WorldWideScience

Sample records for jupiter-mass exoplanet transiting

  1. A SHORT-PERIOD CENSOR OF SUB-JUPITER MASS EXOPLANETS WITH LOW DENSITY

    Despite the existence of many short-period hot Jupiters, there is not one hot Neptune with an orbital period less than 2.5 days. Here, we discuss a cluster analysis of the currently known 106 transiting exoplanets to investigate a possible explanation for this observation. We find two distinct clusters in the mass-density space, one with hot Jupiters with a wide range of orbital periods (0.8-114 days) and a narrow range of planet radii (1.2 ± 0.2 RJ ) and another one with a mixture of super-Earths, hot Neptunes, and hot Jupiters, exhibiting a surprisingly narrow period distribution (3.7 ± 0.8 days). These two clusters follow strikingly different distributions in the period-radius parameter plane. The branch of sub-Jupiter mass exoplanets is censored by the orbital period at the large-radius end: no planets with mass between 0.02 and 0.8 MJ or with radius between 0.25 and 1.0 RJ are known with Porb < 2.5 days. This clustering is not predicted by current theories of planet formation and evolution, which we also review briefly.

  2. WASP-78b and WASP-79b: Two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus

    Smalley, B; Collier-Cameron, A; Doyle, A P; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smith, A M S; Southworth, J; Triaud, A H M J; Udry, S; West, R G

    2012-01-01

    We report the discovery of WASP-78b and WASP-79b, two highly-bloated Jupiter-mass exoplanets orbiting F-type host stars. WASP-78b orbits its V=12.0 host star (TYC 5889-271-1) every 2.175 days and WASP-79b orbits its V=10.1 host star (CD-30 1812) every 3.662 days. A simultaneous fit to WASP and TRAPPIST transit photometry and CORALIE radial-velocity measurements yields planetary masses of 0.89 +/- 0.08 M_Jup and 0.90 +/- 0.08 M_Jup, and radii of 1.70 +/- 0.11 R_Jup and 2.09 +/- 0.14 R_Jup, for WASP-78b and WASP-79b, respectively. The planetary equilibrium temperature of T_P = 2350 +/- 80 K for WASP-78b makes it one of the hottest of the currently known exoplanets. The radius of WASP-79b suggests that it is potentially the largest known exoplanet.

  3. DISCOVERY OF A PROBABLE 4-5 JUPITER-MASS EXOPLANET TO HD 95086 BY DIRECT IMAGING

    Direct imaging has only begun to inventory the population of gas giant planets on wide orbits around young stars in the solar neighborhood. Following this approach, we carried out a deep imaging survey in the near-infrared using VLT/NaCo to search for substellar companions. Here we report the discovery of a probable companion orbiting the young (10-17 Myr), dusty, early-type (A8) star HD 95086 at 56 AU in L' (3.8 μm) images. This discovery is based on observations with more than a year time lapse. Our first epoch clearly revealed the source at ≅ 10σ, while our second epoch lacks good observing conditions, yielding a ≅ 3σ detection. Various tests were thus made to rule out possible artifacts. This recovery is consistent with the signal at the first epoch but requires cleaner confirmation. Nevertheless, our astrometric precision suggests that the companion is comoving with the star with a 3σ confidence level. The planetary nature of the source is reinforced by a non-detection in the Ks-band (2.18 μm) images according to its possible extremely red Ks-L' color. Conversely, background contamination is rejected with good confidence level. The luminosity yields a predicted mass of about 4-5 MJup (at 10-17 Myr) using ''hot-start'' evolutionary models, making HD 95086 b the exoplanet with the lowest mass ever imaged around a star

  4. Discovery and characterization of WASP-6b, an inflated sub-Jupiter mass planet transiting a solar-type star

    Gillon, M; Triaud, A H M J; Hellier, C; Maxted, P F L; Pollaco, D; Queloz, D; Smalley, B; West, R G; Wilson, D M; Bentley, S J; Cameron, A Collier; Enoch, B; Hebb, L; Horne, K; Irwin, J; Joshi, Y C; Lister, T A; Mayor, M; Pepe, F; Parley, N; Ségransan, D; Udry, S; Wheatley, P J

    2009-01-01

    We report the discovery of WASP-6b, an inflated sub-Jupiter mass planet transiting every 3.3610060 +0.0000022-0.0000035 days a mildly metal-poor solar-type star of magnitude V=11.9. A combined analysis of the WASP photometry, high-precision followup transit photometry and radial velocities yield a planetary mass M_p = 0.503 +0.019-0.038 M_jup and radius R_p = 1.224 +0.051-0.052 R_jup, resulting in a density rho_p = 0.27 +-0.05 rho_jup. The mass and radius for the host star are M_s = 0.88 +0.05-0.08 M_sun and R_s = 0.870 +0.025-0.036 R_sun. The non-zero orbital eccentricity e = 0.054 +0.018-0.015 that we measure suggests that the planet underwent a massive tidal heating ~1 Gyr ago that could have contributed to its inflated radius. High-precision radial velocities obtained during a transit allow us to measure a sky-projected angle between the stellar spin and orbital axis Beta = 11 +14-18 deg. In addition to similar published measurements, this result favors a dominant migration mechanism based on tidal intera...

  5. KOI-183b: a half-Jupiter mass planet transiting a very old solar-like star

    Gandolfi, D; Deeg, H J; Lanza, A F; Fridlund, M; Moroni, P G Prada; Alonso, R; Augusteijn, T; Cabrera, J; Evans, T; Geier, S; Hatzes, A P; Holczer, T; Hoyer, S; Kangas, T; Mazeh, T; Pagano, I; Tal-Or, L; Tingley, B

    2014-01-01

    We report the spectroscopic confirmation of the Kepler object of interest KOI-183b (also known as KOI-183.01), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1-17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned (PDC) light curve of KOI-183 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of about 4.3 % and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star KOI-183 is a G4 dwarf with $M_\\star=0.85\\pm0.04$ M$_\\rm{Sun}$, $R_\\star=0.95\\pm0.04$ R$_\\rm{Sun}$, $T_\\mathrm{eff}=5560\\pm...

  6. Three sub-Jupiter-mass planets: WASP-69b & WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary

    Anderson, D R; Delrez, L; Doyle, A P; Faedi, F; Fumel, A; Gillon, M; Chew, Y Gómez Maqueo; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Skillen, I; Smalley, B; Smith, A M S; Southworth, J; Triaud, A H M J; Turner, O D; Udry, S; West, R G

    2013-01-01

    We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V~10). WASP-69b is a bloated Saturn-mass planet (0.26 M$_{\\rm Jup}$, 1.06 R$_{\\rm Jup}$) in a 3.868-d period around an active mid-K dwarf. We estimate a stellar age of 1 Gyr from both gyrochronological and age-activity relations, though an alternative gyrochronological relation suggests an age of 3 Gyr. ROSAT detected X-rays at a distance of 60$\\pm$27 arcsec from WASP-69. If the star is the source then the planet could be undergoing mass-loss at a rate of ~10$^{12}$ g s$^{-1}$. This is 1-2 orders of magnitude higher than the evaporation rate estimated for HD 209458b and HD 189733b, both of which have exhibited anomalously-large Lyman-{\\alpha} absorption during transit. WASP-70Ab is a sub-Jupiter-mass planet (0.59 M$_{\\rm Jup}$, 1.16R$_{\\rm Jup}$) in a 3.713-d orbit around the primary of a spatially-resolved G4+K3 binary, with a separation of 3.3 arcsec ($\\geq$800 AU). We exploit the binar...

  7. Factors Affecting the Radii of Close-in Transiting Exoplanets

    Enoch, B; Horne, K

    2012-01-01

    The radius of an exoplanet may be affected by various factors, including irradiation, planet mass and heavy element content. A significant number of transiting exoplanets have now been discovered for which the mass, radius, semi-major axis, host star metallicity and stellar effective temperature are known. We use multivariate regression models to determine the dependence of planetary radius on planetary equilibrium temperature T_eq, planetary mass M_p, stellar metallicity [Fe/H], orbital semi-major axis a, and tidal heating rate H_tidal, for 119 transiting planets in three distinct mass regimes. We determine that heating leads to larger planet radii, as expected, increasing mass leads to increased or decreased radii of low-mass (2.0R_J) planets, respectively (with no mass effect on Jupiter-mass planets), and increased host-star metallicity leads to smaller planetary radii, indicating a relationship between host-star metallicity and planet heavy element content. For Saturn-mass planets, a good fit to the radii...

  8. Comparative Habitability of Transiting Exoplanets

    Barnes, Rory; Evans, Nicole

    2015-01-01

    Exoplanet habitability is traditionally assessed by comparing a planet's semi-major axis to the location of its host star's "habitable zone," the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an "eccentricity-albedo degeneracy" for the habitability of transiti...

  9. The Transiting Exoplanet Survey Satellite

    Ricker, George R; Vanderspek, Roland; Latham, David W; Bakos, Gaspar A; Bean, Jacob L; Berta-Thompson, Zachory K; Brown, Timothy M; Buchhave, Lars; Butler, Nathaniel R; Butler, R Paul; Chaplin, William J; Charbonneau, David; Christensen-Dalsgaard, Jorgen; Clampin, Mark; Deming, Drake; Doty, John; De Lee, Nathan; Dressing, Courtney; Dunham, E W; Endl, Michael; Fressin, Francois; Ge, Jian; Henning, Thomas; Holman, Matthew J; Howard, Andrew W; Ida, Shigeru; Jenkins, Jon; Jernigan, Garrett; Johnson, John Asher; Kaltenegger, Lisa; Kawai, Nobuyuki; Kjeldsen, Hans; Laughlin, Gregory; Levine, Alan M; Lin, Douglas; Lissauer, Jack J; MacQueen, Phillip; Marcy, Geoffrey; McCullough, P R; Morton, Timothy D; Narita, Norio; Paegert, Martin; Palle, Enric; Pepe, Francesco; Pepper, Joshua; Quirrenbach, Andreas; Rinehart, S A; Sasselov, Dimitar; Sato, Bun'ei; Seager, Sara; Sozzetti, Alessandro; Stassun, Keivan G; Sullivan, Peter; Szentgyorgyi, Andrew; Torres, Guillermo; Udry, Stephane; Villasenor, Joel

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I<13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler missio...

  10. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy

    Wyttenbach, Aurélien; Ehrenreich, David

    2015-12-01

    The field of exoplanet atmospheres is booming thanks to (low-resolution) space-borne spectrographs and high-resolution (narrow-ranged) NIR spectrographs on ground-based 8m-class telescopes. Atmospheres are important because they are our observing window on the physical, chemical, and evolutionary processes occurring on exoplanets. Transiting exoplanets are the best suitable targets for atmospheric studies. Observing a transit in different filters or with a spectrograph reveals the transmission spectrum of the planet atmosphere. More than one decade of such observations allowed the exploration of these remote words by detecting some constituents of their atmospheres, but revealing also the presence of scattering hazes and clouds in several exoplanets preventing the detection of major chemical constituents at low to medium resolution even from space.Transit observations from the ground with stabilised high-resolution spectrograph, such HARPS, have key roles to play in this context. Observation of the hot-jupiter HD 189733b with HARPS allow the detection of sodium in the planet atmosphere. The high-resolution transmission spectra allowed to probe a new region high in the atmosphere and revealed rapid winds and a heating thermosphere. This new use of the famous planet hunter turned HARPS into a powerful exoplanet characterisation machine. It has the precision level of the Hubble Space Telescope, albeit at 20 higher resolution.A survey of a large set of known hot transiting exoplanets with HARPS and later with ESPRESSO will allow the detection of key tracers of atmospheric physics, chemistry, and evolution, above the scattering haze layers known to dominate low-resolution visible spectra of exoplanets.Such observation, in total sinergy with other technics, will rmly establish stabilised, high-resolution spectrographs on 4m telescopes as corner-stones for the characterisation of exoplanets. This is instrumental considering the upcoming surveys (NGTS,K2, CHEOPS, TESS

  11. CoRoT pictures transiting exoplanets

    Moutou, Claire

    2015-01-01

    The detection and characterization of exoplanets have made huge progresses since the first discoveries in the late nineties. In particular, the independent measurement of the mass and radius of planets, by combining the transit and radial-velociy techniques, allowed exploring their density and hence, their internal structure. With CoRoT (2007-2012), the pioneering CNES space-based mission in this investigation, about thirty new planets were characterized. CoRoT has enhanced the diversity of giant exoplanets and discovered the first telluric exoplanet. Following CoRoT, the NASA Kepler mission has extended our knowledge to small-size planets, multiple systems and planets orbiting binaries. Exploring these new worlds will continue with the NASA/TESS (2017) and ESA/PLATO (2024) missions.

  12. The WASP-South search for transiting exoplanets

    Queloz D.

    2011-02-01

    Full Text Available Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively bright stars of magnitude 9–13. We present a status report for this ongoing survey.

  13. Characterization of Transiting Exoplanets by Way of Differential Photometry

    Cowley, Michael; Hughes, Stephen

    2014-01-01

    This paper describes a simple activity for plotting and characterizing the light curve from an exoplanet transit event by way of differential photometry analysis. Using free digital imaging software, participants analyse a series of telescope images with the goal of calculating various exoplanet parameters, including size, orbital radius and…

  14. Transiting exoplanets: From planet statistics to their physical nature

    Rauer H.

    2011-01-01

    The colloquium "Detection and Dynamics of Transiting Exoplanets" was held at the Observatoire de Haute-Provence and discussed the status of transiting exoplanet investigations in a 4.5 day meeting. Topics addressed ranged from planet detection, a discussion on planet composition and interior structure, atmospheres of hot-Jupiter planets, up to the effect of tides and the dynamical evolution of planetary systems. Here, I give a summary of the recent developments of transiting planet detections ...

  15. The observation of exoplanet transit events in China

    Fang X.-S.

    2011-07-01

    Full Text Available We have carried out a research project on the exoplanet transit events at Yunnan Observatory. By using CCD cameras attached to 1m telescope of Yunnan Observatory and 85cm telescope of Xinglong station, NAOC, a group of exoplanet systems with transit events have been observed photometrically. By means of MCMC method, the preliminary results of the systems WASP-11 and XO-2 are derived. Finally, we give out the future plan on this research topic in China.

  16. Characterizing transiting exoplanet atmospheres with JWST

    Greene, Thomas P; Montero, Cezar; Fortney, Jonathan J; Lustig-Yeager, Jacob; Luther, Kyle

    2015-01-01

    We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with clear, cloudy, or high mean molecular weight atmospheres. Next we simulate the $\\lambda = 1 - 11$ $\\mu$m transmission and emission spectra of these systems for several JWST instrument modes for single transit and eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH$_4$, CO, CO$_2$, H$_2$O, NH$_3$) can be constrained. We find that $\\lambda = 1 - 2.5$ $\\mu$m transmission spectra will often constrain the major molecular constituents of clear solar composition atmospheres well. Cloudy or high mean molecular weight atmospheres will often require full $1 - 11$ $\\mu$m spectra for good constraints, and emission data may be more useful in cases of sufficiently high $F_p$ and high $F_p/F_*$. Strong t...

  17. KELT-10b: The First Transiting Exoplanet from the KELT-South Survey -- A Hot Sub-Jupiter Transiting a V = 10.7 Early G-Star

    Kuhn, Rudolf B; Collins, Karen A; Lund, Michael B; Siverd, Robert J; Colón, Knicole D; Pepper, Joshua; Stassun, Keivan G; Cargile, Phillip A; James, David J; Penev, Kaloyan; Zhou, George; Bayliss, Daniel; Tan, T G; Curtis, Ivan A; Udry, Stephane; Segransan, Damien; Mawet, Dimitri; Soutter, Jack; Hart, Rhodes; Carter, Brad; Gaudi, B Scott; Myers, Gordon; Beatty, Thomas G; Eastman, Jason D; Reichart, Daniel E; Haislip, Joshua B; Kielkopf, John; Bieryla, Allyson; Latham, David W; Jensen, Eric L N; Oberst, Thomas E; Stevens, Daniel J

    2015-01-01

    We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright $V = 10.7$ star (TYC 8378-64-1), with T$_{eff}$ = $5948\\pm74$ K, $\\log{g}$ = $4.319_{-0.030}^{+0.020}$ and [Fe/H] = $0.09_{-0.10}^{+0.11}$, an inferred mass M$_{*}$ = $1.112_{-0.061}^{+0.055}$ M$_{\\odot}$ and radius R$_{*}$ = $1.209_{-0.035}^{+0.047}$ R$_{\\odot}$. The planet has a radius R$_{P}$ = $1.399_{-0.049}^{+0.069}$ R$_{J}$ and mass M$_{P}$ = $0.679_{-0.038}^{+0.039}$ M$_{J}$. The planet has an eccentricity consistent with zero and a semi-major axis $a$ = $0.05250_{-0.00097}^{+0.00086}$ AU. The best fitting linear ephemeris is $T_{0}$ = 2457066.72045$\\pm$0.00027 BJD$_{TDB}$ and P = 4.1662739$\\pm$0.0000063 days. This planet joins a group of highly inflated transiting exoplanets with a radius much larger and a mass much less than those of Jupiter. The planet, which boasts deep transits of 1.4%, has a relatively ...

  18. The population of long-period transiting exoplanets

    Foreman-Mackey, Daniel; Hogg, David W; Agol, Eric; Schölkopf, Bernhard

    2016-01-01

    The Kepler Mission has discovered thousands of exoplanets and revolutionized our understanding of their population. This large, homogeneous catalog of discoveries has enabled rigorous studies of the occurrence rate of exoplanets and planetary systems as a function of their physical properties. However, transit surveys like Kepler are most sensitive to planets with orbital periods much shorter than the orbital periods of Jupiter and Saturn, the most massive planets in our Solar System. To address this deficiency, we perform a fully automated search for long-period exoplanets with only one or two transits in the archival Kepler light curves. When applied to the $\\sim 40,000$ brightest Sun-like target stars, this search produces 16 long-period exoplanet candidates. Of these candidates, 6 are novel discoveries and 5 are in systems with inner short-period transiting planets. Since our method involves no human intervention, we empirically characterize the detection efficiency of our search. Based on these results, ...

  19. Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b

    Brogi, M; Birkby, J L; Schwarz, H; Snellen, I A G

    2014-01-01

    (Abridged) In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmospheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. Here we present the analysis of spectra of the system at 2.3 micron, obtained at a resolution of R~100,000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet's thermal spectrum and the radial component of its orbital velocity. We detect molecular absorption from carbon monoxide and water vapor with a combined S/N of 6.3, at a projected planet orbital velocity of K_P = (142.8 +- 3.4) km/s, which translates into a planet mass of M_P = (0.98 +- 0.04) Jupiter masses, and an orbital inclination of i = (67.7 +- 4.3) degrees, ...

  20. Transiting exoplanets: From planet statistics to their physical nature

    Rauer H.

    2011-02-01

    Full Text Available The colloquium "Detection and Dynamics of Transiting Exoplanets" was held at the Observatoire de Haute-Provence and discussed the status of transiting exoplanet investigations in a 4.5 day meeting. Topics addressed ranged from planet detection, a discussion on planet composition and interior structure, atmospheres of hot-Jupiter planets, up to the effect of tides and the dynamical evolution of planetary systems. Here, I give a summary of the recent developments of transiting planet detections and investigations discussed at this meeting.

  1. Parametrized post-Newtonian secular transit timing variations for exoplanets

    Ground-based and space-borne observatories used for studying exoplanet transits now and in the future will considerably increase the number of exoplanets known from transit data and the precision of the measured times of transit minima. Variations in the transit times can not only be used to infer the presence of additional planets, but might also provide opportunities to test the general theory of relativity in these systems. To build a framework for these possible tests, we extend previous studies on the observability of the general relativistic precessions of periastron in transiting exoplanets to variations in secular transit timing under parametrized post-Newtonian formalism. We find that if one can measure the difference between observed and predicted variations of general relativistic secular transit timing to 1 s yr−1 in a transiting exoplanet system with a Sun-like mass, a period of ∼ 1 day and a relatively small eccentricity of ∼ 0.1, general relativity will be tested to the level of ∼ 6%

  2. Characterization of transiting exoplanets by way of differential photometry

    Cowley, Michael

    2015-01-01

    This paper describes a simple activity for plotting and characterizing the light curve from an exoplanet transit event by way of differential photometry analysis. Using free digital imaging software, participants analyse a series of telescope images with the goal of calculating various exoplanet parameters, including its size, orbital radius and habitability. The activity has been designed for a high school or undergraduate university level and introduces fundamental concepts in astrophysics and an understanding of the basis for exoplanetary science, the transit method and digital photometry.

  3. Characterizing Transiting Exoplanet Atmospheres with Gemini/GMOS: First Results

    Huitson, Catherine; Desert, Jean-Michel; Bean, Jacob; Fortney, Jonathan J.; Stevenson, Kevin B.; Bergmann, Marcel

    2015-01-01

    We present the first results from a 4-year ground-based survey of nine transiting exoplanet atmospheres. The program uses the Multi-Object Spectrograph (GMOS) on both Gemini north and south to repetitively measure transit lightcurves of individual exoplanets at high spectrophotometric precision. I will present the first results from this program. We attain photometric precisions per spectral bin of 200-600 ppm. Such precision enables us to construct transmission spectra of hot Jupiters. These transmission spectra reveal the dominant upper-atmosphere absorbers in the optical bandpass. Our overarching goal is to understand the prevalence and formation of high altitude clouds and hazes, and other important atmospheric constituents.

  4. KELT-1b: A Strongly Irradiated, Highly Inflated, Short Period, 27 Jupiter-mass Companion Transiting a mid-F Star

    Siverd, Robert J; Pepper, Joshua; Eastman, Jason D; Collins, Karen; Bieryla, Allyson; Latham, David W; Buchhave, Lars A; Jensen, Eric L N; Crepp, Justin R; Street, Rachel; Stassun, Keivan G; Gaudi, B Scott; Berlind, Perry; Calkins, Michael L; DePoy, D L; Esquerdo, Gilbert A; Fulton, Benjamin J; Furesz, Gabor; Geary, John C; Gould, Andrew; Hebb, Leslie; Kielkopf, John F; Marshall, Jennifer L; Pogge, Richard; Stanek, K Z; Stefanik, Robert P; Szentgyorgyi, Andrew H; Trueblood, Mark; Trueblood, Patricia; Stutz, Amelia M; van Saders, Jennifer L

    2012-01-01

    We present the discovery of KELT-1b, the first transiting low-mass companion from the wide-field Kilodegree Extremely Little Telescope-North (KELT-North) survey. The V=10.7 primary is a mildly evolved, solar-metallicity, mid-F star. The companion is a low-mass brown dwarf or super-massive planet with mass of 27.23+/-0.50 MJ and radius of 1.110+0.037-0.024 RJ, on a very short period (P=1.21750007) circular orbit. KELT-1b receives a large amount of stellar insolation, with an equilibrium temperature assuming zero albedo and perfect redistribution of 2422 K. Upper limits on the secondary eclipse depth indicate that either the companion must have a non-zero albedo, or it must experience some energy redistribution. Comparison with standard evolutionary models for brown dwarfs suggests that the radius of KELT-1b is significantly inflated. Adaptive optics imaging reveals a candidate stellar companion to KELT-1, which is consistent with an M dwarf if bound. The projected spin-orbit alignment angle is consistent with ...

  5. PYTRANSIT: fast and easy exoplanet transit modelling in PYTHON

    Parviainen, Hannu

    2015-07-01

    We present a fast and user friendly exoplanet transit light-curve modelling package PYTRANSIT, implementing optimized versions of the Giménez and Mandel & Agol transit models. The package offers an object-oriented PYTHON interface to access the two models implemented natively in FORTRAN with OpenMP parallelization. A partial OpenCL version of the quadratic Mandel-Agol model is also included for GPU-accelerated computations. The aim of PYTRANSIT is to facilitate the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations, as a part of a researcher's programming toolkit for building complex, problem-specific analyses.

  6. Detection of transiting Jovian exoplanets by Gaia photometry - expected yield

    Dzigan, Yifat

    2012-01-01

    Several attempts have been made in the past to assess the expected number of exoplanetary transits that the Gaia space mission will detect. In this Letter we use the updated design of Gaia and its expected performance, and apply recent empirical statistical procedures to provide a new assessment. Depending on the extent of the follow-up effort that will be devoted, we expect Gaia to detect a few hundreds to a few thousands transiting exoplanets.

  7. ExoPriors: Accounting for observational bias of transiting exoplanets

    Kipping, David M.; Sandford, Emily

    2016-03-01

    ExoPriors calculates a log-likelihood penalty for an input set of transit parameters to account for observational bias (geometric and signal-to-noise ratio detection bias) of transiting exoplanets. Written in Python, the code calculates this log-likelihood penalty in one of seven user-specified cases specified with Boolean input parameters for geometric and/or SNR bias, grazing or non-grazing events, and occultation events.

  8. The NStED Exoplanet Transit Survey Service

    Von Braun, K; Ali, B; Baker, R; Berriman, G B; Chiu, N-M; Ciardi, D R; Good, J; Kane, S R; Laity, A C; McElroy, D L; Monkewitz, S; Payne, A N; Ramírez, S; Schmitz, M; Stauffer, J R; Wyatt, P L; Zhang, A

    2008-01-01

    The NASA Star and Exoplanet Database (NStED) is a general purpose stellar archive with the aim of providing support for NASA's planet finding and characterization goals, stellar astrophysics, and the planning of NASA and other space missions. There are two principal components of NStED: a database of (currently) 140,000 nearby stars and exoplanet-hosting stars, and an archive dedicated to high-precision photometric surveys for transiting exoplanets. We present a summary of the latter component: the NStED Exoplanet Transit Survey Service (NStED-ETSS), along with its content, functionality, tools, and user interface. NStED-ETSS currently serves data from the TrES Survey of the Kepler Field as well as dedicated photometric surveys of four stellar clusters. NStED-ETSS aims to serve both the surveys and the broader astronomical community by archiving these data and making them available in a homogeneous format. Examples of usability of ETSS include investigation of any time-variable phenomena in data sets not stud...

  9. Discovery, Characterization, and Dynamics of Transiting Exoplanets

    Van Eylen, Vincent

    2015-01-01

    present the first results of this study, constraining the masses and bulk compositions of three planets. The second part of this thesis focuses on dynamics of exoplanets. All the solar system planets orbit in nearly the same plane, and that plane is also aligned with the equatorial plane of the Sun. That....... The measurement joins a handful of obliquity measurements, so far suggesting multi-planet systems are mostly aligned. This favors theories suggesting that hot Jupiter migration is responsible for creating misaligned planets. Moreover, unlike the planets in the solar system, which have nearly circular...... are similar to the solar system, but differ from the highly eccentric orbits seen for some massive planets....

  10. Transiting planets with LSST. I. Potential for LSST exoplanet detection

    Lund, Michael B.; Pepper, Joshua; Stassun, Keivan G., E-mail: michael.b.lund@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) is designed to meet several scientific objectives over a 10 year synoptic sky survey. Beyond its primary goals, the large amount of LSST data can be exploited for additional scientific purposes. We show that LSST data are sufficient to detect the transits of exoplanets, including planets orbiting stars that are members of stellar populations that have so far been largely unexplored. Using simulated LSST light curves, we find that existing transit detection algorithms can identify the signatures of Hot Jupiters around solar-type stars, Hot Neptunes around K-dwarfs, and (in favorable cases) Super-Earths in habitable-zone orbits of M-dwarfs. We also find that LSST may identify Hot Jupiters orbiting stars in the Large Magellanic Cloud—a remarkable possibility that would advance exoplanet science into the extragalactic regime.

  11. THE LOW DENSITY TRANSITING EXOPLANET WASP-15b

    We report the discovery of a low-density exoplanet transiting an 11th magnitude star in the Southern hemisphere. WASP-15b, which orbits its host star with a period P = 3.7520656 ± 0.0000028 d, has a mass M p = 0.542 ± 0.050 M J and radius R p = 1.428 ± 0.077 R J, and is therefore one of the least dense transiting exoplanets so far discovered (ρp = 0.247 ± 0.035 g cm-3). An analysis of the spectrum of the host star shows it to be of spectral type around F5, with an effective temperature T eff = 6300 ± 100 K and [Fe/H] = -0.17 ± 0.11.

  12. KELT-10b: the first transiting exoplanet from the KELT-South survey - a hot sub-Jupiter transiting a V = 10.7 early G-star

    Kuhn, Rudolf B.; Rodriguez, Joseph E.; Collins, Karen A.; Lund, Michael B.; Siverd, Robert J.; Colón, Knicole D.; Pepper, Joshua; Stassun, Keivan G.; Cargile, Phillip A.; James, David J.; Penev, Kaloyan; Zhou, George; Bayliss, Daniel; Tan, T. G.; Curtis, Ivan A.; Udry, Stephane; Segransan, Damien; Mawet, Dimitri; Dhital, Saurav; Soutter, Jack; Hart, Rhodes; Carter, Brad; Gaudi, B. Scott; Myers, Gordon; Beatty, Thomas G.; Eastman, Jason D.; Reichart, Daniel E.; Haislip, Joshua B.; Kielkopf, John; Bieryla, Allyson; Latham, David W.; Jensen, Eric L. N.; Oberst, Thomas E.; Stevens, Daniel J.

    2016-07-01

    We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V = 10.7 star (TYC 8378-64-1), with Teff = 5948 ± 74 K, log g = 4.319_{-0.030}^{+0.020} and [Fe/H] = 0.09_{-0.10}^{+0.11}, an inferred mass M* = 1.112_{-0.061}^{+0.055} M⊙ and radius R* = 1.209_{-0.035}^{+0.047} R⊙. The planet has a radius Rp = 1.399_{-0.049}^{+0.069} RJ and mass Mp = 0.679_{-0.038}^{+0.039} MJ. The planet has an eccentricity consistent with zero and a semimajor axis a = 0.052 50_{-0.000 97}^{+0.000 86} au. The best-fitting linear ephemeris is T0 = 2457 066.720 45 ± 0.000 27 BJDTDB and P = 4.166 2739 ± 0.000 0063 d. This planet joins a group of highly inflated transiting exoplanets with a larger radius and smaller mass than that of Jupiter. The planet, which boasts deep transits of 1.4 per cent, has a relatively high equilibrium temperature of Teq = 1377_{-23}^{+28} K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of 0.817_{-0.054}^{+0.068} × 109 erg s-1 cm-2, which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b may not survive beyond the current subgiant phase, depending on the rate of in-spiral of the planet over the next few Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V < 11 in the Southern hemisphere, making it a promising candidate for future atmospheric characterization studies.

  13. ELLC - a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    Maxted, P. F. L.

    2016-01-01

    Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. I have developed a binary star model (ELLC) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time wit...

  14. Five Kepler target stars that show multiple transiting exoplanet candidates

    Steffen, Jason H.; /Fermilab; Batalha, Natalie M.; /San Jose State U.; Borucki, William J.; /NASA, Ames; Buchhave, Lars A.; /Harvard-Smithsonian Ctr. Astrophys. /Bohr Inst.; Caldwell, Douglas A.; /NASA, Ames /SETI Inst., Mtn. View; Cochran, William D.; /Texas U.; Endl, Michael; /Texas U.; Fabrycky, Daniel C.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Fortney, Jonathan J.; /UC, Santa Cruz, Phys. Dept. /NASA, Ames

    2010-06-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities - two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTV) due to gravitational interactions - though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  15. Dynamics and Transit Variations of Resonant Exoplanets

    Nesvorny, D

    2016-01-01

    The Transit Timing Variations (TTVs) are deviations of the measured mid-transit times from the exact periodicity. One of the most interesting causes of TTVs is the gravitational interaction between planets. Here we consider a case of two planets in a mean motion resonance (orbital periods in a ratio of small integers). This case is important because the resonant interaction can amplify the TTV effect and allow planets to be detected more easily. We develop an analytic model of the resonant dynamics valid for small orbital eccentricities and use it to derive the principal TTV terms. We find that a resonant system should show TTV terms with two basic periods (and their harmonics). The resonant TTV period is proportional (m/M_*)^(-2/3), where m and M_* are the planetary and stellar masses. For m=10^(-4) M_*, for example, the TTV period exceeds the orbital period by ~2 orders of magnitude. The amplitude of the resonant TTV terms scales linearly with the libration amplitude. The ratio of the TTV amplitudes of two ...

  16. New tools and improvements in the Exoplanet Transit Database

    Pejcha O.

    2011-02-01

    Full Text Available Comprehensive collection of the available light curves, prediction possibilities and the online model fitting procedure, that are available via Exoplanet Transit Database became very popular in the community. In this paper we summarized the changes, that we made in the ETD during last year (including the Kepler candidates into the prediction section, modeling of an unknown planet in the model-fit section and some other small improvements. All this new tools cannot be found in the main ETD paper.

  17. Dynamics and Transit Variations of Resonant Exoplanets

    Nesvorný, David; Vokrouhlický, David

    2016-06-01

    Transit timing variations (TTVs) are deviations of the measured midtransit times from the exact periodicity. One of the most interesting causes of TTVs is the gravitational interaction between planets. Here we consider a case of two planets in a mean motion resonance (orbital periods in a ratio of small integers). This case is important because the resonant interaction can amplify the TTV effect and allow planets to be detected more easily. We develop an analytic model of the resonant dynamics valid for small orbital eccentricities and use it to derive the principal TTV terms. We find that a resonant system should show TTV terms with two basic periods (and their harmonics). The resonant TTV period is proportional (m/M *)‑2/3, where m and M * are the planetary and stellar masses. For m = 10‑4 M *, for example, the TTV period exceeds the orbital period by about two orders of magnitude. The amplitude of the resonant TTV terms scales linearly with the libration amplitude. The ratio of the TTV amplitudes of two resonant planets is inversely proportional to the ratio of their masses. These and other relationships discussed in the main text can be used to aid the interpretation of TTV observations.

  18. Optical Observations of the Transiting Exoplanet GJ 1214b

    Teske, Johanna K; Mueller, Matthias; Griffith, Caitlin A

    2013-01-01

    We observed nine primary transits of the super-Earth exoplanet GJ 1214b in several optical photometric bands from March to August 2012, with the goal of constraining the short-wavelength slope of the spectrum of GJ 1214b. Our observations were conducted on the Kuiper 1.55 m telescope in Arizona and the STELLA-I robotic 1.2 m telescope in Tenerife, Spain. From the derived light curves we extracted transit depths in R (0.65 {\\mu}m), V (0.55 {\\mu}m), and g' (0.475 {\\mu}m) bands. Most previous observations of this exoplanet suggest a flat spectrum varying little with wavelength from the near-infrared to the optical, corresponding to a low-scale-height, high-molecular-weight atmosphere. However, a handful of observations around Ks band (~2.15 {\\mu}m) and g-band (~0.46 {\\mu}m) are inconsistent with this scenario and suggest a variation on a hydrogen- or water-dominated atmosphere that also contains a haze layer of small particles. In particular, the g-band observations of de Mooij et al. (2012), consistent with Ray...

  19. Transiting Planets with LSST I: Potential for LSST Exoplanet Detection

    Lund, Michael B; Stassun, Keivan G

    2014-01-01

    The Large Synoptic Survey Telescope (LSST) has been designed in order to satisfy several different scientific objectives that can be addressed by a ten-year synoptic sky survey. However, LSST will also provide a large amount of data that can then be exploited for additional science beyond its primary goals. We demonstrate the potential of using LSST data to search for transiting exoplanets, and in particular to find planets orbiting host stars that are members of stellar populations that have been less thoroughly probed by current exoplanet surveys. We find that existing algorithms can detect in simulated LSST light curves the transits of Hot Jupiters around solar-type stars, Hot Neptunes around K dwarfs, and planets orbiting stars in the Large Magellanic Cloud. We also show that LSST would have the sensitivity to potentially detect Super-Earths orbiting red dwarfs, including those in habitable zone orbits, if they are present in some fields that LSST will observe. From these results, we make the case that LS...

  20. PyTransit: Fast and Easy Exoplanet Transit Modelling in Python

    Parviainen, Hannu

    2015-01-01

    We present a fast and user friendly exoplanet transit light curve modelling package PyTransit, implementing optimised versions of the Gimen\\'ez and the Mandel & Agol transit models. The package offers an object-oriented Python interface to access the two models implemented natively in Fortran with OpenMP parallelisation. A partial OpenCL version of the quadratic Mandel-Agol model is also included for GPU-accelerated computations. The aim of PyTransit is to facilitate the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of datapoints, and of multi-passband transit light curves from spectrophotometric observations, as a part of a researcher's programming toolkit for building complex, problem-specific, analyses.

  1. ExTrA: Exoplanets in Transit and their Atmospheres

    Bonfils, X; Jocou, L; Wunsche, A; Kern, P; Delboulbé, A; Delfosse, X; Feautrier, P; Forveille, T; Gluck, L; Lafrasse, S; Magnard, Y; Maurel, D; Moulin, T; Murgas, F; Rabou, P; Rochat, S; Roux, A; Stadler, E

    2015-01-01

    The ExTrA facility, located at La Silla observatory, will consist of a near-infrared multi-object spectrograph fed by three 60-cm telescopes. ExTrA will add the spectroscopic resolution to the traditional differential photometry method. This shall enable the fine correction of color-dependent systematics that would otherwise hinder ground-based observations. With both this novel method and an infrared-enabled efficiency, ExTrA aims to find transiting telluric planets orbiting in the habitable zone of bright nearby M dwarfs. It shall have the versatility to do so by running its own independent survey and also by concurrently following-up on the space candidates unveiled by K2 and TESS. The exoplanets detected by ExTrA will be amenable to atmospheric characterisation with VLTs, JWST, and ELTs and could give our first peek into an exo-life laboratory.

  2. Toward the detection of exoplanet transits with polarimetry

    In contrast to photometric transits, whose peak signal occurs at mid-transit due to occultation of the brightest region of the disk, polarimetric transits provide a signal upon ingress and egress due to occultation of the polarized stellar limb. Limb polarization, the bright corollary to limb darkening, arises from the 90° scattering angle and low optical depth experienced by photons at the limb. In addition to the ratio R p/R *, the amplitude of a polarimetric transit is expected to be controlled by the strength and width of the stellar limb polarization profile, which depend on the scattering-to-total opacity ratio at the stellar limb. We present a short list of the systems providing the highest expected signal-to-noise ratio for detection of this effect, and we draw particular attention to HD 80606b. This planet is spin/orbit misaligned, has a three-hour ingress, and has a bright parent star, which make it an attractive target. We report on test observations of an HD 80606b ingress with the POLISH2 polarimeter at the Lick Observatory Shane 3 m telescope. We conclude that unmodeled telescope systematic effects prevented polarimetric detection of this event. We outline a roadmap for further refinements of exoplanet polarimetry, whose eventual success will require a further factor of ten reduction in systematic noise.

  3. Engaging Undergraduate Students in Transiting Exoplanet Research with Small Telescopes

    Stephens, Denise C.; Stoker, E.; Gaillard, C.; Ranquist, E.; Lara, P.; Wright, K.

    2013-10-01

    Brigham Young University has a relatively large undergraduate physics program with 300 to 360 physics majors. Each of these students is required to be engaged in a research group and to produce a senior thesis before graduating. For the astronomy professors, this means that each of us is mentoring at least 4-6 undergraduate students at any given time. For the past few years I have been searching for meaningful research projects that make use of our telescope resources and are exciting for both myself and my students. We first started following up Kepler Objects of Interest with our 0.9 meter telescope, but quickly realized that most of the transits we could observe were better analyzed with Kepler data and were false positive objects. So now we have joined a team that is searching for transiting planets, and my students are using our 16" telescope to do ground based follow-up on the hundreds of possible transiting planet candidates produced by this survey. In this presentation I will describe our current telescopes, the observational setup, and how we use our telescopes to search for transiting planets. I'll describe some of the software the students have written. I'll also explain how to use the NASA Exoplanet Archive to gather data on known transiting planets and Kepler Objects of Interests. These databases are useful for determining the observational limits of your small telescopes and teaching your students how to reduce and report data on transiting planets. Once that is in place, you are potentially ready to join existing transiting planet missions by doing ground-based follow-up. I will explain how easy it can be to implement this type of research at any high school, college, or university with a small telescope and CCD camera.

  4. On the Possibility of Detecting Class A Stellar Engines Using Exoplanet Transit Curves

    Forgan, Duncan H

    2013-01-01

    The Class A stellar engine (also known as a Shkadov thruster) is a spherical arc mirror, designed to use the impulse from a star's radiation pressure to generate a thrust force, perturbing the star's motion. If this mirror obstructs part of the stellar disc during the transit of an exoplanet, then this may be detected by studying the shape of the transit light curve, presenting another potential means by which the action of extraterrestrial intelligence (ETI) can be discerned. We model the light curves produced by exoplanets transiting a star which possesses a Shkadov thruster, and show how the parameters of the planet and the properties of the thruster can be disentangled. provided that radial velocity follow-up measurements are possible, and that other obscuring phenomena typical to exoplanet transit curves (such as the presence of starspots or intrinsic stellar noise) do not dominate. These difficulties aside, we estimate the a priori probability of detecting a Shkadov thruster during an exoplanet transit,...

  5. The role of space telescopes in the characterization of transiting exoplanets.

    Hatzes, Artie P

    2014-09-18

    Characterization studies now have a dominant role in the field of exoplanets. Such studies include the measurement of an exoplanet's bulk density, its brightness temperature and the chemical composition of its atmosphere. The use of space telescopes has played a key part in the characterization of transiting exoplanets. These facilities offer astronomers data of exquisite precision and temporal sampling as well as access to wavelength regions of the electromagnetic spectrum that are inaccessible from the ground. Space missions such as the Hubble Space Telescope, Microvariability and Oscillations of Stars (MOST), Spitzer Space Telescope, Convection, Rotation and Planetary Transits (CoRoT), and Kepler have rapidly advanced our knowledge of the physical properties of exoplanets and have blazed a trail for a series of future space missions that will help us to understand the observed diversity of exoplanets. PMID:25230657

  6. The role of space telescopes in the characterization of transiting exoplanets

    Hatzes, Artie P.

    2014-09-01

    Characterization studies now have a dominant role in the field of exoplanets. Such studies include the measurement of an exoplanet's bulk density, its brightness temperature and the chemical composition of its atmosphere. The use of space telescopes has played a key part in the characterization of transiting exoplanets. These facilities offer astronomers data of exquisite precision and temporal sampling as well as access to wavelength regions of the electromagnetic spectrum that are inaccessible from the ground. Space missions such as the Hubble Space Telescope, Microvariability and Oscillations of Stars (MOST), Spitzer Space Telescope, Convection, Rotation and Planetary Transits (CoRoT), and Kepler have rapidly advanced our knowledge of the physical properties of exoplanets and have blazed a trail for a series of future space missions that will help us to understand the observed diversity of exoplanets.

  7. PyTransit: Fast and Easy Exoplanet Transit Modelling in Python

    Parviainen, Hannu

    2015-01-01

    We present a fast and user friendly exoplanet transit light curve modelling package PyTransit, implementing optimised versions of the Gimen\\'ez and the Mandel & Agol transit models. The package offers an object-oriented Python interface to access the two models implemented natively in Fortran with OpenMP parallelisation. A partial OpenCL version of the quadratic Mandel-Agol model is also included for GPU-accelerated computations. The aim of PyTransit is to facilitate the analysis of photometr...

  8. Transmission spectrum of Venus as a transiting exoplanet

    Ehrenreich, David; Widemann, Thomas; Gronoff, Guillaume; Tanga, Paolo; Barthélemy, Mathieu; Lilensten, Jean; Etangs, Alain Lecavelier des; Arnold, Luc

    2011-01-01

    On 5-6 June 2012, Venus will be transiting the Sun for the last time before 2117. This event is an unique opportunity to assess the feasibility of the atmospheric characterisation of Earth-size exoplanets near the habitable zone with the transmission spectroscopy technique and provide an invaluable proxy for the atmosphere of such a planet. In this letter, we provide a theoretical transmission spectrum of the atmosphere of Venus that could be tested with spectroscopic observations during the 2012 transit. This is done using radiative transfer across Venus' atmosphere, with inputs from in-situ missions such as Venus Express and theoretical models. The transmission spectrum covers a range of 0.1-5 {\\mu}m and probes the limb between 70 and 150 km in altitude. It is dominated in UV by carbon dioxide absorption producing a broad transit signal of ~20 ppm as seen from Earth, and from 0.2 to 2.7 {\\mu}m by Mie extinction (~5 ppm at 0.8 {\\mu}m) caused by droplets of sulfuric acid composing an upper haze layer above th...

  9. Disentangling degenerate solutions from primary transit and secondary eclipse spectroscopy of exoplanets

    Griffith, Caitlin A

    2013-01-01

    Infrared transmission and emission spectroscopy of exoplanets, recorded from primary transit and secondary eclipse measurements, indicate the presence of the most abundant carbon and oxygen molecular species (H2O, CH4, CO, and CO2) in a few exoplanets. However, efforts to constrain the molecular abundances to within several orders of magnitude are thwarted by the broad range of degenerate solutions that fit the data. Here we explore, with radiative transfer models and analytical approximations, the nature of the degenerate solution sets resulting from the sparse measurements of "hot Jupiter" exoplanets. As demonstrated with simple analytical expressions, primary transit measurements probe roughly 4 atmospheric scale heights at each wavelength band. Derived mixing ratios from these data are highly sensitive to errors in the radius in planet (at a reference pressure), which are approximately a few percent. For example, an uncertainty of 1% in the radius of a 1000 K and H2-based exoplanet with Jupiter's radius a...

  10. The GTC exoplanet transit spectroscopy survey. IV.: No asymmetries in the transit of Corot-29b

    Palle, E; Alonso, R; Nowak, G; Deeg, H; Cabrera, J; Murgas, F; Parviainen, H; Nortmann, L; Hoyer, S; Prieto-Arranz, J; Nespral, D; Lavers, A Cabrera; Iro, N

    2016-01-01

    Context. The launch of the exoplanet space missions obtaining exquisite photometry from space has resulted in the discovery of thousands of planetary systems with very different physical properties and architectures. Among them, the exoplanet CoRoT-29b was identified in the light curves the mission obtained in summer 2011, and presented an asymmetric transit light curve, which was tentatively explained via the effects of gravity darkening. Aims. Transits of CoRoT-29b are measured with precision photometry, to characterize the reported asymmetry in their transit shape. Methods. Using the OSIRIS spectrograph at the 10-m GTC telescope, we perform spectro-photometric di?erential observations, which allow us to both calculate a high-accuracy photometric light curve, and a study of the color-dependence of the transit. Results. After careful data analysis, we find that the previously reported asymmetry is not present in either of two transits, observed in July 2014 and July 2015 with high photometric precisions of 3...

  11. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Stevenson, Kevin B; Bean, Jacob L; Beichman, Charles; Fraine, Jonathan; Kilpatrick, Brian M; Krick, J E; Lothringer, Joshua D; Mandell, Avi M; Valenti, Jeff A; Agol, Eric; Angerhausen, Daniel; Barstow, Joanna K; Birkmann, Stephan M; Burrows, Adam; Cowan, Nicolas B; Crouzet, Nicolas; Cubillos, Patricio E; Curry, S M; Dalba, Paul A; de Wit, Julien; Deming, Drake; Desert, Jean-Michel; Doyon, Rene; Dragomir, Diana; Ehrenreich, David; Fortney, Jonathan J; Munoz, Antonio Garcia; Gibson, Neale P; Gizis, John E; Greene, Thomas P; Harrington, Joseph; Heng, Kevin; Kataria, Tiffany; Kempton, Eliza M -R; Knutson, Heather; Kreidberg, Laura; Lafreniere, David; Lagage, Pierre-Olivier; Line, Michael R; Lopez-Morales, Mercedes; Madhusudhan, Nikku; Morley, Caroline V; Rocchetto, Marco; Schlawin, Everett; Shkolnik, Evgenya L; Shporer, Avi; Sing, David K; Todorov, Kamen O; Tucker, Gregory S; Wakeford, Hannah R

    2016-01-01

    The James Webb Space Telescope will revolutionize transiting exoplanet atmospheric science due to its capability for continuous, long-duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful future transiting exoplanet characterization programs. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions...

  12. The Kilodegree Extremely Little Telescope: Searching for Transiting Exoplanets in the Northern and Southern Sky

    Soutter, Jack; Pepper, Joshua

    2016-01-01

    The Kilodegree Extremely Little Telescope (KELT) survey is a ground-based program designed to search for transiting exoplanets orbiting relatively bright stars. To achieve this, the KELT Science Team operates two planets facilities - KELT-North, at Winer Observatory, Arizona, and KELT-South, at the South African Astronomical Observatory. The telescopes used at these observatories have particularly wide fields of view, allowing KELT to study a large number of potential exoplanet host stars. One of the major advantages of targeting bright stars is that the exoplanet candidates detected can be easily followed up by small, ground-based observatories distributed around the world. This paper will provide a brief overview of the KELT-North and the KELT-South surveys, the follow-up observations preformed by the KELT Follow-up Collaboration, and exoplanet discoveries confirmed thus far, before concluding with a brief discussion of the future for the KELT program.

  13. C/O Ratios of Stars with Transiting Hot Jupiter Exoplanets

    Teske, Johanna K; Smith, Verne V; Schuler, Simon C; Griffith, Caitlin A

    2014-01-01

    The relative abundances of carbon and oxygen have long been recognized as fundamental diagnostics of stellar chemical evolution. Now, the growing number of exoplanet observations enable estimation of these elements in exoplanetary atmospheres. In hot Jupiters, the C/O ratio affects the partitioning of carbon in the major observable molecules, making these elements diagnostic of temperature structure and composition. Here we present measurements of carbon and oxygen abundances in 16 stars that host transiting hot Jupiter exoplanets, and compare our C/O ratios to those measured in larger samples of host stars, as well as those estimated for the corresponding exoplanet atmospheres. With standard stellar abundance analysis we derive stellar parameters as well as [C/H] and [O/H] from multiple abundance indicators, including synthesis fitting of the [O I] 6300 {\\AA} line and NLTE corrections for the O I triplet. Our results, in agreement with recent suggestions, indicate that previously-measured exoplanet host star...

  14. Search for transiting exoplanets and variable stars in the open cluster NGC 7243

    Garai, Z; Hambálek, L; Errmann, R; Adam, Ch; Buder, S; Butterley, T; Dhillon, V S; Dincel, B; Gilbert, H; Ginski, Ch; Hardy, L K; Kellerer, A; Kitze, M; Kundra, E; Littlefair, S P; Mugrauer, M; Nedoroščík, J; Neuhäuser, R; Pannicke, A; Raetz, S; Schmidt, J G; Schmidt, T O B; Seeliger, M; Vaňko, M; Wilson, R W

    2016-01-01

    We report results of the first five observing campaigns for the open stellar cluster NGC 7243 in the frame of project Young Exoplanet Transit Initiative (YETI). The project focuses on the monitoring of young and nearby stellar clusters, with the aim to detect young transiting exoplanets, and to study other variability phenomena on time-scales from minutes to years. After five observing campaigns and additional observations during 2013 and 2014, a clear and repeating transit-like signal was detected in the light curve of J221550.6+495611. Furthermore, we detected and analysed 37 new eclipsing binary stars in the studied region. The best fit parameters and light curves of all systems are given. Finally, we detected and analysed 26 new, presumably pulsating variable stars in the studied region. The follow-up investigation of these objects, including spectroscopic measurements of the exoplanet candidate, is currently planned.

  15. On the Detection of Non-Transiting Exoplanets with Dusty Tails

    DeVore, John; Sanchis-Ojeda, Roberto; Hoffman, Kelsey; Rowe, Jason

    2016-01-01

    We present a way of searching for non-transiting exoplanets with dusty tails. In the transiting case, the extinction by dust during the transit removes more light from the beam than is scattered into it. Thus, the forward scattering component of the light is best seen either just prior to ingress, or just after egress, but with reduced amplitude over the larger peak that is obscured by the transit. This picture suggests that it should be equally productive to search for positive-going peaks in the flux from non-transiting exoplanets with dusty tails. We discuss what amplitudes are expected for different orbital inclination angles. The signature of such objects should be distinct from normal transits, starspots, and most - but not all - types of stellar pulsations.

  16. C/O ratios of stars with transiting hot Jupiter exoplanets ,

    Teske, Johanna K.; Cunha, Katia [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Smith, Verne V. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Schuler, Simon C. [University of Tampa, 401 West Kennedy Boulevard, Tampa, FL 33606 (United States); Griffith, Caitlin A., E-mail: jteske@as.arizona.edu [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2014-06-10

    The relative abundances of carbon and oxygen have long been recognized as fundamental diagnostics of stellar chemical evolution. Now, the growing number of exoplanet observations enable estimation of these elements in exoplanetary atmospheres. In hot Jupiters, the C/O ratio affects the partitioning of carbon in the major observable molecules, making these elements diagnostic of temperature structure and composition. Here we present measurements of carbon and oxygen abundances in 16 stars that host transiting hot Jupiter exoplanets, and we compare our C/O ratios to those measured in larger samples of host stars, as well as those estimated for the corresponding exoplanet atmospheres. With standard stellar abundance analysis we derive stellar parameters as well as [C/H] and [O/H] from multiple abundance indicators, including synthesis fitting of the [O I] λ6300 line and non-LTE corrections for the O I triplet. Our results, in agreement with recent suggestions, indicate that previously measured exoplanet host star C/O ratios may have been overestimated. The mean transiting exoplanet host star C/O ratio from this sample is 0.54 (C/O{sub ☉} = 0.54), versus previously measured C/O{sub host} {sub star} means of ∼0.65-0.75. We also observe the increase in C/O with [Fe/H] expected for all stars based on Galactic chemical evolution; a linear fit to our results falls slightly below that of other exoplanet host star studies but has a similar slope. Though the C/O ratios of even the most-observed exoplanets are still uncertain, the more precise abundance analysis possible right now for their host stars can help constrain these planets' formation environments and current compositions.

  17. C/O ratios of stars with transiting hot Jupiter exoplanets ,

    The relative abundances of carbon and oxygen have long been recognized as fundamental diagnostics of stellar chemical evolution. Now, the growing number of exoplanet observations enable estimation of these elements in exoplanetary atmospheres. In hot Jupiters, the C/O ratio affects the partitioning of carbon in the major observable molecules, making these elements diagnostic of temperature structure and composition. Here we present measurements of carbon and oxygen abundances in 16 stars that host transiting hot Jupiter exoplanets, and we compare our C/O ratios to those measured in larger samples of host stars, as well as those estimated for the corresponding exoplanet atmospheres. With standard stellar abundance analysis we derive stellar parameters as well as [C/H] and [O/H] from multiple abundance indicators, including synthesis fitting of the [O I] λ6300 line and non-LTE corrections for the O I triplet. Our results, in agreement with recent suggestions, indicate that previously measured exoplanet host star C/O ratios may have been overestimated. The mean transiting exoplanet host star C/O ratio from this sample is 0.54 (C/O☉ = 0.54), versus previously measured C/Ohost star means of ∼0.65-0.75. We also observe the increase in C/O with [Fe/H] expected for all stars based on Galactic chemical evolution; a linear fit to our results falls slightly below that of other exoplanet host star studies but has a similar slope. Though the C/O ratios of even the most-observed exoplanets are still uncertain, the more precise abundance analysis possible right now for their host stars can help constrain these planets' formation environments and current compositions.

  18. Exoplanet Atmospheres

    Seager, S

    2010-01-01

    At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...

  19. Hubble/WFC3 Spectroscopy of the Transiting Exoplanets WASP-19b and WASP-17b

    Mandell, A.; Haynes, K.; Sinukoff, E.; Deming, D.; Wlikins, A.; Madhusudhan, N.; Agol, E.; Burrows, A.; Charbonneau, D.; Gilliland, R.; Knutson, H.; Ranjan, S.; Seager, S.; Showman, A.

    2012-01-01

    Measurements of transiting exoplanets that target extremes in parameter space offer the best chance to disentangle the structure and composition of the atmospheres of hot Jupiters. WASP-19b is one of the hottest exoplanets discovered to date, while WASP-17b has a much lower equilibrium temperature but has one of the largest atmospheric radii of known transiting planets. We discuss results from HST/WFC3 grism 1.1-1.7 micron spectroscopy of these planets during transit. We compare our integrated-light transit depths to previous IR transit photometry, and derive the 1.4-micron water absorption spectrum. We discuss implications for the atmospheric composition and structure of these hot Jupiters, and outline future observations that will further expand on these results.

  20. A new powerful method for probing the atmospheres of transiting exoplanets

    Snellen, I

    2004-01-01

    Although atmospheric transmission spectroscopy of HD209458b with the Hubble Space Telescope has been very successful, attempts to detect its atmospheric absorption features using ground-based telescopes have so far been fruitless. Here we present a new method for probing the atmospheres of transiting exoplanets which may be more suitable for ground-based observations, making use of the Rossiter effect. During a transit, an exoplanet sequentially blocks off light from the approaching and receding parts of the rotating star, causing an artificial radial velocity wobble. The amplitude of this signal is directly proportional to the effective size of the transiting object, and the wavelength dependence of this effect can reveal atmospheric absorption features, in a similar way as with transmission spectroscopy. The advantage of this method over conventional atmospheric transmission spectroscopy is that it does not rely on accurate photometric comparisons of observations on and off transit, but instead depends on t...

  1. On the Possibility of Detecting Class A Stellar Engines Using Exoplanet Transit Curves

    Forgan, Duncan H.

    2013-01-01

    The Class A stellar engine (also known as a Shkadov thruster) is a spherical arc mirror, designed to use the impulse from a star's radiation pressure to generate a thrust force, perturbing the star's motion. If this mirror obstructs part of the stellar disc during the transit of an exoplanet, then this may be detected by studying the shape of the transit light curve, presenting another potential means by which the action of extraterrestrial intelligence (ETI) can be discerned. We model the li...

  2. DETECTION OF TRANSITING JOVIAN EXOPLANETS BY GAIA PHOTOMETRY-EXPECTED YIELD

    Dzigan, Yifat; Zucker, Shay, E-mail: yifatdzigan@gmail.com, E-mail: shayz@post.tau.ac.il [Department of Geophysical, Atmospheric, and Planetary Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2012-07-01

    Several attempts have been made in the past to assess the expected number of exoplanetary transits that the Gaia space mission will detect. In this Letter, we use the updated design of Gaia and its expected performance and apply recent empirical statistical procedures to provide a new assessment. Depending on the extent of the follow-up effort that will be devoted, we expect Gaia to detect from a few hundreds to a few thousands of transiting exoplanets.

  3. Disentangling degenerate solutions from primary transit and secondary eclipse spectroscopy of exoplanets.

    Griffith, Caitlin A

    2014-04-28

    Infrared transmission and emission spectroscopy of exoplanets, recorded from primary transit and secondary eclipse measurements, indicate the presence of the most abundant carbon and oxygen molecular species (H2O, CH4, CO and CO2) in a few exoplanets. However, efforts to constrain the molecular abundances to within several orders of magnitude are thwarted by the broad range of degenerate solutions that fit the data. Here, we explore, with radiative transfer models and analytical approximations, the nature of the degenerate solution sets resulting from the sparse measurements of 'hot Jupiter' exoplanets. As demonstrated with simple analytical expressions, primary transit measurements probe roughly four atmospheric scale heights at each wavelength band. Derived mixing ratios from these data are highly sensitive to errors in the radius of the planet at a reference pressure. For example, an uncertainty of 1% in the radius of a 1000 K and H2-based exoplanet with Jupiter's radius and mass causes an uncertainty of a factor of approximately 100-10,000 in the derived gas mixing ratios. The degree of sensitivity depends on how the line strength increases with the optical depth (i.e. the curve of growth) and the atmospheric scale height. Temperature degeneracies in the solutions of the primary transit data, which manifest their effects through the scale height and absorption coefficients, are smaller. We argue that these challenges can be partially surmounted by a combination of selected wavelength sampling of optical and infrared measurements and, when possible, the joint analysis of transit and secondary eclipse data of exoplanets. However, additional work is needed to constrain other effects, such as those owing to planetary clouds and star spots. Given the current range of open questions in the field, both observations and theory, there is a need for detailed measurements with space-based large mirror platforms (e.g. James web space telescope) and smaller broad survey

  4. The Transit Light Curve (TLC) Project. I. Four Consecutive Transits of the Exoplanet XO-1b

    Holman, M J; Latham, D W; O'Donovan, F T; Charbonneau, D; Bakos, G A; Esquerdo, G A; Hergenrother, C; Everett, M E; Pal, A; Holman, Matthew J.; Winn, Joshua N.; Latham, David W.; Donovan, Francis T. O'; Charbonneau, David; Bakos, Gaspar A.; Esquerdo, Gilbert A.; Hergenrother, Carl; Everett, Mark E.; Pal, Andras

    2006-01-01

    We present RIz photometry of four consecutive transits of the newly discovered exoplanet XO-1b. We improve upon the estimates of the transit parameters, finding the planetary radius to be R_P = 1.184 +0.028/-0.018 R_Jupiter and the stellar radius to be R_S = 0.928 +0.018/-0.013 R_Sun, assuming a stellar mass of M_S = 1.00 +/- 0.03 M_Sun. The uncertainties in the planetary and stellar radii are dominated by the uncertainty in the stellar mass. These uncertainties increase by a factor of 2-3 if a more conservative uncertainty of 0.10 M_Sun is assumed for the stellar mass. Our estimate of the planetary radius is smaller than that reported by McCullough et al. (2006) and yields a mean density that is comparable to that of TrES-1 and HD 189733b. The timings of the transits have an accuracy ranging from 0.2 to 2.5 minutes, and are marginally consistent with a uniform period.

  5. Maps and Masses of Transiting Exoplanets: Towards New Insights into Atmospheric and Interior Properties of Planets

    de Wit, Julien

    2015-01-01

    With over 1800 planets discovered outside of the Solar System in the past two decades, the field of exoplanetology has broadened our perspective on planetary systems. Research priorities are now moving from planet detection to planet characterization. In this context, transiting exoplanets are of special interest due to the wealth of data made available by their orbital configuration. Here, I introduce two methods to gain new insights into the atmospheric and interior properties of exoplanets. The first method aims to map an exoplanet's atmosphere based on the scanning obtained while it is occulted by its host star. I introduce the basics of eclipse mapping, its caveats, and a framework to mitigate their effects via global analyses including transits, phase curves, and radial velocity measurements. I use this method to create the first 2D map and the first cloud map of an exoplanet for the hot-Jupiters HD189733b and Kepler-7b, respectively. Ultimately temperature, composition, and circulation patterns could b...

  6. Using near infra-red spectroscopy for characterization of transiting exoplanets

    Aronson, Erik; Piskunov, Nikolai

    2015-01-01

    We propose a method for observing transiting exoplanets with near-infrared high-resolution spectrometers. We aim to create a robust data analysis method for recovering atmospheric transmission spectra from transiting exoplanets over a wide wavelength range in the near infrared. By using an inverse method approach, combined with stellar models and telluric transmission spectra, the method recovers the transiting exoplanet's atmospheric transmittance at high precision over a wide wavelength range. We describe our method and have tested it by simulating observations. This method is capable of recovering transmission spectra of high enough accuracy to identify absorption features from molecules such as O2, CH4, CO2, and H2O. This accuracy is achievable for Jupiter-size exoplanetsat S/N that can be reached for 8m class telescopes using high-resolution spectrometers (R>20 000) during a single transit, and for Earth-size planets and super-Earths transiting late K or M dwarf stars at S/N reachable during observations...

  7. Exploring the Diversity of Exoplanet Atmospheres Using Ground-Based Transit Spectroscopy

    Bean, Jacob

    This is a proposal to fund an observational study of the atmospheres of exoplanets in order to improve our understanding of the nature and origins of these mysterious worlds. The observations will be performed using our new approach for ground-based transit spectroscopy measurements that yields space-telescope quality data. We will also carry out supporting theoretical calculations with new abundance retrieval codes to interpret the measurements. Our project includes a survey of giant exoplanets, and intensive study of especially compelling exoplanets. For the survey, optical and near-infrared transmission spectra, and near-infrared emission spectra will be measured for giant exoplanets with a wide range of estimated temperatures, heavy element abundance, and mass. This comprehensive characterization of a large sample of these planets is now crucial to investigate such issues for their atmospheres as the carbon-to-oxygen ratios and overall metallicities, cause of thermal inversions, and prevalence and nature of high-altitude hazes. The intensive study of compelling individual planets will focus on low-mass (M team has institutional access to Magellan and Keck, and a demonstrated record of obtaining time on Gemini and VLT for these observations through public channels. This proposal is highly relevant for current and future NASA projects. We are seeking to understand the diversity of exoplanets revealed by planet searches like Kepler and the Eta-Earth survey. Our observations will complement, extend, and provide context for similar observations with HST and Spitzer. We will investigate the fundamental nature of the closest kin to Earth-size exoplanets, and this is an important foundation that must be laid down before studying habitable planets with JWST and a future TPF-like mission.

  8. Improving Transit Predictions of Known Exoplanets with TERMS

    Mahadevan S.

    2011-02-01

    Full Text Available Transiting planet discoveries have largely been restricted to the short-period or low-periastron distance regimes due to the bias inherent in the geometric transit probability. Through the refinement of planetary orbital parameters, and hence reducing the size of transit windows, long-period planets become feasible targets for photometric follow-up. Here we describe the TERMS project that is monitoring these host stars at predicted transit times.

  9. C/O Ratios of Stars with Transiting Hot Jupiter Exoplanets

    Teske, Johanna K.; Cunha, Katia; Smith, Verne V.; Schuler, Simon C.; Griffith, Caitlin A.

    2014-06-01

    The relative abundances of carbon and oxygen have long been recognized as fundamental diagnostics of stellar chemical evolution. Now, the growing number of exoplanet observations enable estimation of these elements in exoplanetary atmospheres. In hot Jupiters, the C/O ratio affects the partitioning of carbon in the major observable molecules, making these elements diagnostic of temperature structure and composition. Here we present measurements of carbon and oxygen abundances in 16 stars that host transiting hot Jupiter exoplanets, and we compare our C/O ratios to those measured in larger samples of host stars, as well as those estimated for the corresponding exoplanet atmospheres. With standard stellar abundance analysis we derive stellar parameters as well as [C/H] and [O/H] from multiple abundance indicators, including synthesis fitting of the [O I] λ6300 line and non-LTE corrections for the O I triplet. Our results, in agreement with recent suggestions, indicate that previously measured exoplanet host star C/O ratios may have been overestimated. The mean transiting exoplanet host star C/O ratio from this sample is 0.54 (C/O⊙ = 0.54), versus previously measured C/Ohost star means of ~0.65-0.75. We also observe the increase in C/O with [Fe/H] expected for all stars based on Galactic chemical evolution; a linear fit to our results falls slightly below that of other exoplanet host star studies but has a similar slope. Though the C/O ratios of even the most-observed exoplanets are still uncertain, the more precise abundance analysis possible right now for their host stars can help constrain these planets' formation environments and current compositions. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California

  10. ELLC - a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    Maxted, P F L

    2016-01-01

    Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. I have developed a binary star model (ELLC) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaughlin effect). The main features of the model have tested by comparison to observed data and other light curve models. The model is found to be accurate enough t...

  11. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Stevenson, Kevin B.; Lewis, Nikole K.; Bean, Jacob L.; Beichman, Charles; Fraine, Jonathan; Kilpatrick, Brian M.; Krick, J. E.; Lothringer, Joshua D.; Mandell, Avi M.; Valenti, Jeff A.; Agol, Eric; Angerhausen, Daniel; Barstow, Joanna K.; Birkmann, Stephan M.; Burrows, Adam; Charbonneau, David; Cowan, Nicolas B.; Crouzet, Nicolas; Cubillos, Patricio E.; Curry, S. M.; Dalba, Paul A.; de Wit, Julien; Deming, Drake; Désert, Jean-Michel; Doyon, René; Dragomir, Diana; Ehrenreich, David; Fortney, Jonathan J.; García Muñoz, Antonio; Gibson, Neale P.; Gizis, John E.; Greene, Thomas P.; Harrington, Joseph; Heng, Kevin; Kataria, Tiffany; Kempton, Eliza M.-R.; Knutson, Heather; Kreidberg, Laura; Lafrenière, David; Lagage, Pierre-Olivier; Line, Michael R.; Lopez-Morales, Mercedes; Madhusudhan, Nikku; Morley, Caroline V.; Rocchetto, Marco; Schlawin, Everett; Shkolnik, Evgenya L.; Shporer, Avi; Sing, David K.; Todorov, Kamen O.; Tucker, Gregory S.; Wakeford, Hannah R.

    2016-09-01

    The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed “community targets”) that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge

  12. OBSERVATIONS OF MASS LOSS FROM THE TRANSITING EXOPLANET HD 209458b

    Using the new Cosmic Origins Spectrograph on the Hubble Space Telescope, we obtained moderate-resolution, high signal/noise ultraviolet spectra of HD 209458 and its exoplanet HD 209458b during transit, both orbital quadratures, and secondary eclipse. We compare transit spectra with spectra obtained at non-transit phases to identify spectral features due to the exoplanet's expanding atmosphere. We find that the mean flux decreased by 7.8% ± 1.3% for the C II 1334.5323 A and 1335.6854 A lines and by 8.2% ± 1.4% for the Si III 1206.500 A line during transit compared to non-transit times in the velocity interval -50 to +50 km s-1. Comparison of the C II and Si III line depths and transit/non-transit line ratios shows deeper absorption features near -10 and +15 km s-1 and less certain features near -40 and +30-70 km s-1, but future observations are needed to verify this first detection of velocity structure in the expanding atmosphere of an exoplanet. Our results for the C II lines and the non-detection of Si IV 1394.76 A absorption are in agreement with Vidal-Madjar et al., but we find absorption during transit in the Si III line contrary to the earlier result. The 8% ± 1% obscuration of the star during transit is far larger than the 1.5% obscuration by the exoplanet's disk. Absorption during transit at velocities between -50 and +50 km s-1 in the C II and Si III lines requires high-velocity ion absorbers. Assuming hydrodynamic model values for the gas temperature and outflow velocity at the limb of the outflow as seen in the C II lines, we find mass-loss rates in the range (8-40)x1010 g s-1. These rates assume that the carbon abundance is solar, which is not the case for the giant planets in the solar system. Our mass-loss rate estimate is consistent with theoretical hydrodynamic models that include metals in the outflowing gas.

  13. RATS: an Italian project for Exoplanets Transit Search

    Granata, V.; Claudi, R. U.; Baruffolo, A.; Contri, L.; Montalto, M.; Piotto, G. P.; Bruno, P.; Scuderi, S.

    2007-07-01

    The RATS (RAdial velocity and Transit Search) project is a collaboration among INAF sections of Catania, Napoli, Padova and Palermo and the Physics and Astronomy departments of Padova University. The main goal of the project is to discover at least 10 new planets transiting the host star using a suitable automatic data-reduction pipeline developed for RATS.

  14. Five kepler target stars that show multiple transiting exoplanet candidates

    Steffen..[], Jason H.; Batalha, N. M.; Broucki, W J.;

    2010-01-01

    provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three...

  15. EVIDENCE OF POSSIBLE SPIN-ORBIT MISALIGNMENT ALONG THE LINE OF SIGHT IN TRANSITING EXOPLANET SYSTEMS

    Of the 26 transiting exoplanet systems with measurements of the Rossiter-McLaughlin (RM) effect, eight have now been found to be significantly spin-orbit misaligned in the plane of the sky (i.e., RM misalignment angle |λ| ∼> 300 and inconsistent with λ = 00). Unfortunately, the RM effect does not constrain the complement misalignment angle between the orbit of the planet and the spin of its host star along the line of sight (LOS). I use a simple model of stellar rotation benchmarked with observational data to statistically identify 10 exoplanet systems from a sample of 75 for which there is likely a significant degree of spin-orbit misalignment along the LOS: HAT-P-7, HAT-P-14, HAT-P-16, HD 17156, Kepler-5, Kepler-7, TrES-4, WASP-1, WASP-12, and WASP-14. All 10 systems have host stellar masses M * in the range 1.2 M sun ∼* ∼sun, and the probability of this occurrence by chance is less than one in ten thousand. In addition, the planets in the candidate-misaligned systems are preferentially massive and eccentric. The coupled distribution of misalignment from the RM effect and from this analysis suggests that transiting exoplanets are more likely to be spin-orbit aligned than expected given predictions for a transiting planet population produced entirely by planet-planet scattering or Kozai cycles and tidal friction. For that reason, there are likely two populations of close-in exoplanet systems: a population of aligned systems and a population of apparently misaligned systems in which the processes that lead to misalignment or to the survival of misaligned systems operate more efficiently in systems with massive stars and planets.

  16. Transiting exoplanet candidates from K2 Campaigns 5 and 6

    Pope, Benjamin J. S.; Parviainen, Hannu; Aigrain, Suzanne

    2016-06-01

    We introduce a new transit search and vetting pipeline for observations from the K2 mission, and present the candidate transiting planets identified by this pipeline out of the targets in Campaigns 5 and 6. Our pipeline uses the Gaussian Process-based K2SC code to correct for the K2 pointing systematics and simultaneously model stellar variability. The systematics-corrected, variability-detrended light curves are searched for transits with the Box Least Squares method, and a period-dependent detection threshold is used to generate a preliminary candidate list. Two or three individuals vet each candidate manually to produce the final candidate list, using a set of automatically-generated transit fits and assorted diagnostic tests to inform the vetting. We detect 147 single-planet system candidates and 5 multi-planet systems, independently recovering the previously-published hot Jupiters EPIC 212110888b, WASP-55b (EPIC 212300977b) and Qatar-2b (EPIC 212756297b). We also report the outcome of reconnaissance spectroscopy carried out for all candidates with Kepler magnitude Kp ≤ 13, identifying 12 targets as likely false positives. We compare our results to those of other K2 transit search pipelines, noting that ours performs particularly well for variable and/or active stars, but that the results are very similar overall. All the light curves and code used in the transit search and vetting process are publicly available, as are the follow-up spectra.

  17. Transiting exoplanet candidates from K2 Campaigns 5 and 6

    Pope, Benjamin J S; Aigrain, Suzanne

    2016-01-01

    We introduce a new transit search and vetting pipeline for observations from the K2 mission, and present the candidate transiting planets identified by this pipeline out of the targets in Campaigns 5 and 6. Our pipeline uses the Gaussian Process-based K2SC code to correct for the K2 pointing systematics and simultaneously model stellar variability. The systematics-corrected, variability-detrended light curves are searched for transits with the Box Least Squares method, and a period-dependent detection threshold is used to generate a preliminary candidate list. Two or three individuals vet each candidate manually to produce the final candidate list, using a set of automatically-generated transit fits and assorted diagnostic tests to inform the vetting. We detect 147 single-planet system candidates and 5 multi-planet systems, independently recovering the previously-published hot~Jupiters EPIC 212110888b, WASP-55b (EPIC 212300977b) and Qatar-2b (EPIC 212756297b). We also report the outcome of reconnaissance spec...

  18. Toward the Detection of Exoplanet Transits with Polarimetry

    Wiktorowicz, Sloane J

    2014-01-01

    In contrast to photometric transits, whose peak signal occurs at mid-transit due to occultation of the brightest region of the disk, polarimetric transits provide a signal upon ingress and egress due to occultation of the polarized stellar limb. Limb polarization, the bright corollary to limb darkening, arises from the $90^\\circ$ scattering angle and low optical depth experienced by photons at the limb. In addition to the ratio $R_{\\rm p} / R_*$, the amplitude of a polarimetric transit is expected to be controlled by the strength and width of the stellar limb polarization profile, which depend on the scattering-to-total opacity ratio at the stellar limb. We present a short list of the systems providing the highest expected signal-to-noise ratio for detection of this effect, and we draw particular attention to HD 80606b. This planet is spin/orbit misaligned, has a three-hour ingress, and has a bright parent star, which make it an attractive target. We report on test observations of an HD 80606b ingress with th...

  19. Venus transit 2004: Illustrating the capability of exoplanet transmission spectroscopy

    Hedelt, P.; Alonso, R.; Brown, T; Collados Vera, M.; Rauer, H.; Schleicher, H.; Schmidt, W.; F. Schreier; Titz, R.

    2011-01-01

    The transit of Venus in 2004 offered the rare possibility to remotely sense a well-known planetary atmosphere using ground-based observations for absorption spectroscopy. Transmission spectra of Venus' atmosphere were obtained in the near infrared using the Vacuum Tower Telescope (VTT) in Tenerife. Since the instrument was designed to measure the very bright photosphere of the Sun, extracting Venus' atmosphere was challenging. CO_2 absorption lines could be identified in the upper Venus atmos...

  20. Transit spectroscopy of exoplanets from space: how to optimize the wavelength coverage and spectral resolving power

    Encrenaz, T.; Tinetti, G.; Tessenyi, M.; Drossart, P.; Hartogh, P.; Coustenis, A.

    2015-12-01

    The study of exoplanets is an exploding field in astronomy. Recent discoveries have made possible the development of a new research field, the spectroscopic characterization of the exoplanetary atmospheres, using both primary and eclipse transits. A dedicated space mission will make possible the characterization of many classes of exoplanets, from the hot Jupiters to the temperate super-Earths. In this paper, we discuss how the spectral range and the spectral resolving power can be optimized for identifying a maximum number of candidate atmospheric species. Spectral modeling shows that the simultaneous observation of the whole spectral range, from 0.55 to 16 μm is ideal for (1) capturing all types of planets at different temperatures, (2) detecting the variety of chemical atmospheric compounds with some redundancy, and (3) enabling an optimal retrieval of the chemical abundances and thermal profile. Limiting the spectral interval to 11 μm would make the retrieval more difficult in the case of cold exoplanets. In the visible range, the extension down to 0.4 s at different temperatures, (2) detecting the variety of chemical atmospheric compounds with some redundancy, and (3) enabling an optimal retrieval of the chemical abundances andst candidate molecules.

  1. First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields

    Burdanov, Artem Y; Krushinsky, Vadim V; Popov, Alexander A; Sokov, Evgenii N; Sokova, Iraida A; Rusov, Sergei A; Lyashenko, Artem Yu; Ivanov, Kirill I; Moiseev, Alexei V; Rastegaev, Denis A; Dyachenko, Vladimir V; Balega, Yuri Yu; Baştürk, Özgür; Özavcı, Ibrahim; Puchalski, Damian; Marchini, Alessandro; Naves, Ramon; Shadick, Stan; Bretton, Marc

    2016-01-01

    We present the first results of our search for transiting exoplanet candidates as part of the Kourovka Planet Search (KPS) project. The primary objective of the project is to search for new hot Jupiters which transit their host stars, mainly in the Galactic plane, in the $R_c$ magnitude range of 11 to 14 mag. Our observations were performed with the telescope of the MASTER robotic network, installed at the Kourovka astronomical observatory of the Ural Federal University (Russia), and the Rowe-Ackermann Schmidt Astrograph, installed at the private Acton Sky Portal Observatory (USA). As test observations, we observed three celestial fields of size $2\\times2$ deg$^2$ during the period from 2012 to 2015. As a result, we discovered four transiting exoplanet candidates among the 39000 stars of the input catalogue. In this paper, we provide the description of the project and analyse additional photometric, spectral, and speckle interferometric observations of the discovered transiting exoplanet candidates. Three of ...

  2. Hubble Space Telescope search for the transit of the Earth-mass exoplanet Alpha Centauri Bb

    Demory, Brice-Olivier; Queloz, Didier; Seager, Sara; Gilliland, Ronald; Chaplin, William J; Proffitt, Charles; Gillon, Michael; Guenther, Maximilian N; Benneke, Bjoern; Dumusque, Xavier; Lovis, Christophe; Pepe, Francesco; Segransan, Damien; Triaud, Amaury; Udry, Stephane

    2015-01-01

    Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright stars, which would enable a detailed characterisation of this population of objects. We present the results of a search for the transit of the Earth-mass exoplanet Alpha Centauri Bb with the Hubble Space Telescope (HST). We observed Alpha Centauri B twice in 2013 and 2014 for a total of 40 hours. We achieve a precision of 115 ppm per 6-s exposure time in a highly-saturated regime, which is found to be consistent across HST orbits. We rule out the transiting nature of Alpha Centauri Bb with the orbital parameters published in the literature at 96.6% confidence. We find in our data a single transit-like event that could be associated to another Earth-size planet in the system, on a longer period orbit. Our program demonstrates the ability of HST to obtain consistent, hi...

  3. Polarimetric Detection of Exoplanets Transiting T- and L- Brown Dwarfs

    Sengupta, Sujan

    2016-01-01

    While scattering of light by atoms and molecules yields large amount of polarization at the B-band of both T- and L-dwarfs, scattering by dust grains in cloudy atmosphere of L-dwarfs gives rise to significant polarization at the far-optical and infra-red wavelengths where these objects are much brighter. However, the observable disk averaged polarization should be zero if the clouds are uniformly distributed and the object is spherically symmetric. Therefore, in order to explain the observed large polarization of several L-dwarfs, rotation-induced oblateness or horizontally inhomogeneous cloud distribution in the atmosphere is invoked. On the other hand, when an extra-solar planet of Earth-size or larger transits the brown dwarf along the line of sight, the asymmetry induced during the transit gives rise to a net non-zero, time dependent polarization. Employing atmospheric models for a range of effective temperature and surface gravity appropriate for T- and L-dwarfs, I derive the time dependent polarization ...

  4. Transiting exoplanets from the CoRoT space mission

    Ollivier, M.; Gillon, M.; Santerne, A.;

    2012-01-01

    the mass and radius of the planet. Methods. We analyse the photometric transit curve of CoRoT-16 given by the CoRoT satellite, and radial velocity data from the HARPS and HIRES spectrometers. A combined analysis using a Markov chain Monte Carlo algorithm is used to get the system parameters. Results....... CoRoT-16b is a 0.535 −0.083/+0.085 MJ, 1.17 −0.14/+0.16 RJ hot Jupiter with a density of 0.44 −0.14/+0.21 g cm-3. Despite its short orbital distance (0.0618 ± 0.0015 AU) and the age of the parent star (6.73 ± 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very...

  5. Venus transit 2004: Illustrating the capability of exoplanet transmission spectroscopy

    Hedelt, P; Brown, T; Vera, M Collados; Rauer, H; Schleicher, H; Schmidt, W; Schreier, F; Titz, R

    2011-01-01

    The transit of Venus in 2004 offered the rare possibility to remotely sense a well-known planetary atmosphere using ground-based observations for absorption spectroscopy. Transmission spectra of Venus' atmosphere were obtained in the near infrared using the Vacuum Tower Telescope (VTT) in Tenerife. Since the instrument was designed to measure the very bright photosphere of the Sun, extracting Venus' atmosphere was challenging. CO_2 absorption lines could be identified in the upper Venus atmosphere. Moreover, the relative abundance of the three most abundant CO_2 isotopologues could be determined. The observations resolved Venus' limb, showing Doppler-shifted absorption lines that are probably caused by high-altitude winds. This paper illustrates the ability of ground-based measurements to examine atmospheric constituents of a terrestrial planet atmosphere which might be applied in future to terrestrial extrasolar planets.

  6. Venus transit 2004: Illustrating the capability of exoplanet transmission spectroscopy

    Hedelt, P.; Alonso, R.; Brown, T.; Collados Vera, M.; Rauer, H.; Schleicher, H.; Schmidt, W.; Schreier, F.; Titz, R.

    2011-09-01

    The transit of Venus in 2004 offered the rare possibility to remotely sense a well-known planetary atmosphere using ground-based absorption spectroscopy. Transmission spectra of Venus' atmosphere were obtained in the near infrared using the Vacuum Tower Telescope (VTT) in Tenerife. Since the instrument was designed to measure the very bright photosphere of the Sun, extracting Venus' atmosphere was challenging. We were able to identify CO2 absorption lines in the upper Venus atmosphere. Moreover, the relative abundance of the three most abundant CO2 isotopologues could be determined. The observations resolved Venus' limb, showing Doppler-shifted absorption lines that are probably caused by high-altitude winds. We demonstrate the utility of ground-based measurements in analyzing the atmospheric constituents of a terrestrial planet atmosphere using methods that might be applied in future to terrestrial extrasolar planets.

  7. ellc: A fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    Maxted, P. F. L.

    2016-06-01

    Context. Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. Aims: I have developed a binary star model (ellc) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. Methods: The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaghlin effect). The main features of the model have been tested by comparison to observed data and other light curve models. Results: The model is found to be accurate enough to analyse the very high quality photometry that is now available from space-spaced instruments, flexible enough to model a wide range of eclipsing binary stars and extrasolar planetary systems, and fast enough to enable the use of modern Monte Carlo methods for data analysis and model testing. The software package is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A111

  8. Asteroseismology of the Transiting Exoplanet Host HD 17156 with Hubble Space Telescope Fine Guidance Sensor

    Gilliland, Ronald L.; McCullough, Peter R.; Nelan, Edmund P.; Brown, Timothy M.; Charbonneau, David; Nutzman, Philip; Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans

    Observations conducted with the Fine Guidance Sensor on the Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in 2008 December on the host star of the transiting exoplanet HD 17156b. During this time, 1.0 × 1012 photons...... (corrected for detector dead time) were collected in which a noise level of 163 parts per million per 30 s sum resulted, thus providing excellent sensitivity to the detection of the analog of the solar 5-minute p-mode oscillations. For HD 17156, robust detection of p modes supports the determination of the...

  9. Defocused Observations of Selected Exoplanet Transits with T100 in TUBITAK National Observatory of Turkey (TUG)

    Basturk, Ozgur; Ozavci, Ibrahim; Yorukoglu, Onur; Selam, Selim O

    2015-01-01

    It is crucial to determine masses and radii of extrasolar planets with high precision to have constraints on their chemical composition, internal structure and thereby their formation and evolution. In order to achieve this goal, we apply the defocus technique in the observations of selected planetary systems with the 1 m Turkish telescope T100 in TUBITAK National Observatory (TUG). With this contribution, we aim to present preliminary analyses of transit light curves of the selected exoplanets KELT-3b, HAT-P-10b/WASP-11b, HAT-P-20b, and HAT-P-22b, observed with this technique using T100.

  10. GTC OSIRIS Transiting Exoplanet Atmospheric Survey: Detection of potassium in XO-2b from spectrophotometry

    Sing, D K; Fortney, J J; Etangs, A Lecavelier des; Ballester, G E; Cepa, J; Ehrenreich, D; Lopez-Morales, M; Pont, F; Shabram, M; Vidal-Madjar, A

    2010-01-01

    We present Gran Telescopio Canarias (GTC) optical transit narrow-band photometry of the hot-Jupiter exoplanet XO-2b using the OSIRIS instrument. This unique instrument has the capabilities to deliver high cadence narrow-band photometric lightcurves, allowing us to probe the atmospheric composition of hot Jupiters from the ground. The observations were taken during three transit events which cover four wavelengths at spectral resolutions near 500, necessary for observing atmospheric features, and have near-photon limited sub-mmag precisions. Precision narrow-band photometry on a large aperture telescope allows for atmospheric transmission spectral features to be observed for exoplanets around much fainter stars than those of the well studied targets HD209458b and HD189733b, providing access to the majority of known transiting planets. For XO-2b, we measure planet-to-star radius contrasts of R_pl/R_star=0.10508+/-0.00052 at 6792 Ang, 0.10640+/-0.00058 at 7582 Ang, and 0.10686+/-0.00060 at 7664.9 Ang, and 0.1036...

  11. WASP-19b: THE SHORTEST PERIOD TRANSITING EXOPLANET YET DISCOVERED

    We report on the discovery of a new extremely short period transiting extrasolar planet, WASP-19b. The planet has mass Mpl = 1.15 ± 0.08 MJ , radius Rpl = 1.31 ± 0.06 RJ , and orbital period P = 0.7888399 ± 0.0000008 days. Through spectroscopic analysis, we determine the host star to be a slightly super-solar metallicity ([M/H] = 0.1 ± 0.1 dex) G-dwarf with Teff = 5500 ± 100 K. In addition, we detect periodic, sinusoidal flux variations in the light curve which are used to derive a rotation period for the star of Prot = 10.5 ± 0.2 days. The relatively short stellar rotation period suggests that either WASP-19 is somewhat young (∼ 600 Myr old) or tidal interactions between the two bodies have caused the planet to spiral inward over its lifetime resulting in the spin-up of the star. Due to the detection of the rotation period, this system has the potential to place strong constraints on the stellar tidal quality factor, Q's, if a more precise age is determined.

  12. No Timing Variations Observed in Third Transit of Snow-Line Exoplanet Kepler-421b

    Dalba, Paul A

    2016-01-01

    We observed Kepler-421 during the anticipated third transit of the snow-line exoplanet Kepler-421b in order to constrain the existence and extent of transit timing variations (TTVs). Previously, the Kepler Spacecraft only observed two transits of Kepler-421b leaving the planet's transit ephemeris unconstrained. Our visible light, time-series observations from the 4.3-meter Discovery Channel Telescope were designed to capture pre-transit baseline and the partial transit of Kepler-421b barring significant TTVs. We use the light curves to assess the probabilities of various transit models using both the posterior odds ratio and the Bayesian Information Criterion (BIC) and find that a transit model with no TTVs is favored to 3.6-sigma confidence. These observations suggest that Kepler-421b is either alone in its system or is only experiencing minor dynamic interactions with an unseen companion. With the Kepler-421b ephemeris constrained, we calculate future transit times and discuss the opportunity to characteriz...

  13. Exoplanet transits enable high-resolution spectroscopy across spatially resolved stellar surfaces

    Dravins, Dainis; Dahlén, Erik; Pazira, Hiva

    2016-01-01

    Observations of stellar surfaces - except for the Sun - are hampered by their tiny angular extent, while observed spectral lines are smeared by averaging over the stellar surface, and by stellar rotation. Exoplanet transits can be used to analyze stellar atmospheric structure, yielding high-resolution spectra across spatially highly resolved stellar surfaces, free from effects of spatial smearing and the rotational wavelength broadening present in full-disk spectra. During a transit, stellar surface portions successively become hidden, and differential spectroscopy between various transit phases provides spectra of those surface segments then hidden behind the planet. The small area subtended by even a large planet (about 1% of a main-sequence star) offers high spatial resolution but demands very precise observations. We demonstrate the reconstruction of photospheric FeI line profiles at a spectral resolution R=80,000 across the surface of the solar-type star HD209458. Any detailed understanding of stellar at...

  14. The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets

    Misra, Amit; Meadows, Victoria [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Crisp, Dave, E-mail: amit0@astro.washington.edu [NAI Virtual Planetary Laboratory, Seattle, WA (United States)

    2014-09-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.

  15. Towards Automatic Classification of Exoplanet-Transit-Like Signals: A Case Study on Kepler Mission Data

    Valizadegan, Hamed; Martin, Rodney; McCauliff, Sean D.; Jenkins, Jon Michael; Catanzarite, Joseph; Oza, Nikunj C.

    2015-08-01

    Building new catalogues of planetary candidates, astrophysical false alarms, and non-transiting phenomena is a challenging task that currently requires a reviewing team of astrophysicists and astronomers. These scientists need to examine more than 100 diagnostic metrics and associated graphics for each candidate exoplanet-transit-like signal to classify it into one of the three classes. Considering that the NASA Explorer Program's TESS mission and ESA's PLATO mission survey even a larger area of space, the classification of their transit-like signals is more time-consuming for human agents and a bottleneck to successfully construct the new catalogues in a timely manner. This encourages building automatic classification tools that can quickly and reliably classify the new signal data from these missions. The standard tool for building automatic classification systems is the supervised machine learning that requires a large set of highly accurate labeled examples in order to build an effective classifier. This requirement cannot be easily met for classifying transit-like signals because not only are existing labeled signals very limited, but also the current labels may not be reliable (because the labeling process is a subjective task). Our experiments with using different supervised classifiers to categorize transit-like signals verifies that the labeled signals are not rich enough to provide the classifier with enough power to generalize well beyond the observed cases (e.g. to unseen or test signals). That motivated us to utilize a new category of learning techniques, so-called semi-supervised learning, that combines the label information from the costly labeled signals, and distribution information from the cheaply available unlabeled signals in order to construct more effective classifiers. Our study on the Kepler Mission data shows that semi-supervised learning can significantly improve the result of multiple base classifiers (e.g. Support Vector Machines, Ada

  16. The Transit Light Curve (TLC) Project. II. Two Transits of the Exoplanet OGLE-TR-111b

    Winn, J N; Fuentes, C I; Winn, Joshua N.; Holman, Matthew J.; Fuentes, Cesar I.

    2006-01-01

    As part of our ongoing effort to measure exoplanet sizes and transit times with greater accuracy, we present I band observations of two transits of OGLE-TR-111b. The photometry has an accuracy of 0.15-0.20% and a cadence of 1-2 minutes. We derive a planetary radius of 1.067 +/- 0.054 Jupiter radii and a stellar radius of 0.831 +/- 0.031 solar radii. The uncertainties are dominated by errors in the photometry, rather than by systematic errors arising from uncertainties in the limb darkening function or the stellar mass. Both the stellar radius and the planetary radius are in agreement with theoretical expectations. The transit times are accurate to within 30 seconds, and allow us to refine the estimate of the mean orbital period: 4.0144479 +/- 0.0000041 days.

  17. The refined physical parameters of transiting exoplanet system HAT-P-24

    The transiting exoplanet system HAT-P-24 was observed by using CCD cameras at Yunnan Observatory and Hokoon Astronomical Centre, China in 2010 and 2012. In order to enhance the signal to noise ratio of transit events, the observed data are corrected for systematic errors according to Collier Cameron et al.'s coarse de-correlation and Tamuz et al.'s SYSREM algorithms. Three new complete transit light curves are analyzed by means of the Markov chain Monte Carlo technique, and the new physical parameters of the system are derived. They are consistent with the old ones from the discovered paper except for a new larger radius Rp = 1.364 RJ of HAT-P-24b, which confirms its inflated nature. By combining the five available epochs of mid-transit derived from complete transit light curves, the orbital period of HAT-P-24b is refined to P = 3.3552479 d and no obvious transit timing variation signal can be found from these five transit events during 2010–2012

  18. The GTC exoplanet transit spectroscopy survey. III. No asymmetries in the transit of CoRoT-29b

    Pallé, E.; Chen, G.; Alonso, R.; Nowak, G.; Deeg, H.; Cabrera, J.; Murgas, F.; Parviainen, H.; Nortmann, L.; Hoyer, S.; Prieto-Arranz, J.; Nespral, D.; Cabrera Lavers, A.; Iro, N.

    2016-04-01

    Context. The launch of the exoplanet space missions obtaining exquisite photometry from space has resulted in the discovery of thousands of planetary systems with very different physical properties and architectures. Among them, the exoplanet CoRoT-29b was identified in the light curves the mission obtained in summer 2011, and presented an asymmetric transit light curve, which was tentatively explained via the effects of gravity darkening. Aims: Transits of CoRoT-29b are measured with precision photometry, to characterize the reported asymmetry in their transit shape. Methods: Using the OSIRIS spectrograph at the 10-m GTC telescope, we perform spectro-photometric differential observations, which allow us to both calculate a high-accuracy photometric light curve, and a study of the color-dependence of the transit. Results: After careful data analysis, we find that the previously reported asymmetry is not present in either of two transits, observed in July 2014 and July 2015 with high photometric precisions of 300 ppm over 5 min. Due to the relative faintness of the star, we do not reach the precision necessary to perform transmission spectroscopy of its atmosphere, but we see no signs of color-dependency of the transit depth or duration. Conclusions: We conclude that the previously reported asymmetry may have been a time-dependent phenomenon, which did not occur in more recent epochs. Alternatively, instrumental effects in the discovery data may need to be reconsidered. Light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A62

  19. A comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars

    Maxted, P F L; Southworth, J

    2015-01-01

    Previous studies suggest that tidal interactions may be responsible for discrepancies between the ages of exoplanet host stars estimated using stellar models (isochronal ages) and age estimates based on the stars' rotation periods (gyrochronological ages). We have compiled a sample of 28 transiting exoplanet host stars with measured rotation periods. We use a Bayesian Markov chain Monte Carlo method to determine the joint posterior distribution for the mass and age of each star in the sample, and extend this method to include a calculation of the posterior distribution of the gyrochronological age. The gyrochronological age ($\\tau_{\\rm gyro}$) is significantly less than the isochronal age for about half of the stars in our sample. Tidal interactions between the star and planet are a reasonable explanation for this discrepancy in some cases, but not all. The distribution of $\\tau_{\\rm gyro}$ values is evenly spread from very young ages up to a maximum value of a few Gyr. There is no clear correlation between $...

  20. Directly Imaged L-T Transition Exoplanets in the Mid-Infrared

    Skemer, Andrew J; Hinz, Philip M; Morzinski, Katie M; Skrutskie, Michael F; Leisenring, Jarron M; Close, Laird M; Saumon, Didier; Bailey, Vanessa P; Briguglio, Runa; Defrere, Denis; Esposito, Simone; Follette, Katherine B; Hill, John M; Males, Jared R; Puglisi, Alfio; Rodigas, Timothy J; Xompero, Marco

    2013-01-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared ($\\gtrsim$3$\\mu \\rm m$), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L and M-band atmospheric windows (3-5$\\mu \\rm m$), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT AO images of the HR 8799 planetary system in six narrow-band filters from 3-4$\\mu \\rm m$, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3$\\mu \\rm m$ band. These systems encompass the five known exoplanets with luminosities consistent with L$\\rightarrow$T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature. For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing ...

  1. Transmission spectrum of Earth as a transiting exoplanet - from the ultraviolet to the near-infrared

    Betremieux, Y

    2013-01-01

    Transmission spectroscopy of exoplanets is a tool to characterize rocky planets and explore their habitability. Using the Earth itself as a proxy, we model the atmospheric cross section as a function of wavelength, and show the effect of each atmospheric species, Rayleigh scattering and refraction from 115 to 1000nm. Clouds do not significantly affect this picture because refraction prevents the lowest 12.75km of the atmosphere, in a transiting geometry for an Earth-Sun analog, to be sampled by a distant observer. We calculate the effective planetary radius for the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star. Below 200nm, ultraviolet(UV) O_2 absorption increases the effective planetary radius by about 180km, versus 27km at 760.3nm, and 14km in the near-infrared (NIR) due predominantly to refraction. This translates into a 2.6% change in effective planetary radius over the UV-NIR wavelength range, showing that the ultraviolet is an interesting wavelength range for future space mi...

  2. Departure from the constant-period ephemeris for the transiting exoplanet WASP-12 b

    Maciejewski, G; Fernández, M; Sota, A; Nowak, G; Ohlert, J; Nikolov, G; Bukowiecki, Ł; Hinse, T C; Pallé, E; Tingley, B; Kjurkchieva, D; Lee, J W; Lee, C -U

    2016-01-01

    Most hot Jupiters are expected to spiral in towards their host stars due to transfering of the angular momentum of the orbital motion to the stellar spin. Their orbits can also precess due to planet-star interactions. Calculations show that both effects could be detected for the very-hot exoplanet WASP-12 b using the method of precise transit timing over a timespan of the order of 10 yr. We acquired new precise light curves for 29 transits of WASP-12 b, spannning 4 observing seasons from November 2012 to February 2016. New mid-transit times, together with literature ones, were used to refine the transit ephemeris and analyse the timing residuals. We find that the transit times of WASP-12 b do not follow a linear ephemeris with a 5 sigma confidence level. They may be approximated with a quadratic ephemeris that gives a rate of change in the orbital period of -2.56 +/- 0.40 x 10^{-2} s/yr. The tidal quality parameter of the host star was found to be equal to 2.5 x 10^5 that is comparable to theoretical predicti...

  3. The mid-infrared spectrum of the transiting exoplanet HD 209458b

    Swain, M R; Akeson, R L; Lawler, S; Beichman, C

    2007-01-01

    We report the spectroscopic detection of mid-infrared emission from the transiting exoplanet HD 209458b. Using archive data taken with the Spitzer/IRS instrument, we have determined the spectrum of HD 209458b between 8.25 and 13.25 micron with an average SNR of ~4 in each 0.25 micron spectral channel. We have used two independent methods to determine the planet spectrum and find the results are in good agreement. In the mid-infrared, the planet spectrum is dominated by thermal emission with a temperature consistent with previous estimates. The absence of strong spectral features is significant and is most consistent with emission at these wavelengths originating primarily from optically thick clouds located at relatively high elevation in the planet's atmosphere. This work required development of improved methods for Spitzer/IRS data calibration that increase the achievable dynamic range for observations of bright point sources.

  4. The 2012 Transit of Venus for Cytherean Atmospheric Studies and as an Exoplanet Analog

    Pasachoff, Jay M.; Schneider, G.; Babcock, B. A.; Lu, M.; Reardon, K. P.; Widemann, T.; Tanga, P.; Dantowitz, R.; Willson, R.; Kopp, G.; Yurchyshyn, V.; Sterling, A.; Scherrer, P.; Schou, J.; Golub, L.; Reeves, K.

    2012-10-01

    We worked to assemble as complete a dataset as possible for the Cytherean atmosphere in collaboration with Venus Express in situ and to provide an analog of spectral and total irradiance exoplanet measurements. From Haleakala, the whole transit was visible in coronal skies; our B images showed the evolution of the visibility of Venus's atmosphere and of the black-drop effect, as part of the Venus Twilight Experiment's 9 coronagraphs distributed worldwide with BVRI. We imaged the Cytherean atmosphere over two minutes before first contact, with subarcsecond resolution, with the coronagraph and a separate refractor. The IBIS imaging spectrometer at Sacramento Peak Observatory at H-alpha and carbon-dioxide also provided us high-resolution imaging. The NST of Big Bear Solar Observatory also provided high-resolution vacuum observations of the Cytherean atmosphere and black drop evolution. Our liaison with UH's Mees Solar Observatory scientists provided magneto-optical imaging at calcium and potassium. Spaceborne observations included the Solar Dynamics Observatory's AIA and HMI, and the Solar Optical Telescope (SOT) and X-ray Telescope (XRT) on Hinode, and total-solar-irradiance measurements with ACRIMSAT and SORCE/TIM, to characterize the event as an exoplanet-transit analog. Our expedition was sponsored by the Committee for Research and Exploration/National Geographic Society. Some of the funds for the carbon-dioxide filter for IBIS were provided by NASA through AAS's Small Research Grant Program. We thank Rob Lucas, Aram Friedman, and Eric Pilger '82 for assistance with Haleakala observing, Rob Ratkowski of Haleakala Amateur Astronomers for assistance with equipment and with the site, Stan Truitt for the loan of his Paramount ME, and Steve Bisque/Software Bisque for TheSky X controller. We thank Joseph Gangestad '06 of Aerospace Corp., a veteran of our 2004 expedition, for assistance at Big Bear. We thank the Lockheed Martin Solar and Astrophysics Laboratory and

  5. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing.

    Jontof-Hutter, Daniel; Rowe, Jason F; Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B

    2015-06-18

    Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favourable cases, the departures from Keplerian orbits (that is, unaffected by gravitational effects) implied by the observed transit times permit the planetary masses to be measured, which is key to determining their bulk densities. Characterizing rocky planets is particularly difficult, because they are generally smaller and less massive than gaseous planets. Therefore, few exoplanets near the size of Earth have had their masses measured. Here we report the sizes and masses of three planets orbiting Kepler-138, a star much fainter and cooler than the Sun. We determine that the mass of the Mars-sized inner planet, Kepler-138 b, is 0.066(+0.059)(-0.037) Earth masses. Its density is 2.6(+2.4)(-1.5) grams per cubic centimetre. The middle and outer planets are both slightly larger than Earth. The middle planet's density (6.2(+5.8)(-3.4) grams per cubic centimetre) is similar to that of Earth, and the outer planet is less than half as dense at 2.1(+2.2)(-1.2) grams per cubic centimetre, implying that it contains a greater portion of low-density components such as water and hydrogen. PMID:26085271

  6. The Transiting Exoplanet Survey Satellite: Simulations of planet detections and astrophysical false positives

    Sullivan, Peter W; Berta-Thompson, Zachory K; Charbonneau, David; Deming, Drake; Dressing, Courtney D; Latham, David W; Levine, Alan M; McCullough, Peter R; Morton, Timothy; Ricker, George R; Vanderspek, Roland; Woods, Deborah

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a NASA-sponsored Explorer mission that will perform a wide-field survey for planets that transit bright host stars. Here, we predict the properties of the transiting planets that TESS will detect along with the eclipsing binary stars that produce false-positive photometric signals. The predictions are based on Monte Carlo simulations of the nearby population of stars, occurrence rates of planets derived from Kepler, and models for the photometric performance and sky coverage of the TESS cameras. We expect that TESS will find approximately 1700 transiting planets from 200,000 pre-selected target stars. This includes 556 planets smaller than twice the size of Earth, of which 419 are hosted by M dwarf stars and 137 are hosted by FGK dwarfs. Approximately 130 of the R < 2 R_Earth planets will have host stars brighter than K = 9. Approximately 48 of the planets with R < 2 R_Earth lie within or near the habitable zone (0.2 < S/S_Earth < 2), and between...

  7. 1st Advanced School on Exoplanetary Science : Methods of Detecting Exoplanets

    Mancini, Luigi; Sozzetti, Alessandro

    2016-01-01

    In this book, renowned scientists describe the various techniques used to detect and characterize extrasolar planets, or exoplanets, with a view to unveiling the “tricks of the trade” of planet detection to a wider community. The radial velocity method, transit method, microlensing method, and direct imaging method are all clearly explained, drawing attention to their advantages and limitations and highlighting the complementary roles that they can play in improving the characterization of exoplanets’ physical and orbital properties. By probing the planetary frequency at different distances and in different conditions, these techniques are helping astrophysicists to reconstruct the scenarios of planetary formation and to give robust scientific answers to questions regarding the frequency of potentially habitable worlds. Twenty years have passed since the discovery of a Jupiter-mass companion to a main sequence star other than the Sun, heralding the birth of extrasolar planetary research; this book fully...

  8. Characterization of transiting exoplanets: analyzing the impact of the host star on the planet parameters

    Bruno, Giovanni

    2016-01-01

    In this PhD dissertation, I discuss issues of the Radial Velocities (RV) and transit methods. These techniques allow us to derive the mass and radius of an exoplanet, necessary to model its bulk structure and to have insight on its formation. To do this, however, also the same parameters of its host star are needed. By using spectroscopy, I participated in TRANSITS, an RV follow-up program of Kepler Objects of Interest. I determined the parameters of nine host stars, enabling the characterization of their companions. With the same method, I participated in two studies which aim at exploring the mass-radius relationship of low-mass stars and at improving the statistics of star-planet interactions. I also inspected the behavior of SOPHIE/OHP spectra for instrumental effects which can affect the measure of the stellar parameters. From a different perspective, I studied Kepler-117, a multi-planetary system which presents Transit Timing Variations (TTV). A specific approach was developed in order to realize a simu...

  9. Limb-darkening and exoplanets II: Choosing the Best Law for Optimal Retrieval of Transit Parameters

    Espinoza, Néstor

    2016-01-01

    Very precise measurements of exoplanet transit lightcurves both from ground and space based observatories make it now possible to fit the limb-darkening coefficients in the transit-fitting procedure rather than fix them to theoretical values. This strategy has been shown to give better results, as fixing the coefficients to theoretical values can give rise to important systematic errors which directly impact the physical properties of the system derived from such lightcurves such as the planetary radius. However, studies of the effect of limb darkening assumptions on the retrieved parameters have mostly focused on the widely used quadratic limb-darkening law, leaving out other proposed laws that are either simpler or better descriptions of model intensity profiles. In this work, we show that laws such as the logarithmic, square-root and three-parameter law do a better job that the quadratic and linear laws when deriving parameters from transit lightcurves, both in terms of bias and precision, for a wide range...

  10. PlanetPack3: a software tool for exoplanets characterization from radial velocity and transit data

    Baluev, Roman V.

    2015-08-01

    We describe the forthcoming third major release of the PlanetPack software tool for exoplanets detection and characterization from Doppler and/or transit data. Among other things, this major update will bring routines for the joint fitting of radial velocities and transits, optionally taking into account various subtle effects: the Rossiter-McLaughlin effect, the light arrival time delay between the radial velocity and transit curves, new experimental models of the Doppler or photometry noise, including non-stationary models with variable noise magnitude (due to e.g. the stellar activity variations).This work was supported by the Russian Foundation for Basic Research (project No. 14-02-92615 KO_a), the UK Royal Society International Exchange grant IE140055, by the President of Russia grant for young scientists (No. MK-733.2014.2), by the programme of the Presidium of Russian Academy of Sciences P21, and by the Saint Petersburg State University research grant 6.37.341.2015.

  11. Eight years of accurate photometric follow-up of transiting giant exoplanets

    Mancini, Luigi

    2016-01-01

    Since 2008 we have run an observational program to accurately measure the characteristics of known exoplanet systems hosting close-in transiting giant planets, i.e. hot Jupiters. Our study is based on high-quality photometric follow-up observations of transit events with an array of medium-class telescopes, which are located in both the northern and the southern hemispheres. A high photometric precision is achieved through the telescope-defocussing technique. The data are then reduced and analysed in a homogeneous way for estimating the orbital and physical parameters of both the planets and their parent stars. We also make use of multi-band imaging cameras for probing planetary atmospheres via the transmission-photometry technique. In some cases we adopt a two-site observational strategy for collecting simultaneous light curves of individual transits, which is the only completely reliable method for truly distinguishing a real astrophysical signal from systematic noise. In this contribution we review the mai...

  12. Investigation of the environment around close-in transiting exoplanets using CLOUDY

    Turner, Jake D; Arras, Phil; Johnson, Robert E; Schmidt, Carl

    2016-01-01

    It has been suggested that hot stellar wind gas in a bow shock around an exoplanet is sufficiently opaque to absorb stellar photons and give rise to an observable transit depth at optical and UV wavelengths. In the first part of this paper, we use the CLOUDY plasma simulation code to model the absorption from X-ray to radio wavelengths by 1-D slabs of gas in coronal equilibrium with varying densities ($10^{4}-10^{8} \\, {\\rm cm^{-3}}$) and temperatures ($2000-10^{6} \\ {\\rm K}$) illuminated by a solar spectrum. For slabs at coronal temperatures ($10^{6} \\ {\\rm K}$) and densities even orders of magnitude larger than expected for the compressed stellar wind ($10^{4}-10^{5} \\, {\\rm cm^{-3}}$), we find optical depths orders of magnitude too small ($> 3\\times10^{-7}$) to explain the $\\sim3\\%$ UV transit depths seen with Hubble. Using this result and our modeling of slabs with lower temperatures ($2000-10^4 {\\rm K}$), the conclusion is that the UV transits of WASP-12b and HD 189733b are likely due to atoms originatin...

  13. Directly imaged L-T transition exoplanets in the mid-infrared ,

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  14. Directly imaged L-T transition exoplanets in the mid-infrared {sup ,}

    Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.; Leisenring, Jarron M.; Close, Laird M.; Bailey, Vanessa P.; Defrere, Denis; Follette, Katherine B.; Males, Jared R.; Rodigas, Timothy J. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Briguglio, Runa; Esposito, Simone; Puglisi, Alfio; Xompero, Marco [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri Largo E. Fermi 5 50125 Firenze (Italy); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-09-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  15. ASTEROSEISMOLOGY OF THE TRANSITING EXOPLANET HOST HD 17156 WITH HUBBLE SPACE TELESCOPE FINE GUIDANCE SENSOR

    Observations conducted with the Fine Guidance Sensor on the Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in 2008 December on the host star of the transiting exoplanet HD 17156b. During this time, 1.0 x 1012 photons (corrected for detector dead time) were collected in which a noise level of 163 parts per million per 30 s sum resulted, thus providing excellent sensitivity to the detection of the analog of the solar 5-minute p-mode oscillations. For HD 17156, robust detection of p modes supports the determination of the stellar mean density of (ρ*) = 0.5301 ± 0.0044 g cm-3 from a detailed fit to the observed frequencies of modes of degree l = 0, 1, and 2. This is the first star for which the direct determination of (ρ*) has been possible using both asteroseismology and detailed analysis of a transiting planet light curve. Using the density constraint from asteroseismology, and stellar evolution modeling results in M* = 1.285 ± 0.026 Msun, R* = 1.507 ± 0.012 Rsun, and a stellar age of 3.2 ± 0.3 Gyr.

  16. Limb darkening and exoplanets - II. Choosing the best law for optimal retrieval of transit parameters

    Espinoza, Néstor; Jordán, Andrés

    2016-04-01

    Very precise measurements of exoplanet transit light curves both from ground- and space-based observatories make it now possible to fit the limb-darkening coefficients in the transit-fitting procedure rather than fix them to theoretical values. This strategy has been shown to give better results, as fixing the coefficients to theoretical values can give rise to important systematic errors which directly impact the physical properties of the system derived from such light curves such as the planetary radius. However, studies of the effect of limb-darkening assumptions on the retrieved parameters have mostly focused on the widely used quadratic limb-darkening law, leaving out other proposed laws that are either simpler or better descriptions of model intensity profiles. In this work, we show that laws such as the logarithmic, square-root and three-parameter law do a better job that the quadratic and linear laws when deriving parameters from transit light curves, both in terms of bias and precision, for a wide range of situations. We therefore recommend to study which law to use on a case-by-case basis. We provide code to guide the decision of when to use each of these laws and select the optimal one in a mean-square error sense, which we note has a dependence on both stellar and transit parameters. Finally, we demonstrate that the so-called exponential law is non-physical as it typically produces negative intensities close to the limb and should therefore not be used.

  17. Molecular opacities for exoplanets.

    Bernath, Peter F

    2014-04-28

    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules as needed for exoplanet spectroscopy. PMID:24664921

  18. Investigation of the environment around close-in transiting exoplanets using CLOUDY

    Turner, Jake D.; Christie, Duncan; Arras, Phil; Johnson, Robert E.; Schmidt, Carl

    2016-06-01

    It has been suggested that hot stellar wind gas in a bow shock around an exoplanet is sufficiently opaque to absorb stellar photons and give rise to an observable transit depth at optical and UV wavelengths. In the first part of this paper, we use the CLOUDY plasma simulation code to model the absorption from X-ray to radio wavelengths by 1D slabs of gas in coronal equilibrium with varying densities (104-108 cm-3) and temperatures (2000-106 K) illuminated by a solar spectrum. For slabs at coronal temperatures (106 K) and densities even orders of magnitude larger than expected for the compressed stellar wind (104-105 cm-3), we find optical depths orders of magnitude too small (>3 × 10-7) to explain the ˜3 per cent UV transit depths seen with Hubble. Using this result and our modelling of slabs with lower temperatures (2000-104K), the conclusion is that the UV transits of WASP-12b and HD 189733b are likely due to atoms originating in the planet, as the stellar wind is too highly ionized. A corollary of this result is that transport of neutral atoms from the denser planetary atmosphere outward must be a primary consideration when constructing physical models. In the second part of this paper, additional calculations using CLOUDY are carried out to model a slab of planetary gas in radiative and thermal equilibrium with the stellar radiation field. Promising sources of opacity from the X-ray to radio wavelengths are discussed, some of which are not yet observed.

  19. The Mid-infrared Spectrum of the Transiting Exoplanet HD 209458b

    Swain, M. R.; Bouwman, J.; Akeson, R. L.; Lawler, S.; Beichman, C. A.

    2008-01-01

    We report the spectroscopic detection of mid-infrared emission from the transiting exoplanet HD 209458b. Using archive data taken with the Spitzer IRS instrument, we have determined the spectrum of HD 209458b between 7.46 and 15.25 micrometers. We have used two independent methods to determine the planet spectrum, one differential in wavelength and one absolute, and find the results are in good agreement. Over much of this spectral range, the planet spectrum is consistent with featureless thermal emission. Between 7.5 and 8.5 m, we find evidence for an unidentified spectral feature. If this spectral modulation is due to absorption, it implies that the dayside vertical temperature profile of the planetary atmosphere is not entirely isothermal. Using the IRS data, we have determined the broadband eclipse depth to be 0:00315 +/- 0:000315, implying significant redistribution of heat from the dayside to the nightside. This work required the development of improved methods for Spitzer IRS data calibration that increase the achievable absolute calibration precision and dynamic range for observations of bright point sources.

  20. A new look at Spitzer primary transit observations of the exoplanet HD189733b

    Morello, Giuseppe; Tinetti, Giovanna; Peres, Giovanni; Micela, Giuseppina; Howarth, Ian D

    2014-01-01

    Blind source separation techniques are used to reanalyse two exoplanetary transit lightcurves of the exoplanet HD189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6$\\mu$m during the "cold" era. These observations, together with observations at other IR wavelengths, are crucial to characterise the atmosphere of the planet HD189733b. Previous analyses of the same datasets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such "admission of ignorance" may result in larger error bars than reported in the literature, up to a factor $1.6$. This is a worthwhile t...

  1. Space weather: recovering the variation of the stellar EUV spectral Energy distribution from the companion exoplanet FUV transit observation

    Ben-Jaffel, Lotfi; Guo, Jianheng

    2016-07-01

    The stellar extreme ultraviolet (EUV) irradiation determines the atmospheric properties of exoplanets. Recently, by varying the profiles of the EUV spectral energy distribution (SED), we tested the influences of stellar EUV SEDs on the physical and chemical properties of the escaping atmosphere (Guo & Ben-Jaffel, 2015). One of our major results was that the composition and species distributions in the atmosphere could be dramatically modified by the different profiles of the EUV SED. For exoplanets with a high hydrodynamic escape rate, the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. For exoplanet HD 189733b, it was possible to explain the time variability observed during transit in the Lyman-α line by the Hubble Space Telescope (HST) between 2010 and 2011 by a change in the EUV SED of the host K star. Our proposed technique provides a straightforward and easy-to-follow proxy to connect the EUV SED of the star with the planetary companion Lyman--α transit absorption, the monitoring of which may provide a direct measure of the stellar EUV flux. Here, we extend our study using new HST FUV observations.

  2. Departure from the constant-period ephemeris for the transiting exoplanet WASP-12

    Maciejewski, G.; Dimitrov, D.; Fernández, M.; Sota, A.; Nowak, G.; Ohlert, J.; Nikolov, G.; Bukowiecki, Ł.; Hinse, T. C.; Pallé, E.; Tingley, B.; Kjurkchieva, D.; Lee, J. W.; Lee, C.-U.

    2016-04-01

    Aims: Most hot Jupiters are expected to spiral in toward their host stars because the angular momentum of the orbital motion is transferred to the stellar spin. Their orbits can also precess as a result of planet-star interactions. Calculations show that both effects might be detected for the very-hot exoplanet WASP-12 b using the method of precise transit-timing over a time span of about 10 yr. Methods: We acquired new precise light curves for 29 transits of WASP-12 b, spannning four observing seasons from November 2012 to February 2016. New mid-transit times, together with those from the literature, were used to refine the transit ephemeris and analyze the timing residuals. Results: We find that the transit times of WASP-12 b do not follow a linear ephemeris with a 5σ confidence level. They may be approximated with a quadratic ephemeris that gives a change rate in the orbital period of (-2.56 ± 0.40) × 10-2 s yr-1. The tidal quality parameter of the host star was found to be equal to 2.5 × 105, which is similar to theoretical predictions for Sun-like stars. We also considered a model in which the observed timing residuals are interpreted as a result of the apsidal precession. We find, however, that this model is statistically less probable than the orbital decay. Partly based on (1) data collected with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, (2) observations made at the Centro Astronómico Hispano Alemán (CAHA), operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and (3) data collected with telescopes at the Rozhen National Astronomical Observatory.The light curves are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/L

  3. A new look at Spitzer primary transit observations of the exoplanet HD 189733b

    Blind source separation techniques are used to reanalyze two exoplanetary transit light curves of the exoplanet HD 189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6 μm during the 'cold' era. These observations, together with observations at other IR wavelengths, are crucial to characterize the atmosphere of the planet HD 189733b. Previous analyses of the same data sets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such 'admission of ignorance' may result in larger error bars than reported in the literature, up to a factor 1.6. This is a worthwhile tradeoff for much higher objectivity, necessary for trustworthy claims. Our main results are (1) improved and robust values of orbital and stellar parameters, (2) new measurements of the transit depths at 3.6 μm, (3) consistency between the parameters estimated from the two observations, (4) repeatability of the measurement within the photometric level of ∼2 × 10–4 in the IR, and (5) no evidence of stellar variability at the same photometric level within one year.

  4. A new look at Spitzer primary transit observations of the exoplanet HD 189733b

    Morello, G.; Waldmann, I. P.; Tinetti, G.; Howarth, I. D. [Department of Physics and Astronomy, University College London, Gower Street, WC1E6BT (United Kingdom); Peres, G. [Dipartimento di Fisica, Università degli Studi di Palermo, via Archirafi I-90123, Italy. (Italy); Micela, G., E-mail: giuseppe.morello.11@ucl.ac.uk [Dipartimento di Fisica e Chimica (previously Dipartimento di Fisica), Specola Universitaria, Università degli Studi di Palermo, Piazza del Parlamento 1 I-90123 (Italy)

    2014-05-01

    Blind source separation techniques are used to reanalyze two exoplanetary transit light curves of the exoplanet HD 189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6 μm during the 'cold' era. These observations, together with observations at other IR wavelengths, are crucial to characterize the atmosphere of the planet HD 189733b. Previous analyses of the same data sets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such 'admission of ignorance' may result in larger error bars than reported in the literature, up to a factor 1.6. This is a worthwhile tradeoff for much higher objectivity, necessary for trustworthy claims. Our main results are (1) improved and robust values of orbital and stellar parameters, (2) new measurements of the transit depths at 3.6 μm, (3) consistency between the parameters estimated from the two observations, (4) repeatability of the measurement within the photometric level of ∼2 × 10{sup –4} in the IR, and (5) no evidence of stellar variability at the same photometric level within one year.

  5. Directed follow-up strategy of low-cadence photometric surveys in Search of Transiting Exoplanets - II. application to Gaia

    Dzigan, Yifat

    2012-01-01

    In a previous paper we presented the Directed Follow-Up (DFU) approach, which we suggested can be used to efficiently augment low-cadence photometric surveys in a way that will optimize the chances to detect transiting exoplanets. In this paper we present preliminary tests of applying the DFU approach to the future ESA space mission Gaia. We demonstrate the strategy application to Gaia photometry through a few simulated cases of known transiting planets, using Gaia expected performance and current design. We show that despite the low cadence observations DFU, when tailored for Gaia's scanning law, can facilitate detection of transiting planets with ground-based observations, even during the lifetime of the mission. We conclude that Gaia photometry, although not optimized for transit detection, should not be ignored in the search of transiting planets. With a suitable ground-based follow-up network it can make an important contribution to this search.

  6. Lessons learnt and results from the first survey of transiting exoplanet atmospheres using a multi-object spectrograph

    Desert, Jean-Michel

    2015-12-01

    We present results from the first comprehensive survey program dedicated to probing transiting exoplanet atmospheres using transmission spectroscopy with a multi-object spectrograph (MOS). Our three-year survey focused on nine close-in giant planets for which the wavelength dependent transit depths in the visible were measured with Gemini/GMOS. In total, about 40 transits (200 hours) have been secured, with each exoplanet observed on average during four transits. This approach allows for a high spectrophotometric precision (200-500 ppm / 10 nm) and for a unique and reliable estimate of systematic uncertainties. We present the main results from this survey, the challenges faced by such an experiment, and the lessons learnt for future MOS observations and instrument designs. We show that the precision achieved by this survey permits us to distinguish hazy atmospheres from cloud-free scenarios. We lay out the challenges that are in front of us whilst preparing future atmospheric reconnaissance of habitable worlds with multi-object spectrographs.

  7. Spectroscopically Unlocking Exoplanet Characteristics

    Lewis, Nikole

    2016-05-01

    Spectroscopy plays a critical role in a number of areas of exoplanet research. The first exoplanets were detected by precisely measuring Doppler shifts in high resolution (R ~ 100,000) stellar spectra, a technique that has become known as the Radial Velocity (RV) method. The RV method provides critical constraints on exoplanet masses, but is currently limited to some degree by robust line shape predictions. Beyond the RV method, spectroscopy plays a critical role in the characterization of exoplanets beyond their mass and radius. The Hubble Space Telescope has spectroscopically observed the atmospheres of exoplanets that transit their host stars as seen from Earth giving us key insights into atmospheric abundances of key atomic and molecular species as well as cloud optical properties. Similar spectroscopic characterization of exoplanet atmospheres will be carried out at higher resolution (R ~ 100-3000) and with broader wavelength coverage with the James Webb Space Telescope. Future missions such as WFIRST that seek to the pave the way toward the detection and characterization of potentially habitable planets will have the capability of directly measuring the spectra of exoplanet atmospheres and potentially surfaces. Our ability to plan for and interpret spectra from exoplanets relies heavily on the fidelity of the spectroscopic databases available and would greatly benefit from further laboratory and theoretical work aimed at optical properties of atomic, molecular, and cloud/haze species in the pressure and temperature regimes relevant to exoplanet atmospheres.

  8. Accretion of Jupiter-mass Planets in the Limit of Vanishing Viscosity

    Szulágyi, J; Crida, A; Masset, F

    2013-01-01

    In the core-accretion model the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter-mass. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in low-viscosity regime, or both. Here we explore the second way using global, three-dimensional isothermal hydrodynamical simulations with 8 levels of nested grids around the planet. In our simulations the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without prescribed viscosity Jupiter's mass-doubling time is $\\sim 10^4$ years, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We i...

  9. SOPHIE velocimetry of Kepler transit candidates. X. KOI-142 c: first radial velocity confirmation of a non-transiting exoplanet discovered by transit timing

    Barros, S. C. C.; Díaz, R. F.; Santerne, A.; Bruno, G.; Deleuil, M.; Almenara, J.-M.; Bonomo, A. S.; Bouchy, F.; Damiani, C.; Hébrard, G.; Montagnier, G.; Moutou, C.

    2014-01-01

    The exoplanet KOI-142b (Kepler-88b) shows transit timing variations (TTVs) with a semi-amplitude of ~12 h, which earned it the nickname "king of transit variations". Only the transit of planet b was detected in the Kepler data with an orbital period of ~10.92 days and a radius of ~0.36 RJup. The TTVs together with the transit duration variations of KOI-142b were analysed recently, finding a unique solution for a companion-perturbing planet. An outer non-transiting companion was predicted, KOI-142c, with a mass of 0.626 ± 0.03 MJup and a period of 22.3397-0.0018+0.0021 days, which is close to the 2:1 mean-motion resonance with the inner transiting planet. We report an independent confirmation of KOI-142c using radial velocity observations with the SOPHIE spectrograph at the Observatoire de Haute-Provence. We derive an orbital period of 22.10 ± 0.25 days and a minimum planetary mass of 0.760.16+0.32 MJup, both in good agreement with the predictions by previous transit timing analysis. Therefore, this is the first radial velocity confirmation of a non-transiting planet discovered with TTVs, providing an independent validation of the TTVs technique. Based on observations collected with the NASA Kepler satellite and with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France.Tables 2 and 3 are available in electronic form at http://www.aanda.org

  10. GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy

    Sing, D K; Lopez-Morales, M; Pont, F; Désert, J -M; Ehrenreich, D; Wilson, P A; Ballester, G E; Fortney, J J; Etangs, A Lecavelier des; Vidal-Madjar, A

    2012-01-01

    We present two transits of the hot-Jupiter exoplanet XO-2b using the Gran Telescopio Canarias (GTC). The time series observations were performed using long-slit spectroscopy of XO-2 and a nearby reference star with the OSIRIS instrument, enabling differential specrophotometric transit lightcurves capable of measuring the exoplanet's transmission spectrum. Two optical low-resolution grisms were used to cover the optical wavelength range from 3800 to 9300{\\AA}. We find that sub-mmag level slit losses between the target and reference star prevent full optical transmission spectra from being constructed, limiting our analysis to differential absorption depths over ~1000{\\AA} regions. Wider long slits or multi-object grism spectroscopy with wide masks will likely prove effective in minimising the observed slit-loss trends. During both transits, we detect significant absorption in the planetary atmosphere of XO-2b using a 50{\\AA} bandpass centred on the Na I doublet, with absorption depths of Delta(R_pl/R_star)^2=0...

  11. KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396

    Pepper, Joshua; Collins, Karen A; Johnson, John Asher; Fulton, Benjamin J; Howard, Andrew W; Beatty, Thomas; Stassun, Keivan G; Isaacson, Howard; Colón, Knicole d; Lund, Michael B; Kuhn, Rudolf B; Siverd, Robert J; Gaudi, B Scott; Tan, T G; Curtis, Ivan; Stockdale, Christopher; Mawet, Dimitri; Bottom, Michael; James, David; Zhou, George; Bayliss, Daniel; Cargile, Phillip; Bieryla, Allyson; Penev, Kaloyan; Latham, David W; Labadie-Bartz, Jonathan; Kielkopf, John; Eastman, Jason D; Oberst, Thomas E; Jensen, Eric L N; Nelson, Peter; Sliski, David H; Wittenmyer, Robert A; McCrady, Nate; Wright, Jason T; Relles, Howard M

    2016-01-01

    We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright ($V=8.0$) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with $T_{\\rm eff} = 5370\\pm51$ K, $M_{*} = 1.438_{-0.052}^{+0.061} M_{\\odot}$, $R_{*} = 2.72_{-0.17}^{+0.21} R_{\\odot}$, log $g_*= 3.727_{-0.046}^{+0.040}$, and [Fe/H]$ = 0.180\\pm0.075$. The planet is a low-mass gas giant in a $P = 4.736529\\pm0.00006$ day orbit, with $M_{P} = 0.195\\pm0.018 M_J$, $R_{P}= 1.37_{-0.12}^{+0.15} R_J$, $\\rho_{P} = 0.093_{-0.024}^{+0.028}$ g cm$^{-3}$, surface gravity log ${g_{P}} = 2.407_{-0.086}^{+0.080}$, and equilibrium temperature $T_{eq} = 1712_{-46}^{+51}$ K. KELT-11 is the brightest known transiting exoplanet host in the southern hemisphere by more than a magnitude, and is the 6th brightest transit host to date. The planet is one of the most inflated planets known, with an exceptionally large atmospheric scale height (2763 km), and an associated size of the expected atmospheric trans...

  12. The Transit Light Curve Project. VII. The Not-So-Bloated Exoplanet HAT-P-1b

    Winn, Joshua N; Bakos, Gaspar A; Pal, Andras; Johnson, John Asher; Williams, Peter K G; Shporer, Avi; Mazeh, Tsevi; Fernandez, Jose; Latham, David W

    2007-01-01

    We present photometry of the G0 star HAT-P-1 during six transits of its close-in giant planet, and we refine the estimates of the system parameters. Relative to Jupiter's properties, HAT-P-1b is 1.20 +/- 0.05 times larger and its surface gravity is 2.7 +/- 0.2 times weaker. Although it remains the case that HAT-P-1b is among the least dense of the known sample of transiting exoplanets, its properties are in accord with previously published models of strongly irradiated, coreless, solar-composition giant planets. The times of the transits have a typical accuracy of 1 min and do not depart significantly from a constant period.

  13. Hiding in the Shadows II: Collisional Dust as Exoplanet Markers

    Dobinson, Jack; Lines, Stefan; Carter, Philip J; Dodson-Robinson, Sarah E; Teanby, Nick A

    2016-01-01

    Observations of the youngest planets ($\\sim$1-10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake even in ideal circumstances. Therefore, we propose the determination of a set of markers that can pre-select promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragments are simulated in a post process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 $\\mu$m for a low eccentricity planet, whereas a high eccentricity planet would produce a ch...

  14. Validation and Characterization of K2 Exoplanet Candidates with NIR Transit Photometry from the 4m Mayall and 3.5m WIYN Telescopes

    Colón, Knicole D.; Barclay, Thomas

    2016-06-01

    We present new ground-based near-infrared (NIR) transit photometry of exoplanet candidates recently discovered by the NASA K2 mission. These observations support the confirmation and characterization of these newly discovered transiting exoplanets, many which are in the super-Earth to mini-Neptune size regime and orbit cool, nearby stars. We specifically used NEWFIRM on the 4m Mayall telescope and WHIRC on the 3.5m WIYN telescope, both located at Kitt Peak National Observatory, to observe several K2 exoplanet candidates in transit. To our knowledge, these facilities have not been tested for such high-precision differential transit photometry before. Follow-up transit photometry with the high spatial resolution NIR cameras installed on the Mayall and WIYN telescopes allows us to confirm the transit host, which is critical given the large pixel scale of the Kepler spacecraft. NIR transit photometry in particular allows us to verify that the transit is achromatic, after comparing the NIR transit depth to the transit depth measured in the optical from K2. Finding a different depth in different bandpasses indicates that the candidate is instead an eclipsing binary false positive. Furthermore, NIR transit photometry provides robust constraints on the measured planet radius, since stellar limb darkening is minimized in the NIR. Finally, the high-precision and high-cadence photometry we achieve allows us to refine the transit ephemeris, which is crucial for future follow-up efforts with other facilities like NASA's James Webb Space Telescope. The capabilities of these ground-based facilities therefore approach those of space telescopes, since we are able use these ground-based observatories to refine transit parameters and constrain properties for the exoplanets that K2 is discovering, all the way down to super-Earth-size planets.

  15. Ground-based near-UV observations of 15 transiting exoplanets: Constraints on their atmospheres and no evidence for asymmetrical transits

    Turner, Jake D; Biddle, Lauren I; Smart, Brianna M; Zellem, Robert T; Teske, Johanna K; Hardegree-Ullman, Kevin K; Griffith, Caitlin C; Leiter, Robin M; Cates, Ian T; Nieberding, Megan N; Smith, Carter-Thaxton W; Thompson, Robert M; Hofmann, Ryan; Berube, Michael P; Nguyen, Chi H; Small, Lindsay C; Guvenen, Blythe C; Richardson, Logan; McGraw, Allison; Raphael, Brandon; Crawford, Benjamin E; Robertson, Amy N; Tombleson, Ryan; Carleton, Timothy M; Towner, Allison P M; Walker-LaFollette, Amanda M; Hume, Jeffrey R; Watson, Zachary T; Jones, Christen K; Lichtenberger, Matthew J; Hoglund, Shelby R; Cook, Kendall L; Crossen, Cory A; Jorgensen, Curtis R; Thompson, James M Romine Alejandro R; Villegas, Christian F; Wilson, Ashley A; Sanford, Brent; Taylor, Joanna M

    2016-01-01

    Transits of exoplanets observed in the near-UV have been used to study the scattering properties of their atmospheres and possible star-planet interactions. We observed the primary transits of 15 exoplanets (CoRoT-1b, GJ436b, HAT-P-1b, HAT-P-13b, HAT-P-16b, HAT-P-22b, TrES-2b, TrES-4b, WASP-1b, WASP-12b, WASP-33b, WASP-36b, WASP-44b, WASP-48b, and WASP-77Ab) in the near-UV and several optical photometric bands to update their planetary parameters, ephemerides, search for a wavelength dependence in their transit depths to constrain their atmospheres, and determine if asymmetries are visible in their light curves. Here we present the first ground-based near-UV light curves for 12 of the targets (CoRoT-1b, GJ436b, HAT-P-1b, HAT-P-13b, HAT-P-22b, TrES-2b, TrES-4b, WASP-1b, WASP-33b, WASP-36b, WASP-48b, and WASP-77Ab). We find that none of the near-UV transits exhibit any non-spherical asymmetries, this result is consistent with recent theoretical predictions by Ben-Jaffel et al. and Turner et al. The multi-wavele...

  16. Transiting exoplanets from the CoRoT space mission . XIII. CoRoT-13b: a dense hot Jupiter in transit around a star with solar metallicity and super-solar lithium content

    Cabrera, J.; Bruntt, H.; Ollivier, M.; Díaz, R. F.; Csizmadia, Szilard; Aigrain, S; Alonso, R.; Almenara, J. -M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carone, L.

    2010-01-01

    We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm[SUP]-3[/SUP]. It orbits a G0V star with T_eff = 5 945 K, M[SUB]*...

  17. Molecular opacities for exoplanets

    Bernath, Peter F.

    2014-01-01

    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules...

  18. Accretion of Jupiter-mass planets in the limit of vanishing viscosity

    In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼104 yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.

  19. Accretion of Jupiter-mass planets in the limit of vanishing viscosity

    Szulágyi, J.; Morbidelli, A.; Crida, A. [University of Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, Laboratoire Lagrange, F-06304, Nice (France); Masset, F., E-mail: jszulagyi@oca.eu [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2014-02-20

    In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate. Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼10{sup 4} yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.

  20. Synthesizing Exoplanet Demographics

    Clanton, Christian

    2016-01-01

    The discovery of thousands of exoplanets has revealed a large diversity of systems, the majority of which look nothing like our own. On the theoretical side, we are able to make ab initio calculations that make predictions about the properties of exoplanets. However, in order to link these predictions with observations, we must construct a statistical census of exoplanet demographics over as broad a range of parameters as possible. Current constraints on exoplanet demographics are typically constructed using the results of individual surveys using a single detection technique, and thus are incomplete. The only way to derive a statistically-complete census that samples a wide region of exoplanet parameter space is to synthesize the results from surveys employing all of the different discovery methods at our disposal. I present the first studies to demonstrate that this is actually possible, and describe a (mostly) de-biased exoplanet census that is constructed from the synthesis of results from microlensing, radial velocity, and direct imaging surveys. I will also discuss future work that will include the results of transit surveys (in particular, Kepler discoveries) to complete the census of exoplanets in our Galaxy, and describe the application of this census to develop the most comprehensive, observationally-constrained models of planet formation and evolution that have been derived to date.

  1. KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396

    Pepper, Joshua; Rodriguez, Joseph E.; Collins, Karen A.; Johnson, John Asher; Fulton, Benjamin J.; Howard, Andrew W.; Beatty, Thomas; Stassun, Keivan G.; Isaacson, Howard; Colón, Knicole D.; Lund, Michael B.; Kuhn, Rudolf B.; Siverd, Robert J.; Gaudi, B. Scott; Tan, T G

    2016-01-01

    We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright ($V=8.0$) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with $T_{\\rm eff} = 5370\\pm51$ K, $M_{*} = 1.438_{-0.052}^{+0.061} M_{\\odot}$, $R_{*} = 2.72_{-0.17}^{+0.21} R_{\\odot}$, log $g_*= 3.727_{-0.046}^{+0.040}$, and [Fe/H]$ = 0.180\\pm0.075$. The planet is a low-mass gas giant in a $P = 4.736529\\pm0.00006$ day orbit, with $M_{P} = 0.195\\pm0.018 M_J$, $R_{P...

  2. Discovery of a probable 4-5 Jupiter-mass exoplanet to HD 95086 by direct-imaging

    Rameau, J; Lagrange, A -M; Boccaletti, A; Quanz, S P; Bonnefoy, M; Girard, J H; Delorme, P; Desidera, S; Klahr, H; Mordasini, C; Dumas, C; Bonavita, M; Meshkat, T; Bailey, V; Kenworthy, M

    2013-01-01

    Direct imaging has just started the inventory of the population of gas giant planets on wide-orbits around young stars in the solar neighborhood. Following this approach, we carried out a deep imaging survey in the near-infrared using VLT/NaCo to search for substellar companions. We report here the discovery in L' (3.8 microns) images of a probable companion orbiting at 56 AU the young (10-17 Myr), dusty, and early-type (A8) star HD 95086. This discovery is based on observations with more than a year-time-lapse. Our first epoch clearly revealed the source at 10 sigma while our second epoch lacked good observing conditions hence yielding a 3 sigma detection. Various tests were thus made to rule out possible artifacts. This recovery is consistent with the signal at the first epoch but requires cleaner confirmation. Nevertheless, our astrometric precision suggests the companion to be comoving with the star, with a 3 sigma confidence level. The planetary nature of the source is reinforced by a non-detection in Ks...

  3. Ground-based near-UV observations of 15 transiting exoplanets: constraints on their atmospheres and no evidence for asymmetrical transits

    Turner, Jake D.; Pearson, Kyle A.; Biddle, Lauren I.; Smart, Brianna M.; Zellem, Robert T.; Teske, Johanna K.; Hardegree-Ullman, Kevin K.; Griffith, Caitlin C.; Leiter, Robin M.; Cates, Ian T.; Nieberding, Megan N.; Smith, Carter-Thaxton W.; Thompson, Robert M.; Hofmann, Ryan; Berube, Michael P.; Nguyen, Chi H.; Small, Lindsay C.; Guvenen, Blythe C.; Richardson, Logan; McGraw, Allison; Raphael, Brandon; Crawford, Benjamin E.; Robertson, Amy N.; Tombleson, Ryan; Carleton, Timothy M.; Towner, Allison P. M.; Walker-LaFollette, Amanda M.; Hume, Jeffrey R.; Watson, Zachary T.; Jones, Christen K.; Lichtenberger, Matthew J.; Hoglund, Shelby R.; Cook, Kendall L.; Crossen, Cory A.; Jorgensen, Curtis R.; Romine, James M.; Thompson, Alejandro R.; Villegas, Christian F.; Wilson, Ashley A.; Sanford, Brent; Taylor, Joanna M.; Henz, Triana N.

    2016-06-01

    Transits of exoplanets observed in the near-UV have been used to study the scattering properties of their atmospheres and possible star-planet interactions. We observed the primary transits of 15 exoplanets (CoRoT-1b, GJ436b, HAT-P-1b, HAT-P-13b, HAT-P-16b, HAT-P-22b, TrES-2b, TrES-4b, WASP-1b, WASP-12b, WASP-33b, WASP-36b, WASP-44b, WASP-48b, and WASP-77Ab) in the near-UV and several optical photometric bands to update their planetary parameters, ephemerides, search for a wavelength dependence in their transit depths to constrain their atmospheres, and determine if asymmetries are visible in their light curves. Here, we present the first ground-based near-UV light curves for 12 of the targets (CoRoT-1b, GJ436b, HAT-P-1b, HAT-P-13b, HAT-P-22b, TrES-2b, TrES-4b, WASP-1b, WASP-33b, WASP-36b, WASP-48b, and WASP-77Ab). We find that none of the near-UV transits exhibit any non-spherical asymmetries, this result is consistent with recent theoretical predictions by Ben-Jaffel et al. and Turner et al. The multiwavelength photometry indicates a constant transit depth from near-UV to optical wavelengths in 10 targets (suggestive of clouds), and a varying transit depth with wavelength in 5 targets (hinting at Rayleigh or aerosol scattering in their atmospheres). We also present the first detection of a smaller near-UV transit depth than that measured in the optical in WASP-1b and a possible opacity source that can cause such radius variations is currently unknown. WASP-36b also exhibits a smaller near-UV transit depth at 2.6σ. Further observations are encouraged to confirm the transit depth variations seen in this study.

  4. Thermal Design of the Instrument for the Transiting Exoplanet Survey Satellite

    Allen, Gregory D.

    2016-01-01

    TESS observatory is a two year NASA Explorer mission which will use a set of four cameras to discover exoplanets. It will be placed in a high-earth orbit with a period of 13.7 days and will be unaffected by temperature disturbances caused by environmental heating from the Earth. The cameras use their stray-light baffles to passively cool the cameras and in turn the CCD's in order to maintain operational temperatures. The design has been well thought out and analyzed to maximize temperature stability. The analysis shows that the design keeps the cameras and their components within their temperature ranges which will help make it a successful mission. It will also meet its survival requirement of sustaining exposure to a five hour eclipse. Official validation and verification planning is underway and will be performed as the system is built up. It is slated for launch in 2017.

  5. The Architecture of Exoplanets

    Hatzes, Artie P.

    2016-05-01

    Prior to the discovery of exoplanets our expectations of their architecture were largely driven by the properties of our solar system. We expected giant planets to lie in the outer regions and rocky planets in the inner regions. Planets should probably only occupy orbital distances 0.3-30 AU from the star. Planetary orbits should be circular, prograde and in the same plane. The reality of exoplanets have shattered these expectations. Jupiter-mass, Neptune-mass, Superearths, and even Earth-mass planets can orbit within 0.05 AU of the stars, sometimes with orbital periods of less than one day. Exoplanetary orbits can be eccentric, misaligned, and even in retrograde orbits. Radial velocity surveys gave the first hints that the occurrence rate increases with decreasing mass. This was put on a firm statistical basis with the Kepler mission that clearly demonstrated that there were more Neptune- and Superearth-sized planets than Jupiter-sized planets. These are often in multiple, densely packed systems where the planets all orbit within 0.3 AU of the star, a result also suggested by radial velocity surveys. Exoplanets also exhibit diversity along the main sequence. Massive stars tend to have a higher frequency of planets ( ≈ 20-25 %) that tend to be more massive ( M≈ 5-10 M_{Jup}). Giant planets around low mass stars are rare, but these stars show an abundance of small (Neptune and Superearth) planets in multiple systems. Planet formation is also not restricted to single stars as the Kepler mission has discovered several circumbinary planets. Although we have learned much about the architecture of planets over the past 20 years, we know little about the census of small planets at relatively large ( a>1 AU) orbital distances. We have yet to find a planetary system that is analogous to our own solar system. The question of how unique are the properties of our own solar system remains unanswered. Advancements in the detection methods of small planets over a wide range

  6. The mass of the Mars-sized exoplanet Kepler-138 b from transit timing

    Jontof-Hutter, Daniel; Rowe, Jason F.; Lissauer, Jack J.; Fabrycky, Daniel C.; Ford, Eric B.

    2015-01-01

    Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star once per orbit, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favorable cases, the departures from Keplerian orbits implied by the observed transit times permit planetary mass...

  7. Line-profile tomography of exoplanet transits -- II. A gas-giant planet transiting a rapidly-rotating A5 star

    Cameron, A Collier; Smalley, B; McDonald, I; Hebb, L; Andersen, J; Augusteijn, Th; Barros, S C C; Brown, D J A; Cochran, W D; Endl, M; Fossey, S J; Hartmann, M; Maxted, P F L; Pollacco, D; Skillen, I; Telting, J; Waldmann, I P; West, R G

    2010-01-01

    Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the lightcurve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33; V=8.3, v sin i = 86 km/sec). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit we directly derive the size of the planet, the inclination and obliquity of its orbital plane, and its r...

  8. Exoplanet properties from Lick, Keck and AAT

    Doppler-shift measurements with a remarkable precision of Δλ/λ=3x10-9, corresponding to velocities of 1 m s-1, have been made repeatedly of 2500 stars located within 300 light years. The observed gravitational perturbations of the stars have revealed 250 orbiting planets, with 27 that cross in front of the host star, blocking a fraction of the starlight to allow measurement of the planet's mass, radius and density. Two new discoveries are the first good analog of Jupiter (HD 154345b) and the first system of five planets (55 Cancri). The predominantly eccentric orbits of exoplanets probably result from planet-planet gravitational interactions or angular momentum exchange by mean-motion resonances. The planet mass distribution ranges from ∼15 MJUP to as low as ∼5 MEarth and rises toward lower masses as dN/dM∼M-1.1. The distribution with orbital distance, a, rises (in logarithmic intervals) as dN/d log a∼a+0.4. Extrapolation and integration suggests that 19% of all Sun-like stars harbor a gas-giant planet within 20 AU, but there remains considerable incompleteness for large orbits. Beyond 20 AU, the occurrence of gas-giant planets may be less than a few per cent as protoplanetary disk material there has lower densities and is vulnerable to destruction. Jupiter-mass planets occur more commonly around more massive stars than low mass stars. The transit of the Neptune-mass planet, Gliese 436b, yields a density of 1.55 g cm-3 suggesting that its interior has an iron-silicate core surrounded by an envelope of water-ice and an outer H-He shell. Planets with masses as low as five Earth-masses may be commonly composed of iron-nickel, rock and water along with significant amounts of H and He, making the term 'super-Earth' misleading. The transiting planet HD147506b has high orbital eccentricity but no significant orbital inclination to the line of sight, presenting a puzzle about its history. Its orbit together with the mean motion resonances of 4 of the 22 multi

  9. SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period

    Santerne, A; Tsantaki, M; Bouchy, F; Hébrard, G; Adibekyan, V; Almenara, J -M; Amard, L; Barros, S C C; Boisse, I; Bonomo, A S; Bruno, G; Courcol, B; Deleuil, M; Demangeon, O; Díaz, R F; Guillot, T; Havel, M; Montagnier, G; Rajpurohit, A S; Rey, J; Santos, N C

    2015-01-01

    While giant extrasolar planets have been studied for more than two decades now, there are still some open questions such as their dominant formation and migration process, as well as their atmospheric evolution in different stellar environments. In this paper, we study a sample of giant transiting exoplanets detected by the Kepler telescope with orbital periods up to 400 days. We first defined a sample of 129 giant-planet candidates that we followed up with the SOPHIE spectrograph (OHP, France) in a 6-year radial velocity campaign. This allow us to unveil the nature of these candidates and to measure a false-positive rate of 54.6 +/- 6.5 % for giant-planet candidates orbiting within 400 days of period. Based on a sample of confirmed or likely planets, we then derive the occurrence rates of giant planets in different ranges of orbital periods. The overall occurrence rate of giant planets within 400 days is 4.6 +/- 0.6 %. We recover, for the first time in the Kepler data, the different populations of giant plan...

  10. The effect of conjunctions on the transit timing variations of exoplanets

    Nesvorný, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Vokrouhlický, David, E-mail: davidn@boulder.swri.edu, E-mail: vokrouhl@cesnet.cz [Institute of Astronomy, Charles University, V Holešovičkách 2, CZ-18000 Prague 8 (Czech Republic)

    2014-07-20

    We develop an analytic model for transit timing variations produced by orbital conjunctions between gravitationally interacting planets. If the planetary orbits have tight orbital spacing, which is a common case among the Kepler planets, the effect of a single conjunction can be best described as: (1) a step-like change of the transit timing ephemeris with subsequent transits of the inner planet being delayed and those of the outer planet being sped up, and (2) a discrete change in sampling of the underlying oscillations from eccentricity-related interaction terms. In the limit of small orbital eccentricities, our analytic model gives explicit equations for these effects as a function of the mass and orbital separation of planets. We point out that a detection of the conjunction effect in real data is of crucial importance for the physical characterization of planetary systems from transit timing variations.

  11. 32 New Exoplanets Found

    2009-10-01

    less favourable for the formation of planets, which form in the metal-rich disc around the young star. However, planets up to several Jupiter masses have been found orbiting metal-deficient stars, setting an important constraint for planet formation models. Although the first phase of the observing programme is now officially concluded, the team will pursue their effort with two ESO Large Programmes looking for super-Earths around solar-type stars and M dwarfs and some new announcements are already foreseen in the coming months, based on the last five years of measurements. There is no doubt that HARPS will continue to lead the field of exoplanet discoveries, especially pushing towards the detection of Earth-type planets. More information This discovery was announced today at the ESO/CAUP conference "Towards Other Earths: perspectives and limitations in the ELT era", taking place in Porto, Portugal, on 19-23 October 2009. This conference discusses the new generation of instruments and telescopes that is now being conceived and built by different teams around the world to allow the discovery of other Earths, especially for the European Extremely Large Telescope (E-ELT). The new planets are simultaneously presented by Michel Mayor at the international symposium "Heirs of Galileo: Frontiers of Astronomy" in Madrid, Spain. This research was presented in a series of eight papers submitted - or soon to be submitted - to the Astronomy and Astrophysics journal. The team is composed of * Geneva Observatory: M. Mayor, S. Udry, D. Queloz, F. Pepe, C. Lovis, D. Ségransan, X. Bonfils * LAOG Grenoble: X. Delfosse, T. Forveille, X. Bonfils, C. Perrier * CAUP Porto: N.C. Santos * ESO: G. Lo Curto, D. Naef * University of Bern: W. Benz, C. Mordasini * IAP Paris: F. Bouchy, G. Hébrard * LAM Marseille: C. Moutou * Service d'aéronomie, Paris: J.-L. Bertaux ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most

  12. Exoplanet atmospheres physical processes

    Seager, Sara

    2010-01-01

    Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introdu

  13. KELT-10b and KELT-11b: Two Sub-Jupiter Mass Planets well-Suited for Atmospheric Characterization in the Southern Hemisphere

    Rodriguez, Joseph E.

    2015-12-01

    The Kilodegree Extremely Little Telescope (KELT) project is a photometric survey in both the northern and southern hemispheres for transiting planets around bright stars (8 inflated transiting sub-Jupiter mass planet (0.68 MJ) around a V=10.7 early G-star. It has the 3rd deepest transit (1.4%) in the southern hemisphere for a star V inflated transiting Saturn mass planet (0.22 MJ) orbiting one of the brightest planet-hosting stars in the southern hemisphere. Interestingly, KELT-11b's host star is a clear sub-giant star (log(g) ~ 3.7). I will discuss their impact for atmospheric characterization. For example, the highly inflated nature of the KELT-11b planet provides the ability to study a sub-Jupiter atmosphere at very low planetary gravity, while the sub-giant nature of its host star allows us to study the effects of post main sequence evolution of a host star on a hot Jupiter.

  14. Dust Coagulation in the Vicinity of a Gap-Opening Jupiter-Mass Planet

    Carballido, Augusto; Hyde, Truell W

    2015-01-01

    We analyze the coagulation of dust in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magnetorotational instability. From the MHD simulation, we obtain values of the gas velocities, densities and turbulent stresses a) close to the gap edge, b) in one of the two gas streams that accrete onto the planet, c) inside the low-density gap, and d) outside the gap. The MHD values are then supplied to a Monte Carlo dust coagulation algorithm, which models grain sticking and compaction. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 $\\mu$m, and another one whose initial size distribution follows the Mathis-Rumpl-Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 $\\mu$m. Our Monte Carlo calculations show initial growth of dust aggregates foll...

  15. First exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy: Confirmation of Rayleigh scattering in HD 189733 b with HIPO

    Angerhausen, Daniel; Mandell, Avi; Dunham, Edward W; Becklin, Eric E; Collins, Peter L; Hamilton, Ryan T; Logsdon, Sarah E; McElwain, Michael W; McLean, Ian S; Pfueller, Enrico; Savage, Maureen L; Shenoy, Sachindev S; Vacca, William; VanCleve, Jeffry; Wolf, Juergen

    2015-01-01

    Here we report on the first successful exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy (SOFIA). We observed a single transit of the hot Jupiter HD 189733 b, obtaining two simultaneous primary transit lightcurves in the B and z' bands as a demonstration of SOFIA's capability to perform absolute transit photometry. We present a detailed description of our data reduction, in particular the correlation of photometric systematics with various in-flight parameters unique to the airborne observing environment. The derived transit depths at B and z' wavelengths confirm a previously reported slope in the optical transmission spectrum of HD 189733 b. Our results give new insights to the current discussion about the source of this Rayleigh scattering in the upper atmosphere and the question of fixed limb darkening coefficients in fitting routines.

  16. Exoplanet Transit Spectroscopy Using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b

    Mandell, Avi; Sinukoff, Evan; Madhusudhan, Nikku; Burrows, Adam; Deming, Drake

    2013-01-01

    We report analysis of transit spectroscopy of the extrasolar planets WASP-12 b, WASP-17 b, and WASP-19 b using the Wide Field Camera 3 on the HST. We analyze the data for a single transit for each planet using a strategy similar in certain aspects to the techniques used by Berta et al. (2012), but we extend their methodology to allow us to correct for channel- or wavelength-dependent instrumental effects by utilizing the band-integrated time series and measurements of the drift of the spectrum on the detector over time. We achieve almost photon-limited results for individual spectral bins, but the uncertainties in the transit depth for the the band-integrated data are exacerbated by the uneven sampling of the light curve imposed by the orbital phasing of HST's observations. Our final transit spectra for all three objects are consistent with the presence of a broad absorption feature at 1.4 microns potentially due to water. However, the amplitude of the absorption is less than that expected based on previous o...

  17. WASP-37b: A 1.8 MJ EXOPLANET TRANSITING A METAL-POOR STAR

    We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting an mv = 12.7 G2-type dwarf, with a period of 3.577469 ± 0.000011 d, transit epoch T0 = 2455338.6188 ± 0.0006 (HJD; dates throughout the paper are given in Coordinated Universal Time (UTC)), and a transit duration 0.1304+0.0018-0.0017 d. The planetary companion has a mass Mp = 1.80 ± 0.17 MJ and radius Rp = 1.16+0.07-0.06 RJ, yielding a mean density of 1.15+0.12-0.15 ρJ. From a spectral analysis, we find that the host star has M* = 0.925 ± 0.120 Msun, R* = 1.003 ± 0.053 Rsun, Teff = 5800 ± 150 K, and [Fe/H] = -0.40 ± 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.

  18. Observations of transits of K2 exoplanet discoveries EPIC 203371098b&c

    Werner, Michael; Gorjian, Varoujan; Beichmani, Charles; Akeson, Rachel; Ciardi, Dave; Christiansen, Jessie; Crossfield, Ian; Petigura, Erik; Krick, Jessica

    2015-08-01

    We request DDT time to observe transits of two super-Neptune planets orbiting a bright G star, EPIC 203371098. Erik Petigura has brought to our attention a particularly interesting K2 discovery that consists of two sub-Saturn-sized planets (5.9 RE and 7.8 RE) orbiting EPIC-203371098, a bright G star (K = 9.2). The orbital periods of the planets are 20.9 d and 42.4 d, respectively. The planets have sizes between that of Neptune and Saturn; sizes not represented among the Solar System planets. Due to the brightness of the host star, this system is an ideal laboratory to study this new class of planets. Over the past two months, our team has conducted radial velocity (RV) follow up of EPIC-203371098 with Keck/HIRES. Our preliminary measurements suggest these planets have low densities, ~0.6 g/cc and ~0.4 g/cc, respectively. Low planet masses translate into larger atmospheric scale heights, which sets the amplitude of the features in planet transmission spectra. The apparent commensurability of their orbits suggest that this is a resonant system where transit timing variations may be particularly large. Our Spitzer observations, compared with the previous K2 first epoch observations, can provide initial evidence for TTVs and set the stage for future campaigns from Spitzer and other telescopes which will independently determine the planetary masses; they will also pin down the ephemerides of these interesting planets - including the hard to capture orbital eccentricity - for possible JWST study.It is important to carry out these observations in the upcoming apparition of this star in the October-December time frame because multiple observations are required for accurate studies of TTVs, and to prevent secular errors in timing from building up to a point where the system is hard to recover. The size of these planets and the brightness of the star shows us that we will achieve S/N>20 per transit on each planet.We will propose to observe one transit of each planet

  19. Radial velocity follow-up of CoRoT transiting exoplanets

    Deleuil M.

    2011-02-01

    Full Text Available We report on the results from the radial-velocity follow-up program performed to establish the planetary nature and to characterize the transiting candidates discovered by the space mission CoRoT. We use the SOPHIE at OHP, HARPS at ESO and the HIRES at Keck spectrographs to collect spectra and high-precision radial velocity (RV measurements for several dozens different candidates from CoRoT. We have measured the Rossiter-McLaughlin effect of several confirmed planets, especially CoRoT-1b which revealed that it is another highly inclined system. Such high-precision RV data are necessary for the discovery of new transiting planets. Furthermore, several low mass planet candidates have emerged from our Keck and HARPS data.

  20. Three WASP-South transiting exoplanets: WASP-74b, WASP-83b & WASP-89b

    Hellier, Coel; Cameron, A Collier; Delrez, L; Gillon, M; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smalley, B; Smith, A M S; Southworth, J; Triaud, A H M J; Turner, O D; Udry, S; West, R G

    2014-01-01

    We report the discovery of three new transiting hot Jupiters by WASP-South together with the TRAPPIST photometer and the Euler/CORALIE spectrograph. WASP-74b orbits a star of V = 9.7, making it one of the brighter systems accessible to Southern telescopes. It is a 0.95 M_Jup planet with a moderately bloated radius of 1.5 R_Jup in a 2-d orbit around a slightly evolved F9 star. WASP-83b is a Saturn-mass planet at 0.3 M_Jup with a radius of 1.0 R_Jup. It is in a 5-d orbit around a fainter (V = 12.9) G8 star. WASP-89b is a 6 M_Jup planet in a 3-d orbit with an eccentricity of e = 0.2. It is thus similar to massive, eccentric planets such as XO-3b and HAT-P-2b, except that those planets orbit F stars whereas WASP-89 is a K star. The V = 13.1 host star is magnetically active, showing a rotation period of 20.2 d, while star spots are visible in the transits. There are indications that the planet's orbit is aligned with the stellar spin. WASP-89 is a good target for an extensive study of transits of star spots.

  1. Search of Exoplanets - Phase I

    Vodniza, Alberto Q.; Pereira, M. R.; Lopez, J. P.; Reyes, K.; Chaves, L.

    2008-09-01

    From the Astronomical Observatory at the University of Nariño-COLOMBIA, we have begun a systematic search for exoplanets. Initially we made differential photometry on variable stars weaker than the tenth magnitude to get enough experience on the establishment of stellar transits, so then we could undertake the work with exoplanets. We have already confirmed the transits of two exoplanets with good photometry data: At the exoplanet HAT-P-5b, discovered by Bakos and other investigators and which turns around the GSC 02634-01087, with an orbital period of 2.788491 days according to measurements of the discoverers, and also at the exoplanet TrES-3, discovered by O'Donovan and other investigators and which turns around the GSC 03089-00929, with an orbital period of 1.30619 days, established by its discoverers. Both exoplanets are quite interesting because they have one of the smallest periods found on exoplanets. The TrES-3 also provides a big opportunity for studying the orbital decay and mass loss due to evaporation, caused by the great closeness to its star. We have captured a lot of data to elaborate the lightcurves so we can estimate physical parameters of the bodies. We are getting data on various dates. Actually we are preparing the equipment to develop observations of radial velocities through spectrometry. In a later phase, we expect to verify the presence of other exoplanets which cause less deep transits, and then we can investigate stars with possible exoplanets around them. Besides we hope to design a mathematical model of the studied systems. The equipment we employed is: 14"LX200 GPS MEADE telescope, ST-7XME SBIG camera, STL-1001 SBIG camera, LHIRES III Spectrograph, and SGS-SBIG Spectrograph. On the poster it is explained at length the methodology followed over the search, the data we obtained and the physical- mathematical analysis that was carried out.

  2. NASA's Missions for Exoplanet Exploration

    Unwin, Stephen

    2014-05-01

    Exoplanets are detected and characterized using a range of observational techniques - including direct imaging, astrometry, transits, microlensing, and radial velocities. Each technique illuminates a different aspect of exoplanet properties and statistics. This diversity of approach has contributed to the rapid growth of the field into a major research area in only two decades. In parallel with exoplanet observations, major efforts are now underway to interpret the physical and atmospheric properties of exoplanets for which spectroscopy is now possible. In addition, comparative planetology probes questions of interest to both exoplanets and solar system studies. In this talk I describe NASA's activities in exoplanet research, and discuss plans for near-future missions that have reflected-light spectroscopy as a key goal. The WFIRST-AFTA concept currently under active study includes a major microlensing survey, and now includes a visible light coronagraph for exoplanet spectroscopy and debris disk imaging. Two NASA-selected community-led teams are studying probe-scale (important targets with transit spectroscopy on JWST), and build on the work of ground-based instruments such as LBTI and observing with HIRES on Keck. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2014. California Institute of Technology. Government sponsorship acknowledged.

  3. The Effects of Refraction on Transit Transmission Spectroscopy: Application to Earth-like Exoplanets

    Misra, Amit; Crisp, Dave

    2014-01-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Palle et al. (2009). We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope (JWST) Near-Infrared Spectrograph (NIRSPEC). Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal to noise ratio (SNR) of absorption features by 60%, while for an Earth-analog plan...

  4. Dust Coagulation in the Vicinity of a Gap-opening Jupiter-mass Planet

    Carballido, Augusto; Matthews, Lorin S.; Hyde, Truell W.

    2016-06-01

    We analyze the coagulation of dust in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magnetorotational instability. From the MHD simulation, we obtain values of the gas velocities, densities, and turbulent stresses (a) close to the gap edge, (b) in one of the two gas streams that accrete onto the planet, (c) inside the low-density gap, and (d) outside the gap. The MHD values are then input into a Monte Carlo dust-coagulation algorithm which models grain sticking and compaction. We also introduce a simple implementation for bouncing, for comparison purposes. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 μm, and another one whose initial size distribution follows the Mathis–Rumpl–Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 μm. Without bouncing, our Monte Carlo calculations show steady growth of dust aggregates in all regions, and the mass-weighted (m-w) average porosity of the initially monodisperse population reaches extremely high final values of 98%. The final m-w porosities in all other cases without bouncing range between 30% and 82%. The efficiency of compaction is due to high turbulent relative speeds between dust particles. When bouncing is introduced, growth is slowed down in the planetary wake and inside the gap. Future studies will need to explore the effect of different planet masses and electric charge on grains.

  5. Zodiacal Exoplanets in Time (ZEIT) IV: seven transiting planets in the Praesepe cluster

    Mann, Andrew W; Vanderburg, Andrew; Rizzuto, Aaron C; Ansdell, Megan; Medina, Jennifer Vanessa; Mace, Gregory N; Kraus, Adam L

    2016-01-01

    Open clusters and young stellar associations are attractive sites to search for planets and to test theories of planet formation, migration, and evolution. We present our search for, and characterization of, transiting planets in the $\\simeq$800 Myr old Praesepe (Beehive, M44) Cluster from K2 light curves. We identify seven planet candidates, six of which we statistically validate to be real planets. For each host star we obtain high-resolution NIR spectra to measure its projected rotational broadening and radial velocity, the latter of which we use to confirm cluster membership. We obtain low-resolution optical and NIR spectroscopy for each system, which we use in conjunction with the cluster distance and metallicity to provide precise temperatures, masses, radii, and luminosities for the host stars. Combining our measurements of rotational broadening, rotation periods from the K2 light curves, and our derived stellar radii, we show that all planetary orbits are, within errors, aligned with their host star's...

  6. The transiting exoplanet CoRoT-11b and its peculiar tidal evolution

    Damiani C.

    2011-02-01

    Full Text Available CoRoT-11b is a fairly massive hot-Jupiter (Mp = 2.33 ± 0.34 MJup in a 3 days orbit around a F6 V star with an age of 2 ± 1 Gyr. The relatively high projected rotational velocity of the star (v sin i⋆ = 40 ± 5 km/s places CoRoT-11 among the most rapidly rotating planet hosting stars discovered so far. Assuming that the star is seen equator-on, the v sin i⋆ and the star radius (R∗ = 1.37±0.03 R⊙ translate into a stellar rotation period of 1.73±0.26 days. This peculiar planet/star configuration offers an unique opportunity to study the tidal evolution of the system. Owing to the strong tidal interaction, the planet would have moved outwards, from a starting semi-major axis corresponding to an orbital period almost synchronized with the stellar rotation. We found that the present value of the tidal quality factor Q′s could be measured by a timing of the mid-epoch of the transits to be observed with an accuracy of about 0.5 − 1 seconds over a time baseline of about 25 years.

  7. MuSCAT: a multicolor simultaneous camera for studying atmospheres of transiting exoplanets

    Narita, Norio; Kusakabe, Nobuhiko; Onitsuka, Masahiro; Ryu, Tsuguru; Yanagisawa, Kenshi; Izumiura, Hideyuki; Tamura, Motohide; Yamamuro, Tomoyasu

    2015-01-01

    We report a development of a multi-color simultaneous camera for the 188cm telescope at Okayama Astrophysical Observatory in Japan. The instrument, named MuSCAT, has a capability of 3-color simultaneous imaging in optical wavelength where CCDs are sensitive. MuSCAT is equipped with three 1024x1024 pixel CCDs, which can be controlled independently. The three CCDs detect lights in $g'_2$ (400--550 nm), $r'_2$ (550--700 nm), and $z_{s,2}$ (820--920 nm) bands using Astrodon Photometrics Generation 2 Sloan filters. The field of view of MuSCAT is 6.1x6.1 arcmin$^2$ with the pixel scale of 0.358 arcsec per pixel. The principal purpose of MuSCAT is to perform high precision multi-color transit photometry. For the purpose, MuSCAT has a capability of self autoguiding which enables to fix positions of stellar images within ~1 pix. We demonstrate relative photometric precisions of 0.101%, 0.074%, and 0.076% in $g'_2$, $r'_2$, and $z_{s,2}$ bands, respectively, for GJ436 (magnitudes in $g'$=11.81, $r'$=10.08, and $z'$=8.6...

  8. Near-UV and optical observations of the transiting exoplanet TrES-3b

    Turner, Jake D; Hardegree-Ullman, Kevin K; Carleton, Timothy M; Walker-LaFollette, Amanda M; Crawford, Benjamin E; Smith, Carter-Thaxton W; McGraw, Allison M; Small, Lindsay C; Rocchetto, Marco; Cunningham, Kathryn I; Towner, Allison P M; Zellem, Robert; Robertson, Amy N; Guvenen, Blythe C; Schwarz, Kamber R; Hardegree-Ullman, Emily E; Collura, Daniel; Henz, Triana N; Lejoly, Cassandra; Richardson, Logan L; Weinand, Michael A; Taylor, Joanna M; Daugherty, Michael J; Wilson, Ashley A; Austin, Carmen L

    2012-01-01

    We observed nine primary transits of the hot Jupiter TrES-3b in several optical and near-UV photometric bands from 2009 June to 2012 April in an attempt to detect its magnetic field. Vidotto, Jardine and Helling suggest that the magnetic field of TrES-3b can be constrained if its near-UV light curve shows an early ingress compared to its optical light curve, while its egress remains unaffected. Predicted magnetic field strengths of Jupiter-like planets should range between 8 G and 30 G. Using these magnetic field values and an assumed B_star of 100 G, the Vidotto et al. method predicts a timing difference of 5-11 min. We did not detect an early ingress in our three nights of near-UV observations, despite an average cadence of 68 s and an average photometric precision of 3.7 mmag. However, we determined an upper limit of TrES-3b's magnetic field strength to range between 0.013 and 1.3 G (for a 1-100 G magnetic field strength range for the host star, TrES-3) using a timing difference of 138 s derived from the N...

  9. Exoplanet habitability.

    Seager, Sara

    2013-05-01

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world. PMID:23641111

  10. Exoplanets versus brown dwarfs: the CoRoT view and the future

    Schneider, Jean

    2016-01-01

    CoRoT has detected by transit several tens of objects whose radii run from 1.67 Earth radius. Their mass run from less than 5.7 Earth mass (CoRoT-24 b, Alonso et al. 2014) to 63 Jupiter mass (CoRoT-15 b, Bouchy et al. 2011). One could be tempted to think that more massive the object is, the larger it is in size and that there is some limit in mass and/or radius beyond which objects are not planets but very low mass stars below the 80 Jupiter mass limit to trigger nuclear fusion (namely "brown...

  11. Stellar Diameters and Temperatures VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs

    Boyajian, Tabetha; Feiden, Gregory A; Huber, Daniel; Basu, Sarbani; Demarque, Pierre; Fischer, Debra A; Schaefer, Gail; Mann, Andrew W; White, Timothy R; Maestro, Vicente; Brewer, John; Lamell, C Brooke; Spada, Federico; López-Morales, Mercedes; Ireland, Michael; Farrington, Chris; van Belle, Gerard T; Kane, Stephen R; Jones, Jeremy; Brummelaar, Theo A ten; Ciardi, David R; McAlister, Harold A; Ridgway, Stephen; Goldfinger, P J; Turner, Nils H; Sturmann, Laszlo

    2014-01-01

    We present direct radii measurements of the well-known transiting exoplanet host stars HD 189733 and HD 209458 using the CHARA Array interferometer. We find the limb-darkened angular diameters to be theta_LD = 0.3848 +/- 0.0055 and 0.2254 +/- 0.0072 milliarcsec for HD 189733 and HD 209458, respectively. HD 189733 and HD 209458 are currently the only two transiting exoplanet systems where detection of the respective planetary companion's orbital motion from high resolution spectroscopy has revealed absolute masses for both star and planet. We use our new measurements together with the orbital information from radial velocity and photometric time series data, Hipparcos distances, and newly measured bolometric fluxes to determine the stellar effective temperatures (T_eff = 4875 +/- 43, 6093 +/- 103 K), stellar linear radii (R_* = 0.805 +/- 0.016, 1.203 +/- 0.061 R_sun), mean stellar densities (rho_* = 1.62 +/- 0.11, 0.58 +/- 0.14 rho_sun), planetary radii (R_p = 1.216 +/- 0.024, 1.451 +/- 0.074 R_Jup), and mean ...

  12. Asteroseismology of Exoplanet Host Stars

    Huber, Daniel

    2015-01-01

    Asteroseismology is among the most powerful observational tools to determine fundamental properties of stars. Space-based photometry has recently enabled the systematic detection of oscillations in exoplanet host stars, allowing a combination of asteroseismology with transit and radial-velocity measurements to characterize planetary systems. In this contribution I will review the key synergies between asteroseismology and exoplanet science such as the precise determination of radii and ages of exoplanet host stars, as well as applications of asteroseismology to measure spin-orbit inclinations in multiplanet systems and orbital eccentricities of small planets. Finally I will give a brief outlook on asteroseismic studies of exoplanet hosts with current and future space-based missions such as K2 and TESS.

  13. The Qatar Exoplanet Survey

    Alsubai, K A; Bramich, D M; Horne, K; Cameron, A Collier; West, R G; Sorensen, P M; Pollacco, D; Smith, J C; Fors, O

    2014-01-01

    The Qatar Exoplanet Survey (QES) is discovering hot Jupiters and aims to discover hot Saturns and hot Neptunes that transit in front of relatively bright host stars. QES currently operates a robotic wide-angle camera system to identify promising transiting exoplanet candidates among which are the confirmed exoplanets Qatar 1b and 2b. This paper describes the first generation QES instrument, observing strategy, data reduction techniques, and follow-up procedures. The QES cameras in New Mexico complement the SuperWASP cameras in the Canary Islands and South Africa, and we have developed tools to enable the QES images and light curves to be archived and analysed using the same methods developed for the SuperWASP datasets. With its larger aperture, finer pixel scale, and comparable field of view, and with plans to deploy similar systems at two further sites, the QES, in collaboration with SuperWASP, should help to speed the discovery of smaller radius planets transiting bright stars in northern skies.

  14. Direct imaging discovery of a Jovian exoplanet within a triple-star system

    Wagner, Kevin; Apai, Dániel; Kasper, Markus; Kratter, Kaitlin; McClure, Melissa; Robberto, Massimo; Beuzit, Jean-Luc

    2016-08-01

    Direct imaging allows for the detection and characterization of exoplanets via their thermal emission. We report the discovery via imaging of a young Jovian planet in a triple-star system and characterize its atmospheric properties through near-infrared spectroscopy. The semimajor axis of the planet is closer relative to that of its hierarchical triple-star system than for any known exoplanet within a stellar binary or triple, making HD 131399 dynamically unlike any other known system. The location of HD 131399Ab on a wide orbit in a triple system demonstrates that massive planets may be found on long and possibly unstable orbits in multistar systems. HD 131399Ab is one of the lowest mass (4 ± 1 Jupiter masses) and coldest (850 ± 50 kelvin) exoplanets to have been directly imaged.

  15. THE TRANSIT LIGHT-CURVE PROJECT. XIV. CONFIRMATION OF ANOMALOUS RADII FOR THE EXOPLANETS TrES-4b, HAT-P-3b, AND WASP-12b

    We present transit photometry of three exoplanets, TrES-4b, HAT-P-3b, and WASP-12b, allowing for refined estimates of the systems' parameters. TrES-4b and WASP-12b were confirmed to be 'bloated' planets, with radii of 1.706 ± 0.056RJup and 1.736 ± 0.092RJup, respectively. These planets are too large to be explained with standard models of gas giant planets. In contrast, HAT-P-3b has a radius of 0.827 ± 0.055RJup, smaller than a pure hydrogen-helium planet and indicative of a highly metal-enriched composition. Analyses of the transit timings revealed no significant departures from strict periodicity. For TrES-4, our relatively recent observations allow for improvement in the orbital ephemerides, which is useful for planning future observations.

  16. The Transit Light Curve project. XIV. Confirmation of Anomalous Radii for the Exoplanets TrES-4b, HAT-P-3b, and WASP-12b

    Chan, Tucker; Winn, Joshua N; Holman, Matthew J; Sanchis-Ojeda, Roberto; Esquerdo, Gil; Everett, Mark

    2011-01-01

    We present transit photometry of three exoplanets, TrES-4b, HAT-P-3b, and WASP-12b, allowing for refined estimates of the systems' parameters. TrES-4b and WASP-12b were confirmed to be "bloated" planets, with radii of 1.706 +/- 0.056 R_Jup and 1.736 +/- 0.092 R_Jup, respectively. These planets are too large to be explained with standard models of gas giant planets. In contrast, HAT-P-3b has a radius of 0.827 +/- 0.055 R_Jup, smaller than a pure hydrogen-helium planet and indicative of a highly metal-enriched composition. Analyses of the transit timings revealed no significant departures from strict periodicity. For TrES-4, our relatively recent observations allow for improvement in the orbital ephemerides, which is useful for planning future observations.

  17. Transiting exoplanets from the CoRoT space mission. XXIII. CoRoT-21b: a doomed large Jupiter around a faint subgiant star

    Pätzold, M.; Endl, M.; Csizmadia, Sz.;

    2012-01-01

    -up observations, however, were performed mainly by the 10-m Keck telescope in January 2010. The companion CoRoT-21b is a Jupiter-like planet of 2.26 ± 0.33 Jupiter masses and 1.30 ± 0.14 Jupiter radii in an circular orbit of semi-major axis 0.0417 ± 0.0011 AU and an orbital period of 2.72474 ± 0.00014 days...

  18. The Exoplanet Orbit Database II: Updates to exoplanets.org

    Han, Eunkyu; Wright, Jason T; Feng, Y Katherina; Zhao, Ming; Brown, Jacob I; Hancock, Colin

    2014-01-01

    The Exoplanet Orbit Database (EOD) compiles orbital, transit, host star, and other parameters of robustly detected exoplanets reported in the peer-reviewed literature. The EOD can be navigated through the Exoplanet Data Explorer (EDE) Plotter and Table, available on the World Wide Web at exoplanets.org. The EOD contains data for 1492 confirmed exoplanets as of July 2014. The EOD descends from a table in Butler et al. (2002) and the Catalog of Nearby Exoplanets (Butler et al. 2006), and the first complete documentation for the EOD and the EDE was presented in Wright et al. (2011). In this work, we describe our work since then. We have expanded the scope of the EOD to include secondary eclipse parameters, asymmetric uncertainties, and expanded the EDE to include the sample of over 3000 Kepler Objects of Interest (KOIs), and other real planets without good orbital parameters (such as many of those detected by microlensing and imaging). Users can download the latest version of the entire EOD as a single comma sep...

  19. Notes on exoplanets

    Our knowledge about exoplanets evolves rapidly. Here I give a short overview of some aspects of the exoplanet research and I also introduce shortly the reader to the Hungarian activities in the exoplanet field.

  20. Exoplanet Chemistry

    Lodders, Katharina

    2009-01-01

    The terrestrial and gas-giant planets in our solar system may represent some prototypes for planets around other stars; the exoplanets because most stars have similar overall elemental abundances as our sun. The solar system planets represent at least four chemical planet types, depending on the phases that make them: Terrestrial-like planets made of rock (metal plus silicates), Plutonian planets made of rock and ice, Neptunian giant planets of rocky, icy with low H and He contents, and Jovia...

  1. On the (im)possibility of testing new physics in exoplanets using transit timing variations: deviation from inverse-square law of gravity

    Xie, Yi

    2014-01-01

    Ground-based and space-borne observatories studying exoplanetary transits now and in the future will considerably increase the number of known exoplanets and the precision of the measured times of transit minima. Variations in the transit times can not only be used to infer the presence of additional planets, but might also provide opportunities for testing new physics in the places beyond the Solar system. In this work, we take deviation from the inverse-square law of gravity as an example, focus on the fifth-force-like Yukawa-type correction to the Newtonian gravitational force which parameterizes this deviation, investigate its effects on the secular transit timing variations and analyze their observability in exoplanetary systems. It is found that the most optimistic values of Yukawa-type secular transit timing variations are at the level of $\\sim 0.1$ seconds per year. Those values unfortunately appear only in rarely unique cases and, most importantly, they are still at least two orders of magnitude belo...

  2. Observation of the full 12-hour-long transit of the exoplanet HD80606b. Warm-Spitzer photometry and SOPHIE spectroscopy

    Hebrard, G; Diaz, R F; Boisse, I; Bouchy, F; Etangs, A Lecavelier des; Moutou, C; Ehrenreich, D; Arnold, L; Bonfils, X; Delfosse, X; Desort, M; Eggenberger, A; Forveille, T; Gregorio, J; Lagrange, A -M; Lovis, C; Pepe, F; Perrier, C; Pont, F; Queloz, D; Santerne, A; Santos, N C; Segransan, D; Sing, D K; Udry, S; Vidal-Madjar, A

    2010-01-01

    We present new observations of a transit of the 111-day-period exoplanet HD80606b. Using the Spitzer Space Telescope and its IRAC camera on the post-cryogenic mission, we performed a 19-hour-long photometric observation of HD80606 that covers the full transit of 13-14 January 2010. We complement this photometric data by new spectroscopic observations that we simultaneously performed with SOPHIE at Haute-Provence Observatory. This provides radial velocity measurements of the first half of the transit that was previously uncovered with spectroscopy. This new data set allows the parameters of this singular planetary system to be significantly refined. We obtained a planet-to-star radius ratio R_p/R_* = 0.1001 +/- 0.0006 that is slightly lower than the one measured from previous ground observations. We detected a feature in the Spitzer light curve that could be due to a stellar spot. We also found a transit timing about 20 minutes earlier than the ephemeris prediction; this could be caused by actual TTVs due to a...

  3. A Cloudiness Index for Transiting Exoplanets Based on the Sodium and Potassium Lines: Tentative Evidence for Hotter Atmospheres Being Less Cloudy at Visible Wavelengths

    Heng, Kevin

    2016-01-01

    We present a dimensionless index that quantifies the degree of cloudiness of the atmosphere of a transiting exoplanet. Our cloudiness index is based on measuring the transit radii associated with the line center and wing of the sodium or potassium line. In deriving this index, we revisited the algebraic formulae for inferring the isothermal pressure scale height from transit measurements. We demonstrate that the formulae of Lecavelier et al. and Benneke & Seager are identical: the former is inferring the temperature while assuming a value for the mean molecular mass and the latter is inferring the mean molecular mass while assuming a value for the temperature. More importantly, these formulae cannot be used to distinguish between cloudy and cloudfree atmospheres. We derive values of our cloudiness index for a small sample of 7 hot Saturns/Jupiters taken from Sing et al. We show that WASP-17b, WASP-31b and HAT-P-1b are nearly cloudfree at visible wavelengths. We find the tentative trend that more irradiate...

  4. WASP-South transiting exoplanets: WASP-130b, WASP-131b, WASP-132b, WASP-139b, WASP-140b, WASP-141b & WASP-142b

    Hellier, Coel; Cameron, A Collier; Delrez, L; Gillon, M; Jehin, E; Lendl, M; Maxted, P F L; Neveu-VanMalle, M; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smalley, B; Southworth, J; Triaud, A H M J; Udry, S; Wagg, T; West, R G

    2016-01-01

    We describe seven new exoplanets transiting stars of V = 10.1 to 12.4. WASP-130b is a "warm Jupiter" having an orbital period of 11.6 d, the longest yet found by WASP. It transits a V = 11.1, G6 star with [Fe/H] = +0.26. Warm Jupiters tend to have smaller radii than hot Jupiters, and WASP-130b is in line with this trend (1.23 Mjup; 0.89 Rjup). WASP-131b is a bloated Saturn-mass planet (0.27 Mjup; 1.22 Rjup). Its large scale height coupled with the V = 10.1 brightness of its host star make the planet a good target for atmospheric characterisation. WASP-132b is among the least irradiated and coolest of WASP planets, being in a 7.1-d orbit around a K4 star. It has a low mass and a modest radius (0.41 Mjup; 0.87 Rjup). The V = 12.4, [Fe/H] = +0.22 star shows a possible rotational modulation at 33 d. WASP-139b is the lowest-mass planet yet found by WASP, at 0.12 Mjup and 0.80 Rjup. It is a "super-Neptune" akin to HATS-7b and HATS-8b. It orbits a V = 12.4, [Fe/H] = +0.20, K0 star. The star appears to be anomalously...

  5. What asteroseismology can do for exoplanets

    Van Eylen Vincent

    2015-01-01

    Full Text Available We describe three useful applications of asteroseismology in the context of exoplanet science: (1 the detailed characterisation of exoplanet host stars; (2 the measurement of stellar inclinations; and (3 the determination of orbital eccentricity from transit duration making use of asteroseismic stellar densities. We do so using the example system Kepler-410 [1]. This is one of the brightest (V = 9.4 Kepler exoplanet host stars, containing a small (2.8 R⊕ transiting planet in a long orbit (17.8 days, and one or more additional non-transiting planets as indicated by transit timing variations. The validation of Kepler-410 (KOI-42 was complicated due to the presence of a companion star, and the planetary nature of the system was confirmed after analyzing a Spitzer transit observation as well as ground-based follow-up observations.

  6. Analysis of Exoplanet Light Curves

    Erdem, A.; Budding, E.; Rhodes, M. D.; Püsküllü, Ç.; Soydugan, F.; Soydugan, E.; Tüysüz, M.; Demircan, O.

    2015-07-01

    We have applied the close binary system analysis package WINFITTER to a variety of exoplanet transiting light curves taken both from the NASA Exoplanet Archive and our own ground-based observations. WINFitter has parameter options for a realistic physical model, including gravity brightening and structural parameters derived from Kopal's applications of the relevant Radau equation, and it includes appropriate tests for determinacy and adequacy of its best fitting parameter sets. We discuss a number of issues related to empirical checking of models for stellar limb darkening, surface maculation, Doppler beaming, microvariability, and transit time variation (TTV) effects. The Radau coefficients used in the light curve modeling, in principle, allow structural models of the component stars to be tested.

  7. A transit timing analysis of nine RISE light curves of the exoplanet system TrES-3

    Gibson, N P; Skillen, I; Simpson, E K; Barros, S; Joshi, Y C; Todd, I; Benn, C; Christian, D; Hrudková, M; Keenan, F P; Steele, I A

    2009-01-01

    We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte-Carlo analysis was used to determine the planet-star radius ratio and inclination of the system, which were found to be Rp/Rstar=0.1664^{+0.0011}_{-0.0018} and i = 81.73^{+0.13}_{-0.04} respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving chi^2 = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a con...

  8. Evolution of Exoplanets and their Parent Stars

    Guillot, Tristan; Morel, Pierre; Havel, Mathieu; Parmentier, Vivien

    2014-01-01

    Studying exoplanets with their parent stars is crucial to understand their population, formation and history. We review some of the key questions regarding their evolution with particular emphasis on giant gaseous exoplanets orbiting close to solar-type stars. For masses above that of Saturn, transiting exoplanets have large radii indicative of the presence of a massive hydrogen-helium envelope. Theoretical models show that this envelope progressively cools and contracts with a rate of energy loss inversely proportional to the planetary age. The combined measurement of planetary mass, radius and a constraint on the (stellar) age enables a global determination of the amount of heavy elements present in the planet interior. The comparison with stellar metallicity shows a correlation between the two, indicating that accretion played a crucial role in the formation of planets. The dynamical evolution of exoplanets also depends on the properties of the central star. We show that the lack of massive giant planets a...

  9. The APACHE survey hardware and software design: Tools for an automatic search of small-size transiting exoplanets

    Christille, Jean-Marc; Bernagozzi, A.; Bertolini, E.; Calcidese, P.; Carbognani, A.; Cenadelli, D.; Damasso, M.; Giacobbe, P.; Lanteri, L.; Lattanzi, M. G.; Sozzetti, A.; Smart, R.

    2013-04-01

    Small-size ground-based telescopes can effectively be used to look for transiting rocky planets around nearby low-mass M stars using the photometric transit method, as recently demonstrated for example by the MEarth project. Since 2008 at the Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA), we have been preparing for the long-term photometric survey APACHE, aimed at finding transiting small-size planets around thousands of nearby early and mid-M dwarfs. APACHE (A PAthway toward the Characterization of Habitable Earths) is designed to use an array of five dedicated and identical 40-cm Ritchey-Chretien telescopes and its observations started at the beginning of summer 2012. The main characteristics of the survey final set up and the preliminary results from the first weeks of observations will be discussed.

  10. The APACHE survey hardware and software design: Tools for an automatic search of small-size transiting exoplanets

    Lattanzi M.G.

    2013-04-01

    Full Text Available Small-size ground-based telescopes can effectively be used to look for transiting rocky planets around nearby low-mass M stars using the photometric transit method, as recently demonstrated for example by the MEarth project. Since 2008 at the Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA, we have been preparing for the long-term photometric survey APACHE, aimed at finding transiting small-size planets around thousands of nearby early and mid-M dwarfs. APACHE (A PAthway toward the Characterization of Habitable Earths is designed to use an array of five dedicated and identical 40-cm Ritchey-Chretien telescopes and its observations started at the beginning of summer 2012. The main characteristics of the survey final set up and the preliminary results from the first weeks of observations will be discussed.

  11. Observations of Exoplanet Atmospheres

    Crossfield, Ian J. M.

    2015-10-01

    Detailed characterization of an extrasolar planet's atmosphere provides the best hope for distinguishing the makeup of its outer layers, and the only hope for understanding the interplay between initial composition, chemistry, dynamics and circulation, and disequilibrium processes. In recent years, some areas have seen rapid progress, while developments in others have come more slowly and/or have been hotly contested. This article gives an observer's perspective on the current understanding of extrasolar planet atmospheres prior to the considerable advances expected from the next generation of observing facilities. Atmospheric processes of both transiting and directly imaged planets are discussed, including molecular and atomic abundances, cloud properties, thermal structure, and planetary energy budgets. In the future we can expect a continuing and accelerating stream of new discoveries, which will fuel the ongoing exoplanet revolution for many years to come.

  12. Observations of Exoplanet Atmospheres

    Crossfield, Ian J M

    2015-01-01

    Detailed characterization of an extrasolar planet's atmosphere provides the best hope for distinguishing the makeup of its outer layers, and the only hope for understanding the interplay between initial composition, chemistry, dynamics & circulation, and disequilibrium processes. In recent years, some areas have seen rapid progress while developments in others have come more slowly and/or have been hotly contested. This article gives an observer's perspective on the current understanding of extrasolar planet atmospheres prior to the considerable advances expected from the next generation of observing facilities. Atmospheric processes of both transiting and directly-imaged planets are discussed, including molecular and atomic abundances, cloud properties, thermal structure, and planetary energy budgets. In the future we can expect a continuing and accelerating stream of new discoveries, which will fuel the ongoing exoplanet revolution for many years to come.

  13. Transiting exoplanets from the CoRoT space mission XIV. CoRoT-11b: a transiting massive "hot-Jupiter" in a prograde orbit around a rapidly rotating F-type star

    Gandolfi, D; Alonso, R; Deleuil, M; Guenther, E W; Fridlund, M; Endl, M; Eigmüller, P; Csizmadia, Sz; Havel, M; Aigrain, S; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Bordé, P; Bouchy, F; Bruntt, H; Cabrera, J; Carpano, S; Carone, L; Cochran, W D; Deeg, H J; Dvorak, R; Eislöffel, J; Erikson, A; Ferraz-Mello, S; Gazzano, J -C; Gibson, N P; Gillon, M; Gondoin, P; Guillot, T; Hartmann, M; Hatzes, A; Jorda, L; Kabath, P; Léger, A; Llebaria, A; Lammer, H; MacQueen, P J; Mayor, M; Mazeh, T; Moutou, C; Ollivier, M; Pätzold, M; Pepe, F; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Schneider, J; Stecklum, B; Tingley, B; Udry, S; Wuchterl, G; 10.1051/0004-6361/201015132

    2010-01-01

    The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V=12.9 mag F6 dwarf star (M*=1.27 +/- 0.05 Msun, R*=1.37 +/- 0.03 Rsun, Teff=6440 +/- 120 K), with an orbital period of P=2.994329 +/- 0.000011 days and semi-major axis a=0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (vsini=40+/-5 km/s) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of mp=2.33+/-0.34 Mjup and radius rp=1.43+/-0.03 Rjup, the resulting mean density of CoRoT-11b (rho=0.99+/-0.15 g/cm^3) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.

  14. Transit spectrophotometry of the exoplanet HD189733b. II. New Spitzer observations at 3.6 microns

    Desert, J -M; Vidal-Madjar, A; Hebrard, G; Ehrenreich, D; Etangs, A Lecavelier des; Parmentier, V; Ferlet, R; Henry, G W

    2010-01-01

    We present a new primary transit observation of the hot-jupiter HD189733b, obtained at 3.6 microns with the Infrared Array Camera (IRAC) onboard the Spitzer Space Telescope. Previous measurements at 3.6 microns suffered from strong systematics and conclusions could hardly be obtained with confidence on the water detection by comparison of the 3.6 and 5.8 microns observations. We use a high S/N Spitzer photometric transit light curve to improve the precision of the near infrared radius of the planet at 3.6 microns. The observation has been performed using high-cadence time series integrated in the subarray mode. We are able to derive accurate system parameters, including planet-to-star radius ratio, impact parameter, scale of the system, and central time of the transit from the fits of the transit light curve. We compare the results with transmission spectroscopic models and with results from previous observations at the same wavelength. We obtained the following system parameters: R_p/R_\\star=0.15566+0.00011-...

  15. Transiting Exoplanet Survey Satellite (TESS) Community Observer Program including the Science Enhancement Option Box (SEO Box) - 12 TB On-board Flash Memory for Serendipitous Science

    Schingler, Robert; Villasenor, J. N.; Ricker, G. R.; Latham, D. W.; Vanderspek, R. K.; Ennico, K. A.; Lewis, B. S.; Bakos, G.; Brown, T. M.; Burgasser, A. J.; Charbonneau, D.; Clampin, M.; Deming, L. D.; Doty, J. P.; Dunham, E. W.; Elliot, J. L.; Holman, M. J.; Ida, S.; Jenkins, J. M.; Jernigan, J. G.; Kawai, N.; Laughlin, G. P.; Lissauer, J. J.; Martel, F.; Sasselov, D. D.; Seager, S.; Torres, G.; Udry, S.; Winn, J. N.; Worden, S. P.

    2010-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will perform an all-sky survey in a low-inclination, low-Earth orbit. TESS's 144 GB of raw data collected each orbit will be stacked, cleaned, cut, compressed and downloaded. The Community Observer Program is a Science Enhancement Option (SEO) that takes advantage of the low-radiation environment, technology advances in flash memory, and the vast amount of astronomical data collected by TESS. The Community Observer Program requires the addition of a 12 TB "SEO Box” inside the TESS Bus. The hardware can be built using low-cost Commercial Off-The-Shelf (COTS) components and fits within TESS's margins while accommodating GSFC gold rules. The SEO Box collects and stores a duplicate of the TESS camera data at a "raw” stage ( 4.3 GB/orbit, after stacking and cleaning) and makes them available for on-board processing. The sheer amount of onboard storage provided by the SEO Box allows the stacking and storing of several months of data, allowing the investigator to probe deeper in time prior to a given event. Additionally, with computation power and data in standard formats, investigators can utilize data-mining techniques to investigate serendipitous phenomenon, including pulsating stars, eclipsing binaries, supernovae or other transient phenomena. The Community Observer Program enables ad-hoc teams of citizen scientists to propose, test, refine and rank algorithms for on-board analysis to support serendipitous science. Combining "best practices” of online collaboration, with careful moderation and community management, enables this `crowd sourced’ participatory exploration with a minimal risk and impact on the core TESS Team. This system provides a powerful and independent tool opening a wide range of opportunity for science enhancement and secondary science. Support for this work has been provided by NASA, the Kavli Foundation, Google, and the Smithsonian Institution.

  16. The GTC exoplanet transit spectroscopy survey. IV. Confirmation of the flat transmission spectrum of HAT-P-32b

    Nortmann, L; Murgas, F; Dreizler, S; Iro, N; Cabrera-Lavers, A

    2016-01-01

    We observed the hot Jupiter HAT-P-32b (also known as HAT-P-32Ab) to determine its optical transmission spectrum by measuring the wavelength-dependent planet-to-star radius ratios in the region between 518 - 918 nm. We used the OSIRIS instrument at the GTC in long slit spectroscopy mode, placing HAT-P-32 and a reference star in the same slit and obtaining a time series of spectra covering two transit events. Using the best quality data set, we were able to yield 20 narrow-band transit light curves, with each passband spanning a 20 nm wide interval. After removal of all systematic noise signals and light curve modeling the uncertainties for the resulting radius ratios lie between 337 and 972 ppm. The radius ratios show little variation with wavelength suggesting a high altitude cloud layer masking any atmospheric features. Alternatively, a strong depletion in alkali metals or a much smaller than expected planetary atmospheric scale height could be responsible for the lack of atmospheric features. Our result of ...

  17. GTC OSIRIS transiting exoplanet atmospheric survey: detection of potassium in HAT-P-1b from narrowband spectrophotometry

    Wilson, P A; Nikolov, N; Etangs, A Lecavelier des; Pont, F; Fortney, J J; Ballester, G E; López-Morales, M; Désert, J -M; Vidal-Madjar, A

    2015-01-01

    We present the detection of potassium in the atmosphere of HAT-P-1b using optical transit narrowband photometry. The results are obtained using the 10.4 m Gran Telescopio Canarias (GTC) together with the OSIRIS instrument in tunable filter imaging mode. We observed four transits, two at continuum wavelengths outside the potassium feature, at 6792 {\\AA} and 8844 {\\AA}, and two probing the potassium feature in the line wing at 7582.0 {\\AA} and the line core at 7664.9 {\\AA} using a 12 {\\AA} filter width (R~650). The planet-to-star radius ratios in the continuum are found to be $R_{\\rm{pl}}/R_{\\star}$ = 0.1176 $\\pm$ 0.0013 at 6792 {\\AA} and $R_{\\rm{pl}}/R_{\\star}$ = 0.1168 $\\pm$ 0.0022 at 8844 {\\AA}, significantly lower than the two observations in the potassium line: $R_{\\rm{pl}}/R_{\\star}$ = 0.1248 $\\pm$ 0.0014 in the line wing at 7582.0 {\\AA} and $R_{\\rm{pl}}/R_{\\star}$ = 0.1268 $\\pm$ 0.0012 in the line core at 7664.9 {\\AA}. With a weighted mean of the observations outside the potassium feature $R_{\\rm{pl}}/R_...

  18. Kepler-447b: a hot-Jupiter with an extremely grazing transit

    Lillo-Box, J; Santos, N C; Mancini, L; Figueira, P; Ciceri, S; Henning, Th

    2015-01-01

    We present the radial velocity confirmation of the extrasolar planet Kepler-447b, initially detected as a candidate by the Kepler mission. In this work, we analyze its transit signal and the radial velocity data obtained with the Calar Alto Fiber-fed Echelle spectrograph (CAFE). By simultaneously modeling both datasets, we obtain the orbital and physical properties of the system. According to our results, Kepler-447b is a Jupiter-mass planet ($M_p=1.37^{+0.48}_{-0.46} M_{\\rm Jup}$), with an estimated radius of $R_p=1.65^{+0.59}_{-0.56} R_{\\rm Jup}$ (uncertainties provided in this work are $3\\sigma$ unless specified). This translates into a sub-Jupiter density. The planet revolves every $\\sim7.8$ days around a G8V star with detected activity in the Kepler light curve. Kepler-447b transits its host with a large impact parameter ($b=1.076^{+0.112}_{-0.086}$), being one of the few planetary grazing transits confirmed so far and the first in the Kepler large crop of exoplanets. We estimate that only around 20% of ...

  19. Exoplanets versus brown dwarfs: the CoRoT view and the future

    Schneider, Jean

    2016-01-01

    CoRoT has detected by transit several tens of objects whose radii run from 1.67 Earth radius. Their mass run from less than 5.7 Earth mass (CoRoT-24 b, Alonso et al. 2014) to 63 Jupiter mass (CoRoT-15 b, Bouchy et al. 2011). One could be tempted to think that more massive the object is, the larger it is in size and that there is some limit in mass and/or radius beyond which objects are not planets but very low mass stars below the 80 Jupiter mass limit to trigger nuclear fusion (namely "brown dwarfs" ). CoRoT findings contribute to the planet versus brown dwarf debate since there is no clear mass-radius relation.

  20. DIRECT IMAGING OF A COLD JOVIAN EXOPLANET IN ORBIT AROUND THE SUN-LIKE STAR GJ 504

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct-imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160+350-60 Myr, GJ 504b has an estimated mass of 4+4.5-1.0 Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of ∼30 AU predicted for the core accretion mechanism. GJ 504b is also significantly cooler (510+30-20 K) and has a bluer color (J – H = –0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets as well as their atmospheric properties

  1. Transiting exoplanets from the CoRoT space mission: XXIV. CoRoT-24: A transiting multi-planet system

    Alonso, R; Endl, M; Almenara, J M; Guenther, E W; Deleuil, M; Hatzes, A; Aigrain, S; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Bordé, P; Bouchy, F; Cavarroc, C; Cabrera, J; Carpano, S; Csizmadia, Sz; Cochran, W D; Deeg, H J; Díaz, R F; Dvorak, R; Erikson, A; Ferraz-Mello, S; Fridlund, M; Fruth, T; Gandolfi, D; Gillon, M; Grziwa, S; Guillot, T; Hébrard, G; Jorda, L; Léger, A; Lammer, H; Lovis, C; MacQueen, P J; Mazeh, T; Ofir, A; Ollivier, M; Pasternacki, T; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Santerne, A; Schneider, J; Santos, M Tadeu dos; Tingley, B; Titz-Weider, R; Weingrill, J; Wuchterl, G

    2014-01-01

    We present the discovery of a candidate multiply-transiting system, the first one found in the CoRoT mission. Two transit-like features with periods of 5.11 and 11.76d are detected in the CoRoT light curve, around a main sequence K1V star of r=15.1. If the features are due to transiting planets around the same star, these would correspond to objects of 3.7$\\pm$0.4 and 5.0$\\pm$0.5 R_earth respectively. Several radial velocities serve to provide an upper limit of 5.7 M_earth for the 5.11~d signal, and to tentatively measure a mass of 28$^{+11}_{-11}$ M_earth for the object transiting with a 11.76~d period. These measurements imply low density objects, with a significant gaseous envelope. The detailed analysis of the photometric and spectroscopic data serve to estimate the probability that the observations are caused by transiting Neptune-sized planets as $>$26$\\times$ higher than a blend scenario involving only one transiting planet, and $>$900$\\times$ higher than a scenario involving two blends and no planets....

  2. Astrometric exoplanet detection with Gaia

    Perryman, Michael; Hartman, Joel; Bakos, Gáspár Á. [Department of Astrophysical Sciences, Peyton Hall, Princeton, NJ 08544 (United States); Lindegren, Lennart [Lund Observatory, Lund, Box 43, SE-22100 Sweden (Sweden)

    2014-12-10

    We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sample of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the signal-to-noise ratio of the astrometric signature per field crossing, easily reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (±6000) high-mass (∼1-15M {sub J}) long-period planets should be discovered out to distances of ∼500 pc for the nominal 5 yr mission (including at least 1000-1500 around M dwarfs out to 100 pc), rising to some 70,000 (±20, 000) for a 10 yr mission. We indicate some of the expected features of this exoplanet population, amongst them ∼25-50 intermediate-period (P ∼ 2-3 yr) transiting systems.

  3. Astrometric exoplanet detection with Gaia

    We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sample of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the signal-to-noise ratio of the astrometric signature per field crossing, easily reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (±6000) high-mass (∼1-15M J) long-period planets should be discovered out to distances of ∼500 pc for the nominal 5 yr mission (including at least 1000-1500 around M dwarfs out to 100 pc), rising to some 70,000 (±20, 000) for a 10 yr mission. We indicate some of the expected features of this exoplanet population, amongst them ∼25-50 intermediate-period (P ∼ 2-3 yr) transiting systems.

  4. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys, I: Methodology

    Clanton, Christian

    2014-01-01

    Motivated by the order-of-magnitude difference in the frequency of giant planets orbiting M dwarfs inferred by microlensing and radial velocity (RV) surveys, we present a method for comparing the statistical constraints on exoplanet demographics inferred from these methods. We first derive the mapping from the observable parameters of a microlensing-detected planet to those of an analogous planet orbiting an RV-monitored star. Using this mapping, we predict the distribution of RV observables for the planet population inferred from microlensing surveys, taking care to adopt reasonable priors for, and properly marginalize over, the unknown physical parameters of microlensing-detected systems. Finally, we use simple estimates of the detection limits for a fiducial RV survey to predict the number and properties of analogs of the microlensing planet population such an RV survey should detect. We find that RV and microlensing surveys have some overlap, specifically for super-Jupiter mass planets ($m_p \\gtrsim 1~M_{...

  5. First Temperate Exoplanet Sized Up

    2010-03-01

    Combining observations from the CoRoT satellite and the ESO HARPS instrument, astronomers have discovered the first "normal" exoplanet that can be studied in great detail. Designated Corot-9b, the planet regularly passes in front of a star similar to the Sun located 1500 light-years away from Earth towards the constellation of Serpens (the Snake). "This is a normal, temperate exoplanet just like dozens we already know, but this is the first whose properties we can study in depth," says Claire Moutou, who is part of the international team of 60 astronomers that made the discovery. "It is bound to become a Rosetta stone in exoplanet research." "Corot-9b is the first exoplanet that really does resemble planets in our solar system," adds lead author Hans Deeg. "It has the size of Jupiter and an orbit similar to that of Mercury." "Like our own giant planets, Jupiter and Saturn, the planet is mostly made of hydrogen and helium," says team member Tristan Guillot, "and it may contain up to 20 Earth masses of other elements, including water and rock at high temperatures and pressures." Corot-9b passes in front of its host star every 95 days, as seen from Earth [1]. This "transit" lasts for about 8 hours, and provides astronomers with much additional information on the planet. This is fortunate as the gas giant shares many features with the majority of exoplanets discovered so far [2]. "Our analysis has provided more information on Corot-9b than for other exoplanets of the same type," says co-author Didier Queloz. "It may open up a new field of research to understand the atmospheres of moderate- and low-temperature planets, and in particular a completely new window in our understanding of low-temperature chemistry." More than 400 exoplanets have been discovered so far, 70 of them through the transit method. Corot-9b is special in that its distance from its host star is about ten times larger than that of any planet previously discovered by this method. And unlike all such

  6. Infrared spectroscopy of exoplanets: observational constraints.

    Encrenaz, Thérèse

    2014-04-28

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations. PMID:24664918

  7. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504

    Kuzuhara, M; Kudo, T; Janson, M; Kandori, R; Brandt, T D; Thalmann, C; Spiegel, D; Biller, B; Carson, J; Hori, Y; Suzuki, R; Burrows, A; Henning, T; Turner, E L; McElwain, M W; Moro-Martin, A; Suenaga, T; Takahashi, Y H; Kwon, J; Lucas, P; Abe, L; Brandner, W; Egner, S; Feldt, M; Fujiwara, H; Goto, M; Grady, C A; Guyon, O; Hashimoto, J; Hayano, Y; Hayashi, M; Hayashi, S S; Hodapp, K W; Ishii, M; Iye, M; Knapp, G R; Matsuo, T; Mayama, S; Miyama, S; Morino, J -I; Nishikawa, J; Nishimura, T; Kotani, T; Kusakabe, N; Pyo, T -S; Serabyn, E; Suto, H; Takami, M; Takato, N; Terada, H; Tomono, D; Watanabe, M; Wisniewski, J P; Yamada, T; Takami, H; Usuda, T

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160 [+350, -60] Myr, GJ 504 b has an estimated mass of 4 [+4.5, -1.0] Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary ...

  8. Exoplanet Caught on the Move

    2010-06-01

    observations, taken during autumn 2009, revealed the object on the other side of the disc after a period of hiding either behind or in front of the star (in which case it is hidden in the glare of the star). This confirmed that the source indeed was an exoplanet and that it was orbiting its host star. It also provided insights into the size of its orbit around the star. Images are available for approximately ten exoplanets, and the planet around Beta Pictoris (designated "Beta Pictoris b") has the smallest orbit known so far. It is located at a distance between 8 and 15 times the Earth-Sun separation - or 8-15 Astronomical Units - which is about the distance of Saturn from the Sun. "The short period of the planet will allow us to record the full orbit within maybe 15-20 years, and further studies of Beta Pictoris b will provide invaluable insights into the physics and chemistry of a young giant planet's atmosphere," says student researcher Mickael Bonnefoy. The planet has a mass of about nine Jupiter masses and the right mass and location to explain the observed warp in the inner parts of the disc. This discovery therefore bears some similarity to the prediction of the existence of Neptune by astronomers Adams and Le Verrier in the 19th century, based on observations of the orbit of Uranus. "Together with the planets found around the young, massive stars Fomalhaut and HR8799, the existence of Beta Pictoris b suggests that super-Jupiters could be frequent byproducts of planet formation around more massive stars," explains Gael Chauvin, a member of the team. Such planets disturb the discs around their stars, creating structures that should be readily observable with the Atacama Large Millimeter/submillimeter Array (ALMA), the revolutionary telescope being built by ESO together with international partners. A few other planetary candidates have been imaged, but they are all located further from their host star than Beta Pictoris b. If located in the Solar System, they all would

  9. THESIS: the terrestrial habitable-zone exoplanet spectroscopy infrared spacecraft

    Swain, Mark R.; Vasisht, Gautam; Henning, Thomas; Tinetti, Giovanna; Beaulieu, Jean-Phillippe

    2010-07-01

    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a medium/Probe class exoplanet mission. Building on the recent Spitzer successes in exoplanet characterization, THESIS would extend these types of measurements to super-Earth-like planets. A strength of the THESIS concept is simplicity, low technical risk, and modest cost. The mission concept has the potential to dramatically advance our understanding of conditions on extrasolar worlds and could serve as a stepping stone to more ambitious future missions. We envision this mission as a joint US-European effort with science objectives that resonate with both the traditional astronomy and planetary science communities.

  10. Fundamental Parameters of Exoplanets and Their Host Stars

    Coughlin, Jeffrey L

    2013-01-01

    For much of human history we have wondered how our solar system formed, and whether there are any other planets like ours around other stars. Only in the last 20 years have we had direct evidence for the existence of exoplanets, with the number of known exoplanets dramatically increasing in recent years, especially with the success of the Kepler mission. Observations of these systems are becoming increasingly more precise and numerous, thus allowing for detailed studies of their masses, radii, densities, temperatures, and atmospheric compositions. However, one cannot accurately study exoplanets without examining their host stars in equal detail, and understanding what assumptions must be made to calculate planetary parameters from the directly derived observational parameters. In this thesis, I present observations and models of the primary transits and secondary eclipses of transiting exoplanets from both the ground and Kepler in order to better study their physical characteristics and search for additional ...

  11. Thesis: A Combined-light Mission For Exoplanet Molecular Spectroscopy

    Deroo, Pieter; Swain, M. R.; Tinetti, G.; Griffith, C.; Vasisht, G.; Deming, D.; Henning, T.; Beaulieu, J.

    2010-01-01

    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a MIDEX/Discovery class exoplanet mission. Building on the recent Spitzer and Hubble successes in exoplanet characterization and molecular spectroscopy, THESIS would extend these types of measurements to a large population of planets including non-transiting planets and super-Earths. The ability to acquire high-stability, spectroscopic data from the near-visible to the mid-infrared is a unique aspect of THESIS. A strength of the THESIS concept is simplicity low technical risk, and modest cost. By enabling molecular spectroscopy of exoplanet atmospheres, THESIS mission has the potential to dramatically advance our understanding of conditions on extrasolar worlds while serving as a stepping stone to more ambitious future missions.

  12. Warm Spitzer Photometry of the Transiting Exoplanets CoRoT-1 and CoRoT-2 at Secondary Eclipse

    Deming, Drake; Agol, Eric; Desert, Jean-Michel; Burrows, Adam; Fortney, Jonathan J; Charbonneau, David; Cowan, Nicolas B; Laughlin, Gregory; Langton, Jonathan; Showman, Adam P; Lewis, Nikole K

    2010-01-01

    We measure secondary eclipses of the hot giant exoplanets CoRoT-1 at 3.6 and 4.5 microns, and CoRoT-2 at 3.6 microns, both using Warm Spitzer. We find that the Warm Spitzer mission is working very well for exoplanet science. For consistency of our analysis we also re-analyze archival cryogenic Spitzer data for secondary eclipses of CoRoT-2 at 4.5 and 8 microns. We compare the total data for both planets, including optical eclipse measurements by the CoRoT mission, and ground-based eclipse measurements at 2 microns, to existing models. Both planets exhibit stronger eclipses at 4.5 than at 3.6 microns, which is often indicative of an atmospheric temperature inversion. The spectrum of CoRoT-1 is best reproduced by a 2460K blackbody, due either to a high altitude layer that strongly absorbs stellar irradiance, or an isothermal region in the planetary atmosphere. The spectrum of CoRoT-2 is unusual because the 8 micron contrast is anomalously low. Non-inverted atmospheres could potentially produce the CoRoT-2 spect...

  13. Enabling Participation In Exoplanet Science

    Taylor, Stuart F.

    2015-08-01

    Determining the distribution of exoplanets has required the contributions of a community of astronomers, who all require the support of colleagues to finish their projects in a manner to enable them to enter new collaborations to continue to contribute to understanding exoplanet science.The contributions of each member of the astronomy community are to be encouraged and must never be intentionally obstructed.We present a member’s long pursuit to be a contributing part of the exoplanet community through doing transit photometry as a means of commissioning the telescopes for a new observatory, followed by pursuit of interpreting the distributions in exoplanet parameter data.We present how the photometry projects have been presented as successful by the others who have claimed to have completed them, but how by requiring its employees to present results while omitting one member has been obstructive against members working together and has prevented the results from being published in what can genuinely be called a peer-reviewed fashion.We present how by tolerating one group to obstruct one member from finishing participation and then falsely denying credit is counterproductive to doing science.We show how expecting one member to attempt to go around an ostracizing group by starting something different is destructive to the entire profession. We repeat previously published appeals to help ostracized members to “go around the observatory” by calling for discussion on how the community must act to reverse cases of shunning, bullying, and other abuses. Without better recourse and support from the community, actions that do not meet standard good collegial behavior end up forcing good members from the community. The most important actions are to enable an ostracized member to have recourse to participating in group papers by either working through other authors or through the journal. All journals and authors must expect that no co-author is keeping out a major

  14. Atmospheric Circulation of Exoplanets

    Showman, Adam P; Menou, Kristen

    2009-01-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric d...

  15. Transiting exoplanets from the CoRoT space mission. XVII. The hot Jupiter CoRoT-17b: a very old planet

    Csizmadia, Szilard; Moutou, C; Deleuil, M.; Cabrera, J.; Fridlund, M.; Gandolfi, D.; Aigrain, S; Alonso, R.; Almenara, J. -M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.

    2011-01-01

    We report on the discovery of a hot Jupiter-type exoplanet, CoRoT-17b, detected by the CoRoT satellite. It has a mass of 2.43 ± 0.30 M[SUB]Jup[/SUB] and a radius of 1.02 ± 0.07 R[SUB]Jup[/SUB], while its mean density is 2.82 ± 0.38 g/cm[SUP]3[/SUP]. CoRoT-17b is in a circular orbit with a period of 3.7681 ± 0.0003 days. The host star is an old (10.7 ± 1.0 Gyr) main-sequence star, which makes it an intriguing object for planetary evolution studies. The planet's internal composition is not well...

  16. Spectroscopy of Exoplanet Atmospheres with the FINESSE Explorer

    Deroo, Pieter; Swain, Mark R.; Green, Robert O.

    2012-01-01

    FINESSE (Fast INfrared Exoplanet Spectroscopic Survey Explorer) will provide uniquely detailed information on the growing number of newly discovered planets by characterizing their atmospheric composition and temperature structure. This NASA Explorer mission, selected for a competitive Phase A study, is unique in its breath and scope thanks to broad instantaneous spectroscopy from the optical to the mid-IR (0.7 - 5 micron), with a survey of exoplanets measured in a consistent, uniform way. For 200 transiting exoplanets ranging from Terrestrial to Jovians, FINESSE will measure the chemical composition and temperature structure of their atmospheres and trace changes over time with exoplanet longitude. The mission will do so by measuring the spectroscopic time series for a primary and secondary eclipse over the exoplanet orbital phase curve. With spectrophotometric precision being a key enabling aspect for combined light exoplanet characterization, FINESSE is designed to produce spectrophotometric precision of better than 100 parts-per-million per spectral channel without the need for decorrelation. The exceptional stability of FINESSE will even allow the mission to characterize non-transiting planets, potentially as part of FINESSE's Participating Scientist Program. In this paper, we discuss the flow down from the target availability to observations and scheduling to the analysis and calibration of the data and how it enables FINESSE to be the mission that will truly expand the new field of comparative exoplanetology.

  17. The Optical Design of CHARIS: An Exoplanet IFS for the Subaru Telescope

    Peters-Limbach, Mary Anne; Kasdin, N Jeremy; Driscoll, Dave; Galvin, Michael; Foster, Allen; Carr, Michael A; LeClerc, Dave; Fagan, Rad; McElwain, Michael W; Knapp, Gillian; Brandt, Timothy; Janson, Markus; Guyon, Olivier; Jovanovic, Nemanja; Martinache, Frantz; Hayashi, Masahiko; Takato, Naruhisa

    2013-01-01

    High-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the optical design for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 138x138 spatial elements over a 2.07 arcsec x 2.07 arcsec field of view (FOV). CHARIS will operate in the near infrared (lambda = 1.15 - 2.5 microns) and will feature two spectral resolution modes of R = 18 (low-res mode) and R = 73 (high-res mode). Taking advantage of the Subaru telescope adaptive optics systems and coronagraphs (AO188 and SCExAO), CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS will undergo CDR in October 2013 and is projected to have first light by the end of 2015. We report here on the current optical design of CHARIS and its unique innovations.

  18. Benchmarking the power of amateur observatories for TTV exoplanets detection

    Baluev, Roman V.; Sokov, Evgenii N.; Shaidulin, Vakhit Sh.; Sokova, Iraida A.; Jones, Hugh R. A.; Tuomi, Mikko; Anglada-Escudé, Guillem; Benni, Paul; Colazo, Carlos A.; Schneiter, Matias E.; D'Angelo, Carolina S. Villarreal; Burdanov, Artem Yu.; Fernández-Lajús, Eduardo; BAŞTÜRK, Özgür; Hentunen, Veli-Pekka

    2015-01-01

    We perform an analysis of ~80000 photometric measurements for the following 10 stars hosting transiting planets: WASP-2, -4, -5, -52, Kelt-1, CoRoT-2, XO-2, TrES-1, HD 189733, GJ 436. Our analysis includes mainly transit lightcurves from the Exoplanet Transit Database, public photometry from the literature, and some proprietary photometry privately supplied by other authors. Half of these lightcurves were obtained by amateurs. From this photometry we derive 306 transit timing measurements, as...

  19. DIRECT IMAGING OF A COLD JOVIAN EXOPLANET IN ORBIT AROUND THE SUN-LIKE STAR GJ 504

    Kuzuhara, M. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tamura, M.; Kandori, R.; Hori, Y.; Suzuki, R.; Suenaga, T.; Takahashi, Y. H.; Kwon, J. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kudo, T. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Janson, M.; Brandt, T. D.; Spiegel, D.; Burrows, A.; Turner, E. L.; Moro-Martin, A. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Thalmann, C. [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Postbus 94249, 1090 GE, Amsterdam (Netherlands); Biller, B.; Henning, T. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Carson, J. [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); McElwain, M. W., E-mail: m.kuzuhara@nao.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2013-09-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800-1800 K and very red colors (J - H > 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct-imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160{sup +350}{sub -60} Myr, GJ 504b has an estimated mass of 4{sup +4.5}{sub -1.0} Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of {approx}30 AU predicted for the core accretion mechanism. GJ 504b is also significantly cooler (510{sup +30}{sub -20} K) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets as well as their atmospheric properties.

  20. The NASA Exoplanet Archive: Data and Tools for Exoplanet Research

    Akeson, R. L.; Chen, X; Ciardi, D.; Crane, M.; Good, J.; Harbut, M.; Jackson, E; Kane, S.R.; Laity, A. C.; Leifer, S; Lynn, M.; McElroy, D. L.; Papin, M.; Plavchan, P.; Ramirez, S. V.

    2013-01-01

    We describe the contents and functionality of the NASA Exoplanet Archive, a database and tool set funded by NASA to support astronomers in the exoplanet community. The current content of the database includes interactive tables containing properties of all published exoplanets, Kepler planet candidates, threshold-crossing events, data validation reports and target stellar parameters, light curves from the Kepler and CoRoT missions and from several ground-based surveys, and spectra and radial ...

  1. Light from Exoplanets: Present and Future

    Deming, Leo

    2010-01-01

    Measurements using the Spitzer Space Telescope have revealed thermal emission from planets orbiting very close to solar-type stars, primarily transiting "hot Jupiter" exoplanets. The thermal emission spectrum of these worlds has been measured by exploiting their secondary eclipse. Also, during transit of the planet, absorption signatures from atoms and molecules in the planet's atmosphere are imprinted onto the spectrum of the star. Results to date from transit and eclipse studies show that the hot Jupiters often have significant haze and cloud components in their atmospheres, and the temperature structure can often be inverted, i.e. temperature is rising with height. New and very strongly irradiated examples of hot Jupiters have been found that are being stripped of their atmospheres by tidal forces from the star. In parallel, transiting superEarth exoplanets are being discovered, and their atmospheres should also be amenable to study using transit techniques. The 2014 launch of the James Webb Space Telescope will clarify the physical nature of hot Jupiters, and will extend transit and eclipse studies to superEarths orbiting in the habitable zones of lower main sequence stars.

  2. Hiding in the Shadows: Searching for Planets in Pre--transitional and Transitional Disks

    Dobinson, Jack; Leinhardt, Zoë M.; Dodson-Robinson, Sarah E.; Teanby, Nick A.

    2013-01-01

    Transitional and pre--transitional disks can be explained by a number of mechanisms. This work aims to find a single observationally detectable marker that would imply a planetary origin for the gap and, therefore, indirectly indicate the presence of a young planet. N-body simulations were conducted to investigate the effect of an embedded planet of one Jupiter mass on the production of instantaneous collisional dust derived from a background planetesimal disk. Our new model allows us to pred...

  3. WASP-54b, WASP-56b and WASP-57b: Three new sub-Jupiter mass planets from SuperWASP

    Faedi, F; Barros, S C C; Brown, D; Cameron, A Collier; Doyle, A P; Gillon, M; Chew, Y Gomez Maqueo; Hebrard, G; Lendl, M; Liebig, C; Smalley, B; Triaud, A H M J; West, R G; Wheatley, P J; Alsubai, K A; Anderson, D R; Armstrong, D J; Bento, J; Bochinski, J; Bouchy, F; Busuttil, R; Fossati, L; Fumel, A; Haswell, C A; Hellier, C; Holmes, S; Jehin, E; Kolb, U; McCormac, J; Miller, G R M; Moutou, C; Norton, A J; Parley, N; Queloz, D; Skillen, I; Smith, A M S; Udry, S; Watson, C

    2012-01-01

    We present three newly discovered sub-Jupiter mass planets from the SuperWASP survey: WASP-54b is a heavily bloated planet of mass 0.636$^{+0.025}_{-0.024}$ \\mj and radius 1.653$^{+0.090}_{-0.083}$ \\rj. It orbits a F9 star, evolving off the main sequence, every 3.69 days. Our MCMC fit of the system yields a slightly eccentric orbit ($e=0.067^{+0.033}_{-0.025}$) for WASP-54b. We investigated further the veracity of our detection of the eccentric orbit for WASP-54b, and we find that it could be real. However, given the brightness of WASP-54 V=10.42 magnitudes, we encourage observations of a secondary eclipse to draw robust conclusions on both the orbital eccentricity and the thermal structure of the planet. WASP-56b and WASP-57b have masses of 0.571$^{+0.034}_{-0.035}$ \\mj and $0.672^{+0.049}_{-0.046}$ \\mj, respectively; and radii of $1.092^{+0.035}_{-0.033}$ \\rj for WASP-56b and $0.916^{+0.017}_{-0.014}$ \\rj for WASP-57b. They orbit main sequence stars of spectral type G6 every 4.67 and 2.84 days, respectively...

  4. Mass-radius relationships of rocky exoplanets

    Sohl, F; Rauer, H

    2012-01-01

    Mass and radius of planets transiting their host stars are provided by radial velocity and photometric observations. Structural models of solid exoplanet interiors are then constructed by using equations of state for the radial density distribution, which are compliant with the thermodynamics of the high-pressure limit. However, to some extent those structural models suffer from inherent degeneracy or non-uniqueness problems owing to a principal lack of knowledge of the internal differentiation state and/or the possible presence of an optically thick atmosphere. We here discuss the role of corresponding measurement errors, which adversely affect determinations of a planet's mean density and bulk chemical composition. Precise measurements of planet radii will become increasingly important as key observational constraints for radial density models of individual solid low-mass exoplanets or super-Earths.

  5. A Systematic Search for Exoplanet Candidates in K2 Data

    Kahre, Tarryn; Karnes, Katherine L.; Caldwell, Douglas A.; Smith, Jeffrey C.

    2016-01-01

    We present a catalog of 41 promising exoplanet candidates in 33 stellar systems from the K2 Campaign 3 data. The K2 Mission was developed upon the mechanical failure of the second of four reaction wheels, as the Kepler Spacecraft could not continue the original Kepler Mission. The Kepler Mission was a 4-year mission designed to determine the prevalence of exoplanets in our galaxy, and the configuration and diversity of those planetary systems discovered. The K2 Mission has a similar goal, though the spacecraft now points at fields along the ecliptic in ~75 day campaigns (Howell et al. 2014). Although the light curves in K2 data are noisier and have significant motion-induced systematics, it has been shown that there is success in finding exoplanets and exoplanet candidates (Foreman-Mackey et al. 2015; Montet et al. 2015). Utilizing the Transiting Planet Search and Data Validation from the Kepler Processing Pipeline, we systematically search K2 Campaign 3 for potential exoplanet candidates. Setting a 7.1s maximum folded statistic threshold minimum for a minimum of three transit events, we define our initial candidate list. Our list is further narrowed by the results from Data Validation, as it allows us to statistically identify false positives, such as eclipsing binaries or uncorrected roll-drift, in our sample. We further draw parallels between our results and other transit-searching pipeline results published for Campaign 3.

  6. Directed follow-up strategy of low-cadence photometric surveys in Search of transiting exoplanets - I. Bayesian approach for adaptive scheduling

    Dzigan, Yifat

    2011-01-01

    We propose a novel approach to utilize low-cadence photometric surveys for exoplanetary transit search. Even if transits are undetectable in the survey database alone, it can still be useful for finding preferred times for directed follow-up observations that will maximize the chances to detect transits. We demonstrate the approach through a few simulated cases. These simulations are based on the Hipparcos Epoch Photometry data base, and the transiting planets whose transits were already detected there. In principle, the approach we propose will be suitable for the directed follow-up of the photometry from the planned Gaia mission, and it can hopefully significantly increase the yield of exoplanetary transits detected, thanks to Gaia.

  7. Exoplanet Transits Registered at the Universidad de Monterrey Observatory. I. HAT-P-12b, HAT-P-13b, HAT-P-16b, HAT-P-23b, and WASP-10b

    Sada, Pedro V.; Ramón-Fox, Felipe G.

    2016-02-01

    Forty transits of the exoplanets HAT-P-12b, HAT-P-13b, HAT-P-16b, HAT-P-23b, and WASP-10b were recorded with the 0.36 m telescope at the Universidad de Monterrey Observatory. The images were captured with a standard Johnson-Cousins Rc and Ic and Sloan z’ filters and processed to obtain individual light curves of the events. These light curves were successfully combined for each system to obtain a resulting one of higher quality, but with a slightly larger time sampling rate. A reduction by a factor of about four in per-point scatter was typically achieved, resulting in combined light curves with a scatter of ∼1 mmag. The noise characteristics of the combined light curves were verified by comparing Allan variance plots of the residuals. The combined light curves for each system, along with radial velocity measurements from the literature when available, were modeled using a Monte Carlo method to obtain the essential parameters that characterize the systems. Our results for all these systems confirm the derived transit parameters (the planet-to-star radius ratio, {R}{{p}}/{R}*; the scaled semimajor axis, a/{R}*; the orbital inclination, i; in some cases the eccentricity, e; and argument of periastron of the orbit, ω), validating the methodology. This technique can be used by small college observatories equipped with modest-sized telescopes to help characterize known extrasolar planet systems. In some instances, the uncertainties of the essential transit parameters are also reduced. For HAT-P-23b, in particular, we derive a planet size 4.5 ± 1.0% smaller. We also derive improved linear periods for each system, useful for scheduling observations.

  8. Discriminating Between Cloudy, Hazy and Clearsky Exoplanets Using Refraction

    Misra, Amit

    2014-01-01

    We propose a method to distinguish between cloudy, hazy and clearsky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detectio...

  9. Detecting Exomoons Around Self-luminous Giant Exoplanets Through Polarization

    Sengupta, Sujan

    2016-01-01

    Many of the directly imaged self-luminous gas giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time resolved linear polarization signal. The peak amplitude of such time dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time re...

  10. Exoplanet Transits Registered at the Universidad de Monterrey Observatory. Part I: HAT-P-12b, HAT-P-13b, HAT-P-16b, HAT-P-23b and WASP-10b

    Sada, Pedro V

    2016-01-01

    Forty transits of the exoplanets HAT-P-12b, HAT-P-13b, HAT-P-16b, HAT-P-23b and WASP-10b were recorded with the 0.36m telescope at the Universidad de Monterrey Observatory. The images were captured with a standard Johnson-Cousins Rc and Ic and Sloan z' filters and processed to obtain individual light curves of the events. These light curves were successfully combined for each system to obtain a resulting one of higher quality, but with a slightly larger time sampling rate. A reduction by a factor of about four in per-point scatter was typically achieved, resulting in combined light curves with a scatter of ~1 mmag. The noise characteristics of the combined light curves were verified by comparing Allan variance plots of the residuals. The combined light curves for each system, along with radial velocity measurements from the literature when available, were modeled using a Monte Carlo method to obtain the essential parameters that characterize the systems. Our results for all these systems confirm the derived t...

  11. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. I. Methodology

    Motivated by the order of magnitude difference in the frequency of giant planets orbiting M dwarfs inferred by microlensing and radial velocity (RV) surveys, we present a method for comparing the statistical constraints on exoplanet demographics inferred from these methods. We first derive the mapping from the observable parameters of a microlensing-detected planet to those of an analogous planet orbiting an RV-monitored star. Using this mapping, we predict the distribution of RV observables for the planet population inferred from microlensing surveys, taking care to adopt reasonable priors for, and properly marginalize over, the unknown physical parameters of microlensing-detected systems. Finally, we use simple estimates of the detection limits for a fiducial RV survey to predict the number and properties of analogs of the microlensing planet population such an RV survey should detect. We find that RV and microlensing surveys have some overlap, specifically for super-Jupiter mass planets (mp ≳ 1 M Jup) with periods between ∼3-10 yr. However, the steeply falling planetary mass function inferred from microlensing implies that, in this region of overlap, RV surveys should infer a much smaller frequency than the overall giant planet frequency (mp ≳ 0.1 M Jup) inferred by microlensing. Our analysis demonstrates that it is possible to statistically compare and synthesize data sets from multiple exoplanet detection techniques in order to infer exoplanet demographics over wider regions of parameter space than are accessible to individual methods. In a companion paper, we apply our methodology to several representative microlensing and RV surveys to derive the frequency of planets around M dwarfs with orbits of ≲ 30 yr.

  12. HARPS Observes the Earth Transiting the Sun — A Method to Study Exoplanet Atmospheres Using Precision Spectroscopy on Large Ground-based Telescopes

    Yan, F.; Fosbury, R.; Petr-Gotzens, M.; Pallé, E.; Zhao, G.

    2015-09-01

    Exoplanetary transits offer the opportunity to measure the transmission of long, tangential pathlengths through their atmospheres. Since the fraction of the observed stellar light taking these paths is very small, transit photometric and spectrophotometric measurements of light curves require very high levels of measurement stability, favouring the use of intrinsically stable space telescopes. By studying the Rossiter-McLaughlin effect on the radial velocity of the transited star, pure, high-precision radial velocity measurements can be used to estimate the changes in planetary atmospheric transmission with wavelength: a promising method for future studies of small planets with very large ground-based telescopes since it removes the requirement for extreme photometric stability. This article describes a successful feasibility experiment using the HARPS instrument to measure reflected moonlight during the penumbral phases of a Lunar eclipse, effectively providing an observation of an Earth transit.

  13. Trawling for transits in a sea of noise: A Search for Exoplanets by Analysis of WASP Optical Lightcurves and Follow-up (SEAWOLF)

    Gaidos, E; Lepine, S; Colon, K D; Maravelias, G; Narita, N; Chang, E; Beyer, J; Fukui, A; Armstrong, J D; Zezas, A; Fulton, B J; Mann, A W; West, R G; Faedi, F

    2013-01-01

    Studies of transiting Neptune-size planets orbiting close to nearby bright stars can inform theories of planet formation because mass and radius and therefore mean density can be accurately estimated and compared with interior models. The distribution of such planets with stellar mass and orbital period relative to their Jovian-mass counterparts can test scenarios of orbital migration, and whether "hot" (period < 10d) Neptunes evolved from "hot" Jupiters as a result of mass loss. We searched 1763 late K and early M dwarf stars for transiting Neptunes by analyzing photometry from the Wide Angle Search for Planets and obtaining high-precision ($<10^{-3}$) follow-up photometry of stars with candidate transit signals. One star in our sample (GJ 436) hosts a previously reported hot Neptune. We identified 92 candidate signals among 80 other stars and carried out 148 observations of predicted candidate transits with 1-2 m telescopes. Data on 70 WASP signals rules out transits for 39 of them; 28 other signals a...

  14. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Venot Olivia; Fray Nicolas; Bénilan Yves; Gazeau Marie-Claire; Hébrard Eric; Larcher Gwenaelle; Schwell Martin; Dobrijevic Michel; Selsis Franck

    2014-01-01

    Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are se...

  15. New exoplanets from the SuperWASP-North survey

    Keenan F.

    2011-02-01

    Full Text Available We present the current status of the WASP search for transiting exoplanets, focusing on recent planet discoveries from SuperWASP-North and the joint equatorial region (-20≤Dec≤+20 observed by both WASP telescopes. We report the results of monitoring of WASP planets, and discuss how these contribute to our understanding of planet properties and their diversity.

  16. Exoplanets search and characterization with the SOPHIE spectrograph at OHP

    Hébrard G.

    2011-02-01

    Full Text Available Several programs of exoplanets search and characterization have been started with SOPHIE at the 1.93-m telescope of Haute-Provence Observatory, France. SOPHIE is an environmentally stabilized echelle spectrograph dedicated to high-precision radial velocity measurements. The objectives of these programs include systematic searches for exoplanets around different types of stars, characterizations of planet-host stars, studies of transiting planets through RossiterMcLaughlin effect, follow-up observations of photometric surveys. The instrument SOPHIE and a review of its latest results are presented here.

  17. Relativity and Exoplanets: Gravitational Microlensing, Doppler Beaming, and More

    Gaudi, Scott

    2016-03-01

    Perhaps surprisingly, the theories of both special and general relativity play important roles in several areas of exoplanet research. I will review the most important and intriguing of these applications. The most obvious case is gravitational microlensing, which has become a fairly routine method of finding planets, and is poised to become even more important in the next decade. I will also briefly survey the numerous other areas where relativity plays a role in exoplanet theory and observations, including photometric Doppler beaming, general relativistic precession, transits of compact objects, and even (potentially) gravitational wave experiments.

  18. Photometric stability analysis of the Exoplanet Characterisation Observatory

    Waldmann, I P; Swinyard, B; Tinetti, G; Amaral-Rogers, A; Spencer, L; Tessenyi, M; Ollivier, M; Foresto, V Coudé du

    2013-01-01

    Photometric stability is a key requirement for time-resolved spectroscopic observations of transiting extrasolar planets. In the context of the Exoplanet Characterisation Observatory (EChO) mission design, we here present and investigate means of translating spacecraft pointing instabilities as well as temperature fluctuation of its optical chain into an overall error budget of the exoplanetary spectrum to be retrieved. Given the instrument specifications as of date, we investigate the magnitudes of these photometric instabilities in the context of simulated observations of the exoplanet HD189733b secondary eclipse.

  19. Transiting exoplanets from the CoRoT space mission . XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    Rouan, D.; Parviainen, H.; Moutou, C.;

    2012-01-01

    evaluated to be 7 Gyr, not far from the transition to subgiant, in agreement with the rather large stellar radius. The two features of a significant eccentricity of the orbit and of a fairly high density are fairly uncommon for a hot Jupiter. The high density is, however, consistent with a model of...

  20. Lightest exoplanet yet discovered

    2009-04-01

    Well-known exoplanet researcher Michel Mayor today announced the discovery of the lightest exoplanet found so far. The planet, "e", in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist. These amazing discoveries are the outcome of more than four years of observations using the most successful low-mass-exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile. ESO PR Photo 15a/09 Artist's impression of Gliese 581 e ESO PR Photo 15b/09 A planet in the habitable zone ESO PR Video 15a/09 ESOcast 6 ESO PR Video 15b/09 VNR A-roll ESO PR Video 15c/09 Zoom-in on Gliese 581 e ESO PR Video 15d/09 Artist's impression of Gliese 581 e ESO PR Video 15e/09 Artist's impression of Gliese 581 d ESO PR Video 15f/09 Artist's impression of Gliese 581 system ESO PR Video 15g/09 The radial velocity method ESO PR Video 15h/09 Statement in English ESO PR Video 15i/09 Statement in French ESO PR Video 15j/09 La Silla Observatory "The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone' -- a region around the host star with the right conditions for water to be liquid on a planet's surface", says Michel Mayor from the Geneva Observatory, who led the European team to this stunning breakthrough. Planet Gliese 581 e orbits its host star - located only 20.5 light-years away in the constellation Libra ("the Scales") -- in just 3.15 days. "With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet", says co-author Xavier Bonfils from Grenoble Observatory. Being so close to its host star, the planet is not in the habitable zone. But another planet in this system appears to be. From previous observations -- also obtained with the HARPS spectrograph

  1. DETECTABILITY OF EXOPLANET PERIASTRON PASSAGE IN THE INFRARED

    Characterization of exoplanets has matured in recent years, particularly through studies of exoplanetary atmospheres of transiting planets at infrared wavelengths. The primary source for such observations has been the Spitzer Space Telescope but these studies are anticipated to continue with the James Webb Space Telescope. A relatively unexplored region of exoplanet parameter space is the thermal detection of long-period eccentric planets during periastron passage. Here we describe the thermal properties and albedos of long-period giant planets along with the eccentricities of those orbits which allow them to remain within the habitable zone. We further apply these results to the known exoplanets by calculating temperatures and flux ratios for the IRAC passbands occupied by warm Spitzer, considering both low and high thermal redistribution efficiencies from the perspective of an observer. We conclude with recommendations on which targets are best suited for follow-up observations.

  2. The search for exomoons and the characterization of exoplanet atmospheres

    Campanella, Giammarco

    2009-01-01

    Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. A review on the current situation of exoplanet characterization is presented in Chapter 3. We focus on the characterization of transiting planets orbiting very close to their parent star since for them we can already probe their atmospheric constituents. By contrast, the second part of the Chapter is dedicated to the search for extraterrestrial life, both within and beyond the Solar System. The characteristics of the Habitable Zone and the markers for the presence of life (biosignatures) are detailed. In Chapter 4 ...

  3. Observing exoplanets from Brazil: the first try

    Saito, Roberto; Silva, Paulo Henrique; Kanaan, Antonio; Schoenell, William; Fraga, Luciano; Bruch, Albert

    2009-02-01

    This project consists in mapping a 4-square-degree region searching for exoplanets using the transit method. This “mini-survey” will be the first use of the 16″ robotic telescope developed by Universidade Federal de Santa Catarina (UFSC-Brazil) and Laboratório Nacional de Astrofísica (LNA/MCT-Brazil). The chosen region is over the Columba constellation and our first observations have shown that we have enough signal-to-noise ratio to search for transits on about 20,000 stars with ~13 < I < 16 mag, a magnitude range between the OGLE and HAT projects. In this star sample we expect to find about a dozen planets with transits duration of 1-3 hours and magnitude depth from 0.001 to 0.010 mag. As for other projects, all information will became public as a VO service.

  4. KEPLER OBSERVATIONS OF THREE PRE-LAUNCH EXOPLANET CANDIDATES: DISCOVERY OF TWO ECLIPSING BINARIES AND A NEW EXOPLANET

    Three transiting exoplanet candidate stars were discovered in a ground-based photometric survey prior to the launch of NASA's Kepler mission. Kepler observations of them were obtained during Quarter 1 of the Kepler mission. All three stars are faint by radial velocity follow-up standards, so we have examined these candidates with regard to eliminating false positives and providing high confidence exoplanet selection. We present a first attempt to exclude false positives for this set of faint stars without high-resolution radial velocity analysis. This method of exoplanet confirmation will form a large part of the Kepler mission follow-up for Jupiter-sized exoplanet candidates orbiting faint stars. Using the Kepler light curves and pixel data, as well as medium-resolution reconnaissance spectroscopy and speckle imaging, we find that two of our candidates are binary stars. One consists of a late-F star with an early M companion, while the other is a K0 star plus a late M-dwarf/brown dwarf in a 19 day elliptical orbit. The third candidate (BOKS-1) is an r = 15 G8V star hosting a newly discovered exoplanet with a radius of 1.12 RJupiter in a 3.9 day orbit.

  5. Kepler-447b: a hot-Jupiter with an extremely grazing transit

    Lillo-Box, J.; Barrado, D.; Santos, N. C.; Mancini, L.; Figueira, P.; Ciceri, S.; Henning, Th.

    2015-05-01

    We present the radial velocity confirmation of the extrasolar planet Kepler-447b, initially detected as a candidate by the Kepler mission. In this work, we analyzeits transit signal and the radial velocity data obtained with the Calar Alto Fiber-fed Echelle spectrograph (CAFE). By simultaneously modeling both datasets, we obtain the orbital and physical properties of the system. According to our results, Kepler-447b is a Jupiter-mass planet (Mp = 1.37+0.48-0.46 MJup), with an estimated radius of Rp = 1.65+0.59-0.56 RJup (uncertainties provided in this work are 3σ unless specified). This translates into a sub-Jupiter density. The planet revolves every ~7.8 days in a slightly eccentric orbit (e = 0.123+0.037-0.036) around a G8V star with detected activity in the Kepler light curve. Kepler-447b transits its host with a large impact parameter (b = 1.076+0.112-0.086), which is one of the few planetary grazing transits confirmed so far and the first in the Kepler large crop of exoplanets. We estimate that only around 20% of the projected planet disk occults the stellar disk. The relatively large uncertainties in the planet radius are due to the large impact parameter and short duration of the transit. Planetary transits with large impact parameters (and in particular grazing transits) can be used to detect and analyze interesting configurations, such as additional perturbing bodies, stellar pulsations, rotation of a non-spherical planet, or polar spot-crossing events. All these scenarios will periodically modify the transit properties (depth, duration, and time of mid-transit), which could be detectable with sufficiently accurate photometry. Short-cadence photometric data (at the 1-min level) would help in the search for these exotic configurations in grazing planetary transits like that of Kepler-447b. This system could then be an excellent target for the forthcoming missions TESS and CHEOPS, which will provide the required photometric precision and cadence to study

  6. A Cloudy View of Exoplanets

    Deming, Drake

    2010-01-01

    The lack of absorption features in the transmission spectrum of exoplanet GJ1214b rules out a hydrogen-rich atmosphere for the planet. It is consistent with an atmosphere rich in water vapour or abundant in clouds.

  7. The Structure of Exoplanets

    Spiegel, David S; Sotin, Christophe

    2013-01-01

    The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our Solar System are merely possible outcomes of planetary system formation and evolution, and conceivably not even terribly common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are known to, and speculated to, exist in exoplanetary systems -- from mostly degenerate objects that are more than 10 times as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of the Earth.

  8. Structure of exoplanets.

    Spiegel, David S; Fortney, Jonathan J; Sotin, Christophe

    2014-09-01

    The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our solar system are merely possible outcomes of planetary system formation and evolution, and conceivably not even especially common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are both known and speculated to exist in exoplanetary systems--from mostly degenerate objects that are more than 10× as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of Earth. PMID:24379369

  9. Geoengineering on exoplanets

    Lockley, Andrew

    2015-04-01

    Solar radiation management (SRM) geoengineering can be used to deliberately alter the Earth's radiation budget, by reflecting sunlight to space. SRM has been suggested as a response to Anthropogenic Global Warming (AGW), to partly or fully balance radiative forcing from AGW [1]. Approximately 22% of sun-like stars have Earth-like exoplanets[2]. Advanced civilisations may exist on these, and may use geoengineering for positive or negative radiative forcing. Additionally, terraforming projects [e.g. 3], may be used to expand alien habitable territory, or for resource management or military operations on non-home planets. Potential observations of alien geoengineering and terraforming may enable detection of technologically advanced alien civilisations, and may help identify widely-used and stable geoengineering technologies. This knowledge may assist the development of safe and stable geoengineering methods for Earth. The potential risks and benefits of possible alien detection of Earth-bound geoengineering schemes must be considered before deployment of terrestrial geoengineering schemes.

  10. Atmospheric Circulation of Terrestrial Exoplanets

    Showman, Adam P.; Wordsworth, Robin D.; Merlis, Timothy M.; Kaspi, Yohai

    2013-01-01

    The investigation of planets around other stars began with the study of gas giants, but is now extending to the discovery and characterization of super-Earths and terrestrial planets. Motivated by this observational tide, we survey the basic dynamical principles governing the atmospheric circulation of terrestrial exoplanets, and discuss the interaction of their circulation with the hydrological cycle and global-scale climate feedbacks. Terrestrial exoplanets occupy a wide range of physical a...