that hold promise for increasing LD diagnostic efficiency and detection rates as part of a coherent testing regimen. The importance of cooperation between epidemiologists and laboratorians for a rapid outbreak response is also illustrated in field investigations conducted by the CDC with state and local authorities. Finally, challenges facing health care professionals, building managers, and the public health community in combating LD are highlighted, and potential solutions are discussed. PMID:25567224

  14. Accelerator laboratories: development centers for experimental physics and technology in Mexico

    Three years ago in this Nuclear Center the author and Professor Graef expounded the inception and development of experimental physics and new techniques centered about laboratories and equipped in our country with positive ion accelerators. Extracted here is the information on the laboratories that have allowed professional training as well as the furtherance of scientific productivity in each group. An additional proposal as to how the technical groups knowledgeable in advanced technology might contribute significantly to adequate preparation of youth at the intermediate level able to generate innocuous micro industries in their own neighbourhood. (Author). 5 refs, 2 figs, 2 tabs

  15. Advanced Laboratory at Texas State University: Error Analysis, Experimental Design, and Research Experience for Undergraduates

    Ventrice, Carl

    2009-04-01

    Physics is an experimental science. In other words, all physical laws are based on experimentally observable phenomena. Therefore, it is important that all physics students have an understanding of the limitations of certain experimental techniques and the associated errors associated with a particular measurement. The students in the Advanced Laboratory class at Texas State perform three detailed laboratory experiments during the semester and give an oral presentation at the end of the semester on a scientific topic of their choosing. The laboratory reports are written in the format of a ``Physical Review'' journal article. The experiments are chosen to give the students a detailed background in error analysis and experimental design. For instance, the first experiment performed in the spring 2009 semester is entitled Measurement of the local acceleration due to gravity in the RFM Technology and Physics Building. The goal of this experiment is to design and construct an instrument that is to be used to measure the local gravitational field in the Physics Building to an accuracy of ±0.005 m/s^2. In addition, at least one of the experiments chosen each semester involves the use of the research facilities within the physics department (e.g., microfabrication clean room, surface science lab, thin films lab, etc.), which gives the students experience working in a research environment.

  16. Sesame seed allergy: Clinical manifestations and laboratory investigations

    Fazlollahi MR.

    2007-10-01

    Full Text Available Background: Plant-origin foods are among the most important sources of food allergic reactions. An increase in the incidence of sesame seed allergy among children and adults has been reported in recent years. The aim of this preliminary study was to investigate the prevalence, importance and clinical manifestations of sesame allergy among Iranian patients.Methods: In a cross-sectional survey, 250 patients with suspected IgE-mediated food allergies completed a questionnaire and underwent skin prick tests with sesame extract as well as cross-reacting foods (walnut, soya and peanut. Total IgE and sesame-specific IgE levels were measured. Patients with positive skin test reactions and/or IgE specific for sesame without clinical symptoms were considered sensitive to sesame. The patients who also had clinical symptoms with sesame consumption were diagnosed as allergic to sesame.Results: Of the 250 patients enrolled in this study, 129 were male and 121 female, with a mean age of 11.7 years. The most common food allergens were cow's milk, egg, curry, tomato and sesame. Sesame sensitivity was found in 35 patients (14.1%. Only five patients (2% had sesame allergy. Sesame-sensitive patients had a significantly higher frequency of positive prick test to cross-reacting foods when compared to non-sensitized patients (p=0.00. The type of symptom was independent of gender and age of the patients, but urticaria and dermatitis-eczema were significantly more frequent in sensitized patients (p=0.008.Conclusions: This is the first study addressing the prevalence of sesame seed allergy in Iranian population. We found sesame to be a common and important cause of food allergy. The panel of foods recommended for use in diagnostic allergy tests should be adjusted.

  17. Experimental investigation of flow instabilities in a laminar separation bubble

    Simoni, D.; Ubaldi, M.; Zunino, P.

    2014-06-01

    The present paper reports the results of a detailed experimental study aimed at investigating the dynamics of a laminar separation bubble, from the origin of separation up to the breakdown to turbulence of the large scale coherent structures generated as a consequence of the Kelvin-Helmholtz instability process. Measurements have been performed along a flat plate installed within a double contoured test section, designed to produce an adverse pressure gradient typical of Ultra-High-Lift turbine blade profiles, which induces the formation of a laminar separation bubble at low Reynolds number condition. Measurements have been carried out by means of complementary techniques: hot-wire (HW) anemometry, Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). The high accuracy 2-dimensional LDV results allow investigating reverse flow magnitude and both Reynolds normal and shear stress distributions along the separated flow region, while the high frequency response of the HW anemometer allows analyzing the amplification process of flow oscillations induced by instability mechanisms. PIV results complement the flow field analysis providing information on the generation and evolution of the large scale coherent structures shed as a consequence of the separated shear layer roll-up, through instantaneous velocity vector maps. The simultaneous analysis of the data obtained by means of the different measuring techniques allows an in depth view of the instability mechanisms involved in the transition/reattachment processes of the separated shear layer.

  18. Experimental investigation of spray characteristics of alternative aviation fuels

    Highlights: • Physical properties of GTL fuel are different from those of conventional jet fuels. • Spray characteristics of GTL and Jet A-1 fuels are experimentally investigated using phase Doppler anemometry. • Regions near the nozzle are influenced by differences in fuel physical properties. • Spray characteristics of GTL can be predicted by empirical relations developed for conventional jet fuels. - Abstract: Synthetic fuels derived from non-oil feedstock are gaining importance due to their cleaner combustion characteristics. This work investigates spray characteristics of two Gas-to-Liquid (GTL) synthetic jet fuels from a pilot-scale pressure swirl nozzle and compares them with those of the conventional Jet A-1 fuel. The microscopic spray parameters are measured at 0.3 and 0.9 MPa injection pressures at several points in the spray using phase Doppler anemometry. The results show that the effect of fuel physical properties on the spray characteristics is predominantly evident in the regions close to the nozzle exit at the higher injection pressure. The lower viscosity and surface tension of GTL fuel seems to lead to faster disintegration and dispersion of the droplets when compared to those of Jet A-1 fuel under atmospheric conditions. Although the global characteristics of the fuels are similar, the effects of fuel properties are evident on the local spray characteristics at the higher injection pressure

  19. An experimental investigation of loop seal clearings in SBLOCA tests

    Highlights: • An experimental study of the loop seal clearing in the SBLOCAs was performed. • Loop seal behaviors with related parameters were investigated. • The mechanism of initiation of a loop seal clearing was suggested. • The sustaining of a loop seal clearing without refilling was evaluated. - Abstract: An investigation of the loop seal clearing (LSC) in a small-break loss-of-coolant accident (SBLOCA) for direct vessel injection (DVI) line and cold leg (CL) breaks was performed. The behavior of an LSC appears to be closely related to the break location and break size. In the tests of SBLOCAs, a loop seal or cross-over leg (COL) in the broken loop was cleared first, and the number of loop seals cleared was dependent on the break size. The larger the break size was, the more the loop seals or COLs that were cleared. The location of the LSCs appeared to have a consistent behavior under each scenario. In the SBLOCA tests, the downcomer water level just before an LSC was a very important parameter to the peak cladding temperature (PCT). The initiation of an LSC might not be related to the existing flooding condition, but to the magnitude of the pressure difference between the reactor upper head and downcomer, which is sufficient to push the upflow leg of a COL. The sustaining of an LSC without refilling was evaluated using the test data and existing flooding conditions

  20. An Experimental Investigation on Inclined Negatively Buoyant Jets

    Raed Bashitialshaaer

    2012-09-01

    Full Text Available An experimental study was performed to investigate the behavior of inclined negatively buoyant jets. Such jets arise when brine is discharged from desalination plants. A turbulent jet with a specific salinity was discharged through a circular nozzle at an angle to the horizontal into a tank with fresh water and the spatial evolution of the jet was recorded. Four different initial jet parameters were changed, namely the nozzle diameter, the initial jet inclination, the jet density and the flow rate. Five geometric quantities describing the jet trajectory that are useful in the design of brine discharge systems were determined. Dimensional analysis demonstrated that the geometric jet quantities studied, if normalized with the jet exit diameter, could be related to the densimetric Froude number. Analysis of the collected data showed that this was the case for a Froude number less than 100, whereas for larger values of the Froude number the scatter in the data increased significantly. As has been observed in some previous investigations, the slope of the best-fit straight line through the data points was a function of the initial jet angle (θ, where the slope increased with θ for the maximum levels (Ym studied, but had a more complex behavior for horizontal distances.

  1. Using Experimental Methods to Investigate Discriminatory Tendencies: A Lesson Report

    Yu-Wen Chen

    2013-08-01

    Full Text Available Using dictator games in experimental analysis, this lesson report demonstrates the process and results of a postgraduate class project in which university students were instructed to scientifically investigate and explore one of German society’s most hotly-contested issues: the level of discriminatory tendencies of non-Muslims towards Muslims. The results of this class project show little or no discriminatory tendencies toward Muslims. Instead, the university students under our investigation tended to act favorably, or at the very least, fairly toward Muslims. We expect that this lesson report can demonstrate how a postgraduate course can be conducted in an innovative way, empowering students to collect primary data and finishing a small scientific project during the span of a semester. Dieser Bericht stellt die Prozesse und Ergebnisse einer experimentellen Studie eines Postgraduierten-Kurses der Universität Greifswald dar. Wir zeigen, wie Studierende das Thema Migration innovativ untersuchen können, indem sie neben theoretischen Lerninhalten an experimentelle Methoden sowie die Primärforschung herangeführt werden. Anhand eines Diktatorspiels wurden die teilnehmenden Studenten angeleitet, ein in der Öffentlichkeit kontrovers debattiertes Thema wissenschaftlich zu untersuchen: Diskriminierende Tendenzen von Nicht-Muslimen gegenüber Muslimen. Die Ergebnisse dieser Studie lassen jedoch nicht auf diskriminierende Tendenzen der Studenten schließen. Stattdessen deuten sie darauf hin, dass sich die Studierenden zumindest fair gegenüber Muslimen verhalten.

  2. Theoretical and experimental investigation of multispectral photoacoustic osteoporosis detection method

    Steinberg, Idan; Hershkovich, Hadas Sara; Gannot, Israel; Eyal, Avishay

    2014-03-01

    Osteoporosis is a widespread disorder, which has a catastrophic impact on patients lives and overwhelming related to healthcare costs. Recently, we proposed a multispectral photoacoustic technique for early detection of osteoporosis. Such technique has great advantages over pure ultrasonic or optical methods as it allows the deduction of both bone functionality from the bone absorption spectrum and bone resistance to fracture from the characteristics of the ultrasound propagation. We demonstrated the propagation of multiple acoustic modes in animal bones in-vitro. To further investigate the effects of multiple wavelength excitations and of induced osteoporosis on the PA signal a multispectral photoacoustic system is presented. The experimental investigation is based on measuring the interference of multiple acoustic modes. The performance of the system is evaluated and a simple two mode theoretical model is fitted to the measured phase signals. The results show that such PA technique is accurate and repeatable. Then a multiple wavelength excitation is tested. It is shown that the PA response due to different excitation wavelengths revels that absorption by the different bone constitutes has a profound effect on the mode generation. The PA response is measured in single wavelength before and after induced osteoporosis. Results show that induced osteoporosis alters the measured amplitude and phase in a consistent manner which allows the detection of the onset of osteoporosis. These results suggest that a complete characterization of the bone over a region of both acoustic and optical frequencies might be used as a powerful tool for in-vivo bone evaluation.

  3. Experimental investigation of water sprayed finned heat exchanger tube bundles

    Experimental investigations have been made to study the performance of two finned tube-bundle heat exchangers (FORGO type) when wetted by water sprays. The heat exchangers are designed to cool water in a dry cooling tower. The test-elements had a frontal area of 1 m2. The water sprays were created by 20 nozzles, 200 mm in front of the heat exchangers. Air velocities at the inlet of the coolers were in the range 0,8 m/s to 12 m/s and initial temperature differences ITD reached 45 degrees C. The test facility was designed to determine the combined latent and sensible heat fluxes in the wetted heat exchanger, the airside pressure drop and the air humidity and temperature at the exchanger inlet and outlet, and to measure the weight of the water wetting the cooler's surface. The sprayed test elements were investigated in different positions, but most of the experiments were carried out in the position with the fins horizontal

  4. Experimental study of non-capture breakup reactions at the TANDAR Laboratory

    Breakup reactions play a distinctive role among the processes that occur in nuclear collisions induced by weakly bound projectiles. The motivation for the study of these reactions recognizes various origins, that range from their usefulness as an indirect tool to determine cross sections of the corresponding inverse capture processes of astrophysical interest, to the questions that arise from their connection to other reaction channels such as complete and incomplete fusion. For the investigation of these and other aspects it is desirable to have a detailed experimental knowledge of the process and of the underlying mechanisms. In this talk we will review the details and main results of the experiments that are being carried on at the TANDAR Laboratory for the investigation of non-capture breakup reactions, i.e., those for which the breakup products manage to escape from being subsequently absorbed by the target-like nucleus. The measurements involve the coincident detection of the emitted light particles, from which one can obtain an unambiguous and complete characterization of the reaction by means of the identification of the fragment that undergoes breakup (either the projectile or a projectile-like transfer product) and the determination of the total Q value, relative energy of the breakup products, and the angular distribution of their emission in the relevant rest frame. We will describe the tools that are used for the discrimination of resonant processes from those presumably originated in the direct population of the continuum and the conditions for their application. The absolute differential and total cross sections of breakup reactions that have been obtained for 6Li + 144Sm will be presented and discussed, taking as a reference for comparison the corresponding cross sections of competing channels in the same system

  5. Experimental investigation of a PVT system performance using nano ferrofluids

    Highlights: • The effects of a ferrofluid on the efficiency of a PVT system were investigated. • Both thermal and electrical efficiencies of a PVT system were studied. • The ferrofluids were placed under constant and alternating magnetic fields. • Maximum improvement gained by applying alternating magnetic fields on ferrofluids. • The experiments showed 79% improvement in the overall efficiency of the system. - Abstract: In this paper, the effects of ferrofluids as a coolant on the overall efficiency of a PVT (photovoltaic thermal unit) system are experimentally investigated. The fluids considered in the experiment are distilled water and a ferrofluid (Fe3O4-water) with 1% and 3% concentrations by weight (wt%). The experiments were performed in indoor conditions under two constant solar radiations (1100 W/m2 and 600 W/m2) using a solar simulator. Due to the unique characteristic behavior of ferrofluids, their rheological and thermophysical properties can be changed under an external magnetic field. The ferrofluids in this study were placed under constant and alternating magnetic fields in the cooling section in order to investigate the effect of both types of magnetic fields on the overall efficiency of a PVT system. The results show that by using a 3 wt% ferrofluid, the overall efficiency of the system improved by 45% and when an alternating magnetic field with 50 Hz frequency was applied, the overall efficiency increased to about 50% compared to that of the distilled water as coolant fluid. The overall exergy output of the system with and without ferrofluids, was also compared with that of the PV system with no collector. It was observed that by adding a thermal collector to a PV system and using a 3 wt% ferrofluid under an alternating magnetic field, the total exergy can be increased as high as 48 W

  6. REVIEW OF EXPERIMENTAL STUDIES INVESTIGATING THE RATE OF STRONTIUM AND ACTINIDE ADSORPTION BY MONOSODIUM TITANATE

    Hobbs, D.

    2010-10-01

    A number of laboratory studies have been conducted to determine the influence of mixing and mixing intensity, solution ionic strength, initial sorbate concentrations, temperature, and monosodium titanate (MST) concentration on the rates of sorbate removal by MST in high-level nuclear waste solutions. Of these parameters, initial sorbate concentrations, ionic strength, and MST concentration have the greater impact on sorbate removal rates. The lack of a significant influence of mixing and mixing intensity on sorbate removal rates indicates that bulk solution transport is not the rate controlling step in the removal of strontium and actinides over the range of conditions and laboratory-scales investigated. However, bulk solution transport may be a significant parameter upon use of MST in a 1.3 million-gallon waste tank such as that planned for the Small Column Ion Exchange (SCIX) program. Thus, Savannah River National Laboratory (SRNL) recommends completing the experiments in progress to determine if mixing intensity influences sorption rates under conditions appropriate for this program. Adsorption models have been developed from these experimental studies that allow prediction of strontium (Sr), plutonium (Pu), neptunium (Np) and uranium (U) concentrations as a function of contact time with MST. Fairly good agreement has been observed between the predicted and measured sorbate concentrations in the laboratory-scale experiments.

  7. Theoretical and experimental investigation of cappillary electrolysis system

    In a fusion reactor environment, it is expected that highly tritiated water will be formed when tritium is extracted from the blanket as well as during the plasma exhaust purification process. As a consequence, the recovery of elemental tritium from its oxides is an essentrial step before recycling the fuel to the reactor. Among different basic processes that can be used for this purpose, electrolysis appears to be very promising. Therefore, SCK/CEN has developed a small dedicated cell designed to decompose 100 ml/day of pure DTO or HTO. At the present project stage, a prototype cell is available and the device has been successfully tested with light water during several thousands of hours. In the orginal concept, the liquid inventory is limited to the vertical porous gas separator. Capillarity is used as a driving force to feed the cell to avoid the use of a pump. This fact turns out to have a considerable influence on the behaviour of the electrolytic system. This particular behaviour has been theorectically investigated with the aim to allow a better basic understanding of the capillary electrolysis. A deterministic model has been developed for its purpose. The mathematical equations show clearly that the electrolyte tends to accumulate at the top of the gas separator. An equilibrium state can be reached only if sufficiently large amounts of electrolyte can flow back towards the bottom of the gas separator. This counter-flow has been taken into account by introducing a single general diffusion coefficient into the model. In a second phase, systematic experimental runs have been carried out with mock-up cells. A statistical treatment based on the maximum likelihood estimation algorithm allowed to compute the best values for the diffusion coefficient and to validate the model. Finally, acceptabel ranges of the independent varialbles have been defined and all the subsequent experimental runs have been performed without stability problems. (author). 12 refs.; 5 figs

  8. Experimental and modelling investigation of surface EMG spike analysis.

    Gabriel, David A; Christie, Anita; Inglis, J Greig; Kamen, Gary

    2011-05-01

    A pattern classification method based on five measures extracted from the surface electromyographic (sEMG) signal is used to provide a unique characterization of the interference pattern for different motor unit behaviours. This study investigated the sensitivity of the five sEMG measures during the force gradation process. Tissue and electrode filtering effects were further evaluated using a sEMG model. Subjects (N=8) performed isometric elbow flexion contractions from 0 to 100% MVC. The sEMG signals from the biceps brachii were recorded simultaneously with force. The basic building block of the sEMG model was the detection of single fibre action potentials (SFAPs) through a homogeneous, equivalent isotropic, infinite volume conduction medium. The SFAPs were summed to generate single motor unit action potentials. The physiologic properties from a well-known muscle model and motor unit recruitment and firing rate schemes were combined to generate synthetic sEMG signals. The following pattern classification measures were calculated: mean spike amplitude, mean spike frequency, mean spike slope, mean spike duration, and the mean number of peaks per spike. Root-mean-square amplitude and mean power frequency were also calculated. Taken together, the experimental data and modelling analysis showed that below 50% MVC, the pattern classification measures were more sensitive to changes in force than traditional time and frequency measures. However, there are additional limitations associated with electrode distance from the source that must be explored further. Future experimental work should ensure that the inter-electrode distance is no greater than 1cm to mitigate the effects of tissue filtering. PMID:21146442

  9. Calculation and experimental investigation of multi-component ceramic systems

    This work shows a way to combine thermodynamic calculations and experiments in order to get useful information on the constitution of metal/non-metal systems. Many data from literature are critically evaluated and used as a basis for experiments and calculations. The following multi-component systems are treated: 1. Multi-component systems of 'ceramic' materials with partially metallic bonding (carbides, nitrides, oxides, borides, carbonitrides, borocarbides, oxinitrides of the 4-8th transition group metals) 2. multi-component systems of non-metallic materials with dominant covalent bonding (SiC, Si3N4, SiB6, BN, Al4C3, Be2C) 3. multi-component systems of non-metallic materials with dominant heteropolar bonding (Al2O3, TiO2, BeO, SiO2, ZrO2). The interactions between 1. and 2., 2. and 3., 1. and 3. are also considered. The latest commercially available programmes for the calculation of thermodynamical equilibria and phase diagrams are evaluated and compared considering their facilities and limits. New phase diagrams are presented for many presently unknown multi-component systems; partly known systems are completed on the basis of selected thermodynamic data. The calculations are verified by experimental investigations (metallurgical and powder technology methods). Altogether 690 systems are evaluated, 126 are calculated for the first time and 52 systems are experimentally verified. New data for 60 ternary phases are elaborated by estimating the data limits for the Gibbs energy values. A synthesis of critical evaluation of literature, calculations and experiments leads to new important information about equilibria and reaction behaviour in multi-component systems. This information is necessary to develop new stable and metastable materials. (orig./MM)

  10. Experimental investigation of high temperature and high pressure coal gasification

    Highlights: ► Gasification kinetics at temperature up to 1600 °C and pressure up to 0.5 MPa. ► Experimental investigation of pyrolysis under realistic conditions. ► Experiments in lab-scale using three different setups. ► Comparison of lab-scale data to experimental results from a pilot-scale gasifier. -- Abstract: Pyrolysis and gasification behavior is analyzed at operation conditions relevant to industrial scale entrained flow gasifiers. A wire mesh reactor and the Pressurized High Temperature Entrained Flow Reactor (PiTER) are used to measure volatile yield of Rhenish lignite, a bituminous coal and German anthracite at high temperature and high pressure. In the wire mesh reactor at 1000 °C a significant influence of pressure on volatile yield is observed. For lignite the volatile yield (daf) decreases from 57 wt% at atmospheric pressure to 53 wt% at 5.0 MPa. In the same pressure interval the volatile yield of the bituminous coal strongly decreases, whereas no significant influence of pressure on the volatile yield of anthracite is detected. In entrained flow experiments (PiTER) at higher temperature and 0.5 MPa an enhanced devolatilization of the lignite is observed. At 1200 °C, the maximum volatile yield is 62 wt% and it increases to 67 wt% at 1400 °C. In entrained flow gasification experiments with Rhenish lignite a high level of conversion is measured at atmospheric pressure and at 0.5 MPa. At both pressures, coal conversion increases with temperature and residence time. The highest conversion of 96 wt% is achieved at a particle residence time of 1.3 s, at a temperature of 1600 °C, and a pressure of 0.5 MPa. The experimental results show a large influence of operation parameters on pyrolysis and gasification behavior of Rhenish lignite. The volatile release in the pyrolysis stage and the high level of conversion after a short residence time indicate that Rhenish lignite is suitable for gasification in an entrained flow reactor. The reactivities

  11. An experimental investigation of pump as turbine for micro hydro application

    This paper presents the results of an experimental investigation of a centrifugal pump working as turbine (PAT). An end suction centrifugal pump was tested in turbine mode at PAT experimental rig installed in the Mechanical Engineering Laboratory of Universiti Tenaga Nasional. The pump with specific speed of 15.36 (m, m3/s) was used in the experiment and the performance characteristic of the PAT was determined. The experiment showed that a centrifugal pump can satisfactorily be operated as turbine without any mechanical problems. As compared to pump operation, the pump was found to operate at higher heads and discharge values in turbine mode. The best efficiency point (BEP) in turbine mode was found to be lower than BEP in pump mode. The results obtained were also compared to the work of some previous researchers.

  12. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance. Cloquet Residential Research Facility Laboratory Results

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-09

    This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. These data currently span the period from November 10, 2012 through May 31, 2014 and are anticipated to be extended through November 2014. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  13. Experimental investigation of single carbon compounds under hydrothermal conditions

    Seewald, Jeffrey S.; Zolotov, Mikhail Yu.; McCollom, Thomas

    2006-01-01

    The speciation of carbon in subseafloor hydrothermal systems has direct implications for the maintenance of life in present-day vent ecosystems and possibly the origin of life on early Earth. Carbon monoxide is of particular interest because it represents a key reactant during the abiotic synthesis of reduced carbon compounds via Fischer-Tropsch-type processes. Laboratory experiments were conducted to constrain reactions that regulate the speciation of aqueous single carbon species under hydrothermal conditions and determine kinetic parameters for the oxidation of CO according to the water water-gas shift reaction (CO 2 + H 2 = CO + H 2O). Aqueous fluids containing added CO 2, CO, HCOOH, NaHCO 3, NaHCOO, and H 2 were heated at 150, 200, and 300 °C and 350 bar in flexible-cell hydrothermal apparatus, and the abundances of carbon compounds was monitored as a function of time. Variations in fluid chemistry suggest that the reduction of CO 2 to CH 3OH under aqueous conditions occurs via a stepwise process that involves the formation of HCOOH, CO, and possibly CH 2O, as reaction intermediaries. Kinetic barriers that inhibit the reduction of CH 3OH to CH 4 allow the accumulation of reaction intermediaries in solution at high concentrations regulated by metastable thermodynamic equilibrium. Reaction of CO 2 to CO involves a two-step process in which CO 2 initially undergoes a reduction step to HCOOH which subsequently dehydrates to form CO. Both reactions proceed readily in either direction. A preexponential factor of 1.35 × 10 6 s -1 and an activation energy of 102 kJ/mol were retrieved from the experimental results for the oxidation of CO to CO 2. Reaction rates amongst single carbon compounds during the experiments suggest that ΣCO 2 (CO 2 + HCO 3- + CO 32-), CO, ΣHCOOH (HCOOH + HCOO -), and CH 3OH may reach states of redox-dependent metastable thermodynamic equilibrium in subseafloor and other hydrothermal systems. The abundance of CO under equilibrium conditions

  14. LABORATORY AND NUMERICAL INVESTIGATIONS OF RESIDENCE TIME DISTRIBUTION OF FLUIDS IN LAMINAR FLOW STIRRED ANNULAR PHOTOREACTOR

    Laboratory and Numerical Investigations of Residence Time Distribution of Fluids in Laminar Flow Stirred Annular PhotoreactorE. Sahle-Demessie1, Siefu Bekele2, U. R. Pillai11U.S. EPA, National Risk Management Research LaboratorySustainable Technology Division,...

  15. Experimental investigation of hydraulic criteria in the fishways

    Migratory Fish travel downstream to reach larger body of water where the food is available. When they grows, migrate upstream to the place of their birth to spawn. In areas where fish have a commercial value and to keep alive these species as a part of environment, care must be done not to stop such migration specially by constructing the dams across the rivers. Diversion dams usually built across the river to divert some portion of the river flow for irrigation lands. In such dams, the engineers must provide a passage called 'FISHWAY'; for fish in order that fish can travel from down stream to the upstream of the dam. Of course, if such structure is not considered, the fish can not travel upstream to spawn, therefore in the long term these species will diminish. In this study a hydraulic model was conducted to investigate the hydraulic conditions of a vertical-slot type of fishway which has been considered for Ramhormoz diversion dam in the province of Khouzestan, Iran. The Froudian hydraulic model with the scale of 1:5 was constructed at the hydraulic laboratory of Shahid Chamran University. Tests were performed for the original design and two other alternatives slot-opening angles. Another fishway called Denil, also was tested. From the observation and data obtained from these tests, it was found that 90-degree slot opening provide suitable hydraulic conditions. Denil fishway also was found to satisfy the hydraulic criteria and due its simplicity and rapid construction was recommended to be used in this diversion dam. (author)

  16. Experimental investigations on wake vortices and their alleviation

    Savaş, Ömer

    2005-05-01

    Recent wake vortex research in the laboratory has benefited considerably from concurrent analytical and numerical research on the instability of vortex systems. Tow tank, with dye flow visualization and particle image velocimetry is the most effective combination for laboratory research. Passive and active wake alleviation schemes have been successfully demonstrated in the laboratory. The passive alleviation systems exploit the natural evolution of vortex instabilities while the active systems rely on hastening selected instabilities by forcing the vortices individually or as a system. Their practical applicability, however, will have to meet further criteria beyond those dictated by fluid dynamics. To cite this article: Ö. Savaş, C. R. Physique 6 (2005).

  17. Experimental investigation of an indirect type natural convection solar dryer

    El-Sebaii, A.A.; Aboul-Enein, S.; Ramadan, M.R.I.; El-Gohary, H.G. [Tanta Univ. (Egypt). Dept. of Physics

    2002-11-01

    An indirect type natural convection solar dryer is designed, constructed and investigated experimentally under Tanta prevailing weather conditions. The system consists of a flat plate solar air heater connected to a cabinet acting as a drying chamber. The air heater is designed to be able to insert various storage materials under the absorber plate in order to improve the drying process. Sand is used as the storage material. Drying experiments have been conducted with and without storage materials for different spherical fruits, such as seedless grapes, figs and apples, as well as vegetables, such as green peas, tomatoes and onions. The solar irradiance, temperature distribution in different parts of the system, ambient temperature and relative humidity of the inlet and outlet drying air have been recorded. The equilibrium moisture content M{sub e} for seedless grapes is reached after 60 and 72 h when the system is used with and without storage material, respectively. Therefore, the storage material reduces the drying process by 12 h. In order to accelerate the drying process, the drying products are divided into pieces and then chemically treated by dipping the samples into boiling water containing 0.4% olive oil and 0.3% NaOH for 60 s. However, the required time to achieve M{sub e} for the chemically treated seedless grapes, when the system is used with sand as a storage material, is drastically reduced to 8 h. Moreover, we found that the storage and chemical pretreatment have caused significant decreases of the drying time for all the investigated crops. The present system is capable of drying 10 kg of chemically treated grapes or green peas during 20 h of sunshine. (author)

  18. Experimental Investigation of the NASA Common Research Model

    Rivers, Melissa B.; Dittberner, Ashley

    2010-01-01

    An experimental aerodynamic investigation of the NASA Common Research Model has been conducted in the NASA NTF (National Transonic Facility). Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the WB and WBT0 configurations. Data have also been obtained at a chord Reynolds number of 5 million for the WBNP, WBT+2 and WBT-2 configurations. Force and moment, surface pressure and surface flow visualization data were obtained but only the force and moment data are presented herein. Model deformation measurements, aeroelastic, nacelle/pylon Reynolds number and tail effects have been assessed. The model deformation measurements showed more twist as you go out the wing span, with a break in the high q(sub infinity) data close to CL = 0.6 which is consistent with separation near the tip. Increases in dynamic pressure give an increase in pitching moment and drag and a decrease in lift for the WB and WBT0 configuration at Mach = 0.7, 0.85 and 0.87. The addition of a nacelle/pylon gave an increase in drag, decrease in lift and a less nose down pitching moment around the design lift condition of 0.5. Increases in chord Reynolds number have been found to follow the normal Reynolds number trends except at the 19.8 million low q(sub infinity) cases. The abnormality of the 19.8 million low q(sub infinity) cases is being investigated. The tail effects also follow the expected trends. All of the data shown fall within the 2-sigma limits for repeatability.

  19. Experimental investigation and mechanistic modelling of dilute bubbly bulk boiling

    During evaporation the geometric shape of the vapour is not described using thermodynamics. In bubbly flows the bubble shape is considered spheric with small diameters and changing into various shapes upon growth. The heat and mass transfer happens at the interfacial area. The forces acting on the bubbles depend on the bubble diameter and shape. In this work the prediction of the bubble diameter and/or bubble number density in bulk boiling was considered outside the vicinity of the heat input area. Thus the boiling effects that happened inside the nearly saturated bulk were under investigation. This situation is relevant for nuclear safety analysis concerning a stagnant coolant in the spent fuel pool. In this research project a new experimental set-up to investigate was built. The experimental set-up consists of an instrumented, partly transparent, high and slender boiling container for visual observation. The direct visual observation of the boiling phenomena is necessary for the identification of basic mechanisms, which should be incorporated in the simulation model. The boiling process has been recorded by means of video images and subsequently was evaluated by digital image processing methods, and by that data concerning the characteristics of the boiling process were generated for the model development and validation. Mechanistic modelling is based on the derivation of relevant mechanisms concluded from observation, which is in line with physical knowledge. In this context two mechanisms were identified; the growth/-shrink mechanism (GSM) of the vapour bubbles and sudden increases of the bubble number density. The GSM was implemented into the CFD-Code ANSYS-CFX using the CFX Expression Language (CEL) by calculation of the internal bubble pressure using the Young-Laplace-Equation. This way a hysteresis is realised as smaller bubbles have an increased internal pressure. The sudden increases of the bubble number density are explainable by liquid super

  20. Experimental investigation and mechanistic modelling of dilute bubbly bulk boiling

    Kutnjak, Josip

    2013-06-27

    During evaporation the geometric shape of the vapour is not described using thermodynamics. In bubbly flows the bubble shape is considered spheric with small diameters and changing into various shapes upon growth. The heat and mass transfer happens at the interfacial area. The forces acting on the bubbles depend on the bubble diameter and shape. In this work the prediction of the bubble diameter and/or bubble number density in bulk boiling was considered outside the vicinity of the heat input area. Thus the boiling effects that happened inside the nearly saturated bulk were under investigation. This situation is relevant for nuclear safety analysis concerning a stagnant coolant in the spent fuel pool. In this research project a new experimental set-up to investigate was built. The experimental set-up consists of an instrumented, partly transparent, high and slender boiling container for visual observation. The direct visual observation of the boiling phenomena is necessary for the identification of basic mechanisms, which should be incorporated in the simulation model. The boiling process has been recorded by means of video images and subsequently was evaluated by digital image processing methods, and by that data concerning the characteristics of the boiling process were generated for the model development and validation. Mechanistic modelling is based on the derivation of relevant mechanisms concluded from observation, which is in line with physical knowledge. In this context two mechanisms were identified; the growth/-shrink mechanism (GSM) of the vapour bubbles and sudden increases of the bubble number density. The GSM was implemented into the CFD-Code ANSYS-CFX using the CFX Expression Language (CEL) by calculation of the internal bubble pressure using the Young-Laplace-Equation. This way a hysteresis is realised as smaller bubbles have an increased internal pressure. The sudden increases of the bubble number density are explainable by liquid super

  1. The experimental investigation and thermodynamic analysis of vortex tubes

    Celik, Adem; Yilmaz, Mehmet; Kaya, Mehmet; Karagoz, Sendogan

    2016-05-01

    In the present study, it was aimed to produce a fundamental i nformation and to investigate the effects of various design parameters on tube performance characteristics by setting up vortex tube experimental system in order to study the parameters predetermined for the design of vortex tubes and by conducting thermodynamic analysis. According to the findings of experiments, as the mass flow rate of cold flow increases (yc) temperature of cold flow also increases, while the temperature of warm flow increases approximately to yc = 0.6 and then decreases. Increases in inlet pressure, inlet nozzle surface and diameter of the cold outlet orifice increased temperature differences between cold and warm flows. Tube with L/D = 10 showed better performance than with L/D = 20. The finding that irreversibility parameter is very close to critical threshold of irreversibility proved that process in vortex tube is considerably irreversible. Coefficient of performance (COP) values in vortex tube were much lower than other heating and cooling systems. This situation may show that vortex tubes are convenient in the processes where productivity is at the second rate compared to other factors.

  2. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation

  3. Controlling Flexible Manipulators, an Experimental Investigation. Ph.D. Thesis

    Hastings, Gordon Greene

    1986-01-01

    Lightweight, slender manipulators offer faster response and/or greater workspace range for the same size actuators than tradional manipulators. Lightweight construction of manipulator links results in increased structural flexibility. The increase flexibility must be considered in the design of control systems to properly account for the dynamic flexible vibrations and static deflections. Real time control of the flexible manipulator vibrations are experimentally investigated. Models intended for real-time control of distributed parameter system such as flexible manipulators rely on model approximation schemes. An linear model based on the application of Lagrangian dynamics to a rigid body mode and a series of separable flexible modes is examined with respect to model order requirements, and modal candidate selection. Balanced realizations are applied to the linear flexible model to obtain an estimate of appropriate order for a selected model. Describing the flexible deflections as a linear combination of modes results in measurements of beam state, which yield information about several modes. To realize the potential of linear systems theory, knowledge of each state must be available. State estimation is also accomplished by implementation of a Kalman Filter. State feedback control laws are implemented based upon linear quadratic regulator design.

  4. Experimental study of the subtalar joint axis: preliminary investigation.

    Zographos, S; Chaminade, B; Hobatho, M C; Utheza, G

    2000-01-01

    An experimental study of the subtalar joint has been conducted with the aim of establishing its axis of movement as well as analysing the associated movement. For description of the axis, CT data for five positions of a single foot were reconstructed using a 3D programme, the 3D data was processed by Patran software. Measures of angular displacements were made from three amputated feet placed in a specially constructed foot frame. Four instantaneous axes of movement could be defined. Calculation of displacements showed an important rolling of the calcaneus (45 degrees). Tacking was evident in inversion, with an opposite displacement between the front and rear part of the calcaneus, whereas during eversion tacking affected only the rear part of the bone: these results were confirmed by 3D reconstructions. Henke's axis was described as that for the talonavicular joint, but acceptable for the subtalar joint. Several authors investigating the coordinates of this axis have reported large differences and described screw-like movements, the latter being incompatible with a fixed axis: instantaneous axes, however are compatible with a screw-like movement. The subtalar joint appears to work as a pivot joint during inversion and as a plane joint during eversion. Although Henke's axis has pedagogical value the subtalar joint has a series of instantaneous axes. PMID:11236321

  5. Experimental investigation of design parameters on dry powder inhaler performance.

    Ngoc, Nguyen Thi Quynh; Chang, Lusi; Jia, Xinli; Lau, Raymond

    2013-11-30

    The study aims to investigate the impact of various design parameters of a dry powder inhaler on the turbulence intensities generated and the performance of the dry powder inhaler. The flow fields and turbulence intensities in the dry powder inhaler are measured using particle image velocimetry (PIV) techniques. In vitro aerosolization and deposition a blend of budesonide and lactose are measured using an Andersen Cascade Impactor. Design parameters such as inhaler grid hole diameter, grid voidage and chamber length are considered. The experimental results reveal that the hole diameter on the grid has negligible impact on the turbulence intensity generated in the chamber. On the other hand, hole diameters smaller than a critical size can lead to performance degradation due to excessive particle-grid collisions. An increase in grid voidage can improve the inhaler performance but the effect diminishes at high grid voidage. An increase in the chamber length can enhance the turbulence intensity generated but also increases the powder adhesion on the inhaler wall. PMID:24055597

  6. An experimental investigation of performance of photovoltaic modules in Pakistan

    Bashir Muhammad Anser

    2015-01-01

    Full Text Available An outdoor experimental study was carried out to investigate and compare the performance of three commercially available photovoltaic modules (monocrystalline, polycrystalline and single junction amorphous silicon under the weather of Pakistan for the month of January. Power output efficiency, module efficiency, and performance ratio are calculated for each module and comparison is presented. Results have shown that mono-crystalline and poly-crystalline modules perform better at high irradiance and show poor performance in low irradiance conditions. Amorphous solar module has shown better light absorption characteristic and performs better in low irradiance i.e. in cloudy and diffuse sunshine conditions. Monocrystalline photovoltaic module is found to be more efficient, having module efficiency of 13.5% which is higher than the other two modules. Furthermore the power output of mono-crystalline and poly-crystalline modules has shown a higher decrement at higher module temperatures compared to the amorphous solar module. Because of better performance in low solar irradiance, amorphous solar module has shown monthly average performance ratio of 1.07 which is higher than other photovoltaic modules under study.

  7. Numerical and experimental investigation of a single stage centripetal pump

    Gantar, T. [Envita, d.o.o., Ljubljana (Slovenia); Sekavcnik, M.; Mori, M. [Ljubljana Univ. (Slovenia). Faculty of Mechanical Engineering

    2008-03-15

    In the present paper a numerical and experimental investigation of a single stage centripetal pump (SSCP) is presented. The SSCP was designed using CAD and CFD tools. The performance curves of the SSCP were measured in a test facility with water involved as the working media and compared with the calculated ones. The measured performance curves are characterised by the region of hysteresis since the throttle closing performance curves do not correspond completely to the throttle opening performance curves. The delivery head and efficiency are abruptly decreased when reducing the flow rate from the point of the maximum delivery head. Due to the evident analogy of the SSCP and the axial-flow compressors performance curves and similarities in the rotor design it can be anticipated that such an operating behaviour of the SSCP is caused by the rotating stall phenomenon. CFD simulations confirm that the stalling of the rotor passages causes the steep delivery head drop when decreasing the flow rate from the point of maximum head. (orig.)

  8. Experimental investigation of magnetic mineral formation in hydrocarbon environments

    Abubakar, Rabiu; Muxworthy, Adrian; Sephton, Mark; Fraser, Alastair

    2013-04-01

    Experimental investigation of magnetic mineral formation in hydrocarbon environments Rabiu Abubakar, Adrian Muxworthy, Mark Septhon and Alastair Fraser Dept. of Earth Science and Engineering, Imperial College London Magnetic anomalies have been observed over oil fields from aeromagnetic surveys. These anomalies have been linked with the presence of hydrocarbons and that has generated a lot of interest over possible application of magnetism in the exploration of oil and gas but there has also been debate over the origin of the magnetic minerals causing the magnetic anomaly. Our approach was to generate crude oil in the lab using three source rocks from the Wessex Basin, England, which is a hydrocarbon province. The source rocks were the Kimmeridge Clay, Oxford Clay and the Blue Lias. The source rocks were powered and pyrolysed in a high pressure vessel. The crude oil was then extracted and the magnetic signal of the remaining pyrolysate measured. We discovered a significant contrast in the magnetic hysteresis and thermomagnetic properties between the pyrolysate and the unpyrolysed (immature) source rocks. We will present the preliminary results, which indicate that magnetic minerals were generated as a result of heat and therefore related linked to maturation of the source rocks

  9. Experimental investigation on light propagation through apple tissue structures

    Askoura, Mohamed Lamine; Piron, Vianney; Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Madieta, Emmanuel; Mehinagic, Emira

    2015-07-01

    The interaction of light with biological materials, such as fruits and vegetables, is a complex process which involves both absorption, and scattering events at different scales. Measuring the optical properties of a fruit allows understanding the physical and chemical characteristics. In this paper, an optical bench based on the use of a continuous laser source and a CCD camera was developed to study the light diffusion inside apple tissue structures. The method refers to the well-known steady-state spatially resolved method. First, the optoelectronics system was tested with a tissue phantom in order to show the optimal sensing range required to obtain the best estimated optical properties. Second, experimental results were obtained using peeled and unpeeled apples as interrogated tissues. The data were confronted with a diffusion model in order to extract the optical properties at two wavelengths of 633, and 852 nm. To better understand the effect of the apple tissue structures, investigations into the propagation of light through a half cut apple were also performed.

  10. Experimental investigation of two oil dispersion pathways by breaking waves

    Li, Cheng; Katz, Joseph

    2014-11-01

    This experimental study focuses on generation and size distribution of airborne and subsurface oil droplets as breaking surface waves interact with a crude oil slick (MC252 surrogate). Experiments in a specialized wave tank investigate the effects of wave height and wave properties (e.g. spilling vs. plunging), as well as drastically reducing the oil-water interfacial tension by orders of magnitude by introducing dispersant (Coexist 9500-A). This dispersant is applied at varying dispersant-to-oil ratios either by premixing or surface spraying, the latter consistent with typical application. The data include high-speed visualizations of processes affecting the entrainment of subsurface oil and bubbles as well as airborne aerosols. High-speed digital holographic cinematography is employed to track the droplet trajectories, and quantify the droplet size distributions above and below the surface. Introduction of dispersants drastically reduces the size of subsurface droplets to micron and even submicron levels. Ahead of the wave, the 25 μm (our present resolution limit) to 2 mm airborne droplet trajectories are aligned with the wave direction. Behind the wave, these droplets reverse their direction, presumably due to the airflow above the wave. Supported by Gulf of Mexico Research Initiative (GoMRI).

  11. Laboratory Investigations

    Frigaard, Peter; Schlütter, F.

    Two prototype structures The Zeebrugge breakwater and The dike in Petten are already instrumented and measurments are ongoing.......Two prototype structures The Zeebrugge breakwater and The dike in Petten are already instrumented and measurments are ongoing....

  12. Application of Different Mixing Systems for the Batch Cultivation of the Saccharomyces cerevisiae. Part I: Experimental Investigations and Modelling

    Andrejs Berzins

    2009-08-01

    Full Text Available Experimental investigations in different mixing conditions (impulse and vibromixing in a Saccharomyces cerevisiae batch cultivation are presented in this paper. The investigation is carried out in a 5 l laboratory bioreactor (working volume 3 l. Mathematical models of the process for the two mixing systems are developed. The obtained results have shown that the models are adequate and will be used for process optimisation for the two mixing systems.

  13. Electromagnetic (EM) earthquake precursor transmission and detection regarding experimental field and laboratory results.

    Jones, Kenneth B., II; Saxton, Patrick

    2016-04-01

    Aside from understanding the animal kingdom reacting to a per-earthquake signal, a transmission source is apparent. The focus of this investigation is an electromagnetic emission approach and detection capable of becoming both practical and reliable to other plausible earthquake precursors. To better determine this method, several prototype magnetometers were devised and built with each successive version improving upon the next. Two twin (prototype #2) antennae were deployed to field settings outside the NE Texas town of Timpson, TX back in February, 2013 and very recent laboratory tests using the most refined (prototype #4) experimental antenna for detecting unconfined, granitic block fracturing. Field testing encompassed the small NE Texas town of Timpson, TX, which endured an earthquake phenomenon (May, 2012 - September, 2013). A rare sequence of events was strictly attributed to hydraulic fracturing activity in the immediate area all for hydrocarbon capture; thus, a chance to detect and record man-made earthquake activity. By swiveling two directional antennae at three locations, one mobile, the antennae could 'zero' in on a signal source until its pattern was well established and mapped, accordingly. Three signals were detected, two strong and one moderately strong, each with epicenter implications several kilometers from known seismological sites. Six months later, two M4s and a M2.4 earthquake hit over the 2013 Labor Day weekend. Hydraulic pump pressure increased deep Earth pore pressure, reduced friction, and displaced opposing tectonic stresses causing rock to fracture. This was the last earthquake sequence in the Timpson area, due to personal involvement and area citizens in contact with their state representatives. Well and drilling operations have since moved 40-50 miles SE of Timpson, TX and rare earthquake activity has now occurred there. Laboratory testing was next performed using cored granitic blocks and the latest, improved antenna with an

  14. Analyzing "Real-World" Anomalous Data after Experimentation with a Virtual Laboratory

    Toth, Eva Erdosne

    2016-01-01

    Developing effective pedagogies to help students examine anomalous data is critical for the education of the next generation of scientists and engineers. By definition anomalous data do not concur with prior knowledge, theories and expectations. Such data are the common outcome of empirical investigation in hands-on laboratories (HOLs). These…

  15. Experimental investigation and mechanical modelling of zircaloy-4 stress corrosion cracking

    In Pressurised Water Reactor fuel assemblies, cladding tubes constitute the first safety barriers against the fission product dissemination. It is therefore essential to ensure their integrity under all the reactor operating conditions. During an important loading, resulting from severe reactor power transients, clad failures can be induced by a Stress Corrosion Cracking phenomenon (SCC) due to the combined action of mechanical loading and gaseous fission products generated by the fuel pellets. The aim of our work is to study the role played by different parameters on the SCC phenomenon of Zircaloy-4 claddings. It is made up of three complementary parts: - the modelling of local mechanical fields applied during laboratory tests; - the design of specific SCC experiments to investigate the influence of several mechanical parameters; - the observation of the damage mechanisms occurring during these different experiments. Coupling mechanical modelling and laboratory tests allowed to obtain some local information which cannot be obtained experimentally. A hierarchical approach was then used to develop accurate constitutive laws of the stress-relieved Zircaloy-4 alloy. The constitutive equations derived from this approach were fitted to the mechanical loading applied during the experiments. The specific SCC tests results and SEM observations proved the existence of a time incubation period, which lasts for an important part of the lifetime measured in the SCC pressurization tests. This incubation period is closely related to the experimental conditions of the laboratory tests. However the incubation period must be distinguished from the actual SCC mechanisms and corresponds to the time required for the metal surface to strip of its oxide layer by mechanical cracking and/or attack of zircon. First results obtained on pre-cracked samples showed that this stage, which introduces an artefact in the experimental test analysis, can be suppressed. Moreover, we have borne out

  16. Experimental Investigation of Mechanical Properties of PVC Polymer under Different Heating and Cooling Conditions

    Sarkawt Rostam

    2016-01-01

    Full Text Available Due to a widely increasing usage of polymers in various industrial applications, there should be a continuous need in doing research investigations for better understanding of their properties. These applications require the usage of the polymer in different working environments subjecting the material to various temperature ranges. In this paper, an experimental investigation of mechanical properties of polyvinyl chloride (PVC polymer under heating and cooling conditions is presented. For this purpose standard samples are prepared and tested in laboratory using universal material testing apparatus. The samples are tested under different conditions including the room temperature environment, cooling in a refrigerator, and heating at different heating temperatures. It is observed that the strength of the tested samples decreases with the increasing of heating temperature and accordingly the material becomes softer. Meanwhile the cooling environments give a clear increasing to the strength of the material.

  17. Watching what's coming near increases tactile sensitivity: An experimental investigation.

    Van der Biest, Lien; Legrain, Valéry; Paepe, Annick De; Crombez, Geert

    2016-01-15

    During medical examinations, doctors regularly investigate a patient's somatosensory system by approaching the patient with a medical device (e.g. Von Frey hairs, algometer) or with their hands. It is assumed that the obtained results reflect the true capacities of the somatosensory system. However, evidence from crossmodal spatial research suggests that sensory experiences in one modality (e.g. touch) can be influenced by concurrent information from other modalities (e.g. vision), especially near the body (i.e. in peripersonal space). Hence, we hypothesized that seeing someone approaching your body could alter tactile sensitivity in that body-part. In the In Vivo Approaching Object (IVAO) paradigm, participants detected and localized threshold-level vibrotactile stimuli administered on the left of right hand (=tactile targets). In Experiment 1, this was always preceded by the experimenter approaching the same (congruent trials) or the other (incongruent trials) hand with a pen (=visual cue). In Experiment 2, a condition was added in which a point further away from the hands (also left vs. right) was approached. Response Accuracy was calculated for congruent and incongruent trials (Experiment 1 & 2) and compared between the close and far condition (Experiment 2). As expected, Response Accuracy was higher in congruent trials compared to incongruent trials, but only near the body. As a result, evidence was found for a crossmodal interaction effect between visual and tactile information in peripersonal space. These results suggest that somatosensory evaluations-both medical or research-based-may be biased by viewing an object approaching the body. PMID:26475955

  18. Experimental investigation of critical flow of supercritical carbon dioxide

    Mignot, Guillaume Paul H.

    A blowdown facility (0.125 m3) has been built to perform measurements of the critical flow rate of carbon dioxide over a wide range of conditions up to a supercritical pressure of 240 bars and up to a supercritical temperature of 260°C, i.e. three times the critical pressure and two times the critical temperature. The influence of the rupture geometry was investigated using a set of exit pipes with varying entrance shape, roughness and length to diameter ratio ranging from 3.7 to 168. The study showed that a rough sharp edge entrance tube had a lower critical mass flow rate compared to a smooth round entrance tube. For length to diameter ratios larger than 14.7, although two-phase effects were observed, the fluid behavior could be accurately modeled using a homogeneous equilibrium model with friction. For length to diameter ratio smaller than 14.7, the critical mass flux results exhibited a plateau, indicating that the critical mass flow rate was governed by the vena contracta. Stagnation pressure, stagnation temperature and mass time traces were scaled successfully using the initial mass and the initial mass flow rate. An exception was observed for the high density low temperature case due to non equilibrium effects occurring within the vessel. The compressibility of the flow in association with the contraction induced multidimensional and repetitive shock structures within the tube. These have been predicted with computational fluid dynamics modeling for perfect gas conditions. To measure experimentally the fluid state within the tube, an optical absorption technique has been developed, calibrated and tested in two geometries and during an integral blowdown test. Results showed that this new technique lead to the correct qualitative trends in the pressure measurements but that it needed to be calibrated against a more accurate high pressure database obtained for carbon dioxide.

  19. Experimental Investigation on the Melt Pool Configuration with the COSMOS

    In general, a two-layer melt pool with a light metallic layer of Fe-Zr on top of oxidic pool was assumed to be a bounding melt configuration in the safety analyses for the severe accidents. The experimental results of the OECD MASCA, however, have shown that when a sufficient amount of non-oxidized zirconium (Zr) is available, then metallic uranium (U) migrates to the metallic layer. The transfer of species between the U, O, Zr melt and the steel can result in a significant density increase of the metallic phase. The density increase of the metallic phase can lead to inverse stratification with an additional heavy metal layer below the oxidic pool. The presence of the metallic layer at the bottom of the lower head is likely to decrease the thickness of the top metallic layer and consequently to increase the risk of the focusing effect. At KAERI, thermodynamic analyses using the GEMINI code were performed to examine the final melt pool configuration during the severe accidents in the APR1400. In this study, based on the thermodynamic analysis results, for an investigation on the molten pool configurations considering the layer inversion of the heavy metallic layer, a series of test, named as the COSMOS (Corium configuration of the molten State in the Most Severe Accidents), are in progress. Since the melt pool configurations were different in the representative accident sequences of the APR1400, a series of test will be performed for the initial melt pool conditions of the major severe accident sequences of the APR1400

  20. Experimental investigations for uncertainty quantification in brake squeal analysis

    Renault, A.; Massa, F.; Lallemand, B.; Tison, T.

    2016-04-01

    The aim of this paper is to improve the correlation between the experimental and the numerical prediction of unstable frequencies for automotive brake systems considering uncertainty. First, an experimental quantification of uncertainty and a discussion analysing the contributions of uncertainty to a numerical squeal simulation are proposed. Frequency and transient simulations are performed considering nominal values of model parameters, determined experimentally. The obtained results are compared with those derived from experimental tests to highlight the limitation of deterministic simulations. The effects of the different kinds of uncertainty detected in working conditions of brake system, the pad boundary condition, the brake system material properties and the pad surface topography are discussed by defining different unstable mode classes. Finally, a correlation between experimental and numerical results considering uncertainty is successfully proposed for an industrial brake system. Results from the different comparisons reveal also a major influence of the pad topography and consequently the contact distribution.

  1. Neutron Elastic Scattering Cross Sections Experimental Data and Optical Model Cross Section Calculations. A Compilation of Neutron Data from the Studsvik Neutron Physics Laboratory

    Neutron elastic scattering cross section measurements have been going on for a long period at the Studsvik Van de Graaff laboratory. The cross sections of a range of elements have been investigated in the energy interval 1.5 to 8 MeV. The experimental data have been compared with cross sections calculated with the optical model when using a local nuclear potential

  2. Experimental investigations of biomass gasification with carbon-dioxide

    Sircar, Indraneel

    A sustainable energy cycle may include enhanced utilization of solar energy and atmospheric CO2 to produce biomass and enhanced utilization of exhaust CO2 from power plants for synthetic gas production. The reaction of carbon with CO2 is potentially one of the important processes in a future sustainable carbon cycle. Reactions involving carbon and CO2 are also relevant to the chemical process and metal industries. Biomass char has been recognized as a present and future alternative to fossil-fuels for energy production and fuel synthesis. Therefore, biomass char gasification with CO2 recycling is proposed as a sustainable and carbon-neutral energy technology. Biomass char is a complex porous solid and its gasification involves heat and mass transfer processes within pores of multiple sizes from nanometer to millimeter scales. These processes are coupled with heterogeneous chemistry at the internal and external surfaces. Rates for the heterogeneous carbon gasification reactions are affected by inorganic content of the char. Furthermore, pore structure of the char develops with conversion and influences apparent gasification rates. Effective modeling of the gasification reactions has relied on the best available understanding of diffusion processes and kinetic rate property constants from state of the art experiments. Improvement of the influences of inorganic composition, and process parameters, such as pressure and temperature on the gasification reaction rates has been a continuous process. Economic viability of gasification relies on use of optimum catalysts. These aspects of the current status of gasification technologies have motivated the work reported in this dissertation. The reactions between biomass chars and CO2 are investigated to determine the effects of temperature and pressure on the reaction rates for large char particles of relevance to practical gasification technologies. An experimental apparatus consisting of a high-pressure fixed-bed reactor

  3. Horonobe Underground Research Laboratory project investigation report for the 2008 fiscal year

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations' 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2008 fiscal year (2008/2009), the 4th year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2008 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  4. Horonobe Underground Research Laboratory project. Investigation report for the 2006 fiscal year

    The Horonobe Underground Research Laboratory is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2006 fiscal year (2006/2007), the second year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on the geological disposal of high-level radioactive waste (HLW)', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2006 Fiscal Year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. JAEA proceeded with the project in, collaboration with experts from domestic and overseas research organisation. (author)

  5. Experimental investigation of ion-ion recombination at atmospheric conditions

    A. Franchin; S. Ehrhart; Leppä, J.; Nieminen, T.; Gagné, S.; Schobesberger, S.; D. Wimmer; J. Duplissy; Riccobono, F.; Dunne, E; L. Rondo; Downard, A.; BIANCHI, F.; Kupc, A.; Tsagkogeorgas, G.

    2015-01-01

    We present the results of laboratory measurements of the ion-ion recombination coefficient at different temperatures, relative humidities and concentrations of ozone and sulfur dioxide. The experiments were carried out using the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at CERN, the walls of which are made of conductive material, making it possible to measure s...

  6. An Investigation Regarding Experimental Learning for Creative Manufacturing under

    Kubota, Hiroshi; Song, Sang-J.

    To overcome an educational crisis, experimental learning in creative manufacturing in reference to cross-curricular engineering education has been undertaken. To educate students in terms of not only information and management technology, but also in terms of theory and practice, experimental learning procedures from product planning to trial evaluation have implemented. Objectives and fundamental hypotheses were also established for realizing effective education. The verification of these hypotheses and the attainment of these objectives were evaluated by the use of experimental reports and student surveys gathered for three years. As a natural consequence, successful requirements for experimental learning in creative manufacturing were derived. Moreover this paper postulated that failure factors actually should be considered much more seriously than successful factors for effective education.

  7. Experimental investigation of gas storage properties of black shales

    Gašparík, Matúš

    2013-01-01

    In exploration for shale gas, reliable estimations of Gas-In-Place (GIP) and portion of technically recoverable resource pose a challenging task. Improvement of our understanding of gas stogare capacity of carbonaceous shales and its evolution during geological history requires carefully designed experiments to obtain reliable experimental data. Moreover, the experimental conditions have to cover a range representative of the in-situ reservoir conditions. This thesis, which was conducted duri...

  8. Experimental Investigation of Low Pressure Audio Frequency Discharge in Argon

    Experimental data obtained on audio frequency (100–10000 Hz) discharge in argon at four pressures 50, 60, 70, and 80 mTorr are presented. The data show significant changes of the discharge current waveform with frequency. These changes seem to be associated with the glow discharge profile and colour. An empirical model based on the assumption of a frequency-dependent breakdown voltage is used to describe the experimental data

  9. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Jianzhong Zhao; Yaqin Tian; Yangsheng Zhao; Wenping Cheng

    2015-01-01

    The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower ...

  10. Experimental investigation of the cyclic behaviour of unreinforced masonry spandrels

    Beyer, Katrin; Abo El Ezz, Ahmad; Dazio, Alessandro

    2010-01-01

    In unreinforced masonry (URM) walls the vertical piers are connected by horizontal spandrel elements. Numerical simulations have shown that spandrels influence significantly the global wall behaviour under seismic loading. Despite their importance, experimental data on the cyclic behaviour of these spandrels is very scarce. The lack of experimental data prevented in the past the validation of numerical and mechanical models regarding the cyclic behaviour of masonry spandrels. For this reason ...

  11. Experimental Investigations on Performance and Design Parameters of Solar Chimney

    İbrahim ÜÇGÜL; KOYUN, Arif

    2010-01-01

    In this study, a solar chimney system, which is suitable for climate conditions of Isparta and its surroundings, is designed theoretically. With the aim of studying experimentally as based on that design, a prototype solar chimney has been constructed in the university campus area of Süleyman Demirel University-RACRER (Research and Application Center for Renewable Energy Resources). Additionally, after the experimental studies, the system is modelled theoretically with depending on the design...

  12. Experimental Investigation of Atomizing Performance of Low Pressure Swirl Nozzle

    Yunfei Yan; Li Zhang; WenLi Pan; Ge Pu

    2014-01-01

    The lime slurry nozzle is a key equipment component in the flue gas drying desulfurization system. The atomizing performance of lime slurry nozzles with different structure parameters under low pressure conditions was experimentally studied by using the laser diffraction/scattering particle size distribution analyzer (Win212-2), and the optimized structure of nozzle was obtained. Experimental results indicate that there is a relation between the average granularity and the fluid pressure and ...

  13. Experimental and theoretical investigation of shock waves in ventilation systems

    The passage of shock-waves through a model ventilation system which includes two rooms, a blower, a HEPA filter and a damper, all connected by 30cm diameter ducts was studied experimentally and theoretically. A computer code was utilized which treated the three-dimensional effects as the shock progressed through changes of area. Several different levels of shock overpressure were examined. Good correlation between experimental and computer results was obtained. (author)

  14. Numerical and experimental investigation of a rockfall drapery system

    Thoeni, K.; Giacomini, A.; Lambert, C.; Sloan, S. W.

    2012-04-01

    Rockfalls represent a significant hazard to people and infrastructures in steep terrain, should it be a mountainous region, a quarry, or a mine. Although rockfall occurrences cannot be totally eliminated, it is possible to reduce the risk by deploying effective rockfall protective systems such as metallic wire mesh draperies. This work focuses on the performance of a simple drapery system with a double-twisted hexagonal wire mesh. Numerical modelling and experimental investigations have been performed. The main objective of the work is the residual hazard assessment in conjunction with such a system since blocks can still detach between the installed drapery and the rock surface. First, the numerical model for the drapery mesh and the rock slope is presented. Following the approach by Bertrand et al. [1], a discrete element model of a hexagonal wire mesh has been implemented into the open-source framework YADE [4]. The mesh is discretised by a set of spherical particles which interact remotely (i.e. interactions between the particles exist without direct contact) and are located at the physical nodes of the mesh. The rock slope is represented by triangular elements which have been generated on the basis of a point cloud representation of the rock slope. The slope is assumed to be rigid and energy dissipation on the slope during rock impact is considered via friction and viscous damping. Second, results of field tests carried out at a mine in New South Wales (Australia) are presented [3]. Concrete blocks with shapes according to EOTA [2] were released from the top of a highwall. The tests were carried out on two different sections of the highwall: the first section had a drapery system installed whereas the second section had no protective system installed. In the first section, the blocks were released between the rock surface and the mesh drapery. The 3D block trajectories were recorded by using two stereo pairs of synchronised high speed cameras. The collected

  15. Interleaved Carbon Minibeams: An experimental Method of Radiosurgery Developed at Brookhaven National Laboratory

    Despite recent major innovations in radiation therapy and radiosurgery, there are limitations in treating certain tumors and neurological targets while assuring acceptable damage to the surrounding tissues. These encompass certain tumors in the brain, spinal cord, spinal column, and head-and-neck. This paper describes an experimental radiosurgery, “Interleaved carbon minibeams”1 being developed at the NASA Space Radiation Laboratory (NSRL), Brookhaven National Laboratory (BNL). The method uses arrays of parallel, thin (∼0.3 mm incident beam thickness) planes of carbon ion beams, called carbon minibeams, that “interleave” to produce a solid radiation field at the target . Therefore, the method delivers a solid field of carbon radiation to the target while exposing the surrounding tissues to single arrays of carbon minibeams, which are well tolerated by tissues

  16. Study on clinical and laboratory diagnostic of Lyme disease in dogs after experimental infection

    Savić Sara

    2012-01-01

    Full Text Available Experimental infection was done on 13 dogs, with B. burgdorferi s.l., in the epitzootiological area where Lyme disease in dogs and humans is present. Prior to the experimental infection, dogs in the experiment had no contact with B. burgdorferi, and they were kept in isolation. Serological methods used in the study were complement fixation and ELISA test. Biochemical blood analysis was done, also. The experimental infection of dogs was done with a referent ATCC B. burgdorferi s.l. culture, and with the isolates of B. burgdorferi s.l. previousely gained from Ixodes ricinus ticks collected on selected locations of the observed region in the northern part of Serbia (Vojvodina province. After the experimental infection, clinical symptoms were not seen in dogs and positive serological results were found in 70% of experimentally infected dogs. Immunodiagnostic criteria for the diagnosis of Lyme disease in dogs are established. In dogs without clinical symptoms for Lyme disease, when clarifying the laboratory results, one must have in mind the epizootiological situation of the region and also the possibility of former contact of the dog with B. burgdorferi s.l. For epizootiological surveys, CF can be used as an approximate screening method, with obligatory conformation with ELISA in the case of positive findings.

  17. Aespoe Hard Rock Laboratory. Overview of the investigations 1986-1990

    In order to prepare for the siting and licensing of a spent fuel repository SKB has decided to construct a new underground research laboratory. The pre-investigations for the Aespoe Hard Rock Laboratory started in late 1986. This report gives a comprehensive compilation of the different investigations performed during the pre-investigation phase (1986-1990). The information is mainly compiled in CAD-generated maps and illustrations in which the reader can gather information concerning the scope of work as well as references to more detailed reports for further study. (au)

  18. Horonobe Underground Research Laboratory project. Investigation report for the 2010 fiscal year

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2010 fiscal year (2010/2011). The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2010 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  19. Horonobe Underground Research Laboratory project. Investigation report for the 2009 fiscal year

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2009 fiscal year (2009/2010). The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2009 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  20. Horonobe Underground Research Laboratory project. Investigation report for the 2012 fiscal year

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2012 fiscal year (2012/2013). The investigations, which are composed of 'Geoscientific research' and R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2012 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  1. Demonstrating That Habitat Structure Facilitates Coexistence of Prey & Predator: A Laboratory Investigation Using Goldfish & Invertebrates.

    Stewart, Timothy W.; Embrey, Tracey R.

    2003-01-01

    Presents a laboratory investigation to demonstrate that habitat structure promotes increased organism abundance and species diversity by reducing predator effects on prey abundance. Investigates the effects of goldfish (Carassius auratus) predators on Gammarus sp. (an amphipod) and Daphnia magna (a cladoceran) prey in the absence and presence of a…

  2. Experimental investigation of ion–ion recombination under atmospheric conditions

    A. Franchin; S. Ehrhart; Leppä, J.; Nieminen, T.; Gagné, S.; Schobesberger, S.; D. Wimmer; J. Duplissy; Riccobono, F.; E. M. Dunne; L. Rondo; Downard, A.; BIANCHI, F.; Kupc, A.; Tsagkogeorgas, G.

    2015-01-01

    We present the results of laboratory measurements of the ion–ion recombination coefficient at different temperatures, relative humidities and concentrations of ozone and sulfur dioxide. The experiments were carried out using the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at CERN, the walls of which are made of conductive material, making it possible to measure small ions. We produced ions in the chamber using a 3.5 GeV c−1 beam of positively charged pions (π+) gener...

  3. An experimental investigation of overdissipation in the all pay auction

    Lugovskyy, Volodymyr; Puzzello, Daniela; Tucker, Steven

    2008-01-01

    Pervasive overbidding represents a well-documented feature of all-pay auctions. Aggregate bids exceed Nash predictions in laboratory experiments, and individuals often submit bids that guarantee negative profits. This paper examines three factors that may reduce pervasive overbidding: (a) repetition (experience), (b) reputation (strangers vs. partners) and (c) active participation. We find that aggregate over-dissipation diminishes but is not eliminated with repetition, and that repetition, i...

  4. Experimental Investigation of Use of Microsilica in Self Compacting Concrete

    Mr.Ashok P. Kalbande; Prof. R.V.R.K. Prasad

    2012-01-01

    This paper is described Project in detail and presents laboratory observation. Microsilica is used as a 10% replacement of cement by weight. Various test were conducted on fine aggregate & coarse aggregate, to determine specific gravity, bulk density, fineness modulus of aggregate, concrete mix proportion design using this parameter..For conventional concrete water cement ratio of 0.4 and for microsilica concrete is increased water contain about 20liter/m3. Water demand increases in ...

  5. Experimental Study of Drag Resistance using a Laboratory Scale Rotary Set-Up

    Weinell, Claus Erik; Olsen, Kenneth N.; Christoffersen, Martin W.;

    2003-01-01

    This work covers an experimental study of the drag resistance of different painted surfaces and simulated large-scale irregularities, viz. dry spraying, weld seams, barnacle fouling and paint remains. A laboratory scale rotary set-up was used to determine the drag resistance, and the surface...... roughness of the samples was determined by means of two different stylus-based methods, one having a 1.6 mm ball stylus (giving the macro-roughness) and the other having a needle type stylus (giving the micro-roughness). It is demonstrated that, in the case of ideal painted surfaces (low macro...

  6. Laboratory investigations of moisture conditions in wood frame walls with wood fiber insulation

    Geving, Stig; Lunde, Erik; Holme, Jonas

    2015-01-01

    The purpose of this study was to investigate the moisture conditions in wood frame walls with wood fiber thermal insulation in a Nordic climate. Laboratory measurements were conducted on 15 different wall configurations. The test results showed that the wall configurations with wood fiber insulation performed rather similar as those with mineral wool, in regard to measured relative humidity at the external side of the insulation layer. The laboratory tests showed that wood fiber insulation in...

  7. Silicene: a review of recent experimental and theoretical investigations

    Silicene is the silicon counterpart of graphene, i.e. it consists in a single layer of Si atoms with a hexagonal arrangement. We present a review of recent theoretical and experimental works on this novel two dimensional material. We discuss first the structural, electronic and vibrational properties of free-standing silicene, as predicted from first-principles calculations. We next review theoretical studies on the interaction of silicene with different substrates. The growth and experimental characterization of silicene on Ag(1 1 1) is next discussed, providing insights into the different phases or atomic arrangements of silicene observed on this metallic surface, as well as on its electronic structure. Recent experimental findings about the likely formation of hexagonal Si nanosheets on MoS2 are also highlighted. (topical review)

  8. Valorization of rehydrated Deglet-Nour dates by an experimental investigation of solar drying processing method

    Highlights: • A laboratory scale direct solar dryer was constructed and investigated. • The solar drying of hard date palm fruits, Deglet-Nour variety, was studied. • Three improvements in the dryer operating modes were proposed and compared. • Combination drying mode has been selected as the most adequate process. • Selected mode ensures a high quality of product and allows short duration of treatment. - Abstract: In objective to valorize hard Deglet-Nour dates, a new postharvest processing method was proposed and investigated using a laboratory scale direct solar dryer. Date samples were soaked in distilled water then dried by solar drying mean. In order to improve the quality and consumer acceptance of this date variety, three proposed drying enhancements: drying under shade (DUS), drying with photovoltaic powered ventilation (DSV) and combination drying mode (DCM) were tested and compared with the basis case of natural ventilation drying (DNV). The obtained experimental results classified the drying with solar ventilation drying mode (DSV) and combination drying mode (DCM) in favorable operating conditions needed for the studied case. Measured air drying temperatures ranged between 41.8 and 56.0 °C and 39.3 and 51.2 °C respectively for the two above techniques. The drying duration to obtain the standard moisture content (0.35 kg/kg DM) was respectively 5.25 and 8 h. Regarding quality criteria and processing time, the combination drying mode was selected as the most adequate process

  9. Experimental investigation of the information entropic Bell inequality

    Cao, Lian-Zhen; Zhao, Jia-Qiang; Liu, Xia; Yang, Yang; Li, Ying-De; Wang, Xiao-Qin; Chen, Zeng-Bing; Lu, Huai-Xin

    2016-04-01

    Inequalities of information entropic play a fundamental role in information theory and have been employed effectively in finding bounds on optimal rates of various information-processing tasks. In this paper, we perform the first experimental demonstration of the information-theoretic spin-1/2 inequality using the high-fidelity entangled state. Furthermore, we study the evolution of information difference of entropy when photons passing through different noisy channels and give the experimental rules of the information difference degradation. Our work provides an new essential tool for quantum information processing and measurement, and offers new insights into the dynamics of quantum correlation in open systems.

  10. A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment

    D. Kocman; Horvat, M.

    2010-01-01

    Results obtained by a laboratory flux measurement system (LFMS) focused on investigating the kinetics of the mercury emission flux (MEF) from contaminated soils of the Idrija Hg-mine region, Slovenia are presented. Representative soil samples with respect to total Hg concentrations (4–417 μg g−1) and land cover (forest, meadow and alluvial soil) alongside the River Idrijca were analysed to determine the variation in MEF versus distance from the source, ...

  11. Experimental and numerical investigation of gas phase freeboard combustion

    Andersen, Jimmy; Jensen, Peter Arendt; Hvid, S.L.;

    2009-01-01

    In part 1 of the present work (10.1021/ef900752a), experimental data and computational fluid dynamics (CFD) modeling predictions for velocity field, temperatures, and major species were compared fora 50 kW axisymmetric, non-swirling natural gas Fired combustion setup, constructed to simulate the...

  12. Experimental Investigation of Aerodynamic Instability of Iced Bridge Cable Sections

    Koss, Holger; Lund, Mia Schou Møller

    2013-01-01

    The accretion of ice on structural bridge cables changes the aerodynamic conditions of the surface and influences hence the acting wind load process. Full-scale monitoring indicates that light precipitation at moderate low temperatures between zero and -5°C may lead to large amplitude vibrations of...... load coefficients and experimental simulation on a 1DOF elastically suspended cable section....

  13. Current experimental investigations on modern masonry at University of Minho

    Lourenço, Paulo B.; Vasconcelos, Graça; Gouveia, João P.; Haach, V.

    2006-01-01

    The paper presents and describes the main issues related to two systems on modern masonry currently under development at University of Minho, one based on lightweight concrete blocks and another based on reinforced concrete block masonry. The details of the experimental work being carried out are addressed and preliminary test results obtained for lightweight concrete block masonry are provide

  14. Experimental investigation of temperature fields in a synthetic jet

    Dančová Petra; Doleček Roman; Lédl Vít

    2014-01-01

    The paper deals with the measurement of temperature fields in a synthetic jet. This type of experiment presents several challenges; therefore, to ensure the best precision possible, two experimental methods were used – digital holographic interferometry (DHI) and thermo-anemometry in constant current mode as an auxiliary method to verify DHI.

  15. Experimental investigation of hydraulic characteristics of tank reactor model

    Experiments for studying the hydraulic characteristics of a vessel reactor model at the MR stand described. The hydraulic model of a two-loop reactor of the vessel type is described. The experimental data are obtained in the wide range of the stand operating parameters, including the emergency modes of the reactor model operation with the total shut-down of one feed pump

  16. Experimental and numerical investigation of gas phase freeboard combustion

    Andersen, J.; Jensen, Peter Arendt; Meyer, K.E.;

    2009-01-01

    under well-defined conditions. The experimental results are compared to computational fluid dynamics (CFD) modeling predictions, using the eddy dissipation model (EDM) its well as the eddy dissipation concept (EDC). The use of EDC allows for implementation of more advanced combustion schemes; we have...

  17. Developing a new experimental system for an undergraduate laboratory exercise to teach theories of visuomotor learning.

    Kasuga, Shoko; Ushiba, Junichi

    2014-01-01

    Humans have a flexible motor ability to adapt their movements to changes in the internal/external environment. For example, using arm-reaching tasks, a number of studies experimentally showed that participants adapt to a novel visuomotor environment. These results helped develop computational models of motor learning implemented in the central nervous system. Despite the importance of such experimental paradigms for exploring the mechanisms of motor learning, because of the cost and preparation time, most students are unable to participate in such experiments. Therefore, in the current study, to help students better understand motor learning theories, we developed a simple finger-reaching experimental system using commonly used laptop PC components with an open-source programming language (Processing Motor Learning Toolkit: PMLT). We found that compared to a commercially available robotic arm-reaching device, our PMLT accomplished similar learning goals (difference in the error reduction between the devices, P = 0.10). In addition, consistent with previous reports from visuomotor learning studies, the participants showed after-effects indicating an adaptation of the motor learning system. The results suggest that PMLT can serve as a new experimental system for an undergraduate laboratory exercise of motor learning theories with minimal time and cost for instructors. PMID:25565915

  18. Experimental Investigation of Two-Phase Flow in Rock Salt

    Malama, Bwalya; Howard, Clifford L.

    2014-07-01

    This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.

  19. The Experimental Investigation Of The Screen Operation In The Parametric Resonance Conditions

    Bąk Łukasz

    2015-12-01

    Full Text Available In this paper the experimental studies of the screen working in the parametric resonance condition are discussed. The investigations are conducted for laboratory parametric resonance screen. The measuring test is performed for four cases of tension force values. The full sheet metal instead of the sieve is used. For each considered case the natural frequency of the plate and the parameter modulation frequency are determined. The achieved results are presented and discussed. It is shown that the highest sieve plate amplitude is obtained when the parameter modulation frequency is two times larger than natural frequency of the sieve plate. This parametric resonance vibration was observed only for tension force equal to 4000 N because of the rotational speed limits of electrical vibratos.

  20. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance: Cloquet Residential Research Facility Laboratory Results

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-01

    Thermal and moisture problems in existing basements create a unique challenge because the exterior face of the wall is not easily or inexpensively accessible. This approach addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. the interior and exterior environments. This approach has the potential for improving durability, comfort, and indoor air quality. This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  1. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal experimentation reveals that while the collector efficiency

  2. Experimental investigation of passive auto depressurization system (PADS) for AHWR

    Recently work has been initiated on a novel passive safety system named Passive Auto Depressurization System (PADS) for AHWR. In case of small break LOCA, RELAP analysis indicate that with reactor shutdown condition and accumulator available, even after long time Main Heat Transport (MHT) pressure does not fall to 2 bar i.e. the required condition of water injection from GDWP. The unavailability of GDWP injection may lead to rise in fuel clad temperature due to insufficient MHT coolant inventory. This situation calls for faster depressurization of MHT system which is achieved by PADS. The successful design, fabrication, installation and commissioning of experimental facility provides an important platform for design validation and demonstration of PADS mechanism for AHWR. The experimental results will be used for design optimization of PPPT, validation of RELAP results and for understanding the transient behavior of PADS for AHWR

  3. Experimental Investigation on Thermoelectric Chiller Driven by Solar Cell

    Yen-Lin Chen

    2014-01-01

    Full Text Available This paper presents experimental explorations on cooling performance of thermoelectric chillers being driven by solar cells, as well as comparison results to the performance being driven by fixed direct current. Solar energy is clear and limitless and can be collected by solar cells. We use solar cells to drive thermoelectric chillers, where the cold side is connected to the water tank. It is found that 250 mL of water can be cooled from 18.5°C to 13°C, where the corresponding coefficient of performance (COP is changed between 0.55 and 1.05, when solar insolation is changed between 450 W/m2 and 1000 W/m2. The experimental results demonstrate that the thermoelectric chiller driven by solar cell is feasible and effective for energy saving issues.

  4. Confined granular flow in silos experimental and numerical investigations

    Tejchman, Jacek

    2013-01-01

      During confined flow of bulk solids in silos some characteristic phenomena can be created, such as: —         sudden and significant increase of wall stresses, —         different flow patterns, —         formation and propagation of wall and interior shear zones, —         fluctuation of pressures and, —         strong autogenous dynamic effects. These phenomena have not been described or explained in detail yet. The main intention of the experimental and theoretical research presented in this book is to explain the above mentioned phenomena in granular bulk solids and to describe them with numerical FE models verified by experimental results.

  5. Experimental investigations on the first Townsend coefficient in pure isobutane

    Lima, I. B.; Mangiarotti, A.; Vivaldini, T. C.; Gonçalves, J. A. C.; Botelho, S.; Fonte, P.; Takahashi, J.; Tarelho, L. V.; Bueno, C. C.

    2012-04-01

    In this work we present results of the first Townsend coefficient (α) in pure isobutane by measuring the current growth as a function of the electric field strength in a pulsed irradiation regime. A Resistive Plate Chamber (RPC)-like configuration was used. To validate this method, as well as to crosscheck the experimental apparatus, measurements of the α parameter were firstly carried out with pure nitrogen and the results compared to the accurate data available in the literature. The data obtained with isobutane in a field range from 145 Td up to 200 Td were well-matched to those calculated with Magboltz versions 2.7.1 and 2.8.6. The experimental consistency of these results with other published data in the range of 550-1300 Td was very good, as demonstrated by the use of the Korff parameterization.

  6. Experimental investigations on the first Townsend coefficient in pure isobutane

    In this work we present results of the first Townsend coefficient (α) in pure isobutane by measuring the current growth as a function of the electric field strength in a pulsed irradiation regime. A Resistive Plate Chamber (RPC)-like configuration was used. To validate this method, as well as to crosscheck the experimental apparatus, measurements of the α parameter were firstly carried out with pure nitrogen and the results compared to the accurate data available in the literature. The data obtained with isobutane in a field range from 145 Td up to 200 Td were well-matched to those calculated with Magboltz versions 2.7.1 and 2.8.6. The experimental consistency of these results with other published data in the range of 550–1300 Td was very good, as demonstrated by the use of the Korff parameterization.

  7. Experimental investigation on bubble characteristics entrained by surface vortex

    The cover gas entrainment at the free surface of sodium coolant becomes one of the significant issues according to the compact sizing of reactor vessel in the latest reactor design. In the present study, some basic experiments for the gas entrainment due to the surface vortex were performed in order to obtain the fundamental knowledge about the entrained bubble size. Distributions of entrained bubble diameters in several experimental conditions were obtained from bubble images using an image processing technique. Velocity fields around vortices and surface dimple shapes (gas cores) due to surface vortices were measured to grasp those influences on bubble shapes. The result showed that mean equivalent diameters of bubbles were varied from 1.3 to 2.1 mm in the range of present experimental conditions. The bubble sizes were influenced by the thickness of gas core.

  8. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  9. Final Report: Experimental Investigation of Nonlinear Plasma Wake-Fields

    Rosenzweig, J.

    1997-10-31

    We discuss the exploration of the newly proposed blowout regime of the plasma wakefield accelerator and advanced photoinjector technology for linear collider applications. The plasma wakefield experiment at ANL produced several ground-breaking results in the physics of the blowout regime. The photoinjector R and D effort produced breakthroughs in theoretical, computational, and experimental methods in high brightness beam physics. Results have been published.

  10. Experimental Investigation of Flow Through an Asymmetrical Plane Diffuser

    Buice, Carl U.; Eaton, John K.

    1996-01-01

    The objective of this study is to provide careful qualification and detailed measurements in a re-creation of the Obi experiment. The work will include extensive documentation of the flow two-dimensionality and detailed measurements required for testing of flow computations. Also important to this study is the close interaction of the experimental and computational groups to improve the utility of the data obtained and the accuracy of computation.

  11. Experimental investigation of meandering jets in shallow reservoirs

    Peltier, Yann; Erpicum, Sébastien; Archambeau, Pierre; Pirotton, Michel; Dewals, Benjamin

    2014-01-01

    Meandering flows in rectangular shallow reservoirs were experimentally investi- gated. The characteristic frequency, the longitudinal wave length and the mean lateral exten- sion of the meandering jet were extracted from the first paired modes, obtained by a proper orthogonal decomposition of the surface velocity field measured by large scale PIV. The depth-normalised characteristic lengths and the Strouhal number were then compared to the main dimensionless numbers characteriz...

  12. AEROELASTIC INVESTIGATION OF AN ANNULAR TRANSONIC COMPRESSOR CASCADE: EXPERIMENTAL RESULTS

    Chenaux, Virginie Anne; Ott, Peter; Zanker, Achim

    2015-01-01

    A reliable determination of the unsteady aerodynamic loads acting on the blades is essential to predict the aeroelastic stability of vibrating compressor cascades with accuracy. At transonic flow conditions, the vibration of the shock may change the blade aeroelastic behavior. Numerical tools still have difficulties to capture the physics associated to this effect. In order to increase the prediction’s accuracy, high quality experimental data at high spatial resolution is therefore required t...

  13. Experimental investigation of the variability of concrete durability properties

    AÏT MOKHTAR, Karim; Torrenti, Jean Michel; BENBOUDJEMA, Farid; Capra, Bruno; CARCASSES, M; Colliat, Jean-Baptiste; CUSSIGH, François; De Larrard, Thomas; LATASTE, JF; Poyet, Stéphane; ROUGEAU, Patrick; Sellier, A.; Trabelsi, A.; Turcry, Philippe

    2013-01-01

    One of the main objectives of the APPLET project was to quantify the variability of concrete properties to allow for a probabilistic performance-based approach regarding the service lifetime prediction of concrete structures. The characterization of concrete variability was the subject of an experimental program which included a significant number of tests allowing the characterization of durability indicators or performance tests. Two construction sites were selected from which concrete spec...

  14. Experimental investigation of ion-implanted magnetic recording material

    The structure changes in ion implanted Permalloy have been observed by reflection high energy electron diffraction and X-ray photoelectron spectrometry. Amorphous phase and metal compound are formed in the surface layer. The magnetic property, mechanical property and surface roughness of the ion implanted samples and frequency response of the ion implanted magnetic head have been measured. The experimental results show that the hardening layer could be formed on the surface of an implanted sample without any degradation of the magnetic property

  15. Experimental Performance Investigation of Digital Beamforming on Synthetic Aperture Radar

    Kim, Junghyo; Younis, Marwan; Wiesbeck, Werner

    2008-01-01

    In this paper, we present the experimental results of a Digital Beam Forming (DBF) Synthetic Aperture Radar (SAR) performance on the purpose of the High- Resolution Wide-Swath (HRWS) SAR concept. A ground-based SAR system successfully demonstrated the DBF SAR operation. The demonstrator acquired SAR raw data with very dense spatial sampling rate in order to obtain various sampling rates. We evaluate DBF performance with respect to the image quality factor with two d...

  16. Experimental investigation of coarse particle conveying in pipes

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří; Krupička, Jan

    Liberec : Technical university of Liberec, 2014 - (Dančová, P.; Vít, T.), s. 712-719 ISSN 2100-014X. - (EPJ Web of Conferences). [Experimental Fluid Mechanics 2014. Český Krumlov (CZ), 18.11.2014-21.11.2014] R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : transport pipelines * Coulomb friction * coarse-grained mixtures * coarse particle Subject RIV: BK - Fluid Dynamics

  17. Experimental investigation of coarse particle conveying in pipes

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří; Krupička, Jan

    Vol. 92. Les Ulis : EDP Sciences, 2015 - (Dančová, P.; Vít, T.), 02111-p.1-02111-p.8 ISSN 2100-014X. [Experimental Fluid Mechanics 2014. Český Krumlov (CZ), 18.11.2014-21.11.2014] R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : particles motion * mixture flow behaviour * coarse particles Subject RIV: BK - Fluid Dynamics

  18. Experimental and theoretical investigation of direct frequency comb spectroscopy

    Peters, Elisabeth

    2011-01-01

    This thesis reports on theoretical and experimental examination of two-photon direct frequency comb spectroscopy (DFCS) using atomic two-level systems. This method is a very promising tool to extend optical spectroscopy into the short wavelength region where only few cw laser sources exist. The high peak intensities of pulsed lasers facilitate efficient nonlinear conversion into frequency regions which are so far unexplored, for example by high harmonic generation (HHG). DFCS is based on...

  19. Manufacturing and experimental investigation of green composite materials

    Κουτσομητοπούλου, Αναστασία

    2013-01-01

    The aim of the present thesis is to explore sustainable low cost environmentally friendly composite materials. It is a step by step experimental research. Firstly, taking under consideration the so far commercial available non-organic materials used as reinforcement and the petroleum based resins used as matrices, composite materials were fabricated and mechanically characterized. Different components in micro- and nano- scale were combined. Afterwards, the non-organic materials used a...

  20. Investigations in Experimental and Theoretical High Energy Physics

    Krennrich, Frank [Iowa State University

    2013-07-29

    We report on the work done under DOE grant DE-FG02-01ER41155. The experimental tasks have ongoing efforts at CERN (ATLAS), the Whipple observatory (VERITAS) and R&D work on dual readout calorimetry and neutrino-less double beta decay. The theoretical task emphasizes the weak interaction and in particular CP violation and neutrino physics. The detailed descriptions of the final report on each project are given under the appropriate task section of this report.

  1. Experimental Investigation of In Situ Cleanable HEPA Filters

    Hatcher, S.A.

    2001-04-11

    Savannah River Technology Center (SRTC) located at Westinghouse Savannah River Site (WSRS) is currently conducting research and development experimentation to develop a replacement of the conventional high efficiency particulate air (HEPA) filter system currently used by commercial industry and DOE facilities. It has been determined that a cleanable or regenerable HEPA filter system may be the most cost effective and efficient HEPA filter system to be considered for use in a more safe and reliable work environment.

  2. EXPERIMENTAL INVESTIGATION OF A VARIABLE GEOMETRY DUCTED PROPELLER

    Tomasz Muszyński

    2013-03-01

    Full Text Available The paper presents preliminary results of experimental research on the variable geometry of a ducted propeller. The purpose of this work is explore the area of ​​application of the ducted propellers of variable geometry. The paper contains the description of a test station and a model, initial tests’ results of some selected geometries intakes and exit vents in comparison with an open propeller.

  3. EXPERIMENTAL INVESTIGATION OF A VARIABLE GEOMETRY DUCTED PROPELLER

    Tomasz Muszyński; Piotr Strzelczyk

    2013-01-01

    The paper presents preliminary results of experimental research on the variable geometry of a ducted propeller. The purpose of this work is explore the area of ​​application of the ducted propellers of variable geometry. The paper contains the description of a test station and a model, initial tests’ results of some selected geometries intakes and exit vents in comparison with an open propeller.

  4. Small-scale heterogeneity in sediments : experimental and modelling investigations.

    Stockdale, Anthony

    2008-01-01

    This thesis consists of several studies relating to small-scale heterogeneity in sediments. The principal aim was to further our understanding of processes occurring at microniches. The individual studies consist of: 1) a critical review of previous studies of microniches that used probes with high spatial resolution and modelling approaches; 2) an experimental study of analysis of oxyanions in sediment at high resolution that applied a newly developed preparation method for a combined AgI/Fe...

  5. Experimental and numerical investigation of hydro power generator ventilation

    Improvements in ventilation and cooling offer means to run hydro power generators at higher power output and at varying operating conditions. The electromagnetic, frictional and windage losses generate heat. The heat is removed by an air flow that is driven by fans and/or the rotor itself. The air flow goes through ventilation channels in the stator, to limit the electrical insulation temperatures. The temperature should be kept limited and uniform in both time and space, avoiding thermal stresses and hot-spots. For that purpose it is important that the flow of cooling air is distributed uniformly, and that flow separation and recirculation are minimized. Improvements of the air flow properties also lead to an improvement of the overall efficiency of the machine. A significant part of the windage losses occurs at the entrance of the stator ventilation channels, where the air flow turns abruptly from tangential to radial. The present work focuses exclusively on the air flow inside a generator model, and in particular on the flow inside the stator channels. The generator model design of the present work is based on a real generator that was previously studied. The model is manufactured taking into consideration the needs of both the experimental and numerical methodologies. Computational Fluid Dynamics (CFD) results have been used in the process of designing the experimental setup. The rotor and stator are manufactured using rapid-prototyping and plexi-glass, yielding a high geometrical accuracy, and optical experimental access. A special inlet section is designed for accurate air flow rate and inlet velocity profile measurements. The experimental measurements include Particle Image Velocimetry (PIV) and total pressure measurements inside the generator. The CFD simulations are performed based on the OpenFOAM CFD toolbox, and the steady-state frozen rotor approach. Specific studies are performed, on the effect of adding ''pick-up'' to spacers, and

  6. An international multi-laboratory investigation of carbon-based hydrogen sorbent materials

    Hurst, Katherine E.; Parilla, Philip A.; O'Neill, Kevin J.; Gennett, Thomas

    2016-01-01

    New materials are needed to achieve the hydrogen storage targets set out by the US Department of Energy for fuel cell vehicular applications. In order to enable the pathway toward this discovery, precise and accurate characterization of the hydrogen storage performance of these materials is needed. Determining the precise and accurate hydrogen storage capacity of materials requires rigorous attention to detailed experimental parameters and methodology. Slight errors in even small experimental details can result in a large deviation in the determination of the material's true characteristics. Here, we compare measurements of the gravimetric excess hydrogen uptake capacities for two different carbon sorbent materials measured by different laboratories at ambient and liquid N2 temperatures. The participants for this study consist of research laboratories led by experienced scientists in the hydrogen storage field. This collaborative evaluation of standard sorbents illustrated considerable reproducibility over a broad range of materials' hydrogen sorption gravimetric capacities.

  7. Experimental and climical investigations of a TSH radioimmunoassay

    The system hypothalamus-pitnitary-thyroid was studied in 427 patients by radioimmunological TSH determination prior to i.v. injection of 600 μg of synthetic TSH and 30 min p.i. Different commercial TSH test kits were used. The RIA was found to be a sensitive indicator of the functional state of the system. Higher accuracy can be achieved by observing certain criteria. The TSH-RIA is a valuable tool for diagnosis and therapy control of thyroid diseases. With some slight methodological modifications, it has become part of the routine programme of the Giessen thyroid laboratory. The RIA is best suited for early detection of disturbances in the pitnitary-thyroid system; it is less efficient in course control of thyroid diseases. It can be carried out within 30 minutes and, except for two withdrawals of blood, imposes no strain on the patient. (orig./MG)

  8. Experimental investigation of sanding propensity for the Andrew completion

    Venkitaraman, A.; Li, H. [Schlumberger Perforating and Testing Center (United Kingdom); Leonard, A. J.; Bowden, P. R. [BP Exploration (United Kingdom)

    1998-12-31

    A series of laboratory experiments were performed on three reservoir core samples selected from two plot wells to confirm the likelihood of sand production during the completion phase of the planned Andrew horizontal wells, and to perform risk analysis of formation failure at the time of underbalance perforation, and expected producing conditions. CT scans revealed no perforation failure, and the core samples did not show any propensity to produce sand during single-phase oil flow. Transient sand production was observed when water cut was introduced, but sand production declined as the percentage of water cut was increased. There was no evidence of sand production in the core samples during depletion testing either, and the wells were subsequently completed with perforated cemented liners without sand control. No sand problems have been encountered in two years of production, with some wells in water cut and declined reservoir pressure of 200 psi. 8 refs., 3 tabs., 5 figs.

  9. Experimental Investigation on Element Immersing Process of Immersed Tube Tunnel

    周瑜; 谭家华; 杨建民; 张承懿

    2001-01-01

    Bridges and tunnels are good solutions to transportation problems in large cities separated by large rivers. In bridge construction great success has been achieved in China, but large-sized immersed tube tunnel construction is still new. Element immersing is an important process of immersed tube tunnel construction. The accuracy of tunnel element positioning directly determines the quality of tunnel construction. In order to study the behavior of elements during its lowering to the sea bed, the experiments carried out in the State Key Laboratory of Ocean Engineering of Shanghai Jiaotong University. In consideration of the construction experience abroad and by reference to published papers on the Oresund tunnel in Norway-Sweden and Tokyo Bay tunnel in Japan, an element model to an appropriate scale is developed. A concise description of the model experiment wave environments is carried out, and the feasibility of two immersing strategies is studied.

  10. Concept of the development and use of virtual laboratory exercises on unique experimental equipment for nuclear power facilities

    The database System for Support of Laboratory Exercises on Unique Experimental Equipment for Nuclear Power Facilities, as well as the concept of the development and use of virtual laboratory exercises in the educational process at the National Research Nuclear University MIFI, is described in the paper

  11. In-Laboratory Experiments to Investigate Driver Behavior under Advanced Traveler Information Systems (ATIS)

    Adler, Jeffrey L.; McNally, Michael G.

    1993-01-01

    In-laboratory experimentation with interactive microcomputer simulation is a useful tool for studying the dynamics of driver behavior in response to advanced traveler information systems. Limited real-world implementation of these information systems has made it difficult to observe and study how drivers seek, acquire, process, and respond to real-time information. This paper describes the design and preliminary testing of an interactive microcomputer-based animated simulator, developed at th...

  12. A n Experimental Investigation of Online Banking Adoption in China

    Guangying Hua

    2009-01-01

    O nline banking, an Internet based service enabling people to do financial transactions, has been an obstacle for the development of e - commerce in China. T his paper investigates the online banking acceptance in China. We conduct ed an experiment to investigate how users’ perception about online ba n king is af fected by the perceived ease of use of website and the privacy policy provided by the onl...

  13. The Origin of Mercury's Surface Composition, an Experimental Investigation

    Boujibar, A.; Righter, K.; Rapp, J. F.; Ross, D. K.; Pando, K. M.; Danielson, L. R.; Fontaine, E.

    2016-01-01

    Introduction: Results from MESSENGER spacecraft have confirmed the reduced nature of Mercury, based on its high core/mantle ratio and its FeO-poor and S-rich surface. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting major melting stages of the Mercurian mantle. In addition, MESSENGER has provided the most precise data to date on major elemental compositions of Mercury's surface. These results revealed considerable chemical heterogeneities that suggested several stages of differentiation and re-melting processes. This interpretation was challenged by our experimental previous study, which showed a similar compositional variation in the melting products of enstatite chondrites, which are a possible Mercury analogue. However, these experimental melts were obtained over a limited range of pressure (1 bar to 1 gigapascal) and were not compared to the most recent elemental maps. Therefore, here we extend the experimental dataset to higher pressures and perform a more quantitative comparison with Mercury's surface compositions measured by MESSENGER. In particular, we test whether these chemical heterogeneities result from mixing between polybaric melts. Our experiments and models show that the majority of chemical diversity of Mercury's surface can result from melting of a primitive mantle compositionally similar to enstatite chondrites in composition at various depths and degrees of melting. The high-Mg region's composition is reproduced by melting at high pressure (3 gigapascals) (Tab. 1), which is consistent with previous interpretation as being a large degraded impact basin based on its low elevation and thin average crust. While low-Mg NVP (North Volcanic Plains) are the result of melting at low pressure (1 bar), intermediate-Mg NVP, Caloris Basin and Rachmaninoff result from mixing of a high-pressure (3 gigapascals) and low-pressure components (1 bar for Rachmaninoff and 1 gigapascal for the other regions

  14. Experimental Investigation of the Relativistic Millimeter-Wave Gyroklystron

    Zaitsev, N. I.; Guznov, Yu. M.; Kuzikov, S. V.; Plotkin, M. E.; Tai, E. M.; Shevchenko, A. S.

    2014-01-01

    We present the results of experimental studies of the gyroklystron with cavities operated with the sequence of TE7.1.1— TE 7.3.1 volume modes and a radiation frequency of 35.4 GHz. At an accelerating voltage of 320 kV, we obtained an output radiation power of 15 MW for an efficiency over 30%, an amplification coefficient of 30 dB, an amplification band of 50 MHz, and a microwave pulse duration of 0.5 μs.

  15. Experimental investigation of the variability of concrete durability properties

    One of the main objectives of the APPLET project was to quantify the variability of concrete properties to allow for a probabilistic performance-based approach regarding the service lifetime prediction of concrete structures. The characterization of concrete variability was the subject of an experimental program which included a significant number of tests allowing the characterization of durability indicators or performance tests. Two construction sites were selected from which concrete specimens were periodically taken and tested by the different project partners. The obtained results (mechanical behavior, chloride migration, accelerated carbonation, gas permeability, desorption isotherms, porosity) are discussed and a statistical analysis was performed to characterize these results through appropriate probability density functions. (authors)

  16. Experimental Investigation on Thermoelectric Chiller Driven by Solar Cell

    Chen, Yen-Lin; Chien, Zi-Jie; Lee, Wen-Shing; Jwo, Ching-Song; Cho, Kun-Ching

    2014-01-01

    This paper presents experimental explorations on cooling performance of thermoelectric chillers being driven by solar cells, as well as comparison results to the performance being driven by fixed direct current. Solar energy is clear and limitless and can be collected by solar cells. We use solar cells to drive thermoelectric chillers, where the cold side is connected to the water tank. It is found that 250 mL of water can be cooled from 18.5°C to 13°C, where the corresponding coefficient of ...

  17. Development and experimental investigation of new seals for cryoalternators

    One of the vital problems in developing high-speed cryogenically cooled electrical machines with a cryostat common to rotor and stator is availability of reliable shaft seals. Depending on the electric machine design, reliable rotary seals are required both for working media sealing and for maintaining vacuum in rotating cryostats. Newly designed rotary seals employ the principles of radial hydrodynamic sealing. Tentative experimental studies proved the advantages of the new design over the traditional radial hydrodynamic seals. Pressure difference withstood by the new seals with no obvious sealed media leaks is about 1.5 times greater than that provided by a conventional seal

  18. Experimental investigation on ducted counter-rotating axial flow fans

    Nouri, Hussain; Ravelet, Florent; Bakir, Farid; Sarraf, Christophe

    2011-01-01

    An experimental study on counter-rotating axial-flow fans was carried out. The fans of diameter D = 375 mm were designed using an inverse method. The counter-rotating fans operate in a ducted-flow configuration and the overall performances are measured in a normalized test bench. The rotation rate of each fan is independently controlled. The axial spacing between the fans can vary from 10 to 50 mm by steps of 10 mm. The results show that the efficiency is strongly increased compared to a conv...

  19. Experimental investigation of the role of ions in aerosol nucleation

    Enghoff, Martin Andreas Bødker

    The role of ions in producing aerosols in Earth’s atmosphere is an area of very active research. Atmospheric and experimental observations have shown that the nucleation of aerosol particles can occur under conditions that cannot be explained by classical nucleation theory. Several ideas have been...... work demonstrated that ions, produced by cosmic rays in the atmosphere, are likely to play an important role in the production of new aerosol particles. The mechanism whereby energetic cosmic rays can promote the production of cloud condensation nuclei at low altitudes constitutes a link between cosmic...

  20. Experimental investigation of natural convection losses from open cavities

    Experimental results for natural convection in a cavity are reported. Both constrained andd unconstrained cavity geometries were studied. Detailed velocity profiles were obtained using Laser doppler velocimetry for Rayleigh numbers between 3 x 1010 and 2 x 1011, corresponding to a constant elevated wall temperature boundary condition. Characteristics of two-dimensional and three-dimensional flows obtained with dye flow visualization are discussed, including boundary layer transition to turbulence, flow patterns in the cavity, and flow outside of the cavity. Local Nusselt number is correlated with local Rayleigh number for constrained and unconstrained cavities

  1. Experimental investigations on the four-loop test facility ROCOM

    For the analysis of the core behaviour during boron dilution transients and main steam line breaks, coupled neutron kinetic/thermal hydraulic codes are necessary. These codes must contain models of the coolant mixing on its way from the inlet nozzles to the core entrance, because the reactivity insertion strongly depends on the distribution of temperature and boron concentration at the core inlet. To model the coolant mixing the ROCOM test facility was built, a fluid dynamic 1:5 scaled model of the Konvoi reactor. The experimental results at steady state flow conditions are presented in a survey form. (orig.)

  2. Experimental investigation of drag on a compliant surface

    Mcmichael, J. M.; Klebanoff, P. S.; Mease, N. E.

    1980-01-01

    The feasibility of reducing turbulent skin-friction drag by means of surface compliance was studied experimentally in a fully developed flat-plate turbulent boundary layer in air, using a membranous surface backed by a thin cavity containing a layer of polyurethane foam. Surface motion characteristics, boundary layer structure, and overall drag were measured over a range of freestream speeds from 7 to 30 m/sec, and a range of membrane tensions from 44 to 350 N/m. Low-amplitude long-wavelength motions predominate, and no significant change from the rigid surface skin-friction coefficients was observed.

  3. Experimental investigation of the transverse SBS excitation in anisotropic crystals

    Bel`kov, S.A.; Dolgopolov, Yu.V.; Kochemasov, G.G.; Kulikov, S.M.; Solov`eva, M.N.; Sukharev, S.A.; Voronich, I.N. [Russian Federal Nuclear Center, Arzamas (Russian Federation). Inst. of Experimental Physics

    1995-12-31

    One of the factors which should be taken into account in creating high-power broad-aperture neodymium laser facilities is the possibility of generating the backward and transverse stimulated Brillouin scattering(SBS) in optical elements of the facility. Here, transverse SBS characteristics of the KDP crystal were determined by the method of SBS generation excitation in the transverse resonator. Fused silica was utilized as the test medium. Experimental oscillograms of Stokes pulses were processed by the method of pulse form approximation using the four-parametric function of time.

  4. Experimental investigation of the transverse SBS excitation in anisotropic crystals

    One of the factors which should be taken into account in creating high-power broad-aperture neodymium laser facilities is the possibility of generating the backward and transverse stimulated Brillouin scattering(SBS) in optical elements of the facility. Here, transverse SBS characteristics of the KDP crystal were determined by the method of SBS generation excitation in the transverse resonator. Fused silica was utilized as the test medium. Experimental oscillograms of Stokes pulses were processed by the method of pulse form approximation using the four-parametric function of time

  5. A laboratory experimental setup for photo-absorption studies using synchrotron radiation

    Shastri, A; Saraswati, P; Sunanda, K

    2002-01-01

    The photophysics beamline, which is being installed at the 450 MeV Synchrotron Radiation Source (SRS), Indus-l, is a medium resolution beamline useful for a variety of experiments in the VUV region viz. 500-2000 A. One of the major applications of this beamline is gas-phase photo-absorption studies. An experimental set up to be used for these experiments was designed, developed and tested in our laboratory. The setup consists of a high vacuum absorption cell, 1/4 m monochromator and detection system. For the purpose of testing, xenon and tungsten continuum sources were used and absorption spectra were recorded in the UV region. This setup was used to record the absorption spectrum of a few molecules like acetone, ammonia, benzene, formaldehyde and acetaldehyde in order to evaluate the performance of the experimental system which will subsequently be used with the photophysics beamline. Details of the design, fabrication and testing of the absorption cell and experimental procedures are presented in this repor...

  6. Theoretical and experimental investigations of nano-Schottky contacts

    Rezeq, Moh'd.; Eledlebi, Khouloud; Ismail, Mohammed; Dey, Ripon Kumar; Cui, Bo

    2016-07-01

    Formation of metal-semiconductor (M-S) contacts at sub-20 nanometer range is a key requirement for down-scaling of semiconductor devices. However, electrical measurements of M-S contacts at this scale have exhibited dramatic change in the current-voltage (I-V) characteristics compared to that of conventional (or planar) Schottky contacts. This change is actually attributed to the limited metal contact region where the transferred charge from the semiconductor into the metal is confined to a small surface area, which in turn results in an enhanced electric field at the nano-M-S interface. We here present detailed theoretical models to analyze the nano-M-S junctions at 10 nm contact range and then implement this analysis on the experimental data we conducted under these conditions. Both theoretical and experimental results demonstrate a significant effect of the contact size on the electronic structure of the M-S junctions and thus on the I-V characteristics. This effect is rather prominent when the size of the metal contact is substantially smaller than the width of conventional depletion region of the relevant planar M-S contacts.

  7. Experimental investigation two phase flow in direct methanol fuel cells

    Direct methanol fuel cells (DMFC) have received many attentions specifically for portable electronic applications since it utilize methanol which is in liquid form in atmospheric condition and high energy density of the methanol. Thus it eliminates the storage problem of hydrogen. It also eliminates humidification requirement of polymeric membrane which is a problem in PEM fuel cells. Some electronic companies introduced DMFC prototypes for portable electronic applications. Presence of carbon dioxide gases due to electrochemical reactions in anode makes the problem a two phase problem. A two phase flow may occur at cathode specifically at high current densities due to the excess water. Presence of gas phase in anode region and liquid phase in cathode region prevents diffusion of fuel and oxygen to the reaction sites thus reduces the performance of the system. Uncontrolled pressure buildup in anode region increases methanol crossover through membrane and adversely effect the performance. Two phase flow in both anode and cathode region is very effective in the performance of DMYC system and a detailed understanding of two phase flow for high performance DMFC systems. Although there are many theoretical and experimental studies available on the DMFC systems in the literature, only few studies consider problem as a two-phase flow problem. In this study, an experimental set up is developed and species distributions on system are measured with a gas chromatograph. System performance characteristics (V-I curves) is measured depending on the process parameters (temperature, fuel ad oxidant flow rates, methanol concentration etc)

  8. Experimental investigation of adaptive control of a parallel manipulator

    Nguyen, Charles C.; Antrazi, Sami S.

    1992-01-01

    The implementation of a joint-space adaptive control scheme used to control non-compliant motion of a Stewart Platform-based Manipulator (SPBM) is presented. The SPBM is used in a facility called the Hardware Real-Time Emulator (HRTE) developed at Goddard Space Flight Center to emulate space operations. The SPBM is comprised of two platforms and six linear actuators driven by DC motors, and possesses six degrees of freedom. The report briefly reviews the development of the adaptive control scheme which is composed of proportional-derivative (PD) controllers whose gains are adjusted by an adaptation law driven by the errors between the desired and actual trajectories of the SPBM actuator lengths. The derivation of the adaptation law is based on the concept of model reference adaptive control (MRAC) and Lyapunov direct method under the assumption that SPBM motion is slow as compared to the controller adaptation rate. An experimental study is conducted to evaluate the performance of the adaptive control scheme implemented to control the SPBM to track a vertical and circular paths under step changes in payload. Experimental results show that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.

  9. Investigating Climate Change and Reproduction: Experimental Tools from Evolutionary Biology

    Oliver Y. Martin

    2012-09-01

    Full Text Available It is now generally acknowledged that climate change has wide-ranging biological consequences, potentially leading to impacts on biodiversity. Environmental factors can have diverse and often strong effects on reproduction, with obvious ramifications for population fitness. Nevertheless, reproductive traits are often neglected in conservation considerations. Focusing on animals, recent progress in sexual selection and sexual conflict research suggests that reproductive costs may pose an underestimated hurdle during rapid climate change, potentially lowering adaptive potential and increasing extinction risk of certain populations. Nevertheless, regime shifts may have both negative and positive effects on reproduction, so it is important to acquire detailed experimental data. We hence present an overview of the literature reporting short-term reproductive consequences of exposure to different environmental factors. From the enormous diversity of findings, we conclude that climate change research could benefit greatly from more coordinated efforts incorporating evolutionary approaches in order to obtain cross-comparable data on how individual and population reproductive fitness respond in the long term. Therefore, we propose ideas and methods concerning future efforts dealing with reproductive consequences of climate change, in particular by highlighting the advantages of multi-generational experimental evolution experiments.

  10. Experimental investigation of a liquid-flooded Ericsson cycle cooler

    Hugenroth, Jason; Braun, James; Groll, Eckhard; King, Galen [Purdue University, School of Mechanical Engineering, Ray W. Herrick Laboratories, 140 South Intramural Drive, West Lafayette, IN 47907 (United States)

    2008-11-15

    An experimental test program was conducted on a novel Ericsson cycle heat pump. The concept uses liquid flooding of the compressor and expander to approach isothermal compression and expansion processes. Open drive automotive scrolls were used in the experimental system. Numerous experiments were run at various conditions using nitrogen as the refrigerant and alkyl-benzene oil as the flooding liquid. Cooling capacities of over 670 W and volumetric cooling capacities of more than 110 kJ/m{sup 3} were measured. Second law efficiencies of approximately 3% were achieved. Similar to other gas cycles, the cycle performance is very sensitive to the adiabatic efficiencies of the rotating equipment and the performance of the off-the-shelf equipment was not sufficient to achieve high cycle efficiency. In addition, large pressure drops occurred in the system due to the instrumentation used and the long and arduous flow paths. The scroll compressor and expander were found to perform well considering that they were not designed for the operating conditions encountered. (author)

  11. Experimental Investigations on Performance and Design Parameters of Solar Chimney

    İbrahim ÜÇGÜL

    2010-03-01

    Full Text Available In this study, a solar chimney system, which is suitable for climate conditions of Isparta and its surroundings, is designed theoretically. With the aim of studying experimentally as based on that design, a prototype solar chimney has been constructed in the university campus area of Süleyman Demirel University-RACRER (Research and Application Center for Renewable Energy Resources. Additionally, after the experimental studies, the system is modelled theoretically with depending on the design. Then, this model constituted the basis for developed computer programme and performance parameters of the system are obtained. The obtained findings showed that the solar chimney, which is suitable for climate conditions of Isparta and its surroundings, are sufficient for determining design and performance parameters. The results showed that electricity generation with solar chimney is suitable for areas which have high solar incident and long sunshine duration and similar climate conditions as such as Isparta and its surroundings. When the results are evaluated, it is seen that electricity generation power of solar chimney depends on the region solar data, the chimney height and the size of greenhouse area.

  12. Control strategies for friction dampers: numerical assessment and experimental investigations.

    Coelho H.T.

    2014-01-01

    Full Text Available The use of friction dampers has been proposed in a wide variety of mechanical systems for which it is not possible to apply viscoelastic materials, fluid based dampers or others viscous dampers. An important example is the application of friction dampers in aircraft engines to reduce the blades vibration amplitudes. In most cases, friction dampers have been studied in a passive way, however, a significant improvement can be achieved by controlling the normal force in the dampers. The aim of this paper is to study three control strategies for friction dampers based on the hysteresis cycle. The first control strategy maximizes the energy removal in each harmonic oscillation cycle, by calculating the optimum normal force based on the last displacement peak. The second control strategy combines the first one with the maximum energy removal strategy used in the smart spring devices. Finally, is presented the strategy which homogenously modulates the friction force. Numerical studies were performed with these three strategies defining the performance metrics. The best control strategy was applied experimentally. The experimental test rig was fully identified and its parameters were used for the numerical simulations. The obtained results show the good performance for the friction damper and the selected strategy.

  13. Numerical and experimental investigations of human swimming motions.

    Takagi, Hideki; Nakashima, Motomu; Sato, Yohei; Matsuuchi, Kazuo; Sanders, Ross H

    2016-08-01

    This paper reviews unsteady flow conditions in human swimming and identifies the limitations and future potential of the current methods of analysing unsteady flow. The capability of computational fluid dynamics (CFD) has been extended from approaches assuming steady-state conditions to consideration of unsteady/transient conditions associated with the body motion of a swimmer. However, to predict hydrodynamic forces and the swimmer's potential speeds accurately, more robust and efficient numerical methods are necessary, coupled with validation procedures, requiring detailed experimental data reflecting local flow. Experimental data obtained by particle image velocimetry (PIV) in this area are limited, because at present observations are restricted to a two-dimensional 1.0 m(2) area, though this could be improved if the output range of the associated laser sheet increased. Simulations of human swimming are expected to improve competitive swimming, and our review has identified two important advances relating to understanding the flow conditions affecting performance in front crawl swimming: one is a mechanism for generating unsteady fluid forces, and the other is a theory relating to increased speed and efficiency. PMID:26699925

  14. A n Experimental Investigation of Online Banking Adoption in China

    Guangying Hua

    2009-05-01

    Full Text Available O nline banking, an Internet based service enabling people to do financial transactions, has been an obstacle for the development of e - commerce in China. T his paper investigates the online banking acceptance in China. We conduct ed an experiment to investigate how users’ perception about online ba n king is af fected by the perceived ease of use of website and the privacy policy provided by the online banking website. We find that both perceived ease of use and privacy policy have a significant impact on user’s adoption of online banking. In this study , we also investigate the relative importance of perceived ease of use, privacy, and security. P erceived ease of use is of less importance than privacy and security. S ecurity is the most important factor influencing user ’ s adoption. A discussion of the implications of these results and limitations are provided at the end

  15. An experimental investigation into the behavior of glassfiber reinforced polymer elements at elevated temperatures

    Qian, Kenny Zongxi

    This thesis presents a literature review and results of an experimental study about the effects of high temperatures and cyclic loading on the physical and mechanical properties of pultruded glass fiber reinforced polymer (GFRP) square tubes used in civil engineering structural applications. Most laboratory researches have focused mainly on the effect of elevated temperature on the compressive strength of the GFRP square tubes. Limited research has focused on the tensile strength of GFRP coupons under elevated temperatures. Dynamic Mechanical Analyses (DMA) was performed to assess the viscoelastic behavior including the glass transition temperature of GFRP. Sixteen GFRP coupons were tested under elevated temperatures to investigate the tensile strength and the effect of elevated temperatures to the tensile strength of GFRP. The results of an experimental program performed on fifty GFRP square tubes with different designs in 1.83m at normal temperatures were discussed to investigate compression performance. Another experimental program was performed on 20 GFRP square tubes with different designs in 1.22m under elevated temperatures. The experiments results were discussed and showed that the compressive strength of GFRP material was influenced by several factors including the glass transition v temperature and the connection bolts. Failure modes under 25°C and 75°C were crushing and the failure modes with the temperatures above 75°C were not typical crushing due to the glass transition of GFRP. Sixteen GFRP square tubes with length of 0.61m were tested with the same experimental program under elevated temperatures as the control group. Twelve GFRP square tubes with the same size were subjected to cyclic loading under elevated temperatures to investigate the effect of the cyclic loading to the compression properties of GFRP material. According to the experimental results and the discussion, the stiffness was reduced by the cyclic loading. On the contrary, the

  16. Laboratory experiments investigating entrainment by debris flows and associated increased mobility

    Moberly, D.; Maki, L.; Hill, K. M.

    2014-12-01

    As debris flows course down a steep hillside they entrain bed materials such as loose sediments. The entrainment of materials not only increases the size of the debris flows but the mobility as well. The mechanics underlying the particle entrainment and the associated increased mobility are not well-understood. Existing models for the entrainment process include those that explicitly consider stress ratios, the angle of inclination, and the particle fluxes relative to those achieved under steady conditions. Others include an explicit consideration of the physics of the granular state: the visco-elastic nature of particle flows and, alternatively, the role of macroscopic force chains. Understanding how well these different approaches account for entrainment and deposition rates is important for accurate debris flow modeling, both in terms of the rate of growth and also in terms of the increased mobility associated with the entrainment. We investigate how total and instantaneous entrainment and deposition vary with macroscopic stresses and particle-scale interactions for different particle sizes and different fluid contents using laboratory experiments in an instrumented experimental laboratory debris flow flume. The flume has separate, independent water supplies for the bed and "supply" (parent debris flow), and the bed is instrumented with pore pressure sensors and a basal stress transducer. We monitor flow velocities, local structure, and instantaneous entrainment and deposition rates using a high speed camera. We have found that systems with a mixture of particle sizes are less erosive and more depositional than systems of one particle size under otherwise the same conditions. For both mixtures and single-sized particle systems, we have observed a relatively linear relationship between total erosion and the slope angle for dry flows. Increasing fluid content typically increases entrainment. Measurements of instantaneous entrainment indicate similar dependencies

  17. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  18. Experimental and numerical investigation of flameless pulverised coal combustion

    Stadler, Hannes Alexander

    2010-01-01

    Aim of this work was to investigate the applicability of flameless combustion technology principles to pulverised coal combustion. Lab-scale experiments showed, that it is highly beneficial in terms of NOx reduction to use N2 as coal carrier instead of air. The finding has been supported by OH* chemiluminescence imaging which revealed a suppression of ignition in the coal jet when N2 is used. With the investigated settings, NOx emissions are always above the legislative limit of 200 mg/m3 (st...

  19. Experimental investigation of a low pressure capacitively-coupled discharge

    Kechkar, Samir

    2015-01-01

    In this thesis, a low-pressure, capacitively-coupled plasma (CCP) was investigated using the well established techniques of actinometry, two-photon laser-induced fluorescence (TALIF), appearance potential mass spectrometry (APMS), Langmuir and hairpin probes. The behaviour of atomic oxygen density in mixtures of O2/SF6 was investigated using TALIF and a Langmuir probe. A significant five-fold increase of [O] was observed when O2 plasma was diluted with SF6 (5 - 10%). This was attributed to a ...

  20. Theoretical and experimental investigation of thermohydrologic processes in a partially saturated, fractured porous medium

    Green, R.T.; Manteufel, R.D. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications; Dodge, F.T.; Svedeman, S.J. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1993-07-01

    The performance of a geologic repository for high-level nuclear waste will be influenced to a large degree by thermohydrologic phenomena created by the emplacement of heat-generating radioactive waste. The importance of these phenomena is manifest in that they can greatly affect the movement of moisture and the resulting transport of radionuclides from the repository. Thus, these phenomena must be well understood prior to a definitive assessment of a potential repository site. An investigation has been undertaken along three separate avenues of analysis: (i) laboratory experiments, (ii) mathematical models, and (iii) similitude analysis. A summary of accomplishments to date is as follows. (1) A review of the literature on the theory of heat and mass transfer in partially saturated porous medium. (2) A development of the governing conservation and constitutive equations. (3) A development of a dimensionless form of the governing equations. (4) A numerical study of the importance and sensitivity of flow to a set of dimensionless groups. (5) A survey and evaluation of experimental measurement techniques. (6) Execution of laboratory experiments of nonisothermal flow in a porous medium with a simulated fracture.

  1. Theoretical and experimental investigation of thermohydrologic processes in a partially saturated, fractured porous medium

    The performance of a geologic repository for high-level nuclear waste will be influenced to a large degree by thermohydrologic phenomena created by the emplacement of heat-generating radioactive waste. The importance of these phenomena is manifest in that they can greatly affect the movement of moisture and the resulting transport of radionuclides from the repository. Thus, these phenomena must be well understood prior to a definitive assessment of a potential repository site. An investigation has been undertaken along three separate avenues of analysis: (i) laboratory experiments, (ii) mathematical models, and (iii) similitude analysis. A summary of accomplishments to date is as follows. (1) A review of the literature on the theory of heat and mass transfer in partially saturated porous medium. (2) A development of the governing conservation and constitutive equations. (3) A development of a dimensionless form of the governing equations. (4) A numerical study of the importance and sensitivity of flow to a set of dimensionless groups. (5) A survey and evaluation of experimental measurement techniques. (6) Execution of laboratory experiments of nonisothermal flow in a porous medium with a simulated fracture

  2. Experimental Investigation of a Helicopter Rotor Hub Wake

    Reich, David; Elbing, Brian; Schmitz, Sven

    2013-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48'' Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. The main objectives of the experiment were to understand the spatial- and temporal content of the unsteady wake downstream of a rotor hub up to a distance corresponding to the empennage. Primary measurements were the total hub drag and velocity measurements at three nominal downstream locations. Various flow structures were identified and linked to geometric features of the hub model. The most prominent structures were two-per-revolution (hub component: scissors) and four-per-revolution (hub component: main hub arms) vortices shed by the hub. Both the two-per-revolution and four-per-revolution structures persisted far downstream of the hub, but the rate of dissipation was greater for the four-per-rev structures. This work provides a dataset for enhanced understanding of the fundamental physics underlying rotor hub flows and serves as validation data for future CFD analyses.

  3. Experimental investigation of the ecological hybrid refrigeration cycle

    Cyklis, Piotr; Kantor, Ryszard; Ryncarz, Tomasz; Górski, Bogusław; Duda, Roman

    2014-09-01

    The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.

  4. Experimental investigation of the ecological hybrid refrigeration cycle

    Cyklis Piotr

    2014-09-01

    Full Text Available The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.

  5. Laboratory Investigation of High Temperature Corrosion in Straw fired Power Plants

    Montgomery, Melanie

    1998-01-01

    Corrosion in straw-fired power plants has been studied in the laboratory for Sandvik 8LR30 and Sanicro 28. The influence of HCl and SO2 was investigated at 600C metal temperature for upto 300 hours.In addition the corrosion behaviour of the same materials was examined in ash taken from a straw...

  6. Cloning Yeast Actin cDNA Leads to an Investigative Approach for the Molecular Biology Laboratory

    Black, Michael W.; Tuan, Alice; Jonasson, Erin

    2008-01-01

    The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the…

  7. LABORATORY SYSTEM FOR INVESTIGATION OF FATIGUE DEGRADATION IN FERROMAGNETIC MATERIALS AND EXAMPLES OF ITS IMPLEMENTATION

    V. N. Busko

    2012-01-01

    Full Text Available Shows the block diagram of the laboratory system for investigation of fatigue degradation in ferromagnetic materials by method of magnetic noise. Describes the principle operation of the system, given the practical results its using in assessment of the degree fatigue degradation in ferromagnetic structural steels and alloys on the basis of cyclic testing and measuring the intensity of the magnetic noise.

  8. Laboratory Experiment Investigating the Impact of Ocean Acidification on Calcareous Organisms

    Perera, Alokya P.; Bopegedera, A. M. R. P.

    2014-01-01

    The increase in ocean acidity since preindustrial times may have deleterious consequences for marine organisms, particularly those with calcareous structures. We present a laboratory experiment to investigate this impact with general, introductory, environmental, and nonmajors chemistry students. For simplicity and homogeneity, calcite was…

  9. Remedial investigation and feasibility study for the Lawrence Livermore National Laboratory Site 300 Pit 7 Complex

    Taffet, M.J. (Lawrence Livermore National Lab., CA (USA)); Oberdorfer, J.A. (San Jose State Univ., CA (USA)); McIlvride, W.A. (Weiss Associates, Oakland, CA (USA))

    1989-10-01

    This report summarizes the results and conclusions of the investigation of tritium and other compounds in ground water in the vicinity of landfills at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. 91 refs., 110 figs., 43 tabs.

  10. Investigation of a Chaotic Double Pendulum in the Basic Level Physics Teaching Laboratory

    Vanko, Peter

    2007-01-01

    First-year physics students at the Technical University of Budapest carry out a wide range of measurements in the Basic Level Physics Teaching Laboratory. One of the most exciting experiments is the investigation of a chaotic double pendulum by a V-scope, a powerful three-dimensional motion tracking system. After a brief introduction to the…

  11. Experimental investigation of a.c. losses in cabled superconductors

    A.c. losses in multifilamentary composite superconducting strands and cables have been measured in adiabatic conditions for transverse field sweep rates up to 50 T s-1. Measurements were performed on NbTi and Nb3Sn conductors of several configurations and surface preparations: single strands, soldered strands and cables of varying degrees of compaction composed of bare strands, with CuNi barriers and strands with chrome plating. The experimental data agree well with existing loss models. The data suggests that the total cable loss grows as approx.= 1/(void)3 below void fractions of 40%. This observed cable loss dependence on void fraction does not agree well with a previously proposed model. (author)

  12. Experimental Investigation on Sandstone Rock Permeability of Pakistan Gas Fields

    Raza, Arshad; Bing, Chua Han; Nagarajan, Ramasamy; Hamid, Mohamed Ali

    2015-04-01

    Permeability is the ability of formation to produce hydrocarbon which is affected by compaction, pore size, sorting, cementation, layering and clay swelling. The effect of texture on permeability in term of grain size, sorting, sphericity, degree of cementing has been reported in literature. Also, the effect of permeability on capillary pressure, irreducible water saturation, displacement pressure and pore geometry constant has been studied separately. This preliminary study presents the experimental results of eight samples to understand the effect of similar factors of texture on permeability. With the knowledge of the results, it can be said that the effect of grain size, cementation, texture material, sphericity, and porosity can't be observed on permeability except sorting when less than ten samples are considered from different depositional environment. The results also show the impact of permeability on capillary pressure, irreducible water saturation, and displacement pressure and pore geometry index as similar as published in the literature.

  13. An experimental investigation of double beta decay of 100Mo

    New limits on half-lives for several double beta decay modes of 100Mo were obtained with a novel experimental system which included thin source films interleaved with a coaxial array of windowless silicon detectors. Segmentation and timing information allowed backgrounds originating in the films to be studied in some detail. Dummy films containing 96Mo were used to assess remaining backgrounds. With 0.1 mole years of 100Mo data collected, the lower half-life limits at 90% confidence were 2.7 /times/ 1018 years for decay via the two-neutrino mode, 5.2 /times/1019 years for decay with the emission of a Majoron, and 1.6 /times/ 1020 years and 2.2 /times/ 1021 years for neutrinoless 0+ → 2+ and 0+ → 0+ transitions, respectively. 50 refs., 38 figs., 11 tabs

  14. Experimental investigation of transverse flow estimation using transverse oscillation

    Udesen, Jesper; Jensen, Jørgen Arendt

    2003-01-01

    . The flow is generated with the Compuflow 1000 programmable flow pump giving a parabolic velocity profile of the blood mimicking fluid in the flow phantom. The profiles are estimated for 310 trials each containing of 32 data vectors. The relative mean bias over entire blood vessel is found to be 10......Conventional ultrasound scanners can only display the blood velocity component parallel to the ultrasound beam. Introducing a laterally oscillating field gives signals from which the transverse velocity component can be estimated using 2:1 parallel receive beamformers. To yield the performance of...... the approach, this paper presents simulated and experimental results, obtained at a blood velocity angle transverse to the ultrasound beam. The Field II program is used to simulate a setup with a 128 element linear array transducer. At a depth 27 mm a virtual blood vessel of radius 2.4 mm is situated...

  15. Experimental investigation of damping force of twin tube shock absorber

    Sandip K. Kadu

    2014-09-01

    Full Text Available A shock absorber is a mechanical device to damp shock impulse and convert kinetic energy into thermal energy. The damping effect of shock absorber depends on damping force and damping force is affected by various process parameters. In this analysis three process parameters damping diameter(A, number of holes(B and suspension velocity(C were considered and their effect on damping force of shock absorber was studied and accordingly suitable orthogonal array was selected by taguchi method. Experiment conducted on servo hydraulic testing machine and after conducting experiments damping force was measured and with the help of S/N ratio, ANOVA, Regression analysis optimum parameter values can be obtained and confirmation experiments was carried out. Twin tube shock absorber was used to carry out experimentation.

  16. Experimental Investigation on Active Cooling for Ceramic Matrix Composite

    PENG Li-na; HE Guo-qiang; LIU Pei-jin

    2009-01-01

    Compared with conventional materials, the active cooling ceramic matrix composite used in ramjet or scramjet makes their structures lighter in mass and better in performance. In this paper, an active and a passive cooling refractory composite specimens are designed and tested with an experimental facility composed of multilayer smale scale cooling penel which consists of a water cooling system and a ceramic matrix composite specimen, and a gas generator used for providing lower and higher transfer rate gases to simulate the temperatures in combustion chamber of ramjst. The active cooling specimen can continuously suffer high surface temperature of 2 000K for 30s and that of 3 000 K for 9.3 s, respectively. The experiment results show that the active cooling composite structure is available for high-temperature condition in ramjet.

  17. The ideal flip-through impact: experimental and numerical investigation

    Bredmose, Henrik; Hunt-Raby, A.; Jayaratne, R.;

    2010-01-01

    Results from a physical experiment and a numerical computation are compared for a flip-through type wave impact on a vertical face, typical of a seawall or breakwater. The physical wave was generated by application of the focused-wave group technique to the amplitudes of a JONSWAP spectrum......-176, 1990) in their original numerical discovery of the flip-through impact and (2) the assumptions behind the potential-flow model remain reasonably valid, until the flip-through jet begins to break into droplets. In the present study, the potential-flow model has been extended with the Schwarz...... with wave gauge data for the wave that produces the flip-through impact. Experimental video frames with the corresponding numerical free-surface profiles overlaid show an excellent match for the flow contraction prior to impact. The deviations between the experiment and numerical solution that occur...

  18. EXPERIMENTAL INVESTIGATION & NUMERICAL ANALYSIS OF COMPOSITE LEAF SPRING

    K. K. JADHAO,

    2011-06-01

    Full Text Available The Automobile Industry has shown keen interest for replacement of steel leaf spring with that of glass fiber composite leaf spring, since the composite material has high strength to weight ratio, good corrosion resistance and tailor-able properties. The objective of present study was to replace material for leaf spring. In present study the material selected was glass fiber reinforced plastic (GFRP and the polyester resin (NETPOL 1011 can be used which was more economical this will reduce total cost of composite leaf spring. A spring with constant width and thickness was fabricated by hand lay-up technique which was very simple and economical. The experiments were conducted on UTM and numerical analysis was done via (FEA using ANSYS software. Stresses and deflection results were verified for analytical and experimental results. Result shows that, the composite spring has stresses much lower than steel leaf spring and weight of composite spring was nearly reduced up to 85%.

  19. Experimental investigation of different configurations in a flexible heliac

    The effect of varying the magnetic configuration by adding an l = 1 helical winding to a standard heliac has been studied experimentally. Equilibrium plasma configurations are obtained in the range 0.7 ≤ ζ(0) ≤ 1.86. Analysis of the plasma pressure profiles measured by Langmuir probes in this range all show good agreement between the plasma isobars and the computed vacuum magnetic surfaces; for configuration with ζ(0) close to unity it is necessary to take a known error fields into account. The deterioration of the plasma confinement when low-order rational surfaces are present is clearly observed, and the magnetic islands which result from the resonance between the low-order rational surface ζ=3/2, and the m=2,n=3 vacuum field harmonics inherent in the geometry are identified with features observed in both the plasma pressure and the floating potential profiles

  20. Experimental investigation of different configurations in a flexible heliac

    The effect of varying the magnetic field configuration by adding an l=1 helical winding to the standard heliac has been studied experimentally. Equilibrium plasma configurations in the range 0.7 ≤ t(0) ≤ 1.86 have been obtained. Analyses of the plasma pressure profiles measured by Langmuir probes in this range show good agreement between the plasma isobars and the computed vacuum magnetic surfaces; for configurations with a rotational transform t(0) close to unity it is necessary to take known error fields into account. When low-order rational surfaces are present, a deterioration of the plasma confinement is clearly observed. Magnetic islands, resulting from the resonance between the low-order rational surface t = 3/2 and the m=2, n=3 vacuum field harmonics inherent in the geometry, are identified with features observed in both the plasma pressure and the floating potential profiles. (author). 8 refs, 13 figs, 1 tab

  1. Experimental investigation of nanosecond discharge plasma aerodynamic actuation

    Wu Yun; Li Ying-Hong; Jia Min; Liang Hua; Song Hui-Min

    2012-01-01

    In this paper we report on an experimental study of the characteristics of nanosecond pulsed discharge plasma aerodynamic actuation. The N2 (C3Ⅱu) rotational and vibrational temperatures are around 430 K and 0.24 eV,respectively. The emission intensity ratio between the first negative system and the second positive system of N2,as a rough indicator of the temporally and spatially averaged electron energy,has a minor dependence on applied voltage amplitude.The induced flow direction is not parallel,but vertical to the dielectric layer surface,as shown by measurements of body force,velocity,and vorticity.Nanosecond discharge plasma aerodynamic actuation is effective in airfoil flow separation control at freestream speeds up to 100 m/s.

  2. EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TURBULENT AIR-CUSHION-CASCADE

    2002-01-01

    Experimental and numerical studies of air-cushion-cascade were conducted and described. The SIMPLE algorithm combined with the normal k-ε turbulence model was adopted to simulate the air-phase flow. The experiment was carried out an IFA 300 anemometer. The flow field was measured for different ratios of main-stream velocity to jet velocity, different numbers of gaps and a couple of gap widths. The contur of the air-cushion was obtained, and the numerical calculations gave a closed-form result. The results show that the air-cushion thickness would increase with the increase of the jet volcoity, gap width and gap number mainly determined by the jet in the former half cascade. The possibility to achieve anti-erosion by the turbulent jet was examined and confirmed.

  3. An experimental and analytical investigation of a threaded fastener

    Sipilae, Sisko

    1993-11-01

    The fatigue strength of a connecting rod consisting of a threaded bar and an integral lug end was analyzed both experimentally and analytically. Different geometries and manufacturing methods were considered. These included cut and rolled threads, lugs which were welded to the threaded bar or machined with the threads from a single piece of material, and rods both with and without a reduced section between the threads and lug end. Fatigue tensile tests showed the reduced section between lug and threads and sometimes the lug itself to be the weakest point of the component. The rods with a welded lug and a reduced section between threads and lug were found to have the highest fatigue strengths. Rolled threads showed higher fatigue strength than did cut threads at the endurance limit. All analytically determined fatigue limits were conservative compared to test results.

  4. Experimental Investigation of Dynamic Behavior of Viaducts by Shock Loading

    Adrian Leopa

    2011-09-01

    Full Text Available The viaducts are constructions designed to provide ground communication over different geographical barriers such as examples valleys (depressions. To avoid partial or total destruction that may occur after dynamic stress from road (or railroad or seismic activity, in viaducts structure is placed systems for dynamic isolation. Thus, the viaduct deck is mounted on viscoelastic type systems designed to provide protection from the shock loading. Over time, due to an intensive and varied of dynamic loadings, these isolation systems suffer degradation of viscoelastic links, something that leads to uncontrolled movements of the system. In this work, are established and quantified on experimental way, kinematics parameters of the vibration of the viaduct deck loading by shocks, which will be monitored over time to establish the degree of normality in the functioning of viscoelastic systems.

  5. Experimental Investigation of Gas-Lift Use in Nuclear Reactors

    This work briefly describes the selection of type of a two-phase flow, suitable for intensifying of a natural flow of nuclear reactors with liquid fuel – cooling mixture molten salts and the description of a „Two-phase flow demonstrator“ (TFD) used for experimental study of the „gas-lift“ system, and its influence on the support of natural convection. The experimental device works with water and the air is used as a gas. The used perspex limits the temperature to 60°C. There are stated relations for the description of a natural flow in model device and relations for determination of suitable liquid/gas ratio of the gas-lift in the study. There is described the measuring device and the application of the TFD sensor. The flow rate of water is measured by the induction flow meter that gives a voltage signal, which is brought into a computer for processing. Measuring of the velocity distribution and the size of the bubbles is performed by using the PIV method (Particle Image Velocimetry). There was created a model of dispersive bubble flow for application in nuclear reactors. The basic calculation is performed by using the homogeneous flow, where is considered, that the velocity of the fluid and the gas is equal and there is measured the relative share of the gas in homogeneous mixture with the fluid for this case. There are considered the temperature, pressure and flow rate velocity changes of the fluid and gas in the gas-lift cylinder and their influence on the size and velocity of the bubbles for the heat and mass transport of this mixture by the gas-lift cylinder. (author)

  6. Experimental investigation of heat transfer in the transition region

    An experimental study of forced convective boiling heat transfer for upflow of water in a circular tube has been performed using a heat transfer system with temperature-controlled indirect Joule heating. By this way, complete boiling curves from incipience of boiling to fully established film boiling could be measured including the transition boiling regime. The boiling curves were traversed in a quasi-steady mode, usually by increasing the set-point wall temperature average at a constant time rate of 3.5 K/min. The vast majority of results covers the pressure range from 0.1 to 1.0 MPa, mass flux range from 25 to 200 kg/(m2s) and inlet subcooling from 5 to 30 K. The experimental results of transition boiling heat transfer obtained in the centre of the test section were correlated in terms of a heat flux/surface superheat relationship that was normalized by the maximum heat flux (local CHF) and its associated wall superheat, respectively, to anchor the transition boiling curve to its low temperature limit. The upper surface temperature limit of the transition boiling regime was determined by inspection of measured axial distributions of surface heat flux and corresponding wall temperature. The critical heat flux (CHF) and its corresponding wall superheat has been measured, too. These temperature-controlled results were compared also with power-controlled experiments. The data are presented in terms of a table and accurate empirical correlations following Katto's generalized correlation scheme. Taking into account previous CHF data at L/D ≤ 100 and same range of flow conditions the length effect was found to further depend on pressure and mass flux. The data for the critical wall superheat show a distinct dependence upon pressure, mass flux and inlet quality that has not been observed before with comparable clarity

  7. Experimental investigation of liquid chromatography columns by means of computed tomography

    Astrath, D.U.; Lottes, F.; Vu, Duc Thuong;

    2007-01-01

    The efficiency of packed chromatographic columns was investigated experimentally by means of computed tomography (CT) techniques. The measurements were carried out by monitoring tracer fronts in situ inside the chromatographic columns. The experimental results were fitted using the equilibrium di...

  8. - El rol de la enfermera en un departamento de Cirugía Experimental (The nurse role in an experimental surgery laboratory

    Lic. Ileana Macías Hernández

    2006-07-01

    fields of knowledge, as it is the case of investigation. Experimental surgery is a very important discipline within the biomedical sciences due to the possibilities it offers in the field of research in training future surgeons and in teaching graduates and non graduates . Personnel working here are quite important to keep the research projects, so as to solve problems related to clinics or associated with investigation. All these aspects should be kept in mind but without letting aside teaching and assistance to other departments, institutions, etc. Having this in mind it is necessary to have a nurse or more than one, if possible, depending on the number of surgeons there exist in the department or laboratory. The aim of this research is to give information on the importance of nurses as collaborators in a department or laboratory of experimental surgery. A department of experimental surgery without a nurse, as part of the staff, will never be able to carry out a good job, because they are as indispensable as surgeons, with independent and complementary functions typical of their profession.

  9. Investigating the dopaminergic synapse in vivo. II. Molecular imaging studies in small laboratory animals.

    Nikolaus, Susanne; Larisch, Rolf; Beu, Markus; Antke, Christina; Kley, Konstantin; Forutan, Farhad; Wirrwar, Andreas; Müller, Hans-Wilhelm

    2007-01-01

    Dopaminergic synaptic function may be assessed either at the presynaptic terminal or at the postsynaptic binding sites using molecular in vivo imaging methods. Apart from the density of binding sites, parameters such as alterations in dopamine synthesis, dopamine storage or dopamine release can be quantified either by application of specific radiotracers or by assessing the competition between the exogenous radioligand and endogenous dopamine. The performance of animal studies allows the induction of specific short-term or long-term synaptic conditions via pharmacological challenges or infliction of neurotoxic lesions. Therefore, small laboratory animals such as rats and mice have become invaluable models for a variety of human disorders. This article gives an overview of those small animal studies which have been performed so far on dopaminergic neurotransmission using in vivo imaging methods, with a special focus on the relevance of findings within the functional entity of the dopaminergic synapse. Taken together, in vivo investigations on animal models of Parkinson's disease showed decreases of dopamine storage, dopamine release and dopamine transporter binding, no alterations of dopamine synthesis and DA release, and either increases or no alterations of D2 receptor binding, while in vivo investigations of animal models of Huntington's disease. showed decreases of DAT and D1 receptor binding. For D2 receptor binding, both decreases and increases have been reported, dependent on the radioligand employed. Substances of abuse, such as alcohol, amphetamine and methylphenidate, led to an increase of dopamine release in striatal regions. This held for the acute application of substances to both healthy animals and animal models of drug abuse. Findings also showed that chronic application of cocaine induced long-term reductions of both D1 and D2 receptor binding, which disappeared after several weeks of withdrawal. Finally, preliminary results yielded the first

  10. Experimental investigations of production of glueballs and meson resonant states

    The major efforts reported have been directed toward investigating glueballs and non-strange mesons. The g/sub T/(2050), g/sub T'/(2300), and g/sub T''/(2350) have been observed in the OZI forbidden reaction π-p → phi phi n. Their characteristics are explained within the context of quantum chromodynamics as being produced by 1 to 3 primary glueballs. It is proposed to increase the present statistics in order to reduce the effective partial wave analysis resolution, and to begin to study the high vertical bar t' vertical bar region. It is further planned to pursue coupled channel analysis of high precision π-p → K/sub s/0K/sub s/0n data and other relevant world data in the 2++, 0++, and 4++ channels. A program is planned to investigate K-p and p anti p interactions at 8 GeV/c

  11. Experimental investigation of the classical Rayleigh-Taylor instability

    Budil, K.S.; Remington, B.A.; Peyser, T.A.; Mikaelian, K.O.; Rubenchik, A.M.; Berning, M.; Wood-Vasey, M.W.

    1996-05-21

    The evolution of the Rayleigh-Taylor (RT) instability in a compressible medium has been investigated at an accelerating embedded interface and at the ablation front in a series of experiments on the Nova laser. The x-ray drive generated in a gold hohlraum ablatively accelerated a planar target consisting of a doped plastic pusher backed by a higher density titanium payload with perturbations placed at the plastic-Ti interface. The targets were diagnosed by face-on and side-on radiography. In previous work focusing on single mode perturbations, wavelengths as short as 10 m have been observed to grow strongly at the embedded interface. Here multimode perturbations consisting of either 2, 10 or 20 modes superposed in phase have been investigated.

  12. Sensorimotor Incongruence and Body Perception: An Experimental Investigation

    Foell, Jens; Bekrater-Bodmann, Robin; McCabe, Candida S.; Flor, Herta

    2013-01-01

    Objectives: Several studies have shown that mirrored arm or leg movements can induce altered body sensations. This includes the alleviation of chronic pain using congruent mirror feedback and the induction of abnormal sensation in healthy participants using incongruent mirror feedback. Prior research has identified neuronal and conceptual mechanisms of these phenomena. With the rising application of behavior-based methods for pain relief, a structured investigation of these reported effects s...

  13. Experimental investigation of rotor-stator interaction in diffuser pumps

    Arndt, Norbert Karl Erhard

    1988-01-01

    The interaction between impeller blades and diffuser vanes in diffuser pumps was investigated. Steady and unsteady pressure measurements were made on the diffuser vanes and on the front shroud wall of a vaned and a vaneless diffuser. Two different impellers were used, one half of the impeller of the double suction pump of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine), and a two-dimensional impeller. The measurements were made for different flow coefficient...

  14. Experimental Investigation of Roto-Stator Interaction in Diffuser Pumps

    Arndt, Norbert Karl Erhard

    1988-01-01

    The interaction between impeller blades and diffuser vanes in diffuser pumps was investigated. Steady and unsteady pressure measurements were made on the diffuser vanes and on the front shroud wall of a vaned and a vaneless diffuser. Two different impellers were used, one half of the impeller of the double suction pump of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine), and a two-dimensional impeller. The measurements were made for differen...

  15. Adhesive bonding of discontinuous carbon fibre composites: an experimental investigation

    Nicholls, Tristan Kit

    2013-01-01

    The excellent specific stiffness and strength of carbon fibre reinforced polymer composites means that the automotive sector has been investigating methods of implementing these materials into structurally demanding applications. The work detailed within this thesis supports ongoing research at the University of Nottingham into the automated manufacture of discontinuous carbon fibre reinforced polymer composite materials. Advances in the automation of composites manufacturing has meant that m...

  16. Experimental Investigation of the Thermal Performance of Piezoelectric Fans

    Acikalin, Tolga; Wait, Sydney M.; Garimella, S V; Raman, Arvind

    2004-01-01

    Piezoelectric fans are investigated as a cooling technology for the thermal management of electronic devices. Flow visualization experiments are conducted to better understand the physics of fan operation. Prototypes of the fans are built and tested to assess their feasibility and cooling performance and determine optimal locations for the fans. An enclosure the size of a cellular phone and a commercially available laptop computer are used to demonstrate the cooling feasibility of the fans. P...

  17. Granite rock fragmentation at percussive drilling - experimental and numerical investigation

    Saadati, Mahdi; Forquin, Pascal; Weddfelt, Ken; Larsson, Per-Lennart; Hild, François

    2014-01-01

    The aim of this study is to numerically model the fracture system at percussive drilling. Due to the complex behavior of rock materials, a continuum approach is employed relying upon a plasticity model with yield surface locus as a quadratic function of the mean pressure in the principal stress space coupled with an anisotropic damage model. In particular, Bohus granite rock is investigated and the material parameters are defined based on previous experiments. This includes different tests su...

  18. Experimental Investigation of Shrinkage of Nano Hair Reinforced Concrete

    Yadollah Batebi; Alireza Mirzagoltabar; Seyed Mostafa Shabanian; Sara Fateri

    2013-01-01

    Basically most of cement based mixtures are likely shrinking. Use of fibers is not a new idea in this case. Previously, there were some evidences that horse hair, straw and cotton fibers were used in mud and mortars in ancient times. Then, utilizing these fibers in concrete mixture may increase concrete workability and decrease shrinkage cracks. Due to nano cross-section of hair and its proper tensile strength this project investigates its application to reduce the shrinkage of concrete mixtu...

  19. Project plan for the decontamination and decommissioning of the Argonne National Laboratory Experimental Boiling Water Reactor

    In 1956, the Experimental Boiling Water Reactor (EBWR) Facility was first operated at Argonne National Laboratory (ANL) as a test reactor to demonstrate the feasibility of operating an integrated power plant using a direct cycle boiling water reactor as a heat source. In 1967, ANL permanently shut down the EBWR and placed it in dry lay-up. This project plan presents the schedule and organization for the decontamination and decommissioning of the EBWR Facility which will allow it to be reused by other ANL scientific research programs. The project total estimated cost is $14.3M and is projected to generate 22,000 cubic feet of low-level radioactive waste which will be disposed of at an approved DOE burial ground. 18 figs., 3 tabs

  20. Micro black holes in the laboratory and other experimental signatures of quantum gravity

    We investigate the possibility of quantum gravity effects setting in at much lower energies than the Planck scale. In particular, we study the formation and detection of microscopic black holes at the LHC as well as precision measurements of the gyroscopic moment of the muon and neutrino oscillations. We find that quantum gravity effects lead to observable signatures both in high energy and high precision scenarios. Comparison with experimental data allows us to constrain the parameters of the models. (author)

  1. Gait biometrics under spoofing attacks: an experimental investigation

    Hadid, Abdenour; Ghahramani, Mohammad; Kellokumpu, Vili; Feng, Xiaoyi; Bustard, John; Nixon, Mark

    2015-11-01

    Gait is a relatively biometric modality which has a precious advantage over other modalities, such as iris and voice, in that it can be easily captured from a distance. Although it has recently become a topic of great interest in biometric research, there has been little investigation into gait spoofing attacks where a person tries to imitate the clothing or walking style of someone else. We recently analyzed for the first time the effects of spoofing attacks on silhouette-based gait biometric systems and showed that it was indeed possible to spoof gait biometric systems by clothing impersonation and the deliberate selection of a target that has a similar build to the attacker. To gain deeper insight into the performance of current gait biometric systems under spoofing attacks, we provide a thorough investigation on how clothing can be used to spoof a target and evaluate the performance of two state-of-the-art recognition methods on a gait spoofing database recorded at the University of Southampton. Furthermore, we describe and evaluate an initial solution coping with gait spoofing attacks. The obtained results are very promising and point out interesting findings which can be used for future investigations.

  2. Experimental and numerical investigation of HyperVapotron heat transfer

    Wang, Weihua; Deng, Haifei; Huang, Shenghong; Chu, Delin; Yang, Bin; Mei, Luoqin; Pan, Baoguo

    2014-12-01

    The divertor first wall and neutral beam injection (NBI) components of tokamak devices require high heat flux removal up to 20-30 MW m-2 for future fusion reactors. The water cooled HyperVapotron (HV) structure, which relies on internal grooves or fins and boiling heat transfer to maximize the heat transfer capability, is the most promising candidate. The HV devices, that are able to transfer large amounts of heat (1-20 MW m-2) efficiently, have therefore been developed specifically for this application. Until recently, there have been few attempts to observe the detailed bubble characteristics and vortex evolvement of coolant flowing inside their various parts and understand of the internal two-phase complex heat transfer mechanism behind the vapotron effect. This research builds the experimental facilities of HyperVapotron Loop-I (HVL-I) and Pressure Water HyperVapotron Loop-II (PWHL-II) to implement the subcooled boiling principle experiment in terms of typical flow parameters, geometrical parameters of test section and surface heat flux, which are similar to those of the ITER-like first wall and NBI components (EAST and MAST). The multiphase flow and heat transfer phenomena on the surface of grooves and triangular fins when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence (PLIF) and high-speed photography (HSP) techniques. Particle image velocimetry (PIV) was selected to reveal vortex formation, the flow structure that promotes the vapotron effect during subcooled boiling. The coolant flow data for contributing to the understanding of the vapotron phenomenon and the assessment of how the design and operational conditions that might affect the thermal performance of the devices were collected and analysed. The subcooled flow boiling model and methods of HV heat transfer adopted in the considered computational fluid dynamics (CFD) code were evaluated by comparing the calculated wall temperatures with the

  3. An easy-to-build remote laboratory with data transfer using the Internet School Experimental System

    Schauer, Frantisek; Ozvoldova, Miroslava [Trnava University, Faculty of Pedagogy, Department of Physics, Trnava (Slovakia); Lustig, Frantisek; Dvorak, JirI [Charles University, Faculty of Mathematics and Physics, Department of Didactics of Physics, Prague (Czech Republic)], E-mail: fschauer@ft.utb.cz

    2008-07-15

    The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global features, based on experiment and experimentation. We name this strategy integrated e-learning, and remote experiments across the Internet are the foundation for this strategy. We present both pedagogical and technical reasoning for the remote experiments and outline a simple system based on a server-client approach, and on web services and Java applets. We give here an outline of the prospective remote laboratory system with data transfer using the Internet School Experimental System (ISES) as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, using a paste and copy approach with typical prebuilt blocks such as a camera view, controls, graphs, displays, etc. We have set up and operate at present seven experiments, running round the clock, with more than 12 000 connections since 2005. The experiments are widely used in practical teaching of both university and secondary level physics. The recording of the detailed steps the experimentor takes during the measurement enables detailed study of the psychological aspects of running the experiments. The system is ready for a network of universities to start covering the basic set of physics experiments. In conclusion we summarize the results achieved and experiences of using remote experiments built on the ISES hardware system.

  4. An easy-to-build remote laboratory with data transfer using the Internet School Experimental System

    The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global features, based on experiment and experimentation. We name this strategy integrated e-learning, and remote experiments across the Internet are the foundation for this strategy. We present both pedagogical and technical reasoning for the remote experiments and outline a simple system based on a server-client approach, and on web services and Java applets. We give here an outline of the prospective remote laboratory system with data transfer using the Internet School Experimental System (ISES) as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, using a paste and copy approach with typical prebuilt blocks such as a camera view, controls, graphs, displays, etc. We have set up and operate at present seven experiments, running round the clock, with more than 12 000 connections since 2005. The experiments are widely used in practical teaching of both university and secondary level physics. The recording of the detailed steps the experimentor takes during the measurement enables detailed study of the psychological aspects of running the experiments. The system is ready for a network of universities to start covering the basic set of physics experiments. In conclusion we summarize the results achieved and experiences of using remote experiments built on the ISES hardware system

  5. Laboratory core flooding experimental systems for CO2 geosequestration: An updated review over the past decade

    Yankun Sun

    2016-02-01

    Full Text Available Carbon dioxide (CO2 geosequestration in deep saline aquifers has been currently deemed as a preferable and practicable mitigation means for reducing anthropogenic greenhouse gases (GHGs emissions to the atmosphere, as deep saline aquifers can offer the greatest potential from a capacity point of view. Hence, research on core-scale CO2/brine multiphase migration processes is of great significance for precisely estimating storage efficiency, ensuring storage security, and predicting the long-term effects of the sequestered CO2 in subsurface saline aquifers. This review article initially presents a brief description of the essential aspects of CO2 subsurface transport and geological trapping mechanisms, and then outlines the state-of-the-art laboratory core flooding experimental apparatus that has been adopted for simulating CO2 injection and migration processes in the literature over the past decade. Finally, a summary of the characteristics, components and applications of publicly reported core flooding equipment as well as major research gaps and areas in need of further study are given in relevance to laboratory-scale core flooding experiments in CO2 geosequestration under reservoir conditions.

  6. A State-of-the-Art Experimental Laboratory for Cloud and Cloud-Aerosol Interaction Research

    Fremaux, Charles M.; Bushnell, Dennis M.

    2011-01-01

    The state of the art for predicting climate changes due to increasing greenhouse gasses in the atmosphere with high accuracy is problematic. Confidence intervals on current long-term predictions (on the order of 100 years) are so large that the ability to make informed decisions with regard to optimum strategies for mitigating both the causes of climate change and its effects is in doubt. There is ample evidence in the literature that large sources of uncertainty in current climate models are various aerosol effects. One approach to furthering discovery as well as modeling, and verification and validation (V&V) for cloud-aerosol interactions is use of a large "cloud chamber" in a complimentary role to in-situ and remote sensing measurement approaches. Reproducing all of the complex interactions is not feasible, but it is suggested that the physics of certain key processes can be established in a laboratory setting so that relevant fluid-dynamic and cloud-aerosol phenomena can be experimentally simulated and studied in a controlled environment. This report presents a high-level argument for significantly improved laboratory capability, and is meant to serve as a starting point for stimulating discussion within the climate science and other interested communities.

  7. Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Potable Water System Operations Plan

    Ocampo, Ruben P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bellah, Wendy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-04

    The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well water is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.

  8. Laboratory investigations of the hydroxyl radical-initiated oxidation of atmospheric volatile organic compounds

    Vimal, Deepali

    The hydroxyl radical (OH) is one of the most important oxidants in the atmosphere, because reaction with OH is the dominant atmospheric fate of most trace atmospheric species. OH is intimately involved in a complex non-linear photochemical pathway involving anthropogenic and biogenic emissions of volatile organic compounds (VOCs) and nitrogen oxides that are emitted from vehicular exhaust and industrial emissions. This chemistry generates secondary tropospheric ozone which is an important greenhouse gas as well as a component of photochemical smog. In addition, this chemistry leads to the formation of secondary organic aerosols in the atmosphere which have implications for public health and climate change. The focus of this dissertation is to improve our understanding of this complex chemistry by investigating the rate-limiting elementary reactions which are part of the OH-initiated oxidation of important VOCs. Experimental (discharge flow technique coupled with resonance fluorescence and laser induced fluorescence) and theoretical studies (Density Functional Theory computations) of the kinetics of three atmospheric VOCs, acetic acid, 1,3-butadiene and methyl ethyl ketone are discussed. The acetic acid and OH reaction has been thought to undergo a hydrogen-bonded complex mediated pathway instead of a direct one leading to faster rate constants at lower temperature. Our results for the experimental investigation between 263-373 K and pressures of 2-5 Torr for the gas phase reaction of acetic acid with OH confirm the complex mediated reaction mechanism and indicate that acetic acid can play an important role especially in the oxidative chemistry of upper troposphere. The 1,3-butadiene and OH reaction is thought to undergo electrophilicaddition by OH which could display a complex pressure dependence similar to isoprene and 232-butenol as noted earlier in this laboratory. However, our results for the kinetics of the reaction between 273-423 K and a pressure range of 1

  9. Design and experimental investigation of portable solar thermoelectric refrigerator

    Abdul-Wahab, Sabah A.; Al-Habsi, Is' haq A.; Al-Rubai' ey' , Hilal S.; Al-Battashi, Abdulaziz K.; Al-Tamimi, Ali R.; Al-Mamari, Khamis H. [Sultan Qaboos University, College of Engineering, Mechanical and Industrial Engineering Department, P.O. Box 33, Al Khoud P.C. 123, Muscat (Oman); Elkamel, Ali; Chutani, Muhammad U. [Department of Chemical Engineering, University of Waterloo, 200 University Avenue Wes, Waterloo, Ontario (Canada); Al-Damkhi, Ali M. [Department of Environmental Sciences, College of Health Sciences, Public Authority for Applied Education and Training (PAAET) (Kuwait)

    2009-01-15

    The main objective of this study is to design and build an affordable solar thermoelectric refrigerator for the Bedouin people (e.g. deserts) living in remote parts of Oman where electricity is still not available. The refrigerator could be used to store perishable items and facilitate the transportation of medications as well as biological material that must be stored at low temperatures to maintain effectiveness. The design of the solar-powered refrigerator is based on the principles of a thermoelectric module (i.e., Peltier effect) to create a hot side and a cold side. The cold side of the thermoelectric module is utilized for refrigeration purposes; provide cooling to the refrigerator space. On the other hand, the heat from the hot side of the module is rejected to ambient surroundings by using heat sinks and fans. The designed solar thermoelectric refrigerator was experimentally tested for the cooling purpose. The results indicated that the temperature of the refrigeration was reduced from 27 C to 5 C in approximately 44 min. The coefficient of performance of the refrigerator (COP{sub R}) was calculated and found to be about 0.16. (author)

  10. Combine experimental and theoretical investigation on an alkaloid-Dimethylisoborreverine

    Singh, Swapnil; Singh, Harshita; Karthick, T.; Agarwal, Parag; Erande, Rohan D.; Dethe, Dattatraya H.; Tandon, Poonam

    2016-01-01

    A combined experimental (FT-IR, 1H and 13C NMR) and theoretical approach is used to study the structure and properties of antimalarial drug dimethylisoborreverine (DMIB). Conformational analysis, has been performed by plotting one dimensional potential energy curve that was computed using density functional theory (DFT) with B3LYP/6-31G method and predicted conformer A1 as the most stable conformer. After full geometry optimization, harmonic wavenumbers were computed for conformer A1 at the DFT/B3LYP/6-311++G(d,P) level. A complete vibrational assignment of all the vibrational modes have been performed on the bases of the potential energy distribution (PED) and theoretical results were found to be in good agreement with the observed data. To predict the solvent effect, the UV-Vis spectra were calculated in different solvents by polarizable continuum model using TD-DFT method. Molecular docking studies were performed to test the biological activity of the sample using SWISSDOCK web server and Hex 8.0.0 software. The molecular electrostatic potential (MESP) was plotted to identify the reactive sites of the molecule. Natural bond orbital (NBO) analysis was performed to get a deep insight of intramolecular charge transfer. Thermodynamical parameters were calculated to predict the direction of chemical reaction.

  11. Experimental investigation on a high subsonic compressor cascade flow

    Zhang Haideng

    2015-08-01

    Full Text Available With the aim of deepening the understanding of high-speed compressor cascade flow, this paper reports an experimental study on NACA-65 K48 compressor cascade with high subsonic inlet flow. With the increase of passage pressurizing ability, endwall boundary layer behavior is deteriorated, and the transition zone is extended from suction surface to the endwall as the adverse pressure gradient increases. Cross flow from endwall to midspan, mixing of corner boundary layer and the main stream, and reversal flow on the suction surface are caused by corner separation vortex structures. Passage vortex is the main corner separation vortex. During its movement downstream, the size grows bigger while the rotating direction changes, forming a limiting circle. With higher incidence, corner separation is further deteriorated, leading to higher flow loss. Meanwhile, corner separation structure, flow mixing characteristics and flow loss distribution vary a lot with the change of incidence. Compared with low aspect-ratio model, corner separation of high aspect-ratio model moves away from the endwall and is more sufficiently developed downstream the cascade. Results obtained present details of high-speed compressor cascade flow, which is rare in the relating research fields and is beneficial to mechanism analysis, aerodynamic optimization and flow control design.

  12. Experimental investigation of the low NOx vortex airblast annular combustor

    Johnson, S. M.; Biaglow, J. A.; Smith, J. M.

    1984-01-01

    A low oxides of nitrogen vortex airblast annular combustor was evaluated which has attained the goal of 1 gm NO2/kg fuel or less during operation. The experimental combustor test conditions were a nominal inlet-air temperature of 703 K, inlet total pressures between 0.52 to 0.83 MPa, and a constant inlet Mach number of 0.26. Exit temperature pattern factors for all test points were between 0.16 and 0.20 and exit swirl flow angles were 47 degrees at isothermal conditions and 23 degrees during combustion. Oxides of nitrogen did not exceed 1.05 gm NO2/kg fuel at the highest inlet pressure and exhaust temperature tested. Previous correlations have related NOx proportionally to the combustor inlet pressure raised to some exponent. In this experiment, a band of exponents between 0.5 and 1.0 resulted for fuel-air ratios from 0.023 to 0.027 and inlet pressures from 0.52 to 0.83 MPa. Previously announced in STAR as N84-22567

  13. An experimental investigation of wastewater treatment using electron beam irradiation

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  14. An Experimental Investigation of the Implosion of Cylindrical Shell Structures

    Ikeda, C. M.; Wilkerling, J.; Duncan, J. H.

    2009-11-01

    An experimental study of the physics of the implosion of cylindrical shell structures in a high-pressure water environment was performed. The shell structures are filled with air at atmospheric pressure and the implosions occur when the water pressure is raised above the shell buckling stability limit. High-speed photography (27,000 fps) was used to observe and measure the motion of the structure during its implosion. High-frequency underwater blast sensors recorded dynamic pressure waves at 13 positions in the tank. The cylindrical models are made from various aluminum alloys (diameter D = 39.1 mm, wall thickness t = 0.89 mm) and brass (D = 16.7 to 25.4 mm, t = 0.33 to 0.36 mm). The ends of the tubes were sealed with Aluminum caps. The pressure records are interpreted in light of the high-speed movies. Cylinder length-to-diameter (L/D) ratios between 6 and 10 were examined; in this range the cylinders implode in a mode 2 cross-sectional shape at pressures between 6.9 and 28.7 bar. It is found that the pressure versus time records from sensors placed at the same dimensionless radial position (r/D) from the cylinder surface scale well with time and pressure scales from cavitation bubble collapse theory.

  15. Experimental Investigations of Micro Air Injection to Control Rotating Stall

    Chaoqun Nie; Zhiting Tong; Shaojuan Geng; Junqiang Zhu; Weiguang Huang

    2007-01-01

    Steady discrete micro air injection at the tip region in front of the first compressor rotor has been proved to be an effective method to delay the inception of rotating stall in a low speed axial compressor. Considering the practical application a new type of micro injector was designed and described in this paper, which was imbedded in the casing and could be moved along the chord. In order to verify its feasibility to other cases, such as high subsonic axial compressor or centrifugal compressor, some other cases have been studied. Experimental results of the same low speed axial compressor showed that the new injector could possess many other advantages besides successfully stabilizing the compressor. Experiments performed on a high subsonic axial compressor confirmed the effectiveness of micro air injection when the relative velocity at the blade tip is high subsonic. Meanwhile in order to explore its feasibility in centrifugal compressor, a similar micro injector was designed and tested on a low speed centrifugal compressor with vaned diffuser. The injected mass flow was a bit larger than that used in axial compressors and the results showed micro injection could also delay the onset of rotating stall in the centrifugal compressor.

  16. Experimental and modeling investigation on structure H hydrate formation kinetics

    Highlights: • Applying affinity model for the formation kinetics of sH hydrate and two stage kinetics. • Performing the experiments of hydrate formation of sH with MCP. • A unique path for the SH hydrate formation. - Abstract: In this work, the kinetics of crystal H hydrate and two stage kinetics formation is modeled by using the chemical affinity model for the first time. The basic idea is that there is a unique path for each experiment by which the crystallization process decays the affinity. The experiments were performed at constant temperatures of 274.15, 275.15, 275.65, 276.15 and 277.15 K. The initial pressure of each experiment is up to 25 bar above equilibrium pressure of sI. Methylcyclohexane (MCH), methylcyclopentane (MCP) and tert-butyl methyl ether (TBME) are used as sH former and methane is used as a help gas. The parameters of the affinity model (Ar and tk) are determined and the results show that the parameter of (Ar)/(RT) has not a constant value when temperature changes in each group of experiments. The results indicate that this model can predict experimental data very well at several conditions

  17. Numerical and Experimental Investigation of Flow Structures During Insect Flight

    Badrya, Camli; Baeder, James D.

    2015-11-01

    Insect flight kinematics involves complex interplay between aerodynamics structural response and insect body control. Features such as cross-coupling kinematics, high flapping frequencies and geometrical small-scales, result in experiments being challenging to perform. In this study OVERTURNS, an in-house 3D compressible Navier-Stokes solver is utilized to simulate the simplified kinematics of an insect wing in hover and forward flight. The flapping wings simulate the full cycle of wing motion, i.e., the upstroke, downstroke, pronation and supination.The numerical results show good agreement against experimental data in predicting the lift and drag over the flapping cycle. The flow structures around the flapping wing are found to be highly unsteady and vortical. Aside from the tip vortex on the wings, the formation of a prominent leading edge vortex (LEV) during the up/down stroke portions, and the shedding of a trailing edge vortex (TEV) at end of each stroke were observed. Differences in the insect dynamics and the flow features of the LEV are observed between hover and forward flight. In hover the up and downstroke cycles are symmetric, whereas in forward flight, these up and downstroke are asymmetric and LEV strength varies as a function of the kinematics and advance ratio. This work was supported by the Micro Autonomous Systems and Technology (MAST) CTA at the Univer- sity of Maryland.

  18. Experimental Investigation of Mechanical Properties of Metallic Hollow Sphere Structures

    Friedl, O.; Motz, C.; Peterlik, H.; Puchegger, S.; Reger, N.; Pippan, R.

    2008-02-01

    Metallic foam was fabricated from 316L stainless steel spheres, where the bonding of the spheres was achieved by a sintering process. The mechanical behavior of a low-density material (0.3 g/cm3) with 2- and 4-mm sphere diameter and a high-density material (0.6 g/cm3) with 4-mm sphere diameter was investigated in compression and tension. The cell wall material of this hollow sphere structure (HSS) had different morphologies: dense and porous sintered walls were investigated. The cell wall morphology affects the Young’s modulus (stiffness) and the ductility of the HSS material. Defects, such as the cell wall porosity, lower the ductility of the material. Besides the quasi-static measurements, the HSS material was tested with a resonance frequency method (dynamic measurement), to obtain detailed information on the stiffness at different temperatures up to 700 °C. In-situ compression and tension tests were carried out to understand the deformation mechanisms on the scale of the single hollow spheres. The failure mechanisms in the vicinity of the sintering neck of the spheres was investigated. A doubling of the density leads to an increase of the plateau stress and the ultimate tensile stress of the material, whereas the ductility (strain to fracture) depended mainly on the cell wall morphology. Due to the mainly tensile loading of the cell walls in the vicinity of the sinter neck, the ultimate tensile strength doubled for the high-density HSS, in good agreement with theoretical considerations. In compression, the gain in the plateau stress was not as distinctive compared with the theoretical considerations assuming a bending dominated deformation. The influence of structural parameters, such as cell wall morphology, cell wall thickness, and sphere diameter, on the mechanical behavior is discussed.

  19. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive impulse electric field measurement. The integrated optical sensor is based on a Mach–Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The maximal detectable electric field range (−75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation

  20. Experimental investigation of the deformable mirror with bidirectional thermal actuators.

    Huang, Lei; Ma, Xingkun; Gong, Mali; Bian, Qi

    2015-06-29

    A deformable mirror with actuators of thermoelectric coolers (TECs) is introduced in this paper. Due to the bidirectional thermal actuation property of the TEC, both upward and downward surface control is available for the DM. The response functions of the actuators are investigated. A close-loop wavefront control experiment is performed too, where the defocus and the astigmatism were corrected. The results reveal that there is a promising prospect for the novel design to be used in corrections of static aberrations, such as in the Inertial Confinement Fusion (ICF). PMID:26191759

  1. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    SUN Bao; CHEN Fu-Shen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive im-pulse electric field measurement. The integrated optical sensor is based on a Mach-Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The max-imal detectable electric field range (-75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation.

  2. Experimental methods for investigation of radioactive gas diffusion in solids

    A new means to determine parameters of radioactive gas diffusion in solids based on the simultaneous use of gas permeability and autoradiography methods is suggested. The technique is designed for the study of topological peculiarities of the diffusion process and for the determination of the spectrum of the diffusion local coefficients. The design of the installation is developed, the corresponding mathematical model is suggested, and technique of the experiment conducting is tested. Using the autoradiographic variant of permeability method the diffusion coefficients of the radioactive inert gas-radon-in polypropylene are determined. A good accordance of the results obtained with the data of traditional methods of investigation is found

  3. Experimental investigation of γ-ray attenuation coefficients for granites

    Highlights: ► Radiation shielding properties of granites have been investigated. ► This is done by measuring linear attenuation coefficients. ► Measurement was performed using 137Cs and 60Co sources. - Abstract: The linear attenuation coefficients of γ-rays for some granite samples have been measured at 662, 1773 and 1332 keV. The γ-rays have been obtained from 137Cs and 60Co sources respectively and the measurement have been performed using a gamma spectrometer which contains 3” × 3” NaI(Tl) detector connected to 16384 channel Multi-Channel-Analyser (MCA).

  4. Experimental investigations of recrystallization texture development in zirconium (Zr702)

    Dewobroto, N.; Bozzolo, N.; Wagner, F. [LETAM (Lab. d' Etude des Textures et Application aux Materiaux), UMR CNRS 7078, Univ. of Metz (France); Barberis, P. [Cezus Research Centre, Ugine (France)

    2004-07-01

    The microstructure and crystallographic texture in zirconium (Zr702) sheets, initially deformed by 80% cold rolling, are investigated at different stages of the primary recrystallization. Inhomogeneities were observed in the deformed microstructure at different scales down to the submicrometer range. The influence of these inhomogeneities on the local recrystallization mechanisms is discussed. The measurement of the orientation of the new grains shows that the nucleation is definitely not oriented. Since the global texture change is very slight, recrystallization by subgrain growth is probably one of the most important mechanism during the recrystallization process in zirconium. (orig.)

  5. The erosion of carbonate stone by acid rain: Laboratory and field investigations

    This paper describes a laboratory experiment on the effects of acidic deposition on carbonate stone erosion. It can serve as the basis for an undergraduate (or pre college) experiment in environmental chemistry. Recent field investigations are described that provide measurements of carbonate stone dissolution and mechanical erosion under weathering conditions that are prevalent in the eastern US. The purpose of the laboratory work is to answer questions concerning the effects of hydrogen ion deposition on stone erosion processes that were difficult to resolve on the basis of field experiments alone

  6. The MSFC Noble Gas Research Laboratory (MNGRL): A NASA Investigator Facility

    Cohen, Barbara

    2016-01-01

    Noble-gas isotopes are a well-established technique for providing detailed temperature-time histories of rocks and meteorites. We have established the MSFC Noble Gas Research Laboratory (MNGRL) at Marshall Space Flight Center to serve as a NASA investigator facility in the wake of the closure of the JSC laboratory formerly run by Don Bogard. The MNGRL lab was constructed to be able to measure all the noble gases, particularly Ar-Ar and I-Xe radioactive dating to find the formation age of rocks and meteorites, and Ar/Kr/Ne cosmic-ray exposure ages to understand when the meteorites were launched from their parent planets.

  7. Inquiry-based laboratory investigations and student performance on standardized tests in biological science

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  8. Sensorimotor incongruence and body perception: an experimental investigation

    Jens eFoell

    2013-06-01

    Full Text Available Objectives: Several studies have shown that mirrored arm or leg movements are related to altered body sensations. This includes the alleviation of chronic pain using congruent mirror feedback and the induction of abnormal sensation in healthy participants using incongruent mirror feedback. Prior research has identified neuronal and conceptual mechanisms of these phenomena. With the rising application of behavior-based methods for pain relief, a structured investigation of these reported effects seems necessary.Methods: We investigated a mirror setup that included congruent and incongruent hand and arm movements in 113 healthy participants and assessed the occurrence and intensity of unusual physical experiences such as pain, the sensation of missing or additional limbs, or changes in weight or temperature. A wooden surface instead of a mirror condition served as control. Results: As reported earlier, mirrored movements led to a variety of subjective reactions in both the congruent an incongruent movement condition, with the sensation of possessing a third limb being significantly more intense and frequent in the incongruent mirror condition. Reports of illusory pain were not more frequent during mirrored than during non-mirrored movements.Conclusions: These results suggest that hand movements with and without a mirror induce abnormal body perceptions but that the experience of an extra limb is most pronounced in the incongruent mirror movement condition. The frequent sensation of having a third arm may be related to brain processes designed to integrate input from several senses in a meaningful manner.

  9. An experimental investigation on the W-Cu composites

    Fabrication of tungsten-copper net-shapes has become an important issue in recent years due to their unique properties which make them suitable for a wide variety of applications. In this investigation, W-Cu composite powders containing 20 wt.% and 30 wt.% Cu were processed by powder metallurgy technique using two types of prepared powders, namely, Cu-coated tungsten and mixtures of elemental powders. The coating method of tungsten powders was carried out using electroless coating technique. The investigated powders were cold compacted and sintered in vacuum at two sintering temperatures, 1250 deg. C and 1400 deg. C. The results show that the Cu-coated compacts have higher relative green densities than those of admixed ones for each copper content and compaction pressure, which means that the coated powders have greater compressibility than the uncoated ones. The relative green density increases with increasing compaction pressure and copper content. After sintering, the composites fabricated from uncoated powders show inhomogeneous structure due to formation of large globules of copper and tungsten agglomerates, while the structure of coated tungsten composites reveals the existence of copper within the tungsten grains, forming uniform interconnected structure. In general, composites made from Cu-coated tungsten powders exhibited higher density, hardness, compression strength, and electrical conductivity than those of composites made from admixed elemental powders. However, coefficient of thermal expansion and electrical resistivity of Cu-coated composites showed lower values

  10. Experimental Investigation of Ventilation Efficiency in a Dentistry Surgical Room

    Oladokun Majeed Olaide

    2016-01-01

    Full Text Available As a response to the need to provide an acceptable thermal comfort and air quality in indoor environments, various ventilation performance indicators were developed over the years. These metrics are mainly geared towards air distribution, heat and pollutant removals. Evidence exists of influencing factors on these indicators as centered on ventilation design and operations. Unlike other indoor environments, health care environment requires better performance of ventilation system to prevent an incidence of nosocomial and other hospital acquired illnesses. This study investigates, using in-situ experiments, the ventilation efficiency in a dentistry surgical room. Thermal and hygric parameters were monitored on the air terminal devices and occupied zone over a period of one week covering both occupied and unoccupied hours. The resulting time-series parameters were used to evaluate the room’s ventilation effectiveness. Also, the obtained parameters were benchmarked against ASHRAE 170 (2013 and MS1525 (2014 requirements for ventilation in health care environment and building energy efficiency respectively. The results show that the mean daily operative conditions failed to satisfy the provisions of both standards. Regarding effectiveness, the findings reveal that the surgical room ventilation is ineffective with ventilation efficiency values ranging between 0 and 0.5 indicating air distribution short-circuiting. These results suggest further investigations, through numerical simulation, on the effect of this short-circuiting on thermal comfort, infection risk assessments and possible design improvements, an endeavour that forms our next line of research inquiries.

  11. Experimental investigation of stepped solar still with continuous water circulation

    Highlights: • Comparison between modified stepped and conventional solar still was carried out. • Effect of storage tank and cotton absorber on productivity was investigated. • Efficiency for modified stepped still is higher than conventional still by 20%. • The day and night efficiency increases by 5% and 3.5% for salt and sea water. - Abstract: This paper presents a modification of stepped solar still with continuous water circulation using a storage tank for sea and salt water. Total dissolved solids (TDS) of seawater and salt water before desalination is 57,100 and 2370 mg/l. A comparison study between modified stepped and conventional solar still was carried out to evaluate the developed desalination system performance under the same climate conditions. The effect of installing a storage tank and cotton black absorber for modified stepped solar still on the distillate productivity was investigated. The results indicate that, the productivity of the modified stepped still is higher than that for conventional still approximately by 43% and 48% for sea and salt water with black absorber respectively, while 53% and 47% of sea and salt water, respectively with cotton absorber. Also, the daily efficiency for modified stepped still is higher than that for conventional still approximately by 20%. The maximum efficiency of modified stepped still is occurring at a feed water flow rate of 1 LPM for sea water and 3 LPM for salt water. Total dissolved solids (TDS) of seawater and salt water after desalination is 41, and 27 mg/l

  12. Experimental investigations on single stage modified Savonius rotor

    Kamoji, M.A.; Kedare, S.B. [Energy Science and Engineering Department, Indian Institute of Technology, Bombay, Powai, Mumbai - 4000 76 (India); Prabhu, S.V. [Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai - 4000 76 (India)

    2009-07-15

    Conventional Savonius or modified forms of the conventional Savonius rotors are being investigated in an effort to improve the coefficient of power and to obtain uniform coefficient of static torque. To achieve these objectives, the rotors are being studied with and without central shaft between the end plates. Tests in a closed jet wind tunnel on modified form of the conventional Savonius rotor with the central shaft is reported to have a coefficient of power of 0.32. In this study, modified Savonius rotor without central shaft between the two end plates is tested in an open jet wind tunnel. Investigation is undertaken to study the effect of geometrical parameters on the performance of the rotors in terms of coefficient of static torque, coefficient of torque and coefficient of power. The parameters studied are overlap ratio, blade arc angle, aspect ratio and Reynolds number. The modified Savonius rotor with an overlap ratio of 0.0, blade arc angle of 124 and an aspect ratio of 0.7 has a maximum coefficient of power of 0.21 at a Reynolds number of 1,50,000, which is higher than that of conventional Savonius rotor (0.19). Correlation is developed for a single stage modified Savonius rotor for a range of Reynolds numbers studied. (author)

  13. Experimental Investigations of Vertical and Horizontal Heat Pipes

    Kim, In Guk; Kim, Kyuung Mo; Jeong, Young Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The interest in the application of heat pipes for heat transfer system is well known in industrial fields. Heat pipe uses the working fluid in containment as cylindrical shape tube. Vaporization occurs in evaporation section due to the heat input and vapor is transferred to condensation section. At the condensation area, the working fluid is condensed and immersed in the wick structure, which has highly porous media. The condensed working fluid returns to evaporator section by capillary wicking of wick structure. The driving force for working fluid is affected by capillary and gravitational force. The heat pipes for nuclear systems have been suggested as horizontal loop heat pipes for reactor core cooling system or vertical heat pipes for passive cooling for spent fuel. In the present research, preliminary tests of horizontal and vertical heat pipe were studied for its heat transfer performance. The main purpose of the research was the analysis of heat transfer behavior of heat pipe and the performance of heat transfer. The thermal performances of horizontal and vertical heat pipe were measured experimentally. Vertical heat pipe showed better performance compared to horizontal one, at high heat input region. The heat transfer coefficients of horizontal heat pipe were lower than vertical one because of gravitational force. Overall heat transfer coefficient of vertical heat pipes were enhanced to 28.5 % compared to the horizontal heat pipes. The horizontal heat pipes revealed high thermal resistance up to 54.3 % compared to vertical heat pipes. Therefore, vertical heat pipes analyzed better heat transfer performance than horizontal heat pipe.

  14. Preparing side charging of PCM storage: theoretical and experimental investigation

    Tesfay, A. H.; Hagos, F. Y.; Yohannes, K. G.; Nydal, O. J.; Kahsay, M. B.

    2015-12-01

    In Ethiopia, there is an abundant source of solar energy that is estimated to 5.3 kWh/m2/day. However, more than 90% of the society uses biomass as a main source of energy for cooking due to lack of technologies to convert this energy. Replacing these cooking activities by using renewable energy resources decreases pollution and reduces deforestation significantly. Using the solar energy in day time has no problem. For night time however, the system needs some kind of back-up system to make the daytime solar energy available. This back-up should have high-density energy storage and constant working temperature to perform a specific application. Latent heat storage using phase change materials (PCM) is one way of storing thermal energy. In the current study, a latent heat storage that uses a PCM material is used to store the solar energy aimed at utilizing solar energy for cooking Injera, main staple bread in Ethiopia. The PCM is a mixture of 60% NaNO3 and 40% KNO3 that are known as solar salts. The storage has a welded parallel aluminum fins with a gap of 40 mm in between to enhance the thermal conductivity during the charging-discharging process of the storage. The fins are extruded outside of the storage container to enable a side charging technique for the PCM. A prototype was developed with a solar salt of 17.5 kg and is tested for charging-discharging. The numerical simulation done on ANSYS and experimental results show an agreement and the system registered a 41.6% efficiency.

  15. Modelling and Experimental Investigation of an Active Damper

    Rafael Luís Teixeira

    2006-01-01

    Full Text Available This paper presents a validation methodology of the dynamic behavior of an active viscous damper. The damper has two flexible metallic bellows connected to a rigid reservoir filled with fluid. When one of the bellows is connected to a vibrating structure a periodic flow passes through a variable internal orifice and the damping effect is produced. The size of the orifice is adjusted by a controlled linear piezoelectric actuator that positions the conical core into a conical cavity. The device finite element structural model consists of the valve body and its conical core that are assumed rigid and the flexible bellows are represented by two pistons with elastic suspensions. The flow developed inside the damper is modeled considering the fluid-structure interation, using the Lagrangean-Eulerian formulation. To validate the proposed model a prototype was constructed and experimental tests and numerical simulations are accomplished in the time domain, applying harmonic excitations. The results are compared using curves that relate the damping coefficient with the orifice size and with the input velocity applied at the bellows face. However, for the proper control design and system operation, the direct use of the finite element model becomes unviable due to its high computational time. Then, a reduced second order discrete dynamic model for the damper was developed. The model parameters are identified by analysis in the frequency domain, using impulsive excitation force, for constant and variable orifice sizes. At low excitation frequencies, the damper prototype behaves like a single degree of freedom system which damping factor changes with the orifice size A fuzzy controller was designed and it generates the orifice reference size associated to the desired damping factor. The active system presented better performance when compared to the passive one.

  16. Experimental Investigation of 'Transonic Resonance' with Convergent-Divergent Nozzles

    Zaman, K. B. M. Q.; Dahl, M. D.; Bencic, T. J.; Zaman, Khairul (Technical Monitor)

    2001-01-01

    Convergent-divergent nozzles, when run at pressure ratios lower than the design value, often undergo a flow resonance accompanied by the emission of acoustic tones. The phenomenon, different in characteristics from conventional 'screech' tones, has been studied experimentally. Unlike screech, the frequency increases with increasing supply pressure. There is a 'staging' behavior; 'odd harmonic' stages resonate at lower pressures while the fundamental occurs in a range of higher pressures corresponding to a fully expanded Mach number (M(sub j)) around unity. The frequency (f(sub N)) variation with M(sub j) depends on the half angle-of-divergence (theta) of the nozzle. At smaller theta, the slope of f(sub N) versus M(sub j) curve becomes steeper. The resonance involves standing waves and is driven by unsteady shock/boundary layer interaction. The distance between the foot of the shock and the nozzle exit imposes the lengthscale (L'). The fundamental corresponds to a quarterwave resonance, the next stage at a lower supply pressure corresponds to a three-quarter-wave resonance, and so on. The principal trends in the frequency variation are explained simply from the characteristic variation of the length-scale L'. Based on the data, correlation equations are provided for the prediction of f(sub N). A striking feature is that tripping of the boundary layer near the nozzle's throat tends to suppress the resonance. In a practical nozzle a tendency for the occurrence of the phenomenon is thought to be a source of 'internal noise'; thus, there is a potential for noise benefit simply by appropriate boundary layer tripping near the nozzle's throat.

  17. Experimental Investigation of Near-Borehole Crack Plugging with Bentonite

    Upadhyay, R. A.; Islam, M. N.; Bunger, A.

    2015-12-01

    The success of the disposal of nuclear waste in a deep borehole (DBH) is determined by the integrity of the components of the borehole plug. Bentonite clay has been proposed as a key plugging material, and its effectiveness depends upon its penetration into near-borehole cracks associated with the drilling process. Here we present research aimed at understanding and maximizing the ability of clay materials to plug near-borehole cracks. A device was constructed such that the borehole is represented by a cylindrical chamber, and a near-borehole crack is represented by a slot adjacent to the center chamber. The experiments consist of placing bentonite clay pellets into the center chamber and filling the entire cavity with distilled water so that the pellets hydrate and swell, intruding into the slot because the cell prohibits swelling in the vertical direction along the borehole. Results indicate that the bentonite clay pellets do not fully plug the slot. We propose a model where the penetration is limited by (1) the free swelling potential intrinsic to the system comprised of the bentonite pellets and the hydrating fluid and (2) resisting shear force along the walls of the slot. Narrow slots have a smaller volume for the clay to fill than wider slots, but wider slots present less resistive force to clay intrusion. These two limiting factors work against each other, leading to a non-monotonic relationship between slot width and intrusion length. Further experimental results indicate that the free swelling potential of bentonite clay pellets depends on pellet diameter, "container" geometry, and solution salinity. Smaller diameter pellets possess more relative volumetric expansion than larger diameter pellets. The relative expansion of the clay also appears to decrease with the container size, which we understand to be due to the increased resistive force provided by the container walls. Increasing the salinity of the solution leads to a dramatic decrease in the clay

  18. Experimental Investigations of Vertical and Horizontal Heat Pipes

    The interest in the application of heat pipes for heat transfer system is well known in industrial fields. Heat pipe uses the working fluid in containment as cylindrical shape tube. Vaporization occurs in evaporation section due to the heat input and vapor is transferred to condensation section. At the condensation area, the working fluid is condensed and immersed in the wick structure, which has highly porous media. The condensed working fluid returns to evaporator section by capillary wicking of wick structure. The driving force for working fluid is affected by capillary and gravitational force. The heat pipes for nuclear systems have been suggested as horizontal loop heat pipes for reactor core cooling system or vertical heat pipes for passive cooling for spent fuel. In the present research, preliminary tests of horizontal and vertical heat pipe were studied for its heat transfer performance. The main purpose of the research was the analysis of heat transfer behavior of heat pipe and the performance of heat transfer. The thermal performances of horizontal and vertical heat pipe were measured experimentally. Vertical heat pipe showed better performance compared to horizontal one, at high heat input region. The heat transfer coefficients of horizontal heat pipe were lower than vertical one because of gravitational force. Overall heat transfer coefficient of vertical heat pipes were enhanced to 28.5 % compared to the horizontal heat pipes. The horizontal heat pipes revealed high thermal resistance up to 54.3 % compared to vertical heat pipes. Therefore, vertical heat pipes analyzed better heat transfer performance than horizontal heat pipe

  19. Experimental investigations of quantum confined silicon nanoparticle light emitting devices

    Ligman, Rebekah Kristine

    2007-12-01

    As the demands on our world's energy resources continue to grow, alternative high efficiency materials such as quantum confined silicon nanoparticles (Si nps) are desirable for their potential low cost application in white light illumination, in optical displays, and in on-chip optical interconnects. Many fabrication and passivation techniques exist that produce Si nps with high photogenerated quantum yield. However, high electrically generated Si np quantum efficiency has eluded our society. Predominantly due to the lack of a stable surface passivation and a device fabrication technique that preserves the Si np optical properties. To amend these deficiencies, the passivation of nonthermal plasma fabricated Si nps with a surface oxide grown under UV exposure was first investigated. Control over the surface oxidized Si np (Si/SiO2) passivation growth was demonstrated and the optical stability of Si/SiO2 nps was suitable for demonstrating Si np electroluminescence (EL). Two approaches for constructing hybrid organic light emitting diode (OLED) devices around nonthermal plasma fabricated Si nps were then investigated. Multilayer devices, composed of a nonthermal plasma fabricated Si np layer embedded within an OLED, were first studied. However, no EL from Si nps was obtained using the multilayer device architecture due to poor control over the Si np film thickness. Single layer polymer(Si/SiO2) hybrid devices, composed of nps randomly dispersed within an extrinsic conductive polymer, were then studied and EL from Si/SiO2 nps was obtained. The hybrid device optical and electrical response was enhanced over the control devices, possibly due to morphology changes induced by the Si/SiO2 nps. The energy transfer (ET) processes in single layer polymer(Si/SiO 2) hybrid devices were then investigated by imposing known spatial separations between the intrinsic conductive polymers and Si/SiO2 nps. No measurable Si/SiO2 np emission was observed from the intrinsic hybrid devices

  20. Horonobe Underground Research Laboratory project. Investigation report for the 2007 fiscal year

    The Horonobe Underground Research Laboratory Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2007 fiscal year (2007/2008), the 3rd year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on the geological disposal of high-level radioactive waste (HLW)', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2007 Fiscal Year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. JAEA proceeded with the project in collaboration with experts from domestic and overseas research organisation. (author)

  1. Experimental investigation of flash pyrolysis oil droplet combustion

    Ibrahim, Norazana; Jensen, Peter A.; Dam-Johansen, Kim;

    2013-01-01

    The aim of this work is to investigate and compare the combustion behaviour of a single droplet of pyrolysis oil derived from wheat straw and heavy fossil oil in a single droplet combustion chamber. The initial oil droplet diameters were in between 500 μm to 2500 μm. The experiments were performed...... at a temperature ranging between 1000 and 1400°C with an initial gas velocity of 1.6 m/s and oxygen concentration of 3%. The evolution of combustion of bio-oil droplets was recorded by a digital video camera. It was observed that the combustion behaviour of pyrolysis oil droplet differ from the heavy oil in terms...... both of ignition, devolatilisation and char oxidation. The pyrolysis oil is more difficult to ignite and has a shorter devolatilisation time and a longer char oxidation time. Copyright © 2013, AIDIC Servizi S.r.l....

  2. Experimental Investigation of Aerosols Produced by Cosmic Rays

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Svensmark, Henrik;

    investigation at the smallest scales, namely the role of cosmic ray produced ions on atmospheric aerosol nucleation and growth processes. Aerosol theory suggests that this is one of the most promising areas to search for an effect. However, guided by the nature of our initial results, it will be possible to...... mechanism linking cosmic rays to clouds and climate is currently speculative, there have been various suggestions of the role atmospheric ions may play; these involve any one of a number of processes from the nucleation of aerosols up to the collection processes of cloud droplets.We have chosen to start our...... control the number of ions present. This will enable experiments to be performed both with and without the presence of ions, thus providing information as to the potential role of ions in aerosol processes....

  3. Experimental and numerical investigation of wave ferrofluid convection

    The stability of buoyancy-driven shear flow in an inclined layer of a ferrocolloid is investigated for different values of inclinations and homogeneous longitudinal magnetic fields. Near the onset of Rayleigh convection of ferrofluid layer inclined with respect to gravity, the wave oscillatory regimes were observed in experiments and numerical simulations. Visualization of convection patterns is provided by a temperature-sensitive liquid crystal film. As experiments testify, the origin of traveling wave regimes in ferrofluid is due to concentration gradients caused by gravity sedimentation of the magnetic particles. To study the effects of initial concentration gradient of particles, on convective instabilities, finite volume numerical simulations using a two-phase mixture model were carried out for the same setup. The most fascinating effect in ferrofluid convection is spontaneous formation of localized states, those where the convection chaotically focuses in confined regions and is absent in the remainder of cavity

  4. Experimental investigation of flash pyrolysis oil droplet combustion

    Ibrahim, Norazana; Jensen, Peter A.; Dam-Johansen, Kim; Hamid, Mohd.K.A.; Kasmani, Rafiziana M.; Ali, Roshafima R.; Hasbullah, Hasrinah

    2013-01-01

    at a temperature ranging between 1000 and 1400°C with an initial gas velocity of 1.6 m/s and oxygen concentration of 3%. The evolution of combustion of bio-oil droplets was recorded by a digital video camera. It was observed that the combustion behaviour of pyrolysis oil droplet differ from the heavy......The aim of this work is to investigate and compare the combustion behaviour of a single droplet of pyrolysis oil derived from wheat straw and heavy fossil oil in a single droplet combustion chamber. The initial oil droplet diameters were in between 500 μm to 2500 μm. The experiments were performed...... oil in terms both of ignition, devolatilisation and char oxidation. The pyrolysis oil is more difficult to ignite and has a shorter devolatilisation time and a longer char oxidation time. Copyright © 2013, AIDIC Servizi S.r.l....

  5. Experimental investigation of turbulent mixing in post-explosion environment

    Smith, Josh; Hargather, Michael

    2015-11-01

    Experiments are performed to investigate the turbulent mixing of product gases and the ambient environment in a post-explosion environment. The experiments are performed in a specially constructed shock tunnel where thermite-enhanced explosions are set off. The explosives are detonated at one end of the tunnel, producing a one-dimensional shock wave and product gas expansion which moves toward the open end of the tunnel. Optical diagnostics are applied to study the shock wave motion and the turbulent mixing of the gases after the detonation. Results are presented for schlieren, shadowgraph, and interferometry imaging of the expanding gases with simultaneous pressure measurements. An imaging spectrometer is used to identify the motion of product gas species. Results show varying shock speed with thermite mass and the identification of turbulent mixing regions.

  6. Experimental Investigation on Complex Structures Machining by Electrochemical Micromachining Technology

    Liu Yong; Zhu Di; Zeng Yongbin; Huang Shaofu; Yu Hongbing

    2010-01-01

    Electrochemical micromachining(EMM)technology for fabricating micro structures is presented in this article.By applying ultra short pulses,dissolution of a workpiece can be restricted to the region very close to the electrode.First,an EMM system for meeting the requirements of the EMM process is established.Second,sets of experiments is carried out to investigate the influence of some of the predominant electrochemical process parameters such as electrical parameters,feed rate,electrode geometry features and electrolyte composition on machining quality,especially the influences of pulse on time on shape precision and working end shape of electrode on machined surface quality.Finally,after the preliminary experiments,a complex microstructure with good shape precision and surface quality is successfully obtained.

  7. Experimental fatigue life investigation of cylindrical thrust chambers

    Quentmeyer, R. J.

    1977-01-01

    The thrust chambers studied in the investigation have been designed for a possible use in the Space Shuttle main engine. An annular combustion chamber configuration was used, consisting of an annular injector, a liquid hydrogen cooled outer cylinder, which served as the test section, and a contoured water cooled centerbody which formed the throat. Twenty-two cylinders were fabricated by milling cooling channels into liners fabricated from the material to be evaluated. The three materials chosen for the liners include OFHC copper, Amzirc, and NARloy-Z. The cylinders were cyclically tested until failure occurred due to fatigue cracks in the hot-gas-side wall. It was found that cylinders with liners fabricated from NARloy-Z and aged Amzirc had the best cyclic life characteristics.

  8. An experimental investigation of the normality of irrational algebraic numbers

    Nielsen, Johan Sejr Brinch; Simonsen, Jakob Grue

    2013-01-01

    We investigate the distribution of digits of large prefixes of the expansion of irrational algebraic numbers to different bases. We compute 2.318 bits of the binary expansions (corresponding to 2.33.108 decimals) of the 39 least Pisot-Vijayaraghavan numbers, the 47 least known Salem numbers, the...... blocks for each number to bases 2, 3, 5, 7 and 10, as well as the maximum relative frequency deviation from perfect equidistribution. We use the two statistics to perform tests at significance level α = 0.05, respectively, maximum deviation threshold α = 0.05. Our results suggest that if Borel......'s conjecture-that all irrational algebraic numbers are normal-is true, then it may have an empirical base: The distribution of digits in algebraic numbers appears close to equidistribution for large prefixes of their expansion. Of the 121 algebraic numbers studied, all numbers passed the maximum relative...

  9. Experimental investigation of transverse velocity estimation using cross-correlation

    Bjerngaard, Rasmus; Jensen, Jørgen Arendt

    2001-01-01

    .23 m/s. The volume flow was determined by a Danfoss MAG 1100 flow meter. The velocity profiles were measured for different beam-to-flow angles of 90, 65, and 45 degrees. A Harming apodized beam focused at the vessel was transmitted using 64 elements and the received signals on all elements were sampled......A technique for estimating the full flow velocity vector has previously been presented by our group. Unlike conventional estimators, that only detect the axial component of the flow, this new method is capable of estimating the transverse velocity component. The method uses focusing along the flow...... direction to produce signals that are influenced by the shift of the scatterer's position. The signals are then cross-correllated to find the shift in position and thereby the velocity. The performance of the method is investigated using both a flow phantom and in-vivo measurements. A flow phantom capable...

  10. Experimental investigation on a pulsating heat pipe with hydrogen

    Deng, H. R.; Liu, Y. M.; Ma, R. F.; Han, D. Y.; Gan, Z. H.; Pfotenhauer, J. M.

    2015-12-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb3Sn and NbTi, MgB2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB2, this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios.

  11. Experimental investigations into the physics of light emitting conjugated polymers

    Whitelegg, S A

    2001-01-01

    chloroprecursor MEH-PPV in-situ of ITO results in a reaction of the polymer with ITO, which significantly shift the emission to high energies. Electroabsorption spectroscopy is used to probe the internal electric fields within operating polymer light emitting devices. When a PPV based LED in an oxygen/water atmosphere, degradation of the device occurs whereby an electric field develops, which opposes the applied electric field. This opposing electric field subsequently decays when the device is turned to its off state. Operating lifetimes and emission efficiencies of polymer light emitting devices are now approaching values suitable for the manufacture and sale of polymer light emitting based products. However, degradation and device performance still continues to be of chief concern and in order for these to be improved the underlying physical processes have to be identified. This thesis aims to identify some of these processes. An investigation in to the optical absorption and emission properties of insolub...

  12. Experimental Investigation of Shrinkage of Nano Hair Reinforced Concrete

    Yadollah Batebi

    2013-01-01

    Full Text Available Basically most of cement based mixtures are likely shrinking. Use of fibers is not a new idea in this case. Previously, there were some evidences that horse hair, straw and cotton fibers were used in mud and mortars in ancient times. Then, utilizing these fibers in concrete mixture may increase concrete workability and decrease shrinkage cracks. Due to nano cross-section of hair and its proper tensile strength this project investigates its application to reduce the shrinkage of concrete mixtures. For this purpose, human hair fibers were used in 0.4 and 0.8 and 1.2 weight percent and the length of the fibers in each case varied between 15 and 60 millimeter and the samples were made of dimensions of 40×40×160 millimeters. Results are shown as considerable amount of hair may reduce in the shrinkage in the hair reinforced concrete.

  13. Development of Laboratory Experimental System to Clarify Solar Wind Charge Exchange Mechanism with TES Microcalorimeter

    Enoki, T.; Ishisaki, Y.; Akamatsu, H.; Ezoe, Y.; Ohashi, T.; Kanda, T.; Ishida, T.; Tanuma, H.; Ohashi, H.; Shinozaki, K.; Mitsuda, K.

    2012-06-01

    Significant fraction of the cosmic diffuse soft X-ray emission (0.1-1 keV) is caused by the Solar Wind Charge eXchange (SWCX) process between the solar wind ion (C q+, N q+, O q+ etc.) and the interplanetary neutral matter. It is difficult to identify spectral features of SWCX with the spectral resolution of existing X-ray astronomy satellites. We are developing a laboratory experimental system with transition edge sensor (TES) X-ray microcalorimeters, in order to clarify the SWCX mechanism. This experiment is designed to measure Charge eXchange (CX) X-rays using Electron Cyclotron Resonance Ion Source (ECRIS) that generates multi-charged ions. Emission lines (OVIII: 2p→1s; 654 eV) by CX between O8+ and neutral He atom is aimed to be measured with energy resolution better than 10 eV. The TES microcalorimeter is cooled by a double-stage adiabatic demagnetization refrigerator (DADR), however, our TES microcalorimeter are not working potentially due to magnetic field contamination. This paper reports our experimental system, present results, and future prospects.

  14. Experimental and in situ investigations on americium, curium and plutonium behaviour in marine benthic species: transfer from water or sediments

    The tranfer of transuranic elements -americium, curium and plutonium- from the sediments containing them to some marine benthic species (endofauna and epifauna) was studied with a twofold approach - laboratory and in-situ investigation. The experimental investigations, divided into three parts, made it possible to specify concentration factors (F.C.), transfer factors (F.T.) and to understand the process involved for 5 benthic species. The result were refined by an in-situ study that brought new data on the marine distribution of the transuranic elements released by the La Hague plant. Finally, the localization of americium and plutonium in the tissues and cells of these species was determined by autoradiography

  15. Experimental investigation of small-scale gasification of woody biomass

    Barrio, Maria

    2002-05-01

    A small-scale stratified down draft gasifier has been built and operated under stable conditions using wood pellets as fuel and air as gasification agent. The problems observed during the preliminary experiments have been described and explained; they are mainly related to the stability of the process. The stable operation of the gasifier has been characterised by the gas composition and the product gas tar and particle content. The biomass feeding rate has varied between 4,5 and 6,5 kg/h. The CO content of the product gas (23-26 % vol.) is higher than in similar gasifiers and the H{sub 2} content has been found to vary between 14 and 16 % vol. The tar content in the product gas (Ca. 3 g/Nm{sup 3}) is rather high compared with similar gasifiers. The temperature profile, together with other relevant parameters like the air-excess ratio, the air to fuel ratio and gas to fuel ratio have been calculated. The experiments show that the air excess ratio is rather constant, varying between 0,25 and 0,3. Experiments have been conducted with a gas engine using mixtures of CH{sub 4}, CO, H{sub 2}, CO{sub 2} and N{sub 2} as a fuel. NO{sub x} and CO emissions are analysed. The char gasification process has been studied in detail by means of Thermogravimetric Analysis. The study comprises the chemical kinetics of the gasification reactions of wood char in CO{sub 2} and H{sub 2}O, including the inhibition effect of CO and H{sub 2}. A kinetic model based on Langmuir-Hinshelwood kinetics has been found which relates the mass loss rate to the temperature, gas composition and degree of conversion for each reaction. The ratio CO/CO{sub 2} has been found to be a relevant parameter for reactivity. The gasification experiments in mixtures of CO{sub 2} and H{sub 2}O give reasons to believe that the rate of desorption for the complex C(O) varies depending on the gas mixture surrounding the char. It has been found that if the experimental data are obtained from separate H{sub 2}O/N{sub 2

  16. Scientific investigation in deep boreholes at the Meuse/Haute Marne underground research laboratory, northeastern France

    From 1994 to 1996, the preliminary investigation carried out by Andra, identified a sector favourable for hosting a laboratory in argillaceous Callovo-Oxfordian formation which has a thickness of 130 m and lies more than 400 m below ground level. In November 1999 Andra began building an Underground Research Laboratory (URL) with a 3D seismic survey over 4 km2. From 2000 to 2004, large programs of boreholes were carried out on site and on the sector in order to define the characteristics of formations, to improve the regional geological and hydrogeological knowledge and to provide an accurate definition of structural features in Callovo-Oxfordian argillites and Dogger limestones. These drilling programs have provided a fine characterization of the argillites on the laboratory area and a good correlation of geological properties at a sector scale. (author)

  17. Experimental and numerical investigations on a swirl oxycoal flame

    The oxyfuel combustion technology has gained increased interest as a promising option for carbon capture and storage (CCS) in the last few years. The substitution of air by a mixture of recylced flue gas (RFG) and oxygen, however, is followed by changes in the process of pulverized fuel (PF) combustion as well as in the heat transfer inside the furnace. At RWTH Aachen University, research was conducted to investigate the underlying mechanisms governing the PF oxy-combustion and the impact of this process on burner and furnace designs with respect to industrial applications. Starting with experiments using a pulverized coal swirl burner designed for air combustion, measures were developed for an aerodynamical stabilization of an oxycoal swirl flame. Computational Fluid Dynamics (CFD), based on adapted models for PF oxy-combustion, was used as a design tool for development of swirl burner which was successfully tested in the oxycoal test facility at RWTH Aachen. This burner allows a stable oxyfuel combustion within wide range of oxygen content in the O2/RFG mixture (from 18 to > 30 vol.-%). Further numerical simulations of a 1210 MWth industrial boiler oxy-firing bituminous pulverized coal were performed with respect to retrofit. Comparisons made between air-firing and oxy-firing mode show that the radiative heat flux to the wall of a utility boiler is significantly influenced due to the changed optical properties of flue gases inside the oxy-firing utility furnace. A special focus was given to the oxygen concentration that is required to achieve similar heat transfer conditions as for conventional air fired furnaces. - Highlights: ► Measures derived for an aerodynamical stabilization of a swirl Oxyfuel flame. ► Successful use of CFD calculations as a design tool. ► Stable Oxyfuel combustion achieved for oxygen contents between 18 and 30 vol.-%. ► Numerical investigation of an industrial size furnace for retrofit considerations. ► Retrofit seems feasible by

  18. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  19. An experimental investigation into the atmospheric degradation of piperazine

    White, Stephen; Angove, Dennys; Azzi, Merched; Tibbett, Anne; Campbell, Ian; Patterson, Michael

    2015-05-01

    The atmospheric degradation of piperazine was investigated using an indoor smog chamber. Experiments were carried out in the presence of nitrogen oxides (NOx), ozone or nitric acid. Piperazine reacted rapidly under all evaluated conditions: irradiated in the presence of NOx and with ozone and nitric acid in the dark. Gas phase products from the oxidation of piperazine were identified by infrared spectroscopy, DNPH cartridges followed by HPLC analysis, and by sampling chamber gas through Tenax sorbent material followed by analysis using thermal desorption GC-ITMS (gas chromatography ion trap mass spectrometry). Eight compounds were positively identified, with a further nine compounds tentatively identified using GC-MS based on molecular weight and mass spectra. Ammonia formation was observed from piperazine oxidation, and its formation was from the subsequent reactions of photooxidation products of piperazine rather than directly from the reaction of piperazine. The nitrosamine and nitramine expected from piperazine, N-nitrosopiperazine, and N-nitropiperazine, were both identified and confirmed using 15NO, with a tentative maximum yield of nitrosamine of less than 5% observed. Aerosol yields, relative to total piperazine reacted not including that which absorbed to the walls, were considerably high but were not able to be quantified absolutely due to unusual behaviour of the scanning mobility particle sizer instrument to aerosol containing amines. The reaction of piperazine with gas phase nitric acid gave rise to immediate formation of aerosol.

  20. Experimental investigation of Ostwald ripening in an implanted system

    During ion beam synthesis of compounds in Si a specific redistribution process is responsible for the modification of the implant profile towards a uniform buried compound layer. This process is referred to as Ostwald ripening. Implantation of substoichiometric doses of reactive species leads to structures consisting of two precipitate bands. Investigations done by taking SEM-micrographs on beveled samples reveal that the structuring depends on the implantation conditions. Furthermore, splitting of the precipitate band located deeper in the substrate was observed and was seen as an effect of self-organisation. The development of the structures with time depends on the strength of the ripening process taking place parallel and perpendicular to the surface of the substrate. Using methods of spatial statistics the changes in the precipitate configuration according to the different ripening directions become obvious. Unfortunately, there exists no analytical model to describe the precipitation process in systems with inhomogeneous material distribution. Therefore, all the information retained from the experiments serve as an input for simulations to be done and will help to understand the contributions of different physical mechanisms. The results obtained in the course of the present study are described in terms of the formation of a buried oxide layer as a typical example of this kind