WorldWideScience

Sample records for intermolecular interaction energies

  1. The same number of optimized parameters scheme for determining intermolecular interaction energies

    Kristensen, Kasper; Ettenhuber, Patrick; Eriksen, Janus Juul; Jensen, Frank; Jørgensen, Poul

    2015-01-01

    We propose the Same Number Of Optimized Parameters (SNOOP) scheme as an alternative to the counterpoise method for treating basis set superposition errors in calculations of intermolecular interaction energies. The key point of the SNOOP scheme is to enforce that the number of optimized wave...... numerically. Numerical results for second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster with single, double, and approximate triple excitations (CCSD(T)) show that the SNOOP scheme in general outperforms the uncorrected and counterpoise approaches. Furthermore, we show that SNOOP...

  2. Energy Decomposition Analysis with a Stable Charge-Transfer Term for Interpreting Intermolecular Interactions.

    Lao, Ka Un; Herbert, John M

    2016-06-14

    Many schemes for decomposing quantum-chemical calculations of intermolecular interaction energies into physically meaningful components can be found in the literature, but the definition of the charge-transfer (CT) contribution has proven particularly vexing to define in a satisfactory way and typically depends strongly on the choice of basis set. This is problematic, especially in cases of dative bonding and for open-shell complexes involving cation radicals, for which one might expect significant CT. Here, we analyze CT interactions predicted by several popular energy decomposition analyses and ultimately recommend the definition afforded by constrained density functional theory (cDFT), as it is scarcely dependent on basis set and provides results that are in accord with chemical intuition in simple cases, and in quantitative agreement with experimental estimates of the CT energy, where available. For open-shell complexes, the cDFT approach affords CT energies that are in line with trends expected based on ionization potentials and electron affinities whereas some other definitions afford unreasonably large CT energies in large-gap systems, which are sometimes artificially offset by underestimation of van der Waals interactions by density functional theory. Our recommended energy decomposition analysis is a composite approach, in which cDFT is used to define the CT component of the interaction energy and symmetry-adapted perturbation theory (SAPT) defines the electrostatic, polarization, Pauli repulsion, and van der Waals contributions. SAPT/cDFT provides a stable and physically motivated energy decomposition that, when combined with a new implementation of open-shell SAPT, can be applied to supramolecular complexes involving molecules, ions, and/or radicals. PMID:27049750

  3. Local intermolecular interactions for selective CO2 capture by zeolitic imidazole frameworks: energy decomposition analysis

    Intermolecular energy decomposition analysis (EDA) is reported for the binding of CO2 with zeolitic imidazole frameworks (ZIF) to provide a molecular level interpretation of the recent capacity and selectivity measurements of several ZIFs and to suggest a theoretical guideline to improve their performance further, using 1 nm size of organic linker fragment of the ZIFs as a target molecule. The EDA suggests that the local electronic interaction of CO2 and the substituent groups, mainly frozen density and polarization interactions with little charge transfer, is the primary binding interaction, but the electron correlation effects can be equally or more important depending on the binding geometry and functional groups. The present correlated calculations identify the preferred ZIF binding sites for various gases including CO2 to be mostly near the benzene substituent groups rather than the plane of imidazole rings. We predict that the NH2-substituted ZIF would have an enhanced capacity of CO2 as compared to the NO2-substituted ZIF that was recently synthesized and reported to be one of the materials with the best capacity results along with high gas selectivity. The present calculations may imply that the local functionality of the linking organics, rather than detailed framework structures, may be of primary importance in designing certain high capacity MOF or ZIF materials.

  4. An Efficient Method to Evaluate Intermolecular Interaction Energies in Large Systems Using Overlapping Multicenter ONIOM and the Fragment Molecular Orbital Method

    Asada, Naoya; Dmitri G Fedorov; Kitaura, Kazuo; Nakanishi, Isao; Merz, Kenneth M.

    2012-01-01

    We propose an approach based on the overlapping multicenter ONIOM to evaluate intermolecular interaction energies in large systems and demonstrate its accuracy on several representative systems in the complete basis set limit at the MP2 and CCSD(T) level of theory. In the application to the intermolecular interaction energy between insulin dimer and 4′-hydroxyacetanilide at the MP2/CBS level, we use the fragment molecular orbital method for the calculation of the entire complex assigned to th...

  5. He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces

    Munteanu, Cristian R.; Henriksen, Christian; Felker, Peter M.; Fernández, Berta

    2013-01-01

    Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and doub...

  6. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET)

    Jensen, Anders A.; Hansen, Jakob L; Sheikh, Søren P;

    2002-01-01

    -induced intermolecular movements in the CaR homodimer using the new bioluminescence resonance energy transfer technique, BRET2, which is based on the transference of energy from Renilla luciferase (Rluc) to the green fluorescent protein mutant GFP2. We tagged CaR with Rluc and GFP2 at different intracellular locations...

  7. Phosphate Stabilization of Intermolecular Interactions

    Jackson, Shelley N.; Wang, Hay-Yan J.; Yergey, Alfred; Woods, Amina S.

    2006-01-01

    Receptor heteromerization is an important phenomenon that results from the interaction of epitopes on two receptors. Previous studies have suggested the possibility of Dopamine D2- NMDA receptors’ interaction. We believe that the interaction is through an acidic epitope of the NMDA NR1 subunit (KVNSEEEEEDA) and a basic epitope of the D2 third intracellular loop (VLRRRRRKRVN), which was shown to also interact with the Adenosine A2A receptor. In previous work we highlighted the role of certain ...

  8. Bowl inversion state controlled by intermolecular interactions

    Full text: Bowl-shaped pi-conjugated compounds are important not only as model compounds of fullerenes but also as possible hosts for different guest molecules. Recent studies regarding the storage of possible energy carriers such as hydrogen and methane in nano-structured carbon materials have further increased the interest in well defined model compounds that allow for a detailed investigation of host-guest interactions in order to optimize the storage capacity of technologically relevant carbon-based materials. Within this context we investigated the structural properties of monolayer films of sumanene (C21H12) deposited on Ag(111). Based on STM experiments we find that the fraction of molecules having a bowl-down adsorption geometry is coverage-dependent, indicating that the bowl-inversion state is determined by intermolecular interactions. The experimental findings are rationalized by density functional theory (DFT) calculations, which reveal a subtle interplay between molecule-substrate and molecule- molecule interactions that is responsible for the abrupt structural change involving inversion of a fraction of the molecules and reorientation of the molecules with respect to the surface normal. (author)

  9. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the Cs-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  10. Energy-dispersive NEXAFS. A novel tool for the investigation of intermolecular interaction and structural phase dynamics

    Scholz, Markus

    2013-06-27

    In the context of this thesis, the novel method soft X-ray energy-dispersive NEXAFS spectroscopy was explored and utilized to investigate intermolecular coupling and post-growth processes with a temporal resolution of seconds. 1,4,5,8- naphthalene tetracarboxylic acid dianhydride (NTCDA)multilayer films were the chosen model system for these investigations. The core hole-electron correlation in coherently coupled molecules was studied by means of energy-dispersive near-edge X-ray absorption fine-structure spectroscopy. A transient phase was found which exists during the transition between a disordered condensed phase and the bulk structure. This phase is characterized by distinct changes in the spectral line shape and energetic position of the X-ray absorption signal at the C K-edge. The findings were explained with the help of theoretical models based on the coupling of transition dipole moments, which are well established for optically excited systems. In consequence, the experimental results provides evidence for a core hole-electron pair delocalized over several molecules. Furthermore, the structure formation of NTCDA multilayer films on Ag(111) surfaces was investigated. With time-resolved and energy-dispersive NEXAFS experiments the intensity evolution in s- and p-polarization showed a very characteristic behavior. By combining these findings with the results of time-dependent photoemission measurements, several sub-processes were identified in the post- growth behavior. Upon annealing, the amorphous but preferentially flat-lying molecules flip into an upright orientation. After that follows a phase characterized by strong intermolecular coupling. Finally, three-dimensional islands are established. Employing the Kolmogorov-Johnson-Mehl-Avrami model, the activation energies of the sub-processes were determined.

  11. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    Venkatesha R. Hathwar

    2015-09-01

    Full Text Available Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ...Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.

  12. Resonant intermolecular transfer of vibrational energy in liquid water

    Woutersen, Sander; Bakker, Huib J.

    1999-12-01

    Many biological, chemical and physical processes involve the transfer of energy. In the case of electronic excitations, transfer between molecules is rapid, whereas for vibrations in the condensed phase, resonant energy transfer is an unlikely process because the typical timescale of vibrational relaxation (a few picoseconds) is much shorter than that of resonant intermolecular vibrational energy transfer. For the OH-stretch vibration in liquid water, which is of particular importance due to its coupling to the hydrogen bond, extensive investigations have shown that vibrational relaxation takes place with a time constant of 740 +/- 25 femtoseconds (ref. 7). So for resonant intermolecular energy transfer to occur in liquid water, the interaction between the OH-stretch modes of different water molecules needs to be extremely strong. Here we report time-resolved pump-probe laser spectroscopy measurements that reveal the occurrence of fast resonant intermolecular transfer of OH-stretch excitations over many water molecules before the excitation energy is dissipated. We find that the transfer process is mediated by dipole-dipole interactions (the Förster transfer mechanism) and additional mechanisms that are possibly based on intermolecular anharmonic interactions involving hydrogen bonds. Our findings suggest that liquid water may play an important role in transporting vibrational energy between OH groups located on either different biomolecules or along extended biological structures. OH groups in a hydrophobic environment should accordingly be able to remain in a vibrationally excited state longer than OH groups in a hydrophilic environment.

  13. The diversity of physical forces and mechanisms in intermolecular interactions

    Intermolecular interactions became an inherent part of the structure–function paradigm. Therefore, the generalized concept of protein stability and interactions should consider the balance of stabilizing forces working in different types of intermolecular interactions. We consider here two 'extremes' of protein interactions, viral protein with high intrinsic disorder and hyperthermostable protein complexes. Intermolecular interactions provide folding upon binding as a part of function in the viral case, while they secure and stabilize specific native interfaces as a prerequisite for function in hyperthermostable complexes. We propose a generalized concept of protein stability and interactions, which includes intermolecular interactions comprising distinct combinations of stabilizing forces depending on the types of interacting partners

  14. Interatomic and intermolecular interactions studied by imaging techniques

    Full text: Non-covalent interatomic and intermolecular interactions govern behaviour in a wide variety of environments. For example, they determine the aggregation of atoms and molecules, govern the structure of polymers and biological molecules, determine solvation properties, and modify chemical reactions in solution. The fundamental understanding of these interactions can be approached particularly well via spectroscopic probing of van der Waals molecules, with small model systems providing insights into the essential interaction mechanisms. Van der Waals molecules are dimers, or larger aggregates, of two or more species held together by non-covalent interactions. A crucial experimental value is the binding energy of the van der Waals molecules, which measures the strength of the intermolecular bond. This is difficult to measure. For example, the benzene-Ar complex has been studied for over 20 years because it is one of the simplest examples of dispersion interactions involving an aromatic, and such interactions are important in a biological context, yet its binding energy has remained elusive. Our group has used the technique of velocity map imaging to investigate the translational energy released in the dissociation of van der Waals molecules. The cut-off in the translational energy release distribution allows the binding energy of the complex to be determined. This approach has been applied to a number of van der Waals species. The translational energy released, in combination with spectroscopic probes, allows the distribution of rotational energy in the fragments to be determined, which provides insights into the dissociation process. The presentation will review the method and give a number of examples from the systems studied to date. Recently, we have begun velocity map imaging studies of NO-Ar dissociation as a precursor to studies of the dissociation of NO-diatomic species. The aim of this work is to determine the correlated product distributions

  15. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian; Felker, Peter M.

    2012-01-01

    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set...

  16. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies.

    Horn, Paul R; Mao, Yuezhi; Head-Gordon, Martin

    2016-03-21

    In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na(+), water-Cl(-), and the naphthalene dimer. PMID:27004862

  17. Basis sets for the evaluation of van der Waals complex interaction energies: Ne-N2 intermolecular potential and microwave spectrum.

    Baranowska-Łączkowska, Angelika; Fernández, Berta

    2014-01-30

    In order to obtain efficient basis sets for the evaluation of van der Waals complex intermolecular potentials, we carry out systematic basis set studies. For this, interaction energies at representative geometries on the potential energy surfaces are evaluated using the CCSD(T) correlation method and large polarized LPol-n and augmented polarization-consistent aug-pc-2 basis sets extended with different sets of midbond functions. On the basis of the root mean square errors calculated with respect to the values for the most accurate potentials available, basis sets are selected for fitting the corresponding interaction energies and getting analytical potentials. In this work, we study the Ne-N2 van der Waals complex and after the above procedure, the aug-pc-2-3321 and the LPol-ds-33221 basis set results are fitted. The obtained potentials are characterized by T-shaped global minima at distances between the Ne atom and the N2 center of mass of 3.39 Å, with interaction energies of -49.36 cm(-1) for the aug-pc-2-3321 surface and -50.28 cm(-1) for the LPol-ds-33221 surface. Both sets of results are in excellent agreement with the reference surface. To check the potentials further microwave transition frequencies are calculated that agree well with the experimental and the aV5Z-33221 values. The success of this study suggests that it is feasible to carry out similar accurate calculations of interaction energies and ro-vibrational spectra at reduced cost for larger complexes than has been possible hitherto. PMID:24375320

  18. Covalent intermolecular interaction of the nitric oxide dimer (NO)2

    Zhang, Hui; Zheng, Gui-Li; Lv, Gang; Geng, Yi-Zhao; Ji, Qing

    2015-09-01

    Covalent bonds arise from the overlap of the electronic clouds in the internucleus region, which is a pure quantum effect and cannot be obtained in any classical way. If the intermolecular interaction is of covalent character, the result from direct applications of classical simulation methods to the molecular system would be questionable. Here, we analyze the special intermolecular interaction between two NO molecules based on quantum chemical calculation. This weak intermolecular interaction, which is of covalent character, is responsible for the formation of the NO dimer, (NO)2, in its most stable conformation, a cis conformation. The natural bond orbital (NBO) analysis gives an intuitive illustration of the formation of the dimer bonding and antibonding orbitals concomitant with the breaking of the π bonds with bond order 0.5 of the monomers. The dimer bonding is counteracted by partially filling the antibonding dimer orbital and the repulsion between those fully or nearly fully occupied nonbonding dimer orbitals that make the dimer binding rather weak. The direct molecular mechanics (MM) calculation with the UFF force fields predicts a trans conformation as the most stable state, which contradicts the result of quantum mechanics (QM). The lesson from the investigation of this special system is that for the case where intermolecular interaction is of covalent character, a specific modification of the force fields of the molecular simulation method is necessary. Project supported by the National Natural Science Foundation of China (Grant Nos. 90403007 and 10975044), the Key Subject Construction Project of Hebei Provincial Universities, China, the Research Project of Hebei Education Department, China (Grant Nos. Z2012067 and Z2011133), the National Natural Science Foundation of China (Grant No. 11147103), and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y5

  19. Abstracts of 6. International Conference on Intermolecular Interactions in Matter

    6. International Conference on Intermolecular Interactions in Matter is cyclically organised international forum for discussion of most important problems connected with solid state physics, material engineering and crystallography. Especially investigations of low dimensional systems as multilayers, thin films, nanocrystalline systems have been extensively presented and discussed. The methods of crystal growth as well as modern methods for crystal manufacturing process control and material properties investigations have been also performed in the course of the conference

  20. Cation-π interactions: accurate intermolecular potential from symmetry-adapted perturbation theory.

    Ansorg, Kay; Tafipolsky, Maxim; Engels, Bernd

    2013-09-01

    Symmetry-adapted perturbation theory (SAPT) is used to decompose the total intermolecular interaction energy between the ammonium cation and a benzene molecule into four physically motivated individual contributions: electrostatics, exchange, dispersion, and induction. Based on this rigorous decomposition, it is shown unambiguously that both the electrostatic and the induction energy components contribute almost equally to the attractive forces stabilizing the dimer with a nonnegligible contribution coming from the dispersion term. A polarizable potential model for the interaction of ammonium cation with benzene is parametrized by fitting these four energy components separately using the functional forms of the AMOEBA force field augmented with the missing charge penetration energy term calculated as a sum over pairwise electrostatic energies between spherical atoms. It is shown that the proposed model is able to produce accurate intermolecular interaction energies as compared to ab initio results, thus avoiding error compensation to a large extent. PMID:23924321

  1. Intermolecular Sulfur···Oxygen Interactions: Theoretical and Statistical Investigations.

    Zhang, Xuejin; Gong, Zhen; Li, Jian; Lu, Tao

    2015-10-26

    Intermolecular S···O interactions are very common and are important in biological systems, but until recently, the presence of these contacts in protein-ligand systems largely depended on serendipitous discovery instead of rational design. Here we provide insight into the phenomenon of intermolecular S···O contacts by focusing on three sulfur-containing aromatic rings. Quantum mechanics is employed to characterize the strength and directionality of the S···O interactions and to determine their energy dependence on their geometric parameters. Protein Data Bank mining is performed to systematically determine the occurrence and geometry of intermolecular S···O interactions, and several representative examples are discussed. Three typical cases are investigated using a combined quantum mechanics/molecular mechanics approach to demonstrate the potential of these interactions in improving binding affinities and physiochemical properties. Overall, our work elucidates the structures and energy features of intermolecular S···O interactions and addresses their use in molecular design. PMID:26393532

  2. Towards the biaxial nematic phase via specific intermolecular interactions

    Omnes, L

    2001-01-01

    The work described in this thesis has been focussed on the search of an elusive liquid crystal phase, known as the biaxial nematic phase. Indeed, despite nearly thirty years of intense research, no-one has been able to characterise unambiguously a biaxial nematic phase in a low-molar-mass thermotropic system. Our research is based on the concept of molecular biaxiality as distinct from shape biaxiality. Thus, we are seeking to design palladium complexes where specific intermolecular interactions could exist. Therefore, a few original synthetic strategies were developed to tackle the challenge of discovering the biaxial nematic phase

  3. A quantitative analysis of weak intermolecular interactions & quantum chemical calculations (DFT) of novel chalcone derivatives

    Chavda, Bhavin R.; Gandhi, Sahaj A.; Dubey, Rahul P.; Patel, Urmila H.; Barot, Vijay M.

    2016-05-01

    The novel chalcone derivatives have widespread applications in material science and medicinal industries. The density functional theory (DFT) is used to optimized the molecular structure of the three chalcone derivatives (M-I, II, III). The observed discrepancies between the theoretical and experimental (X-ray data) results attributed to different environments of the molecules, the experimental values are of the molecule in solid state there by subjected to the intermolecular forces, like non-bonded hydrogen bond interactions, where as isolated state in gas phase for theoretical studies. The lattice energy of all the molecules have been calculated using PIXELC module in Coulomb -London -Pauli (CLP) package and is partitioned into corresponding coulombic, polarization, dispersion and repulsion contributions. Lattice energy data confirm and strengthen the finding of the X-ray results that the weak but significant intermolecular interactions like C-H…O, Π- Π and C-H… Π plays an important role in the stabilization of crystal packing.

  4. Nanophotonic boost of intermolecular energy transfer

    de Roque, P M; Sapienza, R

    2015-01-01

    We propose a scheme for efficient long-range energy transfer between two distant light emitters separated by more than one wavelength of light, i.e. much beyond the classical Forster radius. A hybrid nanoantenna-waveguide system mediates the transmission of energy, showing enhancements up to 10^8 as compared to vacuum. Our model shows how energy transfer in nanostructured media can be boosted, beyond the simple donor Purcell enhancement, and in particular for large donor-acceptor separations. The scheme we propose connects realistic emitters and could lead to practical on-chip implementations.

  5. New bases for the evaluation of interaction energies: An ab initio study of the CO-Ne van der Waals complex intermolecular potential and ro-vibrational spectrum

    Graphical abstract: CO-Ne IPES. Highlights: → From the LPol, MLPol, and aug-pc-2 bases we obtained new bases for the evaluation of CO-Ne interaction energies. → We checked the bases on the evaluation of the rovibrational spectrum. → The results were satisfactory, being the new bases more efficient than those previously available. - Abstract: Recently we have derived new efficient basis sets for the evaluation of interaction energies in the X-Y (X, Y = He, Ne, Ar) van der Waals complexes. Here we extend the study to the CO-Ne complex. For this, we start with a systematic basis set study, where the LPol, MLPol and Jensen's aug-pc-2 basis sets are considered as starting point (for the Ne atom LPol bases are developed). As reference we take interaction energy results obtained with Dunning's augmented correlation consistent polarized valence basis sets. In all cases we test extensions with different sets of midbond functions. With the selected bases we evaluate CCSD(T) interaction potentials, and to check the potentials further, we obtain the ro-vibrational spectrum of the complex. The results are compared to the available experimental data.

  6. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    Christensen, Anders S; Cui, Qiang

    2015-01-01

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O and S are presented. The RMSD interaction energy is improved from 6.07 kcal/mol to 1...

  7. Correlated intermolecular interaction components from asymptotically corrected Kohn-Sham orbitals

    SONG; Huajie; XIAO; Heming; DONG; Haishan

    2004-01-01

    The symmetry-adapted perturbation theory (SAPT) that has the ability in decomposition of the total interaction energy into physically meaningful components is used to provide a more fundamental understanding of intermolecular forces. This work was motivated by the difficulty of standard SAPT in computing the intermolecular interactions for large energetic dimer systems. SAPT based on Kohn-Sham orbitals (SAPT(DFT)) proves computationally efficient for these large systems, but has been shown to perform poorly for interaction energy components. The deficiencies of SAPT(DFT) result from wrong asymptotical behaviors of commonly used exchange-correlation potentials. To remove the deficiencies, two asymptotic corrections by means of van Leeuwen and Baerends (LB) model potential and Fermi-Amaldi (FA) type potential were applied into three small test systems comprising He2, HF2 and (N2)2 and a set of larger nitramide dimers at several separations. The results showed that when utilizing newly developed frequency-dependent density susceptibilities (FDDS) technique for computing dispersion energy, the FA asymptotic correction is very effective to circumvent these deficiencies in SAPT(DFT) and yields a good accuracy over the LB correction. The FA corrected SAPT(DFT) approach is capable of correctly predicting all the quantitative trends in binding energies for all test cases and substantially reduces computational cost as compared with the standard SAPT calculations. The successful application of the approach to nitramide dimer demonstrates that it potentially provides a good means to calculate accurately intermolecular forces in larger system such as energetic systems.

  8. Intermolecular interactions in rifabutin—2-hydroxypropyl-β-cyclodextrin—water solutions

    Anshakova, A. V.; Yermolenko, Yu. V.; Konyukhov, V. Yu.; Polshakov, V. I.; Maksimenko, O. O.; Gelperina, S. E.

    2015-05-01

    The possibility of a intermolecular complex rifabutin (RB)-2-hydroxypropyl-β-cyclodextrin (HP-β-CD) formed as a result of the interaction of the piperidine fragment of the RB molecule and the hydrophobic cavity of the HP-β-CD molecule was found. The stability constant of the intermolecular complex was determined.

  9. Squeezing water clusters between graphene sheets: energetics, structure, and intermolecular interactions.

    McKenzie, S; Kang, H C

    2014-12-21

    The behavior of water confined at the nanoscale between graphene sheets has attracted much theoretical and experimental attention recently. However, the interactions, structure, and energy of water at the molecular scale underpinning the behavior of confined water have not been characterized by first-principles calculations. In this work we consider small water clusters up to the hexamer adsorbed between graphene sheets using density functional theory calculations with van der Waals corrections. We investigate the effects on structure, energy, and intermolecular interactions due to confinement between graphene sheets. For interlayer distances of about one nanometer or more, the cluster adsorption energy increases approximately linearly with the cluster size by 0.1 eV per molecule in the cluster. As the interlayer distance decreases, the cluster adsorption energy reaches a maximum at 6 to 7 Å with approximately 0.16 eV stabilization energy relative to large interlayer distances. This suggests the possibility of controlling the amount of adsorption in graphene nanomaterials by varying the interlayer distance. We also quantify the intermolecular hydrogen bonding in the clusters by calculating the dissociation energy required to remove one molecule from each cluster. For each cluster size, this is constant for interlayer distances larger than approximately 6 to 8 Å. For smaller distances the intermolecular interaction decreases rapidly thus leading to weaker cohesion between molecules in a squeezed cluster. We expect a mechanism of concerted motion for hydrogen-bonded water molecules confined between graphene sheets, as has been observed for water confined within the carbon nanotubes. Thus, the decrease in the dissociation energy we observed here is consistent with experimental results for water transport through graphene and related membranes that are of interest in nanofiltration. We also calculate the corrugation in the interaction potential between graphene

  10. Theoretical Studies on the Intermolecular Interactions of Aza-calix[2]arene[2]-triazines with RDX

    LIU Yong-Mei; SHI Wen-Jing; ZHAO Shu-Sen; REN Fu-De; CAO Duan-Lin

    2011-01-01

    Six fully optimized structures of the aza-calix[2]arene[2]-triazines/RDX supramolecular complexes have been obtained at the DFT-B3LYP/6-311++G** level, and the corresponding intermolecular interactions have been investigated using the B3LYP, mPWPW91 and MP2 methods at the 6-311++G** level, respectively. The natural bond orbital (NBO) and atoms in molecules (AIM) analyses have been performed to reveal the origin of interactions. To our interest, the result indicates that the strongest interaction is up to -22.34 kJ/mol after basis set superposition error (BSSE) and zero point energy (ZPE) correction at the MP2/6-311++G** level. Furthermore, the intermolecular interactions between aza-calix[2]arene[2]-triazines with the substituted amidos and RDX are stronger than those of other complexes. Thus, the complexes with amidos can be used as the candidates to increase the stability of explosive and eliminate the explosive wastewater.

  11. Probing Intermolecular Interactions in Polycyclic Aromatic Hydrocarbons with 2D IR Spectroscopy

    Krummel, Amber

    2014-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment and impact geochemical processes that are critical to sustainable energy resources. For example, asphaltenes exist naturally in geologic formations and their aggregates heavily impact the petroleum economy. Unfortunately, the chemical dynamics that drive asphaltene nanoaggregation processes are still poorly understood. Solvent dynamics and intermolecular interactions such as π-stacking interactions play integral roles in asphaltene nanoaggregation. Linear and nonlinear vibrational spectroscopy including two-dimensional infrared spectroscopy (2DIR), are well suited to explore these fundamental interactions. Teasing apart the vibrational characteristics in PAHs that model asphaltenic compounds represents an important step towards utilizing 2D IR spectroscopy to understand the intermolecular interactions that are prevalent in asphaltene nanoaggregation. A solar dye, N,N'-Dioctyl-3,4,9,10-perylenedicarboximide, is used in this work to model aphaltenes. Carbonyl and ring vibrations are used to probe the nanoaggregates of the model compounds. However, the characteristics of these normal modes change as a function of the size of the conjugated ring system. Thus, in order to fully understand the nature of these normal modes, we include a systematic study of a series of quinones. Our investigation employs a combination of 2DIR spectroscopy and electronic structure calculations to explore vibrational coupling in quinones and PAHs. We compare the calculated vibrational characteristics to those extracted from 2DIR spectra. ATK acknowledges the Donors of the American Chemical Society Petroleum Research Fund for support of this research.

  12. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706 (United States); Elstner, Marcus [Theoretische Chemische Biologie, Universität Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe (Germany)

    2015-08-28

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.

  13. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets

  14. Identification and measurement of intermolecular interaction in polyester/polystyrene blends by FTIR-photoacoustic spectrometry

    Fourier transform infrared photoacoustic spectrometry was used to reveal and identify n-p type intermolecular interaction formed in plastic comprising binary blends of polystyrene and a biodegradable polymer, either polylactic acid, polycaprolactone or poly(tetramethyleneadipate-co-terephthalate)....

  15. Intermolecular Interaction Potential Energy and Force%分子间的相互作用势能与分子力

    罗兴垅

    2012-01-01

    引入相对距离R、相对势能U与相对力F,导出了米势的相对势能U(R)及其相应的相对力F(R)与参数n、m的关系,并精确地绘制了伦纳德-琼斯势的相对势能U(R)曲线及其相应的相对力F(R)曲线和平衡位置附近的近似相对势能U(X)曲线、近似相对力F(X)曲线.%The paper introduces the relative distance,relative potential energy and relative power,derives the relative potential energy of Mie potential and its corresponding relative force and the relationships of parameter n and m,and accurately draws the relative potential energy curve of Leonard-Jones potential and its corresponding relative force curve and near the equilibrium position the approximate relative potential energy curve and the approximate relative force curve.

  16. Self-Assembly and Intermolecular Forces When Cellulose and Water Interact Using Molecular Modeling

    Ali Chami Khazraji

    2013-01-01

    Full Text Available Cellulose chains are linear and aggregation occurs via both intra- and intermolecular hydrogen bonds. Cellulose has a strong affinity to itself and toward materials containing hydroxyls groups. Based on the preponderance of hydroxyl functional groups, cellulose is very reactive with water. At room temperature, cellulose chains will have at least a monomolecular layer of water associated to it. The formation of hydrogen bonds at the cellulose/water interface is shown to depend essentially on the adsorption site, for example, the equatorial hydroxyls or OH moieties pointing outward from the cellulose chains. The vdW forces also contribute significantly to the adsorption energy. They are a considerable cohesive energy into the cellulose network. At the surface of the cellulose chains, many intermolecular hydrogen bonds of the cellulose chains are lost. However, they are compensated by hydrogen bonds with water molecules. Electronic clouds can be distorted and create electrostatic dipoles. The large antibonding electron cloud that exists around the glucosidic bonds produces an induced polarization at the approach of water molecules. The electron cloud can be distorted and create an electrostatic dipole. It applies to the total displacement of the atoms within the material. Orbitals play a special role in reaction mechanism. Hydrophilic/hydrophobic nature of cellulose is based on its structural anisotropy. Cellulose-water interactions are exothermic reactions. These interactions may occur spontaneously and result in higher randomness of the system. They are denoted by a negative heat flow (heat is lost to the surroundings. Energy does not need to be inputted in order for cellulose-water interactions to occur.

  17. Modulation of the intermolecular interaction of myoglobin by removal of the heme

    Imamura, Hiroshi; Morita, Takeshi [Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522 (Japan); Sumi, Tomonari [Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530 (Japan); Isogai, Yasuhiro [Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 (Japan); Kato, Minoru [Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Nishikawa, Keiko, E-mail: k.nishikawa@faculty.chiba-u.jp [Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522 (Japan)

    2013-11-01

    The present study analysed small-angle X-ray scattering profiles of myoglobin to examine how removal of the heme changes the intermolecular interaction. Toward understanding intermolecular interactions governing self-association of proteins, the present study investigated a model protein, myoglobin, using a small-angle X-ray scattering technique. It has been known that removal of the heme makes myoglobin aggregation-prone. The interparticle interferences of the holomyoglobin and the apomyoglobin were compared in terms of the structure factor. Analysis of the structure factor using a model potential of Derjaguin–Laudau–Verwey–Overbeek (DLVO) suggests that the intermolecular interaction potential of apomyoglobin is more attractive than that of holomyoglobin at short range from the protein molecule.

  18. Influence of Electrostatic and Intermolecular Interactions on the Solution Behavior and Electrospinning of Functional Nanofibers

    Hunley, Matthew T

    2010-01-01

    The solution rheological and electrospinning behavior of a series of charge-containing polymers, surface-active agents, and carbon nanotube composites was studied to investigate the effect of intermolecular interactions, including electrostatic interactions, hydrogen bonding, surface activity, and surface functionalization of carbon nanotubes. The synthesis of novel polyelectrolytes with varied topologies, charge content, and counterions tailored the charged macromolecules to elucidate struc...

  19. Characterization of intermolecular interaction between Cl2 and HX (X=F, Cl and Br: An ab initio, DFT, NBO and AIM study

    Morteza Vatanparast

    2014-10-01

    Full Text Available The character of the intermolecular interactions in Cl2-HX (X =F, Cl and Br complexes has been investigated by means of the second-order Möller–Plesset perturbation theory (MP2 and the density functional theory (DFT calculations. The results show that there are two types of lowest interaction potential equilibrium structures in the interactions between Cl2 and HX: X∙∙∙Cl type geometry and hydrogen-bonded geometry. The calculated interaction energies show that the X∙∙∙Cl type structures are more stable than the corresponding hydrogen-bonded structures. The nature of the intermolecular interactions has been also investigated by natural bond orbital (NBO and atoms in molecules (AIM. The AIM analysis reveals that both types of intermolecular interactions are “closed-shell” noncovalent interactions.

  20. Biaxial Dielectrophoresis Force Spectroscopy: A Stoichiometric Approach for Examining Intermolecular Weak Binding Interactions.

    Park, In Soo; Kwak, Tae Joon; Lee, Gyudo; Son, Myeonggu; Choi, Jeong Woo; Choi, Seungyeop; Nam, Kihwan; Lee, Sei-Young; Chang, Woo-Jin; Eom, Kilho; Yoon, Dae Sung; Lee, Sangyoup; Bashir, Rashid; Lee, Sang Woo

    2016-04-26

    The direct quantification of weak intermolecular binding interactions is very important for many applications in biology and medicine. Techniques that can be used to investigate such interactions under a controlled environment, while varying different parameters such as loading rate, pulling direction, rupture event measurements, and the use of different functionalized probes, are still lacking. Herein, we demonstrate a biaxial dielectrophoresis force spectroscopy (BDFS) method that can be used to investigate weak unbinding events in a high-throughput manner under controlled environments and by varying the pulling direction (i.e., transverse and/or vertical axes) as well as the loading rate. With the BDFS system, we can quantitatively analyze binding interactions related to hydrogen bonding or ionic attractions between functionalized microbeads and a surface within a microfluidic device. Our BDFS system allowed for the characterization of the number of bonds involved in an interaction, bond affinity, kinetic rates, and energy barrier heights and widths from different regimes of the energy landscape. PMID:27007455

  1. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions.

    Azar, Richard Julian; Head-Gordon, Martin

    2015-05-28

    Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the "(2)"-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidation of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order. PMID:26026428

  2. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions

    Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the “(2)”-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidation of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order

  3. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide

    We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N2O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N2O–N2O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N2O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data

  4. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide

    Crusius, Johann-Philipp, E-mail: johann-philipp.crusius@uni-rostock.de; Hassel, Egon [Lehrstuhl für Technische Thermodynamik, Universität Rostock, 18059 Rostock (Germany); Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard [Institut für Chemie, Universität Rostock, 18059 Rostock (Germany)

    2015-06-28

    We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N{sub 2}O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N{sub 2}O–N{sub 2}O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N{sub 2}O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.

  5. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide.

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2015-06-28

    We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N2O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N2O-N2O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N2O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data. PMID:26133428

  6. Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential

    We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform

  7. Intermolecular interactions governing the partition between particulate and gas phases for typical organic pollutants

    YU HaiYing; QIAO XianLiang; YANG Ping; DING GuangHui; CHEN JingWen

    2007-01-01

    The partition coefficients between particulate and gas phases (Kp) for organic pollutants are of great importance to characterize the behavior of organic pollutants in atmosphere, and are basic data needed by ecological risk assessment. Partial least squares (PLS) regression with 16 theoretical molecular structural descriptors was used to develop polyparameter linear free energy relationship (LFER) model for Kp of 18 aliphatic hydrocarbons, 21 polycyclic aromatic hydrocarbons (PAHs), 16 polychlorinated biphenyls (PCBs) and 13 polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs). The obtained model has a good predictive ability and robustness, which can be used for estimating Kp of chemicals with similar structures. Intermolecular dispersive interactions play a leading role in governing Kp, followed by charge-transfer interactions and hindrance effects of molecular size. The respective models developed for different group compounds imply that the action mechanism is similar, and dipole-dipole and dipole-induced dipole interactions play a minor role in governing Kp of n-alkanes, PCBs and PCDD/Fs.

  8. Evidence for a noncovalent intermolecular interaction of opiates with thiamine.

    Misra, A L; Vadlamani, N L; Pontani, R B

    1977-11-01

    Opiate agonists and antagonists formed reversible molecular complexes with thiamine. The absorption maxima of these complexes were at wavelengths longer than those of the individual components and their intensities depended on the concentration and nature of the opiate component. The possible implications of such an interaction are discussed. PMID:928957

  9. Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions

    Horn, Paul R., E-mail: prhorn@berkeley.edu, E-mail: mhg@cchem.berkeley.edu; Head-Gordon, Martin, E-mail: prhorn@berkeley.edu, E-mail: mhg@cchem.berkeley.edu [Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-09-21

    The polarization energy in intermolecular interactions treated by self-consistent field electronic structure theory is often evaluated using a constraint that the atomic orbital (AO) to molecular orbital transformation is blocked by fragments. This approach is tied to AO basis sets, overestimates polarization energies in the overlapping regime, particularly in large AO basis sets, and lacks a useful complete basis set limit. These problems are addressed by the construction of polarization subspaces based on the responses of isolated fragments to weak electric fields. These subspaces are spanned by fragment electric-field response functions, which can capture effects up to the dipole (D), or quadrupole (DQ) level, or beyond. Schemes are presented for the creation of both non-orthogonal and orthogonal fragment subspaces, and the basis set convergence of the polarization energies computed using these spaces is assessed. Numerical calculations for the water dimer, water–Na{sup +}, water–Mg{sup 2+}, water–F{sup −}, and water–Cl{sup −} show that the non-orthogonal DQ model is very satisfactory, with small differences relative to the orthogonalized model. Additionally, we prove a fundamental difference between the polarization degrees of freedom in the fragment-blocked approaches and in constrained density schemes. Only the former are capable of properly prohibiting charge delocalization during polarization.

  10. Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions.

    Horn, Paul R; Head-Gordon, Martin

    2015-09-21

    The polarization energy in intermolecular interactions treated by self-consistent field electronic structure theory is often evaluated using a constraint that the atomic orbital (AO) to molecular orbital transformation is blocked by fragments. This approach is tied to AO basis sets, overestimates polarization energies in the overlapping regime, particularly in large AO basis sets, and lacks a useful complete basis set limit. These problems are addressed by the construction of polarization subspaces based on the responses of isolated fragments to weak electric fields. These subspaces are spanned by fragment electric-field response functions, which can capture effects up to the dipole (D), or quadrupole (DQ) level, or beyond. Schemes are presented for the creation of both non-orthogonal and orthogonal fragment subspaces, and the basis set convergence of the polarization energies computed using these spaces is assessed. Numerical calculations for the water dimer, water-Na(+), water-Mg(2+), water-F(-), and water-Cl(-) show that the non-orthogonal DQ model is very satisfactory, with small differences relative to the orthogonalized model. Additionally, we prove a fundamental difference between the polarization degrees of freedom in the fragment-blocked approaches and in constrained density schemes. Only the former are capable of properly prohibiting charge delocalization during polarization. PMID:26395691

  11. Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions

    The polarization energy in intermolecular interactions treated by self-consistent field electronic structure theory is often evaluated using a constraint that the atomic orbital (AO) to molecular orbital transformation is blocked by fragments. This approach is tied to AO basis sets, overestimates polarization energies in the overlapping regime, particularly in large AO basis sets, and lacks a useful complete basis set limit. These problems are addressed by the construction of polarization subspaces based on the responses of isolated fragments to weak electric fields. These subspaces are spanned by fragment electric-field response functions, which can capture effects up to the dipole (D), or quadrupole (DQ) level, or beyond. Schemes are presented for the creation of both non-orthogonal and orthogonal fragment subspaces, and the basis set convergence of the polarization energies computed using these spaces is assessed. Numerical calculations for the water dimer, water–Na+, water–Mg2+, water–F−, and water–Cl− show that the non-orthogonal DQ model is very satisfactory, with small differences relative to the orthogonalized model. Additionally, we prove a fundamental difference between the polarization degrees of freedom in the fragment-blocked approaches and in constrained density schemes. Only the former are capable of properly prohibiting charge delocalization during polarization

  12. Ab initio investigation of intermolecular interactions in solid benzene

    Bludský, Ota; Rubeš, Miroslav

    2008-01-01

    Roč. 77, - (2008), 092103/1-092103/4. ISSN 1098-0121 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550613 Institutional research plan: CEZ:AV0Z40550506 Keywords : augmented-wawe method * rare-gas solids * energies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.322, year: 2008

  13. Intermolecular interactions in the bilirubin-cholate-silica system

    Vlasova, N. N.; Golovkova, L. P.; Severinovskaya, O. V.

    2007-06-01

    Bilirubin-cholate interactions in aqueous solutions were studied. The constants of binding of bilirubin with taurocholate dimers and taurodeoxycholate trimers were calculated. The adsorption of bilirubin and cholates on the surface of highly dispersed silica was studied. It was shown that taurine-conjugated cholates are poorly adsorbed from micellar solutions on the silica surface, the specific amount of bilirubin adsorbed decreases with increasing concentration of cholates in the solution, the affinity of free bilirubin for the silica surface is independent of the nature of the cholic acid, and that the affinity of cholate-bilirubin complexes for the silica surface is lower than the affinity of free bilirubin.

  14. Atom depth analysis delineates mechanisms of protein intermolecular interactions

    Alocci, Davide, E-mail: alodavide@gmail.com [Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Fiorentina 1, 53100 Siena (Italy); Bernini, Andrea, E-mail: andrea.bernini@unisi.it [Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Fiorentina 1, 53100 Siena (Italy); Niccolai, Neri, E-mail: neri.niccolai@unisi.it [Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Fiorentina 1, 53100 Siena (Italy); SienaBioGrafix Srl, via A. Fiorentina 1, 53100 Siena (Italy)

    2013-07-12

    Highlights: •3D atom depth analysis is proposed to identify different layers in protein structures. •Amino acid contents for each layers have been analyzed for a large protein dataset. •Charged amino acids in the most external layer are present at very different extents. •Atom depth indexes of K residues reflect their side chains flexibility. •Mobile surface charges can be responsible for long range protein–protein recognition. -- Abstract: The systematic analysis of amino acid distribution, performed inside a large set of resolved protein structures, sheds light on possible mechanisms driving non random protein–protein approaches. Protein Data Bank entries have been selected using as filters a series of restrictions ensuring that the shape of protein surface is not modified by interactions with large or small ligands. 3D atom depth has been evaluated for all the atoms of the 2,410 selected structures. The amino acid relative population in each of the structural layers formed by grouping atoms on the basis of their calculated depths, has been evaluated. We have identified seven structural layers, the inner ones reproducing the core of proteins and the outer one incorporating their most protruding moieties. Quantitative analysis of amino acid contents of structural layers identified, as expected, different behaviors. Atoms of Q, R, K, N, D residues are increasingly more abundant in going from core to surfaces. An opposite trend is observed for V, I, L, A, C, and G. An intermediate behavior is exhibited by P, S, T, M, W, H, F and Y. The outer structural layer hosts predominantly E and K residues whose charged moieties, protruding from outer regions of the protein surface, reorient free from steric hindrances, determining specific electrodynamics maps. This feature may represent a protein signature for long distance effects, driving the formation of encounter complexes and the eventual short distance approaches that are required for protein

  15. Benchmark Calculations of Three-Body Intermolecular Interactions and the Performance of Low-Cost Electronic Structure Methods.

    Řezáč, Jan; Huang, Yuanhang; Hobza, Pavel; Beran, Gregory J O

    2015-07-14

    Many-body noncovalent interactions are increasingly important in large and/or condensed-phase systems, but the current understanding of how well various models predict these interactions is limited. Here, benchmark complete-basis set coupled cluster singles, doubles, and perturbative triples (CCSD(T)) calculations have been performed to generate a new test set for three-body intermolecular interactions. This "3B-69" benchmark set includes three-body interaction energies for 69 total trimer structures, consisting of three structures from each of 23 different molecular crystals. By including structures that exhibit a variety of intermolecular interactions and packing arrangements, this set provides a stringent test for the ability of electronic structure methods to describe the correct physics involved in the interactions. Both MP2.5 (the average of second- and third-order Møller-Plesset perturbation theory) and spin-component-scaled CCSD for noncovalent interactions (SCS-MI-CCSD) perform well. MP2 handles the polarization aspects reasonably well, but it omits three-body dispersion. In contrast, many widely used density functionals corrected with three-body D3 dispersion correction perform comparatively poorly. The primary difficulty stems from the treatment of exchange and polarization in the functionals rather than from the dispersion correction, though the three-body dispersion may also be moderately underestimated by the D3 correction. PMID:26575743

  16. Redetermined structure, intermolecular interactions and absolute configuration of royleanone

    Hoong-Kun Fun

    2011-05-01

    Full Text Available The structure of the title diterpenoid, C20H28O3, {systematic name: (4bS,8aS-3-hydroxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octahydrophenanthrene-1,4-dione} is confirmed [Eugster et al. (1993. Private communication (refcode HACGUN. CCDC, Union Road, Cambridge] and its packing is now described. Its absolute structure was established by refinement against data collected with Cu radiation: the two stereogenic centres both have S configurations. One cyclohexane ring adopts a chair conformation whereas the other cyclohexane ring is in a half-chair conformation and the benzoquinone ring is slightly twisted. An intramolecular O—H...O hydrogen bond generates an S(5 ring motif. In the crystal, molecules are linked into chains along [010] by O—H...O hydrogen bonds and weak C—H...O interactions. The packing also features C...O [3.131 (3 Å] short contacts.

  17. Study of intermolecular interactions in binary mixtures of ethanol in methanol

    Maharolkar, Aruna P.; Khirade, P. W.; Murugkar, A. G.

    2016-05-01

    Present paper deals with study of physicochemical properties like viscosity, density and refractive index for the binary mixtures of ethanol and methanol over the entire concentration range were measured at 298.15 K. The experimental data further used to determine the excess properties viz. excess molar volume, excess viscosity, excess molar refraction. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure making factor in the mixture predominates in the system.

  18. Intermolecular potential energy surface and thermophysical properties of ethylene oxide.

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide. PMID:25362314

  19. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    Crusius, Johann-Philipp, E-mail: johann-philipp.crusius@uni-rostock.de; Hassel, Egon [Lehrstuhl für Technische Thermodynamik, Universität Rostock, 18059 Rostock (Germany); Hellmann, Robert; Bich, Eckard [Institut für Chemie, Universität Rostock, 18059 Rostock (Germany)

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  20. Intermolecular interactions between imidazole derivatives intercalated in layered solids. Substituent group effect

    González, M.; Lemus-Santana, A.A. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México, DF (Mexico); Rodríguez-Hernández, J. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México, DF (Mexico); Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, Havana (Cuba); Aguirre-Velez, C.I. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México, DF (Mexico); Knobel, M. [Institute of Physics “Gleb Wataghin”, UNICAMP, 13083-970 Campinas, SP (Brazil); Reguera, E., E-mail: edilso.reguera@gmail.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México, DF (Mexico)

    2013-08-15

    This study sheds light on the intermolecular interactions between imidazole derive molecules (2-methyl-imidazole, 2-ethyl-imidazole and benzimidazole) intercalated in T[Ni(CN){sub 4}] layers to form a solid of formula unit T(ImD){sub 2}[Ni(CN){sub 4}]. These hybrid inorganic–organic solids were prepared by soft chemical routes and their crystal structures solved and refined from X-ray powder diffraction data. The involved imidazole derivative molecules were found coordinated through the pyridinic N atom to the axial positions for the metal T in the T[Ni(CN){sub 4}] layer. In the interlayers region ligand molecules from neighboring layers remain stacked in a face-to-face configuration through dipole–dipole and quadrupole–quadrupole interactions. These intermolecular interactions show a pronounced dependence on the substituent group and are responsible for an ImD-pillaring concatenation of adjacent layers. This is supported by the structural information and the recorded magnetic data in the 2–300 K temperature range. The samples containing Co and Ni are characterized by presence of spin–orbit coupling and pronounced temperature dependence for the effective magnetic moment except for 2-ethyl-imidazole related to the local distortion for the metal coordination environment. For this last one ligand a weak ferromagnetic ordering ascribed to a super-exchange interaction between T metals from neighboring layers through the ligands π–π interaction was detected. - Graphical abstract: In the interlayers region imidazole derivative molecules are oriented according to their dipolar and quadrupolar interactions and minimizing the steric impediment. Highlights: • Imidazole derivatives intercalation compounds. • Intermolecular interaction between intercalated imidazole derivatives. • Hybrid inorganic–organic solids. • Pi–pi interactions and ferromagnetic coupling. • Dipolar and quadrupolar interactions between intercalated imidazole derivatives.

  1. Intermolecular interactions between imidazole derivatives intercalated in layered solids. Substituent group effect

    This study sheds light on the intermolecular interactions between imidazole derive molecules (2-methyl-imidazole, 2-ethyl-imidazole and benzimidazole) intercalated in T[Ni(CN)4] layers to form a solid of formula unit T(ImD)2[Ni(CN)4]. These hybrid inorganic–organic solids were prepared by soft chemical routes and their crystal structures solved and refined from X-ray powder diffraction data. The involved imidazole derivative molecules were found coordinated through the pyridinic N atom to the axial positions for the metal T in the T[Ni(CN)4] layer. In the interlayers region ligand molecules from neighboring layers remain stacked in a face-to-face configuration through dipole–dipole and quadrupole–quadrupole interactions. These intermolecular interactions show a pronounced dependence on the substituent group and are responsible for an ImD-pillaring concatenation of adjacent layers. This is supported by the structural information and the recorded magnetic data in the 2–300 K temperature range. The samples containing Co and Ni are characterized by presence of spin–orbit coupling and pronounced temperature dependence for the effective magnetic moment except for 2-ethyl-imidazole related to the local distortion for the metal coordination environment. For this last one ligand a weak ferromagnetic ordering ascribed to a super-exchange interaction between T metals from neighboring layers through the ligands π–π interaction was detected. - Graphical abstract: In the interlayers region imidazole derivative molecules are oriented according to their dipolar and quadrupolar interactions and minimizing the steric impediment. Highlights: • Imidazole derivatives intercalation compounds. • Intermolecular interaction between intercalated imidazole derivatives. • Hybrid inorganic–organic solids. • Pi–pi interactions and ferromagnetic coupling. • Dipolar and quadrupolar interactions between intercalated imidazole derivatives

  2. Intermolecular interactions in mixtures of ethyl formate with methanol, ethanol, and 1-propanol on density, viscosity, and ultrasonic data

    Elangovan, S.; Mullainathan, S.

    2014-12-01

    Density (ρ), viscosity (η), and ultrasonic velocity ( U) have been measured for binary mixtures of ethyl formate with methanol, ethanol, and 1-propanol at 303 K. From the experimental data, adiabatic compressibility (β), acoustic impedance ( Z), viscous relaxation time (τ), free length ( L f), free volume ( V f), internal pressure (πi), and Gibbs free energy (Δ G) have been deduced. It is shown that strength of intermolecular interactions between ethyl formate with selected 1-alcohols were in the order of methanol < ethanol < 1-propanol.

  3. Physical nature of intermolecular interactions inside Sir2 homolog active site: molecular dynamics and ab initio study.

    Czeleń, Przemysław; Czyżnikowska, Żaneta

    2016-06-01

    In the present study, we analyze the interactions of NAD+-dependent deacetylase (Sir2 homolog yeast Hst2) with carba-nicotinamide-adenine-dinucleotide (ADP-HPD). For the Sir2 homolog, a yeast Hst2 docking procedure was applied. The structure of the protein-ADP-HPD complex obtained during the docking procedure was used as a starting point for molecular dynamics simulation. The intermolecular interaction energy partitioning was performed for protein-ADP-HPD complex resulting from molecular dynamics simulation. The analysis was performed for ADP-HPD and 15 amino acids forming a deacetylase binding pocket. Although the results indicate that the first-order electrostatic interaction energy is substantial, the presence of multiple hydrogen bonds in investigated complexes can lead to significant value of induction component. PMID:27154340

  4. An isotopic mass effect on the intermolecular potential

    Herman, Michael F.; Currier, Robert P.; Clegg, Samuel M.

    2015-10-01

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born-Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this communication, the intermolecular dipole-dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born-Oppenheimer surface. The analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologue thermodynamics.

  5. Intermolecular interactions in solid-state metalloporphyrins and their impacts on crystal and molecular structures.

    Hunter, Seth C; Smith, Brenda A; Hoffmann, Christina M; Wang, Xiaoping; Chen, Yu-Sheng; McIntyre, Garry J; Xue, Zi-Ling

    2014-11-01

    A variable-temperature (VT) crystal structure study of [Fe(TPP)Cl] (TPP(2-) = meso-tetraphenylporphyrinate) and Hirshfeld surface analyses of its structures and previously reported structures of [M(TPP)(NO)] (M = Fe, Co) reveal that intermolecular interactions are a significant factor in structure disorder in the three metalloporphyrins and phase changes in the nitrosyl complexes. These interactions cause, for example, an 8-fold disorder in the crystal structures of [M(TPP)(NO)] at room temperature that obscures the M-NO binding. Hirshfeld analyses of the structure of [Co(TPP)(NO)] indicate that the phase change from I4/m to P1 leads to an increase in void-volume percentage, permitting additional structural compression through tilting of the phenyl rings to offset the close-packing interactions at the interlayer positions in the crystal structures with temperature decrease. X-ray and neutron structure studies of [Fe(TPP)Cl] at 293, 143, and 20 K reveal a tilting of the phenyl groups away from being perpendicular to the porphyrin ring as a result of intermolecular interactions. Structural similarities and differences among the three complexes are identified and described by Hirshfeld surface and void-volume calculations. PMID:25338536

  6. Vibrational Circular Dichroism (VCD) Reveals Subtle Conformational Aspects and Intermolecular Interactions in the Carnitine Family.

    Mazzeo, Giuseppe; Abbate, Sergio; Longhi, Giovanna; Castiglioni, Ettore; Villani, Claudio

    2015-12-01

    Vibrational circular dichroism spectra (VCD) in the mid-IR region and electronic circular dichroism (ECD) spectra for three carnitine derivatives in the form of hydrochloride salts were recorded in deuterated methanol solutions. Density Functional Theory calculations help one to understand the significance of the observed VCD bands. VCD and ECD spectra are informative about the absolute configuration of the molecule, but VCD data reveal also some conformational aspects in the N,N,N-trimethyl moiety and inform us about intermolecular interactions gained from the carbonyl stretching region for the acyl substituted carnitines. PMID:26447810

  7. Intermolecular interactions in methyl formate-ethanol mixtures at 303-313 K according to ultrasonic data

    Elangovan, S.; Mullainathan, S.

    2014-04-01

    Density (ρ), viscosity (η), and ultrasonic velocity ( U) have been measured for a binary mixture composed of methyl formate and ethanol at 303, 308, and 313 K. The adiabatic compressibility (β), acoustic impedance (Z), free length ( L f ), free volume ( V f ), internal pressure (π i ), viscous relaxation time (τ), and Gibbs free energy (Δ G) were calculated from the experimental data. The excess values of these parameters (β E , Z E , L {/f E }, V {/f E }, π {/i E }, τ E , and Δ G E ) have also been calculated using the determined parameters and interpreted in terms of molecular interactions. The deviations in the sign and values of these excess parameters from the ideal mixing reveal the nature of intermolecular interactions between components of the mixture.

  8. Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system

    Li, Jun; Guo, Hua

    2015-12-01

    The permutation invariant polynomial-neural network (PIP-NN) approach is extended to fit intermolecular potential energy surfaces (PESs). Specifically, three PESs were constructed for the Ne-C2H2 system. PES1 is a full nine-dimensional PIP-NN PES directly fitted to ˜42 000 ab initio points calculated at the level of CCSD(T)-F12a/cc-pCVTZ-F12, while the other two consist of the six-dimensional PES for C2H2 [H. Han, A. Li, and H. Guo, J. Chem. Phys. 141, 244312 (2014)] and an intermolecular PES represented in either the PIP (PES2) or PIP-NN (PES3) form. The comparison of fitting errors and their distributions, one-dimensional cuts and two-dimensional contour plots of the PESs, as well as classical trajectory collisional energy transfer dynamics calculations shows that the three PESs are very similar. We conclude that full-dimensional PESs for non-covalent interacting molecular systems can be constructed efficiently and accurately by the PIP-NN approach for both the constituent molecules and intermolecular parts.

  9. Intermolecular interactions during complex coacervation of pea protein isolate and gum arabic.

    Liu, Shuanghui; Cao, Yuan-Long; Ghosh, Supratim; Rousseau, Dérick; Low, Nicholas H; Nickerson, Michael T

    2010-01-13

    The nature of intermolecular interactions during complexation between pea protein isolate (PPI) and gum arabic (GA) was investigated as a function of pH (4.30-2.40) by turbidimetric analysis and confocal scanning microscopy in the presence of destabilizing agents (100 mM NaCl or 100 mM urea) and at different temperatures (6-60 degrees C). Complex formation followed two pH-dependent structure-forming events associated with the formation of soluble and insoluble complexes and involved interactions between GA and PPI aggregates. Complex formation was driven by electrostatic attractive forces between complementary charged biopolymers, with secondary stabilization by hydrogen bonding. Hydrophobic interactions were found to enhance complex stability at lower pH (pH 3.10), but not with its formation. PMID:19938857

  10. Interfacial and intermolecular interactions determining the rotational orientation of C60 adsorbed on Au(111)

    Paßens, Michael; Karthäuser, Silvia

    2015-12-01

    Close-packed monolayers of fullerenes on metallic substrates are very rich systems with respect to their rotational degrees of freedom and possible interactions with different adsorption sites or next neighbours. In this connection, we report in detail on the (2√3 × 2√3)R30°-superstructure of C60 with respect to the Au(111)-surface. We use molecular orbital imaging in systematic UHV-STM studies to reveal the delicate balance of interfacial and intermolecular interactions in this system. Thus, bright C60-molecules in 5:6-top and 6:6-top geometries are observed depending on the respective next neighbours. Moreover, tiny changes in the appearance of the unoccupied molecular orbitals of dim C60-molecules in hex-vac positions are identified which are caused by the respective interaction with the facets surrounding the Au-vacancy.

  11. Intermolecular interactions of trifluorohalomethanes with Lewis bases in the gas phase: An ab initio study

    Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D., E-mail: sdchao@spring.iam.ntu.edu.tw [Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan (China)

    2014-10-07

    We perform an ab initio computational study of molecular complexes with the general formula CF{sub 3}X—B that involve one trifluorohalomethane CF{sub 3}X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH{sub 3} and PH{sub 3}), two n-pairs (H{sub 2}O and H{sub 2}S), two n-pairs with an unsaturated bond (H{sub 2}CO and H{sub 2}CS), and a single π-pair (C{sub 2}H{sub 4}) and two π-pairs (C{sub 2}H{sub 2}). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C–X bond lengths shorten, while the C–X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.

  12. Gold behaves as hydrogen in the intermolecular self-interaction of metal aurides MAu4 (M = Ti, Zr, and Hf).

    Jung, Jaehoon; Kim, Hyemi; Kim, Jong Chan; Park, Min Hee; Han, Young-Kyu

    2011-03-01

    We performed density functional calculations to examine the intermolecular self-interaction of metal tetraauride MAu(4) (M = Ti, Zr, and Hf) clusters. We found that the metal auride clusters have strong dimeric interactions (2.8-3.1 eV) and are similar to the metal hydride analogues with respect to structure and bonding nature. Similarly to (MH(4))(2), the (μ-Au)(3) C(s) structures with three three-center two-electron (3c-2e) bonds were found to be the most stable. Natural orbital analysis showed that greater than 96 % of the Au 6s orbital contributes to the 3c-2e bonds, and this predominant s orbital is responsible for the similarity between metal aurides and metal hydrides (>99 % H 1s). The favorable orbital interaction between occupied Au 6s and unoccupied metal d orbitals leads to a stronger dimeric interaction for MAu(4)-MAu(4) than the interaction for MH(4)-MH(4). There is a strong relationship between the dimeric interaction energy and the chemical hardness of its monomer for (MAu(4))(2) and (MH(4))(2). PMID:21225974

  13. Description of cross peaks induced by intermolecular vibrational energy transfer in two-dimensional infrared spectroscopy

    Villaeys, Albert A

    2013-01-01

    In the present work, the analytical description of an intermolecular vibrational energy transfer, analyzed by two dimensional infrared spectroscopy, is established. The energy transfer process takes place between the dark combination states of low frequency modes pertaining to different molecules. The appearance of the cross peaks results from coherent transfer between these combination states and an optically active state of the acceptor molecule. Such a process has recently been observed experimentally between the nitrile groups of acetonitrile-d3 and benzonitrile molecules. This molecular system will be used as a model for the simulations of their two-dimensional infrared spectra. The dependence of the cross-peak growth, which is a signature of the intermolecular energy transfer, will be discussed in detail as a function of the molecular dynamical constants.

  14. Intermolecular nonradiative energy transfer in clusters with plasmonic nanoparticles

    Kucherenko, M. G.; Stepanov, V. N.; Kruchinin, N. Yu.

    2015-01-01

    The influence of carbon (fullerenes, nanotubes) and metal (Ni, Co, Cu, Ag) nanoparticles on the nonradiative electronic excitation energy transfer between the molecules of organic dyes (acrylic orange as a donor and Nile blue as an acceptor) in alcohol solutions of polyvinylbutyral is studied. It is found that, at particular concentrations of the mixture components, plasmonic nanoparticles affect the nonradiative electronic excitation energy transfer, which is manifested in an increase in the intensity of sensitized fluorescence of acceptors with simultaneous quenching of the fluorescence of donors. A very simple model is proposed to illustrate the observed redistribution of luminescence intensity between the spectral bands of the general spectrum. Molecular-dynamic calculations of the structure of nanocomposites performed for the same purpose confirmed the formation of associated molecular plasmonic complexes fixed by macrochain links.

  15. Crystal structures and intermolecular interactions of two novel antioxidant triazolyl-benzimidazole compounds

    Karayel, A., E-mail: matchlessjimmy@163.com, E-mail: yccaoh@hotmail.com; Özbey, S. [Hacettepe University, Physics Engineering Department (Turkey); Ayhan-Kılcıgil, G.; Kuş, C. [Ankara University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Turkey)

    2015-12-15

    The crystal structures of 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(3-fluorophenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G6C) and 5-(2-(p-chlorophenylbenzimidazol-1-yl-methyl)-4-(2-methylphenyl)-2, 4-dihydro-[1,2,4]-triazole-3-thione (G4C) have been determined by single-crystal X-ray diffraction. Benzimidazole ring systems in both molecules are planar. The triazole part is almost perpendicular to the phenyl and the benzimidazole parts of the molecules in order to avoid steric interactions between the rings. The crystal structures are stabilized by intermolecular hydrogen bonds between the amino group of the triazole and the nitrogen atom of benzimidazole of a neighboring molecule.

  16. Manifestation of structure and intermolecular interactions of biologically active brassinosteroids in infrared spectra

    Borisevich, N. A.; Skornyakov, I. V.; Khripach, V. A.; Tolstorozhev, G. B.; Zhabinskii, V. N.

    2007-09-01

    We have analyzed the IR spectra obtained for steroidal phytohormones 24-epibrassinolide, 24-epicastasterone, 28-homobrassinolide, and 28-homocastasterone. The characteristic frequencies of the stretching vibrations of the hydrocarbon groups CH3, CH2, and CH and also the C=O groups in the spectra of brassinolides are higher than in the spectra of castasterones, which makes it possible to identify them from the IR spectra. Study of the spectra of these brassinosteroids in different media (pressed samples in KBr, films, solutions in CHCl3 and CDCl3) allowed us to establish the presence of intermolecular interactions in which C=O and OH groups, OH-OH groups participate, and also the possible formation of intramolecular hydrogen bonds between the OH groups of the molecules.

  17. Crystal structures and intermolecular interactions of two novel antioxidant triazolyl-benzimidazole compounds

    Karayel, A.; Özbey, S.; Ayhan-Kılcıgil, G.; Kuş, C.

    2015-12-01

    The crystal structures of 5-(2-( p-chlorophenylbenzimidazol-1-yl-methyl)-4-(3-fluorophenyl)-2,4-dihydro-[1,2,4]-triazole-3-thione (G6C) and 5-(2-( p-chlorophenylbenzimidazol-1-yl-methyl)-4-(2-methylphenyl)-2,4-dihydro-[1,2,4]-triazole-3-thione (G4C) have been determined by single-crystal X-ray diffraction. Benzimidazole ring systems in both molecules are planar. The triazole part is almost perpendicular to the phenyl and the benzimidazole parts of the molecules in order to avoid steric interactions between the rings. The crystal structures are stabilized by intermolecular hydrogen bonds between the amino group of the triazole and the nitrogen atom of benzimidazole of a neighboring molecule.

  18. Intermolecular interactions and 3D structure in cellulose-NaOH-urea aqueous system.

    Jiang, Zhiwei; Fang, Yan; Xiang, Junfeng; Ma, Yanping; Lu, Ang; Kang, Hongliang; Huang, Yong; Guo, Hongxia; Liu, Ruigang; Zhang, Lina

    2014-08-28

    The dissolution of cellulose in NaOH/urea aqueous solution at low temperature is a key finding in cellulose science and technology. In this paper, (15)N and (23)Na NMR experiments were carried out to clarify the intermolecular interactions in cellulose/NaOH/urea aqueous solution. It was found that there are direct interactions between OH(-) anions and amino groups of urea through hydrogen bonds and no direct interaction between urea and cellulose. Moreover, Na(+) ions can interact with both cellulose and urea in an aqueous system. These interactions lead to the formation of cellulose-NaOH-urea-H2O inclusion complexes (ICs). (23)Na relaxation results confirmed that the formation of urea-OH(-) clusters can effectively enhance the stability of Na(+) ions that attracted to cellulose chains. Low temperature can enhance the hydrogen bonding interaction between OH(-) ions and urea and improve the binding ability of the NaOH/urea/H2O clusters that attached to cellulose chains. Cryo-TEM observation confirmed the formation of cellulose-NaOH-urea-H2O ICs, which is in extended conformation with mean diameter of about 3.6 nm and mean length of about 300 nm. Possible 3D structure of the ICs was proposed by the M06-2X/6-31+G(d) theoretical calculation, revealing the O3H···O5 intramolecular hydrogen bonds could remain in the ICs. This work clarified the interactions in cellulose/NaOH/urea aqueous solution and the 3D structure of the cellulose chain in dilute cellulose/NaOH/urea aqueous solution. PMID:25111839

  19. Effects of Weak Intermolecular Interactions on the Molecular Isomerism of Tricobalt Metal Chains

    Poulsen, R.; Overgaard, J; Schulman, A; Østergaard, C; Murillo, C; Spackman, M; Iversen, B

    2009-01-01

    Depending on the number of interstitial solvent molecules, n, crystals of the linear chain compound Co3(dipyridylamide)4Cl2{center_dot}nCH2Cl2 adopt either symmetrical or unsymmetrical metal chain structures. We explore here the possible reasons for such behavior using Hirshfeld surface analysis of intermolecular interactions as well as the charge density determined from 100(1) K X-ray diffraction data on the unsymmetrical complex Co3(dipyridylamide)4Cl2{center_dot}2.11CH2Cl2, u-1, and crystal structures of u-1 determined from single crystal synchrotron X-ray diffraction data at 20, 150, and 300 K. The new crystal structures are compared with previous structural results on a crystal with slightly different solvent content. This change in solvent content only affects the bond distances to atom Co(3), which are also strongly affected by temperature changes due to a spin crossover transition. Large differences in intermolecular interactions are revealed by the Hirshfeld surface analysis between symmetrical (s-1) and unsymmetrical (u-1) crystal solvates, suggesting that the molecular isomerism is strongly influenced by crystal packing effects. Topological analysis of the static electron density of u-1 suggests that there is direct metal-metal bonding for both the shorter Co(1)-Co(2) and the longer Co(2)-Co(3) contact. The approximate description of the system as a (Co2)2+-dimer and an isolated Co2+-ion is reflected in the character of the metal-ligand interactions, which are more ionic for the isolated Co(3) atom, and the topological charges Co(1)+0.50, Co(2)+0.77, and Co(3)+1.36. The two termini of u-1 are found to be very different, both in terms of structural surroundings as well as topology. The central Co(2) atom is similar to a cobalt atom in a tetragonally distorted octahedral environment resulting in preferred occupancy in the t2g orbitals. The Co(1) atom has significant deformation in the xz and yz planes (z along the chain axis, x and y toward ligands

  20. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    Osiry, H.; Cano, A.; Lemus-Santana, A.A.; Rodríguez, A. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional (Mexico); Carbonio, R.E. [INFIQC-CONICET, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba (Argentina); Reguera, E., E-mail: edilso.reguera@gmail.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional (Mexico)

    2015-10-15

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework.

  1. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework

  2. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    Osiry, H.; Cano, A.; Lemus-Santana, A. A.; Rodríguez, A.; Carbonio, R. E.; Reguera, E.

    2015-10-01

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π-π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting.

  3. Intermolecular interactions in ternary solutions of some 1,2,4-triazolium ylids studied by spectral means

    Closca, Valentina; Melniciuc-Puica, Nicoleta; Dorohoi, Dana Ortansa; Benchea, A. C.

    2014-08-01

    Triazolium ylids are dipolar molecules with separated charges in their ground electronic state; the positive charge is located on one Nitrogen atom belonging to the heterocycle and the negative charge is located near the ylid carbanion. The intramolecular charge transfer from the carbanion to heterocycle gives a visible electronic absorption band, very sensitive to the solvent nature. Its position in the wavenumber scale offers information about the intermolecular interactions in which the ylid molecules are engaged. The spectral study revealed the presence of both universal and specific interactions in solutions of 1,2,4-triazolium ylids with protic solvents. By choosing adequate binary solvents, the contribution of the specific interaction of the weak hydrogen bond between the -OH atomic group of the protic solvents and the ylid carbanion can be estimated. Ternary solutions of the studied ylids achieved with Methanol +Benzene, Water + Ethanol and 1,3 Propanediol + Dimethyl formamide binary solvents are analyzed from spectral point of view and the difference between the potential energies in molecular pairs of the types: 1,2,4-triazolium ylid-protic solvent and 1,2,4-triazolium ylid-non protic were estimated on the basis of the statistic cell model of ternary solutions.

  4. A combined experimental and quantum chemical studies on molecular structure, spectral properties, intra and intermolecular interactions and first hyperpolarizability of 4-(benzyloxy)benzaldehyde thiosemicarbazone and its dimer

    Kumar, Amit; Rawat, Poonam; Baboo, Vikas; Verma, Divya; Singh, R. N.; Saxena, Deepti; Gauniyal, H. M.; Pandey, Anoop Kumar; Pal, Harish

    2013-02-01

    In the present work, a detailed spectroscopic analysis of 4-(benzyloxy)benzaldehyde thiosemicarbazone (3) has been carried out using 1H NMR, 13C NMR, UV-Visible and FT-IR spectroscopic techniques. The quantum chemical calculations have been carried out using DFT level of theory, B3LYP functional and 6-31G(d,p) basis set. The calculated thermodynamic parameters show that the formation of 3 is an exothermic and spontaneous reaction at 25 °C. The vibrational analysis indicates the formation of dimer in the solid state by intermolecular hydrogen bonding (Nsbnd H⋯Sdbnd C) and the binding energy of dimer is calculated to be 11.2 kcal/mol, using DFT calculation. NBO analysis is carried out to investigate the charge transfer in various intra and intermolecular interactions involved in dimer. Topological parameters at bond critical points (BCPs) are calculated to analyze the strength and nature of various intra and intermolecular interactions in dimer by Bader's 'Atoms in molecules' AIM theory in detail. The local reactivity descriptors such as Fukui functions (fk+, fk-), local softnesses (sk+, sk-) and electrophilicity indices (ωk+, ωk-) analysis are performed to determine the reactive sites within molecule. Non linear optical (NLO) behavior of title compound is investigated by the computed value of first hyperpolarizability (β0).

  5. Kirromycin-induced modifications facilitate the separation of EF-Tu species and reveal intermolecular interactions.

    Anborgh, P H; Swart, G W; Parmeggiani, A

    1991-11-01

    A simplified method for the separation of a kirromycin-sensitive tufB-encoded elongation factor Tu (EF-TuBs) from a kirromycin-resistant tufA product (EF-TuAr) was obtained by exploiting the specific increase of negative [corrected] charges induced by the antibiotic, resulting in a retarded elution of kirromycin-bound EF-TuBs on ionic chromatography. The kirromycin-free EF-TuBs is active in poly(Phe) synthesis and shows similar properties to EF-TuAsBs. As expected for these two distinct species, the dissociation of the EF-TuArBs.GTP complex in the presence of kirromycin shows a biphasic curve; in contrast, a monophasic GTP dissociation rate was found for a combination of two mutated EF-Tu species, EF-TuArBo, revealing the existence of intermolecular interactions. These observations prove for the first time the existence of cooperative phenomena between EF-Tu species in vitro, as suggested earlier by in vivo experiments. PMID:1959611

  6. MECHANICAL RELAXATION AND INTERMOLECULAR INTERACTION IN EPOXY RESINS/POLY (ETHYLENE OXIDE)BLENDS CURED WITH PHTHALIC ANHYDRIDE

    LUO Xiaolie; ZHENG Sixun; MA Dezhu; HU Keliang

    1995-01-01

    The miscibility of the blend,composed of a bisphenol A epoxy resins (Diglycidyl etherof bisphenol A) (DGEBA) and poly(ethylene oxide) (PEO) and crosslinked by phthalicanhydride (PA) was studied using dynamic mechanical method. Single glass transitiontemperatures intermediate between the two pure components were observed for all blendlevels. The secondary relaxation mechanism should relate to not only diester linkage, butalso hydroxyether structural unit in the system. Fourier transform infrared spectroscopy(FTIR) is applied to study the curing reaction and intermolecular specific interaction of thesystem. The results indicate the PEO participates the crosslinking reaction, accelerates thecuring reaction and make the reaction more perfect. The shifts of the hydroxyl band andcarbonyl band demonstrate the presence of the intermolecular interaction in the curedblend. Moreover, the molecular interaction between the side hydroxyl in the hydroxyetherunits and the ether bond in PEO macromolecules is stronger.

  7. Intermolecular vs molecule-substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001).

    Roos, Michael; Uhl, Benedikt; Künzel, Daniela; Hoster, Harry E; Groß, Axel; Behm, R Jürgen

    2011-01-01

    The competition between intermolecular interactions and long-range lateral variations in the substrate-adsorbate interaction was studied by scanning tunnelling microscopy (STM) and force field based calculations, by comparing the phase formation of (sub-) monolayers of the organic molecules (i) 2-phenyl-4,6-bis(6-(pyridin-3-yl)-4-(pyridin-3-yl)pyridin-2-yl)pyrimidine (3,3'-BTP) and (ii) 3,4,9,10-perylene tetracarboxylic-dianhydride (PTCDA) on graphene/Ru(0001). For PTCDA adsorption, a 2D adlayer phase was formed, which extended over large areas, while for 3,3'-BTP adsorption linear or ring like structures were formed, which exclusively populated the areas between the maxima of the moiré structure of the buckled graphene layer. The consequences for the competing intermolecular interactions and corrugation in the adsorption potential are discussed and compared with the theoretical results. PMID:22003444

  8. Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001)

    Roos, Michael; Uhl, Benedikt; Künzel, Daniela; Hoster, Harry E; Groß, Axel

    2011-01-01

    Summary The competition between intermolecular interactions and long-range lateral variations in the substrate–adsorbate interaction was studied by scanning tunnelling microscopy (STM) and force field based calculations, by comparing the phase formation of (sub-) monolayers of the organic molecules (i) 2-phenyl-4,6-bis(6-(pyridin-3-yl)-4-(pyridin-3-yl)pyridin-2-yl)pyrimidine (3,3'-BTP) and (ii) 3,4,9,10-perylene tetracarboxylic-dianhydride (PTCDA) on graphene/Ru(0001). For PTCDA adsorption, a 2D adlayer phase was formed, which extended over large areas, while for 3,3'-BTP adsorption linear or ring like structures were formed, which exclusively populated the areas between the maxima of the moiré structure of the buckled graphene layer. The consequences for the competing intermolecular interactions and corrugation in the adsorption potential are discussed and compared with the theoretical results. PMID:22003444

  9. Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001

    Michael Roos

    2011-07-01

    Full Text Available The competition between intermolecular interactions and long-range lateral variations in the substrate–adsorbate interaction was studied by scanning tunnelling microscopy (STM and force field based calculations, by comparing the phase formation of (sub- monolayers of the organic molecules (i 2-phenyl-4,6-bis(6-(pyridin-3-yl-4-(pyridin-3-ylpyridin-2-ylpyrimidine (3,3'-BTP and (ii 3,4,9,10-perylene tetracarboxylic-dianhydride (PTCDA on graphene/Ru(0001. For PTCDA adsorption, a 2D adlayer phase was formed, which extended over large areas, while for 3,3'-BTP adsorption linear or ring like structures were formed, which exclusively populated the areas between the maxima of the moiré structure of the buckled graphene layer. The consequences for the competing intermolecular interactions and corrugation in the adsorption potential are discussed and compared with the theoretical results.

  10. Dynamics of intermolecular interactions in CCl4via the isotope effect by femtosecond time-resolved spectroscopy.

    Konarska, Jadwiga; Gadomski, Wojciech; Ratajska-Gadomska, Bożena; Polok, Kamil; Pudłowski, Grzegorz; Kardaś, Tomasz M

    2016-06-21

    We report our study on the ultrafast dynamics of intermolecular interactions in liquid CCl4. A transient transmission time domain signal, obtained in the 40 ps delay range, exhibits beating at the difference frequency of the totally symmetric stretching vibrations of the tetrachloride isotopologues. We show that the spectra obtained as the windowed Fourier transform of different parts of the time domain signal in the range of this totally symmetric vibration, split due to the isotope effect, carry the information about the dynamics of the coherently excited, coupled molecules. We use a simple theoretical model in order to prove that the intermolecular interaction influences the relative amplitudes of the isotopologue peaks in the spectrum. Moreover, we demonstrate that the pump induced coherence in the system leads to additional strengthening of the interaction, which can be observed in the spectra obtained from the experimental time domain signal. PMID:27244535

  11. Conformational analysis, inter-molecular interactions, electronic properties and vibrational spectroscopic studies on cis-4-hydroxy-d-proline

    Ambrish Kumar Srivastava

    2016-12-01

    Full Text Available The present study deals with a non-native amino acid, cis-4-hydroxy-d-proline (CHDP using density functional theory at B3LYP/6-31+G(d,p level. The potential energy surface scan reveals the global minimum structure of CHDP along with two potential conformers. Highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential surfaces are used to explain the chemical reactivity of title molecule. The atomic charge analysis has been carried out using Mulliken and natural population schemes. The equilibrium geometry of CHDP dimer has been obtained and inter-molecular interactions are explored using QTAIM and Natural bonding orbital analyses. Vibrational spectroscopic analysis has been performed on CHDP monomer and dimer at the same level of theory. Assignments to all vibrational modes up to 400 cm−1 have been offered along with their potential energy distribution to the maximum possible accuracy. The calculated frequencies are scaled by an equation, rather than by a constant factor and then compared with experimental FT-IR frequencies obtained by KBr disc and Nujol mull techniques. A number of electronic and thermodynamic parameters have also been evaluated for CHDP monomer and dimer.

  12. DFT study of the conductance of molecular wire: The effect of coupling geometry and intermolecular interaction on the transport properties

    QI; Yuanhua; GUAN; Daren; LIU; Chengbu

    2006-01-01

    The density functional theory (DFT) combining with the non-equilibrium Green functions (NEGF) method is applied to the study of the electronic transport properties for a Di-thiol-benzene (DTB) molecule coupled to two Au(111) surfaces. The dependence of the transport properties on the bias, the coupling geometry of the molecule-electrode interface, and the intermolecular interaction are examined in detail. The results show that the existence of the hydrogen atom at the end of the DTB molecule would significantly decrease the transmission coefficients, and then the differential conductance (dI/dV). By changing the position of the DTB molecule located between two electrodes a maximum value of calculated current is observed. It is also found that the intermolecular interaction will strongly influence the transport properties of the system studied.

  13. Analysis of intermolecular interactions in 3-(4-fluoro-3-phenoxyphenyl)-1-((4-methylpiperazin-1-yl)methyl)-1H-1,2,4-triazole-5-thiol

    Piyush Panini; Rahul Shukla; T P Mohan; B Vishalakshi; Deepak Chopra

    2014-09-01

    In the present study, we have prepared and structurally characterized a derivative of 1,2,4 triazoles, namely 3-(4-fluoro-3-phenoxyphenyl)-1-((4-methylpiperazin-1-yl)methyl)-1H-1,2,4-triazole-5-thiol (T-1) via single crystal X-ray diffraction. The crystal structure was observed to be stabilized by the presence of various intermolecular interactions in the crystalline solid such as O-H…S, C-H…F, C-H…S, C-H…N, C-H…O, C-H$\\ldots$ , $\\ldots$ and $\\ldots$ intermolecular interactions. The interaction energy of these interactions was evaluated through PIXEL method with decomposition of the total energy into the coulombic, polarization, dispersion and repulsion contribution. The study of the nature of H-bonds with sulfur reveals that stabilization due to contribution from polarization plays a significant role. It is noteworthy that the presence of the solvent molecules in the crystal structure were observed to provide stabilization to an otherwise destabilized molecular pair (comprising of two molecules of 1,2,4 triazoles in the asymmetric unit).

  14. Theory of intermolecular forces

    Margenau, H; Ter Haar, D

    1971-01-01

    Theory of Intermolecular Forces deals with the exposition of the principles and techniques of the theory of intermolecular forces. The text focuses on the basic theory and surveys other aspects, with particular attention to relevant experiments. The initial chapters introduce the reader to the history of intermolecular forces. Succeeding chapters present topics on short, intermediate, and long range atomic interactions; properties of Coulomb interactions; shape-dependent forces between molecules; and physical adsorption. The book will be of good use to experts and students of quantum mechanics

  15. Rubrene: The interplay between intramolecular and intermolecular interactions determines the planarization of its tetracene core in the solid state

    Sutton, Christopher

    2015-06-15

    Rubrene is one of the most studied molecular semiconductors; its chemical structure consists of a tetracene backbone with four phenyl rings appended to the two central fused rings. Derivatization of these phenyl rings can lead to two very different solid-state molecular conformations and packings: One in which the tetracene core is planar and there exists substantive overlap among neighboring π-conjugated backbones; and another where the tetracene core is twisted and the overlap of neighboring π-conjugated backbones is completely disrupted. State-of-the-art electronic-structure calculations show for all isolated rubrene derivatives that the twisted conformation is more favorable (by -1.7 to -4.1 kcal mol-1), which is a consequence of energetically unfavorable exchange-repulsion interactions among the phenyl side groups. Calculations based on available crystallographic structures reveal that planar conformations of the tetracene core in the solid state result from intermolecular interactions that can be tuned through well-chosen functionalization of the phenyl side groups, and lead to improved intermolecular electronic couplings. Understanding the interplay of these intramolecular and intermolecular interactions provides insight into how to chemically modify rubrene and similar molecular semiconductors to improve the intrinsic materials electronic properties.

  16. Ab initio Calculation of Intermolecular Dispersion Energy and Induction Energy of Nitramide Dimer

    SONG, Hua-Jie(宋华杰); XIAO, He-Ming(肖鹤鸣); DONG, Hai-Shan(董海山); HUANG, Yi-Gang(黄奕刚); LONG, Xin-Ping(龙新平); TANG, Yei-Peng(汤业鹏)

    2004-01-01

    The dispersion energies, induction energies and their exchange counterparts (exchange-dispersion and exchange-induction energies) between two interacting nitramide molecules at several separations are derived based upon symmetry-adapted perturbation theory (SAPT). The results show that (1) the effect of intramonomer electron correlation on dispersion energies and induction energies for nitramide dimer system is remarkable especially in the region near the van der Waals minimum distance (0.42 nm). (2) At smaller separations the dispersion energies and the induction energies are largely quenched by their exchange counterparts, and this case in induction interaction is much more remarkable than in dispersion interaction. (3) Since at shorter distances there exists the strong short-range interaction due to electron transfer which quickly decays and even disappears at larger separations, the two different R-dependency formulae of induction energies were found: one is ca. R-12.7 at short distances, and the other ca. R-7.0 at large separations. The latter R-dependency is similar to that (ca. R-7.2) of dispersion. (4) In the case of strong polar interaction existing in nitramide dimer, the "true" induction correlation terms of higher order than tE(22)ind may be important.

  17. Noncovalent intermolecular interactions between dehydroepiandrosterone and the active site of human dehydroepiandrosterone sulphotransferase: A density functional theory based treatment

    Astani, Elahe; Heshmati, Emran; Chen, Chun-Jung; Hadipour, Nasser L.; Shekarsaraei, Setareh

    2016-04-01

    A theoretical study was performed to characterize noncovalent intermolecular interactions, especially hydrogen bond (HB), in the active site of enzyme human dehydroepiandrosterone sulphotransferase (SULT2A1/DHEA) using the local (M06-L) and hybrid (M06, M06-2X) meta-GGA functionals of density functional theory (DFT). Results revealed that DHEA is able to form HBs with residues His99, Tyr231, Met137 and Met16 in the active site of the SULT2A1/DHEA. It was found that DHEA interacts with the other residues through electrostatic and Van der Waals interactions.

  18. A quantum chemical insight to intermolecular hydrogen bonding interaction between cytosine and nitrosamine: Structural and energetic investigations

    Khalili, Behzad

    2016-03-01

    Hydrogen bond interactions which are formed during complex formation between cytosine and nitrosamine have been fully investigated using B3LYP, B3PW91 and MP2 methods in conjunction with various basis sets including 6-311++G (d,p), 6-311++G (2d,2p), 6-311++G (df,pd) and AUG-cc-pVDZ. Three regions around the most stable conformer of cytosine in the gas phase with six possible double H-bonded interactions were considered. Two intermolecular hydrogen bonds of type NC-N-HNA and O-H(N-H)C-ONA were found on the potential energy surface in a cyclic system with 8-member in CN1, CN3, CN5 and 7-member in CN2, CN4, CN6 systems. Results of binding energy calculation at all applied methods reveal that the CN1 structure is the most stable one which is formed by interaction of nitrosamine with cytosine in S1 region. The BSSE-corrected binding energy for six complex system is ranging from -23.8 to -43.6 kJ/mol at MP2/6-311++G (df,pd) level and the stability order is as CN1 > CN2 > CN3 > CN4 > CN5 > CN6 in all studied levels of theories. The NBO results reveal that the charge transfer occurred from cytosine to nitrosamine in CN1, CN3, CN5 and CN6 whereas this matter in the case of CN2 and CN4 was reversed. The relationship between BEs with red shift of H-bond involved bonds vibrational frequencies, charge transfer energies during complex formation and electron densities at H-bond BCPs were discussed. In addition activation energetic properties related to the proton transfer process between cytosine and nitrosamine have been calculated at MP2/6-311++G (df,pd) level. AIM results imply that H-bond interactions are electrostatic with partially covalent characteristic in nature.

  19. Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001)

    Roos, Michael; Uhl, Benedikt; Künzel, Daniela; Harry E. Hoster; Groß, Axel; Behm, R Jürgen

    2011-01-01

    The competition between intermolecular interactions and long-range lateral variations in the substrate–adsorbate interaction was studied by scanning tunnelling microscopy (STM) and force field based calculations, by comparing the phase formation of (sub-) monolayers of the organic molecules (i) 2-phenyl-4,6-bis(6-(pyridin-3-yl)-4-(pyridin-3-yl)pyridin-2-yl)pyrimidine (3,3'-BTP) and (ii) 3,4,9,10-perylene tetracarboxylic-dianhydride (PTCDA) on graphene/Ru(0001). For PTCDA adsorption, a 2D adla...

  20. Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001)

    Michael Roos; Benedikt Uhl; Daniela Künzel; Harry E. Hoster; Axel Groß; R. Jürgen Behm

    2011-01-01

    The competition between intermolecular interactions and long-range lateral variations in the substrate–adsorbate interaction was studied by scanning tunnelling microscopy (STM) and force field based calculations, by comparing the phase formation of (sub-) monolayers of the organic molecules (i) 2-phenyl-4,6-bis(6-(pyridin-3-yl)-4-(pyridin-3-yl)pyridin-2-yl)pyrimidine (3,3'-BTP) and (ii) 3,4,9,10-perylene tetracarboxylic-dianhydride (PTCDA) on graphene/Ru(0001). For PTCDA adsorption, a 2...

  1. On the representation of the electric charge distribution in ethane for calculations of the molecular quadrupole moment and intermolecular electrostatic energy

    Hansen, Flemming Yssing; Alldredge, G. P.; Bruch, L. W.;

    1985-01-01

    and gives a repulsive rather than an attractive electrostatic interaction at typical intermolecular distances. In the local multipole model, the atom-site dipoles give the largest contribution to both the molecular quadrupole moment and the intermolecular interaction. The Journal of Chemical Physics...

  2. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  3. Ab initio intermolecular potential energy surfaces of He-CS2, Ne-CS2 and Ar-CS2 complexes

    Farrokhpour, H.; Tozihi, M.

    2013-03-01

    The potential energy surfaces of the He-CS2, Ne-CS2 and Ar-CS2 van der Waals complexes were calculated for the first time at the CCSD(T) level of theory using the aug-cc-pVDZ basis set augmented with a set of midbond functions (3s3p2d1f1g). It was found that the calculated interaction potential, using the applied basis set, readily converges to the complete basis set limit. For a broad range of intermolecular separations and configurations, the interaction energies were obtained by the supermolecular approach with the full counterpoise correction for the basis set superposition error (BSSE). In addition, symmetry-adapted perturbation theory (SAPT) calculations were performed with the same basis set in order to determine the character of the interaction energy of the most stable configuration of each complex at different intermolecular separations in order to make a comparison with the CCSD(T) results. The CCSD(T) calculated potential energy surface of each complex was fitted to an analytic expression to obtain the values of the isotropic dipole-dipole ( ? ) and dipole-quadruple ( ? ) dispersion coefficients of each complex. Finally, the interaction second virial coefficients (B12) were obtained using the calculated potential energy surface and used together with the experimental second virial coefficients of pure gases (CS2, Ar, Ne and He) to obtain the second virial coefficient of mixtures of CS2 with rare gas at different temperatures and mole fractions.

  4. Coordination compounds of tetravalent silicon, germanium and tin: the structure, chemical bonding and intermolecular interactions in them

    Korlyukov, A. A.

    2015-04-01

    The review is devoted to analysis and generalization of the results of (i) quantum chemical studies on the structure, chemical bonding and intermolecular interactions in coordination compounds of tetravalent silicon, germanium and tin in crystals, in solutions and in the gas phase and (ii) experimental investigations of the electron density distribution in these systems. The bibliography includes 147 references. In memoriam of Corresponding Member of the Russian Academy of Sciences M Yu Antipin (1951 - 2013), Academician of the Russian Academy of Sciences M G Voronkov (1921 - 2014) and Dr. S P Knyazev, Lomonosov Moscow University of Fine Chemical Technology (1949 - 2012).

  5. Intermolecular Tl···H-C anagostic interactions in luminescent pyridyl functionalized thallium(I) dithiocarbamates.

    Kumar, Vinod; Singh, Vikram; Gupta, Ajit N; Drew, Michael G B; Singh, Nanhai

    2015-01-28

    Crystal structures of novel pyridyl functionalised [Tl(L)]∞ (L = (N-benzyl-N-methylpyridyl) dithiocarbamate(L1) 1, bis(N-methylpyridyl) dithiocarbamate(L2) 2, (N-methyl(1,4-benzodioxane-6-yl)-N-methylpyridyl)dithiocarbamate(L3) 3, (N-ferrocenyl-N-methylpyridyl) dithiocarbamate(L4) 4) complexes revealed rare intermolecular C-H···Tl anagostic and C-S···Tl interactions forming a six-membered chelate ring about the metal center, which have been assessed by DFT calculations. The strong thallophilic bonding is responsible for the strong luminescent characteristics of the complexes in the solid phase. PMID:25461980

  6. Lack of evidence for intermolecular epistatic interactions between adiponectin and resistin gene polymorphisms in Malaysian male subjects

    Cia-Hin Lau

    2012-01-01

    Full Text Available Epistasis (gene-gene interaction is a ubiquitous component of the genetic architecture of complex traits such as susceptibility to common human diseases. Given the strong negative correlation between circulating adiponectin and resistin levels, the potential intermolecular epistatic interactions between ADIPOQ (SNP+45T > G, SNP+276G > T, SNP+639T > C and SNP+1212A > G and RETN (SNP-420C > G and SNP+299G > A gene polymorphisms in the genetic risk underlying type 2 diabetes (T2DM and metabolic syndrome (MS were assessed. The potential mutual influence of the ADIPOQ and RETN genes on their adipokine levels was also examined. The rare homozygous genotype (risk alleles of SNP-420C > G at the RETN locus tended to be co-inherited together with the common homozygous genotypes (protective alleles of SNP+639T > C and SNP+1212A > G at the ADIPOQ locus. Despite the close structural relationship between the ADIPOQ and RETN genes, there was no evidence of an intermolecular epistatic interaction between these genes. There was also no reciprocal effect of the ADIPOQ and RETN genes on their adipokine levels, i.e., ADIPOQ did not affect resistin levels nor did RETN affect adiponectin levels. The possible influence of the ADIPOQ gene on RETN expression warrants further investigation.

  7. The origins of intra- and inter-molecular vibrational couplings: A case study of H2O-Ar on full and reduced-dimensional potential energy surface

    The origin and strength of intra- and inter-molecular vibrational coupling is difficult to probe by direct experimental observations. However, explicitly including or not including some specific intramolecular vibrational modes to study intermolecular interaction provides a precise theoretical way to examine the effects of anharmonic coupling between modes. In this work, a full-dimension intra- and inter-molecular ab initio potential energy surface (PES) for H2O–Ar, which explicitly incorporates interdependence on the intramolecular (Q1,  Q2,  Q3) normal-mode coordinates of the H2O monomer, has been calculated. In addition, four analytic vibrational-quantum-state-specific PESs are obtained by least-squares fitting vibrationally averaged interaction energies for the (v1,  v2,  v3) =  (0,  0,  0), (0,  0,  1), (1,  0,  0), (0,  1,  0) states of H2O to the three-dimensional Morse/long-range potential function. Each vibrationally averaged PES fitted to 442 points has root-mean-square (rms) deviation smaller than 0.15 cm−1, and required only 58 parameters. With the 3D PESs of H2O–Ar dimer system, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. This showed that the resulting vibrationally averaged PESs provide good representations of the experimental infrared data, with rms discrepancies smaller than 0.02 cm−1 for all three rotational branches of the asymmetric stretch fundamental transitions. The infrared band origin shifts associated with three fundamental bands of H2O in H2O–Ar complex are predicted for the first time and are found to be in good agreement with the (extrapolated) experimental values. Upon introduction of additional intramolecular degrees of freedom into the intermolecular potential energy surface, there is clear spectroscopic evidence of intra- and intermolecular vibrational couplings

  8. The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates.

    Costandy, Joseph; Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2015-09-01

    The direct phase coexistence methodology was used to predict the three-phase equilibrium conditions of carbon dioxide hydrates. Molecular dynamics simulations were performed in the isobaric-isothermal ensemble for the determination of the three-phase coexistence temperature (T3) of the carbon dioxide-water system, at pressures in the range of 200-5000 bar. The relative importance of the water-water and water-guest interactions in the prediction of T3 is investigated. The water-water interactions were modeled through the use of TIP4P/Ice and TIP4P/2005 force fields. The TraPPE force field was used for carbon dioxide, and the water-guest interactions were probed through the modification of the cross-interaction Lennard-Jones energy parameter between the oxygens of the unlike molecules. It was found that when using the classic Lorentz-Berthelot combining rules, both models fail to predict T3 accurately. In order to rectify this problem, the water-guest interaction parameters were optimized, based on the solubility of carbon dioxide in water. In this case, it is shown that the prediction of T3 is limited only by the accuracy of the water model in predicting the melting temperature of ice. PMID:26342376

  9. Intermolecular interactions and proton transfer in the hydrogen halide-superoxide anion complexes.

    Lee, Sebastian J R; Mullinax, J Wayne; Schaefer, Henry F

    2016-02-17

    The superoxide radical anion O2(-) is involved in many important chemical processes spanning different scientific disciplines (e.g., environmental and biological sciences). Characterizing its interaction with various substrates to help elucidate its rich chemistry may have far reaching implications. Herein, we investigate the interaction between O2(-) (X[combining tilde] (2)Πg) and the hydrogen halides (X[combining tilde] (1)Σ) with coupled-cluster theory. In contrast to the short (1.324 Å) hydrogen bond formed between the HF and O2(-) monomers, a barrierless proton transfer occurs for the heavier hydrogen halides with the resulting complexes characterized as long (>1.89 Å) hydrogen bonds between halide anions and the HO2 radical. The dissociation energy with harmonic zero-point vibrational energy (ZPVE) for FHO2(-) (X[combining tilde] (2)A'') → HF (X[combining tilde] (1)Σ) + O2(-) (X[combining tilde] (2)Πg) is 31.2 kcal mol(-1). The other dissociation energies with ZPVE for X(-)HO2 (X[combining tilde] (2)A'') → X(-) (X[combining tilde] (1)Σ) + HO2 (X[combining tilde] (2)A'') are 25.7 kcal mol(-1) for X = Cl, 21.9 kcal mol(-1) for X = Br, and 17.9 kcal mol(-1) for X = I. Additionally, the heavier hydrogen halides can form weak halogen bonds H-XO2(-) (X[combining tilde] (2)A'') with interaction energies including ZPVE of -2.3 kcal mol(-1) for HCl, -8.3 kcal mol(-1) for HBr, and -16.7 kcal mol(-1) for HI. PMID:26852733

  10. Intermolecular interaction between rare earth and manganese precursors in metalorganic chemical vapor deposition of perovskite manganite films

    Nakamura, Toshihiro [Department of Engineering Science, Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan)

    2015-07-15

    The gas-phase reaction mechanism was investigated in liquid delivery metalorganic chemical vapor deposition (MOCVD) of praseodymium and lanthanum manganite films. We studied the gas-phase behavior of praseodymium, lanthanum, and manganese precursors under actual CVD conditions by in situ infrared absorption spectroscopy. The rate of the decrease of the infrared absorbance due to Pr(DPM){sub 3} was almost constant even if Mn(DPM){sub 3} was added, indicating that the intermolecular interaction between Pr and Mn precursors in the gas phase is relatively weak in MOCVD of praseodymium manganite films. On the other hand, the temperature dependence of the infrared absorption indicates that the thermal decomposition of La(DPM){sub 3} was promoted in the presence of Mn(DPM){sub 3}. The significant intermolecular interaction occurs between La and Mn precursors in the gas phase in MOCVD of lanthanum manganite films. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Method for Slater-Type Density Fitting for Intermolecular Electrostatic Interactions with Charge Overlap. I. The Model.

    Öhrn, Anders; Hermida-Ramon, Jose M; Karlström, Gunnar

    2016-05-10

    The effects of charge overlap, or charge penetration, are neglected in most force fields and interaction terms in QM/MM methods. The effects are however significant at intermolecular distances near the van der Waals minimum. In the present study, we propose a method to evaluate the intermolecular Coloumb interaction using Slater-type functions, thus explicitly modeling the charge overlap. The computational cost of the method is low, which allows it to be used in large systems with most force fields as well as in QM/MM schemes. The charge distribution is modeled as a distributed multipole expansion up to quadrupole and Slater-type functions of angular momentum up to L = 1. The exponents of the Slater-type functions are obtained using a divide-and-conquer method to avoid the curse of dimensionality that otherwise is present for large nonlinear optimizations. A Levenberg-Marquardt algorithm is applied in the fitting process. A set of parameters is obtained for each molecule, and the process is fully automated. Calculations have been performed in the carbon monoxide and the water dimers to illustrate the model. Results show a very good accuracy of the model with relative errors in the electrostatic potential lower than 3% over all reasonable separations. At very short distances where the charge overlaps is the most significant, errors are lower than 8% and lower than 3.5% at distances near the van der Waals minimum. PMID:27015000

  12. Investigation on Intermolecular Interaction in Supersaturation State of Cadmium Sulphate Mixed Zinc tris-THIOUREA Sulphate Solutions

    Muley, G. G.; Naik, A. B.; Gambhire, A. B.

    2014-06-01

    Zinc tris-thiourea sulphate (ZTS) is a well known nonlinear optical (NLO) crystal widely used for various NLO applications. The NLO, physical and chemical properties can be modified by adding impurities and/or modifying crystal growth conditions. The impurities present in the growth solution and growth conditions can affect the crystal growth parameters at great extent. Thus, the study on the nature of intermolecular interaction with the dopant in the solution during crystal growth process becomes important. In the present investigation, the ultrasonic velocity was measured in the aqueous solutions of pure and cadmium sulphate mixed ZTS in the supersaturation state at 313.15 K. The thermodynamic parameters such as adiabatic compressibility, inter molecular free length, acoustic impedance and relative associations have been calculated from the ultrasonic data and densities of water and solutions at 313.15 K, and the nature of intermolecular interaction has been discussed. FT-IR spectra of all mixtures in the solid form at room temperature were recorded and the shifts in the absorption peaks corresponding to the functional groups of ZTS have been reported.

  13. Highly Accurate Structure-Based Prediction of HIV-1 Coreceptor Usage Suggests Intermolecular Interactions Driving Tropism.

    Chris A Kieslich

    Full Text Available HIV-1 entry into host cells is mediated by interactions between the V3-loop of viral glycoprotein gp120 and chemokine receptor CCR5 or CXCR4, collectively known as HIV-1 coreceptors. Accurate genotypic prediction of coreceptor usage is of significant clinical interest and determination of the factors driving tropism has been the focus of extensive study. We have developed a method based on nonlinear support vector machines to elucidate the interacting residue pairs driving coreceptor usage and provide highly accurate coreceptor usage predictions. Our models utilize centroid-centroid interaction energies from computationally derived structures of the V3-loop:coreceptor complexes as primary features, while additional features based on established rules regarding V3-loop sequences are also investigated. We tested our method on 2455 V3-loop sequences of various lengths and subtypes, and produce a median area under the receiver operator curve of 0.977 based on 500 runs of 10-fold cross validation. Our study is the first to elucidate a small set of specific interacting residue pairs between the V3-loop and coreceptors capable of predicting coreceptor usage with high accuracy across major HIV-1 subtypes. The developed method has been implemented as a web tool named CRUSH, CoReceptor USage prediction for HIV-1, which is available at http://ares.tamu.edu/CRUSH/.

  14. Highly Accurate Structure-Based Prediction of HIV-1 Coreceptor Usage Suggests Intermolecular Interactions Driving Tropism

    Kieslich, Chris A.; Tamamis, Phanourios; Guzman, Yannis A.; Onel, Melis; Floudas, Christodoulos A.

    2016-01-01

    HIV-1 entry into host cells is mediated by interactions between the V3-loop of viral glycoprotein gp120 and chemokine receptor CCR5 or CXCR4, collectively known as HIV-1 coreceptors. Accurate genotypic prediction of coreceptor usage is of significant clinical interest and determination of the factors driving tropism has been the focus of extensive study. We have developed a method based on nonlinear support vector machines to elucidate the interacting residue pairs driving coreceptor usage and provide highly accurate coreceptor usage predictions. Our models utilize centroid-centroid interaction energies from computationally derived structures of the V3-loop:coreceptor complexes as primary features, while additional features based on established rules regarding V3-loop sequences are also investigated. We tested our method on 2455 V3-loop sequences of various lengths and subtypes, and produce a median area under the receiver operator curve of 0.977 based on 500 runs of 10-fold cross validation. Our study is the first to elucidate a small set of specific interacting residue pairs between the V3-loop and coreceptors capable of predicting coreceptor usage with high accuracy across major HIV-1 subtypes. The developed method has been implemented as a web tool named CRUSH, CoReceptor USage prediction for HIV-1, which is available at http://ares.tamu.edu/CRUSH/. PMID:26859389

  15. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav;

    2007-01-01

    Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second...... obtained for d and ?s in Xe2. For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other...

  16. Transport properties in mixtures involving carbon dioxide at low and moderate density: test of several intermolecular potential energies and comparison with experiment

    Moghadasi, Jalil; Yousefi, Fakhri [Shiraz University, Department of Chemistry, Shiraz (Iran); Papari, Mohammad Mehdi; Faghihi, Mohammad Ali [Shiraz University of Technology, Department of Chemistry, Shiraz (Iran); Mohsenipour, Ali Asghar [University of Waterloo, Department of Chemical Engineering, Waterloo (Canada)

    2009-09-15

    It is the purpose of this paper to extract unlike intermolecular potential energies of five carbon dioxide-based binary gas mixtures including CO{sub 2}-He, CO{sub 2}-Ne, CO{sub 2}-Ar, CO{sub 2}-Kr, and CO{sub 2}-Xe from viscosity data and compare the calculated potentials with other models potential energy reported in literature. Then, dilute transport properties consisting of viscosity, diffusion coefficient, thermal diffusion factor, and thermal conductivity of aforementioned mixtures are calculated from the calculated potential energies and compared with literature data. Rather accurate correlations for the viscosity coefficient of afore-cited mixtures embracing the temperature range 200 Kintermolecular potentials energy. Our estimated accuracies for the viscosity are to within {+-}2%. In addition, the calculated potential energies are used to present smooth correlations for other transport properties. The accuracies of the binary diffusion coefficients are of the order of {+-}3%. Finally, the unlike interaction energy and the calculated low density viscosity have been employed to calculate high density viscosities using Vesovic-Wakeham method. (orig.)

  17. Tuning intermolecular interactions in dioctyl-substituted polyfluorene via hydrostatic pressure.

    Paudel, K; Knoll, H; Chandrasekhar, M; Guha, S

    2010-04-01

    Polyfluorenes (PFs) represent a unique class of poly-para-phenylene-based blue-emitting polymers with intriguing structure-property relationships. Slight variations in the choice of functionalizing side chains result in dramatic differences in the inter- and intrachain structures in PFs. Dioctyl-substituted PF (PF8) is characterized by different backbone conformations that depend upon the torsion angle between the monomers. We present photoluminescence (PL) and Raman scattering studies of bulk samples and thin films of dioctyl-substituted PF (PF8) under hydrostatic pressure. The bulk sample was further thermally annealed and studied as a function of pressure. The PL energies of the as-is and thermally annealed samples both red shift but at very different rates, and the difference between their pressure coefficients elucidates the role of the backbone torsional angle. This is further corroborated by density functional theoretical calculations of a fluorene oligomer, where the energy gap is calculated as a function of both the torsion angle as well as compression. The Raman peaks harden with increasing pressures; the intraring C-C stretch frequency at 1600 cm(-1) has a pressure coefficient of 7.2 cm(-1)/GPa and exhibits asymmetric line shapes at higher pressures, characteristic of a strong electron-phonon interaction. PMID:20235499

  18. Formation of intermolecular crosslinks by the actinocin derivatives with DNA in interaction under conditions of semidilute solution

    Interaction of native calf thymus DNA (ctDNA) with the actinocin derivatives containing protonated diethylamino groups, dimethylamino groups and unsubstituted amino groups and having different length of the alkyl chain have been studied by the method of viscometry. An anomalous hydrodynamic behavior of solutions of DNA with very low amount of ligands prepared under conditions of semidilute solution was revealed. We assumed that such an anomalous behavior of solutions of DNA complexes with actinocin derivatives associated with the formation of intermolecular crosslinks while the preparation of the complex was in terms of overlapping of macromolecular coils in solution. Comparative study of the hydrodynamic behavior of the DNA complexes with various actinocin structures lead us to the conclusion of the formation of crosslinks by the compounds containing protonated diethylamino groups

  19. Quaternion contact ribbons: a new tool for visualizing intra- and intermolecular interactions in proteins.

    Albrecht, K; Hart, J; Shaw, A; Dunker, A K

    1996-01-01

    Protein side chain interactions between residues separated by at least one loop or turn or break in the amino acid sequence are called 'nonlocal contacts' in this manuscript, and contiguous sets of such interactions located between segments of secondary structure are called 'contact zones.' A new interactive program, the quaternion contact ribbon tool, has been developed to help protein chemists identify, straighten if twisted, and display contact zones between two neighboring segments of helix. PMID:9390222

  20. Study of intermolecular interactions in binary mixtures of 2-(dimethylamino)ethanol with methanol and ethanol at various temperatures

    Graphical abstract: The densities and ultrasonic speeds of the binary mixtures over the entire composition range were measured at various temperatures at atmospheric pressure. The excess molar volumes, isentropic compressibilities, and molar isentropic compressions have been calculated. The variations of these parameters with composition and temperature are discussed. The IR spectra were recorded they further supported the conclusion drawn from excess parameters, which indicates the presence of intermolecular hydrogen bonding between the oxygen atom of DMAE molecules and hydrogen atom of methanol and ethanol molecules in these mixtures.. - Highlights: • The study reports density and ultrasonic velocity data of 2-(dimethylamino)ethanol + methanol/ethanol mixtures. • To elucidate the interactions in 2-(dimethylamino)ethanol + methanol/ethanol binary mixtures. • Provides information on nature and relative strength of interactions in these mixtures. • Correlates physicochemical properties with interactions in these mixtures. - Abstract: The densities, ρ and ultrasonic speeds, u of the binary mixtures of 2-(dimethylamino)ethanol (DMAE) with methanol/ethanol, including those of pure liquids, over the entire composition range were measured at 298.15, 308.15 and 318.15 K. From the experimental data, the excess molar volumes, VmE and excess isentropic compressibilities, κsE have been calculated. The excess partial molar volumes, V¯m,1E and V¯m,2E and excess partial molar isentropic compressions, K¯s,m,1E and K¯s,m,2E over the whole composition range; and partial molar volumes, V¯m,1° and V¯m,2°, partial molar isentropic compressions, K¯s,m,1° and K¯s,m,2°, excess partial molar volumes, V¯m,1°E and V¯m,2°E, and excess partial molar isentropic compressions, K¯s,m,1°E and K¯s,m,2°E at infinite dilution have also been calculated. The variations of these parameters with composition and temperature are discussed in terms of intermolecular

  1. Investigation of intermolecular interactions between single walled nanotubes and conjugated oligomers using the dispersion-corrected DFT methods

    Lagowski, Jolanta B.; Aljohani, Suad; Khan, M. Zahidul H.; Zhao, Yuming

    The area of carbon nanotubes (CNT)-polymer composites has been progressing rapidly in recent years. Pure CNT and CNT-polymer composites have many useful (industry related) properties: ranging from electronic electrical conductivity to superior strength. However the full potential of using CNTs as reinforcements (in say a polymer matrix) has been severely limited because of complications associated with the dispersion of CNTs. CNTs tend to entangle with each other forming materials that have properties that fall short of the expectations. The goal of this work is to identify the type of conjugated oligomers that are best suited for the dispersion of single walled CNT (SWCNT). For this purpose, various methods of dispersion corrected density functional theory (DFT-D/B97D, /WB97XD, /CAM-B3LYP) have been used to investigate the interaction between the SWCNT and the organic conjugated oligomers with different end groups (aldehyde (ALD) and dithiafulvenyl (DTF)). We investigate the effect of intermolecular interactions on the structure, polarity and energetics of the oligomers and SWCNT combinations. The comparison of results obtained using different DFT approximations is made. Our results show that DFT-endcapped oligomer interact more strongly with CNT than ALD-endcapped oligomer. The financial support from NSERC, SACBC and Memorial University and the computational resources from Compute Canada were received.

  2. Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Møller-Plesset perturbation theory

    Three-body and higher intermolecular interactions can play an important role in molecular condensed phases. Recent benchmark calculations found problematic behavior for many widely used density functional approximations in treating 3-body intermolecular interactions. Here, we demonstrate that the combination of second-order Møller-Plesset (MP2) perturbation theory plus short-range damped Axilrod-Teller-Muto (ATM) dispersion accurately describes 3-body interactions with reasonable computational cost. The empirical damping function used in the ATM dispersion term compensates both for the absence of higher-order dispersion contributions beyond the triple-dipole ATM term and non-additive short-range exchange terms which arise in third-order perturbation theory and beyond. Empirical damping enables this simple model to out-perform a non-expanded coupled Kohn-Sham dispersion correction for 3-body intermolecular dispersion. The MP2 plus ATM dispersion model approaches the accuracy of O(N6) methods like MP2.5 or even spin-component-scaled coupled cluster models for 3-body intermolecular interactions with only O(N5) computational cost

  3. Intermolecular spectroscopy of gases

    Spectroscopic techniques have been very successfully applied to the study of individual molecules. The same techniques can also be used to investigate intermolecular interactions. Collision-induced absorption (CIA) and collision-induced light scattering (CILS) are important examples of intermolecular interactions. These effects can be described by the dynamical information contained in the general intermolecular correlation functions. One of the aims of this review is to stress the central role of these correlation functions in the field of intermolecular spectroscopy. Because they have a well-defined physical meaning, they are very suitable for the purpose of introducing new physical approximations, particularly in the case of liquids. Some aspects of the theory of CIA will be discussed, mainly as applied to gases. References to similar situations in CILS will occasionally be made, but no comprehensive review will be attempted. One of the basic quantities in CIA is the absorption coefficient. The question is investigated wether it can be expanded in powers of the density. Finally, the moments of the spectrum, interference effects and line shapes are discussed. (KBE)

  4. Intermolecular interactions of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase

    Harpur, A G; Layton, M. J.; Das, P; Bottomley, M J; Panayotou, G.; Driscoll, P. C.; Waterfield, M D

    1999-01-01

    The regulatory subunit of phosphatidylinositol 3-kinase, p85, contains a number of well defined domains involved in protein-protein interactions, including an SH3 domain and two SH2 domains. In order to investigate in detail the nature of the interactions of these domains with each other and with other binding partners, a series of deletion and point mutants was constructed, and their binding characteristics and apparent molecular masses under native conditions were analyzed. The SH3 domain a...

  5. [Intermolecular Interactions between Cytisine and Bovine Serum Albumin A Synchronous Fluorescence Spectroscopic Analysis and Molecular Docking Research].

    Wu, Yu-hang; Han, Zhong-bao; Ma, Jia-ze; He, Yan; Liu, Li-yan; Xin, Shi-gang; Yu, Zhan

    2016-03-01

    Cytisine (Cy) is one of the alkaloids that exist naturally in the plant genera Laburnum of the family Fabaceae. With strong bioactivities, Cy is commercialized for smoking cessation for years. In this work, the study of intermolecular interactions between Cy and bovine serum albumin (BSA) was performed by applying fluorescence spectroscopic methods under simulated physiological conditions. The mechanism of fluorescence quenching of BSA by Cy was also studied. Parameters such as bathing temperature, time and solution pH were investigated to optimize the fluorescence quenching. The binding type, binding ratio and binding constant between BSA and Cy were calculated by using the Stem-Volmer equation. Experimental results indicated that Cy can quench the fluorescent emission of BSA statically by forming a 1 : 1 type non-covalent complex and the binding constant is 5.6 x 10(3) L x mol(-1). Synchronous fluorescence spectral research shows Cy may affect the fluorescence emission of Trp residues of BSA. Furthermore, molecular docking is utilized to model the complex and probe the plausible quenching mechanism. It can be noted that the hydrogen bindings and hydrophobic interactions between Cy and BSA change the micro-environment of Trp213, which leads to the fluorescence quenching of BSA. PMID:27400521

  6. 12C/13C and H/D vapor pressure isotope effects of fluoroform: intermolecular interactions in liquid fluoroform

    A precision cryostat of the Bigeleisen-Brooks-Ribnikar-Ishida (BBIR) type with associated vacuum systems has been constructed and the appropriate temperature/pressure measurement and control systems designed and implemented. Various improvements in the cryostat design were incorporated in order to facilitate the assembly and repair processes. A major design change involved the incorporation of a digital stand alone computer to control cryostat operations. This apparatus was used to measure the 12C/13C and H/D Vapor Pressure Isotope Effects of Fluoroform. Analysis of the measured VPIE results, in light of existing experimental data and theories, has demonstrated the need of a temperature dependent liquid force field, specifically a temperature-dependent interaction force constant between the C-H stretching motion and translational motion in the direction of the figure axis of CHF3. This result is consistent with the observed spectroscopic data and vibrational and configurational models of fluoroform dimers. The intermolecular interaction is believed to be a weak hydrogen-bond in nature

  7. Oligophenylenevinylenes in spatially confined nanochannels: Monitoring intermolecular interactions by UV/Vis and Raman spectroscopy

    Aloshyna, Mariya; Medina, Begona Milian; Poulsen, Lars; Moreau, Juliette; Beljonne, David; Cornil, Jerome; Silvestro, Giuseppe Di; Cerminara, Michele; Meinardi, Francesco; Tubino, Riccardo; Detert, Heiner; Schrader, Sigurd; Egelhaaf, Hans-Joachim; Botta, Chiara; Gierschner, Johannes

    2008-01-01

    -guest interactions are elucidated by UV/Vis and Raman spectroscopy. The impact of the local environment of the chromophore on the optical and photophysical properties is discussed in light of quantum-chemical calculations. In stark contrast to thin films where preferential side-by-side orientation leads to quenching...

  8. Intermolecular forces, spontaneous emission, and superradiance in a dielectric medium : Polariton-mediated interactions

    Knoester, Jasper; Mukamel, Shaul

    1989-01-01

    A reduced equation of motion that describes the excited-state dynamics of interacting two-level impurity molecules in a dielectric host crystal is derived starting from a microscopic model for the total system. Our theory generalizes the derivation of the conventional superradiance master equation f

  9. De novo design of protein-protein interactions through modification of inter-molecular helix-helix interface residues.

    Yagi, Sota; Akanuma, Satoshi; Yamagishi, Manami; Uchida, Tatsuya; Yamagishi, Akihiko

    2016-05-01

    For de novo design of protein-protein interactions (PPIs), information on the shape and chemical complementarity of their interfaces is generally required. Recent advances in computational PPI design have allowed for de novo design of protein complexes, and several successful examples have been reported. In addition, a simple and easy-to-use approach has also been reported that arranges leucines on a solvent-accessible region of an α-helix and places charged residues around the leucine patch to induce interactions between the two helical peptides. For this study, we adopted this approach to de novo design a new PPI between the helical bundle proteins sulerythrin and LARFH. A non-polar patch was created on an α-helix of LARFH around which arginine residues were introduced to retain its solubility. The strongest interaction found was for the LARFH variant cysLARFH-IV-3L3R and the sulerythrin mutant 6L6D (KD=0.16 μM). This artificial protein complex is maintained by hydrophobic and ionic interactions formed by the inter-molecular helical bundle structure. Therefore, by the simple and easy-to-use approach to create de novo interfaces on the α-helices, we successfully generated an artificial PPI. We also created a second LARFH variant with the non-polar patch surrounded by positively charged residues at each end. Upon mixing this LARFH variant with 6L6D, mesh-like fibrous nanostructures were observed by atomic force microscopy. Our method may, therefore, also be applicable to the de novo design of protein nanostructures. PMID:26867971

  10. Tuning of intermolecular interactions results in packing diversity in imidazolin-5-ones

    Ashish Singh; Basanta Kumar Rajbongshi; Gurunath Ramanathan

    2014-09-01

    Crystal structures of four green fluorescent protein (GFP) chromophore analogues with different packing interactions could be tuned by appropriate substitutions around the imidazolin-5-one ring are reported here. Compound 1 was crystallized from tetrahydrofuran at room temperature while compounds 2-4 have been crystallized from a mixture of methanol and dichloromethane in 3:1 ratio. Molecule 1, 2 and 3 crystallized in monoclinic lattice while molecule 4 preferred to crystallize in a triclinic crystal system. The crystal packing of these molecules was stabilized by C-H$\\ldots$ stacking and C-H $\\ldots$ O type of supramolecular interactions. The results reveal that packing diversity can be easily accomplished in these molecules by tuning the substituents around the imidazolin-5-one ring. Photophysical studies also reveal that all have good quantum yield and fluoresce typically in red region due to presence of electron donating groups around the imidazolin-5-one ring.

  11. Structural investigations on N'-substituted N-acylguanidines - Intermolecular interactions with solvents, anions and receptors

    Kleinmaier, Roland

    2011-01-01

    Acylguanidines are an abundant class of compounds with various applications in organic and pharmaceutical chemistry. Within the subgroup of N’-substituted and especially monoalkylated N-acylguanidines, highly potent and selective ligands for G protein coupled receptors have been identified in recent years. In the field of molecular recognition, acylguanidines are valued for their ability to form strong fork-like hydrogen bond (H-bond) interactions with carboxylate anions. Although their basic...

  12. Intermolecular interactions in cyclic complexes with hydrogen bond of bifunctional N-containing compounds in solution

    The structure of molecular and ionic hydrogen-bonded complexes formed by bifunctional N-containing molecules, which can act as proton donor and proton acceptor simultaneously, and the nature of molecular interactions in these complexes were studied in solution. The spectroscopic, steric and thermodynamic characteristics of self-associates of 3,5-dimethylpyrazole, diphenylformamidine, diphenylguanidine and diphenyltriazene and complexes of these compounds with carboxylic acids were obtained. The quantum chemical calculations of the structure of complexes and the vibrational frequencies in IR spectra were carried out in the harmonic approximation and with the anharmonic effects taken into account. It was shown that under the interaction with weak carboxylic acids (HCOOH, CH3COOH, CH2ClCOOH) the complexes have molecular structure with two H-bonds NH...O=C and OH...N, and the interaction with strong acids (CHCl2COOH, CCl3COOH, CF3COOH) results in formation of cyclic hydrogen-bonded ionic pairs with proton transfer from hydroxyl group to the N atom of the azo-compound. (authors)

  13. Studies on intermolecular interaction on binary mixtures of methyl orange-water system: excess molar functions of ultrasonic parameters at different concentrations and at different temperatures.

    Thanuja, B; Kanagam, Charles; Sreedevi, S

    2011-11-01

    Density (ρ), viscosity (η) and ultrasonic velocity (u) of binary mixtures of methyl orange and water were measured at different concentrations and at different temperatures; several useful parameters such as excess volume, excess velocity, and excess adiabatic compressibility have been calculated. These parameters are used to explain the nature of intermolecular interactions taking place in the binary mixture. The above study is helpful in understanding the dye/solvent interaction at different concentration and temperatures. PMID:21596612

  14. Quantifying intermolecular interactions in solid state indapamide and other popular diuretic drugs: Insights from Hirshfeld surface study

    Bojarska, Joanna; Fruziński, Andrzej; Maniukiewicz, Waldemar

    2016-07-01

    Hirshfeld surfaces (HS) and two-dimensional fingerprint plots are used to analyze the intermolecular interactions in indapamide and other popular thiazide diuretic derivatives. The crystal structure of indapamide (INDP) at 100 K determined by single-crystal X-ray analysis, is also reported. The title compound crystallizes in the centrosymmetric I2/a space group with one indapamide and half water molecule (lying on the glide plane) in the asymmetric unit. An interplay of N-H⋯O hydrogen bonds connects the indapamide molecules generating chains with the graph-set motifs: C (8) and C23 (16), and together with C-H⋯O and π⋯π stacking interactions create a 3D net. The Hirshfeld surface study facilitates comparison of diverse and numerous intercontacts, such as H⋯H, O⋯H, Cl⋯H, C⋯C (π⋯π), C⋯O (π⋯lone pair), O⋯O (lone pair⋯lone pair), Cl⋯O, Cl⋯Cl, N⋯N, C⋯H (C-H⋯π) with regard to building self-assembled framework of indapamide and related thiazide derivatives retrieved from the Cambridge Structural Database. The HS analysis highlights that H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts play an influential role contributing to about 80% of the HS areas in this class of compounds. Nevertheless, in the case of INDP the H⋯H interactions, while in hydrochlorothiazide (HCTZ) O⋯H/H⋯O are dominant amongst all intercontacts towards the HS. Notably, indapamide has the highest proportion of C⋯C contacts.

  15. Intermolecular potential energy surface and thermophysical properties of the CH4-N2 system

    Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Vesovic, Velisa

    2014-12-01

    A five-dimensional potential energy surface (PES) for the interaction of a rigid methane molecule with a rigid nitrogen molecule was determined from quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the CCSD(T) level of theory was utilized to compute a total of 743 points on the PES. The interaction energies were calculated using basis sets of up to quadruple-zeta quality with bond functions and were extrapolated to the complete basis set limit. An analytical site-site potential function with nine sites for methane and five sites for nitrogen was fitted to the interaction energies. The PES was validated by calculating the cross second virial coefficient as well as the shear viscosity and binary diffusion coefficient in the dilute-gas limit for CH4-N2 mixtures. An improved PES was obtained by adjusting a single parameter of the analytical potential function in such a way that quantitative agreement with the most accurate experimental values of the cross second virial coefficient was achieved. The transport property values obtained with the adjusted PES are in good agreement with the best experimental data.

  16. Competing intermolecular interactions of artemisinin-type agents and aspirin with membrane phospholipids: Combined model mass spectrometry and quantum-chemical study

    Highlights: • Competitive binding of artemisinin agents and aspirin with phospholipids is shown. • Complexation between the antimalarial drugs and aspirin molecules is also found. • Energetically favorable structures of the model complexes are identified by DFT. • Membranotropic activity of the studied drugs can be modified under joint usage. - Abstract: Study of intermolecular interactions of antimalarial artemisinin-type drugs and aspirin with membrane phospholipids is important in term of elucidation of the drugs activity modification under their joint usage. Combined experimental and computational study of the interaction of dihydroartemisinin, α-artemether, and artesunate with aspirin (ASP) and dipalmitoylphosphatidylcholine (DPPC) is performed by electrospray ionization (ESI) mass spectrometry and by DFT B3LYP/aug-cc-pVDZ methods. The results of the ESI investigation of systems containing artemisinin-type agent, ASP and DPPC, reveal a competition between the antimalarial agents and ASP for binding with DPPC molecules. The complexation between the antimalarial drugs and ASP is also found. Observed phenomena suggest that membranotropic activity of artemisin-type agents and aspirin is modified under their combined usage. To elucidate structure-energy characteristics of the non-covalent complexes studied the model DFT calculations are performed for dihydroartemisinin · ASP complex and complexes of the each drug with phosphatidylcholine head of DPPC in neutral and cationized forms

  17. Competing intermolecular interactions of artemisinin-type agents and aspirin with membrane phospholipids: Combined model mass spectrometry and quantum-chemical study

    Pashynska, Vlada, E-mail: vlada@vl.kharkov.ua [B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Lenin Ave., 47, 61103 Kharkov (Ukraine); Stepanian, Stepan [B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Lenin Ave., 47, 61103 Kharkov (Ukraine); Gömöry, Agnes; Vekey, Karoly [Institute of Organic Chemistry of Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar tudosok korutja, 2, Budapest H-1117 (Hungary); Adamowicz, Ludwik [University of Arizona, Department of Chemistry and Biochemistry, Tucson, AZ 85721 (United States)

    2015-07-09

    Highlights: • Competitive binding of artemisinin agents and aspirin with phospholipids is shown. • Complexation between the antimalarial drugs and aspirin molecules is also found. • Energetically favorable structures of the model complexes are identified by DFT. • Membranotropic activity of the studied drugs can be modified under joint usage. - Abstract: Study of intermolecular interactions of antimalarial artemisinin-type drugs and aspirin with membrane phospholipids is important in term of elucidation of the drugs activity modification under their joint usage. Combined experimental and computational study of the interaction of dihydroartemisinin, α-artemether, and artesunate with aspirin (ASP) and dipalmitoylphosphatidylcholine (DPPC) is performed by electrospray ionization (ESI) mass spectrometry and by DFT B3LYP/aug-cc-pVDZ methods. The results of the ESI investigation of systems containing artemisinin-type agent, ASP and DPPC, reveal a competition between the antimalarial agents and ASP for binding with DPPC molecules. The complexation between the antimalarial drugs and ASP is also found. Observed phenomena suggest that membranotropic activity of artemisin-type agents and aspirin is modified under their combined usage. To elucidate structure-energy characteristics of the non-covalent complexes studied the model DFT calculations are performed for dihydroartemisinin · ASP complex and complexes of the each drug with phosphatidylcholine head of DPPC in neutral and cationized forms.

  18. Weak interactions in barbituric acid derivatives. Unusually steady intermolecular organic “sandwich” complexes. π π Stacking versus hydrogen bonding interactions

    Khrustalev, Victor N.; Krasnov, Konstantin A.; Timofeeva, Tatiana V.

    2008-04-01

    The 4-methoxy-6,6-dimethyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5- g]isoquinolin-6-ium ( 1) and 2-(1 H-indol-3-yl)-1-ethanaminium (tryptaminium) ( 2) salts of 1,3-dimethyl-2,4,6-trioxoperhydro-pyrimidine-5-spiro-6'-{4'-methoxy-7'-(1,3-dimethyl-2,4,6-trioxoper-hydropyrimidin-5-yl)-5',6',7',8'-tetrahydro[1,3]dioxolo[4,5- g]naphthalene} ( 3) have been prepared and their structures have been investigated by single-crystal X-ray diffraction analysis. It has been found on the basis of the crystal packing arrangement as well as physical and chemical properties that derivatives 1 and 2 form unusually steady intermolecular sandwich-like complexes both in the crystal and in solution, which are stabilized by weak C sbnd H… n(O dbnd C) hydrogen bonds and π-π stacking. The interplay between the intermolecular π-π stacking and strong N sbnd H…O hydrogen bond interactions and its influence on the "sandwich" structures of 1 and 2 are discussed.

  19. Spectroscopic Characterization of Intermolecular Interaction of Amyloid β Promoted on GM1 Micelles

    Maho Yagi-Utsumi

    2011-01-01

    Full Text Available Clusters of GM1 gangliosides act as platforms for conformational transition of monomeric, unstructured amyloid β (Aβ to its toxic β-structured aggregates. We have previously shown that Aβ(1–40 accommodated on the hydrophobic/hydrophilic interface of lyso-GM1 or GM1 micelles assumes α-helical structures under ganglioside-excess conditions. For better understanding of the mechanisms underlying the α-to-β conformational transition of Aβ on GM1 clusters, we performed spectroscopic characterization of Aβ(1–40 titrated with GM1. It was revealed that the thioflavin T- (ThT- reactive β-structure is more populated in Aβ(1–40 under conditions where the Aβ(1–40 density on GM1 micelles is high. Under this circumstance, the C-terminal hydrophobic anchor Val39-Val40 shows two distinct conformational states that are reactive with ThT, while such Aβ species were not generated by smaller lyso-GM1 micelles. These findings suggest that GM1 clusters promote specific Aβ-Aβ interactions through their C-termini coupled with formation of the ThT-reactive β-structure depending on sizes and curvatures of the clusters.

  20. Fabrication and Intermolecular Interactions of Silk Fibroin/Hydroxybutyl Chitosan Blended Nanofibers

    Xiu-Mei Mo

    2011-03-01

    Full Text Available The native extracellular matrix (ECM is composed of a cross-linked porous network of multifibril collagens and glycosaminoglycans. Nanofibrous scaffolds of silk fibroin (SF and hydroxybutyl chitosan (HBC blends were fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP and trifluoroacetic acid (TFA as solvents to biomimic the native ECM via electrospinning. Scanning electronic microscope (SEM showed that relatively uniform nanofibers could be obtained when 12% SF was blended with 6% HBC at the weight ratio of 50:50. Meanwhile, the average nanofibrous diameter increased when the content of HBC in SF/HBC blends was raised from 20% to 100%. Fourier transform infrared spectra (FTIR and 13C nuclear magnetic resonance (NMR showed SF and HBC molecules existed in hydrogen bonding interactions but HBC did not induce conformation of SF transforming from random coil form to β-sheet structure. X-ray diffraction (XRD confirmed the different structure of SF/HBC blended nanofibers from both SF and HBC. Thermogravimetry-Differential thermogravimetry (TG-DTG results demonstrated that the thermal stability of SF/HBC blend nanofibrous scaffolds was improved. The results indicated that the rearrangement of HBC and SF molecular chain formed a new structure due to stronger hydrogen bonding between SF and HBC. These electrospun SF/HBC blended nanofibers may provide an ideal tissue engineering scaffold and wound dressing.

  1. Redetermined structure, inter-molecular inter-actions and absolute configuration of royleanone.

    Fun, Hoong-Kun; Chantrapromma, Suchada; Salae, Abdul Wahab; Razak, Ibrahim Abdul; Karalai, Chatchanok

    2011-05-01

    The structure of the title diterpenoid, C(20)H(28)O(3), {systematic name: (4bS,8aS)-3-hy-droxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octa-hydro-phenanthrene-1,4-dione} is confirmed [Eugster et al. (1993 ▶). Private communication (refcode HACGUN). CCDC, Union Road, Cambridge] and its packing is now described. Its absolute structure was established by refinement against data collected with Cu radiation: the two stereogenic centres both have S configurations. One cyclo-hexane ring adopts a chair conformation whereas the other cyclo-hexane ring is in a half-chair conformation and the benzoquinone ring is slightly twisted. An intra-molecular O-H⋯O hydrogen bond generates an S(5) ring motif. In the crystal, mol-ecules are linked into chains along [010] by O-H⋯O hydrogen bonds and weak C-H⋯O inter-actions. The packing also features C⋯O [3.131 (3) Å] short contacts. PMID:21754362

  2. Fine structures in vibrational circular dichroism spectra of chiral molecules with rotatable hydroxyl groups and their application in the analysis of local intermolecular interactions

    Konno, Kohzo; Shiina, Isamu; Yui, Hiroharu

    2013-03-01

    The effect of hydroxyl group on vibrational circular dichroism is addressed. (-)-Menthol is investigated as a representative chiral molecule which has been widely used as a chiral starting material. Free rotation of the hydroxyl group in (-)-menthol allows it to exist in various conformations in solution. The variety of conformations inevitably affects local intermolecular interactions and the resultant efficiency of asymmetric syntheses. However, the precise relationship between the conformations and intermolecular interactions arising from rotation of the hydroxyl group has remained an unsolved issue despite the molecule's importance. Here, the conformations and interactions are investigated using vibrational circular dichroism (VCD). VCD is quite sensitive to slight differences in the conformation of chiral molecules and their local environment. We examined various conformers in (-)-menthol and compared the VCD spectrum with that of (-)-menthone. It revealed the rotation of the polar hydroxyl group sensitively affects the VCD activity, resulting in the emergence of various patterns in the corresponding VCD spectra, especially in the wavenumber regions at around 1064 cm-1 and 1254 cm-1. Among these regions, the latter one is further investigated to examine the feasibility of applying the sensitive response to the analysis on the local intermolecular environment. It includes solute-solvent interactions via hydroxyl groups, which is important for biomacromolecule structural stability and efficient stereoselective syntheses. As a consequence, distinctive fine structures in the VCD spectra, including an unpredicted band, are observed when varying temperature and concentration. Their possible assignment is also discussed.

  3. Push it to the limit: Characterizing the convergence of common sequences of basis sets for intermolecular interactions as described by density functional theory.

    Witte, Jonathon; Neaton, Jeffrey B; Head-Gordon, Martin

    2016-05-21

    With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions-noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms-with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen's pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems. PMID:27208948

  4. Role of intermolecular interactions on the electronic and geometric structure of a large Pi-conjugated molecule adsorbed on a metal surface

    Kilian, L.; Hauschild, A.; Temirov, R.; Soubatch, S.; Schoell, A.; Bendounan, A.; Reinert, F.; Lee, T. L.; Tautz, F. S.; Sokolowski, M.; Umbach, E

    2008-01-01

    The organic semiconductor molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) exhibits two adsorption states on the Ag(111) surface: one in a metastable disordered phase, prepared at low temperatures, the other in the long-range ordered monolayer phase obtained at room temperature. Notably, the two states differ substantial in their vertical bonding distances, intramolecular distortions, and electronic structures. The difference is explained by intermolecular interactions, which ar...

  5. Collecting high-order interactions in an effective pairwise intermolecular potential using the hydrated ion concept: The hydration of Cf{sup 3+}

    Galbis, Elsa; Pappalardo, Rafael R.; Marcos, Enrique Sánchez, E-mail: sanchez@us.es [Departmento de Química Física, Universidad de Sevilla, 41012 Seville (Spain); Hernández-Cobos, Jorge [Instituto de Ciencias Físicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca (Mexico)

    2014-06-07

    This work proposes a new methodology to build interaction potentials between a highly charged metal cation and water molecules. These potentials, which can be used in classical computer simulations, have been fitted to reproduce quantum mechanical interaction energies (MP2 and BP86) for a wide range of [M(H{sub 2}O){sub n}]{sup m+}(H{sub 2}O){sub ℓ} clusters (n going from 6 to 10 and ℓ from 0 to 18). A flexible and polarizable water shell model (Mobile Charge Density of Harmonic Oscillator) has been coupled to the cation-water potential. The simultaneous consideration of poly-hydrated clusters and the polarizability of the interacting particles allows the inclusion of the most important many-body effects in the new polarizable potential. Applications have been centered on the californium, Cf(III) the heaviest actinoid experimentally studied in solution. Two different strategies to select a set of about 2000 structures which are used for the potential building were checked. Monte Carlo simulations of Cf(III)+500 H{sub 2}O for three of the intermolecular potentials predict an aquaion structure with coordination number close to 8 and average R{sub Cf−−O} in the range 2.43–2.48 Å, whereas the fourth one is closer to 9 with R{sub Cf−−O} = 2.54 Å. Simulated EXAFS spectra derived from the structural Monte Carlo distribution compares fairly well with the available experimental spectrum for the simulations bearing 8 water molecules. An angular distribution similar to that of a square antiprism is found for the octa-coordination.

  6. Comparison of the Effective Fragment Potential Method with Symmetry-Adapted Perturbation Theory in the Calculation of Intermolecular Energies for Ionic Liquids.

    Tan, Samuel Y S; Izgorodina, Ekaterina I

    2016-06-14

    The effective fragment potential (EFP) method that decomposes the interaction energy as a sum of the five fundamental forces-electrostatic, exchange-repulsion, polarization, dispersion, and charge transfer-was applied to a large test set of ionic liquid ion pairs and compared against the state-of-the-art method, Symmetry-Adapted Perturbation Theory (SAPT). The ion pairs include imidazolium and pyrrolidinium cations combined with anions that are routinely used in the field of ionic liquids. The aug-cc-pVDZ, aug-cc-pVTZ, and 6-311++G(d,p) basis sets were used for EFP, while SAPT2+3/aug-cc-pVDZ provided the benchmark energies. Differences between the two methods were found to be large, and strongly dependent on the anion type. For the aug-cc-pVTZ basis set, which produced the least errors, average relative errors were between 2.3% and 18.4% for pyrrolidinium ion pairs and between 2.1% and 27.7% for imidazolium ion pairs for each individual energetic component (excluding charge transfer), as well as the total interaction energy. Charge transfer gave the largest relative errors: 56% and 63% on average for pyrrolidinium- and imidazolium-based ion pairs, respectively. Scaling of the EFP components against SAPT2+3 showed improvement for polarization (induction) and dispersion terms, thus indicating potential for the development of cost-effective alternatives for intermolecular induction and dispersion potentials for ionic liquids. PMID:27116302

  7. Intramolecular photo-switching and intermolecular energy transfer as primary photoevents in photoreceptive processes: The case of Euglena gracilis

    In this paper we report the results of measurements performed by FLIM on the photoreceptor of Euglenagracilis. This organelle consists of optically bistable proteins, characterized by two thermally stable isomeric forms: A498, non fluorescent and B462, fluorescent. Our data indicate that the primary photoevent of Euglena photoreception upon photon absorption consists of two contemporaneous different phenomena: an intramolecular photo-switch (i.e., A498 becomes B462), and a intermolecular and unidirectional Forster-type energy transfer. During the FRET process, the fluorescent B462 form acts as donor for the non-fluorescent A498 form of the protein nearby, which acts as acceptor. We hypothesize that in nature these phenomena follow each other with a domino progression along the orderly organized and closely packed proteins in the photoreceptor layer(s), modulating the isomeric composition of the photoreceptive protein pool. This mechanism guarantees that few photons are sufficient to produce a signal detectable by the cell.

  8. Benchmark Calculations of Three-Body Intermolecular Interactions and the Performance of Low-Cost Electronic Structure Methods

    Řezáč, Jan; Huang, Y.; Hobza, Pavel; Beran, G. J. O.

    2015-01-01

    Roč. 11, č. 7 (2015), s. 3065-3079. ISSN 1549-9618 R&D Projects: GA ČR GP13-01214P; GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : density functional theory * Plesset perturbation theory * noncovalent interactions * interaction energies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.498, year: 2014

  9. Study on Application of Model Core Potential to Intermolecular Interaction%模型势MCP应用于分子间相互作用的研究

    赵秀英; 孙涛; 王一波

    2011-01-01

    使用模型势MCP计算了含重元素的氢键和vail der Waals相互作用体系的几何结构与结合能。结果表明,在MP2水平,应用MCP基组研究分子间相互作用时,可以使用Boys和Bernardi提出的均衡校正法进行基函数重叠误差(BSSE)校正;与同一水平的全电子基组相比,经BSSE校正后的结合能AEcP平均相对误差为5.2%,结果准确,但是BSSE普遍较大;使用MCP基组的计算时间远小于全电子基组,MCP方法的效率随原子的电子层数增加而提高。%We use Model Core Potential to calculate the geometry and binding energy of systems with heavy elements that consist hydrogen bond and van der Walls. The results show that we can use the counterpoise method proposed by Boys and Bernardi when studying intermolecular interactions within MCP basis sets at MP2 level. Compared to all-electron basis sets at the same level, the average relative error of binding energy was 5.2 %. This result was accurate, but BSSE was generally large for MCP basis sets. The calculation time was much shorter for MCP basis sets than that of all-electron basis sets. Also, the efficiency of MCP method is improved with the increase of the core electron shell of heavy elements.

  10. The origins of intra- and inter-molecular vibrational couplings: A case study of H{sub 2}O-Ar on full and reduced-dimensional potential energy surface

    Hou, Dan; Ma, Yong-Tao; Zhang, Xiao-Long; Li, Hui, E-mail: Prof-huili@jlu.edu.cn [Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023 (China)

    2016-01-07

    The origin and strength of intra- and inter-molecular vibrational coupling is difficult to probe by direct experimental observations. However, explicitly including or not including some specific intramolecular vibrational modes to study intermolecular interaction provides a precise theoretical way to examine the effects of anharmonic coupling between modes. In this work, a full-dimension intra- and inter-molecular ab initio potential energy surface (PES) for H{sub 2}O–Ar, which explicitly incorporates interdependence on the intramolecular (Q{sub 1},  Q{sub 2},  Q{sub 3}) normal-mode coordinates of the H{sub 2}O monomer, has been calculated. In addition, four analytic vibrational-quantum-state-specific PESs are obtained by least-squares fitting vibrationally averaged interaction energies for the (v{sub 1},  v{sub 2},  v{sub 3}) =  (0,  0,  0), (0,  0,  1), (1,  0,  0), (0,  1,  0) states of H{sub 2}O to the three-dimensional Morse/long-range potential function. Each vibrationally averaged PES fitted to 442 points has root-mean-square (rms) deviation smaller than 0.15 cm{sup −1}, and required only 58 parameters. With the 3D PESs of H{sub 2}O–Ar dimer system, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. This showed that the resulting vibrationally averaged PESs provide good representations of the experimental infrared data, with rms discrepancies smaller than 0.02 cm{sup −1} for all three rotational branches of the asymmetric stretch fundamental transitions. The infrared band origin shifts associated with three fundamental bands of H{sub 2}O in H{sub 2}O–Ar complex are predicted for the first time and are found to be in good agreement with the (extrapolated) experimental values. Upon introduction of additional intramolecular degrees of freedom into the intermolecular potential energy surface, there is clear

  11. Interacting Agegraphic Dark Energy

    Wei, Hao; Cai, Rong-Gen

    2007-01-01

    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\\'{a}rolyh\\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegrap...

  12. The role of weak intermolecular C-H…F interactions in supramolecular assembly: Structural investigations on 3,5- dibenzylidene-piperidin-4-one and database analysis

    R S Rathore; N S Karthikeyan; Y Alekhya; K Sathiyanarayanan; P G Aravindan

    2011-07-01

    The fluorinated and non-fluorinated dibenzylidene-4-piperidones were synthesized and their structures examined using X-ray crystallography. Interestingly, the para-fluorosubstituted dibenzylidene compound, in contrast to other analogs, is characterized by C-H…F bonded one-dimensional packing motif. To evaluate the ability of hydrogen bond donors and acceptors for forming interactions, in general and competitive situation, we have defined statistical descriptors. Analysis of Cambridge Structural Database using these newly defined parameters reveals high propensity of C-H…F interactions in organic crystals. The present structural study suggests much larger role of fluorine driven intermolecular interactions that are even though weak, but possess significant ability to direct and alter the packing.

  13. Structure of an acidic phospholipase A2 from Indian saw-scaled viper (Echis carinatus) at 2.6 A resolution reveals a novel intermolecular interaction.

    Jasti, Jayasankar; Paramasivam, M; Srinivasan, A; Singh, T P

    2004-01-01

    The crystal structure of an acidic phospholipase A(2) from the venom of Echis carinatus (saw-scaled viper; scPLA(2)) has been determined at 2.6 A resolution and refined to a crystallographic R factor of 0.192. Although the overall structure of scPLA(2) is essentially similar to those of other group II acidic PLA(2)s from different species, it shows unique features in several parts. Particularly noteworthy is the C-terminal part, which folds differently to those of other group II PLA(2)s. This part is considered to be responsible for inhibition of the platelet-aggregation activity. The calcium-binding loop is tightly organized with sevenfold coordination. Another striking feature of scPLA(2) is the involvement of Asn79 O(delta1) of a symmetry-related molecule in a coordination linkage with Ca(2+) of the calcium-binding loop. This is the first observation of an internal metal ion participating in an intermolecular interaction. The beta-wing of a molecule is deeply inserted into the hydrophobic channel of another molecule and forms several intermolecular interactions. This results in the formation of an infinite chain of molecules. These chains are stacked in an antiparallel arrangement in the crystals. PMID:14684894

  14. Intramolecular photo-switching and intermolecular energy transfer as primary photoevents in photoreceptive processes: The case of Euglena gracilis

    Mercatelli, Raffaella; Quercioli, Franco [Istituto Sistemi Complessi, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Barsanti, Laura; Evangelista, Valter [Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa (Italy); Coltelli, Primo [ISTI, CNR, Via Moruzzi 1, 56124 Pisa (Italy); Passarelli, Vincenzo; Frassanito, Anna Maria [Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa (Italy); Gualtieri, Paolo, E-mail: paolo.gualtieri@pi.ibf.cnr.it [Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa (Italy)

    2009-07-24

    In this paper we report the results of measurements performed by FLIM on the photoreceptor of Euglenagracilis. This organelle consists of optically bistable proteins, characterized by two thermally stable isomeric forms: A{sub 498,} non fluorescent and B{sub 462}, fluorescent. Our data indicate that the primary photoevent of Euglena photoreception upon photon absorption consists of two contemporaneous different phenomena: an intramolecular photo-switch (i.e., A{sub 498} becomes B{sub 462}), and a intermolecular and unidirectional Forster-type energy transfer. During the FRET process, the fluorescent B{sub 462} form acts as donor for the non-fluorescent A{sub 498} form of the protein nearby, which acts as acceptor. We hypothesize that in nature these phenomena follow each other with a domino progression along the orderly organized and closely packed proteins in the photoreceptor layer(s), modulating the isomeric composition of the photoreceptive protein pool. This mechanism guarantees that few photons are sufficient to produce a signal detectable by the cell.

  15. DFT study of isocyanate chemisorption on Cu(100): Correlation between substrate-adsorbate charge transfer and intermolecular interactions

    Belelli, Patricia G.; Garda, Graciela R.; Ferullo, Ricardo M.

    2011-07-01

    The adsorption of isocyanate (- NCO) species on Cu(100) was studied using the density functional theory (DFT) and the periodic slab model. The calculations indicate that at low and intermediate coverages NCO adsorbs preferentially on bridge and hollow sites. Work function and dipole moment changes show a significant negative charge transfer from Cu to NCO. The resulting charged NCO species interact repulsively among themselves being these dipole-dipole interactions particularly intensive when they are adsorbed in adjacent sites. Consequently, isocyanates tend to be separated from each other generating the vacant sites required for the dissociation to N and CO. This condition for NCO dissociation has been suggested in the past from experimental observations. A comparison was also performed with the NCO adsorption on Pd(100). In particular, the calculated minimal energy barrier for NCO dissociation was found to be higher on Cu(100) than on Pd(100) in accord with the well known higher NCO stability on Cu(100).

  16. Data in support of intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures.

    Odahara, Takayuki; Odahara, Koji

    2016-06-01

    The data provide information in support of the research article, "Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures" [1]. The data regarding variation of absorption spectra is used as an indicator of the duration of Rp. viridis PRU and RC, Rb. sphaeroides RC and LH2, and Rb. capsulatus LH2 in the native state in the presence of NaCl/polyethylene glycol (PEG) mixture. The data about minimum concentrations of salt and PEG whose aqueous phases are mutually separated presents information on additional influence of Tris buffer and N-octyl-β-d-glucoside on the salt-PEG phase separation. PMID:27135050

  17. Data in support of intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures

    Odahara, Takayuki; Odahara, Koji

    2016-01-01

    The data provide information in support of the research article, “Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures” [1]. The data regarding variation of absorption spectra is used as an indicator of the duration of Rp. viridis PRU and RC, Rb. sphaeroides RC and LH2, and Rb. capsulatus LH2 in the native state in the presence of NaCl/polyethylene glycol (PEG) mixture. The data about minimum concentrations of salt and PEG whose aqueous phases are mutually separated presents information on additional influence of Tris buffer and N-octyl-β-d-glucoside on the salt–PEG phase separation. PMID:27135050

  18. Ligand field and intermolecular interactions tuning the magnetic properties of spin-crossover Fe(II) polymer with 4,4′-bipyridine

    A new spin crossover coordination polymer (SCO-CPs) of Fe(II)-4,4′-bipyridine (4,4′-bipy) family: (Fe(4,4′-bipy)2(H2O)2)·(4,4′-bipy)· 8(H2O)·2(ClO4) (3), which displays half spin transitions between 100 and 300 K, has been synthesized and structurally characterized. Compound 3 featured with two-dimensional (2-D) grids connected by hydrogen bonds and π…π packing between one-dimensional (1-D) chains, the 2-D grids expand to three-dimensional (3-D) architecture supported by a “S-shaped holder” involving lattice 4-4′-bipy, water molecules and perchlorate anion. We compared 3 with the other two analogous complexes: ((Fe(4,4′-bipy) (H2O)2 (NCS)2)·4,4′-bipy, 1 and (Fe(4,4′-bipy)2(NCS)2)·mSolv, 2) through Hirshfeld surfaces analysis, which revealed that the low ligand field strength (NCS−) and lone-pair…H contacts contribute to the stabilization of HS (high-spin) state of the Fe(II) ion, while the high ligand field strength (4,4′-bipy) and strong intermolecular contacts (hydrogen bonds and π…π packing interactions) make for the LS (low-spin) state. - Highlights: ●A new member of Fe(||)-4,4′-bipy family has been prepared. ●It displays half spin transitions tuned by ligand field and intermolecular interactions. ●We have made a detailed comparison of this new member with two other analogous complexes

  19. Extended intermolecular interactions in a serine protease-canonical inhibitor complex account for strong and highly specific inhibition.

    Fodor, Krisztián; Harmat, Veronika; Hetényi, Csaba; Kardos, József; Antal, József; Perczel, András; Patthy, András; Katona, Gergely; Gráf, László

    2005-07-01

    We have previously shown that a trypsin inhibitor from desert locust Schistocerca gregaria (SGTI) is a taxon-specific inhibitor that inhibits arthropod trypsins, such as crayfish trypsin, five orders of magnitude more effectively than mammalian trypsins. Thermal denaturation experiments, presented here, confirm the inhibition kinetics studies; upon addition of SGTI the melting temperatures of crayfish and bovine trypsins increased 27 degrees C and 4.5 degrees C, respectively. To explore the structural features responsible for this taxon specificity we crystallized natural crayfish trypsin in complex with chemically synthesized SGTI. This is the first X-ray structure of an arthropod trypsin and also the highest resolution (1.2A) structure of a trypsin-protein inhibitor complex reported so far. Structural data show that in addition to the primary binding loop, residues P3-P3' of SGTI, the interactions between SGTI and the crayfish enzyme are also extended over the P12-P4 and P4'-P5' regions. This is partly due to a structural change of region P10-P4 in the SGTI structure induced by binding of the inhibitor to crayfish trypsin. The comparison of SGTI-crayfish trypsin and SGTI-bovine trypsin complexes by structure-based calculations revealed a significant interaction energy surplus for the SGTI-crayfish trypsin complex distributed over the entire binding region. The new regions that account for stronger and more specific binding of SGTI to crayfish than to bovine trypsin offer new inhibitor sites to engineer in order to develop efficient and specific protease inhibitors for practical use. PMID:15922357

  20. DFT study of NH 3 dissociation on Si(1 1 1)-7 × 7. The role of intermolecular interactions

    Ferullo, Ricardo M.; Fuente, Silvia A.; Belelli, Patricia G.; Castellani, Norberto J.

    2007-04-01

    The adsorption of NH 3 molecule on the Si(1 1 1)-7 × 7 surface modelled with a cluster has been studied using density functional theory (DFT). The results indicate the existence of a precursor state for the non-dissociative chemisorption. The active site for the molecular chemisorption is the adatom; while the NH 3 molecule adsorbs on the Si restatom via this preadsorbed state, the adsorption on the Si adatom is produced practically without an energy barrier. The ammonia adsorption on the adatom induces an electron transfer from the dangling bond of this atom to the dangling bond of the adjacent Si restatom, hindering this site for the adsorption of a second NH 3 incoming molecule. However, this second molecule links strongly by means of two H-bonds. The dissociative chemisorption process was studied considering one and two ammonia molecules. For the dissociation of a lonely NH 3 molecule an energy barrier of ˜0.3 eV was calculated, yielding NH 2 on the adatom and H on the restatom. When two molecules are adsorbed, the NH 3-NH 3 interaction yields the weakening of a N-H bond of the ammonia molecule adsorbed closer the Si surface. As a consequence, the dissociation barrier practically disappears. Thus, the presence of a second NH 3 molecule at the adatom-restatom pair of the Si(1 1 1)-7 × 7 surface makes the dissociative reaction self-assisted, the total adsorption process elapsing with a negligible activation barrier (less than 0.01 eV).

  1. Interacting Dark Energy

    Zhang, Xinmin

    2004-01-01

    In this paper I discuss some of the phenomenologies of models of the dark energy interacting with the ordinary matter. After a very brief review about the current constraint on the equation of the state of the dark energy from the SN and a new scenario of dark energy {\\it the Quintom}, I present models of Quintessential Baryo(Lepto)genesis, Quintessino dark matter and mass varying neutrinos in details.

  2. Theoretical studies for the N2–N2O van der Waals complex: The potential energy surface, intermolecular vibrations, and rotational transition frequencies

    Theoretical studies of the potential energy surface (PES) and bound states are performed for the N2–N2O van der Waals (vdW) complex. A four-dimensional intermolecular PES is constructed at the level of single and double excitation coupled-cluster method with a non-iterative perturbation treatment of triple excitations [CCSD(T)] with aug-cc-pVTZ basis set supplemented with bond functions. Two equivalent T-shaped global minima are located, in which the O atom of N2O monomer is near the N2 monomer. The intermolecular fundamental vibrational states are assigned by inspecting the orientation of the nodal surface of the wavefunctions. The calculated frequency for intermolecular disrotation mode is 23.086 cm−1, which is in good agreement with the available experimental data of 22.334 cm−1. A negligible tunneling splitting with the value of 4.2 MHz is determined for the ground vibrational state and the tunneling splitting increases as the increment of the vibrational frequencies. Rotational levels and transition frequencies are calculated for both isotopomers 14N2–N2O and 15N2–N2O. The accuracy of the PES is validated by the good agreement between theoretical and experimental results for the transition frequencies and spectroscopic parameters

  3. Theoretical studies for the N{sub 2}–N{sub 2}O van der Waals complex: The potential energy surface, intermolecular vibrations, and rotational transition frequencies

    Zheng, Rui [Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011 (China); Zheng, Limin; Yang, Minghui, E-mail: yplu@ntu.edu.sg, E-mail: yangmh@wipm.ac.cn [Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Lu, Yunpeng, E-mail: yplu@ntu.edu.sg, E-mail: yangmh@wipm.ac.cn [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2015-10-21

    Theoretical studies of the potential energy surface (PES) and bound states are performed for the N{sub 2}–N{sub 2}O van der Waals (vdW) complex. A four-dimensional intermolecular PES is constructed at the level of single and double excitation coupled-cluster method with a non-iterative perturbation treatment of triple excitations [CCSD(T)] with aug-cc-pVTZ basis set supplemented with bond functions. Two equivalent T-shaped global minima are located, in which the O atom of N{sub 2}O monomer is near the N{sub 2} monomer. The intermolecular fundamental vibrational states are assigned by inspecting the orientation of the nodal surface of the wavefunctions. The calculated frequency for intermolecular disrotation mode is 23.086 cm{sup −1}, which is in good agreement with the available experimental data of 22.334 cm{sup −1}. A negligible tunneling splitting with the value of 4.2 MHz is determined for the ground vibrational state and the tunneling splitting increases as the increment of the vibrational frequencies. Rotational levels and transition frequencies are calculated for both isotopomers {sup 14}N{sub 2}–N{sub 2}O and {sup 15}N{sub 2}–N{sub 2}O. The accuracy of the PES is validated by the good agreement between theoretical and experimental results for the transition frequencies and spectroscopic parameters.

  4. Analysis of Cl…Cl and C-H…Cl intermolecular interactions involving chlorine in substituted 2-chloroquinoline derivatives

    Venkatesha R Hathwar; S Mohana Roopan; R Subashini; F Nawaz Khan; T N Guru Row

    2010-09-01

    Six crystal structures of substituted 2-chloroquinoline derivatives have been analysed to evaluate the role of Cl atom as a self recognizing unit resulting in the formation of Cl…Cl and C-H…Cl interactions to generate supramolecular assembly in the solid state. The features of Type I and Type II geometries associated with Cl…Cl interactions have been analysed to show directional preferences leading to differences in the packing motifs in these crystal structures. C-H…Cl interactions are generated exclusively in structures depicting Type II Cl…Cl interaction have been observed in these structures.

  5. Intermolecular, ion-molecular and interionic interactions in solutions of lithium and tetrabutylammonium salts in mixtures of methanol with propylene carbonate

    Interparticle interactions are investigated in solutions of LiI, LiBr, LiCl, LiNCS, (C4H9)4NI, (C4H9)4NBr, (C4H9)4NCl in mixtures of methanol with propylene carbonate in absence of self-association of molecules of methanol and in different salt concentrations by the methods of IR spectroscopy. Intermolecular and ion-molecular interactions are studied on IR absorption lines of valent vibrations of OH-groups of methanol (3300-3500 cm-1), interionic interaction - on lines of valent CN (2000-2100 cm-1) and deformation O-Cl-O (625 cm-1) vibrations of NVS- and ClO4- correspondingly. Concentrations of lithium complexes forming in solutions are calculated on intensities of valent absorption lines of OH-groups of methanol. In the case of salt concentration increase the content of complexes decreases. Ousting of solvent molecule by anions in complex happens so faster as electron-donor ability of it is higher

  6. Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential.

    Wang, Qi; E, Weinan; Liu, Chun; Zhang, Pingwen

    2002-05-01

    The Doi kinetic theory for flows of homogeneous, rodlike liquid crystalline polymers (LCPs) is extended to model flows of nonhomogeneous, rodlike LCPs through a nonlocal (long-range) intermolecular potential. The theory features (i) a nonlocal, anisotropic, effective intermolecular potential in an integral form that is consistent with the chemical potential, (ii) short-range elasticity as well as long-range isotropic and anisotropic elasticity, (iii) a closed-form stress expression accounting for the nonlocal molecular interaction, and (iv) an extra elastic body force exclusively associated with the integral form of the intermolecular potential. With the effective intermolecular potential, the theory is proven to be well posed in that it warrants a positive entropy production and thereby the second law of thermodynamics. Approximate theories are obtained by gradient expansions of the number density function in the free energy density. PMID:12059561

  7. Intramolecular versus intermolecular hydrogen bonding in solution

    Vliegenthart, J. F. G.; Kroon, Jan; Kroon-Batenburg, L.M.J.; Leeflang, B.R.

    1994-01-01

    The balance between intra- and intermolecular hydrogen bonding is studied for a solution of methyl beta-cellobioside in water and dimethylsulfoxide by 1H NMR and molecular dynamics simulations. In water O(3) predominantly interacts with water molecules, whereas in dimethylsulfoxide it is intramolecularly hydrogen bonded to O(5Œ). The temperature coefficient of the chemical shift of the hydroxy groups appears to be a reliable indicator of intermolecular hydrogen-bond formation, whereas the ex...

  8. Relationship between molecular weight of poly(ethylene)glycol and intermolecular interaction of Taka-amylase A monomers

    Onuma, Kazuo; Furubayashi, Naoki; Shibata, Fujiko; Kobayashi, Yoshiko; Kaito, Sachiko; Ohnishi, Yuki; Inaka, Koji

    2010-04-01

    Dynamic and static light scattering investigations of Taka-amylase A (TAA) protein monomers were done using solutions containing poly(ethylene)glycol (PEG) with molecular weights of 1500, 4000, 8000, and 20 000. The anomalies observed in a previous study using a weight of 8000, in which the hydrodynamic TAA monomer radius at a zero protein concentration and the molecular weight of the monomers decreased when the PEG concentration was increased, were observed for all four weights. These anomalies became more pronounced as the PEG molecular weight was increased. The overall interaction parameter did not move further in the direction of the attractive force despite an increase in the PEG concentration from 6% to 12.5% for the PEG 8000 and 20 000 solutions. This was due to the change in the relative contributions of the static structure factor (direct interaction) and the hydrodynamic interaction factor (indirect interaction) against the overall interaction parameter. For the PEG 1500 and 4000 solutions, the change in the overall interaction parameter with an increase in the PEG concentration was controlled by changing the static structure factor. For the PEG 8000 and 20 000 solutions, a change in the hydrodynamic interaction factor with an increase in the PEG concentration offset the change in the static structure factor, unexpectedly resulting in the overall interaction parameter being independent of the PEG concentration. This suggests that the scale and density of a PEG network structure, which are thought to be the origin of the observed anomalies, change nonlinearly with the PEG molecular weight.

  9. Electronic transitions and intermolecular forces

    This thesis describes two different subjects - electronic transitions and intermolecular forces - that are related mainly by the following observation: The wavenumber at which an electronic transition in an atom or molecule occurs, depends on the environment of that atom or molecule. This implies, for instance, that when a molecule becomes solvated its absorption spectrum may be shifted either to the blue or to the red side of the original gasphase spectrum. In part I attention is paid to the experimental aspects of VUV spectroscopy, both in the gasphase and in the condensed phase. In part II a series of papers are presented, dealing with the calculation of intermolecular forces (and some related topics) both for the ground state and for the excited state interactions, using different non-empirical methods. The calculations provide, among other results, a semiquantitative interpretation of the spectral blue shifts encountered in our experiments. (Auth.)

  10. A quantum-chemical validation about the formation of hydrogen bonds and secondary interactions in intermolecular heterocyclic systems

    Boaz Galdino Oliveira

    2009-08-01

    Full Text Available We have performed a detailed theoretical study in order to understand the charge density topology of the C2H4O···C2H2 and C2H4S···C2H2 heterocyclic hydrogen-bonded complexes. Through the calculations derived from Quantum Theory of Atoms in Molecules (QTAIM, it was observed the formation of hydrogen bonds and secondary interactions. Such analysis was performed through the determination of optimized geometries at B3LYP/6-31G(d,p level of theory, by which is that QTAIM topological operators were computed, such as the electronic density ρ(r, Laplacian Ñ2ρ(r, and ellipticity ε. The examination of the hydrogen bonds has been performed through the measurement of ρ(r, Ñ2ρ(r and ε between (O···H—C and (S···H—C, whereas the secondary interaction between axial hydrogen atoms Hα and carbon of acetylene. In this insight, it was verified the existence of secondary interaction only in C2H4S···C2H2 complex because its structure is propitious to form multiple interactions.

  11. Structural analysis of intermolecular interactions in the kinesin adaptor complex fasciculation and elongation protein zeta 1/ short coiled-coil protein (FEZ1/SCOCO.

    Marcos Rodrigo Alborghetti

    Full Text Available Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans, SCOCO (short coiled-coil protein / UNC-69 and kinesins (e.g. kinesin heavy chain / UNC116 are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth, we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance, cross-linking coupled with mass spectrometry (MS, SAXS (Small Angle X-ray Scattering and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance studies of the region involved in this process, corresponding to FEZ1 (92-194. Through studies involving the protein in its monomeric configuration (reduced and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth.

  12. All-atom Molecular Dynamic Simulations and NMR Spectra Study on Intermolecular Interactions of N,N-dimethylacetamide-Water System

    Rong Zhang; Zai-you Tan; San-lai Luo

    2008-01-01

    N,N-dimethylacetamide (DMA) has been investigated extensively in studying models of peptide bonds. An all-atom MD simulation and the NMR spectra were performed to investigate the interactions in the DMA- water system. The radial distribution functions (RDFs) and the hydrogen-bonding network were used in MD simulations. There are strong hydrogen bonds and weak C-H…O contacts in the mixtures, as shown by the analysis of the RDFs. The insight structures in the DMA-water mixtures can be classified into different regions by the analysis of the hydrogen-bonding network. Chemical shifts of the hydrogen atom of water molecule with concentration and temperatures are adopted to study the interactions in the mixtures. The results of NMR spectra show good agreement with the statistical results of hydrogen bonds in MD simulations.

  13. Weak intermolecular interactions of chromium, molybdenum and vanadium bis-arene complexes with CH- and OH-acids

    Using the method of IR spectroscopy coordination interactions of molybdenum and vanadium organometallic compounds (OMC) (bis-ethyl benzene molybdenum, bisethyl benzene vanadium) with hydroperoxides of ternary butyl and cumyl, as well as with ternary butanol and phenol are investigated. Possible types of OMC coordination with CH- and OH-acids are considered. The role of coordination complexes in the oxidation mechanism of bis-arene derivatives of transition metals by hydroperoxides is discussed

  14. Interactive Energy Planning

    Blarke, Morten Boje

    2006-01-01

    anchoring along the shores of the land of communications and collaboration. Whether or not a particular typology is applicable, theory and praxis are establishing standpoints, which strengthens our understanding of the planning complex, and which should inspire improved energy planning methodologies and......Though it is being questioned whether planning theory should be fitted into neat typologies, some have described evolving planning theory as a journey away from ethnocentrism, through the lands of rationalism, pragmatism, socio-ecological idealism, political-economic mobilization, currently...... tools. This paper presents an “Interactive Energy Planning” framework, which is intended to support interactivity in planning, building on important theoretical and experimental advances in planning. In particular, the paper explores the potential significance of allowing a critical perspective on...

  15. Self-assembly polymorphism of 2,7-bis-nonyloxy-9-fluorenone: solvent induced the diversity of intermolecular dipole-dipole interactions.

    Cui, Lihua; Miao, Xinrui; Xu, Li; Hu, Yi; Deng, Wenli

    2015-02-01

    In this present work, a scanning tunneling microscope (STM) operated under ambient conditions was utilized to probe the self-assembly behavior of 2,7-bis-nonyloxy-9-fluorenone (F-OC9) at the liquid-solid (l/s) interface. On the highly oriented pyrolytic graphite (HOPG) surface, two-dimensional (2D) polymorphism with diversity of intermolecular dipole interactions induced by solvent was found. Solvents ranged from hydrophilic solvating properties with high polarity, such as viscous alkylated acids, to nonpolar alkylated aromatics and alkanes. 1-Octanol and dichloromethane were used to detect the assembly of F-OC9 at the gas-solid (g/s) interface. The opto-electronic properties of F-OC9 were determined by UV-vis and fluorescence spectroscopy in solution. Our results showed that there were tremendous solvent-dependent self-assemblies in 2D ordering for the surface-confined target molecules. When a homologous series of alkanoic acids ranging from heptanoic to nonanoic acid were employed as solvents, the self-assembled monolayer evolved from low-density coadsorbed linear lamellae to a semi-circle-like pattern at relatively high concentrations, which was proven to be the thermodynamic state as it was the sole phase observed at the g/s interface after the evaporation of solvent. Moreover, by increasing the chain length of the alkylated acids, the weight of the carboxylic group, also being the group responsible for the dielectric properties, diminished from heptanoic to nonanoic acid, which could make the easier/earlier appearance of a linear coadsorption effect. However, this was not the case for nonpolar 1-phenyloctane and n-tetradecane: no concentration effect was detected. It showed a strong tendency to aggregate to generate coexistence of separate domains of different phases due to the fast nucleation sites. Furthermore, thermodynamic calculations indicated that the stable structural coexistence of the fluorenone derivative was attributed to synergistic intermolecular

  16. Solid-State [2+2] Photodimerization and Photopolymerization of a,w-Diarylpolyene Monomers: Effective Utilization of Noncovalent Intermolecular Interactions in Crystals

    Yoriko Sonoda

    2010-12-01

    Full Text Available [2+2] Photocycloaddition of olefins is a very useful reaction in synthetic organic chemistry to obtain cyclobutane-containing molecules, which are almost inaccessible by other methods. The reaction, when performed in the crystalline state, occurs more efficiently and selectively than in homogeneous solution due to tight and regular molecular arrangement in the crystal state. Despite numerous examples for the solid-state [2+2] photodimerization of monoenes, however, it is still a challenge to prepare not only dimers but also higher oligomers and polymers from conjugated polyenes, which have multiple reactive double bonds in a molecule. In our recent studies of the solid-state photoreactions of a,w-diarylpolyenes, noncovalent intermolecular interactions in crystals were effectively utilized to prealign molecules in stacking arrangements, suitable for the [2+2] reaction. With appropriate ring-substituents, [2+2] photodimerization and photopolymerization of the polyenes took place, although the degree of polymerization was relatively low. This review will describe the details of these reactions.

  17. Intra and inter-molecular interactions dictate the aggregation state of irinotecan co-encapsulated with floxuridine inside liposomes

    Dicko, A.; Frazier, A.A.; Liboiron, B.D.;

    2008-01-01

    PURPOSE: The inter/intramolecular interactions between drugs (floxuridine, irinotecan) and excipients (copper gluconate, triethanolamine) in the dual-drug liposomal formulation CPX-1 were elucidated in order to identify the physicochemical properties that allow coordinated release of irinotecan and...... aggregation state of the drugs within the liposomes. RESULTS: Coordinated release of the drugs from liposomes was disrupted by removing copper gluconate. Approximately 45% of the total irinotecan was detectable in the copper-containing CPX-1 formulation by NMR, which decreased to 19% without copper present in...... the liposomal interior. Formation of higher order, NMR-silent aggregates was associated with slower and uncoordinated irinotecan release relative to floxuridine and loss of the synergistic drug/drug ratio. Solution spectroscopy and calorimetry revealed that while all formulation components were...

  18. Intermolecular Interaction between Anchoring Subunits Specify Subcellular Targeting and Function of RGS Proteins in Retina ON-Bipolar Neurons.

    Sarria, Ignacio; Orlandi, Cesare; McCall, Maureen A; Gregg, Ronald G; Martemyanov, Kirill A

    2016-03-01

    In vertebrate retina, light responses generated by the rod photoreceptors are transmitted to the second-order neurons, the ON-bipolar cells (ON-BC), and this communication is indispensible for vision in dim light. In ON-BCs, synaptic transmission is initiated by the metabotropic glutamate receptor, mGluR6, that signals via the G-protein Go to control opening of the effector ion channel, TRPM1. A key role in this process belongs to the GTPase Activating Protein (GAP) complex that catalyzes Go inactivation upon light-induced suppression of glutamate release in rod photoreceptors, thereby driving ON-BC depolarization to changes in synaptic input. The GAP complex has a striking molecular complexity. It contains two Regulator of G-protein Signaling (RGS) proteins RGS7 and RGS11 that directly act on Go and two adaptor subunits: RGS Anchor Protein (R9AP) and the orphan receptor, GPR179. Here we examined the organizational principles of the GAP complex in ON-BCs. Biochemical experiments revealed that RGS7 binds to a conserved site in GPR179 and that RGS11 in vivo forms a complex only with R9AP. R9AP and GPR179 are further integrated via direct protein-protein interactions involving their cytoplasmic domains. Elimination of GPR179 prevents postsynaptic accumulation of R9AP. Furthermore, concurrent knock-out of both R9AP and RGS7 does not reconfigure the GAP complex and completely abolishes synaptic transmission, resulting in a novel mouse model of night blindness. Based on these results, we propose a model of hierarchical assembly and function of the GAP complex that supports ON-BCs visual signaling. PMID:26961947

  19. Intermolecular and surface forces

    Israelachvili, Jacob N

    2011-01-01

    This reference describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition.· starts fr

  20. Interactions in Dark Energy Models

    Zhang, Yi; Hui LI; Gong, Yungui; Zhu, Zong-Hong

    2011-01-01

    We perform a full dynamical analysis by considering the interactions between dark energy and radiation, and dark energy and dark matter. We find that the interaction helps alleviate the coincidence problem for the quintessence model.

  1. Energy of the quasi-free electron in H2, D2, and O2: Probing intermolecular potentials within the local Wigner-Seitz model

    We present for the first time the quasi-free electron energy V0(ρ) for H2, D2, and O2 from gas to liquid densities, on noncritical isotherms and on a near critical isotherm in each fluid. These data illustrate the ability of field enhanced photoemission (FEP) to determine V0(ρ) accurately in strongly absorbing fluids (e.g., O2) and fluids with extremely low critical temperatures (e.g., H2 and D2). We also show that the isotropic local Wigner-Seitz model for V0(ρ) — when coupled with thermodynamic data for the fluid — can yield optimized parameters for intermolecular potentials, as well as zero kinetic energy electron scattering lengths

  2. Broadband visible light-harvesting naphthalenediimide (NDI) triad: study of the intra-/intermolecular energy/electron transfer and the triplet excited state.

    Wu, Shuang; Zhong, Fangfang; Zhao, Jianzhang; Guo, Song; Yang, Wenbo; Fyles, Tom

    2015-05-21

    A triad based on naphthalenediimides (NDI) was prepared to study the intersystem crossing (ISC), the fluorescence-resonance-energy-transfer (FRET), as well as the photoinduced electron transfer (PET) processes. In the triad, the 2-bromo-6-alkylaminoNDI moiety was used as singlet energy donor and the spin converter, whereas 2,6-dialkylaminoNDI was used as the singlet/triplet energy acceptor. This unique structural protocol and thus alignment of the energy levels ensures the competing ISC and FRET in the triad. The photophysical properties of the triad and the reference compounds were studied with steady-state UV-vis absorption spectra, fluorescence spectra, nanosecond transient absorption spectra, cyclic voltammetry, and DFT/TDDFT calculations. FRET was confirmed with steady-state UV-vis absorption and fluorescence spectroscopy. Intramolecular electron transfer was observed in polar solvents, demonstrated by the quenching of both the fluorescence and triplet state of the energy acceptor. Nanosecond transient absorption spectroscopy shows that the T1 state of the triad is exclusively localized on the 2,6-dialkylaminoNDI moiety in the triad upon selective photoexcitation into the energy donor, which indicates the intramolecular triplet state energy transfer. The intermolecular triplet state energy transfer between the two reference compounds was investigated with nanosecond transient absorption spectroscopy. The photophysical properties were rationalized by TDDFT calculations. PMID:25919420

  3. Intramolecular and intermolecular hydrogen bonds in aminophenols

    IR-Fourier spectroscopy methods are adopted to study intramolecular and intermolecular hydrogen bonds that form in CCl4 solutions of aminophenol derivatives and in a solid phase of these compounds pressed in KBr. If a hydroxyl group is present in the molecule in the ortho-position to an amino group, then intramolecular interactions between OH and NH groups will take place in aminophenol solutions. Intramolecular O-HO=S=O and N-H...O=S=O hydrogen bonds are found in solutions of compounds containing a sulfonamide fragment. Additional acylation of the amino group causes an intramolecular O-H...O=C hydrogen bond to form in solutions. Functional groups OH, NH, SO2, and C=O interact with one another in various ways in the solid phase to form intermolecular hydrogen bonds in aminophenols. (authors) Keywords aminophenol - IR spectrum - intramolecular hydrogen bond - intermolecular hydrogen bond

  4. Accurate non-covalent interaction energies via an efficient MP2 scaling procedure

    Fabiano, E; Grabowski, I

    2015-01-01

    Using the observed proportionality of CCSD(T) and MP2 correlation interaction energies [I. Grabowski, E. Fabiano, F. Della Sala, Phys. Chem. Chem. Phys. 15, 15485 (2013)] we propose a simple scaling procedure to compute accurate interaction energies of non-covalent complexes. Our method makes use of MP2 and CCSD(T) correlation energies, computed in relatively small basis sets, and fitted scaling coefficients to yield interaction energies of almost complete basis set limit CCSD(T) quality. Thanks to the good transferability of the scaling coefficients involved in the calculations, good results can be easily obtained for different intermolecular distances.

  5. Separation of intra- and intermolecular contributions to the PELDOR signal

    Schöps, Philipp; Plackmeyer, Jörn; Marko, Andriy

    2016-08-01

    Pulsed Electron-electron Double Resonance (PELDOR) is commonly used to measure distances between native paramagnetic centers or spin labels attached to complex biological macromolecules. In PELDOR the energies of electron magnetic dipolar interactions are measured by analyzing the oscillation frequencies of the recorded time resolved signal. Since PELDOR is an ensemble method, the detected signal contains contributions from intramolecular, as well as intermolecular electron spin interactions. The intramolecular part of the signal contains the information about the structure of the studied molecules, thus it is very important to accurately separate intra- and intermolecular contributions to the total signal. This separation can become ambiguous, when the length of the PELDOR signal is not much longer than twice the oscillation period of the signal. In this work we suggest a modulation depth scaling method, which can use short PELDOR signals in order to extract the intermolecular contribution. Using synthetic data we demonstrate the advantages of the new approach and analyze its stability with regard to signal noise. The method was also successfully tested on experimental data of three systems measured at Q-Band frequencies, two model compounds in deuterated and protonated solvents and one biological sample, namely BetP. The application of the new method with an assigned value of the signal modulation depth enables us to determine the interspin distances in all cases. This is especially interesting for the model compound with an interspin distance of 5.2 nm in the protonated solvent and the biological sample, since an accurate separation of the intra- and intermolecular PELDOR signal contributions would be difficult with the standard approach in those cases.

  6. Energy component analysis of π interactions.

    Sherrill, C David

    2013-04-16

    Fundamental features of biomolecules, such as their structure, solvation, and crystal packing and even the docking of drugs, rely on noncovalent interactions. Theory can help elucidate the nature of these interactions, and energy component analysis reveals the contributions from the various intermolecular forces: electrostatics, London dispersion terms, induction (polarization), and short-range exchange-repulsion. Symmetry-adapted perturbation theory (SAPT) provides one method for this type of analysis. In this Account, we show several examples of how SAPT provides insight into the nature of noncovalent π-interactions. In cation-π interactions, the cation strongly polarizes electrons in π-orbitals, leading to substantially attractive induction terms. This polarization is so important that a cation and a benzene attract each other when placed in the same plane, even though a consideration of the electrostatic interactions alone would suggest otherwise. SAPT analysis can also support an understanding of substituent effects in π-π interactions. Trends in face-to-face sandwich benzene dimers cannot be understood solely in terms of electrostatic effects, especially for multiply substituted dimers, but SAPT analysis demonstrates the importance of London dispersion forces. Moreover, detailed SAPT studies also reveal the critical importance of charge penetration effects in π-stacking interactions. These effects arise in cases with substantial orbital overlap, such as in π-stacking in DNA or in crystal structures of π-conjugated materials. These charge penetration effects lead to attractive electrostatic terms where a simpler analysis based on atom-centered charges, electrostatic potential plots, or even distributed multipole analysis would incorrectly predict repulsive electrostatics. SAPT analysis of sandwich benzene, benzene-pyridine, and pyridine dimers indicates that dipole/induced-dipole terms present in benzene-pyridine but not in benzene dimer are relatively

  7. Study of intermolecular interactions in the system of equilibrium catalytic transesterification of esters. 4. Fourier IR studies of the interaction of alcohols with esters

    Interaction of alcohols ROH with esters PhCOOR (R = Me, n-Bu, n-C7H15) in binary mixtures and in solutions in non-polar solvents was studies over a wide temperature range by means of Fourier IR spectroscopy. Even with alcohol taken in a great excess, two bands are observed in the region of ΝCO vibrations. The low-frequency band, correspond to the ester molecules bonded by hydrogen bonds of the C=O...HO type. The high-frequence band is shifted by 3-5 cm-1 with respect to the ester ΝCO band. The discreteness of the shift, indicates that an H-complex of one more type is formed between the alcohol and the ester. The analysis of data available allows one to conclude that the complex formation involves the alkoxyl oxygen atom of the ester. The formation enthalpies were determined for H-bond of n-BuOH with the esters and with transesterification catalysts B(OBu)3

  8. Intermolecular interactions in nuclear magnetic resonance: medium shifts of the 1H and 13C nuclei in methane in the gas phase and in solution and of gaseous 3He

    An analysis has been carried out of the continuum and the binary collision models used in the description of NMR solvent shifts caused by Van der Waals intermolecular interactions. The basic assumption underlying the models, i.e. σ sub(w)= -BE2 (I) is examined. The possible effects on I of such phenomena as B anisotropy and field gradients are discussed, as well as the inadequacy of I in representing the true intermolecular shielding. A new expression for E2 is proposed, which in connection with I forms the bais of a modified binary collision model. The new E2 expression takes into account the dynamic character of the interaction. The major obstacle to the binary collision model, the requirement for accurate parameters for the intermolecular potential employed in the statistical-mechanical averaging, is alleviated by the establishment of priority rules to be used in the selection of these paramters. The proposed binary collision model and a collision model are used to interpret the 1H and 13C medium shifts of methane in the gas phase and in solution. The proton shift data conform equally well to either model; the 13C data indicate that a large solvent-dependent term contributes to the observed medium shifts in addition to I. Proton and 13C B parameters of methane in the gas phase and in solution are discussed. Preliminary results of 3He medium shifts as a function of gas density are presented. An extracted B parameter based on the proposed binary collision model appears to agree well with the result of a quantum-mechanical calculation of B for a 3He atom in a uniform static electric field. (LL)

  9. Inhomogeneous and interacting vacuum energy

    De-Santiago, Josue; Wang, Yuting

    2012-01-01

    Vacuum energy is a simple model for dark energy driving an accelerated expansion of the universe. If the vacuum energy is inhomogeneous in spacetime then it must be interacting. We present the general equations for a spacetime-dependent vacuum energy in cosmology, including inhomogeneous perturbations. We show how any dark energy cosmology can be described by an interacting vacuum+matter. Different models for the interaction can lead to different behaviour (e.g., sound speed for dark energy perturbations) and hence could be distinguished by cosmological observations. As an example we present the cosmic microwave microwave background anisotropies and the matter power spectrum for two different versions of a generalised Chaplygin gas cosmology.

  10. Strong orbital interaction in a weak CH-π hydrogen bonding system.

    Li, Jianfu; Zhang, Rui-Qin

    2016-01-01

    For the first time, the intermolecular orbital interaction between benzene and methane in the benzene-methane complex, a representative of weak interaction system, has been studied by us using ab initio calculations based on different methods and basis sets. Our results demonstrate obvious intermolecular orbital interaction between benzene and methane involving orbital overlaps including both occupied and unoccupied orbitals. Similar to interatomic orbital interaction, the intermolecular interaction of orbitals forms "bonding" and "antibonding" orbitals. In the interaction between occupied orbitals, the total energy of the complex increases because of the occupation of the antibonding orbital. The existence of the CH-π hydrogen bond between benzene and methane causes a decrease in rest energy level, leading to at least -1.51 kcal/mol intermolecular interaction energy. Our finding extends the concept of orbital interaction from the intramolecular to the intermolecular regime and gives a reliable explanation of the deep orbital reformation in the benzene-methane complex. PMID:26927609

  11. Multiplicities in high energy interactions

    This paper reviews the data on multiplicities in high energy interactions. Results from e+e- annihilation, from neutrino interactions, and from hadronic collisions, both diffractive and nondiffractive, are compared and contrasted. The energy dependence of the mean charged multiplicity, , as well as the rapidity density at Y = 0 are presented. For hadronic collisions, the data on neutral pion production shows a strong correlation with . The heavy particle fractions increase with √s up to the highest energies. The charged particle multiplicity distributions for each type of reaction show a scaling behavior when expressed in terms of the mean. Attempts to understand this behavior, which was first predicted by Koba, Nielsen, and Olesen, are discussed. The multiplicity correlations and the energy variation of the shape of the KNO scaling distribution provide important constraints on models. Some extrapolations to the energies of the Superconducting Super Collider are made. 51 refs., 27 figs

  12. Intermolecular vibrations and spin--orbit predissociation dynamics of NeOH (X 2Π)

    Stimulated emission pumping of NeOH is used to access the bound intermolecular vibrational levels supported by the OH X 2Π3/2+Ne potential energy surface as well as predissociative levels correlating with the spin--orbit excited state of OH X 2Π1/2+Ne which lie more than 100 cm-1 above the dissociation limit. Intermolecular stretching intervals and rotor constants yield the radial dependence of the average interaction between Ne and OH X 2Π3/2,1/2, while the spacings between angular levels provide information on the anisotropy of the potentials. The lifetime of spin--orbit predissociative levels is found to increase by a factor of 3 upon intermolecular stretching excitation, from 8.5 ps to more than 27 ps. This increase in lifetime is attributed to the fall-off in the coupling between the two spin--orbit states with increasing intermolecular separation distance. The dominant coupling for spin--orbit predissociation is provided by the difference potential, the change in the intermolecular potential when the unpaired electron of OH lies in or out of the NeOH plane. The energies, rotor constants, and lifetimes of the bound and predissociative NeOH levels observed experimentally are compared with theoretical calculations of these quantities based on ab initio potentials for Ne+OH X 2Π by Yang and Alexander (accompanying paper). Remarkably good agreement is found between experiment and theory, given the weakness of the Ne+OH X 2Π interaction. copyright 1995 American Institute of Physics

  13. Models of Interacting Dark Energy

    Zimdahl, W

    2012-01-01

    Any non-gravitational coupling between dark matter and dark energy modifies the cosmological dynamics. Interactions in the dark sector are considered to be relevant to address the coincidence problem. Moreover, in various models the observed accelerated expansion of the Universe is a pure interaction phenomenon. Here we review recent approaches in which a coupling between both dark components is crucial for the evolution of the Universe.

  14. Identification of amino acid residues of a designed ankyrin repeat protein potentially involved in intermolecular interactions with CD4: analysis by molecular dynamics simulations.

    Nimmanpipug, Piyarat; Khampa, Chalermpon; Lee, Vannajan Sanghiran; Nangola, Sawitree; Tayapiwatana, Chatchai

    2011-11-01

    We applied molecular dynamics simulations to investigate the binding properties of a designed ankyrin repeat protein, the DARPin-CD4 complex. DARPin 23.2 has been reported to disturb the human immunodeficiency virus (HIV) viral entry process by Schweizer et al. The protein docking simulation was analysed by comparing the specific ankyrin binder (DARPin 23.2) to an irrelevant control (2JAB) in forming a composite with CD4. To determine the binding free energy of both ankyrins, the MM/PBSA and MM/GBSA protocols were used. The free energy decomposition of both complexes were analysed to explore the role of certain amino acid residues in complex configuration. Interestingly, the molecular docking analysis of DARPin 23.2 revealed a similar CD4 interaction regarding the gp120 theoretical anchoring motif. In contrast, the binding of control ankyrin to CD4 occurred at a different location. This observation suggests that there is an advantage to the molecular modification of DARPin 23.2, an enhanced affinity for CD4. PMID:21962990

  15. How resonance assists hydrogen bonding interactions: an energy decomposition analysis.

    Beck, John Frederick; Mo, Yirong

    2007-01-15

    Block-localized wave function (BLW) method, which is a variant of the ab initio valence bond (VB) theory, was employed to explore the nature of resonance-assisted hydrogen bonds (RAHBs) and to investigate the mechanism of synergistic interplay between pi delocalization and hydrogen-bonding interactions. We examined the dimers of formic acid, formamide, 4-pyrimidinone, 2-pyridinone, 2-hydroxpyridine, and 2-hydroxycyclopenta-2,4-dien-1-one. In addition, we studied the interactions in beta-diketone enols with a simplified model, namely the hydrogen bonds of 3-hydroxypropenal with both ethenol and formaldehyde. The intermolecular interaction energies, either with or without the involvement of pi resonance, were decomposed into the Hitler-London energy (DeltaEHL), polarization energy (DeltaEpol), charge transfer energy (DeltaECT), and electron correlation energy (DeltaEcor) terms. This allows for the examination of the character of hydrogen bonds and the impact of pi conjugation on hydrogen bonding interactions. Although it has been proposed that resonance-assisted hydrogen bonds are accompanied with an increasing of covalency character, our analyses showed that the enhanced interactions mostly originate from the classical dipole-dipole (i.e., electrostatic) attraction, as resonance redistributes the electron density and increases the dipole moments in monomers. The covalency of hydrogen bonds, however, changes very little. This disputes the belief that RAHB is primarily covalent in nature. Accordingly, we recommend the term "resonance-assisted binding (RAB)" instead of "resonance-assisted hydrogen bonding (RHAB)" to highlight the electrostatic, which is a long-range effect, rather than the electron transfer nature of the enhanced stabilization in RAHBs. PMID:17143867

  16. Intermolecular symmetry-adapted perturbation theory study of large organic complexes

    Binding energies for the complexes of the S12L database by Grimme [Chem. Eur. J. 18, 9955 (2012)] were calculated using intermolecular symmetry-adapted perturbation theory combined with a density-functional theory description of the interacting molecules. The individual interaction energy decompositions revealed no particular change in the stabilisation pattern as compared to smaller dimer systems at equilibrium structures. This demonstrates that, to some extent, the qualitative description of the interaction of small dimer systems may be extrapolated to larger systems, a method that is widely used in force-fields in which the total interaction energy is decomposed into atom-atom contributions. A comparison of the binding energies with accurate experimental reference values from Grimme, the latter including thermodynamic corrections from semiempirical calculations, has shown a fairly good agreement to within the error range of the reference binding energies

  17. Interacting Induced Dark Energy Model

    Bahrehbakhsh, Amir F

    2016-01-01

    Similar to the idea of the brane world scenarios, but based on the approach of the induced matter theory, for a non--vacuum five--dimensional version of general relativity, we propose a model in which the conventional matter sources considered as all kind of the matter (the baryonic and dark) and the induced terms emerging from the extra dimension supposed to be as dark energy. Then we investigate the FLRW type cosmological equations and illustrate that the model is capable to explain respectively the deceleration and then acceleration eras of the universe expansion with an interacting term between the matter and dark energy.

  18. Fixed points in interacting dark energy models

    Chen, Xi-ming; Gong, Yungui

    2008-01-01

    The dynamical behaviors of two interacting dark energy models are considered. In addition to the scaling attractors found in the non-interacting quintessence model with exponential potential, new accelerated scaling attractors are also found in the interacting dark energy models. The coincidence problem is reduced to the choice of parameters in the interacting dark energy models.

  19. Interfacial charge rearrangement and intermolecular interactions: Density-functional theory study of free-base porphine adsorbed on Ag(111) and Cu(111)

    Müller, Moritz; Maurer, Reinhard J; Reuter, Karsten

    2015-01-01

    We employ dispersion-corrected density-functional theory to study the adsorption of tetrapyrrole 2H-porphine (2H-P) at Cu(111) and Ag(111). Various contributions to adsorbate-substrate and adsorbate-adsorbate interactions are systematically extracted to analyze the self-assembly behavior of this basic building block to porphyrin-based metal-organic nanostructures. This analysis reveals a surprising importance of substrate-mediated van der Waals interactions between 2H-P molecules, in contrast to negligible direct dispersive interactions. The resulting net repulsive interactions rationalize the experimentally observed tendency for single molecule adsorption.

  20. Electroweak interactions at LEP energies

    What determined the energies of LEP and the SLC? Essentially they were determined by the desire to produce the Z0 in e+e- collisions. Since the mass of the Z0 is of order 90 MeV we need electron and positron energies of at least 45 MeV in the collider. We can already produce Z0 at the SPS and Tevatron, so why was so much effort and money spent to produce them also at the new accelerators? The answer is that the e+e- collisions the Z0 particles are produced in the s channel, and are thus produced resonantly, and therefore copiously. We shall see that the resonance peak in e+e- → f bar f is several hundred times the cross section off peak. In the terminology introduced by the nuclear physicists looking for funding of high intensity 1 GeV machines, LEP is a Z0 factory. Using LEP we can study the properties of the Z0, and of the electroweak interactions, with a detail and precision never before possible. It is already possible, after only short runs at LEP to see clearly the effects of the radiative corrections in the electroweak interactions. It has been the that the electroweak interaction is now entering a stage equivalent to the heady days of the Lamb shift in QED. In this paper, the author shows how to calculate some of the processes that have been, will be and may be observed at these energies in the production and decay of the Z0. This paper calculates the decay rate for Z0 → f bar f, to exhibit the Z0 peak , and also calculate the forward-backward asymmetry in this process which permits an alternative measurement of the parameters of the interaction

  1. Evidence for Intermolecular Interactions between the Intracellular Domains of the Arabidopsis Receptor-Like Kinase ACR4, Its Homologs and the Wox5 Transcription Factor

    Meyer, Matthew R.; Shah, Shweta; Zhang, J.; Rohrs, Henry; Rao, A. Gururaj

    2015-01-01

    Arabidopsis CRINKLY4 (ACR4) is a receptor-like kinase (RLK) involved in the global development of the plant. The Arabidopsis genome encodes four homologs of ACR4 that contain sequence similarity and analogous architectural elements to ACR4, termed Arabidopsis CRINKLY4 Related (AtCRRs) proteins. Additionally, a signaling module has been previously proposed including a postulated peptide ligand, CLE40, the ACR4 RLK, and the WOX5 transcription factor that engage in a possible feedback mechanism controlling stem cell differentiation. However, little biochemical evidence is available to ascertain the molecular aspects of receptor heterodimerization and the role of phosphorylation in these interactions. Therefore, we have undertaken an investigation of the in vitro interactions between the intracellular domains (ICD) of ACR4, the CRRs and WOX5. We demonstrate that interaction can occur between ACR4 and all four CRRs in the unphosphorylated state. However, phosphorylation dependency is observed for the interaction between ACR4 and CRR3. Furthermore, sequence analysis of the ACR4 gene family has revealed a conserved ‘KDSAF’ motif that may be involved in protein-protein interactions among the receptor family. We demonstrate that peptides harboring this conserved motif in CRR3 and CRK1are able to bind to the ACR4 kinase domain. Our investigations also indicate that the ACR4 ICD can interact with and phosphorylate the transcription factor WOX5. PMID:25756623

  2. Weak interactions at high energies

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references

  3. High-Energy Neutrino Interactions

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  4. A new method for quick predicting the strength of intermolecular hydrogen bonds

    2009-01-01

    A new method is proposed to quick predict the strength of intermolecular hydrogen bonds.The method is employed to produce the hydrogen-bonding potential energy curves of twenty-nine hydro-gen-bonded dimers.The calculation results show that the hydrogen-bonding potential energy curves obtained from this method are in good agreement with those obtained from MP2/6-31+G calculations by including the BSSE correction,which demonstrate that the method proposed in this work can be used to calculate the hydrogen-bonding interactions in peptides.

  5. Structural modeling and intermolecular correlation of liquid chlorine dioxide

    Chlorine dioxide (ClO2) is water-soluble yellow gas at room temperature. It has long been used as a disinfectant of tap water and various commodities owing to its strong oxidizing activity against various microbial proteins. The oxidizing activity is believed to be due to the presence of unpaired electron in its molecular orbital. Despite wealth of physicochemical studies of gaseous ClO2, little is known about liquid ClO2, especially about fine molecular structure and intermolecular interactions of liquid ClO2. The purpose of this study is to elucidate the fine structure and intermolecular orientations of ClO2 molecules in its liquid state using a high-energy X-ray diffraction technique. The measurements of liquid ClO2 were carried out at -50 to 0 degree Celsius using a two-axis diffractometer installed at the BL04B2 beamline in the third-generation synchrotron radiation facility SPring-8 (Hyogo, Japan). The incident X-ray beamline was 113.4 keV in energy and 0.1093 Armstrong in wavelength from a Si(111) monochromator with the third harmonic reflection. Liquid ClO2 held in a quartz capillary tube was placed in a temperature-controlled vacuum chamber. We obtained a structure factor S(Q) to a range of Q = 0.3-30 Amstrong-1 and a pair distribution function g(r) upon Fourier transform of the S(Q). The total g(r) showed peaks at 1.46, 2.08, 2.48, 3.16 and 4.24 Armstrong. From intramolecular bond lengths of 1.46 Armstrong for Cl-O and 2.48 Armstrong for O-O, O-Cl-O bond angle was estimated to be 116.1 degrees. Peaks at 3.16 and 4.24 Armstrong in the total g(r) strongly indicate presence of specific intermolecular orientations of ClO2 molecules that are distinct from those observed as a dimer in the solid phase ClO2. This view was further supported by molecular simulation using a reverse Monte Carlo method (RMC). (author)

  6. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å

  7. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  8. Theoretical study of intermolecular energy transfer involving electronically excited molecules: He(1S) + H2(B 1Σ/sub u/+)

    To further understanding of gas phase collision dynamics involving electronically-excited molecules, a fully quantum mechanical study of He + H2(B 1Σ/sub u/+) was undertaken. Iterative natural orbital configuration interaction (CI) calculations were performed to obtain the interaction potential between He and H2(B 1Σ/sub u/+). The potential energy surface (PES) is highly anisotropic and has a van der Waals well of about 0.03 eV for C/sub 2v/ approach. Avoided PES crossings occur with He + H2(E,F 1Σ/sub g/+) and with He + H2(X 1Σ/sub g/+) and cause a local maximum and a deep minimum in the He + H2(B 1Σ/sub u/+) PES, respectively. The crossing with He + H2(X 1Σ/sub g/+) provides a mechanism for fluorescence quenching. The computed CI energies were combined with previous multi-reference double excitation CI calculations and fit with analytic functions for convenience in scattering calculations. Accurate dipole polarizabilities and quadrupole moment of H2(B 1Σ/sub u/+) were computed for use in the multipole expansion, which is the analytic form of the long-range PES. 129 refs., 28 figs., 35 tabs

  9. A program to calculate non-bonded interaction energy in biomolecular aggregates.

    Sundaram, K; Prasad, C V

    1982-02-01

    This paper describes a program to calculate intermolecular as well as intramolecular electronic potential energy resulting from non-bonded interactions. The underlying theory is obtained by the application of Rayleigh-Schroedinger perturbation theory to non-overlap regions of a molecular system. The rigorous theoretical expressions for the energy terms are simplified by approximations consistent with those commonly employed in semi-empirical molecular orbital theories. The program is particularly suited for the study of biomolecular assemblies, and in situations where insight into contributions to total energy from various component interaction types is desired. The inclusion of the non-additive dispersion effects in this approach makes it especially interesting for the study of cooperative phenomena in the light of a recent finding [1]. PMID:7067416

  10. Energy of the quasi-free electron in H{sub 2}, D{sub 2}, and O{sub 2}: Probing intermolecular potentials within the local Wigner-Seitz model

    Evans, C. M., E-mail: cherice.evans@qc.cuny.edu; Krynski, Kamil [Department of Chemistry and Biochemistry, Queens College – CUNY, Flushing, New York 11367 (United States); Streeter, Zachary; Findley, G. L., E-mail: findley@ulm.edu [School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana 71209 (United States)

    2015-12-14

    We present for the first time the quasi-free electron energy V{sub 0}(ρ) for H{sub 2}, D{sub 2}, and O{sub 2} from gas to liquid densities, on noncritical isotherms and on a near critical isotherm in each fluid. These data illustrate the ability of field enhanced photoemission (FEP) to determine V{sub 0}(ρ) accurately in strongly absorbing fluids (e.g., O{sub 2}) and fluids with extremely low critical temperatures (e.g., H{sub 2} and D{sub 2}). We also show that the isotropic local Wigner-Seitz model for V{sub 0}(ρ) — when coupled with thermodynamic data for the fluid — can yield optimized parameters for intermolecular potentials, as well as zero kinetic energy electron scattering lengths.

  11. Intermolecular Interactions of Xe Atoms Confined in One-dimensional Nanochannels of Tris(o-phenylenedioxy)cyclotriphosphazene as Studied by High-pressure 129Xe NMR

    Kobayashi, Hirokazu; Ueda, Takahiro; Miyakubo, Keisuke; Eguchi, Taro

    2003-12-01

    The pressure dependence of the 129Xe chemical shift tensor confined in the Tris(o-phenylenedioxy) cyclotriphosphazene (TPP) nanochannel was investigated by high-pressure 129Xe NMR spectroscopy. The observed 129Xe spectrum in the one-dimensional TPP nanochannel (0.45 nm in diameter) exhibits a powder pattern broadened by an axially symmetric chemical shift tensor. As the pressure increases from 0.02 to 7.0 MPa, a deshielding of 90 ppm is observed for the perpendicular component of the chemical shift tensor δ⊥, whereas a deshielding of about 30 ppm is observed for the parallel one, δ‖. This suggests that the components of the chemical shift tensor, δ‖ and δ⊥, are mainly dominated by the Xe-wall and Xe-Xe interaction, respectively. Furthermore, the effect of helium, which is present along with xenon gas, on the 129Xe chemical shift is examined in detail. The average distance between the Xe atoms in the nanochannel is estimated to be 0.54 nm. This was found by using δ⊥ at the saturated pressure of xenon, and comparing the increment of the chemical shift value in δ⊥ to that of a β -phenol/Xe compound.

  12. 计算机模拟混合炸药分子间作用的研究进展%Progress of Computer Simulation for Intermolecular Interactions in Composite Explosive

    钱文; 舒远杰

    2013-01-01

    简介了量子化学、分子力学、分子动力学、耗散粒子动力学等常用计算机模拟方法,重点综述了采用这些方法研究单质炸药聚合体中、不同炸药分子间、炸药与其他组分间、添加改性组分间以及组分界面间等不同情形相互作用的进展,并展望了计算机模拟混合炸药分子间作用的发展方向,认为提高准确性和降低耗时、改进和发展分子力场以及实现多尺度模拟等将是今后研究的重点。%Computer simulation methods such as quantum chemistry calculation, molecular mechanics, molecular dynamics and dissipative particle dynamics were introduced.Its applications on different situations of interactions which exist in explosive dimer, trimer and crystal, between different explosive molecules, explosive molecule and the additives, different additives and on the in-terface were summarized.Future development of computer simulation for intermolecular interactions in composite explosive was prospected, the improvement of accuracy and speed, the modification and development of molecular forcefield, and the actualiza-tion of multi-scale simulation are considered as the hotspots of the research.

  13. A unified treatment of high energy interactions

    Drescher, H.J.; Werner, K. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Hladik, M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[SAP AG, Berlin (Germany); Ostapchenko, S. [Moscow State Univ. (Russian Federation). Inst. of Nuclear Physics]|[Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees

    1999-11-01

    It is well known that high energy interactions as different as electron-positron annihilation, deep inelastic lepton-nucleon scattering, proton-proton interactions, and nucleus-nucleus collisions have many features in common. Based upon this observation, a model for all these interactions is constructed which relies on the fundamental hypothesis that the behavior of high energy interactions is universal. (author) 19 refs.

  14. Spin radical enhanced magnetocapacitance effect in intermolecular excited states.

    Zang, Huidong; Wang, Jianguo; Li, Mingxing; He, Lei; Liu, Zitong; Zhang, Deqing; Hu, Bin

    2013-11-14

    This article reports the magnetocapacitance effect (MFC) based on both pristine polymer MEH-PPV and its composite system doped with spin radicals (6R-BDTSCSB). We observed that a photoexcitation leads to a significant positive MFC in the pristine MEH-PPV. Moreover, we found that a low doping of spin radicals in polymer MEH-PPV causes a significant change on the MFC signal: an amplitude increase and a line-shape narrowing under light illumination at room temperature. However, no MFC signal was observed under dark conditions in either the pristine MEH-PPV or the radical-doped MEH-PPV. Furthermore, the magnitude increase and line-shape narrowing caused by the doped spin radicals are very similar to the phenomena induced by increasing the photoexcitation intensity. Our studies suggest that the MFC is essentially originated from the intermolecular excited states, namely, intermolecular electron-hole pairs, generated by a photoexcitation in the MEH-PPV. More importantly, by comparing the effects of spin radicals and electrically polar molecules on the MFC magnitude and line shape, we concluded that the doped spin radicals can have the spin interaction with intermolecular excited states and consequently affect the internal spin-exchange interaction within intermolecular excited states in the development of MFC. Clearly, our experimental results indicate that dispersing spin radicals forms a convenient method to enhance the magnetocapacitance effect in organic semiconducting materials. PMID:24144347

  15. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation. PMID:27472379

  16. Thermodynamics of interacting holographic dark energy

    Arevalo, Fabiola; Cifuentes, Paulo; Peña, Francisco

    2016-01-01

    The thermodynamics of a scheme of dark matter-dark energy interaction is studied considering a holographic model for the dark energy in a flat Friedmann-Lemaitre-Robertson-Walker background. We obtain a total entropy rate for a general horizon and we study the Generalized Second Law of Thermodynamics for a cosmological interaction as a free function. Additionally, we discuss two horizons related to the Ricci and Ricci-like model and its effect on an interacting system.

  17. Simple non-empirical procedure for spin-component-scaled MP2 methods applied to the calculation of dissociation energy curve of noncovalently-interacting systems

    Grabowski, I; Della Sala, F

    2013-01-01

    We present a simple and non-empirical method to determine optimal scaling coefficients, within the (spin-component)-scaled MP2 approach, for calculating intermolecular potential energies of noncovalently-interacting systems. The method is based on an observed proportionality between (spin-component) MP2 and CCSD(T) energies for a wide range of intermolecular distances and allows to compute with high accuracy a large portion of the dissociation curve at the cost of a single CCSD(T) calculation. The accuracy of the present procedure is assessed for a series of noncovalently-interacting test systems: the obtained results reproduce CCSD(T) quality in all cases and definitely outperform conventional MP2, CCSD and SCS-MP2 results. The difficult case of the Beryllium dimer is also considered.

  18. New type of dual solid-state thermochromism: modulation of intramolecular charge transfer by intermolecular pi-pi interactions, kinetic trapping of the aci-nitro group, and reversible molecular locking.

    Naumov, Pance; Lee, Sang Cheol; Ishizawa, Nobuo; Jeong, Young Gyu; Chung, Ihn Hee; Fukuzumi, Shunichi

    2009-10-22

    by intramolecular proton transfer of one amino proton to the nitro group, whereupon an aci-nitro form is thermally populated. Contrary to the numerous examples of solid thermochromic molecules based on either pericyclic reactions or keto-enol tautomerism, this system appears to be the first organic thermochromic family where the thermochromic change appears as an effect of intermolecular pi-pi interactions and thermal intramolecular proton transfer to aromatic nitro group. PMID:19780605

  19. New Type of Dual Solid-State Thermochromism: Modulation of Intramolecular Charge Transfer by Intermolecular π-π Interactions, Kinetic Trapping of the Aci-Nitro Group, and Reversible Molecular Locking

    Naumov, Panče; Lee, Sang Cheol; Ishizawa, Nobuo; Jeong, Young Gyu; Chung, Ihn Hee; Fukuzumi, Shunichi

    2009-09-01

    intramolecular proton transfer of one amino proton to the nitro group, whereupon an aci-nitro form is thermally populated. Contrary to the numerous examples of solid thermochromic molecules based on either pericyclic reactions or keto-enol tautomerism, this system appears to be the first organic thermochromic family where the thermochromic change appears as an effect of intermolecular π-π interactions and thermal intramolecular proton transfer to aromatic nitro group.

  20. The interaction region of high energy protons

    Dremin, I. M.; White, S. N.

    2016-01-01

    The spatial view of the interaction region of colliding high energy protons (in terms of impact parameter) is considered. It is shown that the region of inelastic collisions has a very peculiar shape. It saturates for central collisions at an energy of 7 TeV. We speculate on the further evolution with energy, which is contrasted to the "black disk" picture.

  1. Pion nucleon interaction at low energy

    A theory of the πN interaction at low energy is described. An analogy is made with an unusual approach to potential scattering theory. Phase shifts, cross sections, and scattering amplitudes and lengths are calculated. 28 references

  2. Simulated imaging of intermolecular bonds using high throughput real-space density functional calculations

    Lee, Alex; Kim, Minjung; Chelikowsky, James

    2015-03-01

    Recent experimental noncontact atomic force microscopy (AFM) studies on 8-hydroxyquinoline (8-hq) assemblies have imaged distinct lines between molecules that are thought to represent intermolecular bonding. To aid the interpretation of these images, we calculate simulated AFM images of an 8-hq dimer with a CO functionalized tip using a real-space pseudopotential formalism. We examine the effects of Pauli repulsion and tip probe relaxation as explanations for the enhanced resolution that resolves these intermolecular force lines. Our study aims to compute ab initio real-space images of intermolecular interactions.

  3. Dark energy interacting with two fluids

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Lepe, Samuel [Instituto de Fisica, Facultad de Ciencias Basicas y Matematicas, Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile)], E-mail: slepe@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de La Frontera, Avda. Francisco Salazar 01145, Casilla 54-D Temuco (Chile)], E-mail: fcampos@ufro.cl

    2008-05-29

    A cosmological model of dark energy interacting with dark matter and another general component of the universe is investigated. We found general constraints on these models imposing an accelerated expansion. The same is also studied in the case for holographic dark energy.

  4. Expectations for ultra-high energy interactions

    Strong interactions at ultra-high energies are discussed with emphasis on the hadrons produced in high energy collisions. Evidence is considered that quantum chromodynamics might be the right theory, and also some estimates are given of quantum chromodynamics asymptotic-freedom phenomena, the work under discussion being very preliminary. 6 references

  5. Dark energy interacting with two fluids

    Cruz, Norman; Lepe, Samuel; Pena, Francisco

    2008-01-01

    A cosmological model of dark energy interacting with dark matter and another general component of the universe is investigated. We found general constraints on these models imposing an accelerated expansion. The same is also studied in the case for holographic dark energy.

  6. Molecular simulation of fluids with non-identical intermolecular potentials: Thermodynamic properties of 10-5 + 12-6 Mie potential binary mixtures

    Stiegler, Thomas [Technische Fakultät, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 5a, 91058 Erlangen (Germany); Sadus, Richard J., E-mail: rsadus@swin.edu.au [Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218 Hawthorn, Victoria 3122 (Australia)

    2015-02-28

    General methods for combining interactions between particles characterised by non-identical intermolecular potentials are investigated. The combination methods are tested by performing molecular dynamics simulations to determine the pressure, energy, isochoric and isobaric heat capacities, thermal expansion coefficient, isothermal compressibility, Joule-Thomson coefficient, and speed of sound of 10-5 + 12-6 Mie potential binary mixtures. In addition to the two non-identical Mie potentials, mixtures are also studied with non-identical intermolecular parameters. The combination methods are compared with results obtained by simply averaging the Mie exponents. When either the energy or size parameters are non-identical, very significant differences emerge in the thermodynamic properties predicted by the alternative combination methods. The isobaric heat capacity is the thermodynamic property that is most affected by the relative magnitude of the intermolecular potential parameters and the method for combining non-identical potentials. Either the arithmetic or geometric combination of potentials provides a simple and effective way of performing simulations involving mixtures of components characterised by non-identical intermolecular potentials, which is independent of their functional form.

  7. Interacting Induced Dark Energy Model

    Bahrehbakhsh, Amir F.

    2016-01-01

    Similar to the idea of the brane world scenarios, but based on the approach of the induced matter theory, for a non--vacuum five--dimensional version of general relativity, we propose a model in which the conventional matter sources considered as all kind of the matter (the baryonic and dark) and the induced terms emerging from the extra dimension supposed to be as dark energy. Then we investigate the FLRW type cosmological equations and illustrate that the model is capable to explain respect...

  8. Interacting Dark Energy Models -- Scalar Linear Perturbations

    Perico, E L D

    2016-01-01

    We extend the dark sector interacting models assuming the dark energy as the sum of independent contributions $\\rho_{\\Lambda} =\\sum_i\\rho_{\\Lambda i}$, associated with (and interacting with) each of the $i$ material species. We derive the linear scalar perturbations for two interacting dark energy scenarios, modeling its cosmic evolution and identifying their different imprints in the CMB and matter power spectrum. Our treatment was carried out for two phenomenological motivated expressions of the dark energy density, $\\rho_\\Lambda(H^2)$ and $\\rho_\\Lambda(R)$. The $\\rho_\\Lambda(H^2)$ description turned out to be a full interacting model, i.e., the dark energy interacts with everyone material species in the universe, whereas the $\\rho_\\Lambda(R)$ description only leads to interactions between dark energy and the non-relativistic matter components; which produces different imprints of the two models on the matter power spectrum. A comparison with the Planck 2015 data was made in order to constrain the free para...

  9. Interacting holographic dark energy with logarithmic correction

    Jamil, Mubasher; Farooq, M. Umar

    2010-01-01

    The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is originally motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Using this new definition, we investigate the model of interacting dark energy and derive its effective equation of s...

  10. Interactive Joint Transfer of Energy and Information

    Popovski, Petar; Fouladgar, A. M.; Simeone, Osvaldo

    2013-01-01

    reception of a “1” signal, the recipient node “harvests”, with some probability, the energy contained in the signal and stores it for future communication tasks. Inner and outer bounds on the achievable rates are derived. Numerical results demonstrate the effectiveness of the proposed strategies and...... illustrate some key design insights. Index Terms— Two-way channel, interactive communication, energy transfer, energy harvesting....

  11. Low energy electron interactions with water

    Monckton, Rhiannon

    2014-01-01

    Understanding the radiation chemistry of water is important in many disciplines including the nuclear industry, astrochemistry, and medicine. In recent years, low-energy electrons have been paid much greater attention, due to their abundance and reactivity in irradiated materials. Electrons with energies < 20 eV may interact via the dissociative electron attachment (DEA) mechanism, which has been found to cause single-strand breaks in DNA.DEA in water involves the capture of a low energy elec...

  12. Energy balance invariance for interacting particle systems

    Yavari, Arash; Marsden, Jerrold E.

    2009-01-01

    This paper studies the principle of invariance of balance of energy and its consequences for a system of interacting particles under groups of transformations. Balance of energy and its invariance is first examined in Euclidean space. Unlike the case of continuous media, it is shown that conservation and balance laws do not follow from the assumption of invariance of balance of energy under time-dependent isometries of the ambient space. However, the postulate of invariance of balance of ener...

  13. A New Intermolecular Phosphoryl Transfer between Serine and Histidine Residues

    SU,Yu-Qian; NIU,Ming-Yu; CAO,Shu-Xia; ZHANG,Jian-Chen; QU,Ling-Bo; LIAO,Xin-Cheng; ZHAO,Yu-Fen

    2004-01-01

    @@ Phosphoryl transfer constitutes one of the most important reactions in functionalized molecules, bioorganic chemistry and biochemistry.[1] The transformations are involved in diverse processes, such as activated state change of phosphorus, DNA/RNA synthesis, energy metabolism and signal transduction. So, phosphoryl transfer reaction which can be performed by either intramolecular or intermolecular phosphorylation and dephosphorylation mechanism has been investigated by many scientists in wide fields.

  14. Second Law Considerations in Fourier Heat Conduction of a Lattice Chain in Relation to Intermolecular Potentials

    Jesudason, Christopher Gunaseelan

    2016-01-01

    Two aspects of conductive heat are focused here (i) the nature of conductive heat, defined as that form of energy that is transferred as a result of a temperature difference and (ii) the nature of the intermolecular potentials that induces both thermal energy flow and the temperature profile at the steady state for a 1-D lattice chain. It is found that the standard presuppositions of people like Benofy and Quay (BQ) following Joseph Fourier do not obtain for at least a certain specified regime of intermolecular potential parameters related to harmonic (quadratic) potentials for nearest neighbor interactions. For these harmonic potentials, it appears from the simulation results that steady state solutions exist utilizing non-synthetic thermostats that couple not just the two particles at the extreme ends of the lattice chain, but to a control volume of $N$ particles located at either ends of the chain that does not accord with the unique analytical solutions that obtains for single particle thermostatting at t...

  15. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  16. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics.

    Pyzer-Knapp, Edward O; Thompson, Hugh P G; Day, Graeme M

    2016-08-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  17. Graph-theoretical identification of dissociation pathways on free energy landscapes of biomolecular interaction.

    Wang, Ling; Stumm, Boris; Helms, Volkhard

    2010-03-01

    Biomolecular association and dissociation reactions take place on complicated interaction free energy landscapes that are still very hard to characterize computationally. For large enough distances, though, it often suffices to consider the six relative translational and rotational degrees of freedom of the two particles treated as rigid bodies. Here, we computed the six-dimensional free energy surface of a dimer of water-soluble alpha-helices by scanning these six degrees of freedom in about one million grid points. In each point, the relative free energy difference was computed as the sum of the polar and nonpolar solvation free energies of the helix dimer and of the intermolecular coulombic interaction energy. The Dijkstra graph algorithm was then applied to search for the lowest cost dissociation pathways based on a weighted, directed graph, where the vertices represent the grid points, the edges connect the grid points and their neighbors, and the weights are the reaction costs between adjacent pairs of grid points. As an example, the configuration of the bound state was chosen as the source node, and the eight corners of the translational cube were chosen as the destination nodes. With the strong electrostatic interaction of the two helices giving rise to a clearly funnel-shaped energy landscape, the eight lowest-energy cost pathways coming from different orientations converge into a well-defined pathway for association. We believe that the methodology presented here will prove useful for identifying low-energy association and dissociation pathways in future studies of complicated free energy landscapes for biomolecular interaction. PMID:19603501

  18. Interacting holographic dark energy with logarithmic correction

    Jamil, Mubasher; Umar Farooq, M.

    2010-03-01

    The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Employing this new definition, we investigate the model of interacting dark energy and derive its effective equation of state. Finally we establish a correspondence between generalized Chaplygin gas and entropy-corrected holographic dark energy.

  19. Interacting holographic dark energy with entropy corrections

    Jamil, Mubasher

    2010-01-01

    The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is originally motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Using this new definition, we investigate the model of interacting dark energy and derive its effective equation of state. Finally we establish a correspondence between generalized Chaplygin gas and entropy-corrected holographic dark energy.

  20. Interacting holographic dark energy with logarithmic correction

    The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Employing this new definition, we investigate the model of interacting dark energy and derive its effective equation of state. Finally we establish a correspondence between generalized Chaplygin gas and entropy-corrected holographic dark energy

  1. Energy transfer dynamics and kinetics of elementary processes (promoted) by gas-phase CO2 -N2 collisions: Selectivity control by the anisotropy of the interaction.

    Lombardi, Andrea; Pirani, Fernando; Laganà, Antonio; Bartolomei, Massimiliano

    2016-06-15

    In this work, we exploit a new formulation of the potential energy and of the related computational procedures, which embodies the coupling between the intra and intermolecular components, to characterize possible propensities of the collision dynamics in energy transfer processes of interest for simulation and control of phenomena occurring in a variety of equilibrium and nonequilibrium environments. The investigation reported in the paper focuses on the prototype CO2 -N2 system, whose intramolecular component of the interaction is modeled in terms of a many body expansion while the intermolecular component is modeled in terms of a recently developed bonds-as-interacting-molecular-centers' approach. The main advantage of this formulation of the potential energy surface is that of being (a) truly full dimensional (i.e., all the variations of the coordinates associated with the molecular vibrations and rotations on the geometrical and electronic structure of the monomers, are explicitly taken into account without freezing any bonds or angles), (b) more flexible than other usual formulations of the interaction and (c) well suited for fitting procedures better adhering to accurate ab initio data and sensitive to experimental arrangement dependent information. Specific attention has been given to the fact that a variation of vibrational and rotational energy has a higher (both qualitative and quantitative) impact on the energy transfer when a more accurate formulation of the intermolecular interaction (with respect to that obtained when using rigid monomers) is adopted. This makes the potential energy surface better suited for the kinetic modeling of gaseous mixtures in plasma, combustion and atmospheric chemistry computational applications. © 2016 Wiley Periodicals, Inc. PMID:27031183

  2. Gravity and Cosmology with Interacting Dark Energy

    Silbergleit, A. S.

    2016-01-01

    Dark energy (DE) is not necessarily uniform when other sources of gravity are present: interaction with matter leads to its variation in space and time. We study cosmological implications of this fact by analyzing cosmological models in which DE density interacts with matter and thus changes with time. We model the DE--matter interaction by specifying the rate of change of the DE density as an arbitrary function of it and the density of matter, in a single--phase case. In the case of several ...

  3. Gravity and Cosmology with Interacting Dark Energy

    Silbergleit, A S

    2016-01-01

    Dark energy (DE) is not necessarily uniform when other sources of gravity are present: interaction with matter leads to its variation in space and time. We study cosmological implications of this fact by analyzing cosmological models in which DE density interacts with matter and thus changes with time. We model the DE--matter interaction by specifying the rate of change of the DE density as an arbitrary function of it and the density of matter, in a single--phase case. In the case of several matter components interacting with dark energy we assume the rate of every interacting phase density to be an arbitrary function of this density and the DE density. We describe some properties of cosmological solutions valid for a general law of DE--matter interaction, and discuss physical admissibility of the interaction laws. We study numerous families of exact solutions, both singular, non-singular, and mixed. Some of them exhibit interesting properties, such as, for instance, absence of the horizon problem due to the ...

  4. Interacting Ricci Dark Energy with Logarithmic Correction

    Pasqua, Antonio; Jamil, Mubasher; Myrzakulov, R

    2011-01-01

    Motivated by the holographic principle, it has been suggested that the dark energy density may be inversely proportional to the area $A$ of the event horizon of the universe. However, such a model would have a causality problem. In this work, we consider the entropy-corrected version of the holographic dark energy model in the non-flat FRW universe and we propose to replace the future event horizon area with the inverse of the Ricci scalar curvature. We obtain the equation of state (EoS) parameter $\\omega_{\\Lambda}$, the deceleration parameter $q$ and $\\Omega_D'$ in the presence of interaction between Dark Energy (DE) and Dark Matter (DM). Moreover, we reconstruct the potential and the dynamics of the tachyon, K-essence, dilaton and quintessence scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic dark energy model.

  5. Interacting Ricci dark energy with logarithmic correction

    Pasqua, Antonio; Khodam-Mohammadi, A.; Jamil, Mubasher; Myrzakulov, R.

    2012-07-01

    Motivated by the holographic principle, it has been suggested that the dark energy density may be inversely proportional to the area A of the event horizon of the universe. However, such a model would have a causality problem. In this work, we consider the entropy-corrected version of the holographic dark energy model in the non-flat FRW universe and we propose to replace the future event horizon area with the inverse of the Ricci scalar curvature. We obtain the equation of state (EoS) parameter ω Λ, the deceleration parameter q and ΩD' in the presence of interaction between Dark Energy (DE) and Dark Matter (DM). Moreover, we reconstruct the potential and the dynamics of the tachyon, K-essence, dilaton and quintessence scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic dark energy model.

  6. High energy interactions and extensive air showers

    We report on papers presented in the high energy sessions of the conference that do not deal with the theory and observations of muons and neutrinos. We concentrate on the development and testing of hadronic interaction models, their extension to ultrahigh energy and their importance for the analysis and interpretation of air shower data. We also summarize data on the cosmic ray spectrum and composition obtained with air showers

  7. Visualizing coherent intermolecular dipole-dipole coupling in real space.

    Zhang, Yang; Luo, Yang; Zhang, Yao; Yu, Yun-Jie; Kuang, Yan-Min; Zhang, Li; Meng, Qiu-Shi; Luo, Yi; Yang, Jin-Long; Dong, Zhen-Chao; Hou, J G

    2016-03-31

    Many important energy-transfer and optical processes, in both biological and artificial systems, depend crucially on excitonic coupling that spans several chromophores. Such coupling can in principle be described in a straightforward manner by considering the coherent intermolecular dipole-dipole interactions involved. However, in practice, it is challenging to directly observe in real space the coherent dipole coupling and the related exciton delocalizations, owing to the diffraction limit in conventional optics. Here we demonstrate that the highly localized excitations that are produced by electrons tunnelling from the tip of a scanning tunnelling microscope, in conjunction with imaging of the resultant luminescence, can be used to map the spatial distribution of the excitonic coupling in well-defined arrangements of a few zinc-phthalocyanine molecules. The luminescence patterns obtained for excitons in a dimer, which are recorded for different energy states and found to resemble σ and π molecular orbitals, reveal the local optical response of the system and the dependence of the local optical response on the relative orientation and phase of the transition dipoles of the individual molecules in the dimer. We generate an in-line arrangement up to four zinc-phthalocyanine molecules, with a larger total transition dipole, and show that this results in enhanced 'single-molecule' superradiance from the oligomer upon site-selective excitation. These findings demonstrate that our experimental approach provides detailed spatial information about coherent dipole-dipole coupling in molecular systems, which should enable a greater understanding and rational engineering of light-harvesting structures and quantum light sources. PMID:27029277

  8. Visualizing coherent intermolecular dipole–dipole coupling in real space

    Zhang, Yang; Luo, Yang; Zhang, Yao; Yu, Yun-Jie; Kuang, Yan-Min; Zhang, Li; Meng, Qiu-Shi; Luo, Yi; Yang, Jin-Long; Dong, Zhen-Chao; Hou, J. G.

    2016-03-01

    Many important energy-transfer and optical processes, in both biological and artificial systems, depend crucially on excitonic coupling that spans several chromophores. Such coupling can in principle be described in a straightforward manner by considering the coherent intermolecular dipole–dipole interactions involved. However, in practice, it is challenging to directly observe in real space the coherent dipole coupling and the related exciton delocalizations, owing to the diffraction limit in conventional optics. Here we demonstrate that the highly localized excitations that are produced by electrons tunnelling from the tip of a scanning tunnelling microscope, in conjunction with imaging of the resultant luminescence, can be used to map the spatial distribution of the excitonic coupling in well-defined arrangements of a few zinc-phthalocyanine molecules. The luminescence patterns obtained for excitons in a dimer, which are recorded for different energy states and found to resemble σ and π molecular orbitals, reveal the local optical response of the system and the dependence of the local optical response on the relative orientation and phase of the transition dipoles of the individual molecules in the dimer. We generate an in-line arrangement up to four zinc-phthalocyanine molecules, with a larger total transition dipole, and show that this results in enhanced ‘single-molecule’ superradiance from the oligomer upon site-selective excitation. These findings demonstrate that our experimental approach provides detailed spatial information about coherent dipole–dipole coupling in molecular systems, which should enable a greater understanding and rational engineering of light-harvesting structures and quantum light sources.

  9. Nonlinear interaction involving zero energy wave

    Three-wave interactions involving one or two modes with non-definite sign of wave energy, treated by second order differential equations in time, are studied. The third mode is assumed to suffer heavy linear damping, and is treated by means of Tang's adiabatic approximation. The possibility of negative pump energy and positive decay mode energy is shown to lead to an explosive situation. Self-similar explosive solutions are derived, and it is shown that almost any solution asymptotically approaches, in some sense, these self-similar solutions

  10. Interacting vacuum energy in the dark sector

    Chimento, L. P. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Cuidad Universitaria, Buenos Aires 1428 (Argentina); Carneiro, S. [Instituto de Física, Uníversídade Federal da Bahia, 40210-340, Salvador, BA (Brazil)

    2015-03-26

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  11. Interacting vacuum energy in the dark sector

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas

  12. Constraining dark energy interacting models with WMAP

    Olivares, G; Pavón, D; Olivares, German; Atrio-Barandela, Fernando; Pavon, Diego

    2006-01-01

    We determine the range of parameter space of an interacting quintessence (IQ) model that best fits the luminosity distance of type Ia supernovae data and the recent WMAP measurements of Cosmic Microwave Background temperature anisotropies. Models in which quintessence decays into dark matter provide a clean explanation for the coincidence problem. We focus on cosmological models of zero spatial curvature. We show that if the dark energy (DE) decays into cold dark matter (CDM) at a rate that brings the ratio of matter to dark energy constant at late times, the supernovae data are not sufficient to constrain the interaction parameter. On the contrary, WMAP data constrain it to be smaller than $c^2 < 10^{-2}$ at the $3\\sigma$ level. Accurate measurements of the Hubble constant and the dark energy density, independent of the CMB data, would support/disprove this set of models.

  13. Energy security and climate policy. Assessing interactions

    NONE

    2007-03-28

    World energy demand is surging. Oil, coal and natural gas still meet most global energy needs, creating serious implications for the environment. One result is that CO2 emissions, the principal cause of global warming, are rising. This new study underlines the close link between efforts to ensure energy security and those to mitigate climate change. Decisions on one side affect the other. To optimise the efficiency of their energy policy, OECD countries must consider energy security and climate change mitigation priorities jointly. The book presents a framework to assess interactions between energy security and climate change policies, combining qualitative and quantitative analyses. The quantitative analysis is based on the development of energy security indicators, tracking the evolution of policy concerns linked to energy resource concentration. The 'indicators' are applied to a reference scenario and CO2 policy cases for five case-study countries: The Czech Republic, France, Italy, the Netherlands, and the United Kingdom. Simultaneously resolving energy security and environmental concerns is a key challenge for policy makers today. This study helps chart the course.

  14. Interactions between dark energy and dark matter

    Baldi, Marco

    2009-03-20

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter

  15. Interactions between dark energy and dark matter

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with ΛCDM. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the ΛCDM model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter space of such scenarios

  16. Soil Structure Interaction in Energy Piles

    Chen, Diming

    2016-01-01

    This study focuses on developing an improved thermo-mechanical soil-structure interaction (i.e., load transfer) analysis to assess the axial strains, stresses, and displacements during thermo-mechanical loading of energy piles in different soils having different end restraint boundary conditions. This study builds on established analyses by (i) incorporating an algorithm to identify the location of the point of zero displacement (i.e., the null point) during changes in temperature, (ii) addin...

  17. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition

    Parrish, Robert M.; Sherrill, C. David

    2014-07-01

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in

  18. Four-body long-range interactions between ultracold weakly-bound diatomic molecules

    Lepers, Maxence; Luc-Koenig, Eliane; Dulieu, Olivier

    2015-01-01

    Using the multipolar expansion of electrostatic and magnetostatic potential energies, we characterize the long-range interactions between two weakly-bound diatomic molecules, taking as an example the paramagnetic Er$_2$ Feshbach molecules which were produced recently. Since inside each molecule, individual atoms conserve their identity, the intermolecular potential energy can be expanded as the sum of pairwise atomic potential energies. In the case of Er$_2$ Feshbach molecules, we show that the interaction between atomic magnetic dipoles gives rise to the usual $R^{-3}$ term of the multipolar expansion, with $R$ the intermolecular distance, but also to additional terms scaling as $R^{-5}$, $R^{-7}$, and so on. Those terms are due to the interaction between effective molecular multipole moments, and are strongly anisotropic with respect to the orientation of the molecules. Similarly the atomic pairwise van der Waals interaction results in $R^{-6}$, $R^{-8}$, ... terms in the intermolecular potential energy. By...

  19. Redshift drift exploration for interacting dark energy

    Geng, Jia-Jia; Li, Yun-He; Zhang, Jing-Fei [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Zhang, Xin [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Peking University, Center for High Energy Physics, Beijing (China)

    2015-08-15

    By detecting redshift drift in the spectra of the Lyman-α forest of distant quasars, the Sandage-Loeb (SL) test directly measures the expansion of the universe, covering the ''redshift desert'' of 2 interacting dark energy. Four typical interacting dark energy models are considered: (i) Q = γHρ{sub c}, (ii) Q = γHρ{sub de}, (iii) Q = γH{sub 0}ρ{sub c}, and (iv) Q = γH{sub 0}ρ{sub de}. The results show that for all the considered interacting dark energy models, relative to the current joint SN + BAO + CMB + H{sub 0} observations, the constraints on Ω{sub m} and H{sub 0} would be improved by about 60 and 30-40 %, while the constraints on w and γ would be slightly improved, with a 30-year observation of the SL test. We also explore the impact of the SL test on future joint geometric observations. In this analysis, we take the model with Q = γHρ{sub c} as an example, and we simulate future SN and BAO data based on the space-based project WFIRST. We find that with the future geometric constraints, the redshift drift observations would help break the geometric degeneracies in a meaningful way, thus the measurement precisions of Ω{sub m}, H{sub 0}, w, and γ could be substantially improved using future probes. (orig.)

  20. Redshift drift exploration for interacting dark energy

    By detecting redshift drift in the spectra of the Lyman-α forest of distant quasars, the Sandage-Loeb (SL) test directly measures the expansion of the universe, covering the ''redshift desert'' of 2 interacting dark energy. Four typical interacting dark energy models are considered: (i) Q = γHρc, (ii) Q = γHρde, (iii) Q = γH0ρc, and (iv) Q = γH0ρde. The results show that for all the considered interacting dark energy models, relative to the current joint SN + BAO + CMB + H0 observations, the constraints on Ωm and H0 would be improved by about 60 and 30-40 %, while the constraints on w and γ would be slightly improved, with a 30-year observation of the SL test. We also explore the impact of the SL test on future joint geometric observations. In this analysis, we take the model with Q = γHρc as an example, and we simulate future SN and BAO data based on the space-based project WFIRST. We find that with the future geometric constraints, the redshift drift observations would help break the geometric degeneracies in a meaningful way, thus the measurement precisions of Ωm, H0, w, and γ could be substantially improved using future probes. (orig.)

  1. Correlations in high-energy interactions

    The short-range correlations in rapidity whose existence has been firmly established in high-energy interactions are used to explain chaotic multiplicity behavior in proton-nucleon collisions at 800 GeV. In order to determine the values of higher-order moments from the second-order moment, we have used the pure birth approximation which is in agreement with the ''linked pair'' approximation of Carruthers. The calculated values of the normalized factorial moments for a given bin size show a good agreement with our data

  2. Weak interactions at high energies. [Lectures, review

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  3. Strongly Interacting Matter at High Energy Density

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  4. New models for intermolecular repulsion and their application to Van Der Waals complexes and crystals of organic molecules

    Model intermolecular potentials are required for simulations of molecules in the gas, liquid, or solid phase. The widely used isotropic atom-atom model potentials are empirically fitted and based on the assumptions of transferability, combining rules and that atoms in molecules are spherical. This thesis develops a non-empirical method of modelling repulsion by applying the overlap model, which we show as a general non-empirical method of deriving repulsion potentials for a specific molecule. In this thesis, the repulsion parameters for an exponential atom-atom model potential are obtained from the ab initio charge density of a small organic molecule by making the assumption that the repulsion is proportional to the overlap of a pair of molecules. The proportionality constant is fixed by a limited number of intermolecular perturbation theory (IMPT) calculations. To complete the model potential, the electrostatic interaction is represented by a distributed multipole analysis, and the Slater-Kirkwood formula is used for the dispersion. These non-empirical potentials can reproduce experimental crystal structure when applied to crystal structure prediction of an oxyboryl derivative. A detailed study on further improving the overlap model was carried out for phenol-water, by including other minor intermolecular contributions of charge-transfer and penetration. High quality ab initio calculations on the complex were performed for use in comparison. To compare with experimental data, diffusion Monte Carlo simulations were performed with the potential, so that the effects of anharmonic zero-point motion on structure and energy of the system are included. When the system is too large for an IMPT calculation, the proportionality constant can be determined empirically by fitting the cell volume as shown in our study of crystal structures of chlorothalonil. This is used with an anisotropic repulsion model that has been derived for Cl and N atoms in chlorothalonil. This model

  5. Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system

    Hormain, Laureline; Monnerville, Maurice, E-mail: maurice.monnerville@univ-lille1.fr; Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane [Laboratoire de Physique des Lasers Atomes et Molécules, Unité Mixte de Recherche (UMR) 8523, Université Lille I, Bât. P5, 59655 Villeneuve d’Ascq Cedex (France); Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón [Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México (Mexico)

    2015-04-14

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.

  6. Isotopic effects on non-linearity, molecular radius and intermolecular free length

    Ranjan Dey; Arvind K Singh; N K Soni; B S Bisht; J D Pandey

    2006-08-01

    Computation of non-linearity parameter (/), molecular radius (rm) and intermolecular free length (f) for H2O, C6H6, C6H12, CH3OH, C2H5OH and their deuterium-substituted compounds have been carried out at four different temperatures, viz., 293.15, 303.15, 313.15 and 323.15 K. The aim of the investigation is an attempt to study the isotopic effects on the non-linearity parameter and the physicochemical properties of the liquids, which in turn has been used to study their effect on the intermolecular interactions produced thereof.

  7. The growth of structure in interacting dark energy models

    Calderacabral, Gaby; Maartens, Roy; Schafer, B.

    2009-01-01

    If dark energy interacts with dark matter, there is a change in the background evolution of the universe, since the dark matter density no longer evolves as a^{-3}. In addition, the non-gravitational interaction affects the growth of structure. In principle, these changes allow us to detect and constrain an interaction in the dark sector. Here we investigate the growth factor and the weak lensing signal for a new class of interacting dark energy models. In these models, the interaction genera...

  8. Toward transferable interatomic van der Waals interactions without electrons: The role of multipole electrostatics and many-body dispersion

    Bereau, Tristan; von Lilienfeld, O. Anatole

    2014-01-01

    We estimate polarizabilities of atoms in molecules without electron density, using a Voronoi tesselation approach instead of conventional density partitioning schemes. The resulting atomic dispersion coefficients are calculated, as well as many-body dispersion effects on intermolecular potential energies. We also estimate contributions from multipole electrostatics and compare them to dispersion. We assess the performance of the resulting intermolecular interaction model from dispersion and e...

  9. Cosmological Evolution With Interaction Between Dark Energy And Dark Matter

    Bolotin, Yu. L.; Kostenko, A.; Lemets, O. A.; Yerokhin, D. A.

    2013-01-01

    In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe) with interacting dark energy (DE) and dark matter (DM), have done a thorough analysis of these models. The main task of this review was not only to give an idea a...

  10. Ab initiointermolecular potential energy surface of Ne···NCCN van der Waals complex: effect of the place of midbond function on the interaction

    Solimannejad, Mohammad; Jouypazadeh, Hamidreza; Farrokhpour, Hossein

    2015-11-01

    The intermolecular potential energy surface of Ne...NCCN van der Waals complex was evaluated in the framework of the counterpoise-corrected supermolecular approach using CCSD(T) level and aug-cc-pVDZ basis set extended with a set of midbond (3s3p2d1f1g) functions. The effect of the place of midbond function on the accuracy of the calculated potential energy surface was examined and the optimised position for placing midbond function was determined. The calculated potential energy surface was fitted by an analytical function. The analytical function of intermolecular potential energy surface of Ne...NCCN demonstrated a global minimum energy of -12.024 meV related to the T-shape geometry at the distance between Ne and the centre of mass of NCCN of 3.28 Å. Finally, the interaction second virial coefficients (B12) of Ne and NCCN were calculated and used to calculate the second virial coefficients for the mixture of neon and cyanogen gases at different mole fractions of Ne gas.

  11. Multidimensional intermolecular dynamics from tunable far-infrared laser spectroscopy: Angular-radial coupling in the intermolecular potential of argon--H2O

    Five new vibration--rotation tunneling states of Ar--H2O [the Σ and Π(111) and the Σ and Π(212) internal rotor states and the n=1, Π(101) stretching-internal rotor combination level] have been accessed by tunable far-infrared laser spectroscopy. The measured vibrational band origins of transitions to these states are within 2% of predictions made from an anisotropic three-dimensional intermolecular potential surface (denoted AW1) derived from a nonlinear least-squares fit to previous far-infrared spectral data [J. Phys. Chem. 94, 7991(1990)]. This provides strong evidence that the AW1 intermolecular potential surface incorporates much of the essential physics of the intermolecular forces which bind the cluster. However, larger deviations from the predictions are found in the observed rotational term values. A detailed analysis of these deviations clearly demonstrates the need for even stronger angular-radial coupling in the Ar--H2O intermolecular potential than the already substantial coupling present in the AW1 surface. Specifically, the presently observed Σ(111) state and the n=1, Σ(000) state are found to be approximately 65:35 mixtures of the basis states which represent pure stretching and internal rotation. The Σ(212) level is found to be mixed just as strongly with n=2, Σ(101). The formalism for accurately deperturbing vibration--rotation--tunneling states coupled by Coriolis interactions used in the above analysis is presented

  12. A simple and reliable approach to docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints

    A simple and reliable approach for docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints (as few as three from a single point) in combination with a novel representation for an attractive potential between mapped interaction surfaces is described. Unambiguous assignments of very sparse intermolecular NOEs are obtained using a reverse labeling strategy in which one the components is fully deuterated with the exception of selective protonation of the δ-methyl groups of isoleucine, while the other component is uniformly 13C-labeled. This labeling strategy can be readily extended to selective protonation of Ala, Leu, Val or Met. The attractive potential is described by a 'reduced' radius of gyration potential applied specifically to a subset of interfacial residues (those with an accessible surface area ≥ 50% in the free proteins) that have been delineated by chemical shift perturbation. Docking is achieved by rigid body minimization on the basis of a target function comprising the sparse NOE distance restraints, a van der Waals repulsion potential and the 'reduced' radius of gyration potential. The method is demonstrated for two protein-protein complexes (EIN-HPr and IIAGlc-HPr) from the bacterial phosphotransferase system. In both cases, starting from 100 different random orientations of the X-ray structures of the free proteins, 100% convergence is achieved to a single cluster (with near identical atomic positions) with an overall backbone accuracy of ∼2 A. The approach described is not limited to NMR, since interfaces can also be mapped by alanine scanning mutagenesis, and sparse intermolecular distance restraints can be derived from double cycle mutagenesis, cross-linking combined with mass spectrometry, or fluorescence energy transfer

  13. Flat Energy histogram version for Interacting Growth Walk

    Ponmurugan, M.; Sridhar, V.; Narasimhan, S. L.; Murthy, K. P. N.

    2007-01-01

    Interacting Growth Walks is a recently proposed stochastic model for studying the coil-globule transition of linear polymers. We propose a flat energy histogram version for Interacting Growth Walk. We demonstrate the algorithm on two dimensional square and triangular lattices by calculating the density of energy states of Interacting Self Avoiding Walks.

  14. Calculations on Noncovalent Interactions and Databases of Benchmark Interaction Energies

    Hobza, Pavel

    2012-01-01

    Roč. 45, č. 4 (2012), s. 663-672. ISSN 0001-4842 R&D Projects: GA ČR GBP208/12/G016 Grant ostatní: European Social Fund(XE) CZ.1.05/2.1.00/03.0058 Institutional research plan: CEZ:AV0Z40550506 Keywords : non-covalent interaction s * covalent interaction s * quantum chemical approach Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 20.833, year: 2012

  15. Determination of a silane intermolecular force field potential model from an ab initio calculation

    Intermolecular interaction potentials of the silane dimer in 12 orientations have been calculated by using the Hartree-Fock (HF) self-consistent theory and the second-order Moeller-Plesset (MP2) perturbation theory. We employed basis sets from Pople's medium-size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (up to the triply augmented correlation-consistent polarized valence quadruple-zeta basis set). We found that the minimum energy orientations were the G and H conformers. We have suggested that the Si-H attractions, the central silicon atom size, and electronegativity play essential roles in weakly binding of a silane dimer. The calculated MP2 potential data were employed to parametrize a five-site force field for molecular simulations. The Si-Si, Si-H, and H-H interaction parameters in a pairwise-additive, site-site potential model for silane molecules were regressed from the ab initio energies.

  16. Computational Analysis of Intermolecular Coulombic Decay Effects in DNA nucleotide Photoionization

    Vargas, E. L.; Robertson, J.; Andrianarijaona, V. M.

    2016-03-01

    Intermolecular Coulombic Decay (ICD) is the process of how electrons return to their original state after excitation and how this affects their immediate environment. In a previous research presentationwe had considered the hypothetical applications of Intermolecular Coulombic Decay on the adhesiveness of coding proteins within DNA molecules. This presentation is a continuation of the previous in that the results of our DFT-based computational calculations of the ionization potentials of nucleotides and their excitation energies will be presented, as well as how they influence their surroundings. Author would like to acknowledge the PUC Student Senate for financial assistance.

  17. Probing intermolecular couplings in liquid water with two-dimensional infrared photon echo spectroscopy

    Paarmann, A.; Hayashi, T.; Mukamel, S.; Miller, R. J. D.

    2008-05-01

    Two-dimensional infrared photon echo and pump probe studies of the OH stretch vibration provide a sensitive probe of the correlations and couplings in the hydrogen bond network of liquid water. The nonlinear response is simulated using numerical integration of the Schrödinger equation with a Hamiltonian constructed to explicitly treat intermolecular coupling and nonadiabatic effects in the highly disordered singly and doubly excited vibrational exciton manifolds. The simulated two-dimensional spectra are in close agreement with our recent experimental results. The high sensitivity of the OH stretch vibration to the bath dynamics is found to arise from intramolecular mixing between states in the two-dimensional anharmonic OH stretch potential. Surprisingly small intermolecular couplings reproduce the experimentally observed intermolecular energy transfer times.

  18. A new intermolecular mechanism to selectively drive photoinduced damages

    Gokhberg, Kirill; Kuleff, Alexander I; Cederbaum, Lorenz S

    2014-01-01

    Low-energy electrons (LEEs) are known to be effective in causing strand breaks in DNA. Recent experiments show that an important direct source of LEEs is the intermolecular Coulombic decay (ICD) process. Here we propose a new cascade mechanism initiated by core excitation and terminated by ICD and demonstrate its properties. Explicit calculations show that the energies of the emitted ICD-electrons can be controlled by selecting the initial atomic excitation. The properties of the cascade may have interesting applications in the fields of electron spectroscopy and radiation damage. Initiating such a cascade by resonant X-ray absorption from a high-Z element embedded in a cancerous cell nucleus, ICD will deliver genotoxic particles \\textit{locally} at the absorption site, increasing in that way the controllability of the induced damage.

  19. Simulations of the THz spectrum of liquid water incorporating the effects of intermolecular charge fluxes through hydrogen bonds

    The intensity of the band at ∼200 cm−1 (∼6 THz) in the Terahertz spectrum of liquid water mainly arises from the modulations of the extent of intermolecular charge transfer through hydrogen bonds, called intermolecular charge fluxes, occurring upon molecular translations along the O…H hydrogen bonds. To obtain reasonable spectral profiles from simulations, it is necessary to effectively incorporate the effects of those intermolecular charge fluxes, but apparently it is not possible by simple classical molecular dynamics simulations with fixed atomic partial charges even if they are amended by molecular induced dipoles due to intermolecular electrostatic interactions. The present paper shows how we can do reasonably correct spectral simulations, without resorting to fully ab initio molecular dynamics

  20. Simulations of the THz spectrum of liquid water incorporating the effects of intermolecular charge fluxes through hydrogen bonds

    Torii, Hajime, E-mail: torii.hajime@shizuoka.ac.jp [Department of Chemistry, Faculty of Education, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529 (Japan)

    2015-12-31

    The intensity of the band at ∼200 cm{sup −1} (∼6 THz) in the Terahertz spectrum of liquid water mainly arises from the modulations of the extent of intermolecular charge transfer through hydrogen bonds, called intermolecular charge fluxes, occurring upon molecular translations along the O…H hydrogen bonds. To obtain reasonable spectral profiles from simulations, it is necessary to effectively incorporate the effects of those intermolecular charge fluxes, but apparently it is not possible by simple classical molecular dynamics simulations with fixed atomic partial charges even if they are amended by molecular induced dipoles due to intermolecular electrostatic interactions. The present paper shows how we can do reasonably correct spectral simulations, without resorting to fully ab initio molecular dynamics.

  1. Nano-spectroscopic imaging of intermolecular structure, coupling and dynamics

    Pollard, Benjamin; Hinrichs, Karsten; Raschke, Markus B

    2013-01-01

    Molecular self-assembly, the function of biomembranes, and the performance of organic solar cells rely on molecular interactions on the nanoscale. The understanding and design of such intrinsic or engineered heterogeneous functional soft matter has long been impeded by a lack of spectroscopic tools with sufficient nanometer spatial resolution, attomolar sensitivity, and intermolecular spectroscopic specificity. We implement vibrational scattering-scanning near-field optical microscopy ($s$-SNOM) in a multi-spectral modality with unprecedented spectral precision to investigate the structure-function relationship in nano-phase separated block-copolymers. We use a vibrational resonance as a sensitive reporter of the local chemical environment and resolve, with few nanometer spatial resolution and 0.2 cm$^{-1}$ spectral precision, spectral Stark shifts and line broadening correlated with molecular-scale morphologies. By creating images of solvatochromic vibrational shifts we discriminate local variations in elect...

  2. Stacked and H-Bonded Cytosine Dimers. Analysis of the Intermolecular Interaction Energies by Parallel Quantum Chemistry and Polarizable Molecular Mechanics.

    Gresh, N.; Šponer, Judit E.; Devereux, M.; Gkionis, Konstantinos; de Courcy, B.; Piquemal, J.P.; Šponer, Jiří

    2015-01-01

    Roč. 119, č. 30 (2015), s. 9477-9495. ISSN 1520-6106 R&D Projects: GA ČR(CZ) GAP208/11/1822 Institutional support: RVO:68081707 Keywords : DENSITY-FUNCTIONAL THEORY * DISTRIBUTED MULTIPOLE ANALYSIS * PERTURBATION-THEORY APPROACH Subject RIV: BO - Biophysics Impact factor: 3.302, year: 2014

  3. Long-range energy level interaction in small metallic particles

    Beenakker, C. W. J.; Jalabert, R. A.; Pichard, J. -L.

    1993-01-01

    We consider the energy level statistics of non-interacting electrons which diffuse in a $ d $-dimensional disordered metallic conductor of characteristic Thouless energy $ E_c. $ We assume that the level distribution can be written as the Gibbs distribution of a classical one-dimensional gas of fictitious particles with a pairwise additive interaction potential $ f(\\varepsilon ). $ We show that the interaction which is consistent with the known correlation function of pairs of energy levels i...

  4. Lepton and photon interactions at high energies

    The 1989 International Symposium on Lepton and Photon Interactions at High Energies was held at Stanford from August 7 through August 12. This was the fourteenth meeting in this series, which dates back to 1963, and the third time the Symposium has been hosted by the Stanford Linear Accelerator Center. The earlier meetings coincided with major physics accomplishments at SLAC; the first results from the two-mile accelerator were presented at the 1967 meeting, and the 1975 meeting followed closely the discoveries of the ψ and τ particles at SPEAR. In keeping with this tradition, the latest meeting included the first results from e+e- → Z0 events observed at the SLC. A report to the symposium indicated that LEP results on the same reaction were close at hand, and subsequent developments have shown that claim to be amply justified. Other advances of great interest reported to the symposium included new limits on the top mass from the p bar p colliders, the ε'/ε results from experiments at CERN and Fermilab, and evidence for b → u quark transitions at CESR and DESY. The Standard Model continues to accommodate virtually all measurements in the field, including the wealth of new data presented to this conference. Let us hope that future experiments will soon modify that situation

  5. Analysis of Cl center dot center dot center dot Cl and C-H center dot center dot center dot Cl intermolecular interactions involving chlorine in substituted 2-chloroquinoline derivatives

    Hathwar, Venkatesha R.; Roopan, Mohana S; R. Subashini; Khan, Nawaz F; Row, Guru TN

    2010-01-01

    Six crystal structures of substituted 2-chloroquinoline derivatives have been analysed to evaluate the role of Cl atom as a self recognizing unit resulting in the formation of Cl center dot center dot center dot Cl and C-H center dot center dot center dot Cl interactions to generate supramolecular assembly in the solid state. The features of Type I and Type II geometries associated with Cl center dot center dot center dot Cl interactions have been analysed to show directional preferences lead...

  6. Scattering with absorptive interaction: Energy-dependent potentials

    Cassing, W.; Stingl, M.; Weiguny, A.

    1983-05-01

    The energy dependence and analytic structure of the effective interaction for elastic scattering of composite particles are investigated using Feshbach's projection technique. A generalized Levinson theorem is established for complex, nonlocal, and energy-dependent interactions. The analytical results are illustrated by means of Argand diagrams for a solvable model and the effect of energy averaging is discussed. NUCLEAR REACTIONS Scattering theory, S matrix for absorptive, energy-dependent potentials, Levinson theorem.

  7. Dark Mass Creation During EWPT Via Dark Energy Interaction

    Kisslinger, Leonard S.; Casper, Steven

    2013-01-01

    We add Dark Matter Dark Energy terms with a quintessence field interacting with a Dark Matter field to a MSSM EW Lagrangian previously used to calculate the magnetic field created during the EWPT. From the expectation value of the quintessence field we estimate the Dark Matter mass for parameters used in previous work on Dark Matter-Dark Energy interactions.

  8. Cosmological constraints on a dark matter -- dark energy interaction

    Hoffman, Mark B.

    2003-01-01

    It is generally assumed that the two dark components of the energy density of the universe, a smooth component called dark energy and a fluid of nonrelativistic weakly interacting particles called dark matter, are independent of each other and interact only through gravity. In this paper, we consider a class of models in which the dark matter and dark energy interact directly. The dark matter particle mass is proportional to the value of a scalar field, and the energy density of this scalar f...

  9. 聚L-乳酸/4,4ˊ-二羟基二苯硫醚共混物的分子间相互作用及结晶和熔融行为%Intermolecular Interactions and Crystallization and Melting Behavior of Poly(L-lactic acid)/4,4ˊ-Thiobis Phenol Blends†

    司朋飞; 罗发亮; 海梅

    2015-01-01

    The intermolecular interactions between poly ( L­lactic acid) ( PLLA) and 4,4ˊ­thiobis phenol (TDP) in their melt blending samples were studied by means of Fourier transform infrared(FTIR) spectro­ meter. The results show that intermolecular hydrogen bonding forms between carbonyl groups of PLLA and hydroxyl groups of TDP. The glass transition behavior and non­isothermal crystallization, subsequent melting behavior of PLLA and PLLA/TDP blends were studied by differential scanning calorimeter( DSC) . The results show that, glass transition temperatures ( Tg ) of the samples decrease linearly with TDP content. The melt crystallization temperatures(Tc), heat of crystallization(ΔHc), melting temperatures(Tm), heat of fusion (ΔHm) all decrease with TDP content, while the cold­crystallization temperatures show reverse tendency. When TDP content reaches 40%( mass fraction) in the sample, neither crystallization exothermic nor melting endothermic peaks appear in the DSC curve, implying that this sample is completely in amorphous state. Wide angle X­ray diffraction( WAXD) analysis reveals that the addition of TDP does not modify the crystal structure of PLLA, but results in less compact crystal structure. Thus, the decrease of melting temperatures ought to attribute to the formation of intermolecular hydrogen bonding, which reduces mobility of PLLA chains and makes the resulting crystals less compact, rather than crystal modification.%利用红外吸收光谱(FTIR)研究了聚乳酸(PLLA)/4,4ˊ­二羟基二苯硫醚(TDP)熔融共混物的分子间相互作用,结果表明, PLLA的羰基与TDP的羟基之间形成了分子间氢键。通过差示扫描量热( DSC)研究了共混物的玻璃化转变行为及非等温结晶和熔融行为。结果表明,样品的玻璃化转变温度( Tg )随TDP含量的增加呈线性下降。共混物的熔融结晶温度( Tc )、结晶焓(ΔHc )、熔融温度( Tm )及熔融焓(ΔHm )均随TDP含量的增加呈下降趋势,而

  10. A more general interacting model of holographic dark energy

    Yu, Fei; Zhang, Jingfei; Lu, Jianbo; Wang, Wei; Gui, Yuanxing

    2010-01-01

    So far, there have been no theories or observational data that deny the presence of interaction between dark energy and dark matter. We extend naturally the holographic dark energy (HDE) model, proposed by Granda and Oliveros, in which the dark energy density includes not only the square of the Hubble scale, but also the time derivative of the Hubble scale to the case with interaction and the analytic forms for the cosmic parameters are obtained under the specific boundary conditions. The var...

  11. An Interacting Dark Energy Model with Nonminimal Derivative Coupling

    Nozari, Kourosh; Behrouz, Noushin

    2016-01-01

    We study cosmological dynamics of an extended gravitational theory that gravity is coupled non-minimally with derivatives of a dark energy component and there is also a phenomenological interaction between the dark energy and dark matter. Depending on the direction of energy flow between the dark sectors, the phenomenological interaction gets two different signs. We show that this feature affects the existence of attractor solution, the rate of growth of perturbations and stability of the sol...

  12. Interacting Ghost Dark Energy Model: Dynamical System Analysis

    Golchin, Hanif; Jamali, Sara; Ebrahimi, Esmaeil

    2016-01-01

    We study the impacts of interaction between dark matter and dark energy in the context of ghost dark energy model. Using the dynamical system analysis, we obtain the fixed points of the system for different types of interactions while the universe is filled with radiation, matter (including dark matter and luminous matter) and dark energy components. We consider the stability of the fixed points in details for different cases. In all cases there is an unstable matter dominated epoch and a sta...

  13. THz absorption spectrum of the CO2–H2O complex: Observation and assignment of intermolecular van der Waals vibrations

    Andersen, Jonas; Heimdal, J.; Wallin Mahler Andersen, Denise; Nelander, B.; Larsen, René Wugt

    2014-01-01

    have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems’ flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm−1 from the class of intermolecular van der Waals vibrations is proposed and the...... combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm−1 for the dissociation energy D0...

  14. DFT Description of Intermolecular Forces between 9-Aminoacridines and DNA Base Pairs

    Sandra Cotes Oyaga

    2013-01-01

    Full Text Available The B3LYP method with 6-31G* basis set was used to predict the geometries of five 9-aminoacridines (9-AA 1(a–e, DNA base pairs, and respective complexes. Polarizabilities, charge distribution, frontier molecular orbital (FMO, and dipole moments were used to analyze the nature of interactions that allow reasonable drug diffusion levels. The results showed that charge delocalization, high polarizabilities, and high dipole moments play an important role in intermolecular interactions with DNA. The interactions of 9-AA 1(a–e with GC are the strongest. 9-AA 1(d displayed the strongest interaction and 9-AA 1(b the weakest.

  15. Buildings Interaction with Urban Energy Systems

    Heller, Alfred; Wyckmans, Annemie; Zucker, Gerhard;

    2015-01-01

    The goal towards a fossil free energy system is expressed in amongst others European and national targets, and puts pressure on the application of renewable energy sources combined with energy efficiency. Many cities are even more ambitious than their national targets and want to be among the first......, focusing on the impacts that buildings play in the overall energy system. Here buildings are not only consumers but rather prosumers that are able to produce renewable energy themselves. Buildings moreover offer potential storage capacities that can be utilized in demand shifting, which is necessary to...... to demonstrate that they can become not only smart fossil-free energy cities but sustainable in a wider sense, including water, waste, transportation and more. In the current paper, the research agenda to support such goals through smart city efforts is presented for a few European cases as examples...

  16. Dark Energy and Its Interactions with Neutrinos

    Zhang, Xinmin

    2005-01-01

    In this talk I will firstly review on the current constraints on the equation of state of the dark energy from observational data, then present a new scenario of dark energy dubbed {\\it Quintom}. The recent fits to the type Ia supernova data and the cosmic microwave background and so on in the literature find that the behavior of dark energy is to great extent in consistency with a cosmological constant, however the dynamical dark energy scenarios are generally not ruled out, and one class of...

  17. STUDIES ON THE SYNERGISM OF INTERMOLECULAR INTERACTION OF XANTHAN NK-01 AND GALACTOMANNAN%NK-01黄原胶和长角豆半乳甘露聚糖分子间的协效性研究

    刁虎欣; 梁凤来; 梁兴杰; 杨淑静; 刘如林

    2001-01-01

    Xanthan NK-01 and galactomannan are two natural biopolysaccharides. When two polysacchrides were mixed by suitable ratio, the viscosity of mixing polysaccharides solution is higher than viscosity of a single polysaccharide at same concentration. If solution concentration of mixing polysaccharides is around 0.2%, the gel was formed, but solution of a single polysaccharide does not form gels. These researches indicated that the synergism was appeared by intermoloecular interaction of xanthan NK-01 and galactomannan, but this synergism was influenced by pH, inorganic salts and temperature.%NK-01黄原胶和长角豆半乳甘露聚糖是两种天然生物多糖.两种多糖以适宜比例混和,溶液浓度达0.1%时,其溶液粘度分别是相同浓度单一多糖溶液粘度的13倍和40倍.当浓度增至0.2%时,溶液成凝胶,而相同浓度单一多糖溶液不成凝胶.表明两种多糖混和后经分子间相互作用,呈现极显著的协效增粘性和协效凝胶性.但其协效性受pH、无机盐和温度的显著影响.

  18. Exactly solved models of interacting dark matter and dark energy

    Chimento, Luis P

    2012-01-01

    We introduce an effective one-fluid description of the interacting dark sector in a spatially flat Friedmann-Robertson-Walker space-time and investigate the stability of the power-law solutions. We find the "source equation" for the total energy density and determine the energy density of each dark component. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities, their first derivatives, the total energy density with its derivatives up to second order and the scale factor. We solve the evolution equations of the dark components for both interactions, examine exhaustively several examples and show cases where the problem of the coincidence is alleviated. We show that a generic nonlinear interaction gives rise to the "relaxed Chaplygin gas model" whose effective equation of state includes the variable modified Chaplygin gas model while some others nonlinear interactions yield de Sitter and power-law scenarios.

  19. Load Matching and Grid Interaction of Net Zero Energy Buildings

    Voss, Karsten; Sartori, Igor; Napolitano, Assunta;

    2010-01-01

    “Net Zero Energy Building” has become a prominent wording to describe the synergy of energy efficient building and renewable energy utilization to reach a balanced energy budget over a yearly cycle. Taking into account the energy exchange with a grid infrastructure overcomes the limitations of...... seasonal energy storage on-site. Even though the wording “Net Zero Energy Building” focuses on the annual energy balance, large differences may occur between solution sets in the amount of grid interaction needed to reach the goal. The paper reports on the analysis of example buildings concerning the load...... matching and grid interaction. Indices to describe both issues are proposed and foreseen as part of a harmonized definition framework. The work is part of subtask A of the IEA SHCP Task40/ECBCS Annex 52: “Towards Net Zero Energy Solar Buildings”....

  20. Comparison of the local binding motifs in the imidazolium-based ionic liquids [EMIM][BF4] and [EMMIM][BF4] through cryogenic ion vibrational predissociation spectroscopy: Unraveling the roles of anharmonicity and intermolecular interactions

    We clarify the role of the critical imidazolium C(2)H position (the central C between N atoms in the heterocycle) in the assembly motif of the [EMIM][BF4] ionic liquid by analyzing the vibrational spectra of the bare EMIM+ ion as well as that of the cationic [EMIM]2[BF4]+ (EMIM+ = 1-ethyl-3-methylimidazolium, C6H11N2+) cluster. Vibrational spectra of the cold, mass-selected ions are obtained using cryogenic ion vibrational predissociation of weakly bound D2 molecules formed in a 10 K ion trap. The C(2)H behavior is isolated by following the evolution of key vibrational features when the C(2) hydrogen, the proposed binding location of the anion to the imidazolium ring, is replaced by either deuterium or a methyl group (i.e., in the EMMIM+ analogue). Strong features in the ring CH stretching region of the bare ion are traced to Fermi resonances with overtones of lower frequency modes. Upon incorporation into the EMIM+ ⋅ ⋅ ⋅ BF4− ⋅ ⋅ ⋅ EMIM+ ternary complex, the C(2)H oscillator strength is dramatically increased, accounting for the much more complicated patterns derived from the EMIM+ ring CH stretches in the light isotopomer, which are strongly suppressed in the deuterated analogue. Further changes in the spectra that occur when the C(2)H is replaced by a methyl group are consistent with BF4− attachment directly to the imidazolium ring in an arrangement that maximizes the electrostatic interaction between the molecular ions

  1. Cosmological evolution with interaction between dark energy and dark matter

    Bolotin, Yuri L.; Kostenko, Alexander; Lemets, Oleg A.; Yerokhin, Danylo A.

    2015-12-01

    In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe), with interacting dark energy and dark matter, have done a thorough analysis of these models. The main task of this review was not only to give an idea about the modern set of different models of dark energy, but to show how much can be diverse dynamics of the universe in these models. We find that the dynamics of a universe that contains interaction in the dark sector can differ significantly from the Standard Cosmological Model.

  2. Cosmological Evolution With Interaction Between Dark Energy And Dark Matter

    Bolotin, Yu L; Lemets, O A; Yerokhin, D A

    2013-01-01

    In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe) with interacting dark energy (DE) and dark matter (DM), have done a thorough analysis of these models. The main task of this review was not only to give an idea about the modern set of different models of dark energy, but to show how much can be diverse dynamics of the universe in these models. We find that the dynamics of a Universe that contains interaction in the dark sector can differ significantly from the Standard Cosmological Model (SCM).

  3. Magnon energies and exchange interactions in terbium

    Houmann, Jens Christian Gylden

    1968-01-01

    The magnon density of states, and hence the magnetic contribution to the specific heat, and also the exchange interaction between ions in the same sublattice have been calculated for Tb at 90°K, using experimental results obtained by inelastic neutron scattering.......The magnon density of states, and hence the magnetic contribution to the specific heat, and also the exchange interaction between ions in the same sublattice have been calculated for Tb at 90°K, using experimental results obtained by inelastic neutron scattering....

  4. Distinguishing interactions in 3-form dark energy models

    Morais, João; Bouhmadi-López, Mariam; Kumar, K. Sravan; Marto, João; Tavakoli, Yaser

    2016-01-01

    In this paper we consider 3-form dark energy (DE) models with interactions in the dark sector. We aim to distinguish the phenomenological interactions that are defined through the dark matter (DM) and the DE energy densities. We do our analysis mainly in two stages. In the first stage, we identify the non-interacting 3-form DE model which generically leads to an abrupt late-time cosmological event which is known as the little sibling of the Big Rip (LSBR). We classify the interactions which c...

  5. Effective dark energy equation of state in interacting dark energy models

    Avelino, P. P.; da Silva, H. M. R.

    2012-01-01

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may resu...

  6. High-energy interactions at the Pierre Auger Observatory

    Conceição, Ruben

    2015-01-01

    The interaction of Ultra High Energy Cosmic Rays (UHECRs) with the atoms of the atmosphere can occur at center-of-mass energies that surpass 100 TeV, while present human-made accelerators go up to 13 TeV. Therefore it provides a unique opportunity to explore hadronic interactions at the highest energies. However, the extraction of hadronic interaction properties from the Extensive Air Showers (EAS) characteristics, which are induced by the UHECR, is intrinsically related to the nature of the ...

  7. Pollution prevention and energy conservation: Understanding the interactions

    The traditional view holds that pollution prevention is good for energy conservation and vice versa. Analysis of pollution prevention and energy conservation activities indicates, however, that interactions and synergies between environmental and energy factors can mean that pollution prevention can be energy intensive and, conversely, that energy conservation can lead to increased pollution. Full cost accounting, taking into account all media, must be performed before precise pollution prevention-energy conservation interrelationships can be characterized and quantified. Use of a pollution prevention-energy conservation matrix can further this understanding

  8. When do we need attractive-repulsive intermolecular potentials?

    The role of attractive-repulsive interactions in direct simulation Monte Carlo (DSMC) simulations is studied by comparing with traditional purely repulsive interactions. The larger collision cross section of the long-range LJ potential is shown to result in a higher collision frequency and hence a lower mean free path, by at least a factor of two, for given conditions. This results in a faster relaxation to equilibrium as is shown by comparing the fourth and sixth moments of the molecular velocity distribution obtained using 0-D DSMC simulations. A 1-D Fourier-Couette flow with a large temperature and velocity difference between the walls is used to show that matching transport properties will result in identical solutions using both LJPA and VSS models in the near-continuum regime. However, flows in the transitional regime with Knudsen number, Kn ∼ 0.5 show a dependence on the intermolecular potential in spite of matching the viscosity coefficient due to differences in the collision frequency. Attractive-repulsive potentials should be used when both transport coefficients and collision frequencies should be matched

  9. An Interacting Dark Energy Model with Nonminimal Derivative Coupling

    Nozari, Kourosh

    2016-01-01

    We study cosmological dynamics of an extended gravitational theory that gravity is coupled non-minimally with derivatives of a dark energy component and there is also a phenomenological interaction between the dark energy and dark matter. Depending on the direction of energy flow between the dark sectors, the phenomenological interaction gets two different signs. We show that this feature affects the existence of attractor solution, the rate of growth of perturbations and stability of the solutions. By considering an exponential potential as a self-interaction potential of the scalar field, we obtain accelerated scaling solutions that are attractors and have the potential to alleviate the coincidence problem. While in the absence of the nonminimal derivative coupling there is no attractor solution for phantom field when energy transfers from dark matter to dark energy, we show an attractor solution exists if one considers an explicit nonminimal derivative coupling for phantom field in this case of energy tran...

  10. A detector for high-energy neutrino interactions

    The authors describe the design, construction and performance of a large mass detector used at CERN to study high-energy neutrino interactions in iron. This detector combines magnetic spectrometry and hadron calorimetry techniques. (Auth.)

  11. Interacting Ricci Dark Energy with Logarithmic Correction

    Pasqua, Antonio(Department of Physics, University of Trieste, Via Valerio, No. 2, 34127 Trieste, Italy); Khodam-Mohammadi, A.; Jamil, Mubasher; Myrzakulov, R.

    2011-01-01

    Motivated by the holographic principle, it has been suggested that the dark energy density may be inversely proportional to the area $A$ of the event horizon of the universe. However, such a model would have a causality problem. In this work, we consider the entropy-corrected version of the holographic dark energy model in the non-flat FRW universe and we propose to replace the future event horizon area with the inverse of the Ricci scalar curvature. We obtain the equation of state (EoS) para...

  12. Dynamical behavior of interacting dark energy in loop quantum cosmology

    Xiao, Kui; Zhu, Jian-Yang

    2010-01-01

    The dynamical behaviors of interacting dark energy in loop quantum cosmology are discussed in this paper. Based on defining three dimensionless variables, we simplify the equations of the fixed points. The fixed points for interacting dark energy can be determined by the Friedmann equation coupled with the dynamical equations {in Einstein cosmology}. But in loop quantum cosmology, besides the Friedmann equation, the conversation equation also give a constrain on the fixed points. The differen...

  13. Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology

    CHEN Ju-Hua; ZHOU Sheng; WANG Yong-Jiu

    2011-01-01

    We investigate the evolution of the viscous dark energy (DE) interacting with the dark matter (DM) in the Einstein cosmology model. By using the linearizing theory of the dynamical system, we find that, in our model,there exists a stable late time scaling solution which corresponds to the accelerating universe. We also find the unstable solution under some appropriate parameters. In order to alleviate the coincidence problem, some authors considered the effect of quantum correction due to the conform anomaly and the interacting dark energy with the dark matter. However, if we take into account the bulk viscosity of the cosmic fluid, the coincidence problem will be softened just like the interacting dark energy cosmology model. That is to say, both the non-perfect fluid model and the interacting the dark energy cosmic model can alleviate or soften the singularity of the universe.%@@ We investigate the evolution of the viscous dark energy (DE) interacting with the dark matter (DM) in the Einstein cosmology model.By using the linearizing theory of the dynamical system, we find that, in our model, there exists a stable late time scaling solution which corresponds to the accelerating universe.We also find the unstable solution under some appropriate parameters.In order to alleviate the coincidence problem, some authors considered the effect of quantum correction due to the conform anomaly and the interacting dark energy with the dark matter.However, if we take into account the bulk viscosity of the cosmic fluid, the coincidence problem will be softened just like the interacting dark energy cosmology model.That is to say, both the non-perfect fluid model and the interacting the dark energy cosmic model can alleviate or soften the singularity of the universe.

  14. Weak interactions and quasi-stable particle energy loss

    Reno, M. H.; Sarcevic, I.; Uscinski, J.

    2006-01-01

    We discuss the interplay between electromagnetic energy loss and weak interactions in the context of quasistable particle particle propagation through materials. As specific examples, we consider staus, where weak interactions may play a role, and taus, where they don't.

  15. Nuclear interactions and the highest energy air showers

    Based on the energy distribution of particles produced in multiple particle production, which is formulated phenomenologically by the data of direct observation, it was calculated the air shower development at E0=1020 eV. The calculation shows that the formula, extrapolated into the higher energy region, does not describe the highest energy air showers. It was also argued that the energy estimation of the highest energy air showers may have an ambiguity of a factor ∼ 2, due to the incomplete knowledge on high energy interactions

  16. Interacting agegraphic dark energy models in non-flat universe

    Sheykhi, Ahmad

    2009-01-01

    A so-called "agegraphic dark energy" was recently proposed to explain the dark energy-dominated universe. In this Letter, we generalize the agegraphic dark energy models to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We show that these models can accommodate $w_D = -1 $ crossing for the equation of state of dark energy. In the limiting case of a flat universe, i.e. $k = 0$, all previous results of agegraphic dark energy in flat unive...

  17. Chirality of weakly bound complexes: The potential energy surfaces for the hydrogen-peroxide−noble-gas interactions

    Roncaratti, L. F., E-mail: lz@fis.unb.br; Leal, L. A.; Silva, G. M. de [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Pirani, F. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, V. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Instituto de Física, Universidade Federal da Bahia, 40210 Salvador (Brazil); Gargano, R. [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Departments of Chemistry and Physics, University of Florida, Quantum Theory Project, Gainesville, Florida 32611 (United States)

    2014-10-07

    We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry of the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.

  18. Calculation of intermolecular potentials for H{sub 2}−H{sub 2} and H{sub 2}−O{sub 2} dimers ab initio and prediction of second virial coefficients

    Pham Van, Tat [Faculty of Science and Technology, Hoa Sen University (Viet Nam); Deiters, Ulrich K. [Institute of Physical Chemistry, University of Cologne, Luxemburger Str. 116, D-50939 Köln (Germany)

    2015-08-18

    Highlights: • We construct the angular orientations of dimers H{sub 2}−H{sub 2} and H{sub 2}−O{sub 2}. • We calculate the ab initio intermolecular interaction energies for all built orientations. • Extrapolating the interaction energies to the complete basis set limit aug-cc-pV23Z. • We develop two 5-site ab initio intermolecular potentials of dimers H{sub 2}−H{sub 2}, H{sub 2}−O{sub 2}. • Calculating the virial coefficients of dimer H{sub 2}−H{sub 2} and H{sub 2}−O{sub 2}. - Abstract: The intermolecular interaction potentials of the dimers H{sub 2}−H{sub 2} and H{sub 2}−O{sub 2} were calculated from quantum mechanics, using coupled-cluster theory CCSD(T) and correlation-consistent basis sets aug-cc-pVmZ (m = 2, 3); the results were extrapolated to the basis set limit aug-cc-pV23Z. The interaction energies were corrected for the basis set superposition error with the counterpoise scheme. For comparison also Møller–Plesset perturbation theory (at levels 2–4) with the basis sets aug-cc-pVTZ were considered, but the results proved inferior. The quantum mechanical results were used to construct analytical pair potential functions. From these functions the second virial coefficients of hydrogen and the cross virial coefficients of the hydrogen–oxygen system were obtained by integration; in both cases corrections for quantum effects were included. The results agree well with experimental data, if available, or with empirical correlations.

  19. Effective Theory of Interacting Dark Energy

    Gleyzes, Jérôme; Langlois, David; Mancarella, Michele; Vernizzi, Filippo

    2015-01-01

    We present a unifying treatment of dark energy and modified gravity that allows distinct conformal-disformal couplings of matter species to the gravitational sector. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities. We compute the equations of motion for background quantities and linear perturbations. We illustrate our formalism with two simple scenarios, where either cold dark matter or a relativistic fluid is nonminimally coupled. This extend...

  20. Low-energy weak-interaction studies

    An overview is given of the present status of low-energy tests of the Standard Model in nuclear beta-decay and neutron decay, covering the unitarity problem, searches for right-handed currents, scalar- and tensor-type currents, tests of time-reversal violation, as well as experiments to set the neutrino mass scale. In view of the large amount of ongoing and planned experiments in this sector, many new results can be expected in the coming decade. (orig.)

  1. Study of intermolecular interactions in hetero-organic thin films

    Stadtmüller, Benjamin

    2013-01-01

    The interest in organic semiconductors is based on their great potential to serve as active materials in electronic devices such as organic light-emitting diodes or organic photovoltaic cells. The performance of these molecular assemblies does not only depend on the properties of the organic bulk materials but also on the interfaces formed by the contact between different materials. Therefore, the physical properties of interfaces between metal contacts and organic materials have been studied...

  2. Tailoring Intermolecular Interactions for High-Performance Nanocomposites

    Inglefield Jr, David Lott

    2014-01-01

    Acid oxidation of multi-walled carbon nanotubes (MWCNTs) introduced carboxylic acid sites onto the MWCNT surface, which permitted further functionalization. Derivatization of carboxylic acid sites yielded amide-amine and amide-urea functionalized MWCNTs from oxidized precursors. Conventional MWCNT characterization techniques including X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and Raman spectroscopy supported successful MWCNT functionalization. Incorporation ...

  3. Intermolecular interactions of lysobisphosphatidic acid with phosphatidylcholine in mixed bilayers.

    Holopainen, Juha M; Söderlund, Tim; Alakoskela, Juha-Matti; Säily, Matti; Eriksson, Ove; Kinnunen, Paavo K J

    2005-01-01

    Lysobisphosphatidic acid (LBPA) can be regarded to represent a unique derivative of phosphatidylglycerol. This lipid is highly enriched in late endosomes where it can comprise up to 10-15 mol% of all lipids and in these membranes, LBPA appears to be segregated into microdomains. We studied the thermotropic behavior of pure dioleoyl-LBPA mono- and bilayers using Langmuir-lipid monolayers, electron microscopy, differential scanning calorimetry (DSC), and fluorescence spectroscopy. LBPA formed metastable, liquid-expanded monolayers at an air/buffer interface, and its compression isotherms lacked any indication for structural phase transitions. Neat LBPA formed multilamellar vesicles with no structural transitions or phase transitions between 10 and 80 degrees C at a pH range of 3.0-7.4. We then proceeded to study mixed LBPA/dipalmitoylphosphatidylcholine (DPPC) bilayers by DSC and fluorescence spectroscopy. Incorporating increasing amounts of LBPA (up to X(LBPA) (molar fraction)=0.10) decreased the co-operativity of the main transition for DPPC, and a decrease in the main phase transition as well as pretransition temperature of DPPC was observed yet with no effect on the enthalpy of this transition. In keeping with the DSC data for DPPC, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/LBPA mixed bilayers were more fluid, and no evidence for lateral phase segregation was observed. These results were confirmed using fluorescence microscopy of Langmuir-lipid films composed of POPC and LBPA up to X(LBPA)=0.50 with no evidence for lateral phase separation. As late endosomes are eminently acidic, we examined the effect of lowering pH on lateral organization of mixed PC/LBPA bilayers by DSC and fluorescence spectroscopy. Even at pH 3.0, we find no evidence of LBPA-induced microdomain formation at LBPA contents found in cellular organelles. PMID:15589226

  4. Intermolecular Interactions in Ternary Glycerol–Sample–H2O

    Westh, Peter; Rasmussen, Erik Lumby; Koga, Yoshikata

    2011-01-01

    -butanol (TBA), 1-propanol (1P), urea (UR), NaF, NaCl, NaBr, NaI, and NaSCN were used. It was found that hydrophobes (TBA and 1P) reduce the values of HGly-GlyEHEGly--Gly considerably, but a hydrophile (UR) had very little effect on HGly-GlyEHEGly--Gly. The results with Na salts indicated that there have very...

  5. Pressure-dependent photopolymerization kinetics in C60 crystals: Observation of exponential dependence on intermolecular distance

    Raman-scattering experiments under hydrostatic pressure have been performed to investigate the pressure dependence of photopolymerization reaction coefficients in C60 crystals. Reaction coefficients of photopolymerization have been obtained from the observed variation of Raman spectra with irradiation time and a rate equation analysis. The dependence on the intermolecular distance clearly shows an exponential-type behavior, which suggests a photoreaction process described by the potential-energy surface with multiple minima

  6. Ferrocene Orientation Determined Intramolecular Interactions Using Energy Decomposition Analysis

    Feng Wang

    2015-11-01

    Full Text Available Two very different quantum mechanically based energy decomposition analyses (EDA schemes are employed to study the dominant energy differences between the eclipsed and staggered ferrocene conformers. One is the extended transition state (ETS based on the Amsterdam Density Functional (ADF package and the other is natural EDA (NEDA based in the General Atomic and Molecular Electronic Structure System (GAMESS package. It reveals that in addition to the model (theory and basis set, the fragmentation channels more significantly affect the interaction energy terms (ΔE between the conformers. It is discovered that such an interaction energy can be absorbed into the pre-partitioned fragment channels so that to affect the interaction energies in a particular conformer of Fc. To avoid this, the present study employs a complete fragment channel—the fragments of ferrocene are individual neutral atoms. It therefore discovers that the major difference between the ferrocene conformers is due to the quantum mechanical Pauli repulsive energy and orbital attractive energy, leading to the eclipsed ferrocene the energy preferred structure. The NEDA scheme further indicates that the sum of attractive (negative polarization (POL and charge transfer (CL energies prefers the eclipsed ferrocene. The repulsive (positive deformation (DEF energy, which is dominated by the cyclopentadienyle (Cp rings, prefers the staggered ferrocene. Again, the cancellation results in a small energy residue in favour of the eclipsed ferrocene, in agreement with the ETS scheme. Further Natural Bond Orbital (NBO analysis indicates that all NBO energies, total Lewis (no Fe and lone pair (LP deletion all prefer the eclipsed Fc conformer. The most significant energy preferring the eclipsed ferrocene without cancellation is the interactions between the donor lone pairs (LP of the Fe atom and the acceptor antibond (BD* NBOs of all C–C and C–H bonds in the ligand, LP(Fe-BD*(C–C & C

  7. High energy interactions and the structure of hadrons

    The history is described of the quark-parton hadron model. The problem is discussed of the universality of the model for the description of hadron interactions at high energies as is the question of ''visibility'' of free quarks. Experiments are described in high energy physics in which Czechoslovak scientists participate. (Z.J.)

  8. Energy Centroids in the presence of random interactions

    Zhao, Y M; Yoshida, N; Ogawa, K; Yoshinaga, N; Kota, V K B

    2005-01-01

    In this paper we study energy centroids such as those with fixed spin and isospin, those with fixed irreducible representations for bosons, in the presence of random two-body and/or three-body interactions. Our results show that regularities of energy centroids of fixed spin states reported in earlier works are more robust than expected.

  9. Meson-nuclear interactions at medium energies

    A brief review of selected directions in medium energy physics is given. Special attention is paid to the propagation of hadrons in the nuclear medium which results in a modification of the free properties of the probe hadron and the nucleus. Such modifications are germane to our understanding of both particles and nuclei. Examples are given involving pion and kaon scattering, absorption and production from nuclei. Some of what has been learned is summarized and some of the hopes for the future are outlined

  10. High-energy interactions at the Pierre Auger Observatory

    ,

    2015-01-01

    The interaction of Ultra High Energy Cosmic Rays (UHECRs) with the atoms of the atmosphere can occur at center-of-mass energies that surpass 100 TeV, while present human-made accelerators go up to 13 TeV. Therefore it provides a unique opportunity to explore hadronic interactions at the highest energies. However, the extraction of hadronic interaction properties from the Extensive Air Showers (EAS) characteristics, which are induced by the UHECR, is intrinsically related to the nature of the primary cosmic ray. As such, to break the degeneracy between hadronic interactions and primary mass composition, a consistent description of the shower observables must be achieved. Such detailed studies have been conducted in the last years at the Pierre Auger Observatory, the largest UHECRs detector in the world. It combines two complementary techniques to measure the EAS characteristics. In this talk, we will present the latest measurements on shower observables, both on the electromagnetic and muonic shower components...

  11. Micromechanical analysis of interaction energy for SMA reinforced composite

    2009-01-01

    The energy of the interaction between the matrix and the inclusions in shape memory alloy (SMA) re- inforced composite is one of the most important and complicated parts in thermodynamic constitutive theory. In this paper, the interaction energy is derived based on the classical theory of micromechanics and the thermodynamic theory. The SMA composite is treated as three phases, namely the austenitic phase, the martensite phase and the matrix phase. The interaction among the three phases is analyzed in a way close to the fact. The present expression is used to calculate the interaction energy of a typical SMA composite with attentions paid to understand of the effects of the matrix material, the fiber ge- ometry, and the fiber/matrix volume ratio. It is shown that the method developed in this paper is credible compared with the references. Some useful conclusions are obtained.

  12. Ghost Dark Energy with Non-Linear Interaction Term

    Ebrahimi, E.

    2016-06-01

    Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.

  13. Energy exchange in systems of particles with nonreciprocal interaction

    Vaulina, O. S.; Lisina, I. I., E-mail: Irina.Lisina@mail.ru; Lisin, E. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    A model is proposed to describe the sources of additional kinetic energy and its redistribution in systems of particles with a nonreciprocal interaction. The proposed model is shown to explain the qualitative specific features of the dust particle dynamics in the sheath region of an RF discharge. Prominence is given to the systems of particles with a quasi-dipole–dipole interaction, which is similar to the interaction induced by the ion focusing effects that occur in experiments on a laboratory dusty plasma, and with the shadow interaction caused by thermophoretic forces and Le Sage’s forces.

  14. Constraining interacting dark energy models with latest cosmological observations

    Xia, Dong-Mei

    2016-01-01

    The local measurement of $H_0$ is in tension with the prediction of $\\Lambda$CDM model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on CMB, BAO, LSS, SNe, $H(z)$ and $H_0$ to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The $H_0$ tension can be moderately alleviated, but not totally released.

  15. Constraining interacting dark energy models with latest cosmological observations

    Xia, Dong-Mei; Wang, Sai

    2016-08-01

    The local measurement of H0 is in tension with the prediction of ΛCDM model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on CMB, BAO, LSS, SNe, H(z) and H0 to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The H0 tension can be moderately alleviated, but not totally released.

  16. Constraining interacting dark energy models with latest cosmological observations

    Xia, Dong-Mei; Wang, Sai

    2016-01-01

    The local measurement of $H_0$ is in tension with the prediction of $\\Lambda$CDM model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on CMB, BAO, LSS, SNe, $H(z)$ and $H_0$ to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The $H_0$ tension can be moderately alleviated, but not tota...

  17. Ultra-high energy neutrino interactions and compositeness

    This paper reviews the arguments leading to the suggestion that muon-rich extensive air showers (EAS) and underground muon bursts associated with point sources in the sky may be caused by neutrinos rather than photons. If quarks and leptons possess a substructure with a characteristic energy scale Λ, neutrinos are capable of interacting with cross sections much larger than predicted by the standard model, once the CMS energy exceeds Λ. The authors give estimates of the energy and angular distributions of hard anomalous neutrino interactions. Experiments are suggested in order to distinguish between photon and neutrino primaries

  18. Interacting Ghost Dark Energy Model: Dynamical System Analysis

    Golchin, Hanif; Ebrahimi, Esmaeil

    2016-01-01

    We study the impacts of interaction between dark matter and dark energy in the context of ghost dark energy model. Using the dynamical system analysis, we obtain the fixed points of the system for different types of interactions while the universe is filled with radiation, matter (including dark matter and luminous matter) and dark energy components. We consider the stability of the fixed points in details for different cases. In all cases there is an unstable matter dominated epoch and a stable late time dark energy dominated phase. However, we find that adding the linear interaction, the evolution of ghost dark energy model does not contain the radiation dominated epoch in the early times which is a necessary point in any cosmic model. This failure resolved when we add the non-linear interaction to the model. We also find an upper bound for the value of the coupling constant of the interaction between dark matter and dark energy as b < 0.57 . This bound is necessary to have a decelerating and unstable ma...

  19. Development of an optimized intermolecular potential for sulfur dioxide.

    Ketko, MaryBeth H; Kamath, Ganesh; Potoff, Jeffrey J

    2011-05-01

    A new force field for sulfur dioxide, capable of predicting accurately the vapor-liquid equilibria, critical properties, vapor pressure, and heats of vaporization is presented. The new force field reproduces the saturated liquid densities, vapor pressures and heats of vaporization to within 0.5, 2, and 2% of experiment, respectively. The predicted critical properties and the normal boiling point are in excellent agreement with experimental results. Pair distribution functions are calculated for the S-S, S-O, and O-O interactions are in close agreement with neutron and X-ray scattering experiments. In addition to the new force field, similar calculations are performed for four SO(2) intermolecular potentials proposed by Sokolic et al. (Sokolic, F.; Guissani, Y. and Guillot, B. J. Phys. Chem. 1985, 89, 3023], which show that these models work reasonably well near the state point where they were originally parametrized, but large errors in the predicted coexistence properties are displayed at higher and lower temperatures. Comparison of the radial distribution functions show the local structure is only weakly affected by the different force field parameters. PMID:21476503

  20. Early dark energy and its interaction with dark matter

    Pu, Bo-Yu; Xu, Xiao-Dong; Bin WANG; Abdalla, Elcio

    2014-01-01

    We study a class of early dark energy models which has substantial amount of dark energy in the early epoch of the universe. We examine the impact of the early dark energy fluctuations on the growth of structure and the CMB power spectrum in the linear approximation. Furthermore we investigate the influence of the interaction between the early dark energy and the dark matter and its effect on the structure growth and CMB. We finally constrain the early dark energy model parameters and the cou...

  1. Breaking parameter degeneracy in interacting dark energy models from observations

    Xu, Xiao-Dong; He, Jian-Hua; Bin WANG

    2011-01-01

    We study the interacting dark energy model with time varying dark energy equation of state. We examine the stability in the perturbation formalism and the degeneracy among the coupling between dark sectors, the time-dependent dark energy equation of state and dark matter abundance in the cosmic microwave background radiation. Further we discuss the possible ways to break such degeneracy by doing global fitting using the latest observational data and we get a tight constraint on the interactio...

  2. Generalized dark energy interactions with multiple fluids

    van de Bruck, Carsten; Mimoso, José P; Nunes, Nelson J

    2016-01-01

    In the search for an explanation for the current acceleration of the Universe, scalar fields are the most simple and useful tools to build models of dark energy. This field, however, must in principle couple with the rest of the world and not necessarily in the same way to different particles or fluids. We provide the most complete dynamical system analysis to date, consisting of a canonical scalar field conformally and disformally coupled to both dust and radiation. We perform a detailed study of the existence and stability conditions of the systems and comment on constraints imposed on the disformal coupling from Big-Bang Nucleosynthesis and given current limits on the variation of the fine-structure constant.

  3. Device interactions in reducing the cost of tidal stream energy

    Highlights: • Numerical modelling is used to estimate the levelised cost of tidal stream energy. • As a case study, a model of Lynmouth (UK) is implemented and successfully validated. • The resolution of the model allows the demarcation of individual devices on the model grid. • Device interactions reduce the available tidal resource and the cost increases significantly. - Abstract: The levelised cost of energy takes into account the lifetime generated energy and the costs associated with a project. The objective of this work is to investigate the effects of device interactions on the energy output and, therefore, on the levelised cost of energy of a tidal stream project, by means of numerical modelling. For this purpose, a case study is considered: Lynmouth (North Devon, UK), an area in the Bristol Channel in which the first tidal stream turbine was installed − a testimony of its potential as a tidal energy site. A state-of-the-art hydrodynamics model is implemented on a high-resolution computational grid, which allows the demarcation of the individual devices. The modification to the energy output resulting from interaction between turbines within the tidal farm is thus resolved for each individual turbine. The results indicate that significant changes in the levelised cost of energy values, of up to £0.221 kW h−1, occur due to the aforementioned modifications, which should not be disregarded if the cost of tidal stream energy is to be minimised

  4. Interacting Dark Matter and Dark Energy

    Farrar, G R; Farrar, Glennys R.

    2004-01-01

    We discuss models for the cosmological dark sector in which the energy density of a scalar field approximates Einstein's cosmological constant and the scalar field value determines the dark matter particle mass by a Yukawa coupling. A model with one dark matter family can be adjusted so the observational constraints on the cosmological parameters are close to but different from what is predicted by the Lambda CDM model. This may be a useful aid to judging how tightly the cosmological parameters are constrained by the new generation of cosmological tests that depend on the theory of structure formation. In a model with two families of dark matter particles the scalar field may be locked to near zero mass for one family. This can suppress the long-range scalar force in the dark sector and eliminate evolution of the effective cosmological constant and the mass of the nonrelativistic dark matter particles, making the model close to Lambda CDM, until the particle number density becomes low enough to allow the scal...

  5. Distinguishing interactions in 3-form dark energy models

    Morais, João; Kumar, K Sravan; Marto, João; Tavakoli, Yaser

    2016-01-01

    In this paper we consider 3-form dark energy (DE) models with interactions in the dark sector. We aim to distinguish the phenomenological interactions that are defined through the dark matter (DM) and the DE energy densities. We do our analysis mainly in two stages. In the first stage, we identify the non-interacting 3-form DE model which generically leads to an abrupt late-time cosmological event which is known as the little sibling of the Big Rip (LSBR). We classify the interactions which can possibly avoid this late-time abrupt event. We also study the parameter space of the model that is consistent with the interaction between DM and DE energy densities at present as indicated by recent studies based on BAO and SDSS data. In the later stage, we observationally distinguish those interactions using the statefinder hierarchy parameters $\\{ S_{3}^{(1)}\\,,\\, S_{4}^{(1)}\\} \\,,\\,\\{ S_{3}^{(1)}\\,,\\, S_{5}^{(1)}\\} .$ We also compute the growth factor parameter $\\epsilon(z)$ for the various interactions we consider...

  6. Probing intermolecular potentials with dynamic and kinetic observables

    The connection between intermolecular potentials and a variety of dynamic and kinetic observables is studied through the use of functional sensitivity analysis. Equations were derived for the functional derivatives of inelastic cross sections, rate constants, energy level populations, and transport and relaxation cross sections with respect to a variation in the potential surface. Five different studies were performed. Three of these studies analyzed the relationship between a rigid-rotor potential and three different types of observables: inelastic cross sections, rate constants and rotational energy level populations. The He-H2, He-HT and He-HF systems were all examined in this manner. One study looked at the effect of changes in the He-H2 potential energy surface on a variety of transport and relaxation cross sections. This study was again performed using the rigid rotor approximation and had three different levels of observables: microscopic, thermally averaged and effective cross sections. Finally, a study of inelastic scattering was performed on the He-H2 system in which the three-dimensional potential was used. Certain general features and trends were noted throughout this work. The microscopic observables, i.e. collision cross sections and transport and relaxation cross sections, generally showed highly oscillatory sensitivity to the potential components in the asymptotic regime, with one or more dominant peaks in either the repulsive or well region. The thermally averaged cross sections and rate constants exhibited noticeably fewer oscillations but retained the dominant sensitivity structure. The bulk observables, i.e. energy level populations and effective cross sections, showed varying amounts of information loss

  7. An interacting dark energy model with nonminimal derivative coupling

    Nozari, Kourosh; Behrouz, Noushin

    2016-09-01

    We study cosmological dynamics of an extended gravitational theory that gravity is coupled non-minimally with derivatives of a dark energy component and there is also a phenomenological interaction between the dark energy and dark matter. Depending on the direction of energy flow between the dark sectors, the phenomenological interaction gets two different signs. We show that this feature affects the existence of attractor solution, the rate of growth of perturbations and stability of the solutions. By considering an exponential potential as a self-interaction potential of the scalar field, we obtain accelerated scaling solutions that are attractors and have the potential to alleviate the coincidence problem. While in the absence of the nonminimal derivative coupling there is no attractor solution for phantom field when energy transfers from dark matter to dark energy, we show an attractor solution exists if one considers an explicit nonminimal derivative coupling for phantom field in this case of energy transfer. We treat the cosmological perturbations in this setup with details to show that with phenomenological interaction, perturbations can grow faster than the minimal case.

  8. Protein-Protein Interaction Analysis by Docking

    Stephan Ederer; Florian Fink; Wolfram Gronwald

    2009-01-01

    Based on a protein-protein docking approach we have developed a procedure to verify or falsify protein-protein interactions that were proposed by other methods such as yeast-2-hybrid assays. Our method currently utilizes intermolecular energies but can be expanded to incorporate additional terms such as amino acid based pair-potentials. We show some early results that demonstrate the general applicability of our approach.

  9. Hadron diffractive scattering at ultrahigh energies and coulomb interaction

    Anisovich, V V

    2016-01-01

    We study the interplay of hadronic and Coulomb interactions for $pp$ scattering at LHC energies on the basis of the previous determination of the real part of the amplitude [{\\it V.V. Anisovich, V.A. Nikonov, J. Nyiri}, Int. J. Mod. Phys. A{\\bf 30}, 1550188 (2015)]. The interference of hadron and Coulomb interactions is discussed in terms of the $K$-matrix function technique. Supposing the black disk mode for the asymptotic interaction of hadrons, we calculate interference effects for the energies right up to $\\sqrt{s}= 10^6$ TeV. It turns out that the real part of the amplitude is concentrated in the impact parameter space at the border of the black disk that results in a growth of interplay effects with the energy increase.

  10. New constraints on interacting dark energy from cosmic chronometers

    Nunes, Rafael C; Saridakis, Emmanuel N

    2016-01-01

    We use the latest compilation of observational Hubble parameter measurements estimated with the differential evolution of cosmic chronometers, in combination with the local value of the Hubble constant recently measured with 2.4% precision, to constrain the cosmological scenario where dark energy interacts directly with the dark matter sector. To diminish the degeneracy between the parameters we additionally consider standard probes, such as Supernovae Type Ia from joint light curves (JLA) sample and Baryon Acoustic Oscillation distance measurements (BAO). Our analysis shows that the direct interaction between dark energy and dark matter is mildly favored. This result is in qualitative agreement with the results of other observational works, and the fact that it has been extracted using novel observational data acts as an additional argument in favor of interacting dark energy.

  11. Exacerbating the cosmological constant problem with interacting dark energy

    Marsh, M. C. David

    2016-01-01

    Future cosmological surveys will probe the expansion history of the universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e. the cosmological constant problem (c.c.p.), but can make it spectacularly worse. We show that this is the case for 'interacting dark energy' models in which the masses of the dark matter states depend on the dark energy sector. If realised in nature, these models have far-reaching implic...

  12. Interactions of Policies for Renewable Energy and Climate

    NONE

    2011-07-01

    This paper explores the relationships between climate policy and renewable energy policy instruments. It shows that, even where CO2 emissions are duly priced, specific incentives for supporting the early deployment of renewable energy technologies are justified by the steep learning curves of nascent technologies. This early investment reduces costs in the longer term and makes renewable energy affordable when it needs to be deployed on a very large scale to fully contribute to climate change mitigation and energy security. The paper also reveals other noteworthy interaction effects of climate policy and renewable policy instruments on the wholesale electricity prices in deregulated markets, which open new areas for future research.

  13. Modelling transient energy release from molten fuel coolant interaction debris

    A simple model of transient energy release in a Molten Fuel Coolant Interaction is presented. A distributed heat transfer model is used to examine the effect of heat transfer coefficient, time available for rapid energy heat transfer and particle size on transient energy release. The debris is assumed to have an Upper Limit Lognormal distribution. Model predictions are compared with results from the SUW series of experiments which used thermite-generated uranium dioxide molybdenum melts released below the surface of a pool of water. Uncertainties in the physical principles involved in the calculation of energy transfer rates are discussed. (author)

  14. Quintessence interacting dark energy from induced matter theory of gravity

    Reyes, L. M.; Aguilar, Jose Edgar Madriz

    2009-01-01

    In the context of the induced matter theory of gravity, we investigate the possibility of deriving a 4D quintessential scenario where an interaction between dark energy and dark matter is allowed, and the dark energy component is modeled by a minimally coupled scalar field. Regarding the Ponce de Leon metric, we found that it is possible to obtain such scenario on which the energy densities of dark matter and dark energy, are both depending of the fifth extra coordinate. We obtain that the 4D...

  15. Wormhole solutions supported by interacting dark matter and dark energy

    Folomeev, Vladimir; Dzhunushaliev, Vladimir

    2013-01-01

    We show that the presence of a nonminimal interaction between dark matter and dark energy may lead to a violation of the null energy condition and to the formation of a configuration with nontrivial topology (a wormhole). In this it is assumed that both dark matter and dark energy satisfy the null energy condition, a violation of which takes place only in the inner high-density regions of the configuration. This is achieved by assuming that, in a high-density environment, a nonminimal couplin...

  16. From hard to soft high-energy pp interactions

    Martin, A D; Khoze, V A

    2011-01-01

    We discuss how the main features of high-energy `soft' and `semihard' pp collisions may be described in terms of parton cascades and multi-Pomeron exchange. The interaction between Pomerons produces an effective infrared cutoff, k_sat, by the absorption of low k_t partons. This provides the possibility of extending the parton approach, used for `hard' processes, to also describe high-energy soft and semihard interactions. We outline a model which incorporates these features. Finally, we discuss what the most recent LHC measurements in the soft domain imply for the model.

  17. Partonic description of soft high energy pp interactions

    Martin, A D; Ryskin, M G

    2012-01-01

    We discuss how the main features of high-energy `soft' and `semihard' pp collisions may be described in terms of parton cascades and multi-Pomeron exchange. The interaction between Pomerons produces an effective infrared cutoff, k_sat, by the absorption of low k_t partons. This provides the possibility of extending the parton approach, used for `hard' processes, to also describe high-energy soft and semihard interactions. We outline a model which incorporates these features. Finally, we discuss what the most recent LHC measurements in the soft domain imply for the model.

  18. Modelling low energy electron interactions for biomedical uses of radiation

    Current radiation based medical applications in the field of radiotherapy, radio-diagnostic and radiation protection require modelling single particle interactions at the molecular level. Due to their relevance in radiation damage to biological systems, special attention should be paid to include the effect of low energy secondary electrons. In this study we present a single track simulation procedure for photons and electrons which is based on reliable experimental and theoretical cross section data and the energy loss distribution functions derived from our experiments. The effect of including secondary electron interactions in this model will be discussed.

  19. Transition of the dark energy equation of state in an interacting holographic dark energy model

    A model of holographic dark energy with an interaction with matter fields has been investigated. Choosing the future event horizon as an IR cutoff, we have shown that the ratio of energy densities can vary with time. With the interaction between the two different constituents of the universe, we observed the evolution of the universe, from early deceleration to late time acceleration. In addition, we have found that such an interacting dark energy model can accommodate a transition of the dark energy from a normal state where wD>-1 to wD<-1 phantom regimes. Implications of interacting dark energy model for the observation of dark energy transition has been discussed

  20. Comparison of interionic/intermolecular vibrational dynamics between ionic liquids and concentrated electrolyte solutions

    Fujisawa, Tomotsumi; Nishikawa, Keiko; Shirota, Hideaki

    2009-12-01

    In this study, we have compared the interionic/intermolecular vibrational dynamics of ionic liquids (ILs) and concentrated electrolyte solutions measured by femtosecond optically heterodyne-detected Raman-induced Kerr effect spectroscopy. A typical anion in ILs, bis(trifluoromethanesulfonyl)amide ([NTf2]-), has been chosen as the anion for the sample ILs and concentrated electrolyte solutions. ILs used in this study are 1-butyl-3-methylimidazolium, 1-butylpyridinium, N-butyl-N,N,N-triethylammonium, and 1-butyl-1-methylpyrrolidinium with [NTf2]-. Li[NTf2] solutions (˜3.3M) of water, methanol, propylene carbonate, and poly(ethylene glycol) have been selected as control samples. Kerr transients of the ILs and electrolyte solutions show intra- and interionic/intermolecular vibrational dynamics followed by slow picosecond overdamped relaxation. Fourier transform Kerr spectra have shown a difference in the relative intensities of intraionic vibrational bands of [NTf2]- (280-350 cm-1) between the ILs and electrolyte solutions. The origin of the difference is attributed to the change in the conformational equilibrium between cisoid and transoid forms of [NTf2]-, which is caused by a favorable stabilization of dipolar cisoid form due to Li+ and dipolar solvent molecules in the electrolyte solutions. Low-frequency Kerr spectra (0-200 cm-1) exhibit unique features with the variation of cation and solvent species. The aromatic ILs have a prominent high-frequency librational motion at about 100 cm-1 in contrast to the case for the nonaromatic ones. The common structure of the spectra observed at about 20 cm-1 likely comes from an interionic motion of [NTf2]-. The nonaromatic ILs allow a fair comparison with the electrolyte solutions of propylene carbonate and poly(ethylene glycol) because of the structural similarities. The comparison based on the first moment of the interionic/intermolecular vibrational spectrum suggests the stronger interionic/intermolecular interaction in

  1. Temperature-dependent intermolecular force measurement of poly(N-isopropylacrylamide) grafted surface with protein.

    Cho, Eun Chul; Kim, Yong Deuk; Cho, Kilwon

    2005-06-15

    We have investigated the temperature dependence of the intermolecular force between poly(N-isopropylacrylamide) (PNiPAM) grafted surface and bovine serum albumin (BSA) in phosphate buffer (pH 7.4) using atomic force microscopy at the nanonewton scale. These observations show that the interaction force is nearly zero below the phase transition temperature of PNiPAM and that it increases steeply during the phase transition. Since the PNiPAM chains are grafted onto the aminosilane (gamma-aminopropyltriethoxysilane)-treated silicon wafer, we measured the force-distance curve of BSA-immobilized tips for the bare and the aminosilane-treated silicon wafer. These surfaces show no temperature dependence and their values are different from those of the PNiPAM-grafted surfaces at 30 degrees C. The results indicate that the measured adhesion force is between the PNiPAM-grafted surface and the BSA-immobilized tip. Our studies on the intermolecular force between other surfaces (CH(3)- and COOH-terminated self-assembled monolayers) and the BSA-immobilized tip indicate that the variation in the intermolecular force between the PNiPAM surface and BSA with temperature can be attributed to the changes in the properties of the PNiPAM chains. From consideration of the PNiPAM phase transition mechanism, it is speculated that the intermolecular force between the PNiPAM-grafted surface and BSA would be affected by changes in the arrangement of the bound water molecules around the PNiPAM chain and by changes in the conformation (i.e., in the chain mobility) of the PNiPAM chain during the phase transition. PMID:15897061

  2. Interactions between renewable energy policy and renewable energy industrial policy: A critical analysis of China's policy approach to renewable energies

    This paper analyzes China's policy approach to renewable energies and assesses how effectively China has met the ideal of appropriate interactions between renewable energy policy and renewable energy industrial policy. First we briefly discuss the interactions between these two policies. Then we outline China's key renewable energy and renewable industrial policies and find that China's government has well recognized the need for this policy interaction. After that, we study the achievements and problems in China's wind and solar PV sector during 2005–2012 and argue that China's policy approach to renewable energies has placed priority first on developing a renewable energy manufacturing industry and only second on renewable energy itself, and it has not effectively met the ideal of appropriate interactions between renewable energy policy and renewable energy industrial policy. Lastly, we make an in-depth analysis of the three ideas underlying this policy approach, that is, the green development idea, the low-carbon leadership idea and indigenous innovation idea. We conclude that Chinas' policy approach to renewable energies needs to enhance the interactions between renewable energy policy and renewable energy industrial policy. The paper contributes to a deeper understanding of China's policy strategy toward renewable energies. -- Highlights: •Interactions between renewable energy policy and renewable energy industrial policy are discussed. •China's key renewable energy and renewable energy industrial policies are outlined. •Two empirical cases illustrate China's policy approach to renewable energies. •We argue that China needs to enhance the interactions between the two policies. •Three ideas underlie China's policy approach to renewable energies

  3. Parametrized post-Friedmannian framework for interacting dark energy theories

    Skordis, Constantinos; Pourtsidou, Alkistis; Copeland, E.J.

    2015-01-01

    We present the most general parametrisation of models of dark energy in the form of a scalar field which is explicitly coupled to dark matter. We follow and extend the Parameterized Post-Friedmannian approach, previously applied to modified gravity theories, in order to include interacting dark energy. We demonstrate its use through a number of worked examples and show how the initially large parameter space of free functions can be significantly reduced and constrained to include only a few ...

  4. Reconstruction of interaction rate in Holographic dark energy

    Mukherjee, Ankan

    2016-01-01

    The present work is based on the holographic dark energy model with Hubble horizon as the infrared cut-off. The interaction rate between dark energy and dark matter has been reconstructed for two different parameterizations of the deceleration parameter. Observational constraints on the model parameters have been obtained by maximum likelihood analysis using the observational Hubble parameter data (OHD), type Ia supernova data (SNe), baryon acoustic oscillation data (BAO) and the distance pri...

  5. Anti-Ω dominance in pp interactions at intermediate energies

    The Ω+/Ω- ratio originating from string decays is predicted to be >1 in pp interaction at SPS energies. The anti-Ω dominance increases with decreasing beam energy. This surprising behaviour is caused by the combinatorics of quark-antiquark production in small, finite strings. Since this behaviour is not found in a statistical description of hadron production in pp collisions, it may serve as a potent observable to probe the hadronization mechanism in such collisions. (author)

  6. Simulating two-dimensional infrared-Raman and Raman spectroscopies for intermolecular and intramolecular modes of liquid water.

    Ito, Hironobu; Tanimura, Yoshitaka

    2016-02-21

    Full classical molecular dynamics (MD) simulations of two-dimensional (2D) infrared-Raman and 2D Raman spectroscopies of liquid water were carried out to elucidate a mode-mode coupling mechanism using a polarizable water model for intermolecular and intramolecular vibrational spectroscopy (POLI2VS). This model is capable of describing both infrared and Raman spectra. Second-order response functions, which consist of one molecular polarizability and two molecular dipole moments for 2D IR-Raman and three molecular polarizabilities for 2D Raman spectroscopies, were calculated using an equilibrium-non-equilibrium hybrid MD approach. The obtained signals were analyzed using a multi-mode Brownian oscillator (BO) model with nonlinear system-bath interactions representing the intramolecular OH stretching, intramolecular HOH bending, hydrogen bonded (HB)-intermolecular librational motion and HB-intermolecular vibrational (translational) motion of liquid water. This model was applied through use of hierarchal Fokker-Planck equations. The qualitative features of the peak profiles in the 2D spectra obtained from the MD simulations are accurately reproduced with the BO model. This indicates that this model captures the essential features of the intermolecular and intramolecular motion. We elucidate the mechanisms governing the 2D signal profiles involving anharmonic mode-mode coupling, the nonlinearities of the polarizability and dipole moment, and the vibrational dephasing processes of liquid water even in the case that the 2D spectral peaks obtained from the MD simulation overlap or are unclear. The mode coupling peaks caused by electrical anharmonic coupling (EAHC) and mechanical anharmonic coupling (MAHC) are observed in all of the 2D spectra. We find that the strength of the MAHC between the OH-stretching and HB-intermolecular vibrational modes is comparable to that between the OH-stretching and HOH bending modes. Moreover, we find that this OH-stretching and HB-intermolecular

  7. Vibrational Spectra of β″-Type BEDT-TTF Salts: Relationship between Conducting Property, Time-Averaged Site Charge and Inter-Molecular Distance

    Takashi Yamamoto

    2012-07-01

    Full Text Available The relationship between the conducting behavior and the degree of charge fluctuation in the β″-type BEDT-TTF salts is reviewed from the standpoints of vibrational spectroscopy and crystal structure. A group of β″-type ET salts demonstrates the best model compounds for achieving the above relationship because the two-dimensional structure is simple and great diversity in conducting behavior is realized under ambient pressure. After describing the requirement for the model compound, the methodology for analyzing the results of the vibrational spectra is presented. Vibrational spectroscopy provides the time-averaged molecular charge, the charge distribution in the two-dimensional layer, and the inter-molecular interactions, etc. The experimental results applied to 2/3-filled and 3/4-filled β″-type ET salts are reported. These experimental results suggest that the conducting property, the difference in the time-averaged molecular charges between the ionic and neutral-like sites, the alternation in the inter-molecular distances and the energy levels in the charge distributions are relevant to one another. The difference in the time-averaged molecular charges, ∆ρ, is a useful criterion for indicating conducting behavior. All superconductors presented in this review are characterized as small but finite ∆ρ.

  8. A single model of interacting dark energy: generalized phantom energy or generalized Chaplygin gas

    Jamil, Mubasher

    2009-01-01

    I present a model in which dark energy interacts with matter. The former is represented by a variable equation of state. It is shown that the phantom crossing takes place at zero redshift, moreover, stable scaling solution of the Friedmann equations is obtained. I show that dark energy is most probably be either generalized phantom energy or the generalized Chaplygin gas.

  9. MINT - A Simple Model for Low Energy Hadronic Interactions

    Schmelling, M

    2005-01-01

    The bulk of inelastic hadronic interactions is characterized by longitudinal phase space and exponentially damped transverse momentum spectra. A simple model with only a single adjustable parameter is presented, making it a very convenient tool for systematic studies, which gives a surprisingly good description of pA-collisions at 920 GeV beam energy.

  10. Dimensionality of Local Minimizers of the Interaction Energy

    Balagué, D.

    2013-05-22

    In this work we consider local minimizers (in the topology of transport distances) of the interaction energy associated with a repulsive-attractive potential. We show how the dimensionality of the support of local minimizers is related to the repulsive strength of the potential at the origin. © 2013 Springer-Verlag Berlin Heidelberg.

  11. Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence

    Domaradzki, J. Andrzej; Rogallo, Robert S.

    1990-01-01

    Detailed computations were made of energy transfer among the scales of motion in incompressible turbulent fields at low Reynolds numbers, generated by direct numerical simulations. It was observed that, although the transfer resulted from triad interactions that were nonlocal in k space, the energy always transferred locally. The energy transfer calculated from the eddy-damped quasi-normal Markovian (EDQNM) theory of turbulence at low Reynolds numbers is in excellent agreement with the results of the numerical simulations. At high Reynolds numbers, the EDQNM theory predicts the same transfer mechanism in the inertial range that is observed at low Reynolds numbers.

  12. Interactions of quarks and gluons with nuclei at intermediate energies

    Mueller, A.H. [Columbia Univ., New York, NY (United States)

    1994-04-01

    Some processes involving the interaction of medium energy quarks and gluons with nuclear matter are described. Possible mechanisms for the A-dependence of the energy loss of leading protons produced in proton-nucleus collisions are given, and an experiment which may help to distinguish these mechanisms is described. A possible color transparency experiment at CEBAF is described. Experiments to measure energy loss of quarks in nuclear matter and the formation time of hadrons are discussed along with the possibilities of measuring {sigma}{sub J}/{psi} and {sigma}{sub {psi}{prime}} at CEBAF.

  13. Energies and pressures in viruses: contribution of nonspecific electrostatic interactions

    Šiber, Antonio; Podgornik, Rudolf

    2011-01-01

    We summarize some aspects of electrostatic interactions in the context of viruses. A simplified but, within well defined limitations, reliable approach is used to derive expressions for electrostatic energies and the corresponding osmotic pressures in single-stranded RNA viruses and double-stranded DNA bacteriophages. The two types of viruses differ crucially in the spatial distribution of their genome charge which leads to essential differences in their free energies, depending on the capsid size and total charge in a quite different fashion. Differences in the free energies are trailed by the corresponding characteristics and variations in the osmotic pressure between the inside of the virus and the external bathing solution.

  14. Interacting Generalized Ghost Dark Energy in Non-isotropic Background

    Barati, F.

    2016-04-01

    In this work, the generalized Quantum Chromodynamics (QCD) ghost model of dark energy in the framework of Einstein gravity is investigated. At first, the non-interacting generalized ghost dark energy in a Bianchi type I (BI) background is discussed. Then the equation of state parameter, ω D = p D / ρ D , the deceleration parameter, and the evolution equation of the generalized ghost dark energy are obtained. It was found that, in this case, ω D cannot cross the phantom line (ω D >-1) and eventually the universe approaches a de-Sitter phase of expansion (ω D →-1). Then, this investigation was extended to the interacting ghost dark energy in a non-isotropic universe. It was found that the equation of state parameter of the interacting generalized ghost dark energy can cross the phantom line (ω D Einstein cosmology, another density parameter, Ω σ , is expected by the anisotropy. The anisotropy of the universe decreases and the universe transits to an isotropic flat FRW universe accommodating the present acceleration.

  15. Interaction of two walkers: Wave-mediated energy and force

    Borghesi, Christian; Labousse, Matthieu; Eddi, Antonin; Fort, Emmanuel; Couder, Yves

    2014-01-01

    A bouncing droplet, self-propelled by its interaction with the waves it generates, forms a classical wave-particle association called a "walker." Previous works have demonstrated that the dynamics of a single walker is driven by its global surface wave field that retains information on its past trajectory. Here, we investigate the energy stored in this wave field for two coupled walkers and how it conveys an interaction between them. For this purpose, we characterize experimentally the "promenade modes" where two walkers are bound, and propagate together. Their possible binding distances take discrete values, and the velocity of the pair depends on their mutual binding. The mean parallel motion can be either rectilinear or oscillating. The experimental results are recovered analytically with a simple theoretical framework. A relation between the kinetic energy of the droplets and the total energy of the standing waves is established.

  16. Reconstruction of the dark matter-vacuum energy interaction

    Wang, Yuting; Wands, David; Pogosian, Levon; Crittenden, Robert G

    2015-01-01

    An interaction between the vacuum energy and dark matter is an intriguing possibility which may offer a way of solving the cosmological constant problem. Adopting a general prescription for momentum exchange between the two dark components, we reconstruct the temporal evolution of the coupling strength between dark matter and vacuum energy, $\\alpha(a)$ in a non-parametric Bayesian approach using the combined observational datasets from the cosmic microwave background, supernovae and large scale structure. An evolving interaction between the vacuum energy and dark matter removes some of the tensions between different types of datasets, and is favoured at $\\sim95\\%$ CL if we include the baryon acoustic oscillations measurements of the BOSS Lyman-$\\alpha$ forest sample.

  17. New constraints on interacting dark energy from cosmic chronometers

    Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N.

    2016-07-01

    We use the latest compilation of observational Hubble parameter measurements estimated with the differential evolution of cosmic chronometers, in combination with the local value of the Hubble constant recently measured with 2.4% precision, to constrain the cosmological scenario where dark energy interacts directly with the dark matter sector. To diminish the degeneracy between the parameters we additionally consider standard probes, such as supernovae type Ia from joint light-curve analysis samples, baryon acoustic oscillation distance measurements (BAO), and cosmic microwave background data from Planck 2015 estimations. Our analysis shows that the direct interaction between dark energy and dark matter is mildly favored, while the dark energy equation-of-state parameter is w <-1 at a 3 σ confidence level.

  18. Holographic dark energy linearly interacting with dark matter

    Chimento, Luis P; Richarte, Martín G

    2012-01-01

    We investigate a spatially flat Friedmann-Robertson-Walker (FRW) cosmological model with cold dark matter coupled to a modified holographic Ricci dark energy through a general interaction term linear in the energy densities of dark matter and dark energy, the total energy density and its derivative. Using the statistical method of $\\chi^2$-function for the Hubble data, we obtain $H_0=73.6$km/sMpc, $\\omega_s=-0.842$ for the asymptotic equation of state and $ z_{acc}= 0.89 $. The estimated values of $\\Omega_{c0}$ which fulfill the current observational bounds corresponds to a dark energy density varying in the range $0.25R < \\ro_x < 0.27R$.

  19. Intermolecular Casimir-Polder forces in water and near surfaces

    Thiyam, Priyadarshini; Persson, Clas; Sernelius, Bo E.; Parsons, Drew F.; Malthe-Sørenssen, Anders; Boström, Mathias

    2014-09-01

    The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO2 and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface.

  20. Cosmography of Interacting Generalized QCD Ghost Dark Energy

    Malekjani, Mohammad

    2013-12-01

    Exploring the accelerated expansion of the universe, we investigate the generalized ghost dark energy (GGDE) model from the statefinder diagnostic analysis in a flat Friedmann-Robertson-Walker universe. First, we calculate the cosmological evolution and statefinder trajectories for noninteracting case and then extend this work by considering the interaction between dark matter and dark energy components. We show that in the noninteracting case the phantom line cannot be crossed and also the evolutionary trajectories of model in s - r plane cannot be discriminated. It has been shown that the present location of model in s - r plane would be close to observational value for negative values of the model parameter. In the presence of interaction between dark matter and dark energy, the phantom regime is achieved, the accelerated phase of expansion occurs sooner compared with the noninteracting case. The GGDE model is also discussed from the viewpoint of perturbation theory by calculating the adiabatic sound speed of the model. Finally, unlike the noninteracting case, the evolutionary trajectories in s - r plane can be discriminated in the interacting model. Like the noninteracting model, in the interacting case the present location of GGDE model is closer to observational value for negative values of the model parameter.

  1. Exacerbating the cosmological constant problem with interacting dark energy

    Marsh, M C David

    2016-01-01

    Future cosmological surveys will probe the expansion history of the universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e. the cosmological constant problem (c.c.p.), but can make it spectacularly worse. We show that this is the case for 'interacting dark energy' models in which the masses of the dark matter states depend on the dark energy sector. If realised in nature, these models have far-reaching implications for proposed solutions to the c.c.p. that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, $N_{\\rm vac} \\sim {\\cal O}(10^{272,000})$, is far too small to realise certain simple models of interacting dark energy \\emph{and} solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it pos...

  2. Sustainable Interactions: Studies in the Design of Energy Awareness Artefacts

    Broms, Loove

    2011-07-01

    This thesis presents a collection of experimental designs that approach the problem of growing electricity consumption in homes. From the perspective of design, the intention has been to critically explore the design space of energy awareness artefacts to reinstate awareness of energy use in everyday practice. The design experiments were used as vehicles for thinking about the relationship between physical form, interaction, and social practice. The rationale behind the concepts was based on a small-scale ethnography, situated interviews, and design experience. Moreover, the thesis compares designer intention and actual user experiences of a prototype that was installed in nine homes in a residential area in Stockholm for three months. This was done in order to elicit tacit knowledge about how the concept was used in real-world domestic settings, to challenge everyday routines, and to enable both users and designers to critically reflect on artefacts and practices. From a design perspective, contributions include design approaches to communicating energy use: visualizations for showing relationships between behaviour and electricity consumption, shapes and forms to direct action, means for turning restrictions caused by energy conservation into central parts of the product experience, and ways to promote sustainable behaviour with positive driving forces based on user lifestyles. The general results indicate that inclusion is of great importance when designing energy awareness artefacts; all members of the household should be able to access, interact with, and reflect on their energy use. Therefore, design-related aspects such as placement and visibility, as well as how the artefact might affect the social interactions in the home, become central. Additionally, the thesis argues that these types of artefacts can potentially create awareness accompanied by negative results such as stress. A challenge for the designer is to create artefacts that communicate and

  3. Equilibrium surface tension and the interaction energy of DMSO with tert-butyl alcohol or iso-amyl alcohol at various temperatures

    Highlights: • Surface tension of non-ideal binary systems of alcohol/DMSO determined. • The surface tension data of binary mixtures were correlated with five equations. • The interaction energy values were calculated by using LWW model. • The U12 value shows different behavior for two systems with increasing temperature. - Abstract: Surface tension of binary mixtures of tert-butyl alcohol (TBA) and iso-amyl alcohol (IAA) with DMSO (dimethyl sulfoxide) were measured over the entire concentration range at pressure of 82.5 kPa at temperatures between (298.15 and 328.15) K. Correlating the surface tension and surface tension deviation of the above mentioned binary systems was performed with empirical and thermodynamic based models. The average relative error obtained from the comparison of experimental and calculated surface tension values for the two binary systems with five models at various temperatures is less than 2%. The effect of temperature on the interaction energy values in binary mixtures has been used to obtain information about solute structural effects on DMSO. Also, the experimental data were used to evaluate the nature and type of intermolecular interactions in binary mixtures

  4. New holographic dark energy model with non-linear interaction

    Oliveros, A

    2014-01-01

    In this paper the cosmological evolution of a holographic dark energy model with a non-linear interaction between the dark energy and dark matter components in a FRW type flat universe is analysed. In this context, the deceleration parameter $q$ and the equation state $w_{\\Lambda}$ are obtained. We found that, as the square of the speed of sound remains positive, the model is stable under perturbations since early times; it also shows that the evolution of the matter and dark energy densities are of the same order for a long period of time, avoiding the so--called coincidence problem. We have also made the correspondence of the model with the dark energy densities and pressures for the quintessence and tachyon fields. From this correspondence we have reconstructed the potential of scalar fields and their dynamics.

  5. Finite-size Energy of Non-interacting Fermi Gases

    Gebert, Martin, E-mail: gebert@math.lmu.de [ETH Zürich , Theoretische Physik (Switzerland)

    2015-12-15

    We study the asymptotics of the difference of the ground-state energies of two non-interacting N-particle Fermi gases in a finite volume of length L in the thermodynamic limit up to order 1/L. We are particularly interested in subdominant terms proportional to 1/L, called finite-size energy. In the nineties (Affleck, Nuc. Phys. B 58, 35–41 1997; Zagoskin and Affleck, J. Phys. A 30, 5743–5765 1997) claimed that the finite-size energy is related to the decay exponent occurring in Anderson’s orthogonality. We prove that the finite-size energy depends on the details of the thermodynamic limit and is therefore non-universal. Typically, it includes an additional linear term in the scattering phase shift.

  6. Accurate nuclear radii and binding energies from a chiral interaction

    Ekstrom, A; Wendt, K A; Hagen, G; Papenbrock, T; Carlsson, B D; Forssen, C; Hjorth-Jensen, M; Navratil, P; Nazarewicz, W

    2015-01-01

    The accurate reproduction of nuclear radii and binding energies is a long-standing challenge in nuclear theory. To address this problem two-nucleon and three-nucleon forces from chiral effective field theory are optimized simultaneously to low-energy nucleon-nucleon scattering data, as well as binding energies and radii of few-nucleon systems and selected isotopes of carbon and oxygen. Coupled-cluster calculations based on this interaction, named NNLOsat, yield accurate binding energies and radii of nuclei up to 40Ca, and are consistent with the empirical saturation point of symmetric nuclear matter. In addition, the low-lying collective 3- states in 16O and 40Ca are described accurately, while spectra for selected p- and sd-shell nuclei are in reasonable agreement with experiment.

  7. Quintessence interacting dark energy from induced matter theory of gravity

    Reyes, L M

    2009-01-01

    In the context of the induced matter theory of gravity, we investigate the possibility of deriving a 4D quintessential scenario where an interaction between dark energy and dark matter is allowed, and the dark energy component is modeled by a minimally coupled scalar field. Regarding the Ponce de Leon metric, we found that it is possible to obtain such scenario on which the energy densities of dark matter and dark energy, are both depending of the fifth extra coordinate. We obtain that the 4D induced scalar potential for the quintessence scalar field, has the same algebraic form to the one found by Zimdahl and Pavon in the context of usual 4D cosmology.

  8. Reconstruction of interaction rate in Holographic dark energy

    Mukherjee, Ankan

    2016-01-01

    The present work is based on the holographic dark energy model with Hubble horizon as the infrared cut-off. The interaction rate between dark energy and dark matter has been reconstructed for two different parameterizations of the deceleration parameter. Observational constraints on the model parameters have been obtained by maximum likelihood analysis using the observational Hubble parameter data (OHD), type Ia supernova data (SNe), baryon acoustic oscillation data (BAO) and the distance prior of cosmic microwave background (CMB) namely the CMB shift parameter data (CMBShift). The nature of the dark energy equation of state parameter has also been studied for the present models. The dark energy equation of state shows a phantom nature at present. Different information criteria and the Bayesian evidence, which have been invoked in the context of model selection, show that the these two models are at close proximity of each other.

  9. Regional Analysis of Energy, Water, Land and Climate Interactions

    Tidwell, V. C.; Averyt, K.; Harriss, R. C.; Hibbard, K. A.; Newmark, R. L.; Rose, S. K.; Shevliakova, E.; Wilson, T.

    2014-12-01

    Energy, water, and land systems interact in many ways and are impacted by management and climate change. These systems and their interactions often differ in significant ways from region-to-region. To explore the coupled energy-water-land system and its relation to climate change and management a simple conceptual model of demand, endowment and technology (DET) is proposed. A consistent and comparable analysis framework is needed as climate change and resource management practices have the potential to impact each DET element, resource, and region differently. These linkages are further complicated by policy and trade agreements where endowments of one region are used to meet demands in another. This paper reviews the unique DET characteristics of land, energy and water resources across the United States. Analyses are conducted according to the eight geographic regions defined in the 2014 National Climate Assessment. Evident from the analyses are regional differences in resources endowments in land (strong East-West gradient in forest, cropland and desert), water (similar East-West gradient), and energy. Demands likewise vary regionally reflecting differences in population density and endowment (e.g., higher water use in West reflecting insufficient precipitation to support dryland farming). The effect of technology and policy are particularly evident in differences in the energy portfolios across the eight regions. Integrated analyses that account for the various spatial and temporal differences in regional energy, water and land systems are critical to informing effective policy requirements for future energy, climate and resource management. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Analytic energy gradients for constrained DFT-configuration interaction

    Kaduk, Benjamin; Tsuchimochi, Takashi; Van Voorhis, Troy

    2014-05-01

    The constrained density functional theory-configuration interaction (CDFT-CI) method has previously been used to calculate ground-state energies and barrier heights, and to describe electronic excited states, in particular conical intersections. However, the method has been limited to evaluating the electronic energy at just a single nuclear configuration, with the gradient of the energy being available only via finite difference. In this paper, we present analytic gradients of the CDFT-CI energy with respect to nuclear coordinates, which gives the potential for accurate geometry optimization and molecular dynamics on both the ground and excited electronic states, a realm which is currently quite challenging for electronic structure theory. We report the performance of CDFT-CI geometry optimization for representative reaction transition states as well as molecules in an excited state. The overall accuracy of CDFT-CI for computing barrier heights is essentially unchanged whether the energies are evaluated at geometries obtained from quadratic configuration-interaction singles and doubles (QCISD) or CDFT-CI, indicating that CDFT-CI produces very good reaction transition states. These results open up tantalizing possibilities for future work on excited states.

  11. Antiproton-Nucleus Interaction and Coulomb Effect at High Energies

    ZHOU Li-Juan; WU Qing; GU Yun-Ting; MA Wei-Xing; TAN Zhen-Qiang; HU Zhao-Hui

    2005-01-01

    The Coulomb effect in high energy antiproton-nucleus elastic and inelastic scattering from 12C and 16O is studied in the framework of Glauber multiple scattering theory for five kinetic energies ranged from 0.23 to 1.83 GeV.A microscopic shell-model nuclear wave functions, Woods-Saxon single-particle wave functions, and experimental pN amplitudes are used in the calculations. The results show that the Coulomb effect is of paramount importance for filling up the dips of differential cross sections. We claim that the present result for inelastic scattering of antiproton-12C is sufficiently reliable to be a guide for measurements in the very near future. We also believe that antiproton nucleus elastic and inelastic scattering may produce new information on both the nuclear structure and the antinucleon-nucleon interaction, in particular the p-neutron interaction.

  12. Strong impact of protonation and deprotonation on intermolecular Coulombic decay

    Intermolecular Coulombic decay (ICD) is an ultrafast relaxation mechanism of a highly excited system embedded in a chemical environment. Our theoretical investigation of ammonia clusters shows that the ICD efficiency can be regulated by protonation or deprotonation. It is suggested that by varying ICD rate through changing the environmental pH value a control over the relaxation dynamics can be achieved.

  13. Intermolecular Phosphoryl Transfer Between Serine and Histidine Residues

    Yu Qian SU; Ming Yu NIU; Shu Xia CAO; Jian Chen ZHANG; Yu Fen ZHAO

    2004-01-01

    A novel intermolecular phosphoryl transfer from O-trimethylsilyl-N-(O, O-diisopropyl) phosphoryl serine trimethylsilyl ester to N, N'-bis(trimethylsilyl) histidine trimethylsilyl ester was studied through electrospray ionization mass spectrometry (ESI-MS). It was proposed that the transfer reaction went through penta-coordinated phosphorus intermediate.

  14. Gold-catalyzed intermolecular hydroamination of allenes with sulfonamides

    Chen Zhang; Shao-Qiao Zhang; Hua-Jun Cai; Dong-Mei Cui

    2013-01-01

    A co-catalyst of (PPh3)AuCl/AgOTf for the intermolecular hydroamination of allenes with sulfonamides is shown. The reaction proceeded smoothly under mild conditions for differently substituted allenes giving N-allylic sulfonamides in good yields with high regioselectivity and E-selectivity.

  15. Dancing Crystals: A Dramatic Illustration of Intermolecular Forces

    Mundell, Donald W.

    2007-01-01

    Crystals of naphthalene form on the surface of an acetone solution and dance about in an animated fashion illustrating surface tension, crystallization, and intermolecular forces. Additional experiments reveal the properties of the solution. Flows within the solutions can be visualized by various means. Previous demonstrations of surface motion…

  16. New constraints on interacting dark energy from cosmic chronometers

    Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N.

    2016-01-01

    We use the latest compilation of observational Hubble parameter measurements estimated with the differential evolution of cosmic chronometers, in combination with the local value of the Hubble constant recently measured with 2.4% precision, to constrain the cosmological scenario where dark energy interacts directly with the dark matter sector. To diminish the degeneracy between the parameters we additionally consider standard probes, such as Supernovae Type Ia from joint light curves (JLA) sa...

  17. Energy-dependent interactions in few-body systems

    Energy-dependent interactions in few-body systems are discussed. A class of multichannel few-body scattering models which are characterized by the simultaneous presence of and communication between two different types of channels. First, usual two- and three-particle scattering channels (external ones), hamiltonians for which have ordinary spectral properties. Second, the internal channels, hamiltonians for which have only a point spectrum. Faddeev equations for external and internal channels are discussed

  18. Interactions in the energy supply system. Mechanisms - interactions - examples. An analysis

    In embarking on the energy turnaround Germany has taken upon itself one of the greatest self-chosen challenges of the future, namely to transform the energy supply system from being predominantly dependent on fossil fuels to relying almost entirely on renewable energy resources. The driving goal behind this project, which has wide public acceptance, is to ensure that our energy supply remains sustainable, safe and affordable. This transformation process by a successful industrial nation is being followed abroad with great interest. The present document does not undertake a political assessment of the energy turnaround or its goals. It rather focuses on an analysis of effects brought about by individual measures on the system as a whole. This systemic view opens up a new perspective on the ''engine room'' of the energy turnaround. It allows one to inquire whether a given measure actually fulfils the expectations that have been placed in it for the system as a whole - expectations that are often born from too narrow a perspective - or whether it is having unexpected, undesirable effects. These can impact on the effectiveness of a specific measure in realising the goals of the energy turnaround. The authors believe that having as precise knowledge as possible of these systemic interactions is a fundamental prerequisite to managing the energy turnaround in such a way that its goals are achieved as effectively and efficiently as possible.

  19. Energy interactions in amyloid-like fibrils from NNQQNY.

    Cuesta, Inmaculada García; Sánchez de Merás, Alfredo M J

    2014-03-01

    We use large-scale MP2 calculations to analyze the interactions appearing in amyloid fibers, which are difficult to determine experimentally. To this end, dimers and trimers of the hexapeptide NNQQNY from the yeast prion-like protein Sup35 were considered as model systems. We studied the energy interactions present in the three levels of organization in which the formation of amyloid fibrils is structured. The structural changes in the hydrogen bonds were studied too. It was found that the most energetic process is the formation of the β-sheet, which is equally due to both hydrogen bonds and van der Waals interactions. The aromatic rings help stabilize these aggregates through stacking of the aromatic rings of tyrosine, the stability produced by the aromatics residues increasing with their aromaticity. The formation of the basic unit of the assembled proto-fiber, the steric zipper, is less energetic and is associated to both dispersion forces and hydrogen bonds. The interactions between pair of β-sheets across the peptide-to-peptide contact through the tyrosine rings are cooperative and due to dispersion effects. Moreover, the strength of this interaction can rationalize the variation of mobility of the aromatic ring in the tyrosine units found in solid NMR experiments. PMID:24458317

  20. Balancing Local Order and Long-Ranged Interactions in the Molecular Theory of Liquid Water

    Shah, J K; Pratt, L R; Paulaitis, M E

    2007-01-01

    A molecular theory of liquid water is identified and studied on the basis of computer simulation of the TIP3P model of liquid water. This theory would be exact for models of liquid water in which the intermolecular interactions vanish outside a finite spatial range, and therefore provides a precise analysis tool for investigating the effects of longer-ranged intermolecular interactions. We show how local order can be introduced through quasi-chemical theory. Long-ranged interactions are characterized generally by a conditional distribution of binding energies, and this formulation is interpreted as a regularization of the primitive statistical thermodynamic problem. These binding-energy distributions for liquid water are observed to be unimodal. The gaussian approximation proposed is remarkably successful in predicting the Gibbs free energy and the molar entropy of liquid water, as judged by comparison with numerically exact results. The remaining discrepancies are subtle quantitative problems that do have si...

  1. Accuracy of Several Wave Function and Density Functional Theory Methods for Description of Noncovalent Interaction of Saturated and Unsaturated Hydrocarbon Dimers

    Granatier, Jaroslav; Pitoňák, M.; Hobza, Pavel

    2012-01-01

    Roč. 8, č. 7 (2012), s. 2282-2292. ISSN 1549-9618 Grant ostatní: APVV(SK) APVV-0059-10 Institutional research plan: CEZ:AV0Z40550506 Keywords : intermolecular interaction energies * Plesset perturbation-theory * molecular-orbital methods * protein rubredoxin Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.389, year: 2012

  2. Soft Particle Production in Very High Energy Hadron Interactions

    Ebr, Jan; Ridky, Jan

    2016-01-01

    Indications of a discrepancy between simulations and data on the number of muons in cosmic ray (CR) showers exist over a large span of energies. We focus in particular on the excess of multi-muon bundles observed by the DELPHI detector at LEP and on the excess in the muon number in general reported by the Pierre Auger Observatory. Even though the primary CR energies relevant for these experiments differ by orders of magnitude, we can find a single mechanism which can simultaneously increase predicted muon counts for both, while not violating constraints from accelerators or from the longitudinal shower development as observed by the Pierre Auger Observatory. We present a brief theoretical motivation and describe a practical implementation of such a model, based on the addition of soft particles to interactions above a chosen energy threshold. Results of an extensive set of simulations show the behavior of this model in various parts of a simplified parameter space.

  3. Microscopic positive-energy potential based on Gogny interaction

    Blanchon, G; Arellano, H F; Mau, N Vinh

    2014-01-01

    We present nucleon elastic scattering calculation based on Green's function formalism in the Random-Phase Approximation. For the first time, the Gogny effective interaction is used consistently throughout the whole calculation to account for the complex, non-local and energy-dependent optical potential. Effects of intermediate single-particle resonances are included and found to play a crucial role in the account for measured reaction cross section. Double counting of the particle-hole second-order contribution is carefully addressed. The resulting integro-differential Schr\\"odinger equation for the scattering process is solved without localization procedures. The method is applied to neutron and proton elastic scattering from $^{40}$Ca. A successful account for differential and integral cross sections, including analyzing powers, is obtained for incident energies up to 30 MeV. Discrepancies at higher energies are related to much too high volume integral of the real potential for large partial waves. Moreover...

  4. Intermolecular Hydrogen Transfer in Isobutane Hydrate

    Takeshi Sugahara

    2012-05-01

    Full Text Available Electron spin resonance (ESR spectra of butyl radicals induced with γ-ray irradiation in the simple isobutane (2-methylpropane hydrate (prepared with deuterated water were investigated. Isothermal annealing results of the γ-ray-irradiated isobutane hydrate reveal that the isobutyl radical in a large cage withdraws a hydrogen atom from the isobutane molecule through shared hexagonal-faces of adjacent large cages. During this “hydrogen picking” process, the isobutyl radical is apparently transformed into a tert-butyl radical, while the sum of isobutyl and tert-butyl radicals remains constant. The apparent transformation from isobutyl to tert-butyl radicals is an irreversible first-order reaction and the activation energy was estimated to be 35 ± 3 kJ/mol, which was in agreement with the activation energy (39 ± 5 kJ/mol of hydrogen picking in the γ-ray-irradiated propane hydrate with deuterated water.

  5. Frenkel and Charge-Transfer Excitons in Quasi-One-Dimensional Molecular Crystals with Strong Intermolecular Orbital Overlap

    Hoffmann, Michael

    2000-01-01

    We present a theoretical and experimental study on the lowest electronically excited states in quasi-one-dimensional molecular crystals. The specific calculations and the experiments are performed for the model compounds MePTCDI (N-N'-dimethylperylene-3,4:9,10-dicarboximide) and TCDA(3,4:9,10-perylenetetracarboxylic dianhydride). The intermolecular interactions between nearest neighbors are quantum chemically analyzed on the basis of semi-empirical (ZINDO/S) Hartree-Fock calculations and a si...

  6. Physical properties and intermolecular dynamics of an ionic liquid compared with its isoelectronic neutral binary solution.

    Shirota, Hideaki; Castner, Edward W

    2005-10-27

    In this study, we address the following question about room-temperature ionic liquids (RTILs). Are the properties of a RTIL more dependent on the charges of the molecular ions or on the fact that the liquid is a complex mixture of two species, one or both of which are asymmetric? To address this question and to better understand the interactions and dynamics in RTILs, we have prepared the organic ionic liquid 1-methoxyethylpyridinium dicyanoamide (MOEPy(+)/DCA(-)) and compared this RTIL with the analogous isoelectronic binary solution, comprised of equal parts of 1-methoxyethylbenzene (MOEBz) and dicyanomethane (DCM). In essence, we have created a RTIL and a nearly identical neutral pair in which we have effectively turned off the charges. To understand the intermolecular interactions in both of these liquids, we have characterized the bulk density and shear viscosity. Using femtosecond optical Kerr effect spectroscopy, we have also characterized the intermolecular vibrational dynamics and diffusive reorientation. To verify that the shape, polarizability, and electronic structure of the RTIL ions and the components of the neutral pair are truly quite similar, we have carried out density functional theory calculations on the individual molecular ion and neutral species. PMID:16866386

  7. Proton tunnelling in intermolecular hydrogen bonds

    Horsewill, A.J. [Nottingham Univ. (United Kingdom); Johnson, M.R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Trommsdorff, H.P. [Grenoble-1 Univ., 38 (France)

    1997-04-01

    The wavefunctions of particles extend beyond the classically accessible regions of potential energy-surfaces (PES). A manifestation of this partial delocalization is the quantum-mechanical tunneling effect which enables a particle to escape from a metastable potential-well. Tunnelling is most important for the lightest atoms, so that the determination of its contribution to proton transfer, one of the most fundamental chemical reactions, is an important issue. QENS and NMR techniques have been employed to study the motion of protons in the hydrogen bond of benzoic-acid crystals, a system which has emerged as a particularly suitable model since proton transfer occurs in a near symmetric double-well potential. The influence of quantum tunnelling was revealed and investigated in these experiments. This work provides an experimental benchmark for theoretical descriptions of translational proton-tunnelling. (author). 7 refs.

  8. Low-energy Antikaon Interaction with Nuclei: The AMADEUS Challenge

    Marton, Johann; Bellotti, Giovanni; Berucci, Carolina; Bosnar, Dimitri; Bragadireanu, Mario; Curceanu, Catalina; Clozza, Alberto; Cargnelli, Michael; Butt, Aslan; Del Grande, Raffaele; Fabbietti, Laura; Fiorini, Carlo; Ghio, Francesco; Guaraldo, Carlo; Iliescu, Mihai; Sandri, Paolo Levi; Pietreanu, Dorel; Piscicchia, Kristian; Vidal, Antonio Romero; Scordo, Alessandro; Shi, Hexi; Sirghi, Diana; Sirghi, Florin; Tucakovic, Ivana; Doce, Oton Vazquez; Widmann, Eberhard; Zmeskal, Johann

    2016-01-01

    The low-energy strong interaction of antikaons (K-) with nuclei has many facets and rep- resents a lively and challenging research ?eld. It is interconnected to the peculiar role of strangeness, since the strange quark is rather light, but still much heavier than the up and down quarks. Thus, when strangeness is involved one has to deal with spontaneous and explicit symmetry breaking in QCD. It is well known that the antikaon interaction with nucleons is attractive, but how strong ? Is the interaction strong enough to bind nucleons to form kaonic nuclei and, if so, what are the properties (binding energy, decay width)? There are controversial indications for such bound states and new results are expected to come soon. The existence of antikaon mediated bound states might have important consequences since it would open the possibility for the formation of cold baryonic matter of high density which might have a severe impact in astrophysics for the understanding of the composi- tion of compact (neutron) stars. ...

  9. AIC, BIC, Bayesian evidence against the interacting dark energy model

    Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Krawiec, Adam [Jagiellonian University, Institute of Economics, Finance and Management, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Kurek, Aleksandra [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Kamionka, Michal [University of Wroclaw, Astronomical Institute, Wroclaw (Poland)

    2015-01-01

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative - the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock- Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam's razor we are inclined to reject this model. (orig.)

  10. AIC, BIC, Bayesian evidence against the interacting dark energy model

    Szydłowski, Marek, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Krawiec, Adam, E-mail: adam.krawiec@uj.edu.pl [Institute of Economics, Finance and Management, Jagiellonian University, Łojasiewicza 4, 30-348, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Kurek, Aleksandra, E-mail: alex@oa.uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Kamionka, Michał, E-mail: kamionka@astro.uni.wroc.pl [Astronomical Institute, University of Wrocław, ul. Kopernika 11, 51-622, Wrocław (Poland)

    2015-01-14

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative—the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam’s principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock–Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam’s razor we are inclined to reject this model.

  11. AIC, BIC, Bayesian evidence against the interacting dark energy model

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative—the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam’s principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock–Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam’s razor we are inclined to reject this model

  12. Experimental Summary: Very High Energy Cosmic Rays and their Interactions

    Kampert Karl-Heinz

    2013-06-01

    Full Text Available The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.

  13. Emergent dark energy via decoherence in quantum interactions

    Altamirano, Natacha; Khosla, Kiran; Mann, Robert B; Milburn, Gerard

    2016-01-01

    Much effort has been devoted into understanding the quantum mechanical properties of gravitational interactions. Here we explore the recent suggestion that gravitational interactions are a fundamental classical channel that is described by continuous quantum measurements and feedforward (CQMF). Specifically, we investigate the possibility that some properties of our universe, modeled using a Friedman-Robertson-Walker metric, can emerge from CQMF by introducing an underlying quantum system for the dynamical variables, avoiding well known difficulties in trying to quantize the spacetime itself. We show that the quantum decoherence necessary in such a measurement model manifests itself as a dark energy fluid that fills the spacetime and whose equation of state asymptotically oscillates around the value $w=-1/3$, regardless of the spatial curvature, which provides the bound between accelerating and decelerating expanding FRW cosmologies.

  14. Impurity formation energies and effective interactions in DMS

    We use a recently developed method (Phil. Mag. 88 (2008), 2777) based on the TB-LMTO scheme to calculate the electronic structure of atomic clusters embedded in an ideal crystal or in an effective medium that represents a random alloy. We determine from the first principles impurity formation energies and effective interatomic interactions (i.e. the parameters of the alloy Ising Hamiltonian that governs structural stability of materials) and exchange interactions (i.e. parameters of the Heisenberg Hamiltonian that determines the magnetic structure). We present the results for impurities in (Ga,Mn)As alloys and for vacancies and alkali metal impurities in zirconia that can induce the the so-called d0-magnetism.

  15. New interactions in the dark sector mediated by dark energy

    Brookfield, A W; Hall, L M H

    2007-01-01

    Cosmological observations have revealed the existence of a dark matter sector, which is commonly assumed to be made up of one particle species only. However, this sector might be more complicated than we currently believe: there might be more than one dark matter species (for example two components of cold dark matter or a mixture of hot and cold dark matter) and there may be new interactions between these particles. In this paper we study the possibility of multiple dark matter species and interactions mediated by a dark energy field. We study both the background and the perturbation evolution in these scenarios. We find that the background evolution of a system of multiple dark matter particles (with constant couplings) mimics a single fluid with a time-varying coupling parameter. However, this is no longer true on the perturbative level. We study the case of attractive and repulsive forces as well as a mixture of cold and hot dark matter particles.

  16. INTERMOLECULAR ENERGY AND SURFACE TENSION IN PURE NON AUTOASSOCIATED LIQUIDS

    Gabriel Hernández de la Torre

    2010-08-01

    Full Text Available Se deduce una ecuación para calcular la energía libre en la superficie de un líquido, como una función de las densidades ortobáricas. Se considera la contribución molecular al área de la superficie de moléculas globulares, moléculas planas y parafinas normales y se calcula la tensión superficial para las especies anteriores. Los valores calculados de la tensión superficial presentan excelente concordancia con los valores experimentales.

  17. Intermolecular energy and surface tension in pure non autoassociated liquids

    Gabriel Hernández de la Torre

    2010-01-01

    Se deduce una ecuación para calcular la energía libre en la superficie de un líquido, como una función de las densidades ortobáricas. Se considera la contribución molecular al área de la superficie de moléculas globulares, moléculas planas y parafinas normales y se calcula la tensión superficial para las especies anteriores. Los valores calculados de la tensión superficial presentan excelente concordancia con los valores experimentales.

  18. Elastic diffraction interactions of hadrons at high energies

    Full text: 1. The diffraction theory of elastic and inelastic scattering of hadron-hadron and hadron-nucleus processes is developed. The description of experimental data on differential cross section of elastic scattering p p, p-bar p in wide range of transferred momentum is made in the frames of the developed inelastic overlap function model. The investigation of nuclei elastic scattering at the low, middle and high energies is carried out, that allowed to execute quantitative control of efficiency or quantum-field and phenomenological theories and make critical analysis of their utility. The principle of construction of realistic amplitudes of the elastic scattering is confirmed on the basic of the s- and t-channel approaches both conditions stationary of amplitudes. For a wide range of models the comparative analysis of amplitude of inelastic scattering in representation of impact parameter is executed. The expression for effective radius of interaction, effective trajectory Regge and slope of inelastic function of overlapping are analysed. In diffraction approximation the satisfactory description of the data on hadrons interaction at the energy of tens GeV with proton and deuterons is received. The features of spectra of fast particles are analysed. The theory of collective variables S, T, P which characterize a deviation degree of angular distribution of particles from spherical symmetry, the general formula for dispersion of any density of obtained, the particles decays are investigated [1-2]. 2. The solution of Lippmann-Schwinger equation investigated within the frameworks of frameworks of high -energy approximation satisfies the generalized Huygens principle used in the diffraction theory nuclear processes. The diffraction emission is considered at the interaction of charged hadrons one with another and the nuclei [3]. 3. Study of elastic interactions of hadrons at high energies is of great interest due to the fact that the amplitude of this process is the

  19. Interacting dark energy collapse with matter components separation

    Delliou, M. Le [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66.318 — 05314-970, São Paulo, SP (Brazil); Barreiro, T., E-mail: delliou@cii.fc.ul.pt, E-mail: tmbarreiro@ulusofona.pt [Departamento de Matemática da FFMCC, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376 — 1749-024 Lisboa (Portugal)

    2013-02-01

    We use the spherical collapse model of structure formation to investigate the separation in the collapse of uncoupled matter (essentially baryons) and coupled dark matter in an interacting dark energy scenario. Following the usual assumption of a single radius of collapse for all species, we show that we only need to evolve the uncoupled matter sector to obtain the evolution for all matter components. This gives us more information on the collapse with a simplified set of evolution equations compared with the usual approaches. We then apply these results to four quintessence potentials and show how we can discriminate between different quintessence models.

  20. Observational constraints on a holographic, interacting dark energy model

    Durán, Iván; Zimdahl, Winfried

    2010-01-01

    We constrain an interacting, holographic dark energy model, first proposed by two of us in [1], with observational data from supernovae, CMB shift, baryon acoustic oscillations, x-rays, and the Hubble rate. The growth function for this model is also studied. The model fits the data reasonably well but still the conventional $\\Lambda$CDM model fares better. Nevertheless, the holographic model greatly alleviates the coincidence problem and shows compatibility at $1\\sigma$ confidence level with the age of the old quasar APM 08279+5255.

  1. THz absorption spectrum of the CO2–H2O complex: Observation and assignment of intermolecular van der Waals vibrations

    Andersen, Jonas; Heimdal, J.; Wallin Mahler Andersen, Denise;

    2014-01-01

    have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems’ flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm−1 from the class of intermolecular van der Waals vibrations is proposed and the......Terahertz absorption spectra have been recorded for the weakly bound CO2–H2O complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic H2O subunit...

  2. Low-Energy Antinucleon-Nucleus Interaction Revisited

    Friedman, E

    2015-01-01

    Annihilation cross sections of antiprotons and antineutrons on the proton between 50 and 400 MeV/c show Coulomb focusing below 200 MeV/c and almost no charge-dependence above 200 MeV/c. Similar comparisons for heavier targets are not possible for lack of overlap between nuclear targets studied with $\\bar p$ and $\\bar n$ beams. Interpolating between $\\bar p$-nucleus annihilation cross sections with the help of an optical potential to compare with $\\bar n$-nucleus annihilation cross sections reveal unexpected features of Coulomb interactions in the latter. Direct comparisons between $\\bar n$-nucleus and $\\bar p$-nucleus annihilations at very low energies could be possible if $\\bar p$ cross sections are measured on the same targets and at the same energies as the available cross sections for $\\bar n$. Such measurements may be feasible in the foreseeable future.

  3. Scaling of the Local Dynamics and the Intermolecular Potential

    Roland, C. M.; Feldman, J. L.; Casalini, R.

    2006-01-01

    The experimental fact that relaxation times, tau, of supercooled liquids and polymers are uniquely defined by the quantity TV^g, where T is temperature, V specific volume, and g a material constant, leads to a number of interpretations and predictions concerning the dynamics of vitrification. Herein we examine means to determine the scaling exponent g apart from the usual superpositioning of relaxation data. If the intermolecular potential can be approximated by an inverse power law, as impli...

  4. Ultrafast photoinduced intra- und intermolecular charge transfer and solvation

    Bizjak, Tanja

    2004-01-01

    Intra- and intermolecular charge transfer as well as internal conversion processes are studied in various molecular systems. The dynamics of these fundamental photoinduced processes are investigated by pump-probe femtosecond spectroscopy and steady-state fluorescence. Transient spectra are obtained using white light continuum as probe, while time resolved measurements are performed by probing at specific wavelengths with non dispersive detec-tion. Noncollinearly phase matched optical parametr...

  5. Multiple scattering of low energy ions in matter: Influence of energy loss and interaction potential

    In this paper, the effect of inelastic energy loss and interaction potential on transmitted ions at low energy is studied. For this purpose, angular distributions of slow He+ ions transmitted through thin Ag films are calculated using the theory of multiple scattering. Thin films (20–50 Å at 2 keV and 50–200 Å at 10 keV) are considered so that the total path length of transmitted ions can be approximated by the value of the target thickness in this calculation. The corresponding values of the relative energy loss ΔE/E are comprised between 0.04 and 0.17. We show that even if low values of the thickness are considered, the total energy loss of ions in the target should be included in the calculation. These calculated angular distributions are also influenced by the potential used to describe the interaction between the incident ion and the target atom

  6. Multiple scattering of low energy ions in matter: Influence of energy loss and interaction potential

    Mekhtiche, A. [Laboratoire SNIRM, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 El Alia, Bab Ezzouar, Algiers (Algeria); Faculté des Sciences et de la Technologie, Université Yahia Farès de Médéa (Algeria); Khalal-Kouache, K., E-mail: kkouache@yahoo.fr [Laboratoire SNIRM, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 El Alia, Bab Ezzouar, Algiers (Algeria)

    2015-07-01

    In this paper, the effect of inelastic energy loss and interaction potential on transmitted ions at low energy is studied. For this purpose, angular distributions of slow He{sup +} ions transmitted through thin Ag films are calculated using the theory of multiple scattering. Thin films (20–50 Å at 2 keV and 50–200 Å at 10 keV) are considered so that the total path length of transmitted ions can be approximated by the value of the target thickness in this calculation. The corresponding values of the relative energy loss ΔE/E are comprised between 0.04 and 0.17. We show that even if low values of the thickness are considered, the total energy loss of ions in the target should be included in the calculation. These calculated angular distributions are also influenced by the potential used to describe the interaction between the incident ion and the target atom.

  7. Photoinduced tautomerism of 2,6-dicarbomethoxyphenol in DMF–water mixtures: Perturbation from intermolecular processes

    In this paper, we report the spectral signatures of photoinduced tautomerism of 4-methyl-2,6-dicarbomethoxyphenol (CMOH) in DMF–water mixtures with varying compositions. Excited state intramolecular proton transfer (ESIPT) reaction of CMOH has been observed in bulk DMF, indicated by dual fluorescence from its normal and tautomeric forms while only a single emission peak is observed in water from its anionic species. Binary mixture of a polar aprotic (DMF) and a polar protic (water) solvent gives rise to a competition between intramolecular and intermolecular hydrogen bonding (with media) processes of the probe. This competition is found to be largely dependent on the proton affinity of the media and also on the excitation energy. Solvent separated ion pair and intermolecularly H-bonded CMOH–Solvent complex have been detected in the excited state at specific solvent compositions that are converted to the anionic form due to the change in excitation wavelengths. The formation of hydrogen bonded 1:1 molecular clusters of different rotamers of CMOH with DMF and water in the ground state has been investigated using quantum chemical calculations. A combined experimental and theoretical analysis indicates that the HOMO to LUMO transitions dictate the electronic absorption profiles of the CMOH–DMF and CMOH–water clusters. These findings are expected to shed light on the mechanism of acid–base reactions of several hydrogen bonded systems that are part of many biologically relevant processes. -- Highlights: •Photoinduced tautomerization of CMOH has been studied in DMF–water mixture. •CMOH forms 1:1 molecular clusters with DMF and water. •The competition between intra- and intermolecular hydrogen bonding is revealed. •HOMO to LUMO transition dictates the absorption spectra of CMOH in DMF and water

  8. Modified Chaplygin gas as an interacting holographic dark energy model

    2010-01-01

    The modified Chaplygin gas (MCG) as an interacting model of holographic dark energy in which dark energy and dark matter are coupled together is investigated in this paper. Concretely, by studying the evolutions of related cosmological quantities such as density parameter Ω, equation of state w, deceleration parameter q and transition redshift zT, we find the evolution of the universe is from deceleration to acceleration, their present values are consistent with the latest observations, and the equation of state of holographic dark energy can cross the phantom divide w = -1. Furthermore, we put emphasis upon the geometrical diagnostics for our model, i.e., the statefinder and Om diagnostics. By illustrating the evolutionary trajectories in r - s, r - q, w -w and Om planes, we find that the holographic constant c and the coupling constant b play very important roles in the holographic dark energy (HDE) model. In addition, we also plot the LCDM horizontal lines in Om diagrams, and show the discrimination between the HDE and LCDM models.

  9. A Field Theory Model for Dark Matter and Dark Energy in Interaction

    Micheletti, Sandro; Abdalla, Elcio; Wang, Bin

    2009-01-01

    We propose a field theory model for dark energy and dark matter in interaction. Comparing the classical solutions of the field equations with the observations of the CMB shift parameter, BAO, lookback time and Gold supernovae sample, we observe a possible interaction between dark sectors with energy decay from dark energy into dark matter. The observed interaction provides an alleviation to the coincidence problem.

  10. Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

    Szymon Godlewski; Prauzner-Bechcicki, Jakub S.; Thilo Glatzel; Ernst Meyer; Marek Szymoński

    2015-01-01

    Transformations of molecular structures formed by perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules on a rutile TiO2(110) surface are studied with low-temperature scanning tunnelling microscopy. We demonstrate that metastable molecular assemblies transform into differently ordered structures either due to additional energy provided by thermal annealing or when the influence of intermolecular forces is increased by the enlarged amount of deposited molecules. Proper adjustment of ...

  11. Combining climate and energy policies: synergies or antagonism? Modeling interactions with energy efficiency instruments

    Lecuyer, Oskar [EDF R and D - Efese, 1 av du General de Gaulle, 92141 Clamart (France)] [CIRED, 45 bis av de la Belle-Gabrielle, 94736 Nogent-sur-Marne (France); Bibas, Ruben [CIRED, 45 bis av de la Belle-Gabrielle, 94736 Nogent-sur-Marne (France)

    2012-01-15

    In addition to the already present Climate and Energy package, the European Union (EU) plans to include a binding target to reduce energy consumption. We analyze the rationales the EU invokes to justify such an overlapping and develop a minimal common framework to study interactions arising from the combination of instruments reducing emissions, promoting renewable energy (RE) production and reducing energy demand through energy efficiency (EE) investments. We find that although all instruments tend to reduce GHG emissions and although a price on carbon tends also to give the right incentives for RE and EE, the combination of more than one instrument leads to significant antagonisms regarding major objectives of the policy package. The model allows to show in a single framework and to quantify the antagonistic effects of the joint promotion of RE and EE. We also show and quantify the effects of this joint promotion on ETS permit price, on wholesale market price and on energy production levels. (authors)

  12. Combining climate and energy policies: synergies or antagonism? Modeling interactions with energy efficiency instruments

    In addition to the already present Climate and Energy package, the European Union (EU) plans to include a binding target to reduce energy consumption. We analyze the rationales the EU invokes to justify such an overlapping and develop a minimal common framework to study interactions arising from the combination of instruments reducing emissions, promoting renewable energy (RE) production and reducing energy demand through energy efficiency (EE) investments. We find that although all instruments tend to reduce GHG emissions and although a price on carbon tends also to give the right incentives for RE and EE, the combination of more than one instrument leads to significant antagonisms regarding major objectives of the policy package. The model allows to show in a single framework and to quantify the antagonistic effects of the joint promotion of RE and EE. We also show and quantify the effects of this joint promotion on ETS permit price, on wholesale market price and on energy production levels. (authors)

  13. Search for Quarks in High-Energy Neutrino Interactions

    2002-01-01

    This experiment is a search for quarks produced in high energy neutrino interactions. Neutrino interactions take place in a 23-ton lead target and are recognized by one or more particles crossing the counter hodoscopes S1 and S2, together with the absence of an incident particle signal in the initial veto counter V^0.\\\\ \\\\ The lead is viewed by an avalanche chamber to measure the specific ionization of the charged secondaries produced in the @n-interaction with high accuracy even in jet-like events, and by a series of two pairs of scintillation counter hodoscopes (ST1, ST2). The latter provide time-of-flight measurements and dE/dx measurements for a fast analysis in low and medium multiplicity provide a trigger for the chamber. \\\\ \\\\ In order to reduce the background in the set-up, very low momentum particles (mainly due to cascading processes in the target) are separated out by a @= 1 T.m magnet placed behind the target. \\\\ \\\\ A system of wire chambers W1, W2, which register both the position and the time at...

  14. The role of van der Waals interaction in the tilted binding of amine molecules to the Au(111) surface

    We present the results of ab initio electronic structure calculations for the adsorption characteristics of three amine molecules on Au(111), which show that the inclusion of van der Waals interactions between the isolated molecule and the surface leads in general to good agreement with experimental data on the binding energies. Each molecule, however, adsorbs with a small tilt angle (between -5 and 9°). For the specific case of 1,4-diaminobenzene (BDA) our calculations reproduce the larger tilt angle (close to 24°) measured by photoemission experiments, when intermolecular (van der Waals) interactions (for about 8% coverage) are included. These results point not only to the important contribution of van der Waals interactions to molecule-surface binding energy, but also that of intermolecular interactions, often considered secondary to that between the molecule and the surface, in determining the adsorption geometry and pattern formation. (fast track communication)

  15. Rovibrational matrix elements of the multipole moments and of the polarizability of the H2 molecule in the solid phase: Effect of intermolecular potential

    Adya Prasad Mishra; T K Balasubramanian

    2001-10-01

    Rovibrational matrix elements of the multipole moments ℓ up to rank 10 and of the linear polarizability of the H2 molecule in the condensed phase have been computed taking into account the effect of the intermolecular potential. Comparison with gas phase matrix elements shows that the effect of solid state interactions is marginal.

  16. Small Molecule Activation by Intermolecular Zr(IV)-Phosphine Frustrated Lewis Pairs.

    Metters, Owen J; Forrest, Sebastian J K; Sparkes, Hazel A; Manners, Ian; Wass, Duncan F

    2016-02-17

    We report intermolecular transition metal frustrated Lewis pairs (FLPs) based on zirconocene aryloxide and phosphine moieties that exhibit a broad range of small molecule activation chemistry that has previously been the preserve of only intramolecular pairs. Reactions with D2, CO2, THF, and PhCCH are reported. By contrast with previous intramolecular examples, these systems allow facile access to a variety of steric and electronic characteristics at the Lewis acidic and Lewis basic components, with the three-step syntheses of 10 new intermolecular transition metal FLPs being reported. Systematic variation to the phosphine Lewis base is used to unravel steric considerations, with the surprising conclusion that phosphines with relatively small Tolman steric parameters not only give highly reactive FLPs but are often seen to have the highest selectivity for the desired product. DOSY NMR spectroscopic studies on these systems reveal for the first time the nature of the Lewis acid/Lewis base interactions in transition metal FLPs of this type. PMID:26788963

  17. Intra- and intermolecular electron transfer reactions in covalently linked donor-acceptor molecules

    We synthesized a homologous series of molecules (MVnn'Q) where a methylviologen (MV2+) and an amino-chloronaphthoquinone (Q) are linked to each other via a flexible chain. Using the electron pulse radiolysis technique, we have measured time-resolved spectra and determined rate constants for intra- and intermolecular electron transfer (ET) between donor and acceptor site of the MVnn'Q molecules in water and in sodium dodecyl sulfate (SDS) micellar solution. For comparison, we also irradiated a solution containing a 1:1 mixture of methylviologen and amino-chloronaphthoquinone and measured spectra and intermolecular ET reactions between the separated electron donor and acceptor molecules. We found a remarkably slow intramolecular electron transfer from the reduced methylviologen moiety to the quinone site of all MVnn'Q molecules both in water and in aqueous SDS micellar suspensions. The intramolecular rate constants measured in water increase with the number of intervening bonds, leading to the conclusion that electron transfer occurs by a through-space rather than through-bond mechanism. The intramolecular rate constants virtually lose their chain length dependence in SDS suspensions where, because of an extended configuration of the micellized MVnn'Q molecules, through-space interaction is not favored. (orig.)

  18. A unique quinolineboronic acid-based supramolecular structure that relies on double intermolecular B-N bonds for self-assembly in solid state and in solution.

    Zhang, Yanling; Li, Minyong; Chandrasekaran, Sekar; Gao, Xingming; Fang, Xikui; Lee, Hsiau-Wei; Hardcastle, Kenneth; Yang, Jenny; Wang, Binghe

    2007-04-16

    The boronic acid functional group plays very important roles in sugar recognition, catalysis, organic synthesis, and supramolecular assembly. Therefore, understanding the unique properties of this functional group is very important. 8-Quinolineboronic acid (8-QBA) is found to be capable of self-assembling in solid state through a unique intermolecular B-N bond mechanism reinforced by intermolecular boronic anhydride formation, π-π stacking, and hydrogen bond formation. NMR NOE and diffusion studies indicate that intermolecular B-N interaction also exists in solution with 8-QBA. In contrast, a positional isomer of 8-QBA, 5-quinolineboronic acid (5-QBA) showed very different behaviors in crystal packing and in solution and therefore different supramolecular network. Understanding the structural features of this unique 8-QBA assembly could be very helpful for the future design of new sugar sensors, molecular catalysts, and supramolecular assemblies. PMID:18414645

  19. Interaction of low-energy highly charged ions with matter

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  20. Study of high-energy neutrino neutral-current interactions

    From an exposure of the Fermilab 15-foot bubble chamber to the Tevatron quadrupole triplet neutrino beam, we have determined the ratio of neutral-current (NC) to charged-current (CC) interactions to be 0.288±0.032 for events with visible hadron momentum above 10 GeV/c. The mean ν(bar ν) event energy is 150 (110) GeV, which is higher than that for any previous beam. This result agrees with those from previous experiments at lower energies. The NC/CC ratio is derived for a combined sample of ν and bar ν events. A value of 0.274±0.038 is obtained for the dominant ν component assuming bar ν NC/CC=0.39±0.08. For events with visible hadron momentum above 25 GeV/c, where the neutral hadron contamination remaining in the NC sample is assumed to be negligible, the combined NC/CC is 0.323±0.025 and the K0 production rates are 0.375±0.064 per CC and 0.322±0.073 per NC event. The corresponding Λ rates are 0.161±0.030 per CC and 0.113±0.030 per NC event. The K0 and Λ distributions of the fractional hadron energy variable z in NC events are consistent with those in CC events

  1. High energy neutral atoms from high intensity laser plasma interaction

    Interaction of a high intensity laser with solid targets leads to acceleration of ions from the surface of the target. Ion acceleration is governed by electron dynamics at the target vacuum interface setting up a charge separation. This electron cloud near the target interface can also provide a neutralizing background for ions that have been accelerated. The accelerated ions are thus detected as a high energy neutral atom on a detector. Further, due to the inherent contrast profile of high intensity lasers a pre-plasma is almost always formed and neutral atoms can be detected. The ion and neutral atom energies are measured by a Thomson parabola spectrometer coupled with a 'time of flight' measurement. The neutral atom energies are obtained from the time of flight. The TIFR 20TW laser with an intensity contrast 10-5 was used to carry out the experiment. Defocusing the target led to a 2 fold increase in the neutral atom yield suggesting the role of the pre-plasma. Using a high contrast laser we attempt to tune the recombination dynamics for efficient neutralization of ions by using a controlled pre-plasma. (author)

  2. Comparison between the classical interaction energy and periodic Hartree-Fock binding energies for the interaction between molecules and surfaces

    The energetics of the H2O/MgO(001), HCl/MgO(001), and NH3/MgO(001) interface were investigated using the ab initio periodic Hartree-Fock LCAO method and a classical interaction energy model. The QM calculations treated a system that was periodic in two dimensions with the adsorbate approaching a three-layer slab of MgO(001). The authors used an approximation to the classical interaction energy, where the surface is represented by its potential, electric field, and electric field derivatives at the positions of the molecule center of mass, and the molecule is described by its charge, electric dipole, electric quadrupole and polarizability. The potential, electric field and electric field gradient are obtained for the clean three-layer slab using the ab initio periodic Hartree-Fock LCAO method (CRYSTAL) and an optimized split valence basis 8-61G on Mg and 8-51G on O. The charge, electric dipole, and electric quadrupole are calculated using ab initio Hartree-Fock theory (GAUSSIAN-92) with a 6-31G* basis set while the SCF polarizability is determined analytically using the same basis set

  3. Effects of symmetry energy and momentum dependent interaction on low-energy reaction mechanisms

    Zheng H.

    2016-01-01

    Full Text Available We study the dipole response associated with the Pygmy Dipole Resonance (PDR and the Isovector Giant Dipole Resonance (IVGDR, in connection with specific properties of the nuclear effective interaction (symmetry energy and momentum dependence, in the neutron-rich systems 68Ni, 132Sn and 208Pb. We perform our investigation within a microscopic transport model based on the Landau-Vlasov kinetic equation.We observe that the peak energies of PDR and IVGDR are shifted to higher values when employing momentum dependent interactions, with respect to the results obtained neglecting momentum dependence. The calculated energies are close to the experimental values and similar to the results obtained in Hartree-Fock (HF with Random Phase Approximation (RPA calculations.

  4. Interactions of energy technology development and new energy exploitation with water technology development in China

    Interactions of energy policies with water technology development in China are investigated using a hybrid input-output model and scenario analysis. The implementation of energy policies and water technology development can produce co-benefits for each other. Water saving potential of energy technology development is much larger than that of new energy exploitation. From the viewpoint of proportions of water saving co-benefits of energy policies, energy sectors benefit the most. From the viewpoint of proportions of energy saving and CO2 mitigation co-benefits of water technology development, water sector benefits the most. Moreover, economic sectors are classified into four categories concerning co-benefits on water saving, energy saving and CO2 mitigation. Sectors in categories 1 and 2 have big direct co-benefits. Thus, they can take additional responsibility for water and energy saving and CO2 mitigation. If China implements life cycle materials management, sectors in category 3 can also take additional responsibility for water and energy saving and CO2 mitigation. Sectors in category 4 have few co-benefits from both direct and accumulative perspectives. Thus, putting additional responsibility on sectors in category 4 might produce pressure for their economic development. -- Highlights: ► Energy policies and water technology development can produce co-benefits for each other. ► For proportions of water saving co-benefits of energy policies, energy sectors benefit the most. ► For proportions of energy saving and CO2 mitigation co-benefits of water policy, water sector benefits the most. ► China’s economic sectors are classified into four categories for policy implementation at sector scale.

  5. Interaction energy and itinerant ferromagnetism in a strongly interacting Fermi gas in the absence of molecule formation

    In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interaction energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state

  6. Weak Gravity Conjecture and Holographic Dark Energy model with Interaction and Spatial Curvature

    Sun, C Y

    2010-01-01

    In the paper, we apply the weak gravity conjecture to the holographic quintessence model of dark energy. Three different holographic dark energy models are considered: without the interaction in the non-flat universe; with interaction in the flat universe; with interaction in the non-flat universe. We find that only in the models with the spatial curvature and interaction term proportional to the energy density of matter, it is possible for the weak gravity conjecture to be satisfied.

  7. Intermolecular exciton-exciton annihilation in phospholipid vesicles doped with [Ru(bpy)2dppz]2+

    De la Cadena, Alejandro; Pascher, Torbjörn; Davydova, Dar'ya; Akimov, Denis; Herrmann, Felix; Presselt, Martin; Wächtler, Maria; Dietzek, Benjamin

    2016-01-01

    The ultrafast photophysics of [Ru(bpy)2dppz]2+ (dppz = dipyrido[3,2-a:2‧,3‧-c]-phenazine) embedded into the walls of phospholipid vesicles has been studied by femtosecond time-resolved pump-probe spectroscopy. While [Ru(bpy)2dppz]2+ has been studied intensively with respect to its intramolecular charge transfer processes, which are associated with the well known light-switch effect, this study focuses on intermolecular energy transfer processes taking place upon dense packing of the complexes into a phospholipid membrane composed of dipalmitoyl-L-α-phosphatidylglycerol, which can be thought of as a simplistic model of a cellular membrane. The data indicate additional quenching of excited [Ru(bpy)2dppz]2+ upon increasing the pump-pulse intensity. Hence, the observed photophysics, which is assigned to the presence of intermolecular exciton-exciton annihilation at high pump-intensities, might be related to the ultrafast photophysics of [Ru(bpy)2dppz]2+ when used as a chromophore to stain cells, an effect that may be taken into account during the employment of novel cellular markers based on Ru polypyridine complexes.

  8. Modeling energy-economy interactions using integrated models

    Integrated models are defined as economic energy models that consist of several submodels, either coupled by an interface module, or embedded in one large model. These models can be used for energy policy analysis. Using integrated models yields the following benefits. They provide a framework in which energy-economy interactions can be better analyzed than in stand-alone models. Integrated models can represent both energy sector technological details, as well as the behaviour of the market and the role of prices. Furthermore, the combination of modeling methodologies in one model can compensate weaknesses of one approach with strengths of another. These advantages motivated this survey of the class of integrated models. The purpose of this literature survey therefore was to collect and to present information on integrated models. To carry out this task, several goals were identified. The first goal was to give an overview of what is reported on these models in general. The second one was to find and describe examples of such models. Other goals were to find out what kinds of models were used as component models, and to examine the linkage methodology. Solution methods and their convergence properties were also a subject of interest. The report has the following structure. In chapter 2, a 'conceptual framework' is given. In chapter 3 a number of integrated models is described. In a table, a complete overview is presented of all described models. Finally, in chapter 4, the report is summarized, and conclusions are drawn regarding the advantages and drawbacks of integrated models. 8 figs., 29 refs

  9. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    Graham, Kenneth

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  10. Nordic hydrogen energy foresight - challenges of managing the interactive process

    Eerola, A.; Loikkanen, T.; Koljonen, T.;

    2005-01-01

    features of the project. The foresight process included a series of interactive workshops, supported by systems analysis and assessment of technical developments. The project partners and others interestedin the topic were linked by an informative project website. The aim of the project was to provide...... decision support for companies and research institutes in defining their R&D priorities and to assist governmental decisionmakers in making effectiveframework policies for successful introduction of hydrogen energy. Development of Nordic networks to gain the required critical mass in wider international...... contexts was considered equally important. The overall intention was to contribute to the strategicintelligence of the Nordic knowledge region in issues related to wellbeing and sustainable developments. The paper examines the rationale behind the project design and the contribution of the various steps of...

  11. Interacting ghost dark energy models with variable G and Λ

    Sadeghi, J.; Farahani, H. [Department of Physics, Mazandaran University, Babolsar, P .O .Box 47416-95447, Babolsar (Iran, Islamic Republic of); Khurshudyan, M. [CNR NANO Research Center S3, Via Campi 213a, 41125 Modena MO (Italy); Movsisyan, A., E-mail: pouriya@ipm.ir, E-mail: martiros.khurshudyan@nano.cnr.it, E-mail: artmovsissyan@yandex.ru, E-mail: h.farahani@umz.ac.ir [R and D Center of Semiconductor Devices and Nanotechnologies, Yerevan State University, 1 Alex Manoogian St. Yerevan (Armenia)

    2013-12-01

    In this paper we consider several phenomenological models of variable Λ. Model of a flat Universe with variable Λ and G is accepted. It is well known, that varying G and Λ gives rise to modified field equations and modified conservation laws, which gives rise to many different manipulations and assumptions in literature. We will consider two component fluid, which parameters will enter to Λ. Interaction between fluids with energy densities ρ{sub 1} and ρ{sub 2} assumed as Q = 3Hb(ρ{sub 1}+ρ{sub 2}). We have numerical analyze of important cosmological parameters like EoS parameter of the composed fluid and deceleration parameter q of the model.

  12. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  13. The savings of energy saving: quantifying interactions between energy supply and demand side policies for Portugal

    Simoes, Sofia; Seixas, Julia; Cleto, Joao; Fortes, Patricia (DCEA, New Univ. of Lisbon, GASA DCEA, FCT/UNL (Portugal))

    2009-07-01

    Defendants of energy efficiency have argued that policy-makers focus excessively on the 'trendier' energy supply and not enough on end-use energy efficiency. Focusing on supply side energy policies, as is the case of supporting large renewable electricity generation plants, without looking at the same time for the opportunities in the demand-side, may generate avoidable costs. This paper addresses the interactions between energy supply and demand side policies, by estimating the gains of end-use energy-efficiency and renewable applications in terms of (i) avoided electricity generation installed capacity, (ii) final energy consumption, (iii) share of renewables in final energy, as defined in the EU 'Climate action and renewable energy package', and also, (iv) reductions of greenhouse gases (GHG) emissions. The Portuguese energy system is used as a case-study, and the linear optimization technology TIMES{sub PT} model is used to generate four scenarios up to 2020 corresponding to different levels of penetration of efficient equipment, particularly in the commercial and residential sectors. In the two business-as-usual scenarios, the replacement of equipments from 2005 to 2020 follows the 2000-2005 trends and the National Energy Efficiency Action Plan targets. In the efficient scenarios all equipments can be replaced with more efficient ones. Results show that aggressive industry, residential and commercial demand-side measures can make unnecessary to increase the renewable electricity installed capacity in approximately 4.7GW as currently discussed by policy-makers, in order to meet the 31% target of share of renewables. These measures lead to a reduction of only 0-2% of total final energy, but this represents reduction of 11-14% in the commercial sector, and 1-4% in industry, with savings in total energy system costs of approximately 3000 M Euro - roughly the equivalent to 2% of the 2005 GDP.

  14. Enhanced energy transport owing to nonlinear interface interaction.

    Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang

    2016-01-01

    It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications. PMID:26787363

  15. Interactive seismic interpretation with piecewise global energy minimization

    Hollt, Thomas

    2011-03-01

    Increasing demands in world-wide energy consumption and oil depletion of large reservoirs have resulted in the need for exploring smaller and more complex oil reservoirs. Planning of the reservoir valorization usually starts with creating a model of the subsurface structures, including seismic faults and horizons. However, seismic interpretation and horizon tracing is a difficult and error-prone task, often resulting in hours of work needing to be manually repeated. In this paper, we propose a novel, interactive workflow for horizon interpretation based on well positions, which include additional geological and geophysical data captured by actual drillings. Instead of interpreting the volume slice-by-slice in 2D, we propose 3D seismic interpretation based on well positions. We introduce a combination of 2D and 3D minimal cost path and minimal cost surface tracing for extracting horizons with very little user input. By processing the volume based on well positions rather than slice-based, we are able to create a piecewise optimal horizon surface at interactive rates. We have integrated our system into a visual analysis platform which supports multiple linked views for fast verification, exploration and analysis of the extracted horizons. The system is currently being evaluated by our collaborating domain experts. © 2011 IEEE.

  16. Interaction of turbulence with flexible beams in fluidic energy harvesting

    Danesh Yazdi, Amir Hossein

    Advances in the development and fabrication of microelectronics have enhanced the energy efficiency of these devices to such an extent that they can now operate at very low power levels, typically on the order of a few microwatts or less. Batteries are primarily thought of as the most convenient source of power for electronic devices, but in instances where a device needs to be deployed in a difficult-to-access location such as under water, the added weight and especially maintenance of such a power source becomes costly. A solution that avoids this problem and is particularly attractive in a "deploy & forget" setting involves designing a device that continuously harvests energy from the surrounding environment. Piezoelectric energy harvesters, which employ the direct piezoelectric effect to convert mechanical strain into electrical energy, have garnered a great deal of attention in the literature. This work presents an overview of the experimental and analytical results related to fluidic energy extraction from vortex and turbulent flow using piezoelectric cantilever beams. In particular, the development of the FTGF (Fourier Transform-Green's Function) solution approach to the coupled, continuous electromechanical equations governing piezoelectric cantilever beams and the associated TFB (Train of Frozen Boxcars) method, which models the flow of vortices and turbulent eddies over the beams, is discussed. In addition, the behavior of fluidic energy harvesters in decaying isotropic, homogeneous grid turbulence generated by passive, semi-passive and active grids is examined and a novel grid-turbulence forcing model is introduced. An expression for the expected power output of the piezoelectric beam is obtained by utilizing this forcing function model in the single degree-of-freedom electromechanical equations. Furthermore, approximate, closed-form solutions to the theoretical expected power are derived from deterministic turbulence forcing models and are compared with

  17. Interactions of some fluids with dark energy in f(T) theory

    Nassur, S. B.; Houndjo, M. J. S.; Salako, I. G.; Tossa, J.

    2016-01-01

    We investigate the interaction of the dark energy with some fluids filling the universe in the framework of $f(T)$ theory, where $T$ denotes the torsion scalar, searching for the associated gravitational actions. Dark energy is assumed to be of gravitational origin. The interaction of dark energy and baryonic matter is considered resulting in a decay of the energy density of the ordinary matter, where universe appears as driven by cosmological constant. Furthermore we consider the interaction...

  18. A chemical approach for site-specific identification of NMR signals from protein side-chain NH{sub 3}{sup +} groups forming intermolecular ion pairs in protein–nucleic acid complexes

    Anderson, Kurtis M. [University of Texas Health Science Center at Houston, Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine (United States); Nguyen, Dan; Esadze, Alexandre; Zandrashvili, Levani [University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (United States); Gorenstein, David G. [University of Texas Health Science Center at Houston, Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine (United States); Iwahara, Junji, E-mail: juiwahar@utmb.edu, E-mail: j.iwahara@utmb.edu [University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (United States)

    2015-05-15

    Protein–nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three protein–DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH{sub 3}{sup +} groups forming the intermolecular ion pairs. A characteristic change in their {sup 1}H and {sup 15}N resonances upon this modification (i.e., substitution of phosphate to phosphorodithioate) can represent a signature of an intermolecular ion pair. Hydrogen-bond scalar coupling between protein side-chain {sup 15}N and DNA phosphorodithiaote {sup 31}P nuclei provides direct confirmation of the intermolecular ion pair. The same approach is likely applicable to protein–RNA complexes as well.

  19. A chemical approach for site-specific identification of NMR signals from protein side-chain NH3+ groups forming intermolecular ion pairs in protein–nucleic acid complexes

    Protein–nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three protein–DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH3+ groups forming the intermolecular ion pairs. A characteristic change in their 1H and 15N resonances upon this modification (i.e., substitution of phosphate to phosphorodithioate) can represent a signature of an intermolecular ion pair. Hydrogen-bond scalar coupling between protein side-chain 15N and DNA phosphorodithiaote 31P nuclei provides direct confirmation of the intermolecular ion pair. The same approach is likely applicable to protein–RNA complexes as well

  20. Interacting varying ghost dark energy models in general relativity

    Khurshudyan, Martiros; Khurshudyan, Amalya; Myrzakulov, Ratbay

    2015-06-01

    Motivated by recent developments in Cosmology we would like to consider an extension of the Ghost DE which we will name as varying Ghost DE. Ghost DE like other models was introduced recently as a possible way to explain accelerated expansion of the Universe. For the phenomenological origin of the varying Ghost dark energy in our Universe we can suggest an existence of some unknown dynamics between the Ghost Dark energy and a fluid which evaporated completely making sense of the proposed effect. Moreover, we assume that this was in the epochs and scales which are unreachable by present-day experiments, like in very early Universe. In this study we will investigate the model for cosmological validity. We will apply observational and causality constraints to illuminate physically correct behavior of the model from the phenomenological one. We saw that an interaction between the varying Ghost DE and cold DM (CDM) also provides a solution to the cosmological coincidence problem. And we found that the Ghost DE behaves as a fluid-like matter in early Universe.

  1. Global Optocal Potential for 6He Interactions at Low Energies

    A set of global optical potential has been derived to describe the interactions of 6He nucleus at energies near the Coulomb barrier. The elastic scattering angular distribution data for many systems ranging from 12C to 209Bi have been considered within the framework of the optical model by using the derived potential set and very good agreement has been obtained between theoretical results and experimental data. In the same study, we have also attempted to understand the reason why the elastic scattering of the halo nucleus 6He from heavy targets at incident energies near the Coulomb barrier displays a deviation from the standard Fresnel-type diffraction behavior due to the strong Coulomb dipole breakup coupling produced by the Coulomb field of the heavy target. In order to address this problem, we have also performed Continuum Discretized Coupled Channels calculations for the elastic scattering of 6He on 12C, 68Ni, 120Sn, 144Sm and 184Ta targets in order to determine the range of ZT where these large breakup coupling effect begins to be dominant. In our calculations, we find that the strong Coulomb dipole breakup coupling effect starts to be seen at around ZT=60.(author)

  2. Proton-nucleus interaction at low and intermediate energies

    The elastic scattering of protons from a number of nuclei between 12C and 208Pb is the subject matter of the present study at the projectile energies 30.3, 66.5 and 1044 MeV within the framework of the generalized diffraction models of Frahn and Venter. The best fit parameter values, the cut-off angular momentum T, the rounding parameter Δ and the real nuclear phase shift μ are obtained from the elastic scattering analyses of the entrance channel angular distributions. The interaction radius R, diffuseness d and the reaction cross section σr, have been estimated from the best fit parameters. Energy dependence of T, Δ and σr/πR2 and mass dependence of R are discussed. Finally, the inelastic scattering of protons exciting to the lowest 2+ collective states in 42,44,48Ca, 48Ti and 148,154Sm and 3- collective state in 40Ca are studied to check the validity of the derived elastic scattering parameters. The deformation parameters β2 and β3, so extracted are comparable with the available values in literature. (author)

  3. Neutral strange particle production in neutrino interactions at Tevatron energies

    This thesis reports on a study of neutral strange particle production by high energy muon-neutrinos. The neutrinos were obtained from a 800 GeV proton beam-dump at Fermilab. Neutrino events were observed using a hybrid bubble chamber detector system. The data contained deep inelastic neutrino-nucleon interactions with an average momentum transfer 2> = 23 (GeV/c)2. Rates for K0 and Λ production in neutrino and anti-neutrino charged current events are presented. The distributions of these particles in Feynman x and rapidity are also studied. Significant differences were observed in the production mechanism for the K0 meson and the Λ baryon. The production rates of K0's were observed to increase with energy, whereas the rates for Λ production remained essentially constant. In Feynman x, the K0's were produced in the central region and the Λ's were produced backwards. The data are compared with the LUND monte carlo for string fragmentation. In the monte carlo, K0's are mostly produced from s/bar s/ pair production during fragmentation. The Λ's are generally produced through recombination with the diquark from the target nucleon. The data agree with this model for strange particle production. 39 refs., 24 figs., 10 tabs

  4. Transetherification on polyols by intra- and intermolecular nucleophilic substitutions.

    Takahiro Muraoka

    Full Text Available Transetherification on polyols involving intra- and intermolecular nucleophilic substitutions is reported. Di- or trialkoxide formation of propane-1,3-diol or 2-(hydroxymethylpropane-1,3-diol derivatives by NaH triggers the reaction via oxetanes formation, where the order to add NaH and a polyol significantly influences the yields of products. It was demonstrated that the protective group on the pentaerythritol skeleton is apparently transferred to the hydrophilic and hydrophobic chain molecules bearing a leaving group in one-step, and a protective group conversion from tosyl to benzyl was successful using a benzyl-appending triol to afford a desired product in 67% yield.

  5. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    Nagy, Peter I.

    2014-01-01

    A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with int...

  6. Biomolecular interactions probed by fluorescence resonance energy transfer

    Lange, Daniela Charlotte

    2000-09-01

    This thesis describes how a physical phenomenon, Fluorescence Resonance Energy Transfer (FRET), can be exploited for the study of interactions between biomolecules. The physical basis of this phenomenon is discussed and it is described how some of its characteristics can be exploited in measurement. A recently introduced method, photobleaching FRET microscopy, was implemented and its image analysis refined to suit our biological context. Further, a new technique is proposed, which combines FRET with confocal laser scanning microscopy to optimize resolution and to allow for 3D-studies in living cells. The first part of this thesis presents the application of FRET to the study of oligomerization of G-protein coupled receptors (GPCRs), which was performed at the Fraser Laboratories at McGill University in Montreal. It is demonstrated how FRET microscopy allowed us to circumvent problems of traditional biochemical approaches and provided the first direct evidence for GPCR oligomerization in intact cells. We found that somatostatin receptors (SSTRs) functionally interact by forming oligomers with their own kind, with different SSTR isoforms, and even with distantly related GPCRs, such as dopamine receptors, the latter of which is breaking with the dogma that GPCRs would only pair up with their own kind. The high sensitivity of the FRET technique allowed us to characterize these interactions under more physiological conditions, which lead to the observation that oligomerization is induced by receptor agonist. We further studied the differential effects of agonists and antagonists on receptor oligomerization, leading to a model for the molecular mechanism underlying agonist/antagonist function and receptor activation. The second part was carried out at the Neurobiology Laboratory of the VA Medical Center in Newington, CT. The objective was to further our understanding of Niemann- Pick type C disease, which is characterized by a defect in intracellular cholesterol

  7. Dark Energy-Dark Matter Interaction from the Abell Cluster A586

    Bertolami, Orfeu; Pedro, Francisco Gil; Delliou, Morgan Le

    2007-01-01

    We find that deviation from the virial equilibrium of the Abell Cluster A586 yields evidence of the interaction between dark matter and dark energy. We argue that this interaction might imply a violation of the Equivalence Principle. Our analysis show that evidence is found in the context of two different models of dark energy-dark matter interaction.

  8. Dark Energy-Dark Matter Interaction from the Abell Cluster A586

    Bertolami, Orfeu; Delliou, Morgan Le

    2008-01-01

    We find that deviation from the virial equilibrium of the Abell Cluster A586 yields evidence of the interaction between dark matter and dark energy. We argue that this interaction might imply a violation of the Equivalence Principle. Our analysis show that evidence is found in the context of two different models of dark energy-dark matter interaction.

  9. New mechanism for the ring-opening polymerization of lactones? Uranyl aryloxide-induced intermolecular catalysis.

    Walshe, Aurora; Fang, Jian; Maron, Laurent; Baker, Robert J

    2013-08-01

    The uranyl aryloxide [UO2(OAr)2(THF)2] (Ar = 2,6-(t)Bu2-C6H2) is an active catalyst for the ring-opening cyclo-oligomerization of ε-caprolactone and δ-valerolactone but not for β-butyrolactone, γ-butyrolactone, and rac-lactide. (1)H EXSY measurements give the thermodynamic parameters for exchange of monomer and coordinated THF, and rates of polymerization have been determined. A comprehensive theoretical examination of the mechanism is discussed. From both experiment and theory, the initiation step is intramolecular and in keeping with the accepted mechanism, while computational studies indicate that propagation can go via an intermolecular pathway, which is the first time this has been observed. The lack of polymerization for the inactive monomers has been investigated theoretically and C-H···π interactions stabilize the coordination of the less rigid monomers. PMID:23879703

  10. Analysing the interactions between renewable energy promotion and energy efficiency support schemes: The impact of different instruments and design elements

    CO2 emissions reduction, renewable energy deployment and energy efficiency are three main energy/environmental goals, particularly in Europe. Their relevance has led to the implementation of support schemes in these realms. Their coexistence may lead to overlaps, synergies and conflicts between them. The aim of this paper is to analyse the interactions between energy efficiency measures and renewable energy promotion, whereas previous analyses have focused on the interactions between emissions trading schemes (ETS) and energy efficiency measures and ETS and renewable energy promotion schemes. Furthermore, the analysis in this paper transcends the 'certificate' debate (i.e., tradable green and white certificates) and considers other instruments, particularly feed-in tariffs for renewable electricity. The goal is to identify positive and negative interactions between energy efficiency and renewable electricity promotion and to assess whether the choice of specific instruments and design elements within those instruments affects the results of the interactions.

  11. Impact of Electron-Electron Cusp on Configuration Interaction Energies

    Prendergast, David; Nolan, M.; Filippi, Claudia; Fahy, Stephen; Greer, J. C.

    2001-01-01

    The effect of the electron-electron cusp on the convergence of configuration interaction (CI) wave functions is examined. By analogy with the pseudopotential approach for electron-ion interactions, an effective electron-electron interaction is developed which closely reproduces the scattering of the Coulomb interaction but is smooth and finite at zero electron-electron separation. The exact many-electron wave function for this smooth effective interaction has no cusp at zero electron-electron...

  12. Optimal energy production of interacting wave power devices

    Beels, C.; P. Troch; De Rouck, J

    2007-01-01

    The need for renewable energy is rising at light-speed. The increasing energy demand, the greenhouse effect and the approaching exhaustion of conventional energy resources, forces humanity to use energy more economically and to develop alternative energy supplies, a.o. wave energy. A Wave Energy Converter (WEC) converts the kinetic and potential energy in ocean waves into electricity. A single WEC, with a capacity comparable to a classic power plant (e.g. 400MW), is technologically impossible...

  13. A Hubbard model for ultracold bosonic atoms interacting via zero-point-energy induced three-body interactions

    Paul, Saurabh; Johnson, P R; Tiesinga, Eite

    2016-01-01

    We show that for ultra-cold neutral bosonic atoms held in a three-dimensional periodic potential or optical lattice, a Hubbard model with dominant, attractive three-body interactions can be generated. In fact, we derive that the effect of pair-wise interactions can be made small or zero starting from the realization that collisions occur at the zero-point energy of an optical lattice site and the strength of the interactions is energy dependent from effective-range contributions. We determine...

  14. Notes on dark energy interacting with dark matter and unparticle in loop quantum cosmology

    Jamil, Mubasher; Momeni, D.; Rashid, Muneer A.

    2011-01-01

    We investigate the behavior of dark energy interacting with dark matter and unparticle in the framework of loop quantum cosmology. In four toy models, we study the interaction between the cosmic components by choosing different coupling functions representing the interaction. We found that there are only two attractor solutions namely dark energy dominated and dark matter dominated Universe. The other two models are unstable, as they predict either a dark energy filled Universe or one complet...

  15. Heat energy from hydrogen-metal nuclear interactions

    Hadjichristos, John; Gluck, Peter

    2013-11-01

    The discovery of the Fleischmann-Pons Effect in 1989, a promise of an abundant, cheap and clean energy source was premature in the sense that theoretical knowledge, relative technologies and the experimental tools necessary for understanding and for scale-up still were not available. Therefore the field, despite efforts and diversification remained quasi-stagnant, the effect (a scientific certainty) being of low intensity leading to mainstream science to reject the phenomenon and not supporting its study. Recently however, the situation has changed, a new paradigm is in statunascendi and the obstacles are systematically removed by innovative approaches. Defkalion, a Greek company (that recently moved in Canada for faster progress) has elaborated an original technology for the Ni-H system [1-3]. It is about the activation of hydrogen and creation of nuclear active nano-cavities in the metal through a multi-stage interaction, materializing some recent breakthrough announcements in nanotechnology, superconductivity, plasma physics, astrophysics and material science. A pre-industrial generator and a novel mass-spectrometry instrumentations were created. Simultaneously, a meta-theory of phenomena was sketched in collaboration with Prof. Y. Kim (Purdue U).

  16. Evidence of pressure induced intermolecular proton transfer via mutarotation: the case of supercooled d-fructose.

    Cecotka, Adam; Tripathy, Satya N; Paluch, Marian

    2015-07-15

    This paper describes a systematic investigation on the role of pressure in mutarotation kinetics of supercooled d-fructose using dielectric spectroscopy. The structural relaxation time acts as a suitable dynamical observable to monitor the mutarotation process that enables the construction of the kinetic curves. The reaction kinetic shapes have been analyzed using the Avrami model. At low temperature, sigmoidal kinetic curves are noted, which correspond to the high concentration of furanosidic forms. The magnitude of activation energy of the process significantly decreases with increasing pressure and is comparable to the solvated systems at 100 MPa. A potential connection between cooperative motion and the origin of intermolecular proton transfer via mutarotation at elevated pressure is also discussed. These experimental observations have fundamental significance on theoretical explanation of the mechanism involving mutarotation in sugars. PMID:26144525

  17. Supramolecular interactions in the solid state

    Giuseppe Resnati

    2015-11-01

    Full Text Available In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1 an overview and historical review of halogen bonding; (2 exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3 the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4 strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.

  18. On the origins of large interaction-induced first hyperpolarizabilities in hydrogen-bonded π-electronic complexes.

    Góra, Robert W; Błasiak, Bartosz

    2013-08-01

    In this article we elucidate the origins of interaction-induced linear and nonlinear electro-optic properties of model hydrogen-bonded π-electronic complexes. In particular we report on contributions due to various interaction energy terms to excess dipole moments (Δμ), electric dipole polarizabilities (Δα), and first hyperpolarizabilities (Δβ), focusing on the latter. The analysis of intermolecular interaction-induced electric properties is performed for selected model systems including quasi-linear dimers of urea, diformamide, 4-pyridone, 4-nitroaniline, and the complex of hydrogen fluoride with nitroacetylene. The nature of intermolecular interactions as well as of the Δμ and Δα is very similar in all studied complexes. However, partitioning of Δβ into physically well-defined components reveals that the origins of this term, the magnitude of which is often comparable to the hyperpolarizabilities of isolated monomers, are different in each case. Our results indicate that, even though hydrogen bonding usually diminishes the nonlinear response of interacting species, the first hyperpolarizability of complexes with the nitro group acting as a proton acceptor is substantially increased, essentially due to field-induced changes of electrostatic interactions between subsystems. However, in the remaining complexes the origins of Δβ are much more involved. Even though at large intermolecular separations the origins of interaction-induced electric properties are essentially due to the field-induced electrostatic and induction interactions, in the vicinity of van der Waals minimum the overlap effects cannot be neglected since they may substantially alter the predicted excess properties or even determine their magnitude and sign. On the other hand the Δβ contribution due to dispersion interactions is usually negligible. Interestingly, the values of interaction-induced first hyperpolarizability in some cases depend strongly on the intermolecular separation

  19. Interacting Holographic Dark Energy in the Scalar Gauss–Bonnet Gravity

    We study cosmological application of interacting holographic dark energy density in the scalar Gauss–Bonnet framework. We employ the interacting holographic model of dark energy to obtain the equation of state for the interacting holographic energy density in a spatially flat universe. Our calculations show that taking ΩΛ = 0.73 for the present time, it is possible to have wΛeff crossing –1. This implies that one can generate a phantom-like equation of state from the interacting holographic dark energy model in flat universe in the scalar Gauss–Bonnet cosmology framework. Then we reconstruct the potential of the scalar field

  20. Weak Gravity Conjecture and Holographic Dark Energy Model with Interaction and Spatial Curvature

    SUN Cheng-Yi

    2011-01-01

    In the paper, we apply the weak gravity conjecture to the holographic quintessence model of dark energy.Three different holographic dark energy models are considered: without the interaction in the non-flat universe; with interaction in the flat universe; with interaction in the non-flat universe. We find that only in the models with the spatial curvature and interaction term proportional to the energy density of matter, it is possible for the weak gravity conjecture to be satisfied. And it seems that the weak gravity conjecture favors an open universe and the decaying of matter into dark energy.

  1. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.

  2. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  3. Scanning probe and optical tweezer investigations of biomolecular interactions

    Rigby-Singleton, Shellie

    2002-07-01

    A complex array of intermolecular forces controls the interactions between and within biological molecules. The desire to empirically explore the fundamental forces has led to the development of several biophysical techniques. Of these, the atomic force microscope (AFM) and the optical tweezers have been employed throughout this thesis to monitor the intermolecular forces involved in biomolecular interactions. The AFM is a well-established force sensing technique capable of measuring biomolecular interactions at a single molecule level. However, its versatility has not been extrapolated to the investigation of a drug-enzyme complex. The energy landscape for the force induced dissociation of the DHFR-methotrexate complex was studied. Revealing an energy barrier to dissociation located {approx}0.3 nm from the bound state. Unfortunately, the AFM has a limited range of accessible loading rates and in order to profile the complete energy landscape alternative force sensing instrumentation should be considered, for example the BFP and optical tweezers. Thus, this thesis outlines the development and construction an optical trap capable of measuring intermolecular forces between biomolecules at the single molecule level. To demonstrate the force sensing abilities of the optical set up, proof of principle measurements were performed which investigate the interactions between proteins and polymer surfaces subjected to varying degrees of argon plasma treatment. Complementary data was gained from measurements performed independently by the AFM. Changes in polymer resistance to proteins as a response to changes in polymer surface chemistry were detected utilising both AFM and optical tweezers measurements. Finally, the AFM and optical tweezers were employed as ultrasensitive biosensors. Single molecule investigations of the antibody-antigen interaction between the cardiac troponin I marker and its complementary antibody, reveals the impact therapeutic concentrations of heparin

  4. Scattering coefficients and bound states for high-energy transparent $\\delta-\\delta^{\\prime}$ interactions

    Pedrelli, Danilo C; Braga, Alessandra N; Alves, Danilo T

    2016-01-01

    We propose a model for energy-dependent $\\delta-\\delta^{\\prime}$ interactions which yields scattering coefficients exhibiting full transmission for high-energy incident particles, also computing the bound solutions in one-dimension nonrelativistic quantum mechanics.

  5. Rewetting phenomena and their relation to intermolecular forces between a hot wall and the fluid

    The rewetting phenomena and the different physical concepts which are used in their modelisation are reviewed. The present work studies the effect of the intermolecular forces between the hot wall and the fluid on this phase transition. Using suitable approximations, a local equation of state is obtained by the treatment of the fluid-fluid and fluid-wall intermolecular interactions. This local equation of state depends on the distance from the wall, and the critical pressure and temperature become a function of the distance from the wall, whereas the critical density is left constant throughout the fluid. At the wall, the critical pressure and temperature are half their bulk values and increase towards the bulk value as the distance from the wall increases. The penetration of a temperature profile in this fluid is studied by assuming that the liquid density is not strongly affected by this temperature profile as long as there is no phase transition. It is shown that the phase transition will occur extremely rapidly when the interfacial temperature upon contact is higher than the minimum of the local spinodal temperature, which varies with the distance from the wall. The result ist cast in the form of an interfacial rewetting temperature fTc above which rewetting of the surface by liquid-wall contacts is not expected because these contacts will be terminated in extremely short times. Comparing the theory with available data shows that in the usual rewetting situations the theory reduces to the use of the bulk spinodal temperature. For surfaces coated with poorly wetted materials the correction factor due to surface effects applies, reducing the rewetting temperature, in agreement with the experimental data. For liquid metals it appears that the theory is applied in a region where the basic theoretical approximations are very coarse; but even in that case the experimental trend is qualitatively predicted by the theory. (author) 43 figs., 11 tabs., 105 refs

  6. Ab initio calculation of molecular energies including parity violating interactions

    A new approach, RHF-CIS, based on the perturbation of the ground state RHF wave function by the CIS excitations, has been implemented for evaluation of energy of parity violating interaction in molecules, Epv. The earlier approach, RHF-SDE, was based on the perturbation of the RHF ground states by the single-determinant ''excitations'' (SDE). The results obtained show the dramatic difference between Epv values in the RHF-CIS framework and those in the RHF-SDE framework: the Epv values of the RHF-CIS formalism are more than one order of magnitude greater compared to the RHF-SDE formalism as well as the corresponding tensor components. The maximal total value obtained for hydrogen peroxide in the RHF-CIS framework is 3.661 X 10-19 EH (DZ** basis set) while the maximal Epv value for the RHF-SDE formalism is just 3.635 X 10-20 EH (TZ basis set). It is remarkable that both in the RFH-CIS and in the RHF-SDE approaches the diagonal tensor components of Epv strictly follow the geometry of a molecule and are always different from zero at chiral conformations. The zeros of the total Epv at chiral geometries are now found to be the results of the interplay between the diagonal tensor components values. We have carried out exhaustive analysis of the RHF-SDE formalism and found that it is not sufficiently accurate for studies of Epv. To this end, we have completely reproduced the previous work, which has been done in the RHF-SDE frame-work, and developed it further, studying how the RHF-SDE results vary when changing size and quality of basis sets. This last resource does not save the RHF-SDE formalism for evaluations of Epv from the general failure. Packages of FORTRAN routines called ENWEAK/RHFSDE-93 and ENWEAK/RHFCIS-94 have been developed which run on top of an ab initio MO package. We used 6-31G and 6-31G**, DZ and DZ**, TZ and TZ**, and (10s, 6p,**) basis sets. We will discuss the importance of the present results for possible measurement of the parity violating energy

  7. Study of energy transfer between molecules placed in the vicinity of a bimetal composite nanoparticle

    Daneshfar, Nader, E-mail: ndaneshfar@gmail.com, E-mail: ndaneshfar@razi.ac.ir [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-10-15

    In this study, the problem of energy transfer between two molecules near a bimetallic composite nanoparticle is investigated. The influence of the interaction between metal particles on the intermolecular energy is studied, because when two metal nanoparticles are placed close to each other, their plasmons coupling giving rise to new features. On the other hand, we discuss the transfer of resonance energy between donor and acceptor molecules (a single donor and a single acceptor) in the presence of a nanocomposite containing gold and silver nanoparticles based on the Maxwell-Garnett effective medium theory and within the quasistatic limit. We show that the interaction energy strongly depends on the particle size, the filling factor of metal particles, the intermolecular distance (the distance between the donor and acceptor molecules), and the dielectric constant of host matrix.

  8. Violation of Feynman scaling and energy dependence of multiplicity for high energy hadron interactions

    Buccella, F.; Popova, L. [Dipartimento di Sci. Fisiche, Naples Univ. (Italy)

    1995-10-01

    We have analysed the momentum spectra of the secondary particles in pp interactions predicted by different models, comparing them with accelerator data from 19.7 GeV to 1.8 TeV (CMS). All models predicting asymptotic behaviour of secondary spectra with Feynman scaling in the fragmentation region lead to a rather slow increase of multiplicity in contradiction to the accelerator data. It is shown that the pure phenomenological model, which is based on the semi-inclusive spectra from ISR and FNAL collider experiments at 19.7 GeV, and extrapolated to higher energies by assuming violated Feynman scaling in the entire phase space, describes the data well in the whole accelerator range. This model is also relevant for application in the study of cosmic rays at high energies. (author)

  9. Violation of Feynman scaling and energy dependence of multiplicity for high energy hadron interactions

    We have analysed the momentum spectra of the secondary particles in pp interactions predicted by different models, comparing them with accelerator data from 19.7 GeV to 1.8 TeV (CMS). All models predicting asymptotic behaviour of secondary spectra with Feynman scaling in the fragmentation region lead to a rather slow increase of multiplicity in contradiction to the accelerator data. It is shown that the pure phenomenological model, which is based on the semi-inclusive spectra from ISR and FNAL collider experiments at 19.7 GeV, and extrapolated to higher energies by assuming violated Feynman scaling in the entire phase space, describes the data well in the whole accelerator range. This model is also relevant for application in the study of cosmic rays at high energies. (author)

  10. Spectral energy transfer of atmospheric gravity waves through sum and difference nonlinear interactions

    Huang, K.M. [Wuhan Univ. (China). School of Electronic Information; Chinese Academey of Sciences, Hefei (China). Key Lab. of Geospace Environment; Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China); Liu, A.Z.; Li, Z. [Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Zhang, S.D.; Yi, F. [Wuhan Univ. (China). School of Electronic Information; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China)

    2012-07-01

    Nonlinear interactions of gravity waves are studied with a two-dimensional, fully nonlinear model. The energy exchanges among resonant and near-resonant triads are examined in order to understand the spectral energy transfer through interactions. The results show that in both resonant and near-resonant interactions, the energy exchange between two high frequency waves is strong, but the energy transfer from large to small vertical scale waves is rather weak. This suggests that the energy cascade toward large vertical wavenumbers through nonlinear interaction is inefficient, which is different from the rapid turbulence cascade. Because of considerable energy exchange, nonlinear interactions can effectively spread high frequency spectrum, and play a significant role in limiting wave amplitude growth and transferring energy into higher altitudes. In resonant interaction, the interacting waves obey the resonant matching conditions, and resonant excitation is reversible, while near-resonant excitation is not so. Although near-resonant interaction shows the complexity of match relation, numerical experiments show an interesting result that when sum and difference near-resonant interactions occur between high and low frequency waves, the wave vectors tend to approximately match in horizontal direction, and the frequency of the excited waves is also close to the matching value. (orig.)

  11. Experiments on proton-proton interactions at the Institute of High- Energy Physics, Serpukhov, USSR

    Wetherell, Alan M

    1973-01-01

    A summary of the work carried out at the Institute for High-Energy Physics, Serpukhov, USSR, on proton-proton interactions at energies between 10 and 70 GeV is given. The experiments comprise studies of small angle elastic scattering, of total cross-sections and of interactions in a hydrogen bubble chamber. (10 refs).

  12. Hubbard model for ultracold bosonic atoms interacting via zero-point-energy-induced three-body interactions

    Paul, Saurabh; Johnson, P. R.; Tiesinga, Eite

    2016-04-01

    We show that, for ultracold neutral bosonic atoms held in a three-dimensional periodic potential or optical lattice, a Hubbard model with dominant, attractive three-body interactions can be generated. In fact, we derive that the effect of pairwise interactions can be made small or zero starting from the realization that collisions occur at the zero-point energy of an optical lattice site and the strength of the interactions is energy dependent from effective-range contributions. We determine the strength of the two- and three-body interactions for scattering from van der Waals potentials and near Fano-Feshbach resonances. For van der Waals potentials, which for example describe scattering of alkaline-earth atoms, we find that the pairwise interaction can only be turned off for species with a small negative scattering length, leaving the 88Sr isotope a possible candidate. Interestingly, for collisional magnetic Feshbach resonances this restriction does not apply and there often exist magnetic fields where the two-body interaction is small. We illustrate this result for several known narrow resonances between alkali-metal atoms as well as chromium atoms. Finally, we compare the size of the three-body interaction with hopping rates and describe limits due to three-body recombination.

  13. Distributed energy resources in grid interactive AC microgrids

    Wang, Xiongfei; Guerrero, Josep; Chen, Zhe;

    2010-01-01

    Increased penetration of distributed energy resources (DER) and large-scale deployment of renewable energy sources are challenging the entire architecture of traditional power system. Microgrid, featuring higher flexibility and reliability, becomes an attractive candidate for the configuration of...

  14. Interaction between energies, global warming and greenhouse effect

    This article presents the complex energy efficiency concern of a high energy consuming industry (with the example of the cement industry) with respect to the actual European energy and environmental policies. The author stresses on the competitiveness problems generated by high energy prices, pollution taxes and emissions trading systems, and on the existing disparities in this domain among European countries and between European and non-European countries. (J.S.)

  15. Investigation of the intermolecular recognition mechanism between the E3 ubiquitin ligase Keap1 and substrate based on multiple substrates analysis.

    Jiang, Zheng-Yu; Xu, Li-Li; Lu, Meng-Chen; Pan, Yang; Huang, Hao-Ze; Zhang, Xiao-Jin; Sun, Hao-Peng; You, Qi-Dong

    2014-12-01

    E3 ubiquitin ligases are attractive drug targets due to their specificity to the ubiquitin machinery. However, the development of E3 ligase inhibitors has proven challenging for the fact that they must disrupt protein-protein interactions (PPIs). The E3 ligase involved in interactome provide new hope for the discovery of the E3 ligase inhibitors. These currently known natural binding partners of the E3 ligase can benefit the discovery of other unknown substrates and also the E3 ligase inhibitors. Herein, we present a novel strategy that using multiple substrates to elucidate the molecular recognition mechanism of E3 ubiquitin ligase. Molecular dynamics simulation, molecular mechanics-generalized born surface area (MM-GBSA) binding energy calculation and energy decomposition scheme were incorporated to evaluate the quantitative contributions of sub-pocket and per-residue to binding. In this case, Kelch-like ECH-associated protein-1 (Keap1), a substrate adaptor component of the Cullin-RING ubiquitin ligases complex, is applied for the investigation of how it recognize its substrates, especially Nrf2, a master regulator of the antioxidant response. By analyzing multiple substrates binding determinants, we found that both the polar sub-pockets (P1 and P2) and the nonpolar sub-pockets (P4 and P5) of Keap1 can make remarkable contributions to intermolecular interactions. This finding stresses the requirement for substrates to interact with the polar and nonpolar sub-pockets simultaneously. The results discussed in this paper not only show the binding determinants of the Keap1 substrates but also provide valuable implications for both Keap1 substrate discovery and PPI inhibitor design. PMID:25301376

  16. Thermodynamical description of the interaction between holographic dark energy and dark matter

    We present a thermodynamical description of the interaction between holographic dark energy and dark matter. If holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. A small interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. From this correction we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests

  17. Thermodynamical description of the interaction between holographic dark energy and dark matter

    Wang, Bin; Pavon, Diego; Abdalla, Elcio

    2008-01-01

    We present a thermodynamical description of the interaction between dark energy and dark matter. If dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. A small interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. From this correction we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests.

  18. Thermodynamical description of the interaction between holographic dark energy and dark matter

    Wang, Bin; Lin, Chi-Yong; Pavón, Diego; Abdalla, Elcio

    2008-04-01

    We present a thermodynamical description of the interaction between holographic dark energy and dark matter. If holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. A small interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. From this correction we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests.

  19. Thermodynamical description of the interaction between holographic dark energy and dark matter

    Wang, Bin; Lin, Chi-Yong; Pavon, Diego; Abdalla, Elcio

    2007-01-01

    We present a thermodynamical description of the interaction between holographic dark energy and dark matter. If holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. A small interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. From this correction we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and...

  20. Enantioselective Intermolecular [2 + 2] Photocycloaddition Reactions of 2(1H)-Quinolones Induced by Visible Light Irradiation.

    Tröster, Andreas; Alonso, Rafael; Bauer, Andreas; Bach, Thorsten

    2016-06-29

    In the presence of a chiral thioxanthone catalyst (10 mol %) the title compounds underwent a clean intermolecular [2 + 2] photocycloaddition with electron-deficient olefins at λ = 419 nm. The reactions not only proceeded with excellent regio- and diastereoselectivity but also delivered the respective cyclobutane products with significant enantiomeric excess (up to 95% ee). Key to the success of the reactions is a two-point hydrogen bonding between quinolone and catalyst enabling efficient energy transfer and high enantioface differentiation. Preliminary work indicated that solar irradiation can be used for this process and that the substrate scope can be further expanded to isoquinolones. PMID:27268908