WorldWideScience

Sample records for inspired visual representation

  1. Learning Deep Visual Representations

    OpenAIRE

    Goh, Hanlin

    2013-01-01

    Recent advancements in the areas of deep learning and visual information processing have presented an opportunity to unite both fields. These complementary fields combine to tackle the problem of classifying images into their semantic categories. Deep learning brings learning and representational capabilities to a visual processing model that is adapted for image classification. This thesis addresses problems that lead to the proposal of learning deep visual representations for image classifi...

  2. Transformation Properties of Learned Visual Representations

    OpenAIRE

    Cohen, Taco S.; Welling, Max

    2014-01-01

    When a three-dimensional object moves through a scene, a corresponding change occurs on the image plane and in the visual representation constructed by a learning algorithm. Starting with the idea that a good representation is one that transforms linearly under scene motions, we use standard results from group representation theory to show that any such representation is equivalent to a combination of particularly simple irreducible representations. We derive a striking rela...

  3. The evolution of visual representation

    OpenAIRE

    Gimbel, David Nelson; Moorey, Dr P. R. S.

    2002-01-01

    ?PrefaceThe corpus of artifacts from the Lagas state constitutes what is arguably the single largest cohesive body of elite representational display forms thus far discovered to have come from Early Dynastic (ED) Sumer. Unlike the equally extraordinary finds from ED levels of Ur, which consist primarily of grave goods and small finds (Woolley 1934; Woolley 1956), what is unique about the finds from Lagas is that the majority of them are programmatic artifacts that were intend...

  4. Indexing and Retrieval of Visual Design Representations:

    OpenAIRE

    Koutamanis, A.; Halin, Gilles; Kvan, T.

    2007-01-01

    Indexing and retrieval of architectural visual databases refer to multiple levelsof abstraction and various points of view which may co-exist in a single image.This complexity is increased by the necessity to structure architectural images intowell-defined, meaningful representations. We propose that the correlation of domainanalysis and general methods and techniques provides the background to thesolution of most problems and a deeper understanding of the structure of indexingand retrieval i...

  5. Robust Visual Tracking via Fuzzy Kernel Representation

    Directory of Open Access Journals (Sweden)

    Zhiqiang Wen

    2013-05-01

    Full Text Available A robust visual kernel tracking approach is presented for solving the problem of existing background pixels in object model. At first, after definition of fuzzy set on image is given, a fuzzy factor is embedded into object model to form the fuzzy kernel representation. Secondly, a fuzzy membership functions are generated by center-surround approach and log likelihood ratio of feature distributions. Thirdly, details about fuzzy kernel tracking algorithm is provided. After that, methods of parameter selection and performance evaluation for tracking algorithm are proposed. At last, a mass of experimental results are done to show our method can reduce the influence of the incomplete representation of object model via integrating both color features and background features.

  6. Visual texture accurate material appearance measurement, representation and modeling

    CERN Document Server

    Haindl, Michal

    2013-01-01

    This book surveys the state of the art in multidimensional, physically-correct visual texture modeling. Features: reviews the entire process of texture synthesis, including material appearance representation, measurement, analysis, compression, modeling, editing, visualization, and perceptual evaluation; explains the derivation of the most common representations of visual texture, discussing their properties, advantages, and limitations; describes a range of techniques for the measurement of visual texture, including BRDF, SVBRDF, BTF and BSSRDF; investigates the visualization of textural info

  7. Visual tracking with multifeature joint sparse representation

    Science.gov (United States)

    Dong, Wenhui; Chang, Faliang; Zhao, Zijian

    2015-01-01

    We present a visual tracking method with feature fusion via joint sparse presentation. The proposed method describes each target candidate by combining different features and joint sparse representation for robustness in coefficient estimation. Then, we build a probabilistic observation model based on the approximation error between the recovered candidate image and the observed sample. Finally, this observation model is integrated with a stochastic affine motion model to form a particle filter framework for visual tracking. Furthermore, a dynamic and robust template update strategy is applied to adapt the appearance variations of the target and reduce the possibility of drifting. Quantitative evaluations on challenging benchmark video sequences demonstrate that the proposed method is effective and can perform favorably compared to several state-of-the-art methods.

  8. Bio-inspired visual ego-rotation sensor for MAVs.

    Science.gov (United States)

    Plett, Johannes; Bahl, Armin; Buss, Martin; Kühnlenz, Kolja; Borst, Alexander

    2012-01-01

    Flies are capable of extraordinary flight maneuvers at very high speeds largely due to their highly elaborate visual system. In this work we present a fly-inspired FPGA based sensor system able to visually sense rotations around different body axes, for use on board micro aerial vehicles (MAVs). Rotation sensing is performed analogously to the fly's VS cell network using zero-crossing detection. An additional key feature of our system is the ease of adding new functionalities akin to the different tasks attributed to the fly's lobula plate tangential cell network, such as object avoidance or collision detection. Our implementation consists of a modified eneo SC-MVC01 SmartCam module and a custom built circuit board, weighing less than 200 g and consuming less than 4 W while featuring 57,600 individual two-dimensional elementary motion detectors, a 185° field of view and a frame rate of 350 frames per second. This makes our sensor system compact in terms of size, weight and power requirements for easy incorporation into MAV platforms, while autonomously performing all sensing and processing on-board and in real time. PMID:22350507

  9. Cross-cultural understanding through visual representation

    Scientific Electronic Library Online (English)

    Kristina, Beckman; Susan N, Smith.

    2006-01-01

    Full Text Available SciELO Colombia | Language: English Abstract in spanish Este artículo analiza los dibujos de los estudiantes internacionales que hicieron de su país natal para su tarea de composición. Estos estudiantes de inglés como segundo idioma a menudo tienen dificultad llenando los requisitos del programa de escritura cuyo enfoque es el discurso argumentativo con [...] tesis y apoyo. Cualquier ensayo considerado irrelevante se censura y se considera estar "fuera del topico". Algunos estudiantes ven esta estructura demasiado directa e irrespetuosa. Mientras que no todos los estudiantes encuentran fácil la representación visual, los dibujos relevan ciertas características multiculturales básicias incrustadas en la escritura que se reflejan en las asignaturas. Primeramente discutimos los dibujos para el contenido retórico y luego lo discutimos utilizando la perspectiva de los estudiantes. Finalmente, analizamos como se formó nuestra propia pedagogía. Abstract in english This article analyzes international students' drawings of their home countries' essay assignments. These English as a Second Language (ESL) students often have difficulty in meeting the local demands of our Writing Program, which centers on argumentative writing with thesis and support. Any part of [...] an essay deemed irrelevant is censured as "off topic;" some students see this structure as too direct or even impolite. While not all students found visual representation easy, the drawings reveal some basic assumptions about writing embodied in their native cultures' assignments. We discuss the drawings first for visual rhetorical content, then in the students' own terms. Last, we consider how our own pedagogy has been shaped.

  10. Acoustic Tactile Representation of Visual Information

    Science.gov (United States)

    Silva, Pubudu Madhawa

    Our goal is to explore the use of hearing and touch to convey graphical and pictorial information to visually impaired people. Our focus is on dynamic, interactive display of visual information using existing, widely available devices, such as smart phones and tablets with touch sensitive screens. We propose a new approach for acoustic-tactile representation of visual signals that can be implemented on a touch screen and allows the user to actively explore a two-dimensional layout consisting of one or more objects with a finger or a stylus while listening to auditory feedback via stereo headphones. The proposed approach is acoustic-tactile because sound is used as the primary source of information for object localization and identification, while touch is used for pointing and kinesthetic feedback. A static overlay of raised-dot tactile patterns can also be added. A key distinguishing feature of the proposed approach is the use of spatial sound (directional and distance cues) to facilitate the active exploration of the layout. We consider a variety of configurations for acoustic-tactile rendering of object size, shape, identity, and location, as well as for the overall perception of simple layouts and scenes. While our primary goal is to explore the fundamental capabilities and limitations of representing visual information in acoustic-tactile form, we also consider a number of relatively simple configurations that can be tied to specific applications. In particular, we consider a simple scene layout consisting of objects in a linear arrangement, each with a distinct tapping sound, which we compare to a ''virtual cane.'' We will also present a configuration that can convey a ''Venn diagram.'' We present systematic subjective experiments to evaluate the effectiveness of the proposed display for shape perception, object identification and localization, and 2-D layout perception, as well as the applications. Our experiments were conducted with visually blocked subjects. The results are evaluated in terms of accuracy and speed, and they demonstrate the advantages of spatial sound for guiding the scanning finger or pointer in shape perception, object localization, and layout exploration. We show that these advantages increase with the amount of detail (smaller object size) in the display. Our experimental results show that the proposed system outperforms the state of the art in shape perception, including variable friction displays. We also demonstrate that, even though they are currently available only as static overlays, raised dot patterns provide the best shape rendition in terms of both the accuracy and speed. Our experiments with layout rendering and perception demonstrate that simultaneous representation of objects, using the most effective approaches for directionality and distance rendering, approaches the optimal performance level provided by visual layout perception. Finally, experiments with the virtual cane and Venn diagram configurations demonstrate that the proposed techniques can be used effectively in simple but nontrivial real-world applications. One of the most important conclusions of our experiments is that there is a clear performance gap between experienced and inexperienced subjects, which indicates that there is a lot of room for improvement with appropriate and extensive training. By exploring a wide variety of design alternatives and focusing on different aspects of the acoustic-tactile interfaces, our results offer many valuable insights and great promise for the design of future systematic tests visually impaired and visually blocked subjects, utilizing the most effective configurations.

  11. Separate visual representations for perception and for visually guided behavior

    Science.gov (United States)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  12. Visual Representations of the Water Cycle in Science Textbooks

    Science.gov (United States)

    Vinisha, K.; Ramadas, J.

    2013-01-01

    Visual representations, including photographs, sketches and schematic diagrams, are a valuable yet often neglected aspect of textbooks. Visual means of communication are particularly helpful in introducing abstract concepts in science. For effective communication, visuals and text need to be appropriately integrated within the textbook. This study…

  13. Expertise Reversal for Iconic Representations in Science Visualizations

    Science.gov (United States)

    Homer, Bruce D.; Plass, Jan L.

    2010-01-01

    The influence of prior knowledge and cognitive development on the effectiveness of iconic representations in science visualizations was examined. Middle and high school students (N = 186) were given narrated visualizations of two chemistry topics: Kinetic Molecular Theory (Day 1) and Ideal Gas Laws (Day 2). For half of the visualizations, iconic…

  14. Constructing visual representations : investigating the use of tangible tokens

    DEFF Research Database (Denmark)

    Huron, Samuel; Jansen, Yvonne

    2014-01-01

    The accessibility of infovis authoring tools to a wide audience has been identified as a major research challenge. A key task in the authoring process is the development of visual mappings. While the infovis community has long been deeply interested in finding effective visual mappings, comparatively little attention has been placed on how people construct visual mappings. In this paper, we present the results of a study designed to shed light on how people transform data into visual representations. We asked people to create, update and explain their own information visualizations using only tangible building blocks. We learned that all participants, most of whom had little experience in visualization authoring, were readily able to create and talk about their own visualizations. Based on our observations, we discuss participants’ actions during the development of their visual representations and during their analytic activities. We conclude by suggesting implications for tool design to enable broader support for infovis authoring.

  15. Educating "The Simpsons": Teaching Queer Representations in Contemporary Visual Media

    Science.gov (United States)

    Padva, Gilad

    2008-01-01

    This article analyzes queer representation in contemporary visual media and examines how the episode "Homer's Phobia" from Matt Groening's animation series "The Simpsons" can be used to deconstruct hetero- and homo-sexual codes of behavior, socialization, articulation, representation and visibility. The analysis is contextualized in the…

  16. Visual Literacy in Biology: A Comparison of Visual Representations in Textbooks and Journal Articles

    Science.gov (United States)

    Rybarczyk, Brian

    2011-01-01

    Using course materials to promote visual literacy skills is an important aspect of undergraduate science education. A comparison study was undertaken to determine the composition of visual representations, specifically representations of data generated from experimental research, found in general biology and discipline-specific textbooks compared…

  17. Visual Attention: from Bio-Inspired Modeling to Real-Time Implementation

    OpenAIRE

    Ouerhani, Nabil; Hu?gli, Heinz

    2004-01-01

    Visual Attention: From Bio-Inspired Modeling to Visual attention is the ability of a vision system, be it biological or artificial, to rapidly select the most salient and thus the most relevant data about the environment in which the system is operating. The main goal of this visual mechanism is to drastically reduce the amount of visual information that must be processed by high level and thus complex tasks, such as object recognition, which leads to a considerable speed up of the entire vis...

  18. The Perception of Visual Uncertainty Representation by Non-Experts.

    Science.gov (United States)

    Tak, Susanne; Toet, Alexander; van Erp, Jan

    2013-10-25

    We tested how non-experts judge point probability for seven different visual representations of uncertainty, using a case from an unfamiliar domain. Participants (n=140) rated the probability that the boundary between two earth layers passed through a given point, for seven different visualizations of the positional uncertainty of the boundary. For all types of visualizations, most observers appear to construct an internal model of the uncertainty distribution that closely resembles a normal distribution. However, the visual form of the uncertainty range (i.e., the visualization type) affects this internal model and the internal model relates to participants' numeracy. We conclude that perceived certainty is affected by its visual representation. In a follow-up experiment we found no indications that the absence (or presence) of a prominent center line in the visualization affects the internal model. We discuss if and how our results inform which visual representation is most suitable for representing uncertainty and make suggestions for future work. PMID:24166614

  19. Retinal representation of the elementary visual signal

    OpenAIRE

    Li, Peter H.; Field, Greg D.; Greschner, Martin; Ahn, Daniel; Gunning, Deborah E.; Mathieson, Keith; Sher, Alexander; Litke, Alan M.; Chichilnisky, E. J.

    2014-01-01

    The propagation of visual signals from individual cone photoreceptors through parallel neural circuits was examined in the primate retina. Targeted stimulation of individual cones was combined with simultaneous recording from multiple retinal ganglion cells of identified types. The visual signal initiated by an individual cone produced strong responses with different kinetics in three of the four numerically dominant ganglion cell types. The magnitude and kinetics of light responses in each g...

  20. Preserved visual representations despite change blindness in infants

    OpenAIRE

    Wang, Su-hua; Mitroff, Stephen R.

    2009-01-01

    Combining theoretical hypotheses of infant cognition and adult perception, we present evidence that infants can maintain visual representations despite their failure to detect a change. Infants under 12 months typically fail to notice a change to an object’s height in a covering event. The present experiments demonstrated that 11-month-old infants can nevertheless maintain a viable representation of both the pre- and post-change heights despite their ‘change blindness’. These results su...

  1. Data Representations, Transformations, and Statistics for Visual Reasoning

    CERN Document Server

    Maciejewski, Ross

    2011-01-01

    Analytical reasoning techniques are methods by which users explore their data to obtain insight and knowledge that can directly support situational awareness and decision making. Recently, the analytical reasoning process has been augmented through the use of interactive visual representations and tools which utilize cognitive, design and perceptual principles. These tools are commonly referred to as visual analytics tools, and the underlying methods and principles have roots in a variety of disciplines. This chapter provides an introduction to young researchers as an overview of common visual

  2. Preserved Visual Representations despite Change Blindness in Infants

    Science.gov (United States)

    Wang, Su-hua; Mitroff, Stephen R.

    2009-01-01

    Combining theoretical hypotheses of infant cognition and adult perception, we present evidence that infants can maintain visual representations despite their failure to detect a change. Infants under 12 months typically fail to notice a change to an object's height in a covering event. The present experiments demonstrated that 11-month-old infants…

  3. Comparing Visual Representations of DNA in Two Multimedia Presentations

    Science.gov (United States)

    Cook, Michelle; Wiebe, Eric; Carter, Glenda

    2011-01-01

    This study is part of an ongoing research project examining middle school girls' attention to and interpretation of visual representations of DNA replication. Specifically, this research examined differences between two different versions of a multimedia presentation on DNA, where the second version of the presentation was redesigned as a result…

  4. Physiological Responese Measrement to Identify Online Visual Representation Designs

    Directory of Open Access Journals (Sweden)

    Yu-Ping Hsu

    2014-10-01

    Full Text Available This research involved the identification and validation of text-related visual display design principles from the literature. Representations were designed and developed that illustrated the intent of each visual display design principle included in the study. The representations were embedded in a research intervention and included validated examples of accurate displays of each principle and examples with varying degrees of inaccuracies. The representations were created based on design theories of human cognition: perceptual, attention memory, and mental models [1][2][3][4][5], and presented via a monitor in a controlled research environment. The environmental controls included space appropriate to the experiment, constant temperature, consistent lighting, management of distractions including sound, monitoring of operation of the measurement device and the use of standardized instructions. Bertin’s seven visual variables: position, size, color, shape, value, orientation and texture, were also examined within the design principles [6]. The result of the independent samples t test did not find significant differences between good and poor visual designs for all images across subjects. However, the results of the paired-samples t test found significant mean differences between Bertin’s principles for color, value and orientation of visual designs across subjects. The findings support future online instructional designs and investigate the implications for the design of online instruction.

  5. The body voyage as visual representation and art performance

    DEFF Research Database (Denmark)

    Olsén, Jan-Eric

    2011-01-01

    This paper looks at the notion of the body as an interior landscape that is made intelligible through visual representation. It discerns the key figure of the inner corporeal voyage, identifies its main elements and examines how contemporary artists working with performances and installations deal with it. A further aim with the paper is to discuss what kind of image of the body that is conveyed through medical visual technologies, such as endoscopy, and relate it to contemporary discussions on embodiment, embodied vision and bodily presence. The paper concludes with a recent exhibition by the French artist Christian Boltanski, which gives a somewhat different meaning to the idea of the body voyage.

  6. Robust Visual Tracking via Appearance Modeling and Sparse Representation

    Directory of Open Access Journals (Sweden)

    Ming Li

    2014-07-01

    Full Text Available When appearance variation of object, partial occlusion or illumination change in object images occurs, most existing tracking approaches fail to track the target effectively. To deal with the problem, this paper proposed a robust visual tracking method based on appearance modeling and sparse representation. The proposed method exploits two-dimensional principal component analysis (2DPCA with sparse representation theory for constructing appearance model. Then tracking is achieved by Bayesian inference framework, in which a particle filter is applied to evaluate the target state sequentially over time. In addition, to make the observation model more robust, the incremental learning algorithm is used to update the template set. Both qualitative and quantitative evaluations on four publicly available benchmark video sequences demonstrate that the proposed visual tracking algorithm performs better than several state-of-the-art algorithms.

  7. Novice Interpretations of Visual Representations of Geosciences Data

    Science.gov (United States)

    Burkemper, L. K.; Arthurs, L.

    2013-12-01

    Past cognition research of individual's perception and comprehension of bar and line graphs are substantive enough that they have resulted in the generation of graph design principles and graph comprehension theories; however, gaps remain in our understanding of how people process visual representations of data, especially of geologic and atmospheric data. This pilot project serves to build on others' prior research and begin filling the existing gaps. The primary objectives of this pilot project include: (i) design a novel data collection protocol based on a combination of paper-based surveys, think-aloud interviews, and eye-tracking tasks to investigate student data handling skills of simple to complex visual representations of geologic and atmospheric data, (ii) demonstrate that the protocol yields results that shed light on student data handling skills, and (iii) generate preliminary findings upon which tentative but perhaps helpful recommendations on how to more effectively present these data to the non-scientist community and teach essential data handling skills. An effective protocol for the combined use of paper-based surveys, think-aloud interviews, and computer-based eye-tracking tasks for investigating cognitive processes involved in perceiving, comprehending, and interpreting visual representations of geologic and atmospheric data is instrumental to future research in this area. The outcomes of this pilot study provide the foundation upon which future more in depth and scaled up investigations can build. Furthermore, findings of this pilot project are sufficient for making, at least, tentative recommendations that can help inform (i) the design of physical attributes of visual representations of data, especially more complex representations, that may aid in improving students' data handling skills and (ii) instructional approaches that have the potential to aid students in more effectively handling visual representations of geologic and atmospheric data that they might encounter in a course, television news, newspapers and magazines, and websites. Such recommendations would also be the potential subject of future investigations and have the potential to impact the design features when data is presented to the public and instructional strategies not only in geoscience courses but also other science, technology, engineering, and mathematics (STEM) courses.

  8. Representational content and computation in the human visual system.

    Science.gov (United States)

    Eimer, M

    1990-01-01

    Information-processing systems can be characterized by their ability to transform systematically certain internal representational states (symbols) into one another. The presence of such an information-processing capacity calls for an explanation. How could such an explanation in principle be formulated? How is it possible to specify internal representational states and to ascribe to them certain representational contents? What has to be demonstrated by such explanations is how an information-processing capacity is actually instantiated in a system. In this paper, the outlines of an explanation by instantiation are sketched for a specific human visual capacity. In addition, some fundamental problems facing the development of this explanation will be discussed. PMID:2281131

  9. Learning Visual Representations for Perception-Action Systems

    DEFF Research Database (Denmark)

    Piater, Justus; Jodogne, Sebastien

    2011-01-01

    We discuss vision as a sensory modality for systems that effect actions in response to perceptions. While the internal representations informed by vision may be arbitrarily complex, we argue that in many cases it is advantageous to link them rather directly to action via learned mappings. These arguments are illustrated by two examples of our own work. First, our RLVC algorithm performs reinforcement learning directly on the visual input space. To make this very large space manageable, RLVC interleaves the reinforcement learner with a supervised classification algorithm that seeks to split perceptual states so as to reduce perceptual aliasing. This results in an adaptive discretization of the perceptual space based on the presence or absence of visual features. Its extension RLJC also handles continuous action spaces. In contrast to the minimalistic visual representations produced by RLVC and RLJC, our second method learns structural object models for robust object detection and pose estimation by probabilistic inference. To these models, the method associates grasp experiences autonomously learned by trial and error. These experiences form a nonparametric representation of grasp success likelihoods over gripper poses, which we call a grasp density. Thus, object detection in a novel scene simultaneously produces suitable grasping options.

  10. Visualization Through Knowledge Representation Model for Social Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Athar Javed, Muhammad

    2011-01-01

    Knowledge management is a systematic and organizationally specified process and knowledge management system is all those technological components; software, hardware, people and processes supporting knowledge management initiative. These initiatives includes work flow maps, web sites, portals, document/team management system, data warehouses, data mining processes, databases, contact lists, virtual teams, collaboration tools, customer relationship management, applications and news (Davenport and Prusak 1998, Jashapara 2004). Knowledge is not important per se (Agostini et al 2003) instead the process of knowing, learning and creating knowledge is the relevant aspect (Nonaka and Takeuchi 1995). In this paper knowledge representation is presented in 3D style for the understanding and visualization of dynamics of complex social networks by developing a TANetworkTool (Task Analysis Network Tool). The standard or normal representation of a typical social network is through a graph data structure in 2D. The dynamics of larger social networks is so complex some time it becomes difficult to understand the various levels of interactions and dependencies just by mere representation through a tree or graph. Although, many analytical methods provide relationship dependencies, role of different nodes and their importance in the network. In this paper we are presenting a visualization of networks by rotating the network through various dimensions to provide a more realistic view to understand the dynamics of complex social networks and complimenting the analytical results. This representation can also help authorities not necessarily having specific scientific background to understand and perhaps take preventive actions required in certain specific scenarios for example dealing with terrorist/covert networks.

  11. The body voyage as visual representation and art performance.

    Science.gov (United States)

    Olsén, Jan Eric

    2011-01-01

    This paper looks at the notion of the body as an interior landscape that is made intelligible through visual representation. It discerns the key figure of the inner corporeal voyage, identifies its main elements and examines how contemporary artists working with performances and installations deal with it. A further aim with the paper is to discuss what kind of image of the body that is conveyed through medical visual technologies, such as endoscopy, and relate it to contemporary discussions on embodiment, embodied vision and bodily presence. The paper concludes with a recent exhibition by the French artist Christian Boltanski, which gives a somewhat different meaning to the idea of the body voyage. PMID:21936211

  12. A unified data representation theory for network visualization, ordering and coarse-graining

    CERN Document Server

    Kovács, István A; Csermely, Peter

    2014-01-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of huge data sets in science, by reve...

  13. Fixed-Rank Representation for Unsupervised Visual Learning

    CERN Document Server

    Liu, Risheng; De la Torre, Fernando; Su, Zhixun

    2012-01-01

    Subspace clustering and feature extraction are two of the most extensive unsupervised visual learning tasks in computer vision and pattern recognition. In this paper, we pose these two problems in a unified framework, named fixed-rank representation (FRR). For subspace clustering, our first contribution is to show that, when the data is clean, we can efficiently solve FRR in closed-form and the global optimal solution to FRR can exactly recover the multiple subspace structure. Furthermore, we prove that under some suitable conditions, even with insufficient observations, the memberships of data points still can be exactly recovered by FRR. In the case that the data is corrupted by noises and outliers, a sparse regularization is introduced to achieve robustness for FRR. For feature extraction, we provide some new insights to understand existing methods, which lead to a new approach for robust feature extraction. As a non-trivial byproduct, a fast numerical solver is developed for FRR. Experimental results on b...

  14. Reading visual representations of 'Ndabeni' in the public realms

    Scientific Electronic Library Online (English)

    Sipokazi, Sambumbu.

    2010-11-01

    Full Text Available SciELO South Africa | Language: English Abstract in english This essay outlines and analyses contemporary image representations of Ndabeni (also called kwa-Ndabeni), a location near Cape Town where a group of people became confined between 1901 and 1936 following an outbreak of the bubonic plague in the city. This location was to shape Cape Town's landscape [...] for a little less that thirty-five years, accommodating people who were forcibly removed from the Cape Town docklands and from District Six. Images representing this place have been produced, archived, recovered, modified, reproduced and circulated in different ways and contexts. Ndabeni has become public knowledge through public visual representations that have been produced across a range of sites in post-apartheid Cape Town. I focus on three sites: the Victoria and Alfred Waterfront, the District Six Museum, and the Eziko Restaurant and Catering School. In each case I analyse the processes through which the Ndabeni images in question have been used and reused over time in changing contexts. I analyse the 'modalities' in which these images have been composed, interpreted and employed and in which knowledge has been mediated. I explore the contents and contexts of the storyboards and exhibition panels that purport to represent Ndabeni. Finally, I discuss potential meanings that could be constructed if the images could be read independent of the texts.

  15. Reading visual representations of 'Ndabeni' in the public realms

    Directory of Open Access Journals (Sweden)

    Sipokazi Sambumbu

    2010-11-01

    Full Text Available This essay outlines and analyses contemporary image representations of Ndabeni (also called kwa-Ndabeni, a location near Cape Town where a group of people became confined between 1901 and 1936 following an outbreak of the bubonic plague in the city. This location was to shape Cape Town's landscape for a little less that thirty-five years, accommodating people who were forcibly removed from the Cape Town docklands and from District Six. Images representing this place have been produced, archived, recovered, modified, reproduced and circulated in different ways and contexts. Ndabeni has become public knowledge through public visual representations that have been produced across a range of sites in post-apartheid Cape Town. I focus on three sites: the Victoria and Alfred Waterfront, the District Six Museum, and the Eziko Restaurant and Catering School. In each case I analyse the processes through which the Ndabeni images in question have been used and reused over time in changing contexts. I analyse the 'modalities' in which these images have been composed, interpreted and employed and in which knowledge has been mediated. I explore the contents and contexts of the storyboards and exhibition panels that purport to represent Ndabeni. Finally, I discuss potential meanings that could be constructed if the images could be read independent of the texts.

  16. Lewis-inspired representation of dissociable water in clusters and Grotthuss chains

    OpenAIRE

    Kale, Seyit; Herzfeld, Judith; Dai, Stacy; Blank, Michael

    2011-01-01

    Proton transfer to and from water is critical to the function of water in many settings. However, it has been challenging to model. Here, we present proof-of-principle for an efficient yet robust model based on Lewis-inspired submolecular particles with interactions that deviate from Coulombic at short distances to take quantum effects into account. This “LEWIS” model provides excellent correspondence with experimental structures for water molecules and water clusters in their neutral, pr...

  17. Population coding of visual space: comparison of spatial representations in the dorsal and ventral pathways

    Directory of Open Access Journals (Sweden)

    AnneBSereno

    2011-02-01

    Full Text Available Although the representation of space is as fundamental to visual processing as the representation of shape, it has received relatively little attention from neurophysiological investigations. In this study we characterize representations of space within visual cortex, and examine how they differ in a first direct comparison between dorsal and ventral subdivisions of the visual pathways. Neural activities were recorded in anterior inferotemporal cortex (AIT and lateral intraparietal cortex (LIP of awake behaving monkeys, structures associated with the ventral and dorsal visual pathways respectively, as a stimulus was presented at different locations within the visual field. In spatially selective cells, we find greater modulation of cell responses in LIP with changes in stimulus position. Further, using a novel population-based statistical approach (namely, multidimensional scaling, we recover the spatial map implicit within activities of neural populations, allowing us to quantitatively compare the geometry of neural space with physical space. We show that a population of spatially selective LIP neurons, despite having large receptive fields, is able to almost perfectly reconstruct stimulus locations within a low-dimensional representation. In contrast, a population of AIT neurons, despite each cell being spatially selective, provide less accurate low-dimensional reconstructions of stimulus locations. They produce instead only a topologically (categorically correct rendition of space, which nevertheless might be critical for object and scene recognition. Furthermore, we found that the spatial representation recovered from population activity shows greater translation invariance in LIP than in AIT. We suggest that LIP spatial representations may be dimensionally isomorphic with 3D physical space, while in AIT spatial representations may reflect a more categorical representation of space (e.g., “next to” or “above”.

  18. Parallel representation of stimulus identity and intensity in a dual pathway model inspired by the olfactory system of the honeybee

    Directory of Open Access Journals (Sweden)

    MichaelSchmuker

    2011-12-01

    Full Text Available The honeybee Apis mellifera has a remarkable ability to detect and locate food sources during foraging, and to associate odor cues with food rewards. In the honeybee’s olfactory system, sensory input is first processed in the antennal lobe (AL network. Uniglomerular projection neurons (PNs convey the sensory code from the AL to higher brain regions via two parallel but anatomically distinct pathways, the lateral and the medial antenno-cerebral tract (l- and m-ACT. Neurons innervating either tract show characteristic differences in odor selectivity, concentration dependence, and representation of mixtures. It is still unknown how this differential stimulus representation is achieved within the AL network. In this contribution, we use a computational network model to demonstrate that the experimentally observed features of odor coding in PNs can be reproduced by varying lateral inhibition and gain control in an otherwise unchanged AL network. We show that odor coding in the l-ACT supports detection and accurate identification of weak odor traces at the expense of concentration sensitivity, while odor coding in the m-ACT provides the basis for the computation and following of concentration gradients but provides weaker discrimination power. Both coding strategies are mutually exclusive, which creates a tradeoff between detection accuracy and sensitivity. The development of two parallel systems may thus reflect an evolutionary solution to this problem that enables honeybees to achieve both tasks during bee foraging in their natural environment, and which could inspire the development of artificial chemosensory devices for odor-guided navigation in robots.

  19. Digital representations of the real world how to capture, model, and render visual reality

    CERN Document Server

    Magnor, Marcus A; Sorkine-Hornung, Olga; Theobalt, Christian

    2015-01-01

    Create Genuine Visual Realism in Computer Graphics Digital Representations of the Real World: How to Capture, Model, and Render Visual Reality explains how to portray visual worlds with a high degree of realism using the latest video acquisition technology, computer graphics methods, and computer vision algorithms. It explores the integration of new capture modalities, reconstruction approaches, and visual perception into the computer graphics pipeline.Understand the Entire Pipeline from Acquisition, Reconstruction, and Modeling to Realistic Rendering and ApplicationsThe book covers sensors fo

  20. Contrast adaptation and representation in human early visual cortex

    OpenAIRE

    Gardner, Justin L.; Sun, Pei; Waggoner, R. Allen; Ueno, Kenichi; Tanaka, Keiji; Cheng, Kang

    2005-01-01

    The human visual system can distinguish variations in image contrast over a much larger range than measurements of the static relationship between contrast and response in visual cortex would suggest. This discrepancy may be explained if adaptation serves to recenter contrast response functions around the ambient contrast, yet experiments on humans have yet to report such an effect. By using event-related fMRI and a data-driven analysis approach, we found that contrast response functions in V...

  1. The loss of short-term visual representations over time: decay or temporal distinctiveness?

    Science.gov (United States)

    Mercer, Tom

    2014-12-01

    There has been much recent interest in the loss of visual short-term memories over the passage of time. According to decay theory, visual representations are gradually forgotten as time passes, reflecting a slow and steady distortion of the memory trace. However, this is controversial and decay effects can be explained in other ways. The present experiment aimed to reexamine the maintenance and loss of visual information over the short term. Decay and temporal distinctiveness models were tested using a delayed discrimination task, in which participants compared complex and novel objects over unfilled retention intervals of variable length. Experiment 1 found no significant change in the accuracy of visual memory from 2 to 6 s, but the gap separating trials reliably influenced task performance. Experiment 2 found evidence for information loss at a 10-s retention interval, but temporally separating trials restored the fidelity of visual memory, possibly because temporally isolated representations are distinct from older memory traces. In conclusion, visual representations lose accuracy at some point after 6 s, but only within temporally crowded contexts. These findings highlight the importance of temporal distinctiveness within visual short-term memory. PMID:25314045

  2. Visualization and Rule Validation in Human-Behavior Representation

    Science.gov (United States)

    Moya, Lisa Jean; McKenzie, Frederic D.; Nguyen, Quynh-Anh H.

    2008-01-01

    Human behavior representation (HBR) models simulate human behaviors and responses. The Joint Crowd Federate [TM] cognitive model developed by the Virginia Modeling, Analysis, and Simulation Center (VMASC) and licensed by WernerAnderson, Inc., models the cognitive behavior of crowds to provide credible crowd behavior in support of military…

  3. Visual Representation of the Numeric Bioenvironmental Data Display of the International Space Station's Flight Surgeon Console

    OpenAIRE

    Rinkus, Susan; Gong, Yang

    2002-01-01

    Certain visual information displays can be better than others in conveying similar information [1,2,3]. Representational analysis was conducted to determine the accuracy and efficiency of the newly designed graphic data display of the numeric bioenvironmental data display currently used by the Biomedical Engineers (BMEs) to monitor the International Space Station's (ISS) environment. Results support the practical application of representational analysis in the design of relational information...

  4. A review of visual memory capacity: Beyond individual items and towards structured representations

    OpenAIRE

    Brady, Timothy F.; Konkle, Talia; Alvarez, George A.

    2011-01-01

    Traditional memory research has focused on identifying separate memory systems and exploring different stages of memory processing. This approach has been valuable for establishing a taxonomy of memory systems and characterizing their function, but has been less informative about the nature of stored memory representations. Recent research on visual memory has shifted towards a representation-based emphasis, focusing on the contents of memory, and attempting to determine the format and struct...

  5. Chu Culture Modeling Elements and Their Inspiration for Urban Visual Image Design

    Directory of Open Access Journals (Sweden)

    Jianwen LI

    2014-05-01

    Full Text Available This paper will concentrate on the artifact culture of Hubei, the cradle of Chu culture. It begins with the analysis of visual elements in ancient Chu culture, including the forms, colors, ornamentations, etc. Based on that, it explores the possibility of adopting the essence of visual art in Chu culture into contemporary urban visual design of Hubei province.

  6. SVEN: Informative Visual Representation of Complex Dynamic Structure

    CERN Document Server

    Arendt, Dustin L

    2014-01-01

    Graphs change over time, and typically variations on the small multiples or animation pattern is used to convey this dynamism visually. However, both of these classical techniques have significant drawbacks, so a new approach, Storyline Visualization of Events on a Network (SVEN) is proposed. SVEN builds on storyline techniques, conveying nodes as contiguous lines over time. SVEN encodes time in a natural manner, along the horizontal axis, and optimizes the vertical placement of storylines to decrease clutter (line crossings, straightness, and bends) in the drawing. This paper demonstrates SVEN on several different flavors of real-world dynamic data, and outlines the remaining near-term future work.

  7. Visual Representations by Cortical Somatostatin Inhibitory Neurons - Selective but with Weak and Delayed Responses

    OpenAIRE

    Ma, Wen-pei; Liu, Bao-hua; Li, Ya-tang; Huang, Z. Josh; Zhang, Li I.; Tao, Huizhong W.

    2010-01-01

    Somatostatin-expressing inhibitory (SOM) neurons in the sensory cortex consist mostly of Martinotti cells, which project ascending axons to layer 1. Due to their sparse distribution, the representational properties of these neurons remain largely unknown. By two-photon imaging guided cell-attached recordings, we characterized visual response and receptive field (RF) properties of SOM neurons and parvalbumin-expressing inhibitory (PV) neurons genetically labelled in the mouse primary visual co...

  8. North Korea and the politics of visual representation

    OpenAIRE

    Shim, David; Nabers, Dirk

    2011-01-01

    Within international discourses on security, North Korea is often associated with risk and danger, emanating paradoxically from what can be called its strengths - particularly military strength, as embodied by its missile and nuclear programs - and its weaknesses - such as its ever-present political, economic, and food crises - which are considered to be imminent threats to international peace and stability. We argue that images play an important role in these representations, and suggest tha...

  9. A high-throughput screening approach to discovering good forms of inspired visual representation

    OpenAIRE

    Pinto, Nicolas; Doukhan, David; Dicarlo, James; Cox, David D.

    2009-01-01

    While many models of biological object recognition share a common set of “broad-stroke” properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model—e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit) is typically large and the computational cost of evaluating one particular parameter set is high, th...

  10. Video genre categorization and representation using audio-visual information

    OpenAIRE

    Ionescu, Bogdan; Seyerlehner, Klaus; Rasche, Christoph; Vertan, Constantin; Lambert, Patrick

    2012-01-01

    We propose an audio-visual approach to video genre classification using content descriptors that exploit audio, color, temporal, and contour information. Audio information is extracted at block-level, which has the advantage of capturing local temporal information. At the temporal structure level, we consider action content in relation to human perception. Color perception is quantified using statistics of color distribution, elementary hues, color properties, and relationships between colors...

  11. A Reggio-Inspired Music Atelier: Opening the Door between Visual Arts and Music

    Science.gov (United States)

    Hanna, Wendell

    2014-01-01

    The Reggio Emilia approach is based on the idea that every child has at least, "one hundred languages" available for expressing perspectives of the world, and one of those languages is music. While all of the arts (visual, music, dance, drama) are considered equally important in Reggio schools, the visual arts have been particularly…

  12. Hemisphere-dependent attentional modulation of human parietal visual field representations.

    Science.gov (United States)

    Sheremata, Summer L; Silver, Michael A

    2015-01-14

    Posterior parietal cortex contains several areas defined by topographically organized maps of the contralateral visual field. However, recent studies suggest that ipsilateral stimuli can elicit larger responses in the right than left hemisphere within these areas, depending on task demands. Here we determined the effects of spatial attention on the set of visual field locations (the population receptive field [pRF]) that evoked a response for each voxel in human topographic parietal cortex. A two-dimensional Gaussian was used to model the pRF in each voxel, and we measured the effects of attention on not only the center (preferred visual field location) but also the size (visual field extent) of the pRF. In both hemispheres, larger pRFs were associated with attending to the mapping stimulus compared with attending to a central fixation point. In the left hemisphere, attending to the stimulus also resulted in more peripheral preferred locations of contralateral representations, compared with attending fixation. These effects of attention on both pRF size and preferred location preserved contralateral representations in the left hemisphere. In contrast, attentional modulation of pRF size but not preferred location significantly increased representation of the ipsilateral (right) visual hemifield in right parietal cortex. Thus, attention effects in topographic parietal cortex exhibit hemispheric asymmetries similar to those seen in hemispatial neglect. Our findings suggest potential mechanisms underlying the behavioral deficits associated with this disorder. PMID:25589746

  13. Video genre categorization and representation using audio-visual information

    Science.gov (United States)

    Ionescu, Bogdan; Seyerlehner, Klaus; Rasche, Christoph; Vertan, Constantin; Lambert, Patrick

    2012-04-01

    We propose an audio-visual approach to video genre classification using content descriptors that exploit audio, color, temporal, and contour information. Audio information is extracted at block-level, which has the advantage of capturing local temporal information. At the temporal structure level, we consider action content in relation to human perception. Color perception is quantified using statistics of color distribution, elementary hues, color properties, and relationships between colors. Further, we compute statistics of contour geometry and relationships. The main contribution of our work lies in harnessing the descriptive power of the combination of these descriptors in genre classification. Validation was carried out on over 91 h of video footage encompassing 7 common video genres, yielding average precision and recall ratios of 87% to 100% and 77% to 100%, respectively, and an overall average correct classification of up to 97%. Also, experimental comparison as part of the MediaEval 2011 benchmarking campaign demonstrated the efficiency of the proposed audio-visual descriptors over other existing approaches. Finally, we discuss a 3-D video browsing platform that displays movies using feature-based coordinates and thus regroups them according to genre.

  14. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    Science.gov (United States)

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. PMID:25583612

  15. Learning invariance from natural images inspired by observations in the primary visual cortex.

    Science.gov (United States)

    Teichmann, Michael; Wiltschut, Jan; Hamker, Fred

    2012-05-01

    The human visual system has the remarkable ability to largely recognize objects invariant of their position, rotation, and scale. A good interpretation of neurobiological findings involves a computational model that simulates signal processing of the visual cortex. In part, this is likely achieved step by step from early to late areas of visual perception. While several algorithms have been proposed for learning feature detectors, only few studies at hand cover the issue of biologically plausible learning of such invariance. In this study, a set of Hebbian learning rules based on calcium dynamics and homeostatic regulations of single neurons is proposed. Their performance is verified within a simple model of the primary visual cortex to learn so-called complex cells, based on a sequence of static images. As a result, the learned complex-cell responses are largely invariant to phase and position. PMID:22295987

  16. Bio-inspired modeling and implementation of the ocelli visual system of flying insects.

    Science.gov (United States)

    Gremillion, Gregory; Humbert, J Sean; Krapp, Holger G

    2014-12-01

    Two visual sensing modalities in insects, the ocelli and compound eyes, provide signals used for flight stabilization and navigation. In this article, a generalized model of the ocellar visual system is developed for a 3-D visual simulation environment based on behavioral, anatomical, and electrophysiological data from several species. A linear measurement model is estimated from Monte Carlo simulation in a cluttered urban environment relating state changes of the vehicle to the outputs of the ocellar model. A fully analog-printed circuit board sensor based on this model is designed and fabricated. Open-loop characterization of the sensor to visual stimuli induced by self motion is performed. Closed-loop stabilizing feedback of the sensor in combination with optic flow sensors is implemented onboard a quadrotor micro-air vehicle and its impulse response is characterized. PMID:25217116

  17. Robust visual tracking of infrared object via sparse representation model

    Science.gov (United States)

    Ma, Junkai; Liu, Haibo; Chang, Zheng; Hui, Bin

    2014-11-01

    In this paper, we propose a robust tracking method for infrared object. We introduce the appearance model and the sparse representation in the framework of particle filter to achieve this goal. Representing every candidate image patch as a linear combination of bases in the subspace which is spanned by the target templates is the mechanism behind this method. The natural property, that if the candidate image patch is the target so the coefficient vector must be sparse, can ensure our algorithm successfully. Firstly, the target must be indicated manually in the first frame of the video, then construct the dictionary using the appearance model of the target templates. Secondly, the candidate image patches are selected in following frames and the sparse coefficient vectors of them are calculated via l1-norm minimization algorithm. According to the sparse coefficient vectors the right candidates is determined as the target. Finally, the target templates update dynamically to cope with appearance change in the tracking process. This paper also addresses the problem of scale changing and the rotation of the target occurring in tracking. Theoretic analysis and experimental results show that the proposed algorithm is effective and robust.

  18. Reconstruction and visualization of model-based volume representations

    Science.gov (United States)

    Zheng, Ziyi; Mueller, Klaus

    2010-02-01

    In modern medical CT, the primary source of data is a set of X-ray projections acquired around the object, which are then used to reconstruct a discrete regular grid of sample points. Conventional volume rendering methods use this reconstructed regular grid to estimate unknown off-grid values via interpolation. However, these interpolated values may not match the values that would have been generated had they been reconstructed directly with CT. The consequence can be simple blurring, but also the omission of fine object detail which usually contains precious information. To avoid these problems, in the method we propose, instead of reconstructing a lattice of volume sample points, we derive a highfidelity object model directly from the reconstruction process, fitting a localized object model to the acquired raw data within tight tolerances. This model can then be easily evaluated both for slice-based viewing as well as in GPU 3D volume rendering, offering excellent detail preservation in zooming operations. Furthermore, the model-driven representation also supports high-precision analytical ray casting.

  19. Visualization and analysis of modulated pulses in magnetic resonance by joint time-frequency representations

    Science.gov (United States)

    Köcher, S. S.; Heydenreich, T.; Glaser, S. J.

    2014-12-01

    We study the utility of joint time-frequency representations for the analysis of shaped or composite pulses for magnetic resonance. Such spectrograms are commonly used for the visualization of shaped laser pulses in optical spectroscopy. This intuitive representation provides additional insight compared to conventional approaches, which exclusively show either temporal or spectral information. We focus on the short-time Fourier transform, which provides not only amplitude but also phase information. The approach is illustrated for broadband inversion pulses, multiple quantum excitation and broadband heteronuclear decoupling. The physical interpretation and validity of the approach is discussed.

  20. Experience-driven formation of parts-based representations in a model of layered visual memory

    CERN Document Server

    Jitsev, Jenia

    2009-01-01

    Growing neuropsychological and neurophysiological evidence suggests that the visual cortex uses parts-based representations to encode, store and retrieve relevant objects. In such a scheme, objects are represented as a set of spatially distributed local features, or parts, arranged in stereotypical fashion. To encode the local appearance and to represent the relations between the constituent parts, there has to be an appropriate memory structure formed by previous experience with visual objects. Here, we propose a model how a hierarchical memory structure supporting efficient storage and rapid recall of parts-based representations can be established by an experience-driven process of self-organization. The process is based on the collaboration of slow bidirectional synaptic plasticity and homeostatic unit activity regulation, both running at the top of fast activity dynamics with winner-take-all character. These neural mechanisms lay down the basis for cooperation and competition between the distributed units...

  1. Knowledge practices in design: The role of visual representations as 'epistemic objects'

    OpenAIRE

    Ewenstein, B.; Whyte, J.

    2009-01-01

    We use a detailed study of the knowledge work around visual representations to draw attention to the multidimensional nature of `objects'. Objects are variously described in the literatures as relatively stable or in flux; as abstract or concrete; and as used within or across practices. We clarify these dimensions, drawing on and extending the literature on boundary objects, and connecting it with work on epistemic and technical objects. In particular, we highlight the epistemic role of objec...

  2. Blind Audio-Visual Source Separation based on Sparse Redundant Representations

    OpenAIRE

    Llagostera Casanovas, Anna; Gianluca, Monaci; Vandergheynst, Pierre; Gribonval, Re?mi

    2010-01-01

    In this paper we propose a novel method which is able to detect and separate audio-visual sources present in a scene. Our method exploits the correlation between the video signal captured with a camera and a synchronously recorded one-microphone audio track. In a ?rst stage, audio and video modalities are decomposed into relevant basic structures using redundant representations. Next, synchrony between relevant events in audio and video modalities is quan...

  3. The Influence of Social Comparison on Visual Representation of One's Face

    OpenAIRE

    Zell, Ethan; Balcetis, Emily

    2012-01-01

    Can the effects of social comparison extend beyond explicit evaluation to visual self-representation—a perceptual stimulus that is objectively verifiable, unambiguous, and frequently updated? We morphed images of participants' faces with attractive and unattractive references. With access to a mirror, participants selected the morphed image they perceived as depicting their face. Participants who engaged in upward comparison with relevant attractive targets selected a less attractive morph ...

  4. Invariance of brain-wave representations of simple visual images and their names

    OpenAIRE

    Suppes, Patrick; Han, Bing; Epelboim, Julie; Lu, Zhong-lin

    1999-01-01

    In two experiments, electric brain waves of 14 subjects were recorded under several different conditions to study the invariance of brain-wave representations of simple patches of colors and simple visual shapes and their names, the words blue, circle, etc. As in our earlier work, the analysis consisted of averaging over trials to create prototypes and test samples, to both of which Fourier transforms were applied, followed by filtering and an inverse transformation to the time domain. A leas...

  5. Non-sparse Linear Representations for Visual Tracking with Online Reservoir Metric Learning

    CERN Document Server

    Li, Xi; Shi, Qinfeng; Dick, Anthony; Hengel, Anton van den

    2012-01-01

    Most sparse linear representation-based trackers need to solve a computationally expensive L1-regularized optimization problem. To address this problem, we propose a visual tracker based on non-sparse linear representations, which admit an efficient closed-form solution without sacrificing accuracy. Moreover, in order to capture the correlation information between different feature dimensions, we learn a Mahalanobis distance metric in an online fashion and incorporate the learned metric into the optimization problem for obtaining the linear representation. We show that online metric learning using proximity comparison significantly improves the robustness of the tracking, especially on those sequences exhibiting drastic appearance changes. Furthermore, in order to prevent the unbounded growth in the number of training samples for the metric learning, we design a time-weighted reservoir sampling method to maintain and update limited-sized foreground and background sample buffers for balancing sample diversity ...

  6. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    Science.gov (United States)

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity. PMID:24738538

  7. Representação visual de estruturas biológicas em materiais de ensino / Visual representation of biological structures in teaching material

    Scientific Electronic Library Online (English)

    Marina Azevedo, Morato; Miriam, Struchiner; Eduardo, Bordoni; Regina Maria Vieira, Ricciardi.

    1998-10-01

    Full Text Available Este trabalho foi motivado pela necessidade de se definir parâmetros de apresentação e tratamento da informação científica em materiais de ensino. Através de consultas a bibliotecas e a especialistas em ciências da saúde e artes gráficas e visuais, fez-se uma pesquisa que resultou na descrição compa [...] rativa entre as primeiras manifestações da ilustração científica na anatomia e a trajetória da representação visual do conhecimento sobre a célula. O estudo traz ainda exemplos significativos de ilustrações utilizadas como elementos de análise. Abstract in english Parameters must be defined for presenting and handling scientific information presented in the form of teaching materials. Through library research and consultations with specialists in the health sciences and in graphic arts and design, this study undertook a comparative description of the first ex [...] amples of scientific illustrations of anatomy and the evolution of visual representations of knowledge on the cell. The study includes significant examples of illustrations which served as elements of analysis.

  8. Representação visual de estruturas biológicas em materiais de ensino Visual representation of biological structures in teaching material

    Directory of Open Access Journals (Sweden)

    Marina Azevedo Morato

    1998-10-01

    Full Text Available Este trabalho foi motivado pela necessidade de se definir parâmetros de apresentação e tratamento da informação científica em materiais de ensino. Através de consultas a bibliotecas e a especialistas em ciências da saúde e artes gráficas e visuais, fez-se uma pesquisa que resultou na descrição comparativa entre as primeiras manifestações da ilustração científica na anatomia e a trajetória da representação visual do conhecimento sobre a célula. O estudo traz ainda exemplos significativos de ilustrações utilizadas como elementos de análise.Parameters must be defined for presenting and handling scientific information presented in the form of teaching materials. Through library research and consultations with specialists in the health sciences and in graphic arts and design, this study undertook a comparative description of the first examples of scientific illustrations of anatomy and the evolution of visual representations of knowledge on the cell. The study includes significant examples of illustrations which served as elements of analysis.

  9. Learning local appearances with sparse representation for robust and fast visual tracking.

    Science.gov (United States)

    Bai, Tianxiang; Li, You-Fu; Zhou, Xiaolong

    2015-04-01

    In this paper, we present a novel appearance model using sparse representation and online dictionary learning techniques for visual tracking. In our approach, the visual appearance is represented by sparse representation, and the online dictionary learning strategy is used to adapt the appearance variations during tracking. We unify the sparse representation and online dictionary learning by defining a sparsity consistency constraint that facilitates the generative and discriminative capabilities of the appearance model. An elastic-net constraint is enforced during the dictionary learning stage to capture the characteristics of the local appearances that are insensitive to partial occlusions. Hence, the target appearance is effectively recovered from the corruptions using the sparse coefficients with respect to the learned sparse bases containing local appearances. In the proposed method, the dictionary is undercomplete and can thus be efficiently implemented for tracking. Moreover, we employ a median absolute deviation based robust similarity metric to eliminate the outliers and evaluate the likelihood between the observations and the model. Finally, we integrate the proposed appearance model with the particle filter framework to form a robust visual tracking algorithm. Experiments on benchmark video sequences show that the proposed appearance model outperforms the other state-of-the-art approaches in tracking performance. PMID:25029548

  10. Infrared dim and small target detecting and tracking method inspired by Human Visual System

    Science.gov (United States)

    Dong, Xiabin; Huang, Xinsheng; Zheng, Yongbin; Shen, Lurong; Bai, Shengjian

    2014-01-01

    Detecting and tracking dim and small target in infrared images and videos is one of the most important techniques in many computer vision applications, such as video surveillance and infrared imaging precise guidance. Recently, more and more algorithms based on Human Visual System (HVS) have been proposed to detect and track the infrared dim and small target. In general, HVS concerns at least three mechanisms including contrast mechanism, visual attention and eye movement. However, most of the existing algorithms simulate only a single one of the HVS mechanisms, resulting in many drawbacks of these algorithms. A novel method which combines the three mechanisms of HVS is proposed in this paper. First, a group of Difference of Gaussians (DOG) filters which simulate the contrast mechanism are used to filter the input image. Second, a visual attention, which is simulated by a Gaussian window, is added at a point near the target in order to further enhance the dim small target. This point is named as the attention point. Eventually, the Proportional-Integral-Derivative (PID) algorithm is first introduced to predict the attention point of the next frame of an image which simulates the eye movement of human being. Experimental results of infrared images with different types of backgrounds demonstrate the high efficiency and accuracy of the proposed method to detect and track the dim and small targets.

  11. A biologically inspired psychometric function for accuracy of visual identification as a function of exposure duration

    DEFF Research Database (Denmark)

    Petersen, Anders; Andersen, Tobias

    The psychometric function of letter identification is typically described as a function of stimulus intensity. However, the effect of stimulus exposure duration on letter identification remains poorly described. This is surprising because the effect of exposure duration has played a central role in modelling human performance in whole and partial report tasks in which multiple simultaneously presented letters are to be reported (Shibuya & Bundesen, 1988). Therefore, we investigated visual letter identification as a function of exposure duration. On each trial, a single randomly chosen letter (A-Z) was presented at the centre of the screen. Exposure duration was varied from 5 to 210 milliseconds. The letter was followed by a pattern mask. Three subjects each completed 54,080 trials in a 26-Alternative Forced Choice procedure. We compared the exponential, the gamma and the Weibull psychometric functions, all of these having a temporal offset included, as well as the ex-Gaussian, and finally a new psychometric function, motivated from single-neuron studies by (Albrecht, Geisler, Frazor & Crane, 2002). The new psychometric function stands out by having a nonmonotonous hazard rate which is initially rising from zero, then peaking, and finally decaying to a somewhat sustained plateau, mimicking closely observed instantaneous firing rates of monkey visual cortex neurons. The new psychometric function fits well to experimental data in both the present study and in a previous study of single-letter identification accuracy (Bundesen & Harms, 1999). Also, we conducted a follow-up experiment to test the ability of the psychometric functions to fit single-letter identification data, at different stimulus contrast levels; also in this experiment the new psychometric function prevailed. Further, after insertion into Bundesen’s Theory of Visual Attention (Bundesen, 1990), the new psychometric function enables closer fits to data from a previous whole and partial report experiment.

  12. Nonvisual and visual object shape representations in occipitotemporal cortex: evidence from congenitally blind and sighted adults.

    Science.gov (United States)

    Peelen, Marius V; He, Chenxi; Han, Zaizhu; Caramazza, Alfonso; Bi, Yanchao

    2014-01-01

    Knowledge of object shape is primarily acquired through the visual modality but can also be acquired through other sensory modalities. In the present study, we investigated the representation of object shape in humans without visual experience. Congenitally blind and sighted participants rated the shape similarity of pairs of 33 familiar objects, referred to by their names. The resulting shape similarity matrices were highly similar for the two groups, indicating that knowledge of the objects' shapes was largely independent of visual experience. Using fMRI, we tested for brain regions that represented object shape knowledge in blind and sighted participants. Multivoxel activity patterns were established for each of the 33 aurally presented object names. Sighted participants additionally viewed pictures of these objects. Using representational similarity analysis, neural similarity matrices were related to the behavioral shape similarity matrices. Results showed that activity patterns in occipitotemporal cortex (OTC) regions, including inferior temporal (IT) cortex and functionally defined object-selective cortex (OSC), reflected the behavioral shape similarity ratings in both blind and sighted groups, also when controlling for the objects' tactile and semantic similarity. Furthermore, neural similarity matrices of IT and OSC showed similarities across blind and sighted groups (within the auditory modality) and across modality (within the sighted group), but not across both modality and group (blind auditory-sighted visual). Together, these findings provide evidence that OTC not only represents objects visually (requiring visual experience) but also represents objects nonvisually, reflecting knowledge of object shape independently of the modality through which this knowledge was acquired. PMID:24381278

  13. A Biologically-Inspired Visual Saliency Model to Test Different Strategies of Saccade Programming

    Science.gov (United States)

    Ho-Phuoc, Tien; Guérin-Dugué, Anne; Guyader, Nathalie

    Saliency models provide a saliency map that is a topographically arranged map to represent the saliency of the visual scene. Saliency map is used to sequentially select particular locations of the scene to predict a subject's eye scanpath when viewing the corresponding scene. A saliency map is most of the time computed using the same point of view or foveated point. Few models were interested in saccade programming strategies. In visual search tasks, studies shown that people can plan from one foveated point the next two saccades (and so, the next two fixations): this is called concurrent saccade programming. In this paper, we tested if such strategy occurs during natural scene free viewing. We tested different saccade programming strategies depending on the number of programmed saccades. The results showed that the strategy of programming one saccade at a time from the foveated point best matches the experimental data from free viewing of natural images. Because saccade programming models depend on the foveated point, we took into account the spatially variant retinal resolution. We showed that the predicted eye fixations were more effective when this retinal resolution was combined with the saccade programming strategies.

  14. Pupils' Visual Representations in Standard and Problematic Problem Solving in Mathematics: Their Role in the Breach of the Didactical Contract

    Science.gov (United States)

    Deliyianni, Eleni; Monoyiou, Annita; Elia, Iliada; Georgiou, Chryso; Zannettou, Eleni

    2009-01-01

    This study investigated the modes of representations generated by kindergarteners and first graders while solving standard and problematic problems in mathematics. Furthermore, it examined the influence of pupils' visual representations on the breach of the didactical contract rules in problem solving. The sample of the study consisted of 38…

  15. From pre-attentive processes to durable representation: an ERP index of visual distraction.

    Science.gov (United States)

    Sysoeva, Olga V; Lange, Elke B; Sorokin, Alexander B; Campbell, Tom

    2015-03-01

    Visual search and oddball paradigms were combined to investigate memory for to-be-ignored color changes in a group of 12 healthy participants. The onset of unexpected color change of an irrelevant stimulus evoked two reliable ERP effects: a component of the event-related potential (ERP), similar to the visual mismatch negativity response (vMMN), with a latency of 120-160 ms and a posterior distribution over the left hemisphere and Late Fronto-Central Negativity (LFCN) with a latency of 320-400 ms, apparent at fronto-central electrodes and some posterior sites. Color change of that irrelevant stimulus also slowed identification of a visual target, indicating distraction. The amplitude of this color-change vMMN, but not LFCN, indexed this distraction effect. That is, electrophysiological and behavioral measures were correlated. The interval between visual scenes approximated 1s (611-1629 ms), indicating that the brain's sensory memory for the color of the preceding visual scenes must persist for at least 600 ms. Therefore, in the case of the neural code for color, durable memory representations are formed in an obligatory manner. PMID:25523346

  16. Toward a higher-level visual representation for content-based image retrieval

    OpenAIRE

    Elsayad, Ismail; Martinet, Jean; Urruty, Thierry; Djeraba, Chabane

    2012-01-01

    Having effective methods to access the desired images is essential nowadays with the availability of a huge amount of digital images. The proposed approach is based on an analogy between content-based image retrieval and text retrieval. The aim of the approach is to build a meaningful mid-level representation of images to be used later on for matching between a query image and other images in the desired database. The approach is based firstly on constructing different visual words using loca...

  17. Representation of solar features in 3D for creating visual solar catalogues

    Science.gov (United States)

    Colak, Tufan; Qahwaji, Rami; Ipson, Stan; Ugail, Hassan

    2011-06-01

    In this study a method for 3D representation of active regions and sunspots that are detected from Solar and Heliospheric Observatory/Michelson Doppler Imager magnetogram and continuum images is provided. This is our first attempt to create a visual solar catalogue. Because of the difficulty of providing a full description of data in text based catalogues, it can be more accurate and effective for scientist to search 3D solar feature models and descriptions at the same time in such a visual solar catalogue. This catalogue would improve interpretation of solar images, since it would allow us to extract data embedded in various solar images and visualize it at the same time. In this work, active regions that are detected from magnetogram images and sunspots that are detected from continuum images are represented in 3D coordinates. Also their properties extracted from text based catalogues are represented at the same time in 3D environment. This is the first step for creating a 3D solar feature catalogue where automatically detected solar features will be presented visually together with their properties.

  18. Visual, haptic and bimodal scene perception: Evidence for a unitary representation.

    Science.gov (United States)

    Intraub, Helene; Morelli, Frank; Gagnier, Kristin M

    2015-05-01

    Participants studied seven meaningful scene-regions bordered by removable boundaries (30s each). In Experiment 1 (N=80) participants used visual or haptic exploration and then minutes later, reconstructed boundary position using the same or the alternate modality. Participants in all groups shifted boundary placement outward (boundary extension), but visual study yielded the greater error. Critically, this modality-specific difference in boundary extension transferred without cost in the cross-modal conditions, suggesting a functionally unitary scene representation. In Experiment 2 (N=20), bimodal study led to boundary extension that did not differ from haptic exploration alone, suggesting that bimodal spatial memory was constrained by the more "conservative" haptic modality. In Experiment 3 (N=20), as in picture studies, boundary memory was tested 30s after viewing each scene-region and as with pictures, boundary extension still occurred. Results suggest that scene representation is organized around an amodal spatial core that organizes bottom-up information from multiple modalities in combination with top-down expectations about the surrounding world. PMID:25725370

  19. Analysis and Determination of Inner Lip texture Descriptors for Visual Speech Representation

    Directory of Open Access Journals (Sweden)

    Xibin Jia

    2014-07-01

    Full Text Available The problem of visual speech representation for bimodal based speech recognition includes particular challenges in themodeling of the inner lip texture reflecting different pronunciations,such as the appearance of teeth and tongue. This paper proposesand analyzesseveral possible statistical inner lip texture descriptors to determine an effective and discriminantfeature. Simply usinggrayscale without full specification of the underlying colour model tends to loss some significant discriminative information. Therefore thorough exploration on the color space components selection in computing the local inner lip texture is thus a primary goal of the present research. The L channel of Lab color space is finally determined as the basis for the development of the inner lip texture model. Through feature level fusion, the final classification of visual speech is performedbased on the proposed inner lip texture descriptor and standard geometric features. Together with audio speech,this paper furthers the development ofthe CHMM based bimodal Chinese character pronunciationrecognition system. The experimental results show that the local inner texture descriptors, such as the color moment with geometric feature,outperform the holistic inner texture descriptors, such as the statistical histogram, in representing visual speechwith theclose discriminability but low dimensionality. 

  20. Let's Look at Style: Visual and Spatial Representation and Reasoning in Design

    Science.gov (United States)

    Jupp, Julie; Gero, John

    This chapter explores the perception and modeling of style in design relating to visuo-spatial representation and reasoning. We approach this subject via cognitive and contextual considerations significant to the role of style during designing. A designer's ability to represent and reason about design artifacts visually and spatially allows meaningful "chunks" of design information to be utilized relative to the designer's task and context. Central to cognitive and contextual notions of style are two issues, namely the level of semantic interpretation, and the comparative method's degree of contextual sensitivity. This compound problem requires some explicit and cognitively plausible ordering principle and adaptive measure capable of allowing for dependencies in reasoning about similarities. This chapter first investigates the perception of style in relation to these modeling requirements before demonstrating and testing their implementation. We then discuss style in relation to design tasks and how they can be supported via the classification and retrieval of designs from large databases of visuo-spatial information.

  1. Distributed representation of visual objects by single neurons in the human brain.

    Science.gov (United States)

    Valdez, André B; Papesh, Megan H; Treiman, David M; Smith, Kris A; Goldinger, Stephen D; Steinmetz, Peter N

    2015-04-01

    It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. PMID:25834044

  2. Shannon sampling and nonlinear dynamics on graphs for representation, regularization and visualization of complex data

    Science.gov (United States)

    Pesenson, M.; Pesenson, I.; McCollum, B.; Byalsky, M.

    2010-07-01

    Data is now produced faster than it can be meaningfully analyzed. Many modern data sets present unprecedented analytical challenges, not merely because of their size but by their inherent complexity and information richness. Large numbers of astronomical objects now have dozens or hundreds of useful parameters describing each one. Traditional color-color plots using a limited number of symbols and some color-coding are clearly inadequate for finding all useful correlations given such large numbers of parameters. To capitalize on the opportunities provided by these data sets one needs to be able to organize, analyze and visualize them in fundamentally new ways. The identification and extraction of useful information in multiparametric, high-dimensional data sets - data mining - is greatly facilitated by finding simpler, that is, lower-dimensional abstract mathematical representations of the data sets that are more amenable to analysis. Dimensionality reduction consists of finding a lower-dimensional representation of high-dimensional data by constructing a set of basis functions that capture patterns intrinsic to a particular state space. Traditional methods of dimension reduction and pattern recognition often fail to work well when performed upon data sets as complex as those that now confront astronomy. We present here our developments of data compression, sampling, nonlinear dimensionality reduction, and clustering, which are important steps in the analysis of large-scale, complex datasets.

  3. VStops: A Thinking Strategy and Visual Representation Approach in Mathematical Word Problem Solving toward Enhancing STEM Literacy

    Science.gov (United States)

    Abdullah, Nasarudin; Halim, Lilia; Zakaria, Effandi

    2014-01-01

    This study aimed to determine the impact of strategic thinking and visual representation approaches (VStops) on the achievement, conceptual knowledge, metacognitive awareness, awareness of problem-solving strategies, and student attitudes toward mathematical word problem solving among primary school students. The experimental group (N = 96)…

  4. Intrinsic Structure of Visual Exemplar and Category Representations in Macaque Brain

    Science.gov (United States)

    Kriegeskorte, Nikolaus; Mur, Marieke; Hadj-Bouziane, Fadila; Luh, Wen-Ming; Tootell, Roger B. H.; Ungerleider, Leslie G.

    2013-01-01

    One of the most remarkable properties of the visual system is the ability to identify and categorize a wide variety of objects effortlessly. However, the underlying neural mechanisms remain elusive. Specifically, the question of how individual object information is represented and intrinsically organized is still poorly understood. To address this question, we presented images of isolated real-world objects spanning a wide range of categories to awake monkeys using a rapid event-related functional magnetic resonance imaging (fMRI) design and analyzed the responses of multiple areas involved in object processing. We found that the multivoxel response patterns to individual exemplars in the inferior temporal (IT) cortex, especially area TE, encoded the animate-inanimate categorical division, with a subordinate cluster of faces within the animate category. In contrast, the individual exemplar representations in V4, the amygdala, and prefrontal cortex showed either no categorical structure, or a categorical structure different from that in IT cortex. Moreover, in the IT face-selective regions (“face patches”), especially the anterior face patches, (1) the multivoxel response patterns to individual exemplars showed a categorical distinction between faces and nonface objects (i.e., body parts and inanimate objects), and (2) the regionally averaged activations to individual exemplars showed face-selectivity and within-face exemplar-selectivity. Our findings demonstrate that, at both the single-exemplar and the population level, intrinsic object representation and categorization are organized hierarchically as one moves anteriorly along the ventral pathway, reflecting both modular and distributed processing. PMID:23843508

  5. Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex.

    Science.gov (United States)

    Kampa, Björn M; Roth, Morgane M; Göbel, Werner; Helmchen, Fritjof

    2011-01-01

    How are visual scenes encoded in local neural networks of visual cortex? In rodents, visual cortex lacks a columnar organization so that processing of diverse features from a spot in visual space could be performed locally by populations of neighboring neurons. To examine how complex visual scenes are represented by local microcircuits in mouse visual cortex we measured visually evoked responses of layer 2/3 neuronal populations using 3D two-photon calcium imaging. Both natural and artificial movie scenes (10 seconds duration) evoked distributed and sparsely organized responses in local populations of 70-150 neurons within the sampled volumes. About 50% of neurons showed calcium transients during visual scene presentation, of which about half displayed reliable temporal activation patterns. The majority of the reliably responding neurons were activated primarily by one of the four visual scenes applied. Consequently, single-neurons performed poorly in decoding, which visual scene had been presented. In contrast, high levels of decoding performance (>80%) were reached when considering population responses, requiring about 80 randomly picked cells or 20 reliable responders. Furthermore, reliable responding neurons tended to have neighbors sharing the same stimulus preference. Because of this local redundancy, it was beneficial for efficient scene decoding to read out activity from spatially distributed rather than locally clustered neurons. Our results suggest a population code in layer 2/3 of visual cortex, where the visual environment is dynamically represented in the activation of distinct functional sub-networks. PMID:22180739

  6. Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex

    Directory of Open Access Journals (Sweden)

    FritjofHelmchen

    2011-12-01

    Full Text Available How are visual scenes encoded in local neural networks of visual cortex? In rodents, visual cortex lacks a columnar organization so that processing of diverse features from a spot in visual space could be performed locally by populations of neighboring neurons. To examine how complex visual scenes are represented by local microcircuits in mouse visual cortex we measured visually-evoked responses of layer 2/3 neuronal populations using 3D two-photon calcium imaging. Both natural and artificial movie scenes (10-s duration evoked distributed and sparsely organized responses in local populations of 70 to 150 neurons within the sampled volumes. About 50% of neurons showed calcium transients during visual scene presentation, of which about half displayed reliable temporal activation patterns. The majority of the reliably responding neurons were activated primarily by one of the four visual scenes applied. Consequently, single neurons performed poorly in decoding, which visual scene had been presented. In contrast, high levels of decoding performance (>80% were reached when considering population responses, requiring about 80 randomly picked cells or 20 reliable responders. Furthermore, reliable responding neurons tended to have neighbors sharing the same stimulus preference. Because of this local redundancy, it was beneficial for efficient scene decoding to read out activity from spatially distributed rather than locally clustered neurons. Our results suggest a population code in layer 2/3 of visual cortex, where the visual environment is dynamically represented in the activation of distinct functional sub-networks.

  7. The use of multiple representations and visualizations in student learning of introductory physics: An example from work and energy

    Science.gov (United States)

    Zou, Xueli

    In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.

  8. Representation of verbal pain descriptors on a visual analogue scale by dental patients and dental students.

    Science.gov (United States)

    Tammaro, S; Berggren, U; Bergenholtz, G

    1997-06-01

    Verbal rating scales (VRS), composed of ranked pain descriptors, are often employed in pain research. Factors that may influence the subjective pain intensity values, however, are not well established. In this study, 5 common pain descriptor adjectives were represented on a visual analogue scale (VAS) by a group of 80 dental students, by a group of 48 patients undergoing periodontal therapy, and by a group of 31 dental phobic patients. It was thought that each group of individuals on conducting the test represented a different degree of apprehension, ranging from a relaxed to a very tense status. There were differences in the interpretation of the pain descriptors between groups. Furthermore, age seemed to influence the interpretation of the pain descriptors. No correlation was found with gender. The descriptors did not divide the analogue scale into equal segments. 71% of all subjects gave the adjective "mild" a lower pain intensity representation than the adjective "weak", while the order was reversed among remaining subjects. Findings cast doubt on the reliability of VRS and the data handling methods commonly adopted in clinical pain research. PMID:9249186

  9. Adding Words to the Brain's Visual Dictionary: Novel Word Learning Selectively Sharpens Orthographic Representations in the VWFA.

    Science.gov (United States)

    Glezer, Laurie S; Kim, Judy; Rule, Josh; Jiang, Xiong; Riesenhuber, Maximilian

    2015-03-25

    The nature of orthographic representations in the human brain is still subject of much debate. Recent reports have claimed that the visual word form area (VWFA) in left occipitotemporal cortex contains an orthographic lexicon based on neuronal representations highly selective for individual written real words (RWs). This theory predicts that learning novel words should selectively increase neural specificity for these words in the VWFA. We trained subjects to recognize novel pseudowords (PWs) and used fMRI rapid adaptation to compare neural selectivity with RWs, untrained PWs (UTPWs), and trained PWs (TPWs). Before training, PWs elicited broadly tuned responses, whereas responses to RWs indicated tight tuning. After training, TPW responses resembled those of RWs, whereas UTPWs continued to show broad tuning. This change in selectivity was specific to the VWFA. Therefore, word learning appears to selectively increase neuronal specificity for the new words in the VWFA, thereby adding these words to the brain's visual dictionary. PMID:25810526

  10. Representación social de los prestadores de servicios de salud en la discapacidad visual / Social representation of the health service providers in visual disability

    Scientific Electronic Library Online (English)

    Guillermo, Díaz Llanes; Judith, Prieto Sedano.

    2014-03-01

    Full Text Available SciELO Cuba | Language: Spanish Abstract in spanish Introducción: el conocimiento de la representación social de los prestadores de servicios de salud resulta de suma importancia para la salud pública, debido a su influencia en la calidad de su relación con los pacientes. Objetivo: caracterizar la representación social de los prestadores de servicios [...] de salud acerca de la discapacidad visual. Métodos: estudio de caso realizado en el policlínico "Hermanos Ruíz Aboy" en San Miguel del Padrón en el período de enero a junio de 2012. Participaron 33 informantes clave escogidos por muestreo intencional. Las técnicas de indagación empleadas fueron la asociación libre de palabras y las entrevistas en profundidad. Resultados: el estudio reveló la existencia en los prestadores de una representación angustiosa-conmiserativa-dependiente que configura elementos provenientes de referentes experienciales, componentes afectivos e insumos informacionales relacionados con las personas en situación de discapacidad visual. Conclusiones: los prestadores de servicios de salud investigados tiene en el núcleo de sus representaciones experiencias y conocimientos relacionados con el daño anatómico que condiciona limitación e incapacidad para la participación en la vida social de las personas con discapacidad visual, pero las asociaciones relativas a las necesidades de atención, definen un deficiente reconocimiento de elementos que garantizarían la compensación e integración psicosocial en estas personas. Abstract in english Introduction: knowing the social representation of the health service providers is very important for the public health, due to their influence on the quality of relationship with the patients. Objective: to characterize the social representation of the health service providers on visual disability. [...] Methods: case study performed in "Hermanos Ruiz Aboy" in San Miguel del Padron municipality in the period of January through June, 2012. Thirty three key informants selected by intentional sampling participated. The research techniques were free association of words and in-depth interviews. Results: this study disclosed the existence in health providers of an anguishing-commisserative-dependent representation that shapes elements from experience referents, affective components and informational inputs related to the persons facing visual disability. Conclusions: the health service providers under research have, in the core of their representation, experiences and knowledge linked to the anatomical damage that causes limitation and disability to be involved in the people with visual disability; however, the relative associations with the care requirements define a poor recognition of those elements that would assure compensation and psychosocial integration of these people.

  11. Representación social de los prestadores de servicios de salud en la discapacidad visual / Social representation of the health service providers in visual disability

    Scientific Electronic Library Online (English)

    Guillermo, Díaz Llanes; Judith, Prieto Sedano.

    2014-03-01

    Full Text Available SciELO Public Health | Language: Spanish Abstract in spanish Introducción: el conocimiento de la representación social de los prestadores de servicios de salud resulta de suma importancia para la salud pública, debido a su influencia en la calidad de su relación con los pacientes. Objetivo: caracterizar la representación social de los prestadores de servicios [...] de salud acerca de la discapacidad visual. Métodos: estudio de caso realizado en el policlínico "Hermanos Ruíz Aboy" en San Miguel del Padrón en el período de enero a junio de 2012. Participaron 33 informantes clave escogidos por muestreo intencional. Las técnicas de indagación empleadas fueron la asociación libre de palabras y las entrevistas en profundidad. Resultados: el estudio reveló la existencia en los prestadores de una representación angustiosa-conmiserativa-dependiente que configura elementos provenientes de referentes experienciales, componentes afectivos e insumos informacionales relacionados con las personas en situación de discapacidad visual. Conclusiones: los prestadores de servicios de salud investigados tiene en el núcleo de sus representaciones experiencias y conocimientos relacionados con el daño anatómico que condiciona limitación e incapacidad para la participación en la vida social de las personas con discapacidad visual, pero las asociaciones relativas a las necesidades de atención, definen un deficiente reconocimiento de elementos que garantizarían la compensación e integración psicosocial en estas personas. Abstract in english Introduction: knowing the social representation of the health service providers is very important for the public health, due to their influence on the quality of relationship with the patients. Objective: to characterize the social representation of the health service providers on visual disability. [...] Methods: case study performed in "Hermanos Ruiz Aboy" in San Miguel del Padron municipality in the period of January through June, 2012. Thirty three key informants selected by intentional sampling participated. The research techniques were free association of words and in-depth interviews. Results: this study disclosed the existence in health providers of an anguishing-commisserative-dependent representation that shapes elements from experience referents, affective components and informational inputs related to the persons facing visual disability. Conclusions: the health service providers under research have, in the core of their representation, experiences and knowledge linked to the anatomical damage that causes limitation and disability to be involved in the people with visual disability; however, the relative associations with the care requirements define a poor recognition of those elements that would assure compensation and psychosocial integration of these people.

  12. The Effect of a Thinking Strategy Approach through Visual Representation on Achievement and Conceptual Understanding in Solving Mathematical Word Problems

    OpenAIRE

    Nasarudin Abdullah; Effandi Zakaria; Lilia Halim

    2012-01-01

    This quasi-experimental study was designed to determine the effect of a thinking strategy approach through visual representation on the achievement and conceptual understanding in solving mathematical word problems in primary school. The experimental group (n = 96) was exposed to the treatment, while the control group (n = 97) received a conventional approach in teaching and learning mathematical problem solving. To control the variable difference, a pretest was given to both groups before te...

  13. KCRC-LCD: Discriminative Kernel Collaborative Representation with Locality Constrained Dictionary for Visual Categorization

    OpenAIRE

    Liu, Weiyang; Yu, Zhiding; Lu, Lijia; Wen, Yandong; Li, Hui; Zou, Yuexian

    2014-01-01

    We consider the image classification problem via kernel collaborative representation classification with locality constrained dictionary (KCRC-LCD). Specifically, we propose a kernel collaborative representation classification (KCRC) approach in which kernel method is used to improve the discrimination ability of collaborative representation classification (CRC). We then measure the similarities between the query and atoms in the global dictionary in order to construct a loc...

  14. How to make a good animation: A grounded cognition model of how visual representation design affects the construction of abstract physics knowledge

    Science.gov (United States)

    Chen, Zhongzhou; Gladding, Gary

    2014-06-01

    Visual representations play a critical role in teaching physics. However, since we do not have a satisfactory understanding of how visual perception impacts the construction of abstract knowledge, most visual representations used in instructions are either created based on existing conventions or designed according to the instructor's intuition, which leads to a significant variance in their effectiveness. In this paper we propose a cognitive mechanism based on grounded cognition, suggesting that visual perception affects understanding by activating "perceptual symbols": the basic cognitive unit used by the brain to construct a concept. A good visual representation activates perceptual symbols that are essential for the construction of the represented concept, whereas a bad representation does the opposite. As a proof of concept, we conducted a clinical experiment in which participants received three different versions of a multimedia tutorial teaching the integral expression of electric potential. The three versions were only different by the details of the visual representation design, only one of which contained perceptual features that activate perceptual symbols essential for constructing the idea of "accumulation." On a following post-test, participants receiving this version of tutorial significantly outperformed those who received the other two versions of tutorials designed to mimic conventional visual representations used in classrooms.

  15. Visualization of large influenza virus sequence datasets using adaptively aggregated trees with sampling-based subscale representation

    Directory of Open Access Journals (Sweden)

    Tatusova Tatiana A

    2008-05-01

    Full Text Available Abstract Background With the amount of influenza genome sequence data growing rapidly, researchers need machine assistance in selecting datasets and exploring the data. Enhanced visualization tools are required to represent results of the exploratory analysis on the web in an easy-to-comprehend form and to facilitate convenient information retrieval. Results We developed an approach to visualize large phylogenetic trees in an aggregated form with a special representation of subscale details. The initial aggregated tree representation is built with a level of resolution automatically selected to fit into the available screen space, with terminal groups selected based on sequence similarity. The default aggregated representation can be refined by users interactively. Structure and data variability within terminal groups are displayed using small trees that have the same vertical size as the text annotation of the group. These subscale representations are calculated using systematic sampling from the corresponding terminal group. The aggregated tree containing terminal groups can be annotated using aggregation of structured metadata, such as seasonal distribution, geographic locations, etc. Availability The algorithms are implemented in JavaScript within the NCBI Influenza Virus Resource 1.

  16. Visualizing the engram: learning stabilizes odor representations in the olfactory network.

    Science.gov (United States)

    Shakhawat, Amin M D; Gheidi, Ali; Hou, Qinlong; Dhillon, Sandeep K; Marrone, Diano F; Harley, Carolyn W; Yuan, Qi

    2014-11-12

    The nature of memory is a central issue in neuroscience. How does our representation of the world change with learning and experience? Here we use the transcription of Arc mRNA, which permits probing the neural representations of temporally separated events, to address this in a well characterized odor learning model. Rat pups readily associate odor with maternal care. In pups, the lateralized olfactory networks are independent, permitting separate training and within-subject control. We use multiday training to create an enduring memory of peppermint odor. Training stabilized rewarded, but not nonrewarded, odor representations in both mitral cells and associated granule cells of the olfactory bulb and in the pyramidal cells of the anterior piriform cortex. An enlarged core of stable, likely highly active neurons represent rewarded odor at both stages of the olfactory network. Odor representations in anterior piriform cortex were sparser than typical in adult rat and did not enlarge with learning. This sparser representation of odor is congruent with the maturation of lateral olfactory tract input in rat pups. Cortical representations elsewhere have been shown to be highly variable in electrophysiological experiments, suggesting brains operate normally using dynamic and network-modulated representations. The olfactory cortical representations here are consistent with the generalized associative model of sparse variable cortical representation, as normal responses to repeated odors were highly variable (?70% of the cells change as indexed by Arc). Learning and memory modified rewarded odor ensembles to increase stability in a core representational component. PMID:25392506

  17. Representações visuais para recuperação de informação na BDTD-UFPE / Visual representations to information retrieval in BDTD-UFPE

    Scientific Electronic Library Online (English)

    Renato Fernandes, Correa; Jessica Monique de Lira, Vieira.

    2013-12-01

    Full Text Available Analisa a aplicabilidade de visualizações, como interfaces amigáveis para Sistemas de Recuperação de Informação (SRIs), bem como discute a construção de representação visual de informações para o SRI da Biblioteca Digital de Teses e Dissertações (BDTD) da Universidade Federal de Pernambuco (UFPE). A [...] metodologia consiste em estudo de caso, envolvendo análise do uso de visualizações em sites de SRIs e discussão dos caminhos percorridos para construção de visualizações para recuperação de teses e dissertações do Programa de Pós-Graduação em Direto da UFPE. Conclui-se que interfaces de SRIs, que disponibilizam visualizações, transmitem informações de forma agradável e interativa, possibilitando a recuperação de documentos relevantes e garantido melhor socialização dos conhecimentos. Entretanto, a escolha da visualização a ser construída para determinado SRI, deve levar em conta não só as vantagens do uso das mesmas pelo usuário, mas, também, o atendimento aos requisitos de organização da informação necessários para construção de cada visualização. Abstract in english This article analyzes the applicability of visualizations as friendly interfaces for Information Retrieval Systems (IRSs) and discusses the construction of visual representation of information to the IRS of the Digital Library of Theses and Dissertations (BDTD) at Federal University of Pernambuco (U [...] FPE). The methodology consists of case study involving analysis of the use of visualizations in SRIs sites, and discussion of the paths chosen to build visualizations for retrieval of theses and dissertations of the Law Graduate Program at UFPE. We conclude that SRI interfaces that provide visualizations convey information so enjoyable and interactive, allowing the retrieval of relevant documents and ensuring better socialization of knowledge. However, the choice of one visualization to be built for a specific SRI, should take into account not only the advantages for users of using the same, but also meeting the requirements of information organizing required for construction of each visualization.

  18. The Effect of Visual-Chunking-Representation Accommodation on Geometry Testing for Students with Math Disabilities

    Science.gov (United States)

    Zhang, Dake; Ding, Yi; Stegall, Joanna; Mo, Lei

    2012-01-01

    Students who struggle with learning mathematics often have difficulties with geometry problem solving, which requires strong visual imagery skills. These difficulties have been correlated with deficiencies in visual working memory. Cognitive psychology has shown that chunking of visual items accommodates students' working memory deficits. This…

  19. Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage

    International Nuclear Information System (INIS)

    Background and purpose. Cardiac disease and pulmonary complications are documented risk factors in tangential breast irradiation. Respiratory gating radiotherapy provides a possibility to substantially reduce cardiopulmonary doses. This CT planning study quantifies the reduction of radiation doses to the heart and lung, using deep inspiration breath-hold (DIBH). Patients and methods. Seventeen patients with early breast cancer, referred for adjuvant radiotherapy, were included. For each patient two CT scans were acquired; the first during free breathing (FB) and the second during DIBH. The scans were monitored by the Varian RPM respiratory gating system. Audio coaching and visual feedback (audio-visual guidance) were used. The treatment planning of the two CT studies was performed with conformal tangential fields, focusing on good coverage (V95>98%) of the planning target volume (PTV). Dose-volume histograms were calculated and compared. Doses to the heart, left anterior descending (LAD) coronary artery, ipsilateral lung and the contralateral breast were assessed. Results. Compared to FB, the DIBH-plans obtained lower cardiac and pulmonary doses, with equal coverage of PTV. The average mean heart dose was reduced from 3.7 to 1.7 Gy and the number of patients with >5% heart volume receiving 25 Gy or more was reduced from four to one of the 17 patients. With DIBH the heart was completely out of the beam portals for ten patients, with FB this could not be achieved for an with FB this could not be achieved for any of the 17 patients. The average mean dose to the LAD coronary artery was reduced from 18.1 to 6.4 Gy. The average ipsilateral lung volume receiving more than 20 Gy was reduced from 12.2 to 10.0%. Conclusion. Respiratory gating with DIBH, utilizing audio-visual guidance, reduces cardiac and pulmonary doses for tangentially treated left sided breast cancer patients without compromising the target coverage

  20. Preliminary tests of a possible outdoor light adaptation solution for a fly inspired visual sensor: a biomimetic solution - biomed 2011.

    Science.gov (United States)

    Dean, Brian K; Wright, Cameron H G; Barrett, Steven F

    2011-01-01

    Two previous papers, presented at RMBS in 2009 and 2010, introduced a fly inspired vision sensor that could adapt to indoor light conditions by mimicking the light adaptation process of the commonhousefly, Muscadomestica. A new system has been designed that should allow the sensor to adapt to outdoor light conditions which will enable the sensor?s use inapplications such as: unmanned aerial vehicle (UAV) obstacle avoidance, UAV landing support, target tracking, wheelchair guidance, large structure monitoring, and many other outdoor applications. A sensor of this type is especially suited for these applications due to features of hyperacuity (or an ability to achieve movement resolution beyond the theoretical limit), extreme sensitivity to motion, and (through software simulation) image edge extraction, motion detection, and orientation and location of a line.Many of these qualities are beyond the ability of traditional computervision sensors such as charge coupled device (CCD) arrays.To achieve outdoor light adaptation, a variety of design obstacles have to be overcome such as infrared interference, dynamic range expansion, and light saturation. The newly designed system overcomes the latter two design obstacles by mimicking the fly?s solution of logarithmic compression followed by removal of the average background light intensity. This paper presents the new design and the preliminary tests that were conducted to determine its effectiveness. PMID:21525612

  1. Retrieval from long-term memory reduces working memory representations for visual features and their bindings.

    Science.gov (United States)

    van Lamsweerde, Amanda E; Beck, Melissa R; Elliott, Emily M

    2015-02-01

    The ability to remember feature bindings is an important measure of the ability to maintain objects in working memory (WM). In this study, we investigated whether both object- and feature-based representations are maintained in WM. Specifically, we tested the hypotheses that retaining a greater number of feature representations (i.e., both as individual features and bound representations) results in a more robust representation of individual features than of feature bindings, and that retrieving information from long-term memory (LTM) into WM would cause a greater disruption to feature bindings. In four experiments, we examined the effects of retrieving a word from LTM on shape and color-shape binding change detection performance. We found that binding changes were more difficult to detect than individual-feature changes overall, but that the cost of retrieving a word from LTM was the same for both individual-feature and binding changes. PMID:25301564

  2. Students' Use of Three Different Visual Representations to Interpret Whether Molecules Are Polar or Nonpolar

    Science.gov (United States)

    Host, Gunnar E.; Schonborn, Konrad J.; Palmerius, Karljohan E. Lundin

    2012-01-01

    Visualizing molecular properties is often crucial for constructing conceptual understanding in chemistry. However, research has revealed numerous challenges surrounding students' meaningful interpretation of the relationship between the geometry and electrostatic properties of molecules. This study explored students' (n = 18) use of three visual

  3. Drosophila-inspired visual orientation model on the Eye-RIS platform: experiments on a roving robot

    Science.gov (United States)

    Arena, P.; De Fiore, S.; Patané, L.; Alba, L.; Strauss, R.

    2011-05-01

    Behavioral experiments on fruit flies had shown that they are attracted by near objects and they prefer front-to-back motion. In this paper a visual orientation model is implemented on the Eye-Ris vision system and tested using a roving platform. Robotic experiments are used to collect statistical data regarding the system behaviour: followed trajectories, dwelling time, distribution of gaze direction and others strictly resembling the biological experimental setup on the flies. The statistical analysis has been performed in different scenarios where the robot faces with different object distribution in the arena. The acquired data has been used to validate the proposed model making a comparison with the fruit fly experiments.

  4. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus.

    Science.gov (United States)

    Gale, Samuel D; Murphy, Gabe J

    2014-10-01

    The superficial superior colliculus (sSC) occupies a critical node in the mammalian visual system; it is one of two major retinorecipient areas, receives visual cortical input, and innervates visual thalamocortical circuits. Nonetheless, the contribution of sSC neurons to downstream neural activity and visually guided behavior is unknown and frequently neglected. Here we identified the visual stimuli to which specific classes of sSC neurons respond, the downstream regions they target, and transgenic mice enabling class-specific manipulations. One class responds to small, slowly moving stimuli and projects exclusively to lateral posterior thalamus; another, comprising GABAergic neurons, responds to the sudden appearance or rapid movement of large stimuli and projects to multiple areas, including the lateral geniculate nucleus. A third class exhibits direction-selective responses and targets deeper SC layers. Together, our results show how specific sSC neurons represent and distribute diverse information and enable direct tests of their functional role. PMID:25274823

  5. Psychophysical study of the visual sun location in pictures of cloudy and twilight skies inspired by Viking navigation.

    Science.gov (United States)

    Barta, András; Horváth, Gábor; Meyer-Rochow, Victor Benno

    2005-06-01

    In the late 1960s it was hypothesized that Vikings had been able to navigate the open seas, even when the sun was occluded by clouds or below the sea horizon, by using the angle of polarization of skylight. To detect the direction of skylight polarization, they were thought to have made use of birefringent crystals, called "sun-stones," and a large part of the scientific community still firmly believe that Vikings were capable of polarimetric navigation. However, there are some critics who treat the usefulness of skylight polarization for orientation under partly cloudy or twilight conditions with extreme skepticism. One of their counterarguments has been the assumption that solar positions or solar azimuth directions could be estimated quite accurately by the naked eye, even if the sun was behind clouds or below the sea horizon. Thus under partly cloudy or twilight conditions there might have been no serious need for a polarimetric method to determine the position of the sun. The aim of our study was to test quantitatively the validity of this qualitative counterargument. In our psychophysical laboratory experiments, test subjects were confronted with numerous 180 degrees field-of-view color photographs of partly cloudy skies with the sun occluded by clouds or of twilight skies with the sun below the horizon. The task of the subjects was to guess the position or the azimuth direction of the invisible sun with the naked eye. We calculated means and standard deviations of the estimated solar positions and azimuth angles to characterize the accuracy of the visual sun location. Our data do not support the common belief that the invisible sun can be located quite accurately from the celestial brightness and/or color patterns under cloudy or twilight conditions. Although our results underestimate the accuracy of visual sun location by experienced Viking navigators, the mentioned counterargument cannot be taken seriously as a valid criticism of the theory of the alleged polarimetric Viking navigation. Our results, however, do not bear on the polarimetric theory itself. PMID:15984474

  6. Design and Development of a Linked Open Data-Based Health Information Representation and Visualization System: Potentials and Preliminary Evaluation

    Science.gov (United States)

    Kauppinen, Tomi; Keßler, Carsten; Fritz, Fleur

    2014-01-01

    Background Healthcare organizations around the world are challenged by pressures to reduce cost, improve coordination and outcome, and provide more with less. This requires effective planning and evidence-based practice by generating important information from available data. Thus, flexible and user-friendly ways to represent, query, and visualize health data becomes increasingly important. International organizations such as the World Health Organization (WHO) regularly publish vital data on priority health topics that can be utilized for public health policy and health service development. However, the data in most portals is displayed in either Excel or PDF formats, which makes information discovery and reuse difficult. Linked Open Data (LOD)—a new Semantic Web set of best practice of standards to publish and link heterogeneous data—can be applied to the representation and management of public level health data to alleviate such challenges. However, the technologies behind building LOD systems and their effectiveness for health data are yet to be assessed. Objective The objective of this study is to evaluate whether Linked Data technologies are potential options for health information representation, visualization, and retrieval systems development and to identify the available tools and methodologies to build Linked Data-based health information systems. Methods We used the Resource Description Framework (RDF) for data representation, Fuseki triple store for data storage, and Sgvizler for information visualization. Additionally, we integrated SPARQL query interface for interacting with the data. We primarily use the WHO health observatory dataset to test the system. All the data were represented using RDF and interlinked with other related datasets on the Web of Data using Silk—a link discovery framework for Web of Data. A preliminary usability assessment was conducted following the System Usability Scale (SUS) method. Results We developed an LOD-based health information representation, querying, and visualization system by using Linked Data tools. We imported more than 20,000 HIV-related data elements on mortality, prevalence, incidence, and related variables, which are freely available from the WHO global health observatory database. Additionally, we automatically linked 5312 data elements from DBpedia, Bio2RDF, and LinkedCT using the Silk framework. The system users can retrieve and visualize health information according to their interests. For users who are not familiar with SPARQL queries, we integrated a Linked Data search engine interface to search and browse the data. We used the system to represent and store the data, facilitating flexible queries and different kinds of visualizations. The preliminary user evaluation score by public health data managers and users was 82 on the SUS usability measurement scale. The need to write queries in the interface was the main reported difficulty of LOD-based systems to the end user. Conclusions The system introduced in this article shows that current LOD technologies are a promising alternative to represent heterogeneous health data in a flexible and reusable manner so that they can serve intelligent queries, and ultimately support decision-making. However, the development of advanced text-based search engines is necessary to increase its usability especially for nontechnical users. Further research with large datasets is recommended in the future to unfold the potential of Linked Data and Semantic Web for future health information systems development. PMID:25601195

  7. Neuronal Learning of Invariant Object Representation in the Ventral Visual Stream Is Not Dependent on Reward

    OpenAIRE

    Li, Nuo; Dicarlo, James J.

    2012-01-01

    Neurons at the top of primate ventral visual stream (inferior temporal cortex, IT) have selectivity for objects that is highly tolerant to variation in the object’s appearance on the retina. Previous non-human primate (Macaca mulatta) studies suggest that this neuronal tolerance is at least partly supported by the natural temporal contiguity of visual experience, because altering that temporal contiguity can robustly alter adult IT position and size tolerance. According to that work, it is ...

  8. The Effect of Visual Representation Style in Problem-Solving: A Perspective from Cognitive Processes

    OpenAIRE

    Nyamsuren, Enkhbold; Taatgen, Niels A.

    2013-01-01

    Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath pa...

  9. The VIPER project (Visualization Integration Platform for Exploration Research): a biologically inspired autonomous reconfigurable robotic platform for diverse unstructured environments

    Science.gov (United States)

    Schubert, Oliver J.; Tolle, Charles R.

    2004-09-01

    Over the last decade the world has seen numerous autonomous vehicle programs. Wheels and track designs are the basis for many of these vehicles. This is primarily due to four main reasons: a vast preexisting knowledge base for these designs, energy efficiency of power sources, scalability of actuators, and the lack of control systems technologies for handling alternate highly complex distributed systems. Though large efforts seek to improve the mobility of these vehicles, many limitations still exist for these systems within unstructured environments, e.g. limited mobility within industrial and nuclear accident sites where existing plant configurations have been extensively changed. These unstructured operational environments include missions for exploration, reconnaissance, and emergency recovery of objects within reconfigured or collapsed structures, e.g. bombed buildings. More importantly, these environments present a clear and present danger for direct human interactions during the initial phases of recovery operations. Clearly, the current classes of autonomous vehicles are incapable of performing in these environments. Thus the next generation of designs must include highly reconfigurable and flexible autonomous robotic platforms. This new breed of autonomous vehicles will be both highly flexible and environmentally adaptable. Presented in this paper is one of the most successful designs from nature, the snake-eel-worm (SEW). This design implements shape memory alloy (SMA) actuators which allow for scaling of the robotic SEW designs from sub-micron scale to heavy industrial implementations without major conceptual redesigns as required in traditional hydraulic, pneumatic, or motor driven systems. Autonomous vehicles based on the SEW design posses the ability to easily move between air based environments and fluid based environments with limited or no reconfiguration. Under a SEW designed vehicle, one not only achieves vastly improved maneuverability within a highly unstructured environment, but also gains robotic manipulation abilities, normally relegated as secondary add-ons within existing vehicles, all within one small condensed package. The prototype design presented includes a Beowulf style computing system for advanced guidance calculations and visualization computations. All of the design and implementation pertaining to the SEW robot discussed in this paper is the product of a student team under the summer fellowship program at the DOEs INEEL.

  10. A layered neural architecture for the consolidation, maintenance, and updating of representations in visual working memory

    OpenAIRE

    Johnson, Jeffrey S.; Spencer, John P.; Schöner, Gregor

    2009-01-01

    Many everyday tasks rely on our ability to hold information about a perceived stimulus in mind after that stimulus is no longer visible and to compare this information with incoming perceptual information. This ability has been shown to rely on a short-term form of visual memory that has come to be known as visual working memory. Research and theory at both the behavioral and neural levels has begun to provide important insights into the basic properties of the neuro-cognitive systems underly...

  11. Reconstruction and visualization of equivalent currents on a radome using an integral representation formulation

    OpenAIRE

    Persson, Kristin; Gustafsson, Mats; Kristensson, Gerhard

    2010-01-01

    In this paper an inverse source problem is investigated. The measurement set-up is a reflector antenna covered by a radome. Equivalent currents are reconstructed on a surface shaped as the radome in order to diagnose the radome's interaction with the radiated field. To tackle this inverse source problem an analysis of a full-wave integral representation, with the equivalent currents as unknowns, is used. The extinction theorem and its associated integral equation ensure that the reconstru...

  12. The role of visual representations in the learning and teaching of science: An introduction

    OpenAIRE

    Gilbert, John K.

    2010-01-01

    Representations are the entities with which all thinking is considered to take place. Hence they are central to the process of learning and consequently to that of teaching. They are therefore important in the conduct and learning of science, given the central commitment of that discipline to providing evidence-based explanations of natural phenomena, in which underlying entities and mechanisms have to be postulated and substantiated on the basis of empirical enquiry. The three generic types ...

  13. Intrinsic Structure of Visual Exemplar and Category Representations in Macaque Brain

    OpenAIRE

    Kriegeskorte, Nikolaus; Mur, Marieke; Hadj-bouziane, Fadila; Luh, Wen-ming; Tootell, Roger B. H.; Ungerleider, Leslie G.

    2013-01-01

    One of the most remarkable properties of the visual system is the ability to identify and categorize a wide variety of objects effortlessly. However, the underlying neural mechanisms remain elusive. Specifically, the question of how individual object information is represented and intrinsically organized is still poorly understood. To address this question, we presented images of isolated real-world objects spanning a wide range of categories to awake monkeys using a rapid event-related funct...

  14. Spatially global representations in human primary visual cortex during working memory maintenance

    OpenAIRE

    Ester, Edward F.; Serences, John T.; Awh, Edward

    2009-01-01

    Recent studies suggest that visual features are stored in working memory (WM) via sensory recruitment, or sustained stimulus-specific patterns of activity in cortical regions that encode memoranda. One important question concerns the spatial extent of sensory recruitment. One possibility is that sensory recruitment is restricted to neurons that are retinotopically mapped to the positions occupied by the remembered items. Alternatively, specific feature values could be represented via a spatia...

  15. statnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data

    Directory of Open Access Journals (Sweden)

    Mark S. Handcock

    2007-12-01

    Full Text Available statnet is a suite of software packages for statistical network analysis. The packages implement recent advances in network modeling based on exponential-family random graph models (ERGM. The components of the package provide a comprehensive framework for ERGM-based network modeling, including tools for model estimation, model evaluation, model-based network simulation, and network visualization. This broad functionality is powered by a central Markov chain Monte Carlo (MCMC algorithm. The coding is optimized for speed and robustness.

  16. Effects of Visual Representation on Social Influence in Computer-Mediated Communication: Experimental Tests of the Social Identity Model of Deindividuation Effects

    Science.gov (United States)

    Lee, Eun-Ju

    2004-01-01

    Two experiments investigated if and how visual representation of interactants affects depersonalization and conformity to group norms in anonymous computer-mediated communication (CMC). In Experiment 1, a 2 (intergroup versus interpersonal) x 2 (same character versus different character) between-subjects design experiment (N=60), each participant…

  17. A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex

    Science.gov (United States)

    Watson, Andrew B.; Ahumada, Albert J., Jr.

    1989-01-01

    Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.

  18. A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex.

    Science.gov (United States)

    Watson, A B; Ahumada, A J

    1989-01-01

    Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of primary visual cortex employ a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. Despite the presumable importance of this transformation, we lack any comprehensive notion of how it occurs. Here we describe a mathematical model for this transformation. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, employs basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. The three even kernels are rotations of 0, 60, and 120 degrees of a common kernel; likewise for the three odd kernels. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex. PMID:2921066

  19. Saliency-based representations and multi-component classifiers for visual scene recognition

    OpenAIRE

    Fornoni, Marco

    2014-01-01

    Visual scene recognition deals with the problem of automatically recognizing the high-level semantic concept describing a given image as a whole, such as the environment in which the scene is occurring (e.g. a mountain), or the event that is taking place (e.g. a rock climbing event). Scene categories, especially those related to man-made places and events, present high degrees of intra-class variability and inter-class similarity, which in turn require robust and discriminative recognition sy...

  20. Spatiotemporal representations of rapid visual target detection: a single-trial EEG classification algorithm.

    Science.gov (United States)

    Fuhrmann Alpert, Galit; Manor, Ran; Spanier, Assaf B; Deouell, Leon Y; Geva, Amir B

    2014-08-01

    Brain computer interface applications, developed for both healthy and clinical populations, critically depend on decoding brain activity in single trials. The goal of the present study was to detect distinctive spatiotemporal brain patterns within a set of event related responses. We introduce a novel classification algorithm, the spatially weighted FLD-PCA (SWFP), which is based on a two-step linear classification of event-related responses, using fisher linear discriminant (FLD) classifier and principal component analysis (PCA) for dimensionality reduction. As a benchmark algorithm, we consider the hierarchical discriminant component Analysis (HDCA), introduced by Parra, et al. 2007. We also consider a modified version of the HDCA, namely the hierarchical discriminant principal component analysis algorithm (HDPCA). We compare single-trial classification accuracies of all the three algorithms, each applied to detect target images within a rapid serial visual presentation (RSVP, 10 Hz) of images from five different object categories, based on single-trial brain responses. We find a systematic superiority of our classification algorithm in the tested paradigm. Additionally, HDPCA significantly increases classification accuracies compared to the HDCA. Finally, we show that presenting several repetitions of the same image exemplars improve accuracy, and thus may be important in cases where high accuracy is crucial. PMID:24216627

  1. Does using a visual-representation tool foster students' ability to identify forces and construct free-body diagrams?

    Science.gov (United States)

    Savinainen, Antti; Mäkynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2013-06-01

    Earlier research has shown that after physics instruction, many students have difficulties with the force concept, and with constructing free-body diagrams (FBDs). It has been suggested that treating forces as interactions could help students to identify forces as well as to construct the correct FBDs. While there is evidence that identifying interactions helps students in quantitative problem solving, there is no previous research investigating the effect of a visual-representation tool—an interaction diagram (ID)—on students’ ability to identify forces, and to construct the correct FBDs. We present an empirical study conducted in 11 Finnish high schools on students (n=335, aged 16) taking their first, mandatory, introductory physics course. The study design involved groups of students having heavy, light, or no use of IDs. The heavy and light ID groups answered eight pairs of ID and FBD questions in various physical contexts and the no ID group answered two of the eight FBD questions. The results indicate that the heavy ID group outperformed both the light and the no ID groups in identifying forces and constructing the correct FBDs. The analysis of these data indicates that the use of IDs is especially beneficial in identifying forces when constructing FBDs.

  2. Getting the picture: A mixed-methods inquiry into how visual representations are interpreted by students, incorporated within textbooks, and integrated into middle-school science classrooms

    Science.gov (United States)

    Lee, Victor Raymond

    Modern-day middle school science textbooks are heavily populated with colorful images, technical diagrams, and other forms of visual representations. These representations are commonly perceived by educators to be useful aids to support student learning of unfamiliar scientific ideas. However, as the number of representations in science textbooks has seemingly increased in recent decades, concerns have been voiced that many current of these representations are actually undermining instructional goals; they may be introducing substantial conceptual and interpretive difficulties for students. To date, very little empirical work has been done to examine how the representations used in instructional materials have changed, and what influences these changes exert on student understanding. Furthermore, there has also been limited attention given to the extent to which current representational-use routines in science classrooms may mitigate or limit interpretive difficulties. This dissertation seeks to do three things: First, it examines the nature of the relationship between published representations and students' reasoning about the natural world. Second, it considers the ways in which representations are used in textbooks and how that has changed over a span of five decades. Third, this dissertation provides an in-depth look into how middle school science classrooms naturally use these visual representations and what kinds of support are being provided. With respect to the three goals of this dissertation, three pools of data were collected and analyzed for this study. First, interview data was collected in which 32 middle school students interpreted and reasoned with a set of more and less problematic published textbook representations. Quantitative analyses of the interview data suggest that, counter to what has been anticipated in the literature, there were no significant differences in the conceptualizations of students in the different groups. An accompanying qualitative analysis probes further into why this was the case. In addition to the interview data, a corpus of graphic representations from 34 science textbooks (published between 1943-2005) was catalogued and examined for compositional trends and changes. This historical textbook analysis of images and illustrations reveals that, consistent with expectations, there has indeed been an overall increase in the number of representations in a given instructional unit. Yet, despite the increase, there is very little shift in the instructional functions that those representations serve. Where the most dramatic changes appear are with the individual representations themselves and how they are used to relate scientific ideas to middle school students. Finally, a set of video-recorded classroom observations with three different teachers was collected in order to study representational-use routines. A numerical analysis of classroom episodes suggests that it is fairly common for the majority of representations that are used to appear fleetingly and not be discussed again. When representations are reused or reintroduced, a qualitative analysis reveals that they are often accompanied by interpretive support from the teacher, which may steer students away from misinterpretations.

  3. Content-based retrieval of focal liver lesions using bag-of-visual-words representations of single- and multiphase contrast-enhanced CT images.

    Science.gov (United States)

    Yang, Wei; Lu, Zhentai; Yu, Mei; Huang, Meiyan; Feng, Qianjin; Chen, Wufan

    2012-12-01

    This paper is aimed at developing and evaluating a content-based retrieval method for contrast-enhanced liver computed tomographic (CT) images using bag-of-visual-words (BoW) representations of single and multiple phases. The BoW histograms are extracted using the raw intensity as local patch descriptor for each enhance phase by densely sampling the image patches within the liver lesion regions. The distance metric learning algorithms are employed to obtain the semantic similarity on the Hellinger kernel feature map of the BoW histograms. The different visual vocabularies for BoW and learned distance metrics are evaluated in a contrast-enhanced CT image dataset comprised of 189 patients with three types of focal liver lesions, including 87 hepatomas, 62 cysts, and 60 hemangiomas. For each single enhance phase, the mean of average precision (mAP) of BoW representations for retrieval can reach above 90 % which is significantly higher than that of intensity histogram and Gabor filters. Furthermore, the combined BoW representations of the three enhance phases can improve mAP to 94.5 %. These preliminary results demonstrate that the BoW representation is effective and feasible for retrieval of liver lesions in contrast-enhanced CT images. PMID:22692772

  4. Processos comunicacionais em ambiente escolar: o potencial de sentidos de representações visuais / Communicational processes in school setting: the potential of meanings of the visual representations / Procesos comunicacionales en ambiente escolar: potencial de los significados en las representaciones visuales

    Scientific Electronic Library Online (English)

    Luciana Coutinho Pagliarini de, Souza; Maria Ogécia, Drigo.

    2013-12-01

    Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese Este artigo, resultado de pesquisa em desenvolvimento sob os auspícios da FAPESP, trata de interseções entre Comunicação e Educação inseridas no ambiente educacional a partir de recursos pedagógicos disponibilizados, como o livro didático. Objetiva-se refletir sobre o potencial de sentidos engendrad [...] os em representações visuais sobre masculino/feminimo que constam de livros didáticos e para tanto apresentam-se reflexões sobre imagens; sobre a alteridade e o processo de construção da identidade cultural na pós-modernidade, enquanto o instrumental para análise das representações visuais selecionadas está baseado na semiótica peirceana. As representações visuais cumprem o propósito de abrir caminho para reflexões no campo Comunicação/Educação capazes de gerarem ações que podem redundar na possibilidade de construção de um pensamento crítico em relação às representações visuais. Abstract in spanish Este artículo, resulta de una investigación en desarrollo apoyada por la Fundación de Apoyo a la Investigación del Estado de São Paulo - FAPESP, trata de intersecciones entre la Comunicación y la Educación inserta en el ámbito educativo con recursos didácticos disponibles, tales como el libro de tex [...] to. Objetivase la reflexión sobre el potencial de los sentidos engendrados en representaciones visuales de sexo masculino/feminimo contenidos en los libros de texto. Para tanto se presentan reflexiones sobre las imágenes en la contemporaneidad; la alteridad y la construcción de la identidad cultural en la postmodernidad, mientras el instrumental de análisis de las representaciones visuales se basa en la semiótica peirceana. Las representaciones visuales cumplen el propósito de dar paso a las reflexiones de la Comunicación / Educación capaz de generar acciones que pueden resultar en la posibilidad de construir un pensamiento crítico en relación a las representaciones visuales de campo. Abstract in english This paper is result of a research that is being developed under the auspices of FAPESP and it shows intersections between Communication and Education in the educational environment with teaching resources available, such as the textbook. In order to think about the potential of visual representatio [...] ns about male/female that are in textbooks and, for that, it shows some reflections about images; about the process of the construction of cultural identity are presented, while the semiotics analyses of the visual representation is made from peircean semiotics. Visual representations fulfill the purpose to make way for reflections in the field Communication / Education capable of generating actions that could result in the possibility of building critical thinking in relation to visual representations.

  5. Towards a visual social psychology of identity and representation: photographing the self, weaving the family in a multicultural British community

    OpenAIRE

    Howarth, Caroline

    2011-01-01

    This comprehensive volume provides an unprecedented illustration of the potential for visual methods in psychology. Each chapter explores the set of theoretical, methodological, as well as ethical and analytical issues that shape the ways in which visual qualitative research is conducted in psychology. Using a variety of forms of visual data, including photography, documentary film-making, drawing, internet media, model making, walking and map drawing, video recording and collages, each autho...

  6. Improved representation of retinal data acquired with volumetric Fd-OCT: co-registration, visualization, and reconstruction of a large field of view

    Science.gov (United States)

    Zawadzki, Robert J.; Fuller, Alfred R.; Choi, Stacey S.; Wiley, David F.; Hamann, Bernd; Werner, John S.

    2008-02-01

    Advances in Fourier-domain optical coherence tomography (Fd-OCT) permit visualization of three-dimensional morphology of in-vivo retinal structures in a way that promises to revolutionize clinical and experimental imaging of the retina. The relevance of these advances will be further increased by the recent introduction of several commercial Fd-OCT instruments that can be used in clinical practice. However, due to some inherent limitations of current Fd-OCT technology (e.g., lack of spectroscopic information, inability to measure fluorescent signals), it is important to co-register Fd-OCT data with images obtained by other clinical imaging modalities such as fundus cameras and fluorescence angiography to create a more complete interpretation and representation of structures imaged. The co-registration between different imaging platforms becomes even more important if small retinal changes are monitored for early detection and treatment. Despite advances in volume acquisition speed with FD-OCT, eye/head motion artifacts can be still seen on acquired data. Additionally high-sampling density, large field-of-view (FOV) Fd-OCT volumes may also be needed for comparison with conventional imaging. In standard Fd-OCT systems, higher sampling density and larger imaging FOV (with constant sampling densities) lead to longer acquisition time which further increases eye/head motion artifacts. To overcome those problems, we tested 3D stitching of multiple, smaller retinal volumes which can be acquired in a less time (reduction of motion artifacts) and/or when stitched create a larger FOV representation of the retina. Custom visualization software that makes possible manual co-registration and simultaneous visualization of volumetric Fd-OCT data sets is described. Volumetric visualizations of healthy retinas with corresponding fundus pictures are presented followed by examples of retinal volumes of high sampling density that are created from multiple "standard" Fd-OCT volumes.

  7. A robust index of lexical representation in the left occipito-temporal cortex as evidenced by EEG responses to fast periodic visual stimulation.

    Science.gov (United States)

    Lochy, Aliette; Van Belle, Goedele; Rossion, Bruno

    2015-01-01

    Despite decades of research on reading, including the relatively recent contributions of neuroimaging and electrophysiology, identifying selective representations of whole visual words (in contrast to pseudowords) in the human brain remains challenging, in particular without an explicit linguistic task. Here we measured discrimination responses to written words by means of electroencephalography (EEG) during fast periodic visual stimulation. Sequences of pseudofonts, nonwords, or pseudowords were presented through sinusoidal contrast modulation at a periodic 10 Hz frequency rate (F), in which words were interspersed at regular intervals of every fifth item (i.e., F/5, 2 Hz). Participants monitored a central cross color change and had no linguistic task to perform. Within only 3 min of stimulation, a robust discrimination response for words at 2 Hz (and its harmonics, i.e., 4 and 6 Hz) was observed in all conditions, located predominantly over the left occipito-temporal cortex. The magnitude of the response was largest for words embedded in pseudofonts, and larger in nonwords than in pseudowords, showing that list context effects classically reported in behavioral lexical decision tasks are due to visual discrimination rather than decisional processes. Remarkably, the oddball response was significant even for the critical words/pseudowords discrimination condition in every individual participant. A second experiment replicated this words/pseudowords discrimination, and showed that this effect is not accounted for by a higher bigram frequency of words than pseudowords. Without any explicit task, our results highlight the potential of an EEG fast periodic visual stimulation approach for understanding the representation of written language. Its development in the scientific community might be valuable to rapidly and objectively measure sensitivity to word processing in different human populations, including neuropsychological patients with dyslexia and other reading difficulties. PMID:25448857

  8. A new computer program for topological, visual analysis of 3D particle configurations based on visual representation of radial distribution function peaks as bonds

    CERN Document Server

    Metere, Alfredo; Dzugutov, Mikhail

    2015-01-01

    We present a new program able to perform unique visual analysis on generic particle systems: PASYVAT (PArticle SYstem Visual Analysis Tool). More specifically, it can perform a selection of multiple interparticle distance ranges from a radial distribution function (RDF) plot and display them in 3D as bonds. This software can be used with any data set representing a system of particles in 3D. In this manuscript the reader will find a description of the program and its internal structure, with emphasis on its applicability in the study of certain particle configurations, obtained from classical molecular dynamics simulation in condensed matter physics.

  9. Visual perception from the perspective of a representational, non-reductionistic, level-dependent account of perception and conscious awareness

    DEFF Research Database (Denmark)

    Overgaard, Morten; Mogensen, Jesper

    2014-01-01

    This article proposes a new model to interpret seemingly conflicting evidence concerning the correlation of consciousness and neural processes. Based on an analysis of research of blindsight and subliminal perception, the reorganization of elementary functions and consciousness framework suggests that mental representations consist of functions at several different levels of analysis, including truly localized perceptual elementary functions and perceptual algorithmic modules, which are interconnections of the elementary functions. We suggest that conscious content relates to the 'top level' of analysis in a 'situational algorithmic strategy' that reflects the general state of an individual. We argue that conscious experience is intrinsically related to representations that are available to guide behaviour. From this perspective, we find that blindsight and subliminal perception can be explained partly by too coarse-grained methodology, and partly by top-down enhancing of representations that normally would not be relevant to action.

  10. The Inspirational Leader

    Science.gov (United States)

    Benigni, Mark D.; Hughes, Mark A

    2012-01-01

    Amid the focus on improved standardized test scores, differentiated instruction, value-added initiatives and improved teacher evaluation, one must not ignore an education leader's need to inspire and be inspired. But how do education leaders inspire their students and teachers during some of the most difficult economic times the nation has ever…

  11. Representaciones visuales del cuerpo humano: análisis de los nuevos libros de primaria de ciencias naturales en la reforma educativa mexicana / Visual Representations of the Human Body: An Analysis of the New Elementary Science Textbooks in Mexico's Educational Reform

    Scientific Electronic Library Online (English)

    Yolanda, Postigo; Asunción, López-Manjón.

    2012-06-01

    Full Text Available En este trabajo analizamos las concepciones sobre la naturaleza de las representaciones visuales sobre el cuerpo humano que dirigen su selección, diseño y tratamiento didáctico en los nuevos libros de primaria de ciencias naturales (3° a 6° grados) de la Reforma Integral de la Educación Básica en Mé [...] xico. Se describen dos tipos de concepciones: una intuitiva, que asume una simplicidad y facilidad en el uso de las imágenes junto con una naturaleza realista de las mismas, y una más compleja, de naturaleza constructivista, en la que se consideran las imágenes como un sistema externo de representación con las dificultades que demanda su uso. Los resultados muestran que la concepción que subyace a las imágenes sobre el cuerpo humano de 3° a 6° grados corresponde a una de tipo intuitivo con pocos cambios respecto de su tratamiento en los libros de texto anteriores a la Reforma. Abstract in english This study analyzes the natural conceptions of the visual representations of the human body that guide selection, design, and didactic treatment in the new elementary science textbooks (3rd grade to 6th grade) of Mexico's Integral Reform of Basic Education. Two types of conceptions are described: an [...] intuitive conception, which assumes simplicity and facility in the use of images, along with a realistic representation; and a more complex conception of a constructivist nature that considers images to be an external system of representation with the difficulties their use demands. The results show that the underlying conception of the images of the human body from the 3rd to the 6th grades corresponds to an intuitive type with few changes, with respect to textbooks prior to the Reform.

  12. Eesti õpetaja pälvis Inspiration Software'i stipendiumi / Ave Lauringson

    Index Scriptorium Estoniae

    Lauringson, Ave

    2007-01-01

    USA tarkvarafirma Inspiration Software tegi teatavaks 30 õpetaja nimed üle maailma, kes saavad 2007. aasta haridusstipendiumi (Inspired Teacher Scholarships for Visual Learning). Nende seas on ka Lasnamäe Lasteaia-Algkooli õpetaja, Tiigrihüppe SA ekspert ja koolitaja ning Tiigri Tegija 2007 auhinnasaaja Ingrid Maadvere

  13. Effect of temperature and light intensity on the representation of motion information in the fly's visual system

    OpenAIRE

    Spavieri, Deusdedit

    2009-01-01

    To comprehend how the brain performs efficient computation, it is important to understand the way sensory information is represented in the nervous system. Under natural conditions, sensory signals have to be processed with sufficient accuracy under functional and resources constraints. Here I use motion vision in the fly Calliphora vicina to study the influence of two behaviorally relevant environmental properties - temperature and light intensity - on the representation of motion informatio...

  14. Celebrated, Dispossessed and Worshiped. Representations of the Tragic Destiny of the Hero in Contemporary Caribbean Visual Imaginary

    OpenAIRE

    Garrido Castellano, Carlos

    2012-01-01

    The present paper focuses on analyzing the images of violence through the representation of heroes associated to combat contexts. Specifically, we will examine those cases in which that hero, despite its champion condition, appears defeated, overcome by the context. The reflections of artists such as Marcos Lora Read (Dominican Republic), Javier Castro (Cuba) and Ebony Patterson (Jamaica), by using various artistic mediums, have used the image of the hero to deconstruct elements of their soci...

  15. Visualizing Series

    Science.gov (United States)

    Unal, Hasan

    2008-01-01

    The importance of visualisation and multiple representations in mathematics has been stressed, especially in a context of problem solving. Hanna and Sidoli comment that "Diagrams and other visual representations have long been welcomed as heuristic accompaniments to proof, where they not only facilitate the understanding of theorems and their…

  16. The State of the Art in Topology-based Visualization of Unsteady Flow

    OpenAIRE

    Pobitzer, Armin; Peikert, Ronald; Fuchs, Raphael; Schindler, Benjamin; Kuhn, Alexander; Theisel, Holger; Matkovic?, Kres?imir; Hauser, Helwig

    2011-01-01

    Vector fields are a common concept for the representation of many different kinds of flow phenomena in science and engineering. Methods based on vector field topology are known for their convenience for visualizing and analyzing steady flows, but a counterpart for unsteady flows is still missing. However, a lot of good and relevant work aiming at such a solution is available. We give an overview of previous research leading towards topologybased and topology-inspired visu...

  17. Visualizers of solidarity: organizational politics in humanitarian and international development NGOs

    OpenAIRE

    Orgad, Shani

    2013-01-01

    iscussion of the visual politics of solidarity, in relation specifically to the representation of suffering and development, has been grounded in analysis of images. This article seeks to expand this debate by exploring the organizational politics that shape and are shaped by these images. The article is inspired by production studies in the cultural industries and draws on interviews with 17 professionals from 10 UK-based international development and humanitarian organizations that are enga...

  18. An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex

    OpenAIRE

    Cai, David; Tao, Louis; Shelley, Michael; Mclaughlin, David W.

    2004-01-01

    A coarse-grained representation of neuronal network dynamics is developed in terms of kinetic equations, which are derived by a moment closure, directly from the original large-scale integrate-and-fire (I&F) network. This powerful kinetic theory captures the full dynamic range of neuronal networks, from the mean-driven limit (a limit such as the number of neurons N ? ?, in which the fluctuations vanish) to the fluctuation-dominated limit (such as in small N networks). Comparison with full...

  19. Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group

    OpenAIRE

    Duits, Remco; Felsberg, Michael; Granlund, Go?sta; Ter Haar Romeny, Bart M.

    2007-01-01

    Inspired by the early visual system of many mammalians we consider the construction of-and reconstruction from- an orientation score Uf:R2×S1?C as a local orientation representation of an image, f:R2?R . The mapping f?Uf is a wavelet transform W? corresponding to a reducible representation of the Euclidean motion group onto L2(R2) and oriented wavelet ??L2(R2) . This wavelet transform is a special case of a recently developed generalization of the standard wavelet theory and has th...

  20. Visual Imagery Facilitates Visual Perception: Psychophysical Evidence

    OpenAIRE

    Ishai, A.; Sagi, D.

    1997-01-01

    Visual imagery is the invention or recreation of a perceptual experience in the absence of retinal input.The degree to which the same neural representations are involved in both visual imagery and visual perception is unclear. Previous studies have shown that visual imagery interferes with perception (Perky effect). We report here psychophysical data showing a direct facilitatory effect of visual imagery on visual perception. Using a lateral masking detection paradigm of a Gabor target, flank...

  1. ProfileGrids as a new visual representation of large multiple sequence alignments: a case study of the RecA protein family

    Directory of Open Access Journals (Sweden)

    Abajian Aaron C

    2008-12-01

    Full Text Available Abstract Background Multiple sequence alignments are a fundamental tool for the comparative analysis of proteins and nucleic acids. However, large data sets are no longer manageable for visualization and investigation using the traditional stacked sequence alignment representation. Results We introduce ProfileGrids that represent a multiple sequence alignment as a matrix color-coded according to the residue frequency occurring at each column position. JProfileGrid is a Java application for computing and analyzing ProfileGrids. A dynamic interaction with the alignment information is achieved by changing the ProfileGrid color scheme, by extracting sequence subsets at selected residues of interest, and by relating alignment information to residue physical properties. Conserved family motifs can be identified by the overlay of similarity plot calculations on a ProfileGrid. Figures suitable for publication can be generated from the saved spreadsheet output of the colored matrices as well as by the export of conservation information for use in the PyMOL molecular visualization program. We demonstrate the utility of ProfileGrids on 300 bacterial homologs of the RecA family – a universally conserved protein involved in DNA recombination and repair. Careful attention was paid to curating the collected RecA sequences since ProfileGrids allow the easy identification of rare residues in an alignment. We relate the RecA alignment sequence conservation to the following three topics: the recently identified DNA binding residues, the unexplored MAW motif, and a unique Bacillus subtilis RecA homolog sequence feature. Conclusion ProfileGrids allow large protein families to be visualized more effectively than the traditional stacked sequence alignment form. This new graphical representation facilitates the determination of the sequence conservation at residue positions of interest, enables the examination of structural patterns by using residue physical properties, and permits the display of rare sequence features within the context of an entire alignment. JProfileGrid is free for non-commercial use and is available from http://www.profilegrid.org. Furthermore, we present a curated RecA protein collection that is more diverse than previous data sets; and, therefore, this RecA ProfileGrid is a rich source of information for nanoanatomy analysis.

  2. Sistema de visualización remota para la representación interactiva de volúmenes de datos médicos / Remote visualization system for interactive representation of medical volume dataset

    Scientific Electronic Library Online (English)

    Osvaldo, Pereira Bárzaga; Leitniz, Pérez Buján; Ramón, Carrasco Velar.

    2013-12-01

    Full Text Available SciELO Cuba | Language: Spanish Abstract in spanish Las aplicaciones de visualización médica han adquirido un elevado auge en la medicina a nivel mundial, ya que les permite a los médicos especialistas realizar diagnósticos preoperatorios no invasivos y de alta precisión desde una perspectiva 3D. La idea principal de la misma es obtener un modelo tri [...] dimensional de alta resolución gráfica a partir de imágenes médicas digitales de las modalidades de Tomografía Axial Computarizada y Resonancia Magnética Nuclear. Los usuarios de este tipo de aplicaciones demandan de forma creciente que las aplicaciones permitan el diagnóstico de patologías en un entorno de trabajo colaborativo. En este trabajo presentamos una arquitectura para sistemas de visualización remota basados en la transmisión de imágenes. El esquema de comunicación y transmisión de datos e imágenes entre el servidor y los clientes utiliza RTP como protocolo de comunicación. Los resultados obtenidos demuestran que la variante de algoritmo RLE implementada permite obtener visualizaciones interactivas y en tiempo real con un consumo mínimo del ancho de banda de la red. Abstract in english Three-dimensional medical visualization applications have acquired a high rise in medicine. They allow specialized doctors to make preoperative diagnostics with high accuracy from a 3D perspective. The main idea of medical visualization is to obtain a three-dimensional and high-resolution graphics f [...] rom digital medical imaging modalities like computed tomography and magnetic resonance imaging. The users of these applications increasingly demand that applications allow diagnosis in a collaborative work environment. Architecture for remote visualization systems based on image is presented. The server and client scheme of communication and transmission of data and images use RTP as communication protocol. Our results show that the implemented variant of RLE algorithm allows interactive and real time representation with a minimum of bandwidth.

  3. Translation-Invariant Representation for Cumulative Foot Pressure Images

    CERN Document Server

    Zheng, Shuai; Tan, Tieniu

    2010-01-01

    Human can be distinguished by different limb movements and unique ground reaction force. Cumulative foot pressure image is a 2-D cumulative ground reaction force during one gait cycle. Although it contains pressure spatial distribution information and pressure temporal distribution information, it suffers from several problems including different shoes and noise, when putting it into practice as a new biometric for pedestrian identification. In this paper, we propose a hierarchical translation-invariant representation for cumulative foot pressure images, inspired by the success of Convolutional deep belief network for digital classification. Key contribution in our approach is discriminative hierarchical sparse coding scheme which helps to learn useful discriminative high-level visual features. Based on the feature representation of cumulative foot pressure images, we develop a pedestrian recognition system which is invariant to three different shoes and slight local shape change. Experiments are conducted on...

  4. Virtual visual reminiscing pain stimulation of allodynia patients activates cortical representation of pain and emotions. fMRI study

    International Nuclear Information System (INIS)

    It is widely known that sensation of the pain is derived from sensory-discriminative factor and emotional factor. Especially in chronic pain, emotional factors and psychosocial backgrounds are more likely to contribute for the patients' discomfort. The aim of this study is to investigate how emotional factor of pain participates in intractable pain. We employed functional MRI (fMRI) to compare the brain activations occurring in the orthopaedic neuropathic pain patients with allodynia and normal individuals in response to the visual virtual painful experience. During fMRI scanning, a video demonstrating an actual tactile stimulation of the palm and its imitation were shown to participants. In contrast to normal individuals, allodynia patients also displayed activation of the areas reflecting emotions: frontal lobe and anterior cingulate. These findings suggest that brain have important role in the development and maintaining of peripheral originated chronic painful condition. (author)

  5. Bio-inspired vision

    International Nuclear Information System (INIS)

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980's, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ''neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems, if they are to succeed in demanding applications such as autonomous robot navigation, micro-manipulation or high-speed tracking, must exploit the power of the asynchronous, frame-free, biomimetic approach.

  6. Cognitive Imaging in Visual Data-Driven Decision-Support Systems

    Science.gov (United States)

    Gorohov, V.; Vitkovskiy, V.

    2010-12-01

    Within data-driven types of decision-support systems (DDDSS, DSS), visual decision-support systems are those that try to inspire operator to find solution (decision) by producing visual representation of the data. Traditional approaches, that utilize traditional scientific visualization techniques such as 2D and 3D plots, vector fields, surface maps etc, works well when subject to represent is relatively simply structured data, low-dimensioned and weak interconnected. However, modern scientific experiments, as those in astrophysics observations, generate huge volumes of multidimensional complicated data. More sophisticated approach for visualizing of big volumes of multidimensional data is that based on the cognitive machine graphics techniques, which, for example, are used in visualization system Space Walker (SW). In contrast to illustrative ones, the cognitive images are aimed to make clear and evident some difficult scientific concepts and promote us with a new knowledge.

  7. Object-based representations govern both the storage of information in visual short-term memory and the retrieval of information from it.

    Science.gov (United States)

    Quinlan, Philip T; Cohen, Dale J

    2011-04-01

    Interest is growing in how information is retained in visual short-term memory (VSTM). We describe an experiment that assesses VSTM within the context of multidimensional signal detection theory. On every trial, participants were presented with a 250-ms display containing four colored shapes. They were then probed 900 ms later with a colored shape and made separate old/new judgments about the color and the shape. In any particular trial, one, both, or neither of the probed features had been presented. Performance differed according to whether both probed features belonged to a single object or to two different objects. When both probed features belonged to the same object, featural retrieval was better than would be predicted by independent feature storage. When both probed features belonged to two different objects, featural retrieval was worse than would be predicted by independent feature storage. We conclude that storage in and retrieval from VSTM operate on the basis of object-based representations. PMID:21327369

  8. Inspiration is "Mission Critical"

    Science.gov (United States)

    McCarthy, D. W.; DeVore, E.; Lebofsky, L.

    2014-07-01

    In spring 2013, the President's budget proposal restructured the nation's approach to STEM education, eliminating ˜$50M of NASA Science Mission Directorate (SMD) funding with the intent of transferring it to the Dept. of Education, National Science Foundation, and Smithsonian Institution. As a result, Education and Public Outreach (EPO) would no longer be a NASA mission requirement and funds that had already been competed, awarded, and productively utilized were lost. Since 1994, partnerships of scientists, engineers, and education specialists were required to create innovative approaches to EPO, providing a direct source of inspiration for today's youth that may now be lost. Although seldom discussed or evaluated, "inspiration" is the beginning of lasting education. For decades, NASA's crewed and robotic missions have motivated students of all ages and have demonstrated a high degree of leverage in society. Through personal experiences we discuss (1) the importance of inspiration in education, (2) how NASA plays a vital role in STEM education, (3) examples of high-leverage educational materials showing why NASA should continue embedding EPO specialists within mission teams, and (4) how we can document the role of inspiration. We believe that personal histories are an important means of assessing the success of EPO. We hope this discussion will lead other people to document similar stories of educational success and perhaps to undertake longitudinal studies of the impact of inspiration.

  9. Illustrative Visualization of Anatomical Structures

    OpenAIRE

    Jonsson, Erik

    2011-01-01

    Illustrative visualization is a term for visualization techniques inspired by traditional technical and medical illustration. These techniques are based on knowledge of the human perception and provide effective visual abstraction to make the visualizations more understandable. Within volume rendering these expressive visualizations can be achieved using non-photorealistic rendering that combines different levels of abstraction to convey the most important information to the viewer. In this t...

  10. Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons

    OpenAIRE

    Baldassi, Carlo; Alemi-neissi, Alireza; Pagan, Marino; Dicarlo, James J.; Zecchina, Riccardo; Zoccolan, Davide

    2013-01-01

    The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than pure...

  11. Evolving Graph Representation and Visualization

    OpenAIRE

    Chapanond, Anurat; Krishnamoorthy, Mukkai S.; Prabhu, G. M.; Punin, J.

    2010-01-01

    The study of evolution of networks has received increased interest with the recent discovery that many real-world networks possess many things in common, in particular the manner of evolution of such networks. By adding a dimension of time to graph analysis, evolving graphs present opportunities and challenges to extract valuable information. This paper introduces the Evolving Graph Markup Language (EGML), an XML application for representing evolving graphs and related resul...

  12. An eye for inspiration

    Science.gov (United States)

    2009-11-01

    The discovery that the eye of a particular mantis shrimp has an achromatic quarter-waveplate that is superior to modern-day devices could be a source of inspiration to those designing optical components. Nature Photonics spoke to Nicholas Roberts, one of the researchers involved in the study.

  13. Haring-Inspired Designs

    Science.gov (United States)

    Corfield, Marie

    2007-01-01

    While exploring Keith Haring's Web site one day, the author discovered two untitled pieces from 1982 that became inspiration pieces for a lesson on symmetry and complementary colors for her second graders. Haring's simple shapes and colors and playful images are very similar to those found in the margins or on the cover of any typical child's…

  14. The Problem of Representation

    Science.gov (United States)

    Tervo, Juuso

    2012-01-01

    In "Postphysical Vision: Art Education's Challenge in an Age of Globalized Aesthetics (AMondofesto)" (2008) and "Beyond Aesthetics: Returning Force and Truth to Art and Its Education" (2009), jan jagodzinski argued for politics that go "beyond" representation--a project that radically questions visual culture…

  15. Astronomy. Inspiration. Art

    Science.gov (United States)

    Stanic, N.

    2008-10-01

    This paper speculates how poetry and other kind of arts are tightly related to astronomy. Hence the connection between art and natural sciences in general will be discussed in the frame of ongoing multidisciplinary project `Astronomy. Inspiration. Art' at Public Observatory in Belgrade (started in 2004). This project tends to inspire (better to say `infect') artist with a cosmic themes and fantastic sceneries of the Universe. At the very beginning of the project, Serbian poet and philosopher Laza Lazi? (who published 49 books of poetry, stories and novels), as well as writer Gordana Maleti? (with 25 published novels for children) were interested to work on The Inspiration by Astronomical Phenomena in Serbian Literature. Five young artists and scientists include their new ideas and new approach to multidisciplinary studies too (Srdjan Djuki?, Nenad Jeremi?, Olivera Obradovi?, Romana Vujasinovi?, Elena Dimoski). Two books that will be presented in details in the frame of this Project, "STARRY CITIES" (http://zavod.co.yu) and "ASTROLIES", don't offer only interesting illustrations, images from the latest astronomical observations and currently accepted cosmological theories -- those books induces, provoking curiosity in a specific and witty way, an adventure and challenge to explore and create.

  16. Quantum-Inspired Maximizer

    Science.gov (United States)

    Zak, Michail

    2008-01-01

    A report discusses an algorithm for a new kind of dynamics based on a quantum- classical hybrid-quantum-inspired maximizer. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen 'computational' potential. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables, using classical methods. Such optimal combination of characteristics is a perfect match for quantum-inspired computing. As an application, an algorithm for global maximum of an arbitrary integrable function is proposed. The idea of the proposed algorithm is very simple: based upon the Quantum-inspired Maximizer (QIM), introduce a positive function to be maximized as the probability density to which the solution is attracted. Then the larger value of this function will have the higher probability to appear. Special attention is paid to simulation of integer programming and NP-complete problems. It is demonstrated that the problem of global maximum of an integrable function can be found in polynomial time by using the proposed quantum- classical hybrid. The result is extended to a constrained maximum with applications to integer programming and TSP (Traveling Salesman Problem).

  17. Inspiring a generation

    CERN Multimedia

    2012-01-01

    The motto of the 2012 Olympic and Paralympic Games is ‘Inspire a generation’ so it was particularly pleasing to see science, the LHC and Higgs bosons featuring so strongly in the opening ceremony of the Paralympics last week.   It’s a sign of just how far our field has come that such a high-profile event featured particle physics so strongly, and we can certainly add our support to that motto. If the legacy of London 2012 is a generation inspired by science as well as sport, then the games will have more than fulfilled their mission. Particle physics has truly inspiring stories to tell, going well beyond Higgs and the LHC, and the entire community has played its part in bringing the excitement of frontier research in particle physics to a wide audience. Nevertheless, we cannot rest on our laurels: maintaining the kind of enthusiasm for science we witnessed at the Paralympic opening ceremony will require constant vigilance, and creative thinking about ways to rea...

  18. Perceptions of Talented Students in Their Visual Representations about the Future World and Technology (Üstün Yetenekli Ö?rencilerin Görsel Anlat?mlar?nda Gelece?in Dünyas?na ve Teknolojisine ?li?kin Alg?lar?

    Directory of Open Access Journals (Sweden)

    S. Duygu Eri?ti

    2012-12-01

    Full Text Available Purpose and significance: The present study aimed at investigating talented students’ artistic representations and perceptions regarding the future world and technology through their animated designs according to their design-based representations. A learning environment which allows talented students to use their ability, thoughts and creativity in the process of design-based instructional activities is of great interest for them. It is important for talented students to have instructional experiences which provide independent and unique learning opportunities and special application areas that allow these students to show their abilities (CfBT, 2008. Results: The participants of the study were talented elementary school students attending the Education Programs for Talented Students (EPTS at Anadolu University. The criterion sampling method was used to select the research participants. The criterion for selecting the participants was attendance in the course of ‘Computer-Aided Graphics Design’ offered in the EPTS. The participants included a total of 35 elementary school 6th, 7th and 8th grade talented students. The study was conducted in three phases: instruction process, design process and evaluation process. Some preliminary preparations related to the design program were carried out considering that the students would use them while doing animated designs through the instruction process. The instruction phase involved an animated representation study during which the students designed their own animations. In the last phase, all the animate designs of the talented students were analyzed. The thematic analysis based on qualitative research method along with art-based inquiry was used. The thematic coding system for analyzing concepts revealed from the research data was implemented. The visual language used in pictorial representations produce messages, with its specialized codes. The degree of students’ understanding and explaining their perceptions of technology in future composes the visual codes in this research. The results obtained in the study were grouped under two themes: talented elementary school students’ ways of perception of the future world and talented elementary school students’ ways of perception of future technology.Discussion: Students’ perceptions about the future world in their visual representations and in the interview forms based on their visual representations were mostly classified under the theme of the extinction of the world, nature and universe. Students had quite unusual and original ideas about future technology. It was seen that the students put forward such subthemes as voyages between planets and space cars, flying cars, aliens’ visit to the world, street air-conditioners, voyage to the moon by space rockets and voyage via teleportation. The students who generally had negative views about the future world considered technology as a way of solution to the awaiting problems in future. In the research process, based on the researcher’s observations, it could be stated that the students taking design education were in the process of making design-related decisions and testing and discussing their knowledge about a certain goal; that they revised their needs, efficacies and creative potentials regarding the goal determined; and that they experimented, evaluated, developed and associated their decisions with the design process.Conclusions: Depending on the findings of the present study, it can be concluded that students’ perceptions of the future world and technology reveal quite a negative picture in general. There could be a number of reasons for this negative picture; however, considering the technology and media interaction involving students, it could be stated that there are negative reflections of such environments and the popular culture within this context. In addition, the themes regarding the extinction of the world and collision of the planets envisaged by the talented students for the future world as well as the students’ visual repr

  19. Retina-Inspired Image Coding Schemes

    OpenAIRE

    Masmoudi, Khaled

    2012-01-01

    The goal of my thesis work is to conceive novel image coders inspired from the retina. Indeed, while the issue of coding is important for energy and bandwidth saving, we are convinced that little is still to be gained if no shift is made in the philosophy underlying the conception of new image coders/decoders. So that, my work aims at laying the groundwork for the design of original image and video compression schemes that are based on models of biological visual systems. Here, we will focus ...

  20. You shall know an object by the company it keeps: An investigation of semantic representations derived from object co-occurrence in visual scenes.

    Science.gov (United States)

    Sadeghi, Zahra; McClelland, James L; Hoffman, Paul

    2014-09-01

    An influential position in lexical semantics holds that semantic representations for words can be derived through analysis of patterns of lexical co-occurrence in large language corpora. Firth (1957) famously summarised this principle as "you shall know a word by the company it keeps". We explored whether the same principle could be applied to non-verbal patterns of object co-occurrence in natural scenes. We performed latent semantic analysis (LSA) on a set of photographed scenes in which all of the objects present had been manually labelled. This resulted in a representation of objects in a high-dimensional space in which similarity between two objects indicated the degree to which they appeared in similar scenes. These representations revealed similarities among objects belonging to the same taxonomic category (e.g., items of clothing) as well as cross-category associations (e.g., between fruits and kitchen utensils). We also compared representations generated from this scene dataset with two established methods for elucidating semantic representations: (a) a published database of semantic features generated verbally by participants and (b) LSA applied to a linguistic corpus in the usual fashion. Statistical comparisons of the three methods indicated significant association between the structures revealed by each method, with the scene dataset displaying greater convergence with feature-based representations than did LSA applied to linguistic data. The results indicate that information about the conceptual significance of objects can be extracted from their patterns of co-occurrence in natural environments, opening the possibility for such data to be incorporated into existing models of conceptual representation. PMID:25196838

  1. Hierarchical Aggregation for Information Visualization: Overview, Techniques, and Design Guidelines

    OpenAIRE

    Elmqvist, Niklas; Fekete, Jean-daniel

    2010-01-01

    We present a model for building, visualizing, and interacting with multiscale representations of information visualization techniques using hierarchical aggregation. The motivation for this work is to make visual representations more visually scalable and less cluttered. The model allows for augmenting existing techniques with multiscale functionality, as well as for designing new visualization and interaction techniques that conform to this new class of visual representations. We give some e...

  2. Visualization of Morse connection graphs for topologically rich 2D vector fields.

    Science.gov (United States)

    Szymczak, Andrzej; Sipeki, Levente

    2013-12-01

    Recent advances in vector field topologymake it possible to compute its multi-scale graph representations for autonomous 2D vector fields in a robust and efficient manner. One of these representations is a Morse Connection Graph (MCG), a directed graph whose nodes correspond to Morse sets, generalizing stationary points and periodic trajectories, and arcs - to trajectories connecting them. While being useful for simple vector fields, the MCG can be hard to comprehend for topologically rich vector fields, containing a large number of features. This paper describes a visual representation of the MCG, inspired by previous work on graph visualization. Our approach aims to preserve the spatial relationships between the MCG arcs and nodes and highlight the coherent behavior of connecting trajectories. Using simulations of ocean flow, we show that it can provide useful information on the flow structure. This paper focuses specifically on MCGs computed for piecewise constant (PC) vector fields. In particular, we describe extensions of the PC framework that make it more flexible and better suited for analysis of data on complex shaped domains with a boundary. We also describe a topology simplification scheme that makes our MCG visualizations less ambiguous. Despite the focus on the PC framework, our approach could also be applied to graph representations or topological skeletons computed using different methods. PMID:24051843

  3. Inspire a generation

    OpenAIRE

    2013-01-01

    Depuis le début du processus de candidature en 2003, Londres 2012 s’attache à démontrer ce qui peut être réalisé grâce à l’inspiration que suscite le sport, à l’héritage qu’il nous lègue, et au rôle de catalyseur des Mouvements olympiques et paralympiques qui, par leur pouvoir, leur influence et leurs valeurs, peuvent apporter à la jeunesse du monde entier des changements positifs et l’envie d’agir. Aujourd’hui, après des années de planification et de préparatifs...

  4. Visualization rhetoric: framing effects in narrative visualization.

    Science.gov (United States)

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation. PMID:22034342

  5. Biologically-Inspired Technology

    Science.gov (United States)

    Leske, Cavin.

    A Web site from Michigan State University (1) is a useful starting point for learning about biologically inspired technologies. In addition to briefly discussing the natural processes that are most commonly studied in the development of such technologies, there is a large collection of links to other research efforts and related material. The Ant Colony Optimization project (2) uses the behavior of ants as a model to solve optimization problems, such as how to minimize Internet traffic congestion. Several downloadable research papers are included on the project's homepage, as well as links to news stories, radio broadcasts, and conference proceedings about ant algorithms. A seminar course at the University of Virginia (3) in spring 2003 considered aspects of biologically-inspired computing. The course homepage has links to journal articles and research papers that range in topic from evolutionary programming to spacecraft designs based on living cells. Biomimetics is the focus of work being done at the NASA Jet Propulsion Laboratory (4). One of the selected publications available on the Web site will be presented at an international conference in July 2003. The paper discusses the use of artificial muscles in intelligent robots. A research group at the California Institute of Technology (5) is studying the capability of DNA and other biomolecules to process information and implement algorithms. A general overview of the group's purpose and motivation is provided, as well as a number of publications. An excellent background of some of the most significant developments in artificial life and intelligence is given in a 56-page paper from Hewlett-Packard Laboratories (6). The author discusses many different issues, including neural networks and software agents, and concludes by alluding to future application areas. Cutting edge, biologically-inspired robots are the topic of a June 2003 news article from The Boston Globe (7). These robots include RoboLobster and BigDog, the latter of which is said will be able to run at fifteen miles per hour when it is finished around the beginning of 2005. Finally, a NASA technology brief from May 2003 (8) discusses efforts to combine characteristics of several different species into one artificial creation to optimally serve the purposes of a mission.

  6. Automated objective characterization of visual field defects in 3D

    Science.gov (United States)

    Fink, Wolfgang (Inventor)

    2006-01-01

    A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.

  7. Visualization analysis and design

    CERN Document Server

    Munzner, Tamara

    2015-01-01

    Visualization Analysis and Design provides a systematic, comprehensive framework for thinking about visualization in terms of principles and design choices. The book features a unified approach encompassing information visualization techniques for abstract data, scientific visualization techniques for spatial data, and visual analytics techniques for interweaving data transformation and analysis with interactive visual exploration. It emphasizes the careful validation of effectiveness and the consideration of function before form. The book breaks down visualization design according to three questions: what data users need to see, why users need to carry out their tasks, and how the visual representations proposed can be constructed and manipulated. It walks readers through the use of space and color to visually encode data in a view, the trade-offs between changing a single view and using multiple linked views, and the ways to reduce the amount of data shown in each view. The book concludes with six case stu...

  8. Meaning-focused and Quantum-inspired Information Retrieval

    OpenAIRE

    Aerts, Diederik; Broekaert, Jan; Sozzo, Sandro; Veloz, Tomas

    2013-01-01

    In recent years, quantum-based methods have promisingly integrated the traditional procedures in information retrieval (IR) and natural language processing (NLP). Inspired by our research on the identification and application of quantum structures in cognition, more specifically our work on the representation of concepts and their combinations, we put forward a 'quantum meaning based' framework for structured query retrieval in text corpora and standardized testing corpora. ...

  9. Intrathalamic Mechanisms of Visual Attention

    OpenAIRE

    Mayo, J. Patrick

    2009-01-01

    The classical model of visual processing emphasizes the lateral geniculate nucleus (LGN) as the major intermediary between the retina and visual cortex. Yet, anatomical findings inspired Francis Crick to suggest an alternative model in which the thalamic reticular nucleus, which envelops the LGN, acts as the “guardian” of visual cortex by modulating LGN activity. Recent work by McAlonan and colleagues supports Crick's hypothesis, thereby enhancing our understanding of the early stages of ...

  10. Action Representation and Recognition

    OpenAIRE

    Weinland, Daniel

    2008-01-01

    Recognizing human actions is an important and challenging topic in computer vision, withmany important applications including video surveillance, video indexing and understanding of social interaction. From a computational perspective, actions can be defined as four-dimensional patterns, in space and in time. Such patterns can be modeled using several representations which differ from each other with respect to, among others, the visual information used, e.g. shape or appearance, the represen...

  11. Point cloud representation.

    OpenAIRE

    Linsen, Lars

    2007-01-01

    Reconstructing a surface out of a three-dimensional set of points, which is obtained by sampling an object's boundary, is done by generating an arbitrary triangular mesh. Our approach is to obviate the computation of such a mesh connectivity and to represent the object's surface only by the point cloud. We discuss how such a point cloud representation can be visualized and present processing steps like coarsifying and smoothing, which are important for dealing with the ...

  12. Biologically inspired emotion recognition from speech

    Directory of Open Access Journals (Sweden)

    Buscicchio Cosimo

    2011-01-01

    Full Text Available Abstract Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  13. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modulates the parameters of the locomotor central pattern generators. We present phonotactic performance results of the simulated lizard-salamander hybrid robot.

  14. Microflyers: inspiration from nature

    Science.gov (United States)

    Sirohi, Jayant

    2013-04-01

    Over the past decade, there has been considerable interest in miniaturizing aircraft to create a class of extremely small, robotic vehicles with a gross mass on the order of tens of grams and a dimension on the order of tens of centimeters. These are collectively refered to as micro aerial vehicles (MAVs) or microflyers. Because the size of microflyers is on the same order as that of small birds and large insects, engineers are turning to nature for inspiration. Bioinspired concepts make use of structural or aerodynamic mechanisms that are observed in insects and birds, such as elastic energy storage and unsteady aerodynamics. Biomimetic concepts attempt to replicate the form and function of natural flyers, such as flapping-wing propulsion and external appearance. This paper reviews recent developments in the area of man-made microflyers. The design space for microflyers will be described, along with fundamental physical limits to miniaturization. Key aerodynamic phenomena at the scale of microflyers will be highlighted. Because the focus is on bioinspiration and biomimetics, scaled-down versions of conventional aircraft, such as fixed wing micro air vehicles and microhelicopters will not be addressed. A few representative bioinspired and biomimetic microflyer concepts developed by researchers will be described in detail. Finally, some of the sensing mechanisms used by natural flyers that are being implemented in man-made microflyers will be discussed.

  15. Inspired by CERN

    CERN Multimedia

    2004-01-01

    Art students inspired by CERN will be returning to show their work 9 to 16 October in Building 500, outside the Auditorium. Seventeen art students from around Europe visited CERN last January for a week of introductions to particle physics and astrophysics, and discussions with CERN scientists about their projects. A CERN scientist "adopted"each artist so they could ask questions during and after the visit. Now the seeds planted during their visit have come to fruition in a show using many media and exploring varied concepts, such as how people experience the online world, the sheer scale of CERN's equipment, and the abstractness of the entities scientists are looking for. "The work is so varied, people are going to love some pieces and detest others," says Andrew Charalambous, the project coordinator from University College London who is also curating the exhibition. "It's contemporary modern art, and that's sometimes difficult to take in." For more information on this thought-provoking show, see: htt...

  16. Feature-Based Memory-Driven Attentional Capture: Visual Working Memory Content Affects Visual Attention

    Science.gov (United States)

    Olivers, Christian N. L.; Meijer, Frank; Theeuwes, Jan

    2006-01-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by…

  17. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  18. Tactile mental body parts representation in obesity.

    Science.gov (United States)

    Scarpina, Federica; Castelnuovo, Gianluca; Molinari, Enrico

    2014-12-30

    Obese people?s distortions in visually-based mental body-parts representations have been reported in previous studies, but other sensory modalities have largely been neglected. In the present study, we investigated possible differences in tactilely-based body-parts representation between an obese and a healthy-weight group; additionally we explore the possible relationship between the tactile- and the visually-based body representation. Participants were asked to estimate the distance between two tactile stimuli that were simultaneously administered on the arm or on the abdomen, in the absence of visual input. The visually-based body-parts representation was investigated by a visual imagery method in which subjects were instructed to compare the horizontal extension of body part pairs. According to the results, the obese participants overestimated the size of the tactilely-perceived distances more than the healthy-weight group when the arm, and not the abdomen, was stimulated. Moreover, they reported a lower level of accuracy than did the healthy-weight group when estimating horizontal distances relative to their bodies, confirming an inappropriate visually-based mental body representation. Our results imply that body representation disturbance in obese people is not limited to the visual mental domain, but it spreads to the tactilely perceived distances. The inaccuracy was not a generalized tendency but was body-part related. PMID:25312390

  19. Inspiration, anyone? (Editorial

    Directory of Open Access Journals (Sweden)

    Lindsay Glynn

    2006-09-01

    Full Text Available I have to admit that writing an editorial for this issue was a struggle. Trying to sit down and write when the sun was shining outside and most of my colleagues were on vacation was, to say the least, difficult. Add to that research projects and conferences…let’s just say that I found myself less than inspired. A pitiful plea for ideas to a colleague resulted in the reintroduction to a few recent evidence based papers and resources which inspired further searching and reading. Though I generally find myself surrounded (more like buried in research papers and EBLIP literature, somehow I had missed the great strides that have been made of late in the world of evidence based library and information practice. I realize now that I am inspired by the researchers, authors and innovators who are putting EBLIP on the proverbial map. My biggest beef with library literature in general has been the plethora of articles highlighting what we should be doing. Take a close look at the evidence based practitioners in the information professions: these are some of the people who are actively practicing what has been preached for the past few years. Take, for example, the about?to?be released Libraries using Evidence Toolkit by Northern Sydney Central Coast Health and The University of Newcastle, Australia (see their announcement in this issue. An impressive advisory group is responsible for maintaining the currency and relevancy of the site as well as promoting the site and acting as a steering committee for related projects. This group is certainly doing more than “talking the talk”: they took their experience at the 3rd International Evidence Based Librarianship Conference and did something with the information they obtained by implementing solutions that worked in their environment. The result? The creation of a collection of tools for all of us to use. This toolkit is just what EBLIP needs: a portal to resources aimed at supporting the information specialists who want to adopt the evidence based model of practice. I have already got it bookmarked and set up an RSS feed. Even before the official toolkit launch, a wealth of information is available on the website including presentations, project and events information, and a blog containing site updates. There has been much discussion on increasing the knowledge base from which to draw evidence for library and information practitioners. Original research needs to be published so that we can use it as evidence to support our decision making. The literature is lacking the significant numbers of publication types widely considered to be the highest level of evidence: systematic reviews, meta?analyses and randomized controlled trials. This issue of Evidence Based Library and Information Practice proudly boasts both a systematic review/meta?analysis and a randomized controlled trial. Denise Koufogiannakis and Natasha Wiebe, in their systematic review/meta?analysis, provide evidence that shows that computer assisted instruction is as effective as traditional instruction for students at an introductory, undergraduate level. Nicola Pearce?Smith compared the effectiveness of self?directed, web?based learning with a classroom?based, interactive workshop in her randomized controlled trial. I am looking forward to reading and utilizing more and more of these in the future. Another example is even closer to home. I recently attended a strategic planning meeting at my institution where new services and procedures were discussed. Unlike the past, when new initiatives were implemented and later evaluated, all librarians instinctively indicated that the literature should be searched first to see if there was any evidence either for or against changing or adding new services or procedures. The evidence based model of practice is catching on. I know that there are numerous examples of information practitioners taking a proactive role in putting research into practice, and many research papers that are worth mentioning. To highlight them all would be a task muc

  20. Human vision inspired framework for facial expressions recognition

    OpenAIRE

    Khan, R. A.; Meyer, A.; Konik, Hubert; Bouakaz, Sai?da

    2012-01-01

    We present a novel human vision inspired framework that can recognize facial expressions very efficiently and accurately. We propose to computationally process small, salient region of the face to extract features as it happens in human vision. To determine which facial region(s) is perceptually salient for a particular expression, we conducted a psycho-visual experimental study with an eye-tracker. A novel feature space conducive for recognition task is proposed, which is created by extracti...

  1. Scientific visualization uncertainty, multifield, biomedical, and scalable visualization

    CERN Document Server

    Chen, Min; Johnson, Christopher; Kaufman, Arie; Hagen, Hans

    2014-01-01

    Based on the seminar that took place in Dagstuhl, Germany in June 2011, this contributed volume studies the four important topics within the scientific visualization field: uncertainty visualization, multifield visualization, biomedical visualization and scalable visualization. • Uncertainty visualization deals with uncertain data from simulations or sampled data, uncertainty due to the mathematical processes operating on the data, and uncertainty in the visual representation, • Multifield visualization addresses the need to depict multiple data at individual locations and the combination of multiple datasets, • Biomedical is a vast field with select subtopics addressed from scanning methodologies to structural applications to biological applications, • Scalability in scientific visualization is critical as data grows and computational devices range from hand-held mobile devices to exascale computational platforms. Scientific Visualization will be useful to practitioners of scientific visualization, ...

  2. Geodezija in direktiva INSPIRE : Geodesy And INSPIRE Directive

    Directory of Open Access Journals (Sweden)

    Tomaž Petek

    2008-01-01

    Full Text Available SI: ?Direktiva Evropskega parlamenta in Sveta EU INSPIRE je bila sprejeta 24. aprila 2008 in je za?ela veljati 15. maja 2008. Zdaj se kon?uje obdobje njenega prenosa v pravni red držav ?lanic in se za?enja njeno izvajanje. Direktiva INSPIRE ureja izhodiš?a za vzpostavitev evropske podatkovne infrastrukture za prostorske informacije v državah ?lanicah EU, imenovane tudi INSPIRE (Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE.V veliki ve?ini evropskih držav bo uskladitev dolo?b Direktive INSPIRE z nacionalno zakonodajo izvedena s pripravo novega zakona, ki bo dodelil osrednje mesto državnim geodetskim in kartografskim službam. Državne geodetske službe so v obveznostih, ki jih državam ?lanicam nalaga direktiva, videle priložnost za aktivno udejstvovanje. Za uspešno izvedbo Direktive INSPIRE je namre? klju?nega pomena, da pri tem sodelujejo vsi upravljavci in uporabniki podatkov o prostoru in okolju (v nadaljevanju prostorskih podatkov, ki so navedeni v prilogah k direktivi. Tako je treba vzpostaviti tudi dolo?ene organizacijske strukture. Direktiva INSPIRE namre? opredeljuje na?in usklajevanja na podro?ju prostorske podatkovne infrastrukture med državami ?lanicami EU in institucijami EU. Izvajanje Direktive INSPIRE bo vplivalo na poslovanje vseh organov javne uprave, ki vodijo in vzdržujejo prostorske podatke. Ve? kot dve tretjini podatkov, navedenih v prilogah k Direktivi INSPIRE, so podatki, ki jih v Sloveniji že danes vodi in vzdržuje državna geodetska služba. ?EN: The Directive of the European Parliament and of the Council INSPIRE was adopted on 24th April 2008 and it entered into force on 15th May 2008. The transposition period into national legal framework is finishing and we are at the beginning of the implementation period. The purpose of the Directive is to lay down general rules aimed at the establishment of the infrastructure for spatial information in the European Community (hereinafter referred to as INSPIRE, for the purposes of Community environmental policies and policies or activities which may have an impact on environment. In many European countries the transposition phase will be done with adoption of a new law, where national mapping and cadastral agencies will have leading role. Successful implementation calls for strong cooperation between all stakeholders (data providers and users from environmental and spatial fields. So it is necessary to establish appropriate coordination mechanisms and structures. Directive INSPIRE also defines organisational measures for the coordination in the field of spatial data infrastructure between Member States and Community institutions. The Republic of Slovenia state geodetic authority already manages more than two thirds of data types listed in annexes to the Directive INSPIRE. Metadata services and data viewers are already available to users through web portal ‘prostor’. Slovenian geodesy has already assured users good access to data and services related to spatial data and their use. Search services for most of the spatial data are available to users without unnecessary administrative obstacles and for the majority of spatial data also metadata descriptions exist. ?But we are facing a big challenge and responsibility for establishing Slovenian spatial data infrastructure (hereinafter SDI and mechanisms for coordination of all stakeholders. It is necessary to define legal and technical details of spatial data interoperability, review data access rules for spatial data, which are managed by public authorities in Slovenia and harmonise pricing policy rules. In the article we try to describe possibilities and challenges the Slovenian geodetic sector is facing and are related to the establishment of Slovenian SDI.

  3. Physicists Get INSPIREd: INSPIRE Project and Grid Applications

    Science.gov (United States)

    Klem, Jukka; Iwaszkiewicz, Jan

    2011-12-01

    INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.

  4. The Molecule Cloud - compact visualization of large collections of molecules

    Directory of Open Access Journals (Sweden)

    Ertl Peter

    2012-07-01

    Full Text Available Abstract Background Analysis and visualization of large collections of molecules is one of the most frequent challenges cheminformatics experts in pharmaceutical industry are facing. Various sophisticated methods are available to perform this task, including clustering, dimensionality reduction or scaffold frequency analysis. In any case, however, viewing and analyzing large tables with molecular structures is necessary. We present a new visualization technique, providing basic information about the composition of molecular data sets at a single glance. Summary A method is presented here allowing visual representation of the most common structural features of chemical databases in a form of a cloud diagram. The frequency of molecules containing particular substructure is indicated by the size of respective structural image. The method is useful to quickly perceive the most prominent structural features present in the data set. This approach was inspired by popular word cloud diagrams that are used to visualize textual information in a compact form. Therefore we call this approach “Molecule Cloud”. The method also supports visualization of additional information, for example biological activity of molecules containing this scaffold or the protein target class typical for particular scaffolds, by color coding. Detailed description of the algorithm is provided, allowing easy implementation of the method by any cheminformatics toolkit. The layout algorithm is available as open source Java code. Conclusions Visualization of large molecular data sets using the Molecule Cloud approach allows scientists to get information about the composition of molecular databases and their most frequent structural features easily. The method may be used in the areas where analysis of large molecular collections is needed, for example processing of high throughput screening results, virtual screening or compound purchasing. Several example visualizations of large data sets, including PubChem, ChEMBL and ZINC databases using the Molecule Cloud diagrams are provided.

  5. Understanding Deep Image Representations by Inverting Them

    OpenAIRE

    Mahendran, Aravindh; Vedaldi, Andrea

    2014-01-01

    Image representations, from SIFT and Bag of Visual Words to Convolutional Neural Networks (CNNs), are a crucial component of almost any image understanding system. Nevertheless, our understanding of them remains limited. In this paper we conduct a direct analysis of the visual information contained in representations by asking the following question: given an encoding of an image, to which extent is it possible to reconstruct the image itself? To answer this question we cont...

  6. Toward a Theory of Visual Argument.

    Science.gov (United States)

    Birdsell, David S.; Groarke, Leo

    1996-01-01

    Explores preconditions for developing a theory of visual argument, emphasizing frequent lucidity of visual meaning, importance and varieties of visual context, argumentative complexities raised by notions of representation and resemblance, and questions visual persuasion pose for the standard distinction between argument and persuasion. Contains…

  7. Flavor: A Language for Media Representation

    OpenAIRE

    Eleftheriadis, Alexandros; Hong, Danny

    2003-01-01

    Flavor (Formal Language for Audio-Visual Object Representation) has been created as a language for describing coded multimedia bitstreams in a formal way so that the code for reading and writing bitstreams can be automatically generated. It is an extension of C++ and Java, in which the typing system incorporates bitstream representation semantics. This allows describing in a single place both the in-memory representation of data as well as their bitstream-level (compressed) ...

  8. Digital models for architectonical representation

    Directory of Open Access Journals (Sweden)

    Stefano Brusaporci

    2011-12-01

    Full Text Available Digital instruments and technologies enrich architectonical representation and communication opportunities. Computer graphics is organized according the two phases of visualization and construction, that is modeling and rendering, structuring dichotomy of software technologies. Visualization modalities give different kinds of representations of the same 3D model and instruments produce a separation between drawing and image’s creation. Reverse modeling can be related to a synthesis process, ‘direct modeling’ follows an analytic procedure. The difference between interactive and not interactive applications is connected to the possibilities offered by informatics instruments, and relates to modeling and rendering. At the same time the word ‘model’ describes different phenomenon (i.e. files: mathematical model of the building and of the scene; raster representation and post-processing model. All these correlated different models constitute the architectonical interpretative model, that is a simulation of reality made by the model for improving the knowledge.

  9. Kinds of inspiration in interaction design

    DEFF Research Database (Denmark)

    Halskov, Kim

    2010-01-01

    In this paper, we explore the role of sources of inspiration in interaction design. We identify four strategies for relating sources of inspiration to emerging ideas: selection; adaptation; translation; and combination. As our starting point, we argue that sources of inspiration are a form of knowledge crucial to creativity. Our research is based on empirical findings arising from the use of Inspiration Card Workshops, which are collaborative design events in which domain and technology insight are combined to create design concepts. In addition to the systematically introduced sources of inspiration that form part of the workshop format, a number of spontaneous sources of inspiration emerged during these workshops.

  10. Ventral-stream-like shape representation: from pixel intensity values to trainable object-selective COSFIRE models

    Directory of Open Access Journals (Sweden)

    George Azzopardi

    2014-07-01

    Full Text Available The remarkable abilities of the primate visual cortex have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 -> V4 -> TEO. Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. A S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms.

  11. Physicists Get INSPIREd: INSPIRE Project and Grid Applications

    International Nuclear Information System (INIS)

    INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ra giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.

  12. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology

    Science.gov (United States)

    Kornyshev, Alexei A.

    2010-10-01

    The conference 'From DNA-Inspired Physics to Physics-Inspired Biology' (1-5 June 2009, International Center for Theoretical Physics, Trieste, Italy) that myself and two former presidents of the American Biophysical Society—Wilma Olson (Rutgers University) and Adrian Parsegian (NIH), with the support of an ICTP team (Ralf Gebauer (Local Organizer) and Doreen Sauleek (Conference Secretary)), have organized was intended to establish stronger links between the biology and physics communities on the DNA front. The relationships between them were never easy. In 1997, Adrian published a paper in Physics Today ('Harness the Hubris') summarizing his thoughts about the main obstacles for a successful collaboration. The bottom line of that article was that physicists must seriously learn biology before exploring it and even having an interpreter, a friend or co-worker, who will be cooperating with you and translating the problems of biology into a physical language, may not be enough. He started his story with a joke about a physicist asking a biologist: 'I want to study the brain. Tell me something about it!' Biologist: 'First, the brain consists of two parts, and..' Physicist: 'Stop. You have told me too much.' Adrian listed a few direct avenues where physicists' contributions may be particularly welcome. This gentle and elegantly written paper caused, however, a stormy reaction from Bob Austin (Princeton), published together with Adrian's notes, accusing Adrian of forbidding physicists to attack big questions in biology straightaway. Twelve years have passed and many new developments have taken place in the biologist-physicist interaction. This was something I addressed in my opening conference speech, with my position lying somewhere inbetween Parsegian's and Austin's, which is briefly outlined here. I will first recall certain precepts or 'dogmas' that fly in the air like Valkyries, poisoning those relationships. Since the early seventies when I was a first year PhD student at the Frumkin Institute in Moscow attending hot theoretical seminars chaired by Benjamin Levich (1917-1986, a pupil of Landau and the founding father of physical-chemical hydrodynamics), I particularly remember one of his many jokes he used to spice up his seminar. When some overly enthusiastic speaker was telling us with 100% confidence how the electron transfers between atomic moieties in a solvent near an electrode, and what the molecules exactly do to promote the transfer, he used to ask the speaker: 'How do you know it? Have you been there?' Today this is no longer a question or even a joke. We have plenty of experimental tools to 'get there'. The list of such techniques is too long to cover fully, I may just refer to FIONA (fluorescence imaging with nanometer accuracy) which allows us to trace the motion of myosin on actin or kinesin on microtubules and similar aspects of protein motility in vivo and in vitro (fluorescence methods were at the center of the Biological and Molecular Machine Program at Kavli ITP, Santa Barbara, where the founders of those techniques taught us what we can learn using them) or visualizing the positions of adsorbed counterions on DNA by synchrotron radiation. Therefore, the following dogmas can be given: Dogma 1: 'Seeing is believing'. Once, I asked an Assistant Professor from one of the top US universities, who was preaching such methods, had he tried to plot his data in some coordinates, where I would have expected his data to lie on a straight line. The answer was, 'Come on, what you speak about is 20th century science; it's no longer interesting!' I am afraid he was not unique in his generation, voting for what I would call 'MTV-science'. This science does make you dance, but on its own is not sufficient without a deep theoretical analysis of what you actually see. Otherwise, 'what you see is what you get' and not more. Dogma 2: 'A theory must contain not more than exponential functions, logarithms and alike. Otherwise the job should be left with computers. No Bessel functions, please!' This point of view was advocat

  13. London: An Art Teacher's Inspiration

    Science.gov (United States)

    Guhin, Paula

    2012-01-01

    Often overshadowed in people's minds by Paris, London is truly an artist's jewel. The art and architecture, history, gardens and museums are inspiring, yes, but there's so much more to this ancient city. The performances, attractions and markets are a boon to the creative soul. London can be surprisingly inexpensive to visit. Gazing at statues,…

  14. Novel locomotion via biological inspiration

    Science.gov (United States)

    Quinn, Roger D.; Boxerbaum, Alexander; Palmer, Luther; Chiel, Hillel; Diller, Eric; Hunt, Alexander; Bachmann, Richard

    2011-05-01

    Animal behavioral, physiological and neurobiological studies are providing a wealth of inspirational data for robot design and control. Several very different biologically inspired mobile robots will be reviewed. A robot called DIGbot is being developed that moves independent of the direction of gravity using Distributed Inward Gripping (DIG) as a rapid and robust attachment mechanism observed in climbing animals. DIGbot is an 18 degree of freedom hexapod with onboard power and control systems. Passive compliance in its feet, which is inspired by the flexible tarsus of the cockroach, increases the robustness of the adhesion strategy and enables DIGbot to execute large steps and stationary turns while walking on mesh screens. A Whegs™ robot, inspired by insect locomotion principles, is being developed that can be rapidly reconfigured between tracks and wheel-legs and carry GeoSystems Zipper Mast. The mechanisms that cause it to passively change its gait on irregular terrain have been integrated into its hubs for a compact and modular design. The robot is designed to move smoothly on moderately rugged terrain using its tracks and run on irregular terrain and stairs using its wheel-legs. We are also developing soft bodied robots that use peristalsis, the same method of locomotion earthworms use. We present a technique of using a braided mesh exterior to produce fluid waves of motion along the body of the robot that increase the robot's speed relative to previous designs. The concept is highly scalable, for endoscopes to water, oil or gas line inspection.

  15. Visualization of Complex Systems

    OpenAIRE

    Viste, Magnhild

    2008-01-01

    Complex systems are difficult to understand. To aid understanding of complex dynamic systems the field of system dynamics has developed a set of visualization methods for graphic representation of the simulation models of complex systems. The resulting visualizations, however, may sometimes be difficult to understand for audiences without a background in the scientific investigation of complex dynamic systems. It is therefore necessary to find new ways of representing complex s...

  16. Supporting Polyrepresentation in a Quantum-inspired geometrical Retrieval Framework

    DEFF Research Database (Denmark)

    Frommholz, Ingo; Larsen, Birger

    2010-01-01

    The relevance of a document has many facets, going beyond the usual topical one, which have to be considered to satisfy a user's information need. Multiple representations of documents, like user-given reviews or the actual document content, can give evidence towards certain facets of relevance. In this respect polyrepresentation of documents, where such evidence is combined, is a crucial concept to estimate the relevance of a document. In this paper, we discuss how a geometrical retrieval framework inspired by quantum mechanics can be extended to support polyrepresentation. We show by example how different representations of a document can be modelled in a Hilbert space, similar to physical systems known from quantum mechanics. We further illustrate how these representations are combined by means of the tensor product to support polyrepresentation, and discuss the case that representations of documents are not independent from a user point of view. Besides giving a principled framework for polyrepresentation, the potential of this approach is to capture and formalise the complex interdependent relationships that the different representations can have between each other.

  17. Development & Implementation of a PyMOL 'putty' Representation

    OpenAIRE

    Mura, Cameron

    2014-01-01

    The PyMOL molecular graphics program has been modi?ed to introduce a new 'putty' cartoon representation, akin to the 'sausage'-style representation of the MOLMOL molecular visualization (MolVis) software package. This document outlines the development and implementation of the putty representation.

  18. Quiver representations

    CERN Document Server

    Schiffler, Ralf

    2014-01-01

    This book is intended to serve as a textbook for a course in Representation Theory of Algebras at the beginning graduate level. The text has two parts. In Part I, the theory is studied in an elementary way using quivers and their representations. This is a very hands-on approach and requires only basic knowledge of linear algebra. The main tool for describing the representation theory of a finite-dimensional algebra is its Auslander-Reiten quiver, and the text introduces these quivers as early as possible. Part II then uses the language of algebras and modules to build on the material developed before. The equivalence of the two approaches is proved in the text. The last chapter gives a proof of Gabriel’s Theorem. The language of category theory is developed along the way as needed.

  19. Group representations

    CERN Document Server

    Karpilovsky, G

    1994-01-01

    This third volume can be roughly divided into two parts. The first part is devoted to the investigation of various properties of projective characters. Special attention is drawn to spin representations and their character tables and to various correspondences for projective characters. Among other topics, projective Schur index and projective representations of abelian groups are covered. The last topic is investigated by introducing a symplectic geometry on finite abelian groups. The second part is devoted to Clifford theory for graded algebras and its application to the corresponding theory

  20. A Tony Thomas-inspired guide to INSPIRE

    Science.gov (United States)

    O'Connell, Heath B.

    2010-07-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  1. A Tony Thomas-Inspired Guide to INSPIRE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, Heath B.; /Fermilab

    2010-04-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  2. Visual Recognition Memory across Contexts

    Science.gov (United States)

    Jones, Emily J. H.; Pascalis, Olivier; Eacott, Madeline J.; Herbert, Jane S.

    2011-01-01

    In two experiments, we investigated the development of representational flexibility in visual recognition memory during infancy using the Visual Paired Comparison (VPC) task. In Experiment 1, 6- and 9-month-old infants exhibited recognition when familiarization and test occurred in the same room, but showed no evidence of recognition when…

  3. Visual Mining of Epidemic Networks

    CERN Document Server

    Clémençon, Stéphan; Rossi, Fabrice; Tran, Viet Chi; 10.1007/978-3-642-21498-1_35

    2012-01-01

    We show how an interactive graph visualization method based on maximal modularity clustering can be used to explore a large epidemic network. The visual representation is used to display statistical tests results that expose the relations between the propagation of HIV in a sexual contact network and the sexual orientation of the patients.

  4. Representational learning for sonar ATR

    Science.gov (United States)

    Isaacs, Jason C.

    2014-06-01

    Learned representations have been shown to give hopeful results for solving a multitude of novel learning tasks, even though these tasks may be unknown when the model is being trained. A few notable examples include the techniques of topic models, deep belief networks, deep Boltzmann machines, and local discriminative Gaussians, all inspired by human learning. This self-learning of new concepts via rich generative models has emerged as a promising area of research in machine learning. Although there has been recent progress, existing computational models are still far from being able to represent, identify and learn the wide variety of possible patterns and struc- ture in real-world data. An important issue for further consideration is the use of unsupervised representations for novel underwater target recognition applications. This work will discuss and demonstrate the use of latent Dirichlet allocation and autoencoders for learning unsupervised representations of objects in sonar imagery. The objective is to make these representations more abstract and invariant to noise in the training distribution and improve performance.

  5. VisualLISA: visual programming environment for attribute grammars

    OpenAIRE

    Oliveira, Nuno; Henriques, Pedro; Cruz, Daniela; Pereira, Maria Joa?o

    2009-01-01

    The benefits of using visual languages and graphical editors are well known. In some specific domain it is really crucial to program with graphical representations, icons, geometric objects, colors and so on. Nowadays it is possible to easily implement a visual language, constructing, automatically, visual editors for it. In this paper we want to emphasize how it is possible to easily specify a huge amount of complex information, associated with an attribute grammar, using graphical object...

  6. Decrypting $SO(10)$-inspired leptogenesis

    CERN Document Server

    Di Bari, Pasquale; Fiorentin, Michele Re

    2014-01-01

    Encouraged by the recent results from neutrino oscillation experiments, we perform an analytical study of $SO(10)$-inspired models and leptogenesis with hierarchical right-handed (RH) neutrino spectrum. Under the approximation of negligible misalignment between the neutrino Yukawa basis and the charged lepton basis, we find an analytical expression for the final asymmetry directly in terms of the low energy neutrino parameters that fully reproduces previous numerical results. This expression also shows that is possible to identify an effective leptogenesis phase for these models. When we also impose the wash-out of a large pre-existing asymmetry $N^{\\rm p,i}_{B-L}$, the strong thermal (ST) condition, we derive analytically all those constraints on the low energy neutrino parameters that characterise the {\\rm ST}-$SO(10)$-inspired leptogenesis solution, confirming previous numerical results. In particular we show why, though neutrino masses have to be necessarily normally ordered, the solution implies an analy...

  7. Bio-inspired functional materials

    OpenAIRE

    Jin, Hua

    2012-01-01

    The thesis shows strategies how to learn from Mother Nature to make functional materials. Firstly, inspired by lotus leaf and water strider, superhydrophobic and superoleophobic surfaces are prepared from nanofibrillated cellulose aerogels. Furthermore, we explore potential applications of the superhydrophobic and superoleophobic materials for carrying cargo on liquid surfaces and continuous propulsion. Interestingly, the self-propelled locomotion has constant velocity and can last for prolon...

  8. Elasticity of fractal inspired interconnects.

    Science.gov (United States)

    Su, Yewang; Wang, Shuodao; Huang, YongAn; Luan, Haiwen; Dong, Wentao; Fan, Jonathan A; Yang, Qinglin; Rogers, John A; Huang, Yonggang

    2015-01-21

    The use of fractal-inspired geometric designs in electrical interconnects represents an important approach to simultaneously achieve large stretchability and high aerial coverage of active devices for stretchable electronics. The elastic stiffness of fractal interconnects is determined analytically in this paper. Specifically, the elastic energy and the tensile stiffness for an order n fractal interconnect of arbitrary shape are obtained, and are verified by the finite element analysis and experiments. PMID:25183293

  9. Inspiring Student Self-Motivation

    OpenAIRE

    Virginia Brackett

    2007-01-01

    While normally appreciative of the invitation to join colleagues in a discussion of pedagogy and what “works” in the classroom, I have in most instances reluctantly participated in discussion of student motivation. I dip my toe into this philosophical quagmire only if permitted license to substitute the phrase student inspiration in place of student motivation. I also find it helpful to turn the rhetorical tables, as it were, and consider self-motivation on the part of students. The conce...

  10. Biologically inspired dynamic material systems.

    Science.gov (United States)

    Studart, André R

    2015-03-01

    Numerous examples of material systems that dynamically interact with and adapt to the surrounding environment are found in nature, from hair-based mechanoreceptors in animals to self-shaping seed dispersal units in plants to remodeling bone in vertebrates. Inspired by such fascinating biological structures, a wide range of synthetic material systems have been created to replicate the design concepts of dynamic natural architectures. Examples of biological structures and their man-made counterparts are herein revisited to illustrate how dynamic and adaptive responses emerge from the intimate microscale combination of building blocks with intrinsic nanoscale properties. By using top-down photolithographic methods and bottom-up assembly approaches, biologically inspired dynamic material systems have been created 1)?to sense liquid flow with hair-inspired microelectromechanical systems, 2)?to autonomously change shape by utilizing plantlike heterogeneous architectures, 3)?to homeostatically influence the surrounding environment through self-regulating adaptive surfaces, and 4)?to spatially concentrate chemical species by using synthetic microcompartments. The ever-increasing complexity and remarkable functionalities of such synthetic systems offer an encouraging perspective to the rich set of dynamic and adaptive properties that can potentially be implemented in future man-made material systems. PMID:25583299

  11. Representación visual de la movilización estudiantil en Chile: las fotografías de las marchas como espacios de narración, actuación e identificación política (Visual representation of the student mobilization in Chile: the photographs of marches as spaces of narrative, action and political identification

    Directory of Open Access Journals (Sweden)

    Camila Cárdenas Neira

    2014-12-01

    Full Text Available El artículo explora la representación visual de las marchas estudiantiles suscitadas en Chile durante el 2011, con el propósito de describir los actores e identidades grupales simbolizadas, así como las acciones sociales y los modos como son legitimadas o deslegitimadas en la interacción. Se analiza un corpus fotográfico del libro "Marchas" (Yutronic y Ortiz, 2012, desde un marco teórico-metodológico que considera aportaciones de los Estudios Críticos del Discurso y la Semiótica Social. Se plantea que las fotografías de las marchas constituyen una narración capaz de organizar significados que estructuran formas de actuación e identificación política en oposición, excluyendo a otros participantes críticos del conflicto educativo, como las élites políticas y económicas. Se construye así un tipo de confrontación entre jóvenes y fuerzas policiales, que simplifica la lucha ideológica y refuerza estereotipos sobre grupos cuya acción, al ser objeto de una mediatización permanente, es cognitivamente reforzada. Se concluye que la narración indagada constituye una opción de representación que enfatiza el carácter histórico de la protesta estudiantil, proveyendo un espacio de visibilización de la acción juvenil postdictatorial. (This paper explores the visual representation of student’s protests raised in Chile during 2011. The purpose is to describe the actors and symbolized group identities, as well as the social actions and the ways in which these specific actions are legitimized or delegitimized in the interaction. The corpus is a photographic book entitled "Marchas" (Marches (Yutronic & Ortiz, 2012, which is analyzed from a theoretical and methodological framework that considers input from Critical Discourse Studies and Social Semiotics. The paper claims that the photographs of marches are able to organize narrative meanings which structure opposite forms of performance and political identification, excluding other critical participants in the educational conflict, such as political and economic elites. Thus, it is constructed a type of confrontation between young people and police, which simplifies the ideological struggle and reinforces stereotypes about groups whose action, being subject to constant media coverage, is, therefore, cognitively enhanced. The paper concludes that the narration inquired is an option of representation that emphasizes the historical character of the students’ protest, providing in this way a space that makes visible the postdictatorial action of youth.

  12. Generative Representations for Automated Design of Robots

    Science.gov (United States)

    Homby, Gregory S.; Lipson, Hod; Pollack, Jordan B.

    2007-01-01

    A method of automated design of complex, modular robots involves an evolutionary process in which generative representations of designs are used. The term generative representations as used here signifies, loosely, representations that consist of or include algorithms, computer programs, and the like, wherein encoded designs can reuse elements of their encoding and thereby evolve toward greater complexity. Automated design of robots through synthetic evolutionary processes has already been demonstrated, but it is not clear whether genetically inspired search algorithms can yield designs that are sufficiently complex for practical engineering. The ultimate success of such algorithms as tools for automation of design depends on the scaling properties of representations of designs. A nongenerative representation (one in which each element of the encoded design is used at most once in translating to the design) scales linearly with the number of elements. Search algorithms that use nongenerative representations quickly become intractable (search times vary approximately exponentially with numbers of design elements), and thus are not amenable to scaling to complex designs. Generative representations are compact representations and were devised as means to circumvent the above-mentioned fundamental restriction on scalability. In the present method, a robot is defined by a compact programmatic form (its generative representation) and the evolutionary variation takes place on this form. The evolutionary process is an iterative one, wherein each cycle consists of the following steps: 1. Generative representations are generated in an evolutionary subprocess. 2. Each generative representation is a program that, when compiled, produces an assembly procedure. 3. In a computational simulation, a constructor executes an assembly procedure to generate a robot. 4. A physical-simulation program tests the performance of a simulated constructed robot, evaluating the performance according to a fitness criterion to yield a figure of merit that is fed back into the evolutionary subprocess of the next iteration. In comparison with prior approaches to automated evolutionary design of robots, the use of generative representations offers two advantages: First, a generative representation enables the reuse of components in regular and hierarchical ways and thereby serves a systematic means of creating more complex modules out of simpler ones. Second, the evolved generative representation may capture intrinsic properties of the design problem, so that variations in the representations move through the design space more effectively than do equivalent variations in a nongenerative representation. This method has been demonstrated by using it to design some robots that move, variously, by walking, rolling, or sliding. Some of the robots were built (see figure). Although these robots are very simple, in comparison with robots designed by humans, their structures are more regular, modular, hierarchical, and complex than are those of evolved designs of comparable functionality synthesized by use of nongenerative representations.

  13. Visual Signs of Ageing

    Directory of Open Access Journals (Sweden)

    Helle Rexbye

    2007-07-01

    Full Text Available Consumer culture has placed the ageing body in a dilemma of representation. Physical appearance has become increasingly important as a symbol of identity, and at the same time society idealizes youth. This study explores visual ageing empirically. By using photographs of older persons (70+ as starting point, it is explored how visual age is assessed and interpreted. It is shown that informants read age in a spread of stages and categories. Main age indicators are biological markers: skin, eyes, and hair colour, but supplemented by vigour, style, and grooming. Furthermore, in-depth interviews indicate that visual age is mainly interpreted into categories and moral regulations rooted in early modernity. Subsequently the question of a postmodern perspective of visual ageing is discussed in this article. The empirical findings in the study question a postmodern fluidity of visual signs – at least when the concern is signs of ageing.

  14. Visualization of Social Networks

    Science.gov (United States)

    Chen, Ing-Xiang; Yang, Cheng-Zen

    With the ubiquitous characteristic of the Internet, today many online social environments are provided to connect people. Various social relationships are thus created, connected, and migrated from our real lives to the Internet environment from different social groups. Many social communities and relationships are also quickly constructed and connected via instant personal messengers, blogs, Twitter, Facebook, and a great variety of online social services. Since social network visualizations can structure the complex relationships between different groups of individuals or organizations, they are helpful to analyze the social activities and relationships of actors, particularly over a large number of nodes. Therefore, many studies and visualization tools have been investigated to present social networks with graph representations. In this chapter, we will first review the background of social network analysis and visualization methods, and then introduce various novel visualization applications for social networks. Finally, the challenges and the future development of visualizing online social networks are discussed.

  15. Institutionalizing New Ideas Through Visualization

    DEFF Research Database (Denmark)

    Meyer, Renate; Jancsary, Dennis

    How do visualization and visual forms of communication influence the process of transforming a novel idea into established organizational practice? In this paper, we build theory with regard to the role of visuals in manifesting and giving form to an innovative idea as it proceeds through various stages of institutionalization. Ideas become institutionalized not merely through widespread diffusion in a cognitive-discursive form but eventually through their translation into concrete activities and transformation into specific patterns of organizational practice. We argue that visualization plays a pivotal and unique role in this process. Visualization bridges the ideational with the practical realm by providing representations of ideas, connecting them to existing knowledge, and illustrating the specific actions that instantiate them. Similar to verbal discourse, and often in tandem, visual representations diffuse more rapidly and further than the practices themselves. Consolidating the relationship between abstract ideas and specific practice, such visual or multi-modal representations facilitate the implementation of novel ideas, reinforce particular translations, and imbue associated organizational practice with legitimacy – and thus solidify the coupling of innovative ideas and organizational practice. Extending existing research, we develop a set of propositions linking dimensions of visuality and visualization to the different stages of institutionalization in order to explain the institutional trajectory of new ideas. Our analysis advances insight into a core dimension of institutionalization: the transformation of an idea into practice.

  16. A Biologically Inspired CMOS Image Sensor

    CERN Document Server

    Sarkar, Mukul

    2013-01-01

    Biological systems are a source of inspiration in the development of small autonomous sensor nodes. The two major types of optical vision systems found in nature are the single aperture human eye and the compound eye of insects. The latter are among the most compact and smallest vision sensors. The eye is a compound of individual lenses with their own photoreceptor arrays.  The visual system of insects allows them to fly with a limited intelligence and brain processing power. A CMOS image sensor replicating the perception of vision in insects is discussed and designed in this book for industrial (machine vision) and medical applications. The CMOS metal layer is used to create an embedded micro-polarizer able to sense polarization information. This polarization information is shown to be useful in applications like real time material classification and autonomous agent navigation. Further the sensor is equipped with in pixel analog and digital memories which allow variation of the dynamic range and in-pixel b...

  17. Perspective of an Artist Inspired by Physics

    Science.gov (United States)

    Sanborn, Jim

    2010-02-01

    Using digital images and video I will be presenting thirty years of my science based artwork. Beginning in the late 1970's my gallery and museum installations used lodestones and suspended compasses to reveal the earths' magnetic field. Through the 1980's my work included these compass installations and geologically inspired tableaux that had one thing in common, they were designed to expose the invisible forces of nature. Tectonics, the Coriolis force, and magnetism were among the subjects of study. In 1988, on the basis of my work with invisible forces, I was selected for a commission from the General Services Administration for the new Central Intelligence Agency headquarters in Langley Virginia. This work titled Kryptos included a large cryptographic component that remains undeciphered twenty years after its installation. In the 1990's Kryptos inspired several of my museum and gallery installations using cryptography and secrecy as their main themes. From 1995-1998 I completed a series of large format projections on the landscape in the western US and Ireland. These projections and the resulting series of photographs emulated the 19th century cartographers hired by the United States Government to map the western landscape. In 1998 I began my project titled Atomic Time. This installation shown for the first time in 2004 at the Corcoran Gallery in Washington DC, then again in the Gwangju Biennale in South Korea was a recreation of the 1944 Manhattan Project laboratory that built the first Atomic Bomb. This installation used original equipment and prototypes from the Los Alamos Lab and was an extremely accurate representation of the laboratory and the first nuclear bomb called the ``Trinity Device.'' I began my current project Terrestrial Physics in 2005. This installation to be shown in June 2010 at the Museum of Contemporary Art in Denver is a recreation of the large particle accelerator and the experiment that fissioned Uranium in 1939 at the Carnegie Institution in Washington DC. This was the first time uranium had been fissioned using a particle accelerator and it was demonstrated for an audience including, Enrico Fermi, Niels Bohr and Merle Tuve. )

  18. Factoring: A Visual Representation of Number

    Science.gov (United States)

    Carollee Norris

    2013-01-08

    This Focus on Math blog post presents a dot diagram by Brent Yorgey of the consecutive natural numbers. The configuration of each number of dots reveals quickly whether it is prime or composite and provides information about its prime factorization. Included are two links: one to Stephen Von Wordley's animated factorization diagrams and the other to Malke Rosenfeld's blog describing a game based on the diagram.

  19. Jungle Photos: Inspiration, Education, Conservation

    Science.gov (United States)

    Roger Harris

    This gallery provides photographs and information on natural history, ecology, and conservation; its mission is to inspire people to support wilderness conversation and education. The gallery emphasizes the Amazon region of South America, the Galapagos Islands, and Africa. The collections feature images of plants and animals, people, scenery, environmental impacts such as deforestation, satellite imagery, and many other subjects. Each collection includes a teacher's page with quizzes, lesson plans, and links to other resources. The site also features an online forum and a Wiki where users can contribute their own content.

  20. Words, shape, visual search and visual working memory in 3-year-old children

    OpenAIRE

    Vales, Catarina; Smith, Linda B.

    2014-01-01

    Do words cue children’s visual attention, and if so, what are the relevant mechanisms? Across four experiments, 3-year-old children (N = 163) were tested in visual search tasks in which targets were cued with only a visual preview versus a visual preview and a spoken name. The experiments were designed to determine whether labels facilitated search times and to examine one route through which labels could have their effect: By influencing the visual working memory representation of the targ...

  1. Representational Inquiry Competences in Science Games

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2009-01-01

    This chapter concerns the enactment of competences in a particular science learning game Homicide, which is played in lower secondary schools. Homicide is a forensic investigation game in which pupils play police experts solving criminal cases in the space of one week. The game is designed to support work with genuine scientific inquiry and to meet the seventh- to tenth grade curriculum objectives for science and Danish education in Danish schools. This paper comprises a presentation of the results of a long-term empirical study done of four school classes who have played the game. The chapter includes studies of how students construct visual representations of the cases they investigate and how they use these representations to establish hypotheses and evidence. The term ‘Representational Inquiry Competences' is developed; it refers to the students' ability to construct, productively use, transform and criticize visual representations as an integrated part of conducting an inquiry in the science game

  2. Visual field

    Science.gov (United States)

    Perimetry; Tangent screen exam; Automated perimetry exam; Goldmann visual field exam; Humphrey visual field exam ... Confrontation visual field exam: This is a quick and basic check of the visual field. The health care provider ...

  3. New Inspirations in Nature: A Survey

    OpenAIRE

    Nitesh Maganlal Sureja

    2012-01-01

    Over the past few decades, the studies on algorithms inspired by nature have shown that these methods can be efficiently used to eliminate most of the difficulties of classical methods. Nature inspired algorithms are widely used to solve optimization problems with complex nature. Various research works are carried out and algorithms are presented based on that during last few decades. Recently, some new algorithms inspired from nature are proposed to further improve the solutions obtained by ...

  4. Unilateral Vestibular Loss Impairs External Space Representation

    OpenAIRE

    Borel, Liliane; Redon-zouiteni, Christine; Cauvin, Pierre; Dumitrescu, Michel; Deve?ze, Arnaud; Magnan, Jacques; Pe?ruch, Patrick

    2014-01-01

    The vestibular system is responsible for a wide range of postural and oculomotor functions and maintains an internal, updated representation of the position and movement of the head in space. In this study, we assessed whether unilateral vestibular loss affects external space representation. Patients with Menière's disease and healthy participants were instructed to point to memorized targets in near (peripersonal) and far (extrapersonal) spaces in the absence or presence of a visual backgro...

  5. Manipulating Representations.

    Science.gov (United States)

    Recchia-Luciani, Angelo N M

    2012-04-01

    The present paper proposes a definition for the complex polysemic concepts of consciousness and awareness (in humans as well as in other species), and puts forward the idea of a progressive ontological development of consciousness from a state of 'childhood' awareness, in order to explain that humans are not only able to manipulate objects, but also their mental representations. The paper builds on the idea of qualia intended as entities posing regular invariant requests to neural processes, trough the permanence of different properties. The concept of semantic differential introduces the properties of metaphorical qualia as an exclusively human ability. Furthermore this paper proposes a classification of qualia, according to the models-with different levels of abstraction-they are implied in, in a taxonomic perspective. This, in turn, becomes a source of categorization of divergent representations, sign systems, and forms of intentionality, relying always on biological criteria. New emerging image-of-the-world-devices are proposed, whose qualia are likely to be only accessible to humans: emotional qualia, where emotion accounts for the invariant and dominant property; and the qualic self where continuity, combined with the oneness of the self, accounts for the invariant and dominant property. The concept of congruence between different domains in a metaphor introduces the possibility of a general evaluation of truth and falsity of all kinds of metaphorical constructs, while the work of Matte Blanco enables us to classify conscious versus unconscious metaphors, both in individuals and in social organizations. PMID:22347988

  6. Assessing the contribution of color in visual attention

    OpenAIRE

    Jost, Timothe?e; Ouerhani, Nabil; Von Wartburg, Roman; Mu?ri, Rene?; Hu?gli, Heinz

    2008-01-01

    Visual attention is the ability of a vision system, be it biological or artificial, to rapidly detect potentially relevant parts of a visual scene, on which higher level vision tasks, such as object recognition, can focus. The saliency-based model of visual attention represents one of the main attempts to simulate this visual mechanism on computers. Though biologically inspired, this model has only been partially assessed in comparison with human behavior. Our methodology consists in comparin...

  7. Visual Learning in Application of Integration

    Science.gov (United States)

    Bt Shafie, Afza; Barnachea Janier, Josefina; Bt Wan Ahmad, Wan Fatimah

    Innovative use of technology can improve the way how Mathematics should be taught. It can enhance student's learning the concepts through visualization. Visualization in Mathematics refers to us of texts, pictures, graphs and animations to hold the attention of the learners in order to learn the concepts. This paper describes the use of a developed multimedia courseware as an effective tool for visual learning mathematics. The focus is on the application of integration which is a topic in Engineering Mathematics 2. The course is offered to the foundation students in the Universiti Teknologi of PETRONAS. Questionnaire has been distributed to get a feedback on the visual representation and students' attitudes towards using visual representation as a learning tool. The questionnaire consists of 3 sections: Courseware Design (Part A), courseware usability (Part B) and attitudes towards using the courseware (Part C). The results showed that students demonstrated the use of visual representation has benefited them in learning the topic.

  8. Canonical Visual Size for Real-World Objects

    Science.gov (United States)

    Konkle, Talia; Oliva, Aude

    2011-01-01

    Real-world objects can be viewed at a range of distances and thus can be experienced at a range of visual angles within the visual field. Given the large amount of visual size variation possible when observing objects, we examined how internal object representations represent visual size information. In a series of experiments which required…

  9. Visualizing abstract objects and relations

    CERN Document Server

    Kamada, Tomihisa

    1989-01-01

    Pictorial representations are very useful for humans to understand complicated relations or structures. This is the reason that the user interface of information systems is strongly required to visualize many kinds of information in a wide variety of graphical forms. At present, however, only some very specialized visualization techniques have been developed probably because the generality in the visualization has not been appreciated correctly. This book presents a visualization framework for translating abstract objects and relations, typically represented in textual forms, into pictorial re

  10. Visualizing without Vision at the Microscale: Students with Visual Impairments Explore Cells with Touch

    Science.gov (United States)

    Jones, M. Gail; Minogue, James; Oppewal, Tom; Cook, Michelle P.; Broadwell, Bethany

    2006-01-01

    Science instruction is typically highly dependent on visual representations of scientific concepts that are communicated through textbooks, teacher presentations, and computer-based multimedia materials. Little is known about how students with visual impairments access and interpret these types of visually-dependent instructional materials. This…

  11. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry is discussed with particular reference to the 3D geovisualization.

  12. Hierarchical aggregation for information visualization: overview, techniques, and design guidelines.

    Science.gov (United States)

    Elmqvist, Niklas; Fekete, Jean-Daniel

    2010-01-01

    We present a model for building, visualizing, and interacting with multiscale representations of information visualization techniques using hierarchical aggregation. The motivation for this work is to make visual representations more visually scalable and less cluttered. The model allows for augmenting existing techniques with multiscale functionality, as well as for designing new visualization and interaction techniques that conform to this new class of visual representations. We give some examples of how to use the model for standard information visualization techniques such as scatterplots, parallel coordinates, and node-link diagrams, and discuss existing techniques that are based on hierarchical aggregation. This yields a set of design guidelines for aggregated visualizations. We also present a basic vocabulary of interaction techniques suitable for navigating these multiscale visualizations. PMID:20224139

  13. Collide@CERN: sharing inspiration

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Late last year, Julius von Bismarck was appointed to be CERN's first "artist in residence" after winning the Collide@CERN Digital Arts award. He’ll be spending two months at CERN starting this March but, to get a flavour of what’s in store, he visited the Organization last week for a crash course in its inspiring activities.   Julius von Bismarck, taking a closer look... When we arrive to interview German artist Julius von Bismarck, he’s being given a presentation about antiprotons’ ability to kill cancer cells. The whiteboard in the room contains graphs and equations that might easily send a non-scientist running, yet as Julius puts it, “if I weren’t interested, I’d be asleep”. Given his numerous questions, he must have been fascinated. “This ‘introduction’ week has been exhilarating,” says Julius. “I’ve been able to interact ...

  14. Event Rates for Binary Inspiral

    CERN Document Server

    Kalogera, V

    2001-01-01

    Double compact objects (neutron stars and black holes) found in binaries with small orbital separations are known to spiral in and are expected to coalesce eventually because of the emission of gravitational waves. Such inspiral and merger events are thought to be primary sources for ground based gravitational-wave interferometric detectors (such as LIGO). Here, we present a brief review of estimates of coalescence rates and we examine the origin and relative importance of uncertainties associated with the rate estimates. For the case of double neutron star systems, we compare the most recent rate estimates to upper limits derived in a number of different ways. We also discuss the implications of the formation of close binaries with two non-recycled pulsars.

  15. Binary neutron star inspiral, LIGO, and cosmology

    OpenAIRE

    Finn, L. S.

    1995-01-01

    Recent work on the expected event rate of neutron star inspiral signals in the LIGO detector is summarized. The observed signals will be from inspirals at cosmological distances, and the important cosmological effects on the event rate and spectrum are discussed. This paper is a contribution to the proceedings of the 17th Texas Symposium held in Munich, 12-17 December 1994.

  16. Inspiring Teachers: Perspectives and Practices. Summary Report

    Science.gov (United States)

    Sammons, Pam; Kington, Alison; Lindorff-Vijayendran, Ariel; Ortega, Lorena

    2014-01-01

    This study investigates the notion of "inspiring" teaching. The research was commissioned by CfBT as part of a collaborative professional development initiative involving its schools. It arose from headteachers' suggestions that schools nominate a number of "inspiring" teachers so that their practice could be studied and…

  17. New Inspirations in Nature: A Survey

    Directory of Open Access Journals (Sweden)

    Nitesh Maganlal Sureja

    2012-11-01

    Full Text Available Over the past few decades, the studies on algorithms inspired by nature have shown that these methods can be efficiently used to eliminate most of the difficulties of classical methods. Nature inspired algorithms are widely used to solve optimization problems with complex nature. Various research works are carried out and algorithms are presented based on that during last few decades. Recently, some new algorithms inspired from nature are proposed to further improve the solutions obtained by the algorithms presented before. In this paper, a survey of five recently introduced Nature inspired algorithms is carried out. They include Firefly algorithm (FA, Cuckoo Search (CS, and Bat Inspired Algorithm (BA. Each of these algorithms are introduced and applied on various numerical optimization functions by various authors. We have tried to review and study the papers published by the authors and present a conclusion of this survey based on the results obtained.

  18. Visualization in Medieval Alchemy

    OpenAIRE

    Barbara Obrist

    2003-01-01

    This paper explores major trends in visualization of medieval theories of natural and artificial transformation of substances in relation to their philosophical and theological bases. The function of pictorial forms is analyzed in terms of the prevailing conceptions of science and methods of transmitting knowledge. The documents under examination date from the thirteenth to the fifteenth century. In these, pictorial representations include lists and tables, geometrical figures, depictions of ...

  19. Hyperfeatures - Multilevel Local Coding for Visual Recognition

    OpenAIRE

    Agarwal, Ankur; Triggs, Bill

    2005-01-01

    Histograms of local appearance descriptors are a popular representation for visual recognition. They are highly discriminant and they have good resistance to local occlusions and to geometric and photometric variations, but they are not able to exploit spatial co-occurrence statistics of features at scales larger than their local input patches. We present a new multilevel visual representation, `hyperfeatures', that is designed to remedy this. The basis of the work is the familiar notion that...

  20. Priming by the variability of visual information.

    OpenAIRE

    Michael, E.; Gardelle, V.; Summerfield, C

    2014-01-01

    According to recent theories, perception relies on summary representations that encode statistical information about the sensory environment. Here, we used perceptual priming to characterize the representations that mediate categorization of a complex visual array. Observers judged the average shape or color of a target visual array that was preceded by an irrelevant prime array. Manipulating the variability of task-relevant and task-irrelevant feature information in the prime and target orth...

  1. Bio-inspired method and system for actionable intelligence

    Science.gov (United States)

    Khosla, Deepak; Chelian, Suhas E.

    2009-05-01

    This paper describes a bio-inspired VISion based actionable INTelligence system (VISINT) that provides automated capabilities to (1) understand objects, patterns, events and behaviors in vision data; (2) translate this understanding into timely recognition of novel and anomalous entities; and (3) discover underlying hierarchies and relationships between disparate labels entered by multiple users to provide a consistent data representation. VISINT is both a system and a novel collection of novel bio-inspired algorithms/modules. These modules can be used independently for various aspects of the actionable intelligence problem or sequenced together for an end-to-end actionable intelligence system. The algorithms can be useful in many other applications such as scene understanding, behavioral analysis, automatic surveillance systems, etc. The bio-inspired algorithms are a novel combination of hierarchical spatial and temporal networks based on the Adaptive Resonance Theory (ART). The novel aspects of this work are that it is an end-to-end system for actionable intelligence that combines existing and novel implementations of various modules in innovative ways to develop a system concept for actionable intelligence. Although there are other algorithms/implementations of several of the modules in VISINT, they suffer from various limitations and often system integration is not considered. The overall VISINT system can be viewed an incremental learning system where no offline training is required and data from multiple sources and times can be seamlessly integrated. The user is in the loop, but due to the semi-supervised nature of the underlying algorithms, only significant variations of entities, not all false alarms, are shown to the user. It does not forget the past even with new learning. While VISINT is designed as a vision-based system, it could also work with other kinds of sensor data that can recognize and locate individual objects in the scene. Beyond that stage of object recognition and localization, all aspects of VISINT are applicable to other kinds of sensor data.

  2. The GEANT4 Visualization System

    International Nuclear Information System (INIS)

    The Geant4 Visualization System is a multi-driver graphics system designed to serve the Geant4 Simulation Toolkit. It is aimed at the visualization of Geant4 data, primarily detector descriptions and simulated particle trajectories and hits. It can handle a variety of graphical technologies simultaneously and interchangeably, allowing the user to choose the visual representation most appropriate to requirements. It conforms to the low-level Geant4 abstract graphical user interfaces and introduces new abstract classes from which the various drivers are derived and that can be straightforwardly extended, for example, by the addition of a new driver. It makes use of an extendable class library of models and filters for data representation and selection. The Geant4 Visualization System supports a rich set of interactive commands based on the Geant4 command system. It is included in the Geant4 code distribution and maintained and documented like other components of Geant4

  3. Visual Perception of Force: Comment on White (2012)

    Science.gov (United States)

    Hubbard, Timothy L.

    2012-01-01

    White (2012) proposed that kinematic features in a visual percept are matched to stored representations containing information regarding forces (based on prior haptic experience) and that information in the matched, stored representations regarding forces is then incorporated into visual perception. Although some elements of White's (2012) account…

  4. Orienting Attention to Sound Object Representations Attenuates Change Deafness

    Science.gov (United States)

    Backer, Kristina C.; Alain, Claude

    2012-01-01

    According to the object-based account of attention, multiple objects coexist in short-term memory (STM), and we can selectively attend to a particular object of interest. Although there is evidence that attention can be directed to visual object representations, the assumption that attention can be oriented to sound object representations has yet…

  5. Visual Impairment

    Science.gov (United States)

    ... with the brain, making vision impossible. What Is Visual Impairment? Many people have some type of visual ... could from 200 feet away. Continue What Causes Visual Impairment? People rarely lose their eyesight during their ...

  6. Inaccurate Representation Of The Ground Surface Beyond A Texture Boundary

    OpenAIRE

    Wu, Bing; He, Zijiang J.; Ooi, Teng Leng

    2007-01-01

    The Sequential Surface Integration Process (SSIP) hypothesis was proposed to elucidate how the visual system constructs the ground surface representation in the intermediate distance range. According to the hypothesis, the SSIP constructs an accurate representation of the near ground surface using reliable near depth cues. The near ground representation then serves as a template for integrating the adjacent surface patch using the texture gradient information as the predominant depth cue. By ...

  7. Nucleon-nucleon potentials in phase-space representation

    OpenAIRE

    Feldmeier, H.; Neff, T.; Weber, D.

    2014-01-01

    A phase-space representation of nuclear interactions, which depends on the distance $\\vec{r}$ and relative momentum $\\vec{p}$ of the nucleons, is presented. A method is developed that permits to extract the interaction $V(\\vec{r},\\vec{p})$ from antisymmetrized matrix elements given in a spherical basis with angular momentum quantum numbers, either in momentum or coordinate space representation. This representation visualizes in an intuitive way the non-local behavior introdu...

  8. Elementary School Students’ Perceptions of Technology in their Pictorial Representations

    OpenAIRE

    Adile A?k?m Kurt; Suzan Duygu Eri?ti

    2011-01-01

    The current study aimed to reveal elementary school students’ perceptions of technology through their pictorial representations and their written expressions based on their pictorial representations. Content analysis based on the qualitative research method along with art-based inquiry was applied. The “coding system for the concepts revealed from the research data” was implemented. Visual language used in pictorial representations produce messages, with its specialized codes. The degre...

  9. Design and application of real-time visual attention model for the exploration of 3D virtual environments.

    Science.gov (United States)

    Hillaire, Sébastien; Lécuyer, Anatole; Regia-Corte, Tony; Cozot, Rémi; Royan, Jérôme; Breton, Gaspard

    2012-03-01

    This paper studies the design and application of a novel visual attention model designed to compute user's gaze position automatically, i.e., without using a gaze-tracking system. The model we propose is specifically designed for real-time first-person exploration of 3D virtual environments. It is the first model adapted to this context which can compute in real time a continuous gaze point position instead of a set of 3D objects potentially observed by the user. To do so, contrary to previous models which use a mesh-based representation of visual objects, we introduce a representation based on surface-elements. Our model also simulates visual reflexes and the cognitive processes which take place in the brain such as the gaze behavior associated to first-person navigation in the virtual environment. Our visual attention model combines both bottom-up and top-down components to compute a continuous gaze point position on screen that hopefully matches the user's one. We conducted an experiment to study and compare the performance of our method with a state-of-the-art approach. Our results are found significantly better with sometimes more than 100 percent of accuracy gained. This suggests that computing a gaze point in a 3D virtual environment in real time is possible and is a valid approach, compared to object-based approaches. Finally, we expose different applications of our model when exploring virtual environments. We present different algorithms which can improve or adapt the visual feedback of virtual environments based on gaze information. We first propose a level-of-detail approach that heavily relies on multiple-texture sampling. We show that it is possible to use the gaze information of our visual attention model to increase visual quality where the user is looking, while maintaining a high-refresh rate. Second, we introduce the use of the visual attention model in three visual effects inspired by the human visual system namely: depth-of-field blur, camera- motions, and dynamic luminance. All these effects are computed based on the simulated gaze of the user, and are meant to improve user's sensations in future virtual reality applications. PMID:21931178

  10. Cultural representation and self-representation of dagongmei in contemporary China

    OpenAIRE

    Jaguscik, J.

    2011-01-01

    In the 1980s, working women migrant labourers, known as the dagongmei or “working sisters,” emerged as an object of interest in popular films and television dramas. These initial visual representations have since been reiterated in sequels adjusted to fit best the current rhetoric of the party-state. Concurrent to the mass media is the less-widespread phenomenon of labourer’s literature (dagong wenxue), through which we can read the dagongmei’s own (self-) representations. Eventually,...

  11. Bio-inspired computation in telecommunications

    CERN Document Server

    Yang, Xin-She; Ting, TO

    2015-01-01

    Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

  12. Berengario's drill: origin and inspiration.

    Science.gov (United States)

    Chorney, Michael A; Gandhi, Chirag D; Prestigiacomo, Charles J

    2014-04-01

    Craniotomies are among the oldest neurosurgical procedures, as evidenced by early human skulls discovered with holes in the calvaria. Though devices change, the principles to safely transgress the skull are identical. Modern neurosurgeons regularly use electric power drills in the operating theater; however, nonelectric trephining instruments remain trusted by professionals in certain emergent settings in the rare instance that an electric drill is unavailable. Until the late Middle Ages, innovation in craniotomy instrumentation remained stunted without much documented redesign. Jacopo Berengario da Carpi's (c. 1457-1530 CE) text Tractatus de Fractura Calvae sive Cranei depicts a drill previously unseen in a medical volume. Written in 1518 CE, the book was motivated by defeat over the course of Lorenzo II de'Medici's medical care. Berengario's interchangeable bit with a compound brace ("vertibulum"), known today as the Hudson brace, symbolizes a pivotal device in neurosurgery and medical tool design. This drill permitted surgeons to stock multiple bits, perform the craniotomy faster, and decrease equipment costs during a period of increased incidence of cranial fractures, and thus the need for craniotomies, which was attributable to the introduction of gunpowder. The inspiration stemmed from a school of thought growing within a population of physicians trained as mathematicians, engineers, and astrologers prior to entering the medical profession. Berengario may have been the first to record the use of such a unique drill, but whether he invented this instrument or merely adapted its use for the craniotomy remains clouded. PMID:24684339

  13. Future scenarios to inspire innovation

    DEFF Research Database (Denmark)

    De Smedt, Peter; Borch, Kristian

    2013-01-01

    In recent years, accelerated by the economic and financial crisis, complex global issues have moved to the forefront of policy-making. These grand challenges require policy-makers to address a variety of interrelated issues, which are built upon yet uncoordinated and dispersed bodies of knowledge. Due to the social dynamics of innovation, new socio-technical subsystems are emerging, however there is lack of exploitation of novel ideas and sustainable solutions to address these grand challenges. In this paper we argue that issues of how knowledge is represented can have a part in this lack of exploitation. For example, when drivers of change are not only multiple but also mutable, it is not sensible to extrapolate the future from data and relationships of the past. This paper investigates ways in which futures thinking can be used as a tool for inspiring actions and structures that address the grand challenges. By analyzing several scenario cases, elements of good practices and principles on how to strengthen innovation systems through future scenarios are identified. This is needed because innovation itself needs to be oriented along more sustainable pathways enabling transformations of socio-technical systems. © 2012 Elsevier Inc. All rights reserved.

  14. Inspired at a book fair

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    During the Frankfurt book fair last October, the CERN stand drew quite the crowd. Director-General Rolf Heuer was there to promote CERN’s mission and the "LHC: the Large Hadron Collider" book. He met a lot of visitors and for one of them there was also a nice follow-up…   Marcus and his father visiting the LINAC facility. Fifteen year-old Marcus lives in Lauterecken near Frankfurt. The popular book fair last autumn was for him a nice opportunity to get in touch with the CERN environment. Inspired by the stand and what the CERN people were describing, he started to ask more and more questions… So many, that Rolf Heuer decided to invite him to come to CERN and find out some of the answers for himself. A few weeks later, while recovering from an exciting visit to the ATLAS underground cavern and other CERN installations with a cup of tea in Restaurant 1, Marcus shared his enthusiasm about the Organization: “When I was younger, my moth...

  15. Fracture Mechanics: Inspirations from Nature

    Directory of Open Access Journals (Sweden)

    David Taylor

    2014-10-01

    Full Text Available In Nature there are many examples of materials performing structural functions. Nature requires materials which are stiff and strong to provide support against various forces, including self-weight, the dynamic forces involved in movement, and external loads such as wind or the actions of a predator. These materials and structures have evolved over millions of years; the science of Biomimetics seeks to understand Nature and, as a result, to find inspiration for the creation of better engineering solutions. There has been relatively little fundamental research work in this area from a fracture mechanics point of view. Natural materials are quite brittle and, as a result, they have evolved several interesting strategies for preventing failure by crack propagation. Fatigue is also a major problem for many animals and plants. In this paper, several examples will be given of recent work in the Bioengineering Research Centre at Trinity College Dublin, investigating fracture and fatigue in such diverse materials as bamboo, the legs and wings of insects, and living cells.

  16. Spatial resolution in visual memory.

    Science.gov (United States)

    Ben-Shalom, Asaf; Ganel, Tzvi

    2015-04-01

    Representations in visual short-term memory are considered to contain relatively elaborated information on object structure. Conversely, representations in earlier stages of the visual hierarchy are thought to be dominated by a sensory-based, feed-forward buildup of information. In four experiments, we compared the spatial resolution of different object properties between two points in time along the processing hierarchy in visual short-term memory. Subjects were asked either to estimate the distance between objects or to estimate the size of one of the objects' features under two experimental conditions, of either a short or a long delay period between the presentation of the target stimulus and the probe. When different objects were referred to, similar spatial resolution was found for the two delay periods, suggesting that initial processing stages are sensitive to object-based properties. Conversely, superior resolution was found for the short, as compared with the long, delay when features were referred to. These findings suggest that initial representations in visual memory are hybrid in that they allow fine-grained resolution for object features alongside normal visual sensitivity to the segregation between objects. The findings are also discussed in reference to the distinction made in earlier studies between visual short-term memory and iconic memory. PMID:25112394

  17. Capturing lived experiences in movement educational contexts through videographic participation and visual narratives

    DEFF Research Database (Denmark)

    DegerbØl, Stine Mikés; Svendler Nielsen, Charlotte

    This paper explores and reflects upon possibilities and challenges of using “videographic participation” (Svendler Nielsen 2009a) as a research method combining filmic ethnography (Møhl 2003) and phenomenology (van Manen 1990; Todres 2007) in movement educational contexts. The research method helps visualizing and communicating the meaning-making of the participants and emphasizes the role of the researcher’s embodied involvement when ‘looking for lived experiences’. The paper exemplifies the use of videographic participation and presents (audio)visual narratives from two educational contexts: children in a primary school participating in a collaboration with a professional dance company and youngsters ages 18-26 doing contemporary circus training. Both studies use film as a knowledge creating practice (Møhl 2003) in combination with a hermeneutic-phenomenological analysis (van Manen 1990) to cast light on ways of understanding embodied learning. The use of videographic participation in the two contexts of educational practice are explored, compared and discussed. On an overall methodological level it is discussed how it is possible to capture lived experiences in fields of movement education by use of videographic participation and what the challenges of ‘looking for lived experiences’ in movement can be. Inspired by Performative Social Science (Jones et al. 2008; Gergen and Jones 2008) the paper exemplifies and discusses (re)presentation of research data in artistic forms by highlighting the question of how meaning-making of the participants can be captured and disseminated through (audio)visual narratives.

  18. Large-scale functional models of visual cortex for remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Brumby, Steven P [Los Alamos National Laboratory; Kenyon, Garrett [Los Alamos National Laboratory; Rasmussen, Craig E [Los Alamos National Laboratory; Swaminarayan, Sriram [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Landecker, Will [PORTLAND STATE UNIV.

    2009-01-01

    Neuroscience has revealed many properties of neurons and of the functional organization of visual cortex that are believed to be essential to human vision, but are missing in standard artificial neural networks. Equally important may be the sheer scale of visual cortex requiring {approx}1 petaflop of computation. In a year, the retina delivers {approx}1 petapixel to the brain, leading to massively large opportunities for learning at many levels of the cortical system. We describe work at Los Alamos National Laboratory (LANL) to develop large-scale functional models of visual cortex on LANL's Roadrunner petaflop supercomputer. An initial run of a simple region VI code achieved 1.144 petaflops during trials at the IBM facility in Poughkeepsie, NY (June 2008). Here, we present criteria for assessing when a set of learned local representations is 'complete' along with general criteria for assessing computer vision models based on their projected scaling behavior. Finally, we extend one class of biologically-inspired learning models to problems of remote sensing imagery.

  19. INSPIRE and SPIRES Log File Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Cole; /Wheaton Coll. /SLAC

    2012-08-31

    SPIRES, an aging high-energy physics publication data base, is in the process of being replaced by INSPIRE. In order to ease the transition from SPIRES to INSPIRE it is important to understand user behavior and the drivers for adoption. The goal of this project was to address some questions in regards to the presumed two-thirds of the users still using SPIRES. These questions are answered through analysis of the log files from both websites. A series of scripts were developed to collect and interpret the data contained in the log files. The common search patterns and usage comparisons are made between INSPIRE and SPIRES, and a method for detecting user frustration is presented. The analysis reveals a more even split than originally thought as well as the expected trend of user transition to INSPIRE.

  20. Biologically inspired toys using artificial muscles

    Science.gov (United States)

    Bar-Cohen, Y.

    2001-01-01

    Recent developments in electroactive polymers, so-called artificial muscles, could one day be used to make bionics possible. Meanwhile, as this technology evolves novel mechanisms are expected to emerge that are biologically inspired.

  1. Olfaction spontaneously highlights visual saliency map.

    Science.gov (United States)

    Chen, Kepu; Zhou, Bin; Chen, Shan; He, Sheng; Zhou, Wen

    2013-10-01

    Attention is intrinsic to our perceptual representations of sensory inputs. Best characterized in the visual domain, it is typically depicted as a spotlight moving over a saliency map that topographically encodes strengths of visual features and feedback modulations over the visual scene. By introducing smells to two well-established attentional paradigms, the dot-probe and the visual-search paradigms, we find that a smell reflexively directs attention to the congruent visual image and facilitates visual search of that image without the mediation of visual imagery. Furthermore, such effect is independent of, and can override, top-down bias. We thus propose that smell quality acts as an object feature whose presence enhances the perceptual saliency of that object, thereby guiding the spotlight of visual attention. Our discoveries provide robust empirical evidence for a multimodal saliency map that weighs not only visual but also olfactory inputs. PMID:23945694

  2. Representations of $asl_2$

    CERN Document Server

    Morier-Genoud, Sophie

    2008-01-01

    We study representations of the simple Lie antialgebra $asl_2$ introduced by Ovsienko. We show that representations of $asl_2$ are closely related to the famous ghost Casimir element of the universal enveloping algebra $osp(1|2)$. We prove that $asl_2$ has no non-trivial finite-dimensional representations; we define and classify some particular infinite-dimensional representations that we call weighted representations.

  3. Bio-inspired dynamic robots

    Science.gov (United States)

    Rudolph, Alan S.; Wax, Steven G.; Christodoulou, Leo

    2003-09-01

    The unique performance of biological systems across a wide spectrum of phylogenetic species has historically provided inspirations for roboticists in new designs and fabrication of new robotic platforms. Of particular interest to a number of important applications is to create dynamic robots able to adapt to a change in their world, unplanned events that are sometimes unexpected, and sometimes unstable, harsh conditions. It is likely that the exploring dynamics in biological systems will continue to provide rich solutions to attaining robots capable of more complex tasks for this purpose. This is because the long-term design process of evolution utilizes a natural selection process that responds to such changes. Recently, there have been significant advances across a number of interdisciplinary efforts that have generated new capabilities in biorobotics. Whole body dynamics that capture the force dynamics and functional stability of legged systems over rough terrain have been elucidated and applied in legged robotic systems. Exploying the force dynamics of flapping winged insect flight has provided key discoveries and enabled the fabrication of new micro air vehicles. New classes of materials are being developed that emulate the ability of natural muscle, capturing the compliant and soft subtle movement and performance of biological appendages. In addition, classes of new multifunctional materials are being developed to enable the design of biorobotics with the structural and functional efficiency of living organisms. Optical flow and other sensors based on the principles of invertebrate vision have been implemented on robotic platforms for autonomous robotic guidance and control. These fundamental advances have resulted in the emergence of a new generation of bioinspired dynamic robots which show significant performance improvements in early prototype testing and that could someday be useful in a number of significant applications such as search and rescue and entertainment.

  4. Autonomous UAV persistent surveillance using bio-inspired strategies

    Science.gov (United States)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Isaacs, Jason; Venkateswaran, Sriram; Pham, Tien

    2012-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara, the Army Research Laboratory, the Engineer Research and Development Center, and IBM UK is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bioinspired techniques for autonomous search provide a novel strategy to detect, capture and fuse data from heterogeneous sensor networks. The bio-inspired algorithm is based on chemotaxis or the motion of bacteria seeking nutrients in their environment. Field tests of a bio-inspired system that routed UAVs were conducted in June 2011 at Camp Roberts, CA. The field test results showed that such a system can autonomously detect and locate the source of terrestrial events with very high accuracy and visually verify the event. In June 2011, field tests of the system were completed and include the use of multiple autonomously controlled UAVs, detection and disambiguation of multiple acoustic events occurring in short time frames, optimal sensor placement based on local phenomenology and the use of the International Technology Alliance (ITA) Sensor Network Fabric. The system demonstrated TRL 6 performance in the field at Camp Roberts.

  5. The Effect of Information Visualization and Structure on Mobile Learning

    OpenAIRE

    Hyungsung Park

    2008-01-01

    The purpose of this study was to examine information visualization and structured learning content in a mobile learning environment. It compared learning from three different representations of content on a PDA system – traditional text (non-structured, non-visual), structured text without visuals, and structured text with visuals. Learner comprehension of the content was tested during the session. Results showed that structured text with visuals was more effective in supporting the develop...

  6. Canonical Visual Size for Real-World Objects

    OpenAIRE

    Konkle, Talia; Oliva, Aude

    2011-01-01

    Real-world objects can be viewed at a range of distances and thus can be experienced at a range of visual angles within the visual field. Given the large amount of visual size variation possible when observing objects, we examined how internal object representations represent visual size information. In a series of experiments which required observers to access existing object knowledge, we observed that real-world objects have a consistent visual size at which they are drawn, imagined, and p...

  7. Tsunami Visualizations

    Science.gov (United States)

    Bruckner, Monica

    This collection provides a wide array of visual resources and supporting material about the December 26, 2004 Indian Ocean Tsunami. Visualizations include simple animations, satellite photographs, Quicktime animations and tsunami models. The collection also contains visualizations related to other historical tsunamis and additional resources (beyond visualizations) about tsunamis. Resources can be incorporated into lectures, labs, or other activities.

  8. Self-Adaptive Image Reconstruction Inspired by Insect Compound Eye Mechanism

    OpenAIRE

    Zhang, Jiahua; Shi, Aiye; Wang, Xin; Bian, Linjie; Huang, Fengchen; Xu, Lizhong

    2012-01-01

    Inspired by the mechanism of imaging and adaptation to luminosity in insect compound eyes (ICE), we propose an ICE-based adaptive reconstruction method (ARM-ICE), which can adjust the sampling vision field of image according to the environment light intensity. The target scene can be compressive, sampled independently with multichannel through ARM-ICE. Meanwhile, ARM-ICE can regulate the visual field of sampling to control imaging according to the environment light intensity. Based on the com...

  9. Flavor A Language for Media Representation

    CERN Document Server

    Eleftheriadis, A; Eleftheriadis, Alexandros; Hong, Danny

    2003-01-01

    Flavor (Formal Language for Audio-Visual Object Representation) has been created as a language for describing coded multimedia bitstreams in a formal way so that the code for reading and writing bitstreams can be automatically generated. It is an extension of C++ and Java, in which the typing system incorporates bitstream representation semantics. This allows describing in a single place both the in-memory representation of data as well as their bitstream-level (compressed) representation. Flavor also comes with a translator that automatically generates standard C++ or Java code from the Flavor source code so that direct access to compressed multimedia information by application developers can be achieved with essentially zero programming. Flavor has gone through many enhancements and this paper fully describes the latest version of the language and the translator. The software has been made into an open source project as of Version 4.1, and the latest downloadable Flavor package is available at http://flavor...

  10. EXPRESSION-INDEPENDENT FACE RECOGNITION USING BIOLOGICALLY INSPIRED FEATURES

    Directory of Open Access Journals (Sweden)

    REZA EBRAHIMPOUR

    2011-06-01

    Full Text Available This paper presents an effective two-dimensional Expression-Independent face recognition method, based on features inspired by thehuman’s visual ventral stream. A feature set is extracted by means of a feed-forward model, which contains illumination and view invariantC2 features from all images in the dataset. Then, these C2 feature vectors which derived from a cortex-like mechanism passed to a standard Nearest Neighbor classifier. We evaluated the proposed approach on JAFEE database. The results show that this model is an efficient and high accurate face recognition algorithm that is robust to facial expressions. Experiments indicate that the proposed approach maintains high recognition rate and outperforms the other alternative methods such as PCA and 2DPCA. The improvement in performance than PCA and 2DPCA based methods is about 5% and 4.5% respectively.

  11. Propulsive performance of oscillating batoid-inspired fins

    Science.gov (United States)

    Quinn, Daniel; Rein-Weston, Daphne; Dewey, Peter; Green, Melissa; Smits, Alexander

    2009-11-01

    Thrust producing ray-like pectoral fins were actuated to drive a low friction carriage through a stationary tow tank. A DC servo motor powered a gear train that produced a traveling wave motion along the chord of the fin. The amplitude of the traveling wave increased linearly along the span from root to tip. A digital optical encoder attached to the carriage tracked the position and velocity as it was propelled through the water by the oscillating fin. Velocity profiles were acquired from trials using different planforms inspired by members of the eagle ray family, as well as an idealized elliptical fin. Traveling wave frequency and wavelength were varied to investigate the propulsive performance of different gaits. Preliminary flow visualization was also performed to describe the structure of the wakes generated by the various planform geometries and locomotory gaits.

  12. Is the auditory sensory memory sensitive to visual information?

    OpenAIRE

    Besle, Julien; Fort, Alexandra; Giard, Marie-he?le?ne

    2005-01-01

    The mismatch negativity (MMN) component of auditory event-related brain potentials can be used as a probe to study the representation of sounds in auditory sensory memory (ASM). Yet it has been shown that an auditory MMN can also be elicited by an illusory auditory deviance induced by visual changes. This suggests that some visual information may be encoded in ASM and is accessible to the auditory MMN process. It is not known, however, whether visual information affects ASM representation for...

  13. BIOCHEMISTRY: A Postgenomic Visual Icon

    Science.gov (United States)

    John N. Weinstein (M. D. Anderson Cancer Center; Department of Bioinformatics and Computational Biology)

    2008-03-28

    Access to the article is free, however registration and sign-in are required. A decade of experience in visualizing large-scale genotypic and phenotypic data as graphical representations called "clustered heat maps" has illuminated the strengths and limitations of the approach.

  14. A Visual Information Retrieval Tool.

    Science.gov (United States)

    Zhang, Jin

    2000-01-01

    Discussion of visualization for information retrieval, that transforms unseen internal semantic representation of a document collection into visible geometric displays, focuses on DARE (Distance Angle Retrieval Environment). Highlights include expression of information need; interpretation and manipulation of information retrieval models; ranking…

  15. The DynAlloy Visualizer

    OpenAIRE

    Bendersky, Pablo; Galeotti, Juan Pablo; Garbervetsky, Diego

    2014-01-01

    We present an extension to the DynAlloy tool to navigate DynAlloy counterexamples: the DynAlloy Visualizer. The user interface mimics the functionality of a programming language debugger. Without this tool, a DynAlloy user is forced to deal with the internals of the Alloy intermediate representation in order to debug a flaw in her model.

  16. Bio-inspired Approach for the Recognition of Goal-Directed Hand Actions

    Science.gov (United States)

    Fleischer, Falk; Casile, Antonino; Giese, Martin A.

    The recognition of transitive, goal-directed actions requires a sensible balance between the representation of specific shape details of effector and goal object and robustness with respect to image transformations. We present a biologically-inspired architecture for the recognition of transitive actions from video sequences that integrates an appearance-based recognition approach with a simple neural mechanism for the representation of the effector-object relationship. A large degree of position invariance is obtained by nonlinear pooling in combination with an explicit representation of the relative positions of object and effector using neural population codes. The approach was tested on real videos, demonstrating successful invariant recognition of grip types on unsegmented video sequences. In addition, the algorithm reproduces and predicts the behavior of action-selective neurons in parietal and prefrontal cortex.

  17. Analysis of Multimodal Signals Using Redundant Representations [Winner of IBM Student Paper Award

    OpenAIRE

    Monaci, G.; Divorra Escoda, O.; Vandergheynst, P.

    2005-01-01

    In this work we explore the potentialities of a framework for the representation of audio-visual signals using decompositions on overcomplete dictionaries. Redundant decompositions may describe audio-visual sequences in a concise fashion, preserving good representation properties thanks to the use of redundant, well designed, dictionaries. We expect that this will help us overcome two typical problems of multimodal fusion algorithms. On one hand, classical representation techniques, like pixe...

  18. Kittens! Inspired by Kittens! Undergraduate Theorists Inspired by YouTube

    Science.gov (United States)

    Anderson, Diane Downer; Lewis, Mark; Peterson, Sarah; Griggs, Samantha; Grubb, Gina; Singer, Nicole; Fried, Simone; Krone, Elizabeth; Elko, Leigh; Narang, Jasmine

    2010-01-01

    A professor and students in an undergraduate honors research seminar were inspired to playfully link old and contemporary literacy theories to a 2.0 media artifact, the popular YouTube video Kittens! Inspired by Kittens! (KIbK) starring 6 year-old Maddie. In this article KIbK is theorized drawing on frames of school-based reading instruction,…

  19. Visualizing structures of speech expressiveness

    DEFF Research Database (Denmark)

    Herbelin, Bruno; Jensen, Karl Kristoffer

    2008-01-01

    Speech is both beautiful and informative. In this work, a conceptual study of the speech, through investigation of the tower of Babel, the archetypal phonemes, and a study of the reasons of uses of language is undertaken in order to create an artistic work investigating the nature of speech. The Babel myth speaks about distance created when aspiring to the heaven as the reason for language division. Meanwhile, Locquin states through thorough investigations that only a few phonemes are present throughout history. Our interpretation is that a system able to recognize archetypal phonemes through vowels and consonants, and which converts the speech energy into visual particles that form complex visual structures, provides us with a mean to present the expressiveness of speech into a visual mode. This system is presented in an artwork whose scenario is inspired from the reasons of language. The artwork is presented at the Re:New festival in May 2008.

  20. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen FrØlund; Nielsen, Morten

    2012-01-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active sites, etc. in biological sequences. Accurate generation of sequence logos is often compromised by sequence redundancy and low number of observations. Moreover, most methods available for sequence logo generation focus on displaying the position-specific enrichment of amino acids, discarding the equally valuable information related to amino acid depletion. Seq2logo aims at resolving these issues allowing the user to include sequence weighting to correct for data redundancy, pseudo counts to correct for low number of observations and different logotype representations each capturing different aspects related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein of interest. The output from the server is a sequence logo and a PSSM. Seq2Logo is available at http://www.cbs.dtu.dk/biotools/Seq2Logo (14 May 2012, date last accessed).

  1. Faithful representation of similarities among three-dimensional shapes in human vision.

    OpenAIRE

    Cutzu, F.; Edelman, S.

    1996-01-01

    Efficient and reliable classification of visual stimuli requires that their representations reside a low-dimensional and, therefore, computationally manageable feature space. We investigated the ability of the human visual system to derive such representations from the sensory input-a highly nontrivial task, given the million or so dimensions of the visual signal at its entry point to the cortex. In a series of experiments, subjects were presented with sets of parametrically defined shapes; t...

  2. Text Representation by a Computational Model of Reading

    OpenAIRE

    Serrano Moreno, Jose? Ignacio; Castillo Sobrino, Mari?a Dolores Del

    2006-01-01

    Abstract. Traditional document indexing methods, although useful, do not take into account some important aspects of language, such as syntax and semantics. Unlikely, semantic hyperspaces are mathematical and statistical-based techniques that do it. However, although they are an improvement on traditional methods, the output representation is still vector like. This paper proposes a computational model of text reading, called Cognitive Reading Indexing (CRIM), inspired by so...

  3. Blood Clotting Inspired Polymer Physics

    Science.gov (United States)

    Sing, Charles Edward

    The blood clotting process is one of the human body's masterpieces in targeted molecular manipulation, as it requires the activation of the clotting cascade at a specific place and a specific time. Recent research in the biological sciences have discovered that one of the protein molecules involved in the initial stages of the clotting response, von Willebrand Factor (vWF), exhibits counterintuitive and technologically useful properties that are driven in part by the physical environment in the bloodstream at the site of a wound. In this thesis, we take inspiration from initial observations of the vWF in experiments, and aim to describe the behaviors observed in this process within the context of polymer physics. By understanding these physical principles, we hope to harness nature's ability to both direct molecules in both spatial and conformational coordinates. This thesis is presented in three complementary sections. After an initial introduction describing the systems of interest, we first describe the behavior of collapsed Lennard-Jones polymers in the presence of an infinite medium. It has been shown that simple bead-spring homopolymer models describe vWF quite well in vitro. We build upon this previous work to first describe the behavior of a collapsed homopolymer in an elongational fluid flow. Through a nucleation-protrusion mechanism, scaling relationships can be developed to provide a clear picture of a first-order globule-stretch transition and its ramifications in dilute-solution rheology. The implications of this behavior and its relation to the current literature provides qualitative explanations for the physiological process of vasoconstriction. In an effort to generalize these observations, we present an entire theory on the behavior of polymer globules under influence of any local fluid flow. Finally, we investigate the internal dynamics of these globules by probing their pulling response in an analogous fashion to force spectroscopy. We elucidate the presence of both a solid-liquid dynamic globule transition and a contour-based description of internal globule friction. It is possible to incrementally add levels of details to these Lennard-Jones polymer models to more accurately represent biological molecules. In the second section of this thesis, we investigate the consequences of incorporating a Bell-model behavior into single homopolymer interactions to describe a "self-associating'' polymer. We first demonstrate how this model is, in equilibrium, essentially the same as a Lennard-Jones polymer, however we demonstrate that the polymer dynamics are indeed both drastically different and tunable. This has ramifications under the presence of dynamic loads, and we investigate single-molecule response to both shear and pulling stimuli. In the former, we find novel and tunable giant non-monotonic stretching responses. In the latter, we use our observations to develop a complete and general theory of pulling these types of molecules that has ramifications in both the study of biological polymers and in the design of soft materials with tunable mechanical response. The final section introduces concepts related to the behavior of collapsed polymers in fluid flows near surfaces. During the blood clotting process, vWF undergoes a counterintuitive adsorption process and here we begin to develop the physical fundamentals required to understand this process. After a brief introduction to the relevant hydrodynamic treatment we use in simulations, we first describe the presence of a hydrodynamic lift force and the formalism we use as we include it in the context of our theory. We reveal the presence of a non-monotonic lift force, and subsequently utilize this theoretical formalism to describe the adsorption and desorption behavior of a collapsed polymer globule near an attractive surface. We investigate the limit of large flows and highly attractive surfaces by providing a description of the conformational and hydrodynamic behavior of a polymer tethered at a surface. We finally discuss the behaviors of a polymer

  4. Continuous representations of groupoids

    OpenAIRE

    Bos, Rogier

    2006-01-01

    We introduce unitary representations of continuous groupoids on continuous fields of Hilbert spaces. We investigate some properties of these objects and discuss some of the standard constructions from representation theory in this particular context. An important r\\^{ole} is played by the regular representation. We conclude by discussing some operator algebra associated to continuous representations of groupoids; in particular, we analyse the relationship of continuous repre...

  5. Learning Deep Face Representation

    OpenAIRE

    Fan, Haoqiang; Cao, Zhimin; Jiang, Yuning; Yin, Qi; Doudou, Chinchilla

    2014-01-01

    Face representation is a crucial step of face recognition systems. An optimal face representation should be discriminative, robust, compact, and very easy-to-implement. While numerous hand-crafted and learning-based representations have been proposed, considerable room for improvement is still present. In this paper, we present a very easy-to-implement deep learning framework for face representation. Our method bases on a new structure of deep network (called Pyramid CNN). T...

  6. Biologically Inspired Micro-Flight Research

    Science.gov (United States)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  7. Wetland Visualizations

    Science.gov (United States)

    Compiled by Suzanne Savanick at SERC. Find wetland images and visualizations that illustrate wetland loss or wetland function. Browse the complete set of Visualization Collections. National Estuary Program Habitat ...

  8. Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins.

    Science.gov (United States)

    Yu, Cunjiang; Li, Yuhang; Zhang, Xun; Huang, Xian; Malyarchuk, Viktor; Wang, Shuodao; Shi, Yan; Gao, Li; Su, Yewang; Zhang, Yihui; Xu, Hangxun; Hanlon, Roger T; Huang, Yonggang; Rogers, John A

    2014-09-01

    Octopus, squid, cuttlefish, and other cephalopods exhibit exceptional capabilities for visually adapting to or differentiating from the coloration and texture of their surroundings, for the purpose of concealment, communication, predation, and reproduction. Long-standing interest in and emerging understanding of the underlying ultrastructure, physiological control, and photonic interactions has recently led to efforts in the construction of artificial systems that have key attributes found in the skins of these organisms. Despite several promising options in active materials for mimicking biological color tuning, existing routes to integrated systems do not include critical capabilities in distributed sensing and actuation. Research described here represents progress in this direction, demonstrated through the construction, experimental study, and computational modeling of materials, device elements, and integration schemes for cephalopod-inspired flexible sheets that can autonomously sense and adapt to the coloration of their surroundings. These systems combine high-performance, multiplexed arrays of actuators and photodetectors in laminated, multilayer configurations on flexible substrates, with overlaid arrangements of pixelated, color-changing elements. The concepts provide realistic routes to thin sheets that can be conformally wrapped onto solid objects to modulate their visual appearance, with potential relevance to consumer, industrial, and military applications. PMID:25136094

  9. Detection of Symbolic Gestural Events in Articulatory Data for Use in Structural Representations of Continuous Speech

    OpenAIRE

    Gutkin, Alexander; King, Simon

    2005-01-01

    One of the crucial issues which often needs to be addressed in structural approaches to speech representation is the choice of fundamental symbolic units of representation. In this paper, a physiologically inspired methodology for defining these symbolic atomic units in terms of primitive articulatory events is proposed. It is shown how the atomic articulatory events (gestures) can be detected directly in the articulatory data. An algorithm for evaluating the reliability of the articulatory e...

  10. Data visualization

    CERN Document Server

    Azzam, Tarek

    2013-01-01

    Do you communicate data and information to stakeholders? In Part 1, we introduce recent developments in the quantitative and qualitative data visualization field and provide a historical perspective on data visualization, its potential role in evaluation practice, and future directions. Part 2 delivers concrete suggestions for optimally using data visualization in evaluation, as well as suggestions for best practices in data visualization design. It focuses on specific quantitative and qualitative data visualization approaches that include data dashboards, graphic recording, and geographic information systems (GIS). Readers will get a step-by-step process for designing an effective data dashboard system for programs and organizations, and various suggestions to improve their utility.

  11. Visualization in Medieval Alchemy

    Directory of Open Access Journals (Sweden)

    Barbara Obrist

    2003-10-01

    Full Text Available This paper explores major trends in visualization of medieval theories of natural and artificial transformation of substances in relation to their philosophical and theological bases. The function of pictorial forms is analyzed in terms of the prevailing conceptions of science and methods of transmitting knowledge. The documents under examination date from the thirteenth to the fifteenth century. In these, pictorial representations include lists and tables, geometrical figures, depictions of furnaces and apparatus, and figurative elements mainly from the vegetable and animal realms. An effort is made to trace the earliest evidence of these differing pictorial types.

  12. Visual imagery without visual perception?

    OpenAIRE

    Helder Bértolo

    2005-01-01

    The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review some of the works providing evidence for both claims. It seems that studying visual imagery in blind subjects can be us...

  13. How visual is visual culture

    OpenAIRE

    Sonesson, Go?ran

    2007-01-01

    If we admit that, with the exception of language, human perception is predominantly visual, it is reasonable to think that all phenomena conveyed by the visual senses have something in common, but then visual semiotics/visual culture will comprehend much more than painting, sculpture, and architecture. The double coding hypotheses of cognitive psychology, as well as Lessing’s classical opposition between language and painting, tell us something about this basic opposition. But to understand...

  14. Visualization of Uncertainty

    Science.gov (United States)

    Jones, P. W.; Strelitz, R. A.

    2012-12-01

    The output of a simulation is best comprehended through the agency and methods of visualization, but a vital component of good science is knowledge of uncertainty. While great strides have been made in the quantification of uncertainty, especially in simulation, there is still a notable gap: there is no widely accepted means of simultaneously viewing the data and the associated uncertainty in one pane. Visualization saturates the screen, using the full range of color, shadow, opacity and tricks of perspective to display even a single variable. There is no room in the visualization expert's repertoire left for uncertainty. We present a method of visualizing uncertainty without sacrificing the clarity and power of the underlying visualization that works as well in 3-D and time-varying visualizations as it does in 2-D. At its heart, it relies on a principal tenet of continuum mechanics, replacing the notion of value at a point with a more diffuse notion of density as a measure of content in a region. First, the uncertainties calculated or tabulated at each point are transformed into a piecewise continuous field of uncertainty density . We next compute a weighted Voronoi tessellation of a user specified N convex polygonal/polyhedral cells such that each cell contains the same amount of uncertainty as defined by . The problem thus devolves into minimizing . Computation of such a spatial decomposition is O(N*N ), and can be computed iteratively making it possible to update easily over time as well as faster. The polygonal mesh does not interfere with the visualization of the data and can be easily toggled on or off. In this representation, a small cell implies a great concentration of uncertainty, and conversely. The content weighted polygons are identical to the cartogram familiar to the information visualization community in the depiction of things voting results per stat. Furthermore, one can dispense with the mesh or edges entirely to be replaced by symbols or glyphs at the generating points (effectively the center of the polygon). This methodology readily admits to rigorous statistical analysis using standard components found in R and thus entirely compatible with the visualization package we use (Visit and/or ParaView), the language we use (Python) and the UVCDAT environment that provides the programmer and analyst workbench. We will demonstrate the power and effectiveness of this methodology in climate studies. We will further argue that our method of defining (or predicting) values in a region has many advantages over the traditional visualization notion of value at a point.

  15. Visual Imagery without Visual Perception?

    Science.gov (United States)

    Bertolo, Helder

    2005-01-01

    The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review…

  16. Visual Language in Visual Communication

    OpenAIRE

    Jia Wang

    2009-01-01

    In visual communication the design information is mainly communicated by visual language, the correct use of which is the standard of evaluation of a graphic design composition. Therefore it is necessary to understand and percept visual language properly. It will be helpful for viewers to percept the desired information from the designer as well as the significance within the work.

  17. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    OpenAIRE

    Anton Civit-Balcells; Rafael Paz-Vicente; Dominguez-morales, Manuel J.; Alejandro Linares-Barranco; Gabriel Jimenez-Moreno; Angel Jimenez-Fernandez

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and s...

  18. Pop Art--Inspired Self-Portraits

    Science.gov (United States)

    Goodwin, Donna J.

    2011-01-01

    In this article, the author describes an art lesson that was inspired by Andy Warhol's mass-produced portraits. Warhol began his career as a graphic artist and illustrator. His artwork was a response to the redundancy of the advertising images put in front of the American public. Celebrities and famous people in magazines and newspapers were seen…

  19. Astrophysical constrains on Ungravity inspired models

    CERN Document Server

    Bertolami, O; Santos, P

    2009-01-01

    We use stellar dynamics arguments to constrain the relevant parameters of ungravity inspired models. We show that resulting bounds do constrain the parameters of the theory of unparticles, as far as its energy scale is higher than $\\Lambda_U > 1 TeV$ and $d_U$ is close to unity.

  20. Great Quotes To Inspire Great Teachers.

    Science.gov (United States)

    benShea, Noah

    This book provides a collection of quotes designed to offer support and inspiration to teachers as they face the daily emotional, spiritual, intellectual, and physical challenges of their professional and personal lives. The book's 26 sections focus on: the art of teaching; adversity; behavior; character; children; collaboration and teamwork;…

  1. Inspired by Athletes, Myths, and Poets

    Science.gov (United States)

    Melvin, Samantha

    2010-01-01

    Tales of love and hate, of athleticism, heroism, devotion to gods and goddesses that influenced myth and culture are a way of sharing ancient Greece's rich history. In this article, the author describes how her students created their own Greek-inspired clay vessels as artifacts of their study. (Contains 6 online resources.)

  2. Water Treatment Technologies Inspire Healthy Beverages

    Science.gov (United States)

    2013-01-01

    Mike Johnson, a former technician at Johnson Space Center, drew on his expertise as a wastewater engineer to create a line of kombucha-based probiotic drinks. Unpeeled Inc., based in Minneapolis-St. Paul, Minnesota, employs 12 people and has sold more than 6 million units of its NASA-inspired beverage.

  3. The Role of the Human Extrastriate Visual Cortex in Mirror Symmetry Discrimination: A TMS-Adaptation Study

    Science.gov (United States)

    Cattaneo, Zaira; Mattavelli, Giulia; Papagno, Costanza; Herbert, Andrew; Silvanto, Juha

    2011-01-01

    The human visual system is able to efficiently extract symmetry information from the visual environment. Prior neuroimaging evidence has revealed symmetry-preferring neuronal representations in the dorsolateral extrastriate visual cortex; the objective of the present study was to investigate the necessity of these representations in symmetry…

  4. Visual Analysis of Weblog Content

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Michelle L.; Payne, Deborah A.; McColgin, Dave; Cramer, Nick O.; Love, Douglas V.

    2007-03-26

    In recent years, one of the advances of the World Wide Web is social media and one of the fastest growing aspects of social media is the blogosphere. Blogs make content creation easy and are highly accessible through web pages and syndication. With their growing influence, a need has arisen to be able to monitor the opinions and insight revealed within their content. In this paper we describe a technical approach for analyzing the content of blog data using a visual analytic tool, IN-SPIRE, developed by Pacific Northwest National Laboratory. We highlight the capabilities of this tool that are particularly useful for information gathering from blog data.

  5. Solar Image Analysis and Visualization

    CERN Document Server

    Ireland, J

    2009-01-01

    This volume presents a selection of papers on the state of the art of image enhancement, automated feature detection, machine learning, and visualization tools in support of solar physics that focus on the challenges presented by new ground-based and space-based instrumentation. The articles and topics were inspired by the Third Solar Image Processing Workshop, held at Trinity College Dublin, Ireland but contributions from other experts have been included as well. This book is mainly aimed at researchers and graduate students working on image processing and compter vision in astronomy and solar physics.

  6. Inspiring Professor Retires at Age 104

    Science.gov (United States)

    This week, tiny Messiah College in central Pennsylvania honored one of their own, Dr. Ray Crist. What is perhaps most interesting about Dr. Crist's situation is that he is 104 years old, and was graduated from Messiah College in 1916, and began his teaching career at Messiah 34 years ago at the age of 70. Crist came to teach at Messiah after a long career in science including stints at both the Manhattan Project and for Union Carbide. Crist's research has included work on the effects of automobile exhaust on deer and of toxic metals on trout, and even in his retirement, he has said he does not plan to stop his research. Two years ago, Crist received the accolade of America's Oldest Worker from Experience Works, which is a nonprofit training and employment service. Of course, Crist is part of a broader trend within the United States over the past few decades that has seen older Americans maintain high levels of intellectual productivity (particularly with increased longevity nationwide), a fact that is often overlooked by more banal representations of older persons on various media programs and a general adoration of youth culture.The first link (anonymous registration required) will take visitors to a recent news article about a celebration held for Dr. Crist at Messiah College. The second link will lead visitors to a news release issued by the Experience Works group from 2002 that talks about Dr. Crist's achievements. The third link leads to the Living Century video clip page (developed in conjunction with the popular PBS series) where visitors can watch and listen to a clip of Dr. Crist. The fourth link will take visitors to the homepage of the well-known Okinawa Centenarian Study, which involves research on the residents of Okinawa, who collectively have one of the lowest mortality rates in the world. The fifth page leads to an important document on key indicators of well-being for older persons developed by the Federal Interagency Forum on Aging Related Statistics. The final link leads to the homepage of the Georgia O'Keeffe Museum, one of Wisconsin's most celebrated daughters, and a woman who kept on creating visually stimulating art that is recognized around the world, and did so well into her 90s.

  7. A Novel Quantum Inspired Cuckoo Search Algorithm for Bin Packing Problem

    OpenAIRE

    Abdesslem Layeb; Seriel Rayene Boussalia

    2012-01-01

    The Bin Packing Problem (BPP) is one of the most known combinatorial optimization problems. This problem consists to pack a set of items into a minimum number of bins. There are several variants of this problem; the most basic problem is the one-dimensional bin packing problem (1-BPP). In this paper, we present a new approach based on the quantum inspired cuckoo search algorithm to deal with the 1-BPP problem. The contribution consists in defining an appropriate quantum representation based o...

  8. The Importance of Visual Features in Generic versus Specialized Object Recognition: A Computational Study

    Directory of Open Access Journals (Sweden)

    Reza Ebrahimpour

    2014-08-01

    Full Text Available It is debated whether the representation of objects in inferior temporal (IT cortex is distributed over activities of many neurons or there are restricted islands of neurons responsive to a specific set of objects. There are lines of evidence demonstrating that fusiform face area (FFA-in human processes information related to specialized object recognition (here we say within category object recognition such as face identification. Physiological studies have also discovered several patches in monkey ventral temporal lobe that are responsible for facial processing. Neuronal recording from these patches shows that neurons are highly selective for face images whereas for other objects we do not see such selectivity in IT. However, it is also well-supported that objects are encoded through distributed patterns of neural activities that are distinctive for each object category. It seems that visual cortex utilize different mechanisms for between category object recognition (e.g. face vs. non-face objects versus within category object recognition (e.g. two different faces. In this study, we address this question with computational simulations. We use two biologically inspired object recognition models (one proposed in our group and define two experiments which address these issues. The models have a hierarchical structure of several processing layers that simply simulate visual processing from V1 to aIT. We show, through computational modeling, that the difference between these two mechanisms of recognition can underlie the visual feature and extraction mechanism. It is argued that in order to perform generic and specialized object recognition, visual cortex must separate the mechanisms involved in within category from between categories object recognition. High recognition performance in within category object recognition can be guaranteed when class-specific features with intermediate size and complexity are extracted. However, generic object recognition requires

  9. Notes on the History and Development of Visual Research Methods

    OpenAIRE

    Schnettler, Bernt

    2013-01-01

    Visual research has been gaining in importance in recent years. This can be seen most clearly in those methods that rely on various forms of visual representation and using photographs, films, or videos as main sources of data. While opening the door to a deeper understanding and interpretation of social realities, visual analysis continues to deliver methodological challenge to the social sciences. This article sheds light on the development of visual analysis and focuses on its relevance fo...

  10. Mapping the recent past: Visualization of online news archives

    OpenAIRE

    Li, Xin

    2007-01-01

    This thesis is about studying online news archives through design and visual representation. For the design work, I have chosen to focus on a case study: the archives of BBC online news. Two experiments were carried out: a quantitative data visualization of news coverage by country, and a set of visualizations of the textual contents of the news articles. This thesis is an exploration of the subject of information visualization from a graphic designer’s point of view. The field of infor...

  11. Educations of Vision - relational strategies in visual culture

    DEFF Research Database (Denmark)

    Illeris, Helene

    2004-01-01

    The article is divided into three parts. Through examples from twentieth century Scandinavian visual arts education the first part ?Epistemological inquiries? discusses how the historical and social construction of dominant modern strategies of vision has occurred. The second part ?Experimentalist redescriptions? employs poststructuralist and feminist thinking about visual culture in an attempt to explore alternative understandings of visual education. In the final part ?Educations of vision in late modernity? socialization and self creation are proposed as two different, but supplementary, educational functions which contemporary visual education inspired by epistemological and experimentalist approaches should aim to fulfill.

  12. Acoustic visualizations using surface mapping.

    Science.gov (United States)

    Siltanen, Samuel; Robinson, Philip W; Saarelma, Jukka; Pätynen, Jukka; Tervo, Sakari; Savioja, Lauri; Lokki, Tapio

    2014-06-01

    Sound visualizations have been an integral part of room acoustics studies for more than a century. As acoustic measurement techniques and knowledge of hearing evolve, acousticians need more intuitive ways to represent increasingly complex data. Microphone array processing now allows accurate measurement of spatio-temporal acoustic properties. However, the multidimensional data can be a challenge to display coherently. This letter details a method of mapping visual representations of acoustic reflections from a receiver position to the surfaces from which the reflections originated. The resulting animations are presented as a spatial acoustic analysis tool. PMID:24907844

  13. Representation of human faces

    OpenAIRE

    Vetter, Thomas; Troje, Nikolaus F.

    1996-01-01

    Several models for parameterized face representations have been proposed in the last years. A simple coding scheme treats the image of a face as a long vector with each entry coding for the intensity of one single pixel in the image. (e.g. Sirovich & Kirby 1987). Although simple and straitforward, such pixel-based representations have several disadvantages. We propose a representation for images of faces that separates texture and 2D shape by exploiting pixel-by-pixel correspondence between t...

  14. A Novel Quantum Inspired Cuckoo Search Algorithm for Bin Packing Problem

    Directory of Open Access Journals (Sweden)

    Abdesslem Layeb

    2012-05-01

    Full Text Available The Bin Packing Problem (BPP is one of the most known combinatorial optimization problems. This problem consists to pack a set of items into a minimum number of bins. There are several variants of this problem; the most basic problem is the one-dimensional bin packing problem (1-BPP. In this paper, we present a new approach based on the quantum inspired cuckoo search algorithm to deal with the 1-BPP problem. The contribution consists in defining an appropriate quantum representation based on qubit representation to represent bin packing solutions. The second contribution is proposition of a new hybrid quantum measure operation which uses first fit heuristic to pack no filled objects by the standard measure operation. The obtained results are very encouraging and show the feasibility and effectiveness of the proposed approach.

  15. Generalized Kernel-based Visual Tracking

    OpenAIRE

    Shen, Chunhua; Kim, Junae; Wang, Hanzi

    2009-01-01

    In this work we generalize the plain MS trackers and attempt to overcome standard mean shift trackers' two limitations. It is well known that modeling and maintaining a representation of a target object is an important component of a successful visual tracker. However, little work has been done on building a robust template model for kernel-based MS tracking. In contrast to building a template from a single frame, we train a robust object representation model from a larg...

  16. Visual Instance Retrieval with Deep Convolutional Networks

    OpenAIRE

    Razavian, Ali Sharif; Sullivan, Josephine; Maki, Atsuto; Carlsson, Stefan

    2014-01-01

    This paper presents a system for visual instance retrieval exploiting image representations based on convolutional networks (ConvNets), and demonstrates that ConvNet representations outperform other state-of-the-art holistic features on all six standard image retrieval datasets for the first time. Unlike existing design choices, our pipeline does not require retraining of the network either. Furthermore, as the next challenge the paper introduces the notion of tiny footprint...

  17. The Making of Sami Ethnography: Contested Authorities and Negotiated Representations

    Directory of Open Access Journals (Sweden)

    Kristin Kuutma

    2008-09-01

    Full Text Available This contribution analyzes the interplay of ethnographic and poetic agendas, the negotiation of synergetic or conflicting objectives in the production and editing of a seminal representation of the Sámi, Muitalus sámiid birra. My main focus is on the collaborative effort of the publication process, to investigate the emergence and negotiation of representational authority, of cultural poetics, of social and cultural critique, in order to defy the preconception of a passive informant of a cultural experience. The Sámi narrator Johan Turi is discussed, instead, as an active agent in providing a voice to the Sámi people in the collaborative process of ethnography writing. My approach is interdisciplinary, being inspired by different inquiries in anthropology and cultural history, while adding a subjective interpretation in discerning the production of a multifaceted ethnographic representation, both by the cultural insider and the inquisitive outsider.

  18. The Effect of Information Visualization and Structure on Mobile Learning

    Directory of Open Access Journals (Sweden)

    Hyungsung Park

    2008-04-01

    Full Text Available The purpose of this study was to examine information visualization and structured learning content in a mobile learning environment. It compared learning from three different representations of content on a PDA system – traditional text (non-structured, non-visual, structured text without visuals, and structured text with visuals. Learner comprehension of the content was tested during the session. Results showed that structured text with visuals was more effective in supporting the development of learner understanding than either structured or non-structured text. The results suggest that to overcome the limitations of learning with mobile devices, ways of structuring text and visualizing content are required.

  19. The visual language of technique

    CERN Document Server

    2015-01-01

    Volume 1 : The book is inspired by the first seminar in a cycle connected to the celebrations of the 150th anniversary of the Politecnico di Milano (May 2013). "Dealing with the Image. Ivory Towers and Virtual Bridges" was the motto of this meeting, aiming to stimulate a discussion among engineers, designers and architects, all of whom are traditionally involved in the use of the Image as a specialized language supporting their work, their research activities, and their educational tasks. The volume also includes essays and contributions of invited or interviewed authors from other disciplines, namely Philosophy, Mathematics and Semiotics, together with articles from the poster session and a report from the round table. According to Regis Debray, in the present "Visual Age", which he has significantly defined as a "Video-Sphere", all the information tends to be processed and controlled by means of visual devices. This occurs especially in the various branches of many technical studies and activities, one of ...

  20. High-Speed Visual Imaging

    Science.gov (United States)

    High-Speed Visual Imaging (HiViz) provides "information and inspiration especially for students, teachers and hobbyists." Their goal is to dispel common misconceptions about high-speed photography, in particular that it is only for experts and requires specialized and expensive equipment. They provide tools for setting up and using a high-speed imaging system, numerous activities for teachers and an FAQ section that addresses questions about cameras, flash units, and timing systems. The Galleries section, which include portfolios of exemplary student work, and the Projects section provide a glimpse into what is possible using in high-speed visual imaging. They have also sell kits for students, teachers and hobbyists interested in starting their own project and provide links to relate websites for more information on related resources.

  1. L’iconographie de l’Indien dans le cinéma américain : de la manipulation de l’image à sa reconquête The Visual Representation of the Indian in American Cinema: from the Manipulation of Image to its Conquest

    Directory of Open Access Journals (Sweden)

    Anne Garrait-Bourrier

    2009-10-01

    Full Text Available The Native American ethnic group has always been used and abused, not to say manipulated, by the medium of cinema. Such an exploitation of the image of the Indian responded to the demands of a new form of artistic expression which was extremely graphic and violent, as were graphic and visually violent the first western movies. As an artistic genre, cinema really manipulated the classical stereotypes related to the Indian in order to use him as a « character » detached from any historical reality. It is not surprising though to see that the evolution over time of this widely exploited « character » can be equated to a long wandering from exaggeration to understatement, to eventually reach the political expression of the Indians themselves. All this turmoil and agitation did correspond to the modus operandi of the Hollywoodian « system ».

  2. Software Project Visualization Using Task Oriented Metaphors

    OpenAIRE

    José Javier Dolado Cosín; Concepción Presedo; Amaia Aguirregoitia

    2010-01-01

    This paper presents T-Cube and MetroMap, two new graphical representation models for controlling and managing the processes of software project development. They both use metaphors and visual representation techniques to address typical project management tasks. T-Cube uses a metaphor with the Rubik-Cube whereas MetroMap uses a metaphor with a metro map. The tools have been tested on real project data and a qualitative assessment shows the results of testing the visualizations with users atte...

  3. Neurobiologically Inspired Control of Engineered Flapping Flight

    CERN Document Server

    Chung, Soon-Jo; Stoner, Jeremiah R

    2009-01-01

    This article presents a new control approach and dynamic model for engineered flapping flight with many interacting degrees of freedom. This paper explores the applications of neurobiologically inspired control systems in the form of Central Pattern Generators (CPG) to control flapping flight dynamics. A rigorous mathematical and control theoretic framework to design complex three dimensional wing motions is presented based on phase synchronization and Hopf bifurcation. In particular, we show that tailless aircraft alternating between flapping and gliding can be effectively stabilized by smooth wing motions driven by the CPG network. Furthermore, a novel robotic testbed has been developed to emulate the flight of bats. This model has shoulder and leg joints totaling ten control variables of wing properties. Results of wind tunnel experiments and numerical simulation of CPG-based flight control validate the effectiveness of the proposed neurobiologically inspired control approach.

  4. Radiation-balanced simulations for binary inspiral

    CERN Document Server

    Whelan, J T; Landry, W; Price, R H; Whelan, John T; Beetle, Christopher; Landry, Walter; Price, Richard H

    2002-01-01

    The late stage of the inspiral of two black holes may have important non-Newtonian effects that are unrelated to radiation reaction. To understand these effects we approximate a slowly inspiralling binary by a stationary solution to Einstein's equations in which the holes orbit eternally. Radiation reaction is nullified by specifying a boundary condition at infinity containing equal amounts of ingoing and outgoing radiation. The computational problem is then converted from an evolution problem with initial data to a boundary value problem. In addition to providing an approximate inspiral waveform via extraction of the outgoing modes, our approximation can give alternative initial data for numerical relativity evolution. We report results on simplified models and on progress in building 3D numerical solutions.

  5. Wyss Institute for Biologically Inspired Engineering

    Science.gov (United States)

    2012-07-06

    The Wyss Institute for Biologically Inspired Engineering was created "to develop biologically inspired materials and devices that will solve critical medical and environmental problems and to translate these transformative technologies into products that have an impact on society and the world." The Institute's team of specialists includes technology development fellows, professors, postdocs, and a range of other partners. On the homepage, visitors can browse areas that include Innovation, Translation, and Collaboration. Each area includes multimedia clips, press releases, and interviews with Wyss researchers. Some compelling discoveries include human organs made on a small chip and a novel coating that repels almost every type of liquid and solid. Additionally, the Library section contains interactive features, along with speeches and essays from the Wyss faculty. Visitors are encouraged to sign up for the Wyss Twitter and RSS feeds.

  6. Biologically inspired water purification through selective transport

    International Nuclear Information System (INIS)

    Biologically inspired systems based on cellular mechanics demonstrate the ability to selectively transport ions across a bilayer membrane. These systems may be observed in nature in plant roots, which remove select nutrients from the surrounding soil against significant concentration gradients. Using biomimetic principles in the design of tailored active materials allows for the development of selective membranes for capturing and filtering targeted ions. Combining this biomimetic transport system with a method for reclaiming the captured ions will allow for increased removal potential. To illustrate this concept, a device for removing nutrients from waterways to aid in reducing eutrophication is outlined and discussed. Presented is a feasibility study of various cellular configurations designed for this purpose, focusing on maximizing nutrient uptake. The results enable a better understanding of the benefits and obstacles when developing these cellularly inspired systems. (paper)

  7. Neurobiologically Inspired Control of Engineered Flapping Flight

    OpenAIRE

    Chung, Soon-jo; Dorothy, Michael

    2009-01-01

    This article presents a new control approach and a dynamic model for engineered flapping flight with many interacting degrees of freedom. This paper explores the applications of neurobiologically inspired control systems in the form of Central Pattern Generators (CPG) to control flapping flight dynamics. A rigorous mathematical and control theoretic framework to design complex three dimensional wing motions is presented based on phase synchronization of nonlinear oscillators...

  8. Vibration driven vehicle inspired from grass spike

    OpenAIRE

    Bai, Suo; Xu, Qi; Qin, Yong

    2013-01-01

    Searching and detecting in some harsh environments such as collapsed buildings, pipes, small cracks are crucial for human rescue and industrial detection, military surveillance etc. However, the drawbacks of traditional moving modes of current vehicles make them difficult to perform such tasks. So developing some new vehicles is urgent. Here, we report a Setaria viridis spike's interesting behavior on a vibrating track, and inspired by that phenomena we develop a concept for cargo delivery, a...

  9. Sea-cucumber skin inspires new material

    Science.gov (United States)

    American Association for the Advancement of Science (AAAS; )

    2008-03-06

    Scientists have long been amazed by the skin of a sea cucumber, which can switch from stiff to floppy, or vice versa, in mere seconds in order to help the animal defend itself against predators. Inspired by this quick-change act, researchers have developed a new material that can also switch between rigid and flexible states. They hope that this material, or one like it, might someday be used as part of medical devices that are implanted inside the body.

  10. Autobiography: Inspiring new visions of teacher learning

    OpenAIRE

    Irene Simon

    2006-01-01

    Abstract: The purpose of this article is to broaden the tradition of autobiography by using it as a way in which teachers can identify sources of inspiration in their educational experience. In the process, my aim is to make explicit the links between autobiography, learning and meta learning. Extending autobiographical inquiry to include different levels at which learning takes place serves to highlight the importance not only of the individual context of learning (the private self), but als...

  11. Liquid crystal assemblies in biologically inspired systems

    OpenAIRE

    Safinya, Cyrus R.; Deek, Joanna; Beck, Roy; Jones, Jayna B.; Leal, Cecilia; Ewert, Kai K.; Li, Youli

    2013-01-01

    In this paper, which is part of a collection in honor of Noel Clark's remarkable career on liquid crystal and soft matter research, we present examples of biologically inspired systems, which form liquid crystal (LC) phases with their LC nature impacting biological function in cells or being important in biomedical applications. One area focuses on understanding network and bundle formation of cytoskeletal polyampholytes (filamentous-actin, microtubules, and neurofilaments). Here, we describe...

  12. Wormhole inspired by non-commutative geometry

    OpenAIRE

    Rahaman, Farook; Karmakar, Sreya; Karar, Indrani; Ray, Saibal

    2014-01-01

    In the present work we search for a new wormhole solution inspired by noncommutative geometry with the additional condition of allowing conformal Killing vectors (CKV). A special aspect of noncommutative geometry is that it replaces point-like structures of gravitational sources with smeared objects under Gaussian distribution. However, the purpose of this paper is to obtain wormhole solutions with noncommutative geometry as a background where we consider a point-like struct...

  13. String and string-inspired phenomenology

    OpenAIRE

    Lopez, J.

    1994-01-01

    In these lectures I review the progress made over the last few years in the subject of string and string-inspired phenomenology. I take a practical approach, thereby concentrating more on explicit examples rather than on formal developments. Topics covered include: introduction to string theory, the free-fermionic formulation and its general features, generic conformal field theory properties, $SU(5)\\times U(1)$ GUT and string model-building, supersymmetry breaking, the bott...

  14. CREATING UNIQUE PATTERN DESIGNS : WITH CULTURAL INSPIRATION

    OpenAIRE

    Khalili, Kania

    2014-01-01

    The topic of the present thesis is about creating unique pattern designs. The idea was to present the final pattern designs on kitchen-ware textiles. The patterns are designed with inspiration from Japan, for instance Japanese cultural elements, nature and symbols. The thesis consisted of the following stages; theory, design experimentation, quantitative research, final product samples and discussion. Before the design process, theoretical knowledge of textile design was gained, and pat...

  15. Visual servoing and visual tracking

    OpenAIRE

    Chaumette, Franc?ois; Hutchinson, Seth

    2008-01-01

    This chapter introduces visual servo control, using computer vision data in the servo loop to control the motion of a robot. We first describe the basic tech- niques that are by now well established in the field. We give a general overview of the formulation of the visual servo control problem, and describe the two archetypal visual servo control schemes: image-based and position-based visual servo control. We then dis- cuss performance and stability issues that pertain to these two schemes, ...

  16. Representing visual recursion does not require verbal or motor resources.

    Science.gov (United States)

    Martins, Maurício de Jesus Dias; Murši?, Zarja; Oh, Jinook; Fitch, W Tecumseh

    2015-03-01

    The ability to form and use recursive representations while processing hierarchical structures has been hypothesized to rely on language abilities. If so, linguistic resources should inevitably be activated while representing recursion in non-linguistic domains. In this study we use a dual-task paradigm to assess whether verbal resources are required to perform a visual recursion task. We tested participants across 4 conditions: (1) Visual recursion only, (2) Visual recursion with motor interference (sequential finger tapping), (3) Visual recursion with verbal interference - low load, and (4) Visual recursion with verbal interference - high load. Our results show that the ability to acquire and use visual recursive representations is not affected by the presence of verbal and motor interference tasks. Our finding that visual recursion can be represented without access to verbal resources suggests that recursion is available independently of language processing abilities. PMID:25743443

  17. Verifying Visual Properties in Sentence Verification Facilitates Picture Recognition Memory

    OpenAIRE

    Pecher, D.; Zanolie, K.; Zeelenberg, R.

    2008-01-01

    According to the perceptual symbols theory (Barsalou, 1999), sensorimotor simulations underlie the representation of concepts. We investigated whether recognition memory for pictures of concepts was facilitated by earlier representation of visual properties of those concepts. During study, concept names (e.g., apple) were presented in a property verification task with a visual property (e.g., shiny) or with a nonvisual property (e.g., tart). Delayed picture recognition memory was bet...

  18. Invariant visual object recognition: a model, with lighting invariance.

    OpenAIRE

    Rolls, Et; Stringer, Sm

    2006-01-01

    How are invariant representations of objects formed in the visual cortex? We describe a neurophysiological and computational approach which focusses on a feature hierarchy model in which invariant representations can be built by self-organizing learning based on the statistics of the visual input. The model can use temporal continuity in an associative synaptic learning rule with a short term memory trace, and/or it can use spatial continuity in Continuous Transformation learning. The model o...

  19. Biologically inspired coupled antenna beampattern design

    International Nuclear Information System (INIS)

    We propose to design a small-size transmission-coupled antenna array, and corresponding radiation pattern, having high performance inspired by the female Ormia ochracea's coupled ears. For reproduction purposes, the female Ormia is able to locate male crickets' call accurately despite the small distance between its ears compared with the incoming wavelength. This phenomenon has been explained by the mechanical coupling between the Ormia's ears, which has been modeled by a pair of differential equations. In this paper, we first solve these differential equations governing the Ormia ochracea's ear response, and convert the response to the pre-specified radio frequencies. We then apply the converted response of the biological coupling in the array factor of a uniform linear array composed of finite-length dipole antennas, and also include the undesired electromagnetic coupling due to the proximity of the elements. Moreover, we propose an algorithm to optimally choose the biologically inspired coupling for maximum array performance. In our numerical examples, we compute the radiation intensity of the designed system for binomial and uniform ordinary end-fire arrays, and demonstrate the improvement in the half-power beamwidth, sidelobe suppression and directivity of the radiation pattern due to the biologically inspired coupling.

  20. A toolbox for representational similarity analysis.

    Science.gov (United States)

    Nili, Hamed; Wingfield, Cai; Walther, Alexander; Su, Li; Marslen-Wilson, William; Kriegeskorte, Nikolaus

    2014-04-01

    Neuronal population codes are increasingly being investigated with multivariate pattern-information analyses. A key challenge is to use measured brain-activity patterns to test computational models of brain information processing. One approach to this problem is representational similarity analysis (RSA), which characterizes a representation in a brain or computational model by the distance matrix of the response patterns elicited by a set of stimuli. The representational distance matrix encapsulates what distinctions between stimuli are emphasized and what distinctions are de-emphasized in the representation. A model is tested by comparing the representational distance matrix it predicts to that of a measured brain region. RSA also enables us to compare representations between stages of processing within a given brain or model, between brain and behavioral data, and between individuals and species. Here, we introduce a Matlab toolbox for RSA. The toolbox supports an analysis approach that is simultaneously data- and hypothesis-driven. It is designed to help integrate a wide range of computational models into the analysis of multichannel brain-activity measurements as provided by modern functional imaging and neuronal recording techniques. Tools for visualization and inference enable the user to relate sets of models to sets of brain regions and to statistically test and compare the models using nonparametric inference methods. The toolbox supports searchlight-based RSA, to continuously map a measured brain volume in search of a neuronal population code with a specific geometry. Finally, we introduce the linear-discriminant t value as a measure of representational discriminability that bridges the gap between linear decoding analyses and RSA. In order to demonstrate the capabilities of the toolbox, we apply it to both simulated and real fMRI data. The key functions are equally applicable to other modalities of brain-activity measurement. The toolbox is freely available to the community under an open-source license agreement (http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/license/). PMID:24743308

  1. Covariant representations of nuclear *-algebras

    International Nuclear Information System (INIS)

    Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations

  2. External Representations in the Teaching and Learning of Introductory Chemistry

    Directory of Open Access Journals (Sweden)

    James R. Cox

    2011-12-01

    Full Text Available This manuscript describes the role that external representations, such as diagrams and sketches, can play in organizing and learning concepts presented in a one-semester chemistry course (general, organic and biochemistry designed for nursing students. Although external representations are typically found in chemistry textbooks and instructor-drawn notes, students are usually not taught or prompted to use various types of external representations to promote learning. Representations created by an instructor and a student are discussed to highlight effective ways to foster student participation in creating various diagrams. In addition, a student provides a perspective on the educational value of creating external representations and the roles of visual thinking and creativity in learning introductory chemistry. Although the model for this approach has been an introductory chemistry course, this approach can be widely applied across disciplines.

  3. Induced Representations and Hypergroupoids

    OpenAIRE

    Renault, Jean

    2014-01-01

    We review various notions of correspondences for locally compact groupoids with Haar systems, in particular a recent definition due to R.D. Holkar. We give the construction of the representations induced by such a correspondence. Finally, we extend the construction of induced representations to hypergroupoids.

  4. Superspecies and their representations

    OpenAIRE

    Han, Yang; Zhao, Deke

    2007-01-01

    Superspecies are introduced to provide the nice constructions of all finite-dimensional superalgebras. All acyclic superspecies, or equivalently all finite-dimensional (gr-basic) gr-hereditary superalgebras, are classified according to their graded representation types. To this end, graded equivalence, graded representation type and graded species are introduced for finite group graded algebras.

  5. Analysis of Multimodal Sequences Using Geometric Video Representations

    OpenAIRE

    Monaci, G.; Divorra Escoda, O.; Vandergheynst, P.

    2006-01-01

    This paper presents a novel method to correlate audio and visual data generated by the same physical phenomenon, based on sparse geometric representation of video sequences. The video signal is modeled as a sum of geometric primitives evolving through time, that jointly describe the geometric and motion content of the scene. The displacement through time of relevant visual features, like the mouth of a speaker, can thus be compared with the evolution of an audio feature to assess the correspo...

  6. NodeTrix: Hybrid Representation for Analyzing Social Networks

    OpenAIRE

    Henry, Nathalie; Fekete, Jean-daniel; Mcguffin, Michael

    2007-01-01

    The need to visualize large social networks is growing as hardware capabilities make analyzing large networks feasible and many new data sets become available. Unfortunately, the visualizations in existing systems do not satisfactorily answer the basic dilemma of being readable both for the global structure of the network and also for detailed analysis of local communities. To address this problem, we present NodeTrix, a hybrid representation for networks that combines the a...

  7. Distinguished tame supercuspidal representations

    CERN Document Server

    Hakim, Jeffrey

    2007-01-01

    This paper studies the behavior of Jiu-Kang Yu's tame supercuspidal representations relative to involutions of reductive p-adic groups. Symmetric space methods are used to illuminate various aspects of Yu's construction. Necessary conditions for a tame supercuspidal representation of G to be distinguished by (the fixed points of) an involution of G are expressed in terms of properties of the G-orbit of the associated G-datum. When these conditions are satisfied, the question of whether a tame supercuspidal representation is distinguished reduces to the question of whether certain cuspidal representations of finite groups of Lie type are distinguished relative to particular quadratic characters. As an application of the main results, we obtain necessary and sufficient conditions for equivalence of two of Yu's supercuspidal representations associated to distinct G-data.

  8. Bundle Visualization Strategies for HARDI Characteristics

    OpenAIRE

    Ro?ttger, Diana; Dudai, Diana; Merhof, Dorit; Mu?ller, Stefan

    2012-01-01

    In this paper we present visualization approaches for HARDI-based neuronal pathway representations using fiber encompassing hulls. We introduce novel bundle visualization techniques to indicate characteristics, such as information about tract integrity and multiple intra-voxel diffusion orientations. To accomplish this task, we developed an intra-bundle raycasting approach and use color mappings to encode diffusion characteristics on the bundle’s surface. Additionally, we implemented a slic...

  9. Sound-contingent visual motion aftereffect

    OpenAIRE

    Kobayashi Maori; Teramoto Wataru; Hidaka Souta; Sugita Yoichi

    2011-01-01

    Abstract Background After a prolonged exposure to a paired presentation of different types of signals (e.g., color and motion), one of the signals (color) becomes a driver for the other signal (motion). This phenomenon, which is known as contingent motion aftereffect, indicates that the brain can establish new neural representations even in the adult's brain. However, contingent motion aftereffect has been reported only in visual or auditory domain. Here, we demonstrate that a visual motion a...

  10. The Trade-offs with Space Time Cube Representation of Spatiotemporal Patterns

    CERN Document Server

    Kristensson, Per Ola; Anundi, Daniel; Bjornstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Martensson, Ingrid; Nordvall, Matttias; Stahl, Josefin

    2007-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Fast and correct analysis of such information is important in for instance geospatial and social visualization applications. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a dataset to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap we report on a between-subjects experiment comparing novice users error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions the error rat...

  11. Spontaneous object and movement representations in 4-month-old human infants and albino Swiss mice.

    Science.gov (United States)

    Langus, Alan; Saksida, Amanda; Braida, Daniela; Martucci, Roberta; Sala, Mariaelvina; Nespor, Marina

    2015-04-01

    Can young infants decompose visual events into independent representations of objects and movements? Previous studies suggest that human infants may be born with the notion of objects but there is little evidence for movement representations during the first months of life. We devised a novel Rapid Visual Recognition Procedure to test whether the nervous system is innately disposed for the conceptual decomposition of visual events. We show that 4-month-old infants can spontaneously build object and movement representations and recognize these in partially matching test events. Also albino Swiss mice that were tested on a comparable procedure could spontaneously build detailed mental representations of moving objects. Our results dissociate the ability to conceptually decompose physical events into objects and spatio-temporal relations from various types of human and non-human specific experience, and suggest that the nervous system is genetically predisposed to anticipate the representation of objects and movements in both humans and non-human species. PMID:25615902

  12. Letter-Matrix of Compact Representation of two-Dimensional Data Multitude for Visualization of Modal Parameters' Time-History With Implication to Seismic Survey of Life-Time and Characteristics of Excited Modal States of a Wide Range of Dynamic Structures

    Science.gov (United States)

    Zaurov, D.

    2013-12-01

    The PSWT technique assumes definition of modal parameters on the basis of modal differential equation by processing of a segment of seismic response with stationary properties by a set of modulate functions. Thus, calculating necessary convolution integrals in the limits of the time-window with a modulate function and its claimed derivatives fixed within the window with zero values on its edges and having a limited transparent spectral window, a system of algebraic equation regard to looking for parameters can be formed. Leading correct conception of moving window analysis, total parametric scanning of the records in both time and frequency domains when the time-window should be moving by a certain step while varying its width in some boundaries that corresponds to shifting the spectral window in frequency domain allowing to find dominant filtration of the fundamental mode, should be proceeded. Revealed time segments with steady series of parameters' estimations are evidence of stationary of the modal state and that trial estimations are true, otherwise, non-stationary of dynamic properties and, or ill-filtration on some segments are the cause of the series of estimations to be dispersed. Final numeric output of the scanning require a vast storage paper space and it is time consuming of its graphic representation and interpretation. But the following idea allows the representation to be a completely formalized one. Thus, the numeric multitude of estimations should be grouping for each parameter and represented by corresponding compact symbolic, letter fields. Symbolic conform representation can be accomplished by assuming a quantum symbolic scale limited by accepted set of 53 symbols: +ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!?#$%&@(/{})*- which is coherent to appropriate domain of continuous numeric measure scale of each parameter estimations' multitude. A certain step is admitted for quantization, and a respective symbol is assigned in sequence to each quantum unit. All numbers which fall within particular unit of the scale should be represented by the unit's symbol, numbers out of scale by + -. Therefore, the output would be a Letter-Matrix of Parametric Scanning of Seismogram, accompanying with deciphering formula, the means of visualization of life-time of stationary states. Zaurov 1977, 1994, 2011.

  13. Digital Art Wonderland Creative Techniques for Inspirational Journaling and Beautiful Blogging

    CERN Document Server

    Sullins, Angi

    2011-01-01

    Headline: Set out on a digital adventure!Come inside Digital Art Wonderland where digital art and art journaling embark together on a luscious visual journey. The daring crew of Angi Sullins and Silas Toball give you a personal tour through a digital art journaling world, showing you how to make your own wonderous creations through instruction, design concepts and lots of inspiration.In Digital Art Wonderland, you'll find:- 8 tutorials with techniques, tricks and trips for the intermediate Adobe Photoshop user to enhance physical art as well as create digital art from scratch.- Instructions a

  14. Indecomposable representations for parabose algebra

    International Nuclear Information System (INIS)

    A general study of the representations of the graded Lie algebra of parabose oscillators is given. Besides realizing the standard representations, we also find some interesting indecomposable (not fully reducible) representations. (author)

  15. Global uniqueness of small representations

    OpenAIRE

    Kobayashi, Toshiyuki; Savin, Gordan

    2014-01-01

    We prove that automorphic representations whose local components are certain small representations have multiplicity one. The proof is based on the multiplicity-one theorem for certain functionals of small representations, also proved in this paper.

  16. The climate visualizer: Sense-making through scientific visualization

    Science.gov (United States)

    Gordin, Douglas N.; Polman, Joseph L.; Pea, Roy D.

    1994-12-01

    This paper describes the design of a learning environment, called the Climate Visualizer, intended to facilitate scientific sense-making in high school classrooms by providing students the ability to craft, inspect, and annotate scientific visualizations. The theoretical back-ground for our design presents a view of learning as acquiring and critiquing cultural practices and stresses the need for students to appropriate the social and material aspects of practice when learning an area. This is followed by a description of the design of the Climate Visualizer, including detailed accounts of its provision of spatial and temporal context and the quantitative and visual representations it employs. A broader context is then explored by describing its integration into the high school science classroom. This discussion explores how visualizations can promote the creation of scientific theories, especially in conjunction with the Collaboratory Notebook, an embedded environment for creating and critiquing scientific theories and visualizations. Finally, we discuss the design trade-offs we have made in light of our theoretical orientation, and our hopes for further progress.

  17. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet

    OpenAIRE

    Edmund TRolls

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is ...

  18. Meet the 'entangled' fieldworker - Distorted (re)presentations in tourism research

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    Tourism research has recently been informed by non-representational theories to highlight the socio-material, embodied and heterogeneous composition of tourist experiences. These advances have contributed to further reflexivity and called for novel ways to animate representations. On this background, this paper develops the notion ‘distorted representation’ to illustrate that blurred and obscure photos can in fact be intelligible and sensible in understanding tourism. Through an exploration of the overwhelmed and unintended practices of visual fieldwork, distorted representation illustrates how photographic materialities, performativities and sensations contribute to new tourism knowledges. While highlighting the potential of distorted representation, the paper posits a cautionary note in regards to the influential role of academic journals in determining the qualities of visual data. The paper exemplifies distorted representation through three impressionistic tales derived from ethnographic research on the European rail travel phenomenon, InterRail.

  19. Deforming semistable Galois representations.

    Science.gov (United States)

    Fontaine, J M

    1997-10-14

    Let V be a p-adic representation of Gal(Q/Q). One of the ideas of Wiles's proof of FLT is that, if V is the representation associated to a suitable autromorphic form (a modular form in his case) and if V' is another p-adic representation of Gal(Q/Q) "closed enough" to V, then V' is also associated to an automorphic form. In this paper we discuss which kind of local condition at p one should require on V and V' in order to be able to extend this part of Wiles's methods. PMID:11607758

  20. Synthesis and characterization of diatom inspired nanocomposites

    Science.gov (United States)

    Gutu, Timothy

    This dissertation addresses the investigation of two novel methods to synthesize composite nanomaterials inspired by marine microalgae called diatoms. Diatoms are inspirational sources of silica structures, ordered at micro- to nanoscale, that possess unique optical properties. The fabrication of nanomaterials with well-defined and controllable micro-to nanoscale features has been of great interest for chemical, optical, electronic, catalytic, environmental, and medical applications. While bottom-up and top-down approaches have been extensively used to fabricate two-dimensional structures and devices, there is a need for inexpensive methods to mass-produce complex micro- to nanoscale structures with a variety of three-dimensional (3D) morphologies at high degrees of precision, reproducibility, and chemical tailorability. To explore the fabrication of 3D nanostructures, this study harnessed the biomineralization capacity of diatom cell cultures to fabricate Si-Ge oxide nanocomposites on one hand and the chemical bath deposition on the other hand. A two-stage photobioreactor strategy was used to metabolically insert nanostructured germanium into the silica microstructure of diatom of diatom Pinnularia sp. In the first stage, diatom cells were grown to the point of silicon starvation. In the second stage, a pulse of silicon and germanium solution was added to the silicon-starved cells. Various electron microscopy techniques were utilized to validate the extent of the insertion and the subsequent incorporation of germanium into the diatom silica matrix. In the second method to form diatom inspired nanocomposites, we utilize a simple, inexpensive chemical bath deposition technique to deposit a cadmium sulfide nanocrystals on the patterned surface of diatom biosilica. A parametric investigation of the factors affecting the chemical bath process was carried out. The morphology, structural and compositional properties of the composites were characterized by electron microscopy. Absorption spectroscopy, photoluminescence and Raman spectroscopy were used to study the properties of the deposited CdS thin films.

  1. Cognition Inspired Object Oriented Knowledge Warehouse Architecture

    Directory of Open Access Journals (Sweden)

    Xixu Fu

    2010-09-01

    Full Text Available An adaptive knowledge system needs massive knowledge. But massive knowledge can handicap the speed of searching and reasoning. Good structure can considerably enhance the expressive power and efficiency of a knowledge system. Inspired by the structure of human memory and data warehouse, object-oriented warehouse architecture of knowledge based on the 3-World model was advanced after exploring the essence of knowledge and cognition. Great amount of conceptual and nonconceptual knowledge can be well handled with this architecture. System using the architecture can be more adaptable with different tasks.

  2. Wormhole inspired by non-commutative geometry

    CERN Document Server

    Rahaman, Farook; Karmakar, Sreya; Ray, Saibal

    2014-01-01

    In the present work we search for a new wormhole solution inspired by noncommutative geometry with the additional condition of allowing conformal Killing vectors (CKV). A special aspect of noncommutative geometry is that it replaces point-like structures of gravitational sources with smeared objects under Gaussian distribution. However, the purpose of this paper is to obtain wormhole solutions with noncommutative geometry as a background where we consider a point-like structure of gravitational object without smearing effect. It is found through this investigation that wormhole solutions exist in this Lorentzian distribution with viable physical properties.

  3. A Core Knowledge Architecture of Visual Working Memory

    Science.gov (United States)

    Wood, Justin N.

    2011-01-01

    Visual working memory (VWM) is widely thought to contain specialized buffers for retaining spatial and object information: a "spatial-object architecture." However, studies of adults, infants, and nonhuman animals show that visual cognition builds on core knowledge systems that retain more specialized representations: (1) spatiotemporal…

  4. Cortical Visual Impairment

    Science.gov (United States)

    Cortical Visual Impairment En Español Read in Chinese What is cortical visual impairment? Cortical visual impairment (CVI) is a decreased ... in children from developed countries. What is delayed visual maturation (DVM)? Delayed visual maturation is similar to ...

  5. The Representation of Discourse in the Two Hemispheres: An Individual Differences Investigation

    OpenAIRE

    Prat, Chantel S.; Long, Debra L.; Baynes, Kathleen

    2006-01-01

    Two experiments were conducted to investigate discourse representation in the two cerebral hemispheres as a function of reading skill. We used a lateralized visual-field procedure to compare left hemisphere (LH) and right hemisphere (RH) sensitivity to different discourse relations in readers with varying skill levels. In Experiment 1, we investigated two levels of discourse representation in memory: (a) the propositional representation and (b) the discourse model. We found that all readers w...

  6. Human Object-Similarity Judgments Reflect and Transcend the Primate-IT Object Representation

    OpenAIRE

    MariekeMur; JerzyBodurka

    2013-01-01

    Primate inferior temporal (IT) cortex is thought to contain a high-level representation of objects at the interface between vision and semantics. This suggests that the perceived similarity of real-world objects might be predicted from the IT representation. Here we show that objects that elicit similar activity patterns in human IT (hIT) tend to be judged as similar by humans. The IT representation explained the human judgments better than early visual cortex, other ventral-stream regions, a...

  7. Using Multiple Representations to Teach Composition of Functions

    Science.gov (United States)

    Steketee, Scott; Scher, Daniel

    2012-01-01

    Composition of functions is one of the five big ideas identified in NCTM's "Developing Essential Understanding of Functions, Grades 9-12" (Cooney, Beckmann, and Lloyd 2010). Through multiple representations (another big idea) and the use of The Geometer's Sketchpad[R] (GSP), students can directly manipulate variables and thus see dynamic visual

  8. Prismatic adaptation changes visuospatial representation in the inferior parietal lobule.

    Science.gov (United States)

    Crottaz-Herbette, Sonia; Fornari, Eleonora; Clarke, Stephanie

    2014-08-27

    Prismatic adaptation has been shown to induce a realignment of visuoproprioceptive representations and to involve parietocerebellar networks. We have investigated in humans how far other types of functions known to involve the parietal cortex are influenced by a brief exposure to prismatic adaptation. Normal subjects underwent an fMRI evaluation before and after a brief session of prismatic adaptation using rightward deviating prisms for one group or after an equivalent session using plain glasses for the other group. Activation patterns to three tasks were analyzed: (1) visual detection; (2) visuospatial short-term memory; and (3) verbal short-term memory. The prismatic adaptation-related changes were found bilaterally in the inferior parietal lobule when prisms, but not plain glasses, were used. This effect was driven by selective changes during the visual detection task: an increase in neural activity was induced on the left and a decrease on the right parietal side after prismatic adaptation. Comparison of activation patterns after prismatic adaptation on the visual detection task demonstrated a significant increase of the ipsilateral field representation in the left inferior parietal lobule and a significant decrease in the right inferior parietal lobule. In conclusion, a brief exposure to prismatic adaptation modulates differently left and right parietal activation during visual detection but not during short-term memory. Furthermore, the visuospatial representation within the inferior parietal lobule changes, with a decrease of the ipsilateral hemifield representation on the right and increase on the left side, suggesting thus a left hemispheric dominance. PMID:25164675

  9. With Age Comes Representational Wisdom in Social Signals

    OpenAIRE

    Van rijsbergen, Nicola; Jaworska, Katarzyna; Rousselet, Guillaume a; Schyns, Philippe g

    2014-01-01

    •We model mental representations of age in young and old participants•Young participants dichotomize age into young (like them) and old (everyone else)•Old participants faithfully represent visual features of aging•Inhomogeneous dark marking in the skin around the nose predicts perceived age

  10. Hemifield-specific visual recognition memory impairments in patients with unilateral temporal lobe removals.

    OpenAIRE

    Hornak, J.; Oxbury, S.; Oxbury, J.; Iversen, Sd; Gaffan, D.

    1997-01-01

    Recent evidence on visual neglect suggests that each hemisphere maintains a retinotopically organized representation of the visual world contralateral to the current fixation point and that this representation is based not only on analysis of the current retinal input but, equally importantly, on information retrieved from memory. This idea predicts that unilateral damage to memory systems should produce a lateralized impairment of memory for the retinotopically contralateral visual world. To...

  11. Visual Working Memory Modulates Rapid Eye Movements to Simple Onset Targets

    OpenAIRE

    Hollingworth, Andrew; Matsukura, Michi; Luck, Steven J.

    2013-01-01

    Visual working memory (VWM) representations influence attention and gaze control in complex tasks, such as visual search, that require top-down selection to resolve stimulus competition. VWM and visual attention clearly interact, but the mechanism of that interaction is not well understood. Here we demonstrate that VWM representations of object features influence the spatiotemporal dynamics of extremely simple eye movements, in the absence of stimulus competition or goal-level biases. The rea...

  12. Visual-interactive analysis with self-organizing maps - advances and research challenges

    OpenAIRE

    Schreck, Tobias

    2010-01-01

    Based on the Self-Organizing Map (SOM) algorithm, development of effective solutions for visual analysis and retrieval in complex data is possible. Example application domains include retrieval in multimedia data bases, and analysis in financial, text, and general high-dimensional data sets. While early work defined basic concepts for data representation and visual mappings for SOM-based analysis, recent work contributed advanced visual representations of the output of the SOM algorithm, and ...

  13. Distinguished tame supercuspidal representations

    OpenAIRE

    Hakim, Jeffrey; Murnaghan, Fiona

    2007-01-01

    This paper studies the behavior of Jiu-Kang Yu's tame supercuspidal representations relative to involutions of reductive p-adic groups. Symmetric space methods are used to illuminate various aspects of Yu's construction. Necessary conditions for a tame supercuspidal representation of G to be distinguished by (the fixed points of) an involution of G are expressed in terms of properties of the G-orbit of the associated G-datum. When these conditions are satisfied, the question...

  14. Autobiography: Inspiring new visions of teacher learning

    Directory of Open Access Journals (Sweden)

    Irene Simon

    2006-05-01

    Full Text Available Abstract: The purpose of this article is to broaden the tradition of autobiography by using it as a way in which teachers can identify sources of inspiration in their educational experience. In the process, my aim is to make explicit the links between autobiography, learning and meta learning. Extending autobiographical inquiry to include different levels at which learning takes place serves to highlight the importance not only of the individual context of learning (the private self, but also the possibility of learning and constructing meaning from autobiography in dialogue with others. This article identifies four levels of learning-how-to-learn from autobiography. These levels are: 1. learning from autobiographical writing; 2. learning through intergenerational dialogues; 3. developmental learning through the career stages; and 4. whole group co-constructive learning. My ultimate goal is two fold. Firstly, to use these levels of learning to identify operational definitions of inspiration based on significant events and experiences in teacher’s personal stories. Secondly to identify a meta research orientation for linking autobiography with learning and meta-learning.

  15. Coherent Bayesian analysis of inspiral signals

    International Nuclear Information System (INIS)

    In this paper we present a Bayesian parameter estimation method for the analysis of interferometric gravitational wave observations of an inspiral of binary compact objects using data recorded simultaneously by a network of several interferometers at different sites. We consider neutron star or black hole inspirals that are modeled to 3.5 post-Newtonian (PN) order in phase and 2.5 PN in amplitude. Inference is facilitated using Markov chain Monte Carlo (MCMC) methods that are adapted in order to efficiently explore the particular parameter space. Examples are shown to illustrate how and what information about the different parameters can be derived from the data. This study uses simulated signals and data with noise characteristics that are assumed to be defined by the LIGO and Virgo detectors operating at their design sensitivities. Nine parameters are estimated, including those associated with the binary system plus its location on the sky. We explain how this technique will be part of a detection pipeline for binary systems of compact objects with masses up to20Mo, including cases where the ratio of the individual masses can be extreme

  16. QCD inspired relativistic effective Hamiltonian model for mesons

    International Nuclear Information System (INIS)

    A QCD inspired relativistic effective Hamiltonian model for mesons has been proposed based on light-front QCD effective Hamiltonian. The squared invariant rest mass operator is used as the effective Hamiltonian. The model has been improved significantly in four major aspects: i) it is proved that in constituent rest frame and in internal Hilbert subspace, the total angular momentum of mesons is conserved, the mass eigen equation can be expressed in total angular momentum representation and in terms of a set of coupled radial eigen equations; ii) a relativistic confining potential is introduced to describe the excited states; iii) an SU(3) flavor mixing interaction is included and a set of coupled mass eigen equations are obtained for different flavor components; iv) the L-S coupling and the tensor interaction are taken into full account. The model has been applied to describe the whole meson spectra of about 265 mesons with available data. The meson masses, squared radii, and decay constants are calculated, and the agreement with data is satisfying. For the mesons whose mass data have large experimental uncertainty, the model produces certain mass values for test. For some mesons whose total angular momenta and parities are not assigned experimentally, the model gives a prediction of their spectroscopic configuration 2S+1LJ. The radial excitation spectra are also analyzed, the discrepancy between the calculated spectra and the data indicates anguulated spectra and the data indicates angular momentum effect and higher Fock space effect for some mesons. The relation between our model and the infrared conformal scaling invariance as well as the holographic light front QCD meson model is discussed.

  17. Knowledge Representations for Planning Manipulation Tasks

    CERN Document Server

    Zacharias, Franziska

    2012-01-01

    In this book, the capability map, a novel general representation of the kinematic capabilities of a robot arm, is introduced. The capability map allows to determine how well regions of the workspace are reachable for the end effector in different orientations. It is a representation that can be machine processed as well as intuitively visualized for the human. The capability map and the derived algorithms are a valuable source of information for high- and low-level planning processes. The versatile applicability of the capability map is shown by examples from several distinct application domains. In human-robot interaction, a bi-manual interface for tele-operation is objectively evaluated. In low-level geometric planning, more human-like motion is planned for a humanoid robot while also reducing the computation time. And in high-level task reasoning, the suitability of a robot for a task is evaluated.    

  18. Different geometries in ontology visualization

    Science.gov (United States)

    Dmitrieva, Julia; Verbeek, Fons J.

    2010-01-01

    In this paper we introduce methods for the visualization of ontologies using different geometrical representations. An ontology is a formal way to define domain knowledge by means of axioms about domain concepts, properties and individuals. Currently, ontologies are modeled with the OWL language; this language is very expressive and provides challenges for ontology visualization. Expressive ontologies can be difficult to understand and to that end ontology visualization can be extremely helpful for ontology inspection during the process of development as well as for inspection of existing ontologies. Our improved approach for ontology visualization includes two different tree-visualization techniques: i.e., the node-link technique and the containment technique. The node-link technique visualizes the ontology as a graph. The graph can be build for each concept with different levels of depth. The core visualization component is based on the spanning tree skeleton of the graph and it includes five different geometrical views, i.e., two Euclidean, two hyperbolic and one spherical. All the views are augmented with corresponding geometrical transformations so that user interaction like pan, zoom and rotate can be invoked. Another approach encompasses a 3-dimensional spherical alternative of the treemap method, in which nodes are placed on the surface of a sphere. Each parental node contains its children, which are places on the surface of the parent. We augmented this method with semantic zoom technique. With this technique the level of details depends on the distance from the viewer. Our approach provides the means to visualize ontology from different perspectives and different levels of detail. The interaction that is provided greatly enhances the user perception of otherwise complex information.

  19. Intact reading in patients with profound early visual dysfunction

    OpenAIRE

    Yong, Keir X. X.; Warren, Jason D.; Warrington, Elizabeth K.; Crutch, Sebastian J.

    2013-01-01

    Despite substantial neuroscientific evidence for a region of visual cortex dedicated to the processing of written words, many studies continue to reject explanations of letter-by-letter (LBL) reading in terms of impaired word form representations or parallel letter processing in favour of more general deficits of visual function. In the current paper, we demonstrate that whilst LBL reading is often associated with general visual deficits, these deficits are not necessarily sufficient to cause...

  20. Learning Visual Symbols for Parsing Human Poses in Images

    OpenAIRE

    Wang, Fang; Li, Yi

    2013-01-01

    Parsing human poses in images is fundamental in extracting critical visual information for artificial intelligent agents. Our goal is to learn self-contained body part representations from images, which we call visual symbols, and their symbol-wise geometric contexts in this parsing process. Each symbol is individually learned by categorizing visual features leveraged by geometric information. In the categorization, we use Latent Support Vector Machine followed by an efficie...

  1. Visual stability.

    Science.gov (United States)

    Melcher, David

    2011-02-27

    Our vision remains stable even though the movements of our eyes, head and bodies create a motion pattern on the retina. One of the most important, yet basic, feats of the visual system is to correctly determine whether this retinal motion is owing to real movement in the world or rather our own self-movement. This problem has occupied many great thinkers, such as Descartes and Helmholtz, at least since the time of Alhazen. This theme issue brings together leading researchers from animal neurophysiology, clinical neurology, psychophysics and cognitive neuroscience to summarize the state of the art in the study of visual stability. Recently, there has been significant progress in understanding the limits of visual stability in humans and in identifying many of the brain circuits involved in maintaining a stable percept of the world. Clinical studies and new experimental methods, such as transcranial magnetic stimulation, now make it possible to test the causal role of different brain regions in creating visual stability and also allow us to measure the consequences when the mechanisms of visual stability break down. PMID:21242136

  2. Simultaneous visualization of anatomical and functional 3D data by combining volume rendering and flow visualization

    Science.gov (United States)

    Schafhitzel, Tobias; Rößler, Friedemann; Weiskopf, Daniel; Ertl, Thomas

    2007-03-01

    Modern medical imaging provides a variety of techniques for the acquisition of multi-modality data. A typical example is the combination of functional and anatomical data from functional Magnetic Resonance Imaging (fMRI) and anatomical MRI measurements. Usually, the data resulting from each of these two methods is transformed to 3D scalar-field representations to facilitate visualization. A common method for the visualization of anatomical/functional multi-modalities combines semi-transparent isosurfaces (SSD, surface shaded display) with other scalar visualization techniques like direct volume rendering (DVR). However, partial occlusion and visual clutter that typically result from the overlay of these traditional 3D scalar-field visualization techniques make it difficult for the user to perceive and recognize visual structures. This paper addresses these perceptual issues by a new visualization approach for anatomical/functional multi-modalities. The idea is to reduce the occlusion effects of an isosurface by replacing its surface representation by a sparser line representation. Those lines are chosen along the principal curvature directions of the isosurface and rendered by a flow visualization method called line integral convolution (LIC). Applying the LIC algorithm results in fine line structures that improve the perception of the isosurface's shape in a way that it is possible to render it with small opacity values. An interactive visualization is achieved by executing the algorithm completely on the graphics processing unit (GPU) of modern graphics hardware. Furthermore, several illumination techniques and image compositing strategies are discussed for emphasizing the isosurface structure. We demonstrate our method for the example of fMRI/MRI measurements, visualizing the spatial relationship between brain activation and brain tissue.

  3. Bio-inspired classifier for road extraction from remote sensing imagery

    Science.gov (United States)

    Xu, Jiawei; Wang, Ruisheng; Yue, Shigang

    2014-01-01

    An adaptive approach for road extraction inspired by the mechanism of primary visual cortex (V1) is proposed. The motivation is originated by the characteristics in the receptive field from V1. It has been proved that human or primate visual systems can distinguish useful cues from real scenes effortlessly while traditional computer vision techniques cannot accomplish this task easily. This idea motivates us to design a bio-inspired model for road extraction from remote sensing imagery. The proposed approach is an improved support vector machine (SVM) based on the pooling of feature vectors, using an improved Gaussian radial basis function (RBF) kernel with tuning on synaptic gains. The synaptic gains comprise the feature vectors through an iterative optimization process representing the strength and width of Gaussian RBF kernel. The synaptic gains integrate the excitation and inhibition stimuli based on internal connections from V1. The summation of synaptic gains contributes to pooling of feature vectors. The experimental results verify the correlation between the synaptic gain and classification rules, and then show better performance in comparison with hidden Markov model, SVM, and fuzzy classification approaches. Our contribution is an automatic approach to road extraction without prelabeling and postprocessing work. Another apparent advantage is that our method is robust for images taken even under complex weather conditions such as snowy and foggy weather.

  4. Do the Contents of Visual Working Memory Automatically Influence Attentional Selection During Visual Search?

    OpenAIRE

    Woodman, Geoffrey F.; Luck, Steven J.

    2007-01-01

    In many theories of cognition, researchers propose that working memory and perception operate interactively. For example, in previous studies researchers have suggested that sensory inputs matching the contents of working memory will have an automatic advantage in the competition for processing resources. The authors tested this hypothesis by requiring observers to perform a visual search task while concurrently maintaining object representations in visual working memory. The hypothesis that ...

  5. Using program visualization to enhance maintainability and promote reuse

    Science.gov (United States)

    Ames, Chuck; Howard, Lizz; Kiper, James D.

    1995-01-01

    Our intuition is that comprehension of visual representations is often quicker than of equivalent text. In the work described in this paper, we explore the application of this intuition to programming languages. The goal of this project is to create visual representation of segments of computer programs that improve the maintenance and reusability of this code. We describe a software tool, a program browser, that provides a visual representation of the function call graph of any C program. This tool is the first in a series of tools that aids program comprehension, making reuse of existing programs more likely. The development of the program browser is itself an example of code reuse as described in the section on implementation. Although our intuition is that some visual display of programs aid understandability, we are looking for experimental verification. Several human factors experiments in this area have contradicted this intuition. We describe reasons for these contradictions, and potential solutions to overcome them.

  6. From Idea to Organizational Practice : Institutionalizing Innovative Ideas Through Visualization

    DEFF Research Database (Denmark)

    Meyer, Renate E.; Jancsary, Dennis

    How do visualization and visual forms of communication influence the process of transforming a novel idea into established organizational practice? In this paper, we build theory with regard to the role of visuals in manifesting and giving form to an innovative idea as it proceeds through various stages of institutionalization. Ideas become institutionalized not merely through widespread diffusion in a cognitive-discursive form but eventually through their translation into concrete activities and transformation into specific patterns of organizational practice. We argue that visualization plays a pivotal and unique role in this process. Visualization bridges the ideational with the practical realm by providing representations of ideas, connecting them to existing knowledge, and illustrating the specific actions that instantiate them. Similar to verbal discourse, and often in tandem, visual representations diffuse more rapidly and further than the practices themselves. Consolidating the relationship between abstract ideas and specific practice, such visual or multi-modal representations facilitate the implementation of novel ideas, reinforce particular translations, and imbue associated organizational practice with legitimacy – and thus solidify the coupling of innovative ideas and organizational practice. Extending existing research, we develop a set of propositions linking dimensions of visuality and visualization to the different stages of institutionalization in order to explain the institutional trajectory of new ideas. Our analysis advances insight into a core dimension of institutionalization: the transformation of an idea into practice.

  7. Representation Discovery using Harmonic Analysis

    CERN Document Server

    Mahadevan, Sridhar

    2008-01-01

    Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu

  8. Biochemistry Instructors' Views toward Developing and Assessing Visual Literacy in Their Courses

    Science.gov (United States)

    Linenberger, Kimberly J.; Holme, Thomas A.

    2015-01-01

    Biochemistry instructors are inundated with various representations from which to choose to depict biochemical phenomena. Because of the immense amount of visual know-how needed to be an expert biochemist in the 21st century, there have been calls for instructors to develop biochemistry students' visual literacy. However, visual literacy has…

  9. Modelling Cell Cycle using Different Levels of Representation

    CERN Document Server

    Basuki, Thomas Anung; Carvalho, Rafael V; 10.4204/EPTCS.11.4

    2009-01-01

    Understanding the behaviour of biological systems requires a complex setting of in vitro and in vivo experiments, which attracts high costs in terms of time and resources. The use of mathematical models allows researchers to perform computerised simulations of biological systems, which are called in silico experiments, to attain important insights and predictions about the system behaviour with a considerably lower cost. Computer visualisation is an important part of this approach, since it provides a realistic representation of the system behaviour. We define a formal methodology to model biological systems using different levels of representation: a purely formal representation, which we call molecular level, models the biochemical dynamics of the system; visualisation-oriented representations, which we call visual levels, provide views of the biological system at a higher level of organisation and are equipped with the necessary spatial information to generate the appropriate visualisation. We choose Spati...

  10. Concepts about agency constrain beliefs about visual experience.

    Science.gov (United States)

    Levin, Daniel T

    2012-06-01

    Recent research exploring phenomena such as change blindness, inattentional blindness, attentional blink and repetition blindness has revealed a number of counterintuitive ways in which apparently salient visual stimuli often go unnoticed. In fact, large majorities of subjects sometimes predict that they would detect visual changes that actually are rarely noticed, suggesting that people have strong beliefs about visual experience that are demonstrably incorrect. However, for other kinds of visual metacognition, such as picture memory, people underpredict performance. This paper describes two experiments demonstrating that both these overpredictions of change detection, and underpredictions of visual memory can be linked with intuitions about the visual experience of different kinds of agents. Subjects predicted more visual change detection and poorer visual memory for mechanical representational systems (e.g. computer programs) when these were anthropomorphized using intentional terminology. PMID:22475477

  11. Analyzing and Visualizing Whole Program Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Panas, T; Quinlan, D; Vuduc, R

    2007-05-10

    This paper describes our work to develop new tool support for analyzing and visualizing the architecture of complete large-scale (millions or more lines of code) programs. Our approach consists of (i) creating a compact, accurate representation of a whole C or C++ program, (ii) analyzing the program in this representation, and (iii) visualizing the analysis results with respect to the program's architecture. We have implemented our approach by extending and combining a compiler infrastructure and a program visualization tool, and we believe our work will be of broad interest to those engaged in a variety of program understanding and transformation tasks. We have added new whole-program analysis support to ROSE [15, 14], a source-to-source C/C++ compiler infrastructure for creating customized analysis and transformation tools. Our whole-program work does not rely on procedure summaries; rather, we preserve all of the information present in the source while keeping our representation compact. In our representation, a million-line application fits in well less than 1 GB of memory. Because whole-program analyses can generate large amounts of data, we believe that abstracting and visualizing analysis results at the architecture level is critical to reducing the cognitive burden on the consumer of the analysis results. Therefore, we have extended Vizz3D [19], an interactive program visualization tool, with an appropriate metaphor and layout algorithm for representing a program's architecture. Our implementation provides developers with an intuitive, interactive way to view analysis results, such as those produced by ROSE, in the context of the program's architecture. The remainder of this paper summarizes our approach to whole-program analysis (Section 2) and provides an example of how we visualize the analysis results (Section 3).

  12. Integrated bio-inspired fluidic imaging system

    Science.gov (United States)

    Tsai, Frank S.; Johnson, Daniel; Cho, Sung Hwan; Qiao, Wen; Arianpour, Ashkan; Francis, Cameron S.; Kim, Nam-Hyong; Lo, Yu-Hwa

    2010-02-01

    We developed a new type of optical lens device that can change its curvature like crystalline lens in human eye. The curvature changing capability of the lens allows for a tremendous tuning range in its optical power and subsequently enables miniaturized imaging systems that can perform autofocus, optical zoom, and other advanced functions. In this paper, we study the physical properties of bio-inspired fluidic lenses and demonstrate the optical functionality through miniaturized optical systems constructed with such lenses. We report an auto-focusing optical system that can turn from a camera to a microscope, and demonstrate more than 4X optical zoom with a very short total track length. Finally, we demonstrate the benefits of fluidic lens zoom camera through minimally invasive gallbladder removal surgery.

  13. Vibration driven vehicle inspired from grass spike

    Science.gov (United States)

    Bai, Suo; Xu, Qi; Qin, Yong

    2013-05-01

    Searching and detecting in some harsh environments such as collapsed buildings, pipes, small cracks are crucial for human rescue and industrial detection, military surveillance etc. However, the drawbacks of traditional moving modes of current vehicles make them difficult to perform such tasks. So developing some new vehicles is urgent. Here, we report a Setaria viridis spike's interesting behavior on a vibrating track, and inspired by that phenomena we develop a concept for cargo delivery, and give a detailed discussion about its working mechanism. This vehicle can move on a wide range of smooth and rough surfaces. Moreover, its climbing capability in tilted and even vertical smooth pipe is also outstanding. These features make it suitable for search-rescue, military reconnaissance, etc. Finally, this vehicle can be reduced into micro/nano-scale, which makes it would play an important role in target-drug delivery, micro-electromechanical systems (MEMS).

  14. CERN Inspires Art in Major New Exhibition

    CERN Multimedia

    2001-01-01

    Signatures of the Invisible, an exhibition inspired by CERN, opened at the Atlantis Gallery in London on Thursday, 1 March before going on a world tour. The fruit of a close collaboration between CERN and the London Institute, the exhibition brings together works from many leading European contemporary artists. White wooden boxes on a grey floor... the lids opened, unveiling brilliant white light from a bunch of optical fibres carefully stuck together in the shape of a square. Another holds a treasure of lead glass surrounded by enigmatic black mirrors. What's it all about? Signatures of the Invisible, that's what, a joint project organised by the London Institute, one of the world's largest college of art, and our Laboratory. Damien Foresy from the EST workshop putting finishing touches to the spinning tops of French artist Jérôme Basserode. Monica Sand's boxes are just one of the many works based around materials used in particle detection at CERN that was admired at the opening o...

  15. What is Mathematics? Perspectives inspired by anthropology

    DEFF Research Database (Denmark)

    HØyrup, Jens

    2015-01-01

    The paper discusses the question “what is mathematics” from a point of view inspired by anthropology. In this perspective, the character of mathematical thinking and argument is strongly affected – almost essentially determined, indeed – by the dynamics of the specific social, mostly professional environments by which it is carried. Environments where future practitioners are taught as apprentices produce an approach different from that resulting from teaching in a school – the latter inviting to intra-mathematical explanation in a way the former does not. Moreover, once the interaction with the early classical Greek philosophical quest for causes and general explanations had caused mathematical explanation to become an autonomous endeavour in the shape of explicit proof and deductivity, proof and deductivity presented themselves as options – sometimes exploited, sometimes not – even in the teaching of mathematics for practitioners.

  16. Bio-inspired accommodating fluidic intraocular lens.

    Science.gov (United States)

    Qiao, Wen; Johnson, Daniel; Tsai, Frank S; Cho, Sung Hwan; Lo, Yu-Hwa

    2009-10-15

    The invention of intraocular lens (IOL), a substitute for crystalline lens, represents a major advancement in cataract surgery. After about sixty years of IOL development, one key remaining problem is its limited accommodation range compared with natural eyes. To overcome this performance limit, we explore bio-inspired fluidic IOL. By mimicking the working principle of natural eyes, a fluidic intraocular lens can achieve an exceedingly large accommodation range. An experiment on fluidic IOL demonstrated a very high tuning range of 12 D. This accommodation range was achieved with a modest amount of force (0.06 N) and equatorial radius change (0.286 mm), in conditions matching well with the characteristics of aged eyes. PMID:19838277

  17. Aurelia aurita bio-inspired tilt sensor

    Science.gov (United States)

    Smith, Colin; Villanueva, Alex; Priya, Shashank

    2012-10-01

    The quickly expanding field of mobile robots, unmanned underwater vehicles, and micro-air vehicles urgently needs a cheap and effective means for measuring vehicle inclination. Commonly, tilt or inclination has been mathematically derived from accelerometers; however, there is inherent error in any indirect measurement. This paper reports a bio-inspired tilt sensor that mimics the natural balance organ of jellyfish, called the ‘statocyst’. Biological statocysts from the species Aurelia aurita were characterized by scanning electron microscopy to investigate the morphology and size of the natural sensor. An artificial tilt sensor was then developed by using printed electronics that incorporates a novel voltage divider concept in conjunction with small surface mount devices. This sensor was found to have minimum sensitivity of 4.21° with a standard deviation of 1.77°. These results open the possibility of developing elegant tilt sensor architecture for both air and water based platforms.

  18. Tough, bio-inspired hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Munch, Etienne; Launey, Maximimilan E.; Alsem, Daan H.; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O.

    2008-10-06

    The notion of mimicking natural structures in the synthesis of new structural materials has generated enormous interest but has yielded few practical advances. Natural composites achieve strength and toughness through complex hierarchical designs extremely difficult to replicate synthetically. Here we emulate Nature's toughening mechanisms through the combination of two ordinary compounds, aluminum oxide and polymethylmethacrylate, into ice-templated structures whose toughness can be over 300 times (in energy terms) that of their constituents. The final product is a bulk hybrid ceramic material whose high yield strength and fracture toughness ({approx}200 MPa and {approx}30 MPa{radical}m) provide specific properties comparable to aluminum alloys. These model materials can be used to identify the key microstructural features that should guide the synthesis of bio-inspired ceramic-based composites with unique strength and toughness.

  19. A Physiologically Inspired Method for Audio Classification

    Directory of Open Access Journals (Sweden)

    David V. Anderson

    2005-06-01

    Full Text Available We explore the use of physiologically inspired auditory features with both physiologically motivated and statistical audio classification methods. We use features derived from a biophysically defensible model of the early auditory system for audio classification using a neural network classifier. We also use a Gaussian-mixture-model (GMM-based classifier for the purpose of comparison and show that the neural-network-based approach works better. Further, we use features from a more advanced model of the auditory system and show that the features extracted from this model of the primary auditory cortex perform better than the features from the early auditory stage. The features give good classification performance with only one-second data segments used for training and testing.

  20. Detection confidence tests for Inspiral Candidate Events

    Science.gov (United States)

    Caudill, Sarah

    2008-04-01

    In order to detect gravitational-wave signals from compact binary inspiral, the LSC-Virgo Compact Binary Coalescence group is using an analysis pipeline which aims to reduce the false alarm rate without rejecting gravitational-wave signals. However, because of the non-Gaussian, non-stationary noise exhibited by the LIGO detectors, a large number of false alarms are found at the end of the pipeline. The Compact Binary Coalescence group has been developing a detection checklist for the validation of candidate-events. This detection checklist consists of a series of further tests including data quality checks, analysis of the candidate appearance, parameter consistency studies, coherent analysis, which aim to corroborate a detection or to eliminate a false alarm. In this talk, the methodology used for candidate validation will be presented and illustrated with interesting examples of candidates.

  1. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    Science.gov (United States)

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  2. Rules for biologically inspired adaptive network design.

    Science.gov (United States)

    Tero, Atsushi; Takagi, Seiji; Saigusa, Tetsu; Ito, Kentaro; Bebber, Dan P; Fricker, Mark D; Yumiki, Kenji; Kobayashi, Ryo; Nakagaki, Toshiyuki

    2010-01-22

    Transport networks are ubiquitous in both social and biological systems. Robust network performance involves a complex trade-off involving cost, transport efficiency, and fault tolerance. Biological networks have been honed by many cycles of evolutionary selection pressure and are likely to yield reasonable solutions to such combinatorial optimization problems. Furthermore, they develop without centralized control and may represent a readily scalable solution for growing networks in general. We show that the slime mold Physarum polycephalum forms networks with comparable efficiency, fault tolerance, and cost to those of real-world infrastructure networks--in this case, the Tokyo rail system. The core mechanisms needed for adaptive network formation can be captured in a biologically inspired mathematical model that may be useful to guide network construction in other domains. PMID:20093467

  3. Aurelia aurita bio-inspired tilt sensor

    International Nuclear Information System (INIS)

    The quickly expanding field of mobile robots, unmanned underwater vehicles, and micro-air vehicles urgently needs a cheap and effective means for measuring vehicle inclination. Commonly, tilt or inclination has been mathematically derived from accelerometers; however, there is inherent error in any indirect measurement. This paper reports a bio-inspired tilt sensor that mimics the natural balance organ of jellyfish, called the ‘statocyst’. Biological statocysts from the species Aurelia aurita were characterized by scanning electron microscopy to investigate the morphology and size of the natural sensor. An artificial tilt sensor was then developed by using printed electronics that incorporates a novel voltage divider concept in conjunction with small surface mount devices. This sensor was found to have minimum sensitivity of 4.21° with a standard deviation of 1.77°. These results open the possibility of developing elegant tilt sensor architecture for both air and water based platforms. (paper)

  4. Nasal and Oral Inspiration during Natural Speech Breathing

    Science.gov (United States)

    Lester, Rosemary A.; Hoit, Jeannette D.

    2014-01-01

    Purpose: The purpose of this study was to determine the typical pattern for inspiration during speech breathing in healthy adults, as well as the factors that might influence it. Method: Ten healthy adults, 18-45 years of age, performed a variety of speaking tasks while nasal ram pressure, audio, and video recordings were obtained. Inspirations

  5. Visualizing Earthquakes at Convergent Plate Margins

    Science.gov (United States)

    Cara Harwood

    This screenshot shows the Fiji subduction zone, one of the featured convergent margins in this visualization. The visualization shows how earthquakes at this margin occur at depth, and define the slope of the subducting plate. This visualization also includes other examples of subduction zones and continental convergent margins (Himalayas). Click the image to enlarge or view the MP4 movie (MP4 Video 30.3MB Dec20 11). The purpose of this activity is to introduce students to the distribution and characteristics of earthquakes associated with convergent plate boundaries. Students will learn about how the magnitude and distribution of earthquakes at convergent boundaries are related to processes that occur at these boundaries and to the geometry and position of the two converging plates. Because the depth of earthquakes can be difficult for students to visualize in 2D representations, this activity allows students to visualize the 3D distribution of earthquakes within Earth's surface, which is essential for understanding how different types of earthquakes occur in different tectonic settings. Locations featured in the visualization include the Chile-Peru Subduction Zone, the Aleutian Islands, the Fiji Subeuction Zone, and the Himalayas. Talking points and questions are included to use this visualization as part of an interactive lecture. In addition to playing back the visualization, instructors can also download the visualization software and data set and explore it themselves.

  6. NASA Missions Inspire Online Video Games

    Science.gov (United States)

    2012-01-01

    Fast forward to 2035. Imagine being part of a community of astronauts living and working on the Moon. Suddenly, in the middle of just another day in space, a meteorite crashes into the surface of the Moon, threatening life as you know it. The support equipment that provides oxygen for the entire community has been compromised. What would you do? While this situation is one that most people will never encounter, NASA hopes to place students in such situations - virtually - to inspire, engage, and educate about NASA technologies, job opportunities, and the future of space exploration. Specifically, NASA s Learning Technologies program, part of the Agency s Office of Education, aims to inspire and motivate students to pursue careers in the science, technology, engineering, and math (STEM) disciplines through interactive technologies. The ultimate goal of these educational programs is to support the growth of a pool of qualified scientific and technical candidates for future careers at places like NASA. STEM education has been an area of concern in the United States; according to the results of the 2009 Program for International Student Assessment, 23 countries had higher average scores in mathematics literacy than the United States. On the science literacy scale, 18 countries had higher average scores. "This is part of a much bigger picture of trying to grow skilled graduates for places like NASA that will want that technical expertise," says Daniel Laughlin, the Learning Technologies project manager at Goddard Space Flight Center. "NASA is trying to increase the number of students going into those fields, and so are other government agencies."

  7. A mock metaplectic representation

    CERN Document Server

    De Mari, Filippo

    2011-01-01

    We obtain necessary and sufficient conditions for the admissible vectors of a new unitary non irreducible representation $U$. The group $G$ is an arbitrary semidirect product whose normal factor $A$ is abelian and whose homogeneous factor $H$ is a locally compact second countable group acting on a Riemannian manifold $M$. The key ingredient in the construction of $U$ is a $C^1$ intertwining map between the actions of $H$ on the dual group $\\hat A$ and on $M$. The representation $U$ generalizes the restriction of the metaplectic representation to triangular subgroups of $Sp(d,\\R)$, whence the name "mock metaplectic". For simplicity, we content ourselves with the case where $A=\\R^n$ and $M=\\R^d$. The main technical point is the decomposition of $U$ as direct integral of its irreducible components. This theory is motivated by some recent developments in signal analysis, notably shearlets. Many related examples are discussed.

  8. Inspiring future experimental scientists through questions related to colour

    Science.gov (United States)

    Fairchild, Mark D.; Melgosa, Manuel

    2014-07-01

    In general, it can be stated that unfortunately in most countries the number of students interested in traditional scientific disciplines (e.g. physics, chemistry, biology, mathematics, etc.) for his/her future professional careers has considerably decreased during the past years. It is likely that among the reasons of this trend we can find that many students feel that these disciplines are particularly difficult, complex, abstract, and even boring, while they consider applied sciences (e.g. engineering) as much more attractive options to them. Here we aim to attract people of very different ages to traditional scientific disciplines, and promote scientific knowledge, using a set of colour questions related to everyday experiences. From our answers to these questions we hope that people can understand and learn science in a rigorous, relaxed and amusing way, and hopefully they will be inspired to continue exploring on their own. Examples of such colour questions can be found at the free website http://whyiscolor.org from Mark D. Fairchild. For a wider dissemination, most contents of this website have been recently translated into Spanish language by the authors, and published in the book entitled "La tienda de las curiosidades sobre el color" (Editorial University of Granada, Spain, ISBN: 9788433853820). Colour is certainly multidisciplinary, and while it can be said that it is mainly a perception, optics is a key discipline to understand colour stimuli and phenomena. The classical first approach in colour science as the result of the interaction of light, objects, and the human visual system will be also reviewed.

  9. Additive and polynomial representations

    CERN Document Server

    Krantz, David H; Suppes, Patrick

    1971-01-01

    Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz

  10. Finding the best visualization of an ontology

    DEFF Research Database (Denmark)

    Fabritius, Christina Valentin; Madsen, Nadia Lyngaa

    2004-01-01

    An ontology is a classification model for a given domain. In information retrieval ontologies are used to perform broad searches. An ontology can be visualized as nodes and edges. Each node represents an element and each edge a relation between a parent and a child element. Working with an ontology becomes easier with a visual representation. An idea is to use the expressive power that a 3D representation to provide visualization for the user. In this paper we propose a new method for positioning the elements of the visualized concept lattice in the 3D world based on Operations Research (OR) methods. One method uses a discrete location model to create an initial solution and we propose heuristic methods to further improve the visual result. We evaluate the visual results according to our success criteria and the feedback from users. Running times of the heuristic indicate that an improved version should be feasible for on-line processing and what-if analysis of ontologies.

  11. Picturing Christ’s childhood: Some examples of a rare iconographic theme inspired by the infancy gospels

    Directory of Open Access Journals (Sweden)

    Fundi? Leonela

    2013-01-01

    Full Text Available This article examines Byzantine wall paintings dated to the thirteenth and fourteenth century depicting a rare iconographic theme of Jesus’s childhood inspired by the Infancy Gospels. The iconography shows the Virgin Mary leading the child Jesus by the hand. The child is depicted holding different objects, such as a writing tablet, an unfurled scroll, or a wicker basket filled with flowers or fruits. Several of the scenes under examination have been hitherto misidentified or altogether unknown. In addition to this, the article interprets these representations in a broader iconographic context and addresses the possible origin of the theme.

  12. Software tangible: metáforas, representaciones visuales y actividades de apoyo didáctico para la enseñanza en construcción de software / Tangible software: metaphors, visual representations and didactic support activities for teaching in software construction / Software tangível: metáforas, representações visuais e atividades de apoio didático para o ensino em construção de software

    Scientific Electronic Library Online (English)

    Luis Carlos, Díaz Chaparro; Miguel Eduardo, Torres Moreno; José Hernando, Hurtado Rojas; Germán Alberto, Chavarro Flórez; Edgar Enrique, Ruiz García.

    2013-12-01

    Full Text Available Resumo Introdução. Desde a experiência no processo de ensino aprendizagem dos primeiros níveis de análises, desenho, construção e execução de algoritmos se detectou que realmente é complicado ilustrar e compreender conceitos de caráter intangível. Resulta ser uma meta para os professores gerar analo [...] gias ou outro tipo de ajudas conceituais que de alguma maneira contribuam à imaginação ou abstração que devem fundar os estudantes no momento de entender os conceitos básicos de programação. Objetivo. Definir um conjunto de representações visuais e metáforas que permitam estabelecer uma base para o desenvolvimento de materiais didáticos, aplicações de software e atividades pertinentes que brindem suporte ao ensino e aprendizagem em programação. Materiais e métodos. Com base em algumas teorias da área da pedagogia e a revisão de projetos semelhantes, definiram-se várias propostas de representação, metáforas e atividades de aprendizagem significativa, a partir de uma primeira seleção de conceitos de programação. Resultados. Compartilharam-se experiências docentes e se formalizaram várias atividades que foram desenvolvidas diretamente em classe por parte dos professores envolvidos na linha de trabalho denominada Software Tangível. Gerou-se e se utilizou um conjunto de instrumentos físicos e ferramentas de software de apoio didático relacionadas e integradas sob uma consistente definição de representações visuais comuns. Conclusão. O uso das representações visuais, metáforas, instrumentos e atividades de aprendizagem significativa permite apoiar a geração das abstrações necessárias que contribuem a compreender os conceitos intangíveis próprios da programação e execução de algoritmos. Abstract in spanish Resumen Introducción. Desde la experiencia en el proceso de enseñanza aprendizaje de los primeros niveles de análisis, diseño, construcción y ejecución de algoritmos se ha detectado que realmente es complicado ilustrar y comprender conceptos de carácter intangible. Resulta ser un reto para los profe [...] sores generar analogías u otro tipo de ayudas conceptuales que de alguna manera aporten a la imaginación o abstracción que deben fundar los estudiantes en el momento de entender los conceptos básicos de programación. Objetivo. Definir un conjunto de representaciones visuales y metáforas que permitan establecer una base para el desarrollo de materiales didácticos, aplicaciones de software y actividades pertinentes que brinden soporte a la enseñanza y aprendizaje en programación. Materiales y métodos. Con base en algunas teorías del área de la pedagogía y la revisión de proyectos semejantes, se definieron varias propuestas de representación, metáforas y actividades de aprendizaje significativo, a partir de una primera selección de conceptos de programación. Resultados. Se compartieron experiencias docentes y se formalizaron varias actividades que fueron desarrolladas directamente en clase por parte de los profesores involucrados en la línea de trabajo denominada Software Tangible. Se generó y se utilizó un conjunto de instrumentos físicos y herramientas de software de apoyo didáctico relacionadas e integradas bajo una consistente definición de representaciones visuales comunes. Conclusión. El uso de las representaciones visuales, metáforas, instrumentos y actividades de aprendizaje significativo permite apoyar la generación de las abstracciones necesarias que contribuyen a comprender los conceptos intangibles propios de la programación y ejecución de algoritmos. Abstract in english Abstract Introduction. From the experience in the teachinglearning process of the first levels of analysis, design, construction and execution of algorithms, the difficulty of illustrating and understanding intangible concepts has been detected. Generating analogies or other kinds of conceptual reso [...] urces to contribute to the imagination or the abstraction students require to understand the basic elements of programming, turn

  13. Moment graphs and representations

    DEFF Research Database (Denmark)

    Jantzen, Jens Carsten

    2012-01-01

    Moment graphs and sheaves on moment graphs are basically combinatorial objects that have be used to describe equivariant intersectiion cohomology. In these lectures we are going to show that they can be used to provide a direct link from this cohomology to the representation theory of simple Lie algebras and of simple algebraic groups. The first section contains some background on equivariant cohomology.

  14. Boundary representation modelling techniques

    CERN Document Server

    Stroud, I

    2006-01-01

    Boundary representation is the principle solid modelling method used in modern CAD/CAM systems. This book includes: data structures algorithms and other related techniques, including non-manifold modelling, product modelling, graphics, disc files and data exchange, and some application related topics.

  15. Sociocognitive Perspectives on Representation.

    Science.gov (United States)

    Jacob, Elin K.; Shaw, Debora

    1998-01-01

    Discusses research dealing with the cognitive aspects of formal systems of knowledge representation. Highlights include the origins and theoretical foundations of the cognitive viewpoint; cognition and information science; cognitivism, mentalism, and subjective individualism; categorization; mental models; and sociocognitive approaches to indexing…

  16. Towards adiabatic waveforms for inspiral into Kerr black holes. II. Dynamical sources and generic orbits

    International Nuclear Information System (INIS)

    This is the second in a series of papers whose aim is to generate adiabatic gravitational waveforms from the inspiral of stellar-mass compact objects into massive black holes. In earlier work, we presented an accurate (2+1)D finite-difference time-domain code to solve the Teukolsky equation, which evolves curvature perturbations near rotating (Kerr) black holes. The key new ingredient there was a simple but accurate model of the singular source term based on a discrete representation of the Dirac-delta function and its derivatives. Our earlier work was intended as a proof of concept, using simple circular, equatorial geodesic orbits as a test bed. Such a source is effectively static, in that the smaller body remains at the same coordinate radius and orbital inclination over an orbit. (It of course moves through axial angle, but we separate that degree of freedom from the problem. Our numerical grid has only radial, polar, and time coordinates.) We now extend the time-domain code so that it can accommodate dynamic sources that move on a variety of physically interesting world lines. We validate the code with extensive comparison to frequency-domain waveforms for cases in which the source moves along generic (inclined and eccentric) bound geodesic orbits. We also demonstrate the ability of the time-domain code to accommodate sources moving on interesting nongeodesic worldlines. We do this by computing the waveform produced by a test mass following a kludged inspiral tratest mass following a kludged inspiral trajectory, made of bound geodesic segments driven toward merger by an approximate radiation loss formula.

  17. Gestalt principles in multimodal data representation.

    Science.gov (United States)

    Rosli, Muhammad Hafiz Wan; Cabrera, Andres

    2015-01-01

    Data visualization is a powerful tool to communicate data in a clear, digestible format through graphical means. To be effective, however, form and function need to work in tandem, filtering layers of noise to reveal the key aspects of the analyzed data. Indeed, this could prove to be sufficient in discovering already known patterns. Still, the search for undiscovered patterns would require the full dataset to be presented as a whole, which bears the risk of sensory overload. Human sensory systems function as a systemic unit in relation to one another, dynamically sampling the signals around us to give a concise scene analysis. To decipher a complex, multidimensional dataset, a representational system that is able to reproduce the layers of information through different stimulations would be required. This article explores the possibilities of using multimodal data representation as a method to communicate multidimensional data, guided by the principles of Gestalt psychology. Point Cloud, an artwork that implements such explorations through the visualization and sonification of lightning data is presented as an application of this research. The Web extra can be found at http://youtu.be/pQtxsvgv80E. PMID:25807509

  18. SO_0(1,d+1) Racah coefficients: Type I representations

    OpenAIRE

    Krasnov, Kirill; Louko, Jorma

    2005-01-01

    We use AdS/CFT inspired methods to study the Racah coefficients for type I representations of the Lorentz group SO_0(1,d+1) with d>1. For such representations (a multiple of) the Racah coefficient can be represented as an integral of a product of 6 bulk-to-bulk propagators over 4 copies of the hyperbolic space H_{d+1}. To compute the integrals we represent the bulk-to-bulk propagators in terms of bulk-to-boundary ones. The bulk integrals can be computed explicitly, and the b...

  19. Can we throw information out of visual working memory and does this leave informational residue in long-term memory?

    OpenAIRE

    AshleighMonetteMaxcey; GeoffreyF.Woodman

    2014-01-01

    Can we entirely erase a temporary memory representation from mind? This question has been addressed in several recent studies that tested the specific hypothesis that a representation can be erased from visual working memory based on a cue that indicated that the representation was no longer necessary for the task. In addition to behavioral results that are consistent with the idea that we can throw information out of visual working memory, recent neurophysiological recordings support this pr...

  20. Visualizing Transformation

    DEFF Research Database (Denmark)

    Pedersen, Pia

    Transformation, defined as the step of extracting, arranging and simplifying data into visual form (M. Neurath, 1974), was developed in connection with ISOTYPE (International System Of TYpographic Picture Education) and might well be the most important legacy of Isotype to the field of graphic design. Recently transformation has attracted renewed interest because of the book ‘The Transformer’ written by Robin Kinross and Marie Neurath. My on-going research project, summarized in this paper, identifies and depicts the essential principles of data visualization underlying the process of transformation with reference to Marie Neurath’s sketches on the Bilston Project. The material has been collected at the Otto and Marie Neurath Collection housed at the University of Reading, UK. By using data visualization as a research method to look directly into the process of transformation the project elaborates on previous revisions of the concept of transformation (Macdonald-Ross & Waller, 1974; Kinross, 1979, Kinross & Marie Neurath, 2009). The inquiry method I have used is unusual in the way the material has been organized, by “rewinding” transformation (as explained later in the paper), using the finished charts as a starting point and then going back to the beginning; furthermore this inquiry presents a novel approach to clarifying the process by designing symbols and diagrams. It will be demonstrated that transformation offers an improved approach to data visualization. The message in the chart is not preformed, but formed through the process of transformation; this means that the purpose of transformation is not the styling of charts with pictograms but rather creating a meaningful message. The contribution of this paper is an elaborated understanding of the process of transformation and a demonstration of the adoption of a research-through-design method.

  1. Representations of Muslim Bodies in The Kingdom: Deconstructing Discourses in Hollywood

    OpenAIRE

    Michelle Aguayo

    2009-01-01

    In this post September 11 (9/11) climate of the “War on Terror”, Hollywood political-thriller films carry a new cultural currency. Drawing from literature in postcolonial studies and its engagement with representations in popular culture, this paper analyzes the film The Kingdom (2007)—a fictional political-thriller with a storyline inspired by real terrorist bombings in Saudi Arabia. This paper critiques and notes the film’s narrative practices, with particular attention paid to the ...

  2. INSPIRE: A new scientific information system for HEP

    Science.gov (United States)

    Ivanov, R.; Raae, L.

    2010-04-01

    The status of high-energy physics (HEP) information systems has been jointly analyzed by the libraries of CERN, DESY, Fermilab and SLAC. As a result, the four laboratories have started the INSPIRE project - a new platform built by moving the successful SPIRES features and content, curated at DESY, Fermilab and SLAC, into the open-source CDS Invenio digital library software that was developed at CERN. INSPIRE will integrate current acquisition workflows and databases to host the entire body of the HEP literature (about one million records), aiming to become the reference HEP scientific information platform worldwide. It will provide users with fast access to full text journal articles and preprints, but also material such as conference slides and multimedia. INSPIRE will empower scientists with new tools to discover and access the results most relevant to their research, enable novel text- and data-mining applications, and deploy new metrics to assess the impact of articles and authors. In addition, it will introduce the "Web 2.0" paradigm of user-enriched content in the domain of sciences, with community-based approaches to scientific publishing. INSPIRE represents a natural evolution of scholarly communication built on successful community-based information systems, and it provides a vision for information management in other fields of science. Inspired by the needs of HEP, we hope that the INSPIRE project will be inspiring for other communities.

  3. INSPIRE: A new scientific information system for HEP

    International Nuclear Information System (INIS)

    The status of high-energy physics (HEP) information systems has been jointly analyzed by the libraries of CERN, DESY, Fermilab and SLAC. As a result, the four laboratories have started the INSPIRE project - a new platform built by moving the successful SPIRES features and content, curated at DESY, Fermilab and SLAC, into the open-source CDS Invenio digital library software that was developed at CERN. INSPIRE will integrate current acquisition workflows and databases to host the entire body of the HEP literature (about one million records), aiming to become the reference HEP scientific information platform worldwide. It will provide users with fast access to full text journal articles and preprints, but also material such as conference slides and multimedia. INSPIRE will empower scientists with new tools to discover and access the results most relevant to their research, enable novel text- and data-mining applications, and deploy new metrics to assess the impact of articles and authors. In addition, it will introduce the 'Web 2.0' paradigm of user-enriched content in the domain of sciences, with community-based approaches to scientific publishing. INSPIRE represents a natural evolution of scholarly communication built on successful community-based information systems, and it provides a vision for information management in other fields of science. Inspired by the needs of HEP, we hope that the INSPIRE project will be inspiring for other communities.or other communities.

  4. INSPIRE: A new scientific information system for HEP

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, R; Raae, L, E-mail: Radoslav.Ivanov@cern.c, E-mail: Lars.Christian.Raae@cern.c [European Organization for Nuclear Research, CERN CH-1211, Geneva 23 (Switzerland)

    2010-04-01

    The status of high-energy physics (HEP) information systems has been jointly analyzed by the libraries of CERN, DESY, Fermilab and SLAC. As a result, the four laboratories have started the INSPIRE project - a new platform built by moving the successful SPIRES features and content, curated at DESY, Fermilab and SLAC, into the open-source CDS Invenio digital library software that was developed at CERN. INSPIRE will integrate current acquisition workflows and databases to host the entire body of the HEP literature (about one million records), aiming to become the reference HEP scientific information platform worldwide. It will provide users with fast access to full text journal articles and preprints, but also material such as conference slides and multimedia. INSPIRE will empower scientists with new tools to discover and access the results most relevant to their research, enable novel text- and data-mining applications, and deploy new metrics to assess the impact of articles and authors. In addition, it will introduce the 'Web 2.0' paradigm of user-enriched content in the domain of sciences, with community-based approaches to scientific publishing. INSPIRE represents a natural evolution of scholarly communication built on successful community-based information systems, and it provides a vision for information management in other fields of science. Inspired by the needs of HEP, we hope that the INSPIRE project will be inspiring for other communities.

  5. Lunabotics Mining Competition: Inspiration Through Accomplishment

    Science.gov (United States)

    Mueller, Robert P.

    2011-01-01

    NASA's Lunabotics Mining Competition is designed to promote the development of interest in space activities and STEM (Science, Technology, Engineering, and Mathematics) fields. The competition uses excavation, a necessary first step towards extracting resources from the regolith and building bases on the moon. The unique physical properties of lunar regolith and the reduced 1/6th gravity, vacuum environment make excavation a difficult technical challenge. Advances in lunar regolith mining have the potential to significantly contribute to our nation's space vision and NASA space exploration operations. The competition is conducted annually by NASA at the Kennedy Space Center Visitor Complex. The teams that can use telerobotic or autonomous operation to excavate a lunar regolith geotechnical simulant, herein after referred to as Black Point-1 (or BP-1) and score the most points (calculated as an average of two separate 10-minute timed competition attempts) will eam points towards the Joe Kosmo Award for Excellence and the scores will reflect ranking in the on-site mining category of the competition. The minimum excavation requirement is 10.0 kg during each competition attempt and the robotic excavator, referred to as the "Lunabot", must meet all specifications. This paper will review the achievements of the Lunabotics Mining Competition in 2010 and 2011, and present the new rules for 2012. By providing a framework for robotic design and fabrication, which culminates in a live competition event, university students have been able to produce sophisticated lunabots which are tele-operated. Multi-disciplinary teams are encouraged and the extreme sense of accomplishment provides a unique source of inspiration to the participating students, which has been shown to translate into increased interest in STEM careers. Our industrial sponsors (Caterpillar, Newmont Mining, Harris, Honeybee Robotics) have all stated that there is a strong need for skills in the workforce related to robotics and automated machines. In 2010, 22 United States (US) universities competed, and in May 2011 the competition was opened to international participation, with 46 Universities attending. There were 12 international teams and 34 US teams. This combined total directly inspired an estimated 544 university students. More students and the public were engaged via internet broadcasting and social networking media. This is expected to be of value for actual future space missions, as knowledge is gained from testing many innovative prototypes in simulated lunar regolith. More information is available at www.nasa.gov/lunabotics/.

  6. Appendix VII: Knowledge representation and modeling at GRS

    International Nuclear Information System (INIS)

    Knowledge representation as a scientific domain has gained strong momentum, particularly in view of the 'Semantic Net' proposed by Tim Berners-Lee (the 'father' of the Internet) as the next 'intelligent' Internet. Several methods such as Topic Maps, Concept Maps or Ontologies are available, differing in the degree of formalization. In general, they offer a systematic approach to knowledge representation and a controlled vocabulary set up by experts to describe the domain as well as visualization and search facilities to navigate the maps. In more formal cases such as ontologies, the domain may be 'understood' by machines to e.g. draw inferences or check consistency

  7. Bag-of-visual-ngrams for histopathology image classification

    Science.gov (United States)

    López-Monroy, A. Pastor; Montes-y-Gómez, Manuel; Escalante, Hugo Jair; Cruz-Roa, Angel; González, Fabio A.

    2013-11-01

    This paper describes an extension of the Bag-of-Visual-Words (BoVW) representation for image categorization (IC) of histophatology images. This representation is one of the most used approaches in several high-level computer vision tasks. However, the BoVW representation has an important limitation: the disregarding of spatial information among visual words. This information may be useful to capture discriminative visual-patterns in specific computer vision tasks. In order to overcome this problem we propose the use of visual n-grams. N-grams based-representations are very popular in the field of natural language processing (NLP), in particular within text mining and information retrieval. We propose building a codebook of n-grams and then representing images by histograms of visual n-grams. We evaluate our proposal in the challenging task of classifying histopathology images. The novelty of our proposal lies in the fact that we use n-grams as attributes for a classification model (together with visual-words, i.e., 1-grams). This is common practice within NLP, although, to the best of our knowledge, this idea has not been explored yet within computer vision. We report experimental results in a database of histopathology images where our proposed method outperforms the traditional BoVWs formulation.

  8. Principles of Information Visualization for Business Research

    Directory of Open Access Journals (Sweden)

    Ioan I. ANDONE

    2008-11-01

    Full Text Available In the era of data-centric-science, a large number of visualization tools have been created to help researchers understand increasingly rich business databases. Information visualization is a process of constructing a visual presentation of business quantitative data, especially prepared for managerial use. Interactive information visualization provide researchers with remarkable tools for discovery and innovation. By combining powerful data mining methods with user-controlled interfaces, users are beginning to benefit from these potent telescopes for high-dimensional spaces. They can begin with an overview, zoom in on areas of interest, filter out unwanted items, and then click for details-on-demand. With careful design and efficient algorithms, the dynamic queries approach to data exploration can provide 100 msec updates even for million-record databases. Visualizations of business information are therefore widely used in actually business decision support systems, and by business researchers also. Visual user interfaces called dashboards are tools for reporting the status of a company and its business environment to facilitate business intelligence and performance management activities. In this study, we examine the research on concepts, and the principles of business information visualization, because we hope to be using correctly by business Ph.D. students in their researches. Visual representations are likely to improve business managers, and business researchers efficiency, offer new insights, and encouraging comparisons.

  9. Visualizing Earthquakes at Divergent Plate Margins

    Science.gov (United States)

    Cara Harwood

    This screenshot from the visualization shows both continental rift zones, and ocean spreading centers, both types of divergent plate boundaries. The visualization shows how earthquakes at all types of divergent margins are shallow and have a low-magnitude. Click the image to enlarge or view the MP4 movie (MP4 Video 79.3MB Aug22 11).The purpose of this activity is to introduce students to the distribution and characteristics of earthquakes associated with divergent plate boundaries. Students will learn about how the magnitude and distribution of earthquakes at divergent boundaries are related to processes that occur at these boundaries and to the geometry and position of the two diverging plates. Because the depth of earthquakes can be difficult for students to visualize in 2D representations, this activity allows students to visualize the 3D distribution of earthquakes within Earth's surface, which is essential for understanding how different types of earthquakes occur in different tectonic settings. Locations featured in the visualization include the Mid-Atlantic Ridge, the East Pacific Rise, and the East African Rift Zone. Talking points and questions are included to facilitate using this visualization as part of an interactive lecture. In addition to playing back the visualization, instructors can also download the visualization software and data set and explore it themselves.

  10. Promoting Visualization Skills through Deconstruction Using Physical Models and a Visualization Activity Intervention

    Science.gov (United States)

    Schiltz, Holly Kristine

    Visualization skills are important in learning chemistry, as these skills have been shown to correlate to high ability in problem solving. Students' understanding of visual information and their problem-solving processes may only ever be accessed indirectly: verbalization, gestures, drawings, etc. In this research, deconstruction of complex visual concepts was aligned with the promotion of students' verbalization of visualized ideas to teach students to solve complex visual tasks independently. All instructional tools and teaching methods were developed in accordance with the principles of the theoretical framework, the Modeling Theory of Learning: deconstruction of visual representations into model components, comparisons to reality, and recognition of students' their problemsolving strategies. Three physical model systems were designed to provide students with visual and tangible representations of chemical concepts. The Permanent Reflection Plane Demonstration provided visual indicators that students used to support or invalidate the presence of a reflection plane. The 3-D Coordinate Axis system provided an environment that allowed students to visualize and physically enact symmetry operations in a relevant molecular context. The Proper Rotation Axis system was designed to provide a physical and visual frame of reference to showcase multiple symmetry elements that students must identify in a molecular model. Focus groups of students taking Inorganic chemistry working with the physical model systems demonstrated difficulty documenting and verbalizing processes and descriptions of visual concepts. Frequently asked student questions were classified, but students also interacted with visual information through gestures and model manipulations. In an effort to characterize how much students used visualization during lecture or recitation, we developed observation rubrics to gather information about students' visualization artifacts and examined the effect instructors' modeled visualization artifacts had on students. No patterns emerged from the passive observation of visualization artifacts in lecture or recitation, but the need to elicit visual information from students was made clear. Deconstruction proved to be a valuable method for instruction and assessment of visual information. Three strategies for using deconstruction in teaching were distilled from the lessons and observations of the student focus groups: begin with observations of what is given in an image and what it's composed of, identify the relationships between components to find additional operations in different environments about the molecule, and deconstructing steps of challenging questions can reveal mistakes. An intervention was developed to teach students to use deconstruction and verbalization to analyze complex visualization tasks and employ the principles of the theoretical framework. The activities were scaffolded to introduce increasingly challenging concepts to students, but also support them as they learned visually demanding chemistry concepts. Several themes were observed in the analysis of the visualization activities. Students used deconstruction by documenting which parts of the images were useful for interpretation of the visual. Students identified valid patterns and rules within the images, which signified understanding of arrangement of information presented in the representation. Successful strategy communication was identified when students documented personal strategies that allowed them to complete the activity tasks. Finally, students demonstrated the ability to extend symmetry skills to advanced applications they had not previously seen. This work shows how the use of deconstruction and verbalization may have a great impact on how students master difficult topics and combined, they offer students a powerful strategy to approach visually demanding chemistry problems and to the instructor a unique insight to mentally constructed strategies.

  11. Representation of central and peripheral vision in the primate cerebral cortex: Insights from studies of the marmoset brain.

    Science.gov (United States)

    Yu, H-H; Chaplin, T A; Rosa, M G P

    2014-09-19

    How the visual field is represented by neurons in the cerebral cortex is one of the most basic questions in visual neuroscience. However, research to date has focused heavily on the small part of the visual field within, and immediately surrounding the fovea. Studies on the cortical representation of the full visual field in the primate brain are still scarce. We have been investigating this issue with electrophysiological and anatomical methods, taking advantage of the small and lissencephalic marmoset brain, which allows easy access to the representation of the full visual field in many cortical areas. This review summarizes our main findings to date, and relates the results to a broader question: is the peripheral visual field processed in a similar manner to the central visual field, but with lower spatial acuity? Given the organization of the visual cortex, the issue can be addressed by asking: (1) Is visual information processed in the same way within a single cortical area? and (2) Are different cortical areas specialized for different parts of the visual field? The electrophysiological data from the primary visual cortex indicate that many aspects of spatiotemporal computation are remarkably similar across the visual field, although subtle variations are detectable. Our anatomical and electrophysiological studies of the extrastriate cortex, on the other hand, suggest that visual processing in the far peripheral visual field is likely to involve a distinct network of specialized cortical areas, located in the depths of the calcarine sulcus and interhemispheric fissure. PMID:25242578

  12. Fixed-Rank Representation for Unsupervised Visual Learning

    OpenAIRE

    Liu, Risheng; Lin, Zhouchen; La Torre, Fernando; Su, Zhixun

    2012-01-01

    Subspace clustering and feature extraction are two of the most commonly used unsupervised learning techniques in computer vision and pattern recognition. State-of-the-art techniques for subspace clustering make use of recent advances in sparsity and rank minimization. However, existing techniques are computationally expensive and may result in degenerate solutions that degrade clustering performance in the case of insufficient data sampling. To partially solve these problems...

  13. Advances in bio-inspired computing for combinatorial optimization problems

    CERN Document Server

    Pintea, Camelia-Mihaela

    2013-01-01

    Advances in Bio-inspired Combinatorial Optimization Problems' illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems.Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed.Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive a

  14. INSPIRE - The Next-Generation HEP Information System

    CERN Document Server

    Holtkamp, Annette

    2010-01-01

    CERN, DESY, Fermilab and SLAC have joined forces to build INSPIRE, the next-generation HEP information platform offering innovative tools for information discovery and communication. Representing a natural community-based evolution of SPIRES, INSPIRE provides fast access to the entire body of HEP literature. As a subject repository it will host fulltexts of preprints, Open Access journal articles and supplementary material like conference slides and multimedia, enabling novel text- and data mining applications. In the spirit of Web2.0 INSPIRE will also supply tools for collaboration and user-enriched content.

  15. Enhanced photovoltaics inspired by the fovea centralis.

    Science.gov (United States)

    Shalev, Gil; Schmitt, Sebastian W; Embrechts, Heidemarie; Brönstrup, Gerald; Christiansen, Silke

    2015-01-01

    The fovea centralis is a closely-packed vertical array of inverted-cone photoreceptor cells located in the retina that is responsible for high acuity binocular vision. The cones are operational in well-lit environments and are responsible for trapping the impinging illumination. We present the vertical light-funnel silicon array as a light-trapping technique for photovoltaic applications that is bio-inspired by the properties of the fovea centralis. We use opto-electronic simulations to evaluate the performance of light-funnel solar cell arrays. Light-funnel arrays present ~65% absorption enhancement compared to a silicon film of identical thickness and exhibit power conversion efficiencies that are 60% higher than those of optimized nanowire arrays of the same thickness although nanowire arrays consist of more than 2.3 times the amount of silicon. We demonstrate the superior absorption of the light-funnel arrays as compared with recent advancements in the field. Fabrication of silicon light-funnel arrays using low-cost processing techniques is demonstrated. PMID:25709091

  16. Viscous pumping inspired by flexible propulsion

    CERN Document Server

    Arco, Roger M; Lauga, Eric; Zenit, Roberto

    2014-01-01

    Fluid-suspended microorganisms have evolved different swimming and feeding strategies in order to cope with an environment dominated by viscous effects. For instance ciliated organisms rely on the collective motion of flexible appendices to move and feed. By performing a non-reciprocal motion, flexible filaments can produce a net propulsive force, or pump fluid, in the absence of inertia. Inspired by such fundamental concept, we propose a strategy to produce macroscopic pumping and mixing in creeping flow. We measure experimentally the net motion of a Newtonian viscous fluid induced by the reciprocal motion of a flapper. When the flapper is rigid no net motion is induced. In contrast, when the flapper is made of a flexible material, a net fluid pumping is measured. We quantify the effectiveness of this pumping strategy and show that optimal pumping is achieved when the length of the flapper is on the same order as the elasto-hydrodynamic penetration length. We finally discuss the possible applications of flex...

  17. Søren Buus. Thirty years of psychoacoustic inspiration

    DEFF Research Database (Denmark)

    Poulsen, Torben Technical University of Denmark,

    2005-01-01

    Søren Buus did his MSc at the Acoustics Laboratory, Technical University of Denmark (DTU), in 1975 on the topic headphone calibration. He showed the importance of reliable reference values for psychoacoustic research and Søren was a great inspiration for my work (Scand. Audiol. 20, 205–207 (1991); 27, 105–112 (1998)). Already from the seventies, temporal integration of loudness has been a major topic in the collaboration with Søren (Buus et al., J. Acoust. Soc. Am. 105, 3464–3480 (1999)) and the measurements of temporal integration over a wide range of presentation levels led to the important finding about the shape of the loudness function (Buus et al., J. Acoust. Soc. Am. 100, 669–680 (1997)). Søren talked about the importance of the psychophysical procedure and the influence from the procedure on the results (Buus, Proceedings 19th Danavox Symposium (2001), pp. 183–226). The goal was to obtain reliable, unbiased, and precise results. An overview of some of the above investigations will be presented together with recent results from a MSc project on headphone calibration of short duration sounds for ABR measurements.

  18. Detection strategies for extreme mass ratio inspirals

    International Nuclear Information System (INIS)

    The capture of compact stellar remnants by galactic black holes provides a unique laboratory for exploring the near-horizon geometry of the Kerr spacetime, or possible departures from general relativity if the central cores prove not to be black holes. The gravitational radiation produced by these extreme mass ratio inspirals (EMRIs) encodes a detailed map of the black hole geometry, and the detection and characterization of these signals is a major scientific goal for the LISA mission. The waveforms produced are very complex, and the signals need to be coherently tracked for tens of thousands of cycles to produce a detection, making EMRI signals one of the most challenging data analysis problems in all of gravitational wave astronomy. Estimates for the number of templates required to perform an exhaustive grid-based matched-filter search for these signals are astronomically large, and far out of reach of current computational resources. Here I describe an alternative approach that employs a hybrid between genetic algorithms and Markov chain Monte Carlo techniques, along with several time-saving techniques for computing the likelihood function. This approach has proven effective at the blind extraction of relatively weak EMRI signals from simulated LISA data sets.

  19. Liquid crystal assemblies in biologically inspired systems

    Science.gov (United States)

    Safinya, Cyrus R.; Deek, Joanna; Beck, Roy; Jones, Jayna B.; Leal, Cecilia; Ewert, Kai K.; Li, Youli

    2013-01-01

    In this paper, which is part of a collection in honor of Noel Clark's remarkable career on liquid crystal and soft matter research, we present examples of biologically inspired systems, which form liquid crystal (LC) phases with their LC nature impacting biological function in cells or being important in biomedical applications. One area focuses on understanding network and bundle formation of cytoskeletal polyampholytes (filamentous-actin, microtubules, and neurofilaments). Here, we describe studies on neurofilaments (NFs), the intermediate filaments of neurons, which form open network nematic liquid crystal hydrogels in axons. Synchrotron small-angle-x-ray scattering studies of NF-protein dilution experiments and NF hydrogels subjected to osmotic stress show that neurofilament networks are stabilized by competing long-range repulsion and attractions mediated by the neurofilament's polyampholytic sidearms. The attractions are present both at very large interfilament spacings, in the weak sidearm-interpenetrating regime, and at smaller interfilament spacings, in the strong sidearm-interpenetrating regime. A second series of experiments will describe the structure and properties of cationic liposomes (CLs) complexed with nucleic acids (NAs). CL-NA complexes form liquid crystalline phases, which interact in a structure-dependent manner with cellular membranes enabling the design of complexes for efficient delivery of nucleic acid (DNA, RNA) in therapeutic applications. PMID:24558293

  20. Enhanced photovoltaics inspired by the fovea centralis

    Science.gov (United States)

    Shalev, Gil; Schmitt, Sebastian W.; Embrechts, Heidemarie; Brönstrup, Gerald; Christiansen, Silke

    2015-02-01

    The fovea centralis is a closely-packed vertical array of inverted-cone photoreceptor cells located in the retina that is responsible for high acuity binocular vision. The cones are operational in well-lit environments and are responsible for trapping the impinging illumination. We present the vertical light-funnel silicon array as a light-trapping technique for photovoltaic applications that is bio-inspired by the properties of the fovea centralis. We use opto-electronic simulations to evaluate the performance of light-funnel solar cell arrays. Light-funnel arrays present ~65% absorption enhancement compared to a silicon film of identical thickness and exhibit power conversion efficiencies that are 60% higher than those of optimized nanowire arrays of the same thickness although nanowire arrays consist of more than 2.3 times the amount of silicon. We demonstrate the superior absorption of the light-funnel arrays as compared with recent advancements in the field. Fabrication of silicon light-funnel arrays using low-cost processing techniques is demonstrated.

  1. Biology-inspired Architecture for Situation Management

    Science.gov (United States)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2006-01-01

    Situation Management is a rapidly developing science combining new techniques for data collection with advanced methods of data fusion to facilitate the process leading to correct decisions prescribing action. Current research focuses on reducing increasing amounts of diverse data to knowledge used by decision makers and on reducing time between observations, decisions and actions. No new technology is more promising for increasing the diversity and fidelity of observations than sensor networks. However, current research on sensor networks concentrates on a centralized network architecture. We believe this trend will not realize the full potential of situation management. We propose a new architecture modeled after biological ecosystems where motes are autonomous and intelligent, yet cooperate with local neighborhoods. Providing a layered approach, they sense and act independently when possible, and cooperate with neighborhoods when necessary. The combination of their local actions results in global effects. While situation management research is currently dominated by military applications, advances envisioned for industrial and business applications have similar requirements. NASA has requirements for intelligent and autonomous systems in future missions that can benefit from advances in situation management. We describe requirements for the Integrated Vehicle Health Management program where our biology-inspired architecture provides a layered approach and decisions can be made at the proper level to improve safety, reduce costs, and improve efficiency in making diagnostic and prognostic assessments of the structural integrity, aerodynamic characteristics, and operation of aircraft.

  2. Søren Buus. Thirty years of psychoacoustic inspiration

    Science.gov (United States)

    Poulsen, Torben

    2005-04-01

    Søren Buus did his MSc at the Acoustics Laboratory, Technical University of Denmark (DTU), in 1975 on the topic headphone calibration. He showed the importance of reliable reference values for psychoacoustic research and Søren was a great inspiration for my work [Scand. Audiol. 20, 205-207 (1991); 27, 105-112 (1998)]. Already from the seventies, temporal integration of loudness has been a major topic in the collaboration with Søren [Buus et al., J. Acoust. Soc. Am. 105, 3464-3480 (1999)] and the measurements of temporal integration over a wide range of presentation levels led to the important finding about the shape of the loudness function [Buus et al., J. Acoust. Soc. Am. 100, 669-680 (1997)]. Søren talked about the importance of the psychophysical procedure and the influence from the procedure on the results [Buus, Proceedings 19th Danavox Symposium (2001), pp. 183-226]. The goal was to obtain reliable, unbiased, and precise results. An overview of some of the above investigations will be presented together with recent results from a MSc project on headphone calibration of short duration sounds for ABR measurements.

  3. Development of a biologically inspired hydrobot tail

    Science.gov (United States)

    Moore, Danielle; Janneh, Alhaji; Philen, Michael

    2014-04-01

    It has been hypothesized that Europa, one of the moons of Jupiter, has a large ocean underneath a thick layer of ice. In order to determine whether life exists, it has been proposed that an underwater glider (hydrobot) capable of propulsion could be sent to explore the vast ocean. In this research, we considered various smart materials to create a propulsion device inspired by dolphin tails. Dolphins are highly efficient and excellent gliders, which makes them the ideal candidate for ocean exploration. In order to select the best dolphin species, we began by reviewing literature and then utilized the Analytical Hierarchy Process (AHP) to compare the different species. Lagenorhynchus obliquidens (Pacific White-Sided Dolphin) was found to be the best choice for creating a bioinspired hydrobot. We then conducted literature review of various smart materials and using this knowledge constructed a hydrobot tail prototype. This prototype demonstrates that smart materials can be fashioned into suitable actuators to control a tail fashioned after a dolphin.

  4. MENTAL STATE REPRESENTATION: SPATIOTEMPORAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Alexander Oktyabrinovich Prokhorov

    2014-01-01

    Full Text Available Since the time of statement of the problem of states in psychology, the study of “sensuous” tissue – the mental state representation-takes a fundamental meaning. The problem is concluded in the following questions: “How is mental state represented in the consciousness of an individual?”, “What is the specificity of the mental state representation as distinguished from the subject-matter representation?”, “What are the mechanisms of the mental state representation occurrence and the peculiarities of its dynamics? The study of the mental state representation will allow to explain its specificity and difference from the figurative representation, the peculiarities of state explication as a representation in the consciousness and its relation with other elements of consciousness, will allow to show the regularities of the mental state representation development and its dynamics, factors, which influence the specificity of its occurrence, the regulatory role of the state representation in the vital function. From these perspectives, the article presents the results of the study of spatiotemporal characteristics of the mental state representation; reveals the peculiar features of the spatiotemporal organization of mental state representations: Relieves, specificity, magnitude, variability of indicators, changes of structural characteristics in time spans; considers the age-specific peculiar features of the spatiotemporal organization of mental state representations in terms of organization, stability, coherence and differentiated nature of spatiotemporal structures with the representatives of certain age groups.

  5. Neural Correlates of Visual versus Abstract Letter Processing in Roman and Arabic Scripts

    OpenAIRE

    Carreiras, Manuel; Perea, Manuel; Gil-lo?pez, Cristina; Mallouh, Reem Abu; Salillas, Elena

    2013-01-01

    In alphabetic orthographies, letter identification is a critical process during the recognition of visually presented words. In the present experiment, we examined whether and when visual form influences letter processing in two very distinct alphabets (Roman and Arabic). Disentangling visual versus abstract letter representations was possible because letters in the Roman alphabet may look visually similar/dissimilar in lowercase and uppercase forms (e.g., c-C vs. r-R) and letters in the Arab...

  6. Digital media Experiences for Visual Learning

    DEFF Research Database (Denmark)

    Buhl, Mie

    2013-01-01

    Visual learning is a topic for didactic studies in all levels of educaion, brought about by an increasing use of digital meida- digital media give rise to discussions of how learning expereienes come about from various media ressources that generate new learning situations. new situations call for new tools and new theoretical approaches with which to understand them. the article argues that the current phase of social practices and technological development makes it difficult to disitnguish between experience with digital media and mediated experiences, because of the use of renegotiation og both possibilites of technology and the nature of the content it facilitates. the discussion comes in three parts: 1. the alteration of visual representations in contemporary teaching and learning brought about by digital interfaces, 2. the functions af visual experience in learning processes brought about by the nature of diverse digital artefacts, 3. the learning potentials in using mobils devices for integrating thebody in visual perception processes.

  7. Interactive Visualization Package for 4D LFTs

    CERN Document Server

    Hip, I

    2007-01-01

    Recent interest in exploring local vacuum structure of QCD through the properties of the eigenmodes of the lattice Dirac operators rises again the challenge to visualize four-dimensional objects and structures which appear in lattice field theories. In spite of complex and powerful commercial visualization software packages on the market, there are reasons to develop Interactive Visualization Package (IVP). We believe that an apprehension of the complex structures is possible only through the interactive approach, with the user being able to manipulate data representations and slices through the lattice in real-time. Further insight should also be gained by an interactive parallel examination of different physical quantities, e.g. eigenmode density with topological charge or action densities. Finally, thanks to constantly falling hardware prices, IVP makes it possible to use almost any Linux PC as a visualization tool for research in lattice field theory.

  8. Using Jquery with Snort to Visualize Intrusion

    Directory of Open Access Journals (Sweden)

    Alaa El - Din Riad

    2012-01-01

    Full Text Available The explosive growth of malicious activities on worldwide communication networks, such as the Internet, has highlighted the need for efficient intrusion detection systems. The efficiency of traditional intrusion detection systems is limited by their inability to effectively relay relevant information due to their lack of interactive / immersive technologies. Visualized information is a technique that can encode large amounts of complex interrelated data, being at the same time easily quantified, manipulated, and processed by a human user. Authors have found that the representations can be quite effective at conveying the needed information and resolving the relationships extremely rapidly. To facilitate the creation of novel visualizations this paper presents a new framework that is designed with using data visualization technique by using Jquery Php for analysis and visualizes snort result data for user.

  9. Hyper-heuristic Evolution of Dispatching Rules: A Comparison of Rule Representations.

    Science.gov (United States)

    Branke, Jürgen; Hildebrandt, Torsten; Scholz-Reiter, Bernd

    2014-06-01

    Dispatching rules are frequently used for real-time, online scheduling in complex manufacturing systems. Design of such rules is usually done by experts in a time consuming trial-and-error process. Recently, evolutionary algorithms have been proposed to automate the design process. There are several possibilities to represent rules for this hyper-heuristic search. Because the representation determines the search neighborhood and the complexity of the rules that can be evolved, a suitable choice of representation is key for a successful evolutionary algorithm. In this paper we empirically compare three different representations, both numeric and symbolic, for automated rule design: A linear combination of attributes, a representation based on artificial neural networks, and a tree representation. Using appropriate evolutionary algorithms (CMA-ES for the neural network and linear representations, genetic programming for the tree representation), we empirically investigate the suitability of each representation in a dynamic stochastic job shop scenario. We also examine the robustness of the evolved dispatching rules against variations in the underlying job shop scenario, and visualize what the rules do, in order to get an intuitive understanding of their inner workings. Results indicate that the tree representation using an improved version of genetic programming gives the best results if many candidate rules can be evaluated, closely followed by the neural network representation that already leads to good results for small to moderate computational budgets. The linear representation is found to be competitive only for extremely small computational budgets. PMID:24885679

  10. Effect of inspiration on airway dimensions measured in maximal inspiration CT images of subjects without airflow limitation

    DEFF Research Database (Denmark)

    Petersen, Jens; Wille, Mathilde M.W.

    2014-01-01

    OBJECTIVES: To study the effect of inspiration on airway dimensions measured in voluntary inspiration breath-hold examinations. METHODS: 961 subjects with normal spirometry were selected from the Danish Lung Cancer Screening Trial. Subjects were examined annually for five years with low-dose CT. Automated software was utilized to segment lungs and airways, identify segmental bronchi, and match airway branches in all images of the same subject. Inspiration level was defined as segmented total lung volume (TLV) divided by predicted total lung capacity (pTLC). Mixed-effects models were used to predict relative change in lumen diameter (ALD) and wall thickness (AWT) in airways of generation 0 (trachea) to 7 and segmental bronchi (R1-R10 and L1-L10) from relative changes in inspiration level. RESULTS: Relative changes in ALD were related to relative changes in TLV/pTLC, and this distensibility increased with generation (p?inspire more deeply prior to imaging have larger ALD and smaller AWT. This effect is more pronounced in higher-generation airways. Therefore, adjustment of inspiration level is necessary to accurately assess airway dimensions. KEY POINTS: • Airway lumen diameter increases and wall thickness decreases with inspiration • The effect of inspiration is greater in higher-generation (more peripheral) airways • Airways of generation 5 and beyond are as distensible as lung parenchyma • Airway dimensions measured from CT should be adjusted for inspiration level.

  11. Visual perception and imagery: a new molecular hypothesis.

    Science.gov (United States)

    Bókkon, I

    2009-05-01

    Here, we put forward a redox molecular hypothesis about the natural biophysical substrate of visual perception and visual imagery. This hypothesis is based on the redox and bioluminescent processes of neuronal cells in retinotopically organized cytochrome oxidase-rich visual areas. Our hypothesis is in line with the functional roles of reactive oxygen and nitrogen species in living cells that are not part of haphazard process, but rather a very strict mechanism used in signaling pathways. We point out that there is a direct relationship between neuronal activity and the biophoton emission process in the brain. Electrical and biochemical processes in the brain represent sensory information from the external world. During encoding or retrieval of information, electrical signals of neurons can be converted into synchronized biophoton signals by bioluminescent radical and non-radical processes. Therefore, information in the brain appears not only as an electrical (chemical) signal but also as a regulated biophoton (weak optical) signal inside neurons. During visual perception, the topological distribution of photon stimuli on the retina is represented by electrical neuronal activity in retinotopically organized visual areas. These retinotopic electrical signals in visual neurons can be converted into synchronized biophoton signals by radical and non-radical processes in retinotopically organized mitochondria-rich areas. As a result, regulated bioluminescent biophotons can create intrinsic pictures (depictive representation) in retinotopically organized cytochrome oxidase-rich visual areas during visual imagery and visual perception. The long-term visual memory is interpreted as epigenetic information regulated by free radicals and redox processes. This hypothesis does not claim to solve the secret of consciousness, but proposes that the evolution of higher levels of complexity made the intrinsic picture representation of the external visual world possible by regulated redox and bioluminescent reactions in the visual system during visual perception and visual imagery. PMID:19428983

  12. Naturalising Representational Content.

    Science.gov (United States)

    Shea, Nicholas

    2013-05-01

    This paper sets out a view about the explanatory role of representational content and advocates one approach to naturalising content - to giving a naturalistic account of what makes an entity a representation and in virtue of what it has the content it does. It argues for pluralism about the metaphysics of content and suggests that a good strategy is to ask the content question with respect to a variety of predictively successful information processing models in experimental psychology and cognitive neuroscience; and hence that data from psychology and cognitive neuroscience should play a greater role in theorising about the nature of content. Finally, the contours of the view are illustrated by drawing out and defending a surprising consequence: that individuation of vehicles of content is partly externalist. PMID:24563661

  13. Higher Representations Duals

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We uncover novel solutions of the 't Hooft anomaly matching conditions for scalarless gauge theories with matter transforming according to higher dimensional representations of the underlying gauge group. We argue that, if the duals exist, they are gauge theories with fermions transforming according to the defining representation of the dual gauge group. The resulting conformal windows match the one stemming from the all-orders beta function results when taking the anomalous dimension of the fermion mass to be unity which are also very close to the ones obtained using the Schwinger-Dyson approximation. We use the solutions to gain useful insight on the conformal window of the associated electric theory. A consistent picture emerges corroborating previous results obtained via different analytic methods and in agreement with first principle lattice explorations.

  14. Visual stability

    OpenAIRE

    Melcher, David

    2011-01-01

    Our vision remains stable even though the movements of our eyes, head and bodies create a motion pattern on the retina. One of the most important, yet basic, feats of the visual system is to correctly determine whether this retinal motion is owing to real movement in the world or rather our own self-movement. This problem has occupied many great thinkers, such as Descartes and Helmholtz, at least since the time of Alhazen. This theme issue brings together leading researchers from animal neuro...

  15. Visual Calculus

    Science.gov (United States)

    This Website from the University of Tennessee, Knoxville's Mathematics Department provides tutorials, drills, and computer programs that aid in understanding pre-calculus and calculus. The well-organized materials contain nifty animations, interactive pages, step-by-step solution applets, and illustrations. Getting the full benefits of Visual Calculus requires downloading certain free plug-ins (Flash and LiveMath -- links given) and using Java applets. Some of the topics covered include limits, continuous functions, piecewise functions, derivatives, differentiation formulas, integrals, parametric curves, moments, and sequences and series. This Website is extremely thorough and should be useful for students and professors of college-level calculus.

  16. Representations at Work

    Directory of Open Access Journals (Sweden)

    Martin M. Nielsen

    2003-08-01

    Full Text Available This paper argues that “distributed cognition” facilitates a framework for studying aspects of organizations as socio-technical systems. An approach studying tool use and workflows is laid out and utilized in an analysis of information processing at a post office. Finally, some implications are presented – for organizational as well as cognitive studies. Research on performative representations is called for and, consequently, a widening of the cognition-as-computation framework is suggested.

  17. Knowledge representation with SOA

    OpenAIRE

    Daniela Gotseva; Ioannis Dimakopoulos

    2013-01-01

    This paper addresses the problem of supporting the software development process through the artificial intelligence. The expert systems could advise the Domain Engineer in programming without the detailed experience in programming languages. He will use and integrate, with the help of deductive database and domain knowledge, the previously developed software components to new complex functionalities. The objective of this document is to provide the knowledge representation about atomic Web Se...

  18. Computing modular Galois representations

    OpenAIRE

    Mascot, Nicolas

    2012-01-01

    We compute modular Galois representations associated with a newform $f$, and study the related problem of computing the coefficients of $f$ modulo a small prime $\\ell$. To this end, we design a practical variant of the complex approximations method presented in the book edited by B. Edixhoven and J.-M. Couveignes. Its efficiency stems from several new ingredients. For instance, we use fast exponentiation in the modular jacobian instead of analytic continuation, which greatly...

  19. Representation as a Service

    OpenAIRE

    Alsharif, Ouais; Bachman, Philip; Pineau, Joelle

    2014-01-01

    Consider a Machine Learning Service Provider (MLSP) designed to rapidly create highly accurate learners for a never-ending stream of new tasks. The challenge is to produce task-specific learners that can be trained from few labeled samples, even if tasks are not uniquely identified, and the number of tasks and input dimensionality are large. In this paper, we argue that the MLSP should exploit knowledge from previous tasks to build a good representation of the environment it...

  20. Rights of Representation

    OpenAIRE

    O Toole, Emer

    2012-01-01

    This doctoral thesis proposes an ethics of intercultural theatre, offering a materially engaged framework through which to approach both the problematics and positive potential of intercultural practice. Framing intercultural debates in terms of rights of representation, it suggests that the right to represent Othered people and cultures can be strengthened through 1) involvement of members of all represented cultures, 2) equality and creative agency of all collaborators, 3) advantageousness ...

  1. Dissociation in accessing space and number representations in pathologic pain patients.

    Science.gov (United States)

    Sumitani, Masahiko; Misaki, Masaya; Kumagaya, Shinichiro; Ogata, Toru; Yamada, Yoshitsugu; Miyauchi, Satoru

    2014-10-01

    Space is represented by integrating egocentric and allocentric reference frames; however, little is known about the role of these independent reference frames in number representation. Using patients with unilateral pathologic pain in one limb, we investigated whether number representation is closely linked to space representation by evaluating visual subjective body-midline judgments in dark and light conditions (egocentric and allocentric space, respectively). To evaluate the number representation, pairs of numbers were read aloud to the participant, who was then asked to state the midpoint number that they intuitively perceived to be at the middle of each interval. All of the patients perceived allocentric space accurately in the light condition. However, each of the patients showed perceptual shifts in egocentric space and number representation in the dark as compared with control subjects. Direct comparison showed a consistent relationship between number representation and egocentric space. We suggest that numbers are represented spatially by integrating these independent reference frames. PMID:25086215

  2. Flexibility in embodied lexical-semantic representations.

    Science.gov (United States)

    van Dam, Wessel O; van Dijk, Margriet; Bekkering, Harold; Rueschemeyer, Shirley-Ann

    2012-10-01

    According to an embodied view of language comprehension, language concepts are grounded in our perceptual systems. Evidence for the idea that concepts are grounded in areas involved in action and perception comes from both behavioral and neuroimaging studies (Glenberg [1997]: Behav Brain Sci 20:1-55; Barsalou [1999]: Behav Brain Sci 22:577-660; Pulvermueller [1999]: Behav Brain Sci 22:253-336; Barsalou et al. [2003]: Trends Cogn Sci 7:84-91). However, the results from several studies indicate that the activation of information in perception and action areas is not a purely automatic process (Raposo et al. [2009]: Neuropsychologia 47:388-396; Rueschemeyer et al. [2007]: J Cogn Neurosci 19:855-865). These findings suggest that embodied representations are flexible. In these studies, flexibility is characterized by the relative presence or absence of activation in our perceptual systems. However, even if the context in which a word is presented does not undermine a motor interpretation, it is possible that the degree to which a modality-specific region contributes to a representation depends on the context in which conceptual features are retrieved. In the present study, we investigated this issue by presenting word stimuli for which both motor and visual properties (e.g., Tennis ball, Boxing glove) were important in constituting the concept. Conform with the idea that language representations are flexible and context dependent, we demonstrate that the degree to which a modality-specific region contributes to a representation considerably changes as a function of context. PMID:21976384

  3. The field representation language.

    Science.gov (United States)

    Tsafnat, Guy

    2008-02-01

    The complexity of quantitative biomedical models, and the rate at which they are published, is increasing to a point where managing the information has become all but impossible without automation. International efforts are underway to standardise representation languages for a number of mathematical entities that represent a wide variety of physiological systems. This paper presents the Field Representation Language (FRL), a portable representation of values that change over space and/or time. FRL is an extensible mark-up language (XML) derivative with support for large numeric data sets in Hierarchical Data Format version 5 (HDF5). Components of FRL can be reused through unified resource identifiers (URI) that point to external resources such as custom basis functions, boundary geometries and numerical data. To demonstrate the use of FRL as an interchange we present three models that study hyperthermia cancer treatment: a fractal model of liver tumour microvasculature; a probabilistic model simulating the deposition of magnetic microspheres throughout it; and a finite element model of hyperthermic treatment. The microsphere distribution field was used to compute the heat generation rate field around the tumour. We used FRL to convey results from the microsphere simulation to the treatment model. FRL facilitated the conversion of the coordinate systems and approximated the integral over regions of the microsphere deposition field. PMID:17434811

  4. Fock Representations and Quantum Matrices

    CERN Document Server

    Shklyarov, D; Vaksman, L

    2004-01-01

    In this paper we study the Fock representation of a certain $*$-algebra which appears naturally in the framework of quantum group theory. It is also a generalization of the twisted CCR-algebra introduced by W. Pusz and S.~Woronowicz. We prove that the Fock representation is a faithful irreducible representation of the algebra by bounded operators in a Hilbert space, and, moreover, it is the only (up to unitary equivalence) representation possessing these properties. Keywords and phrases: Fock representation, quantum groups, bounded symmetric domain, non-compact Hermitian symmetric spaces

  5. Nature Inspired Cooperative Strategies for Optimization (NICSO 2011)

    CERN Document Server

    Krasnogor, Natalio; Dumitrescu, Dan; Chira, Camelia; Lung, Rodica

    2012-01-01

    Biological and other natural processes have always been a source of inspiration for computer science and information technology. Many emerging problem solving techniques integrate advanced evolution and cooperation strategies, encompassing a range of spatio-temporal scales for visionary conceptualization of evolutionary computation. The previous editions of NICSO were held in Granada, Spain (2006), Acireale, Italy (2007), Tenerife, Spain (2008), and again in Granada in 2010. NICSO evolved to be one of the most interesting and profiled workshops in nature inspired computing. NICSO 2011 has offered an inspiring environment for debating the state of the art ideas and techniques in nature inspired cooperative strategies and a comprehensive image on recent applications of these ideas and techniques. The topics covered by this volume include Swarm Intelligence (such as Ant and Bee Colony Optimization), Genetic Algorithms, Multiagent Systems, Coevolution and Cooperation strategies, Adversarial Models, Synergic Build...

  6. Biomimetics - using nature as an inspiring model for innovation

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2006-01-01

    In this presentation, various aspects of the field of biomimetics will be reviewed, examples of inspiring biological models and practical applications will be described, and challenges and potential direction of the field will be discussed.

  7. The Role of INSPIRE in HEP Data Preservation Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Travis C.; /SLAC

    2010-06-11

    INSPIRE is a new community resource for HEP literature and associated information. It is based on the combination of SPIRES content and features and the powerful Invenio software developed at CERN. The INSPIRE service will come online in fall of 2009, and be run by CERN, DESY, Fermilab and SLAC. Data preservation, to be successful, must not only preserve the data, but must also organize it and allow it to be found by those who would make use of it, and resources such as INSPIRE are ideally positioned and ready to provide this organization and context. In addition, INSPIRE will soon be ready to provide storage of smaller datasets, such as high-level analysis objects, as stand-alone objects placed in the repository or as objects associated with an analysis paper. This small project could pave the way towards the context and organization which is one piece of the infrastructure needed for all levels of data preservation.

  8. Fabiola Gianotti is one of The Guardian's "most inspirational women"

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Fabiola Gianotti, spokesperson for the ATLAS experiment, was named one of the world’s 100 most inspirational women by The Guardian newspaper. The list was drawn up in celebration of the International Women’s Day on 8 March.    

  9. The Role of INSPIRE in HEP Data Preservation Efforts

    International Nuclear Information System (INIS)

    INSPIRE is a new community resource for HEP literature and associated information. It is based on the combination of SPIRES content and features and the powerful Invenio software developed at CERN. The INSPIRE service will come online in fall of 2009, and be run by CERN, DESY, Fermilab and SLAC. Data preservation, to be successful, must not only preserve the data, but must also organize it and allow it to be found by those who would make use of it, and resources such as INSPIRE are ideally positioned and ready to provide this organization and context. In addition, INSPIRE will soon be ready to provide storage of smaller datasets, such as high-level analysis objects, as stand-alone objects placed in the repository or as objects associated with an analysis paper. This small project could pave the way towards the context and organization which is one piece of the infrastructure needed for all levels of data preservation.

  10. Bio-inspired computation in unmanned aerial vehicles

    CERN Document Server

    Duan, Haibin

    2014-01-01

    Bio-inspired Computation in Unmanned Aerial Vehicles focuses on the aspects of path planning, formation control, heterogeneous cooperative control and vision-based surveillance and navigation in Unmanned Aerial Vehicles (UAVs) from the perspective of bio-inspired computation. It helps readers to gain a comprehensive understanding of control-related problems in UAVs, presenting the latest advances in bio-inspired computation. By combining bio-inspired computation and UAV control problems, key questions are explored in depth, and each piece is content-rich while remaining accessible. With abundant illustrations of simulation work, this book links theory, algorithms and implementation procedures, demonstrating the simulation results with graphics that are intuitive without sacrificing academic rigor. Further, it pays due attention to both the conceptual framework and the implementation procedures. The book offers a valuable resource for scientists, researchers and graduate students in the field of Control, Aeros...

  11. Bio-inspired UAV routing, source localization, and acoustic signature classification for persistent surveillance

    Science.gov (United States)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Pham, Tien

    2011-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara and the Army Research Laboratory* is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data. A fast and accurate method has been developed to localize an event by fusing data from a sparse number of UGSs. This technique uses a bio-inspired algorithm based on chemotaxis or the motion of bacteria seeking nutrients in their environment. A unique acoustic event classification algorithm was also developed based on using swarm optimization. Additional studies addressed the problem of routing multiple UAVs, optimally placing sensors in the field and locating the source of gunfire at helicopters. A field test was conducted in November of 2009 at Camp Roberts, CA. The field test results showed that a system controlled by bio-inspired software algorithms can autonomously detect and locate the source of an acoustic event with very high accuracy and visually verify the event. In nine independent test runs of a UAV, the system autonomously located the position of an explosion nine times with an average accuracy of 3 meters. The time required to perform source localization using the UAV was on the order of a few minutes based on UAV flight times. In June 2011, additional field tests of the system will be performed and will include multiple acoustic events, optimal sensor placement based on acoustic phenomenology and the use of the International Technology Alliance (ITA) Sensor Network Fabric (IBM).

  12. A bio-inspired flying robot sheds light on insect piloting abilities.

    Science.gov (United States)

    Franceschini, Nicolas; Ruffier, Franck; Serres, Julien

    2007-02-20

    When insects are flying forward, the image of the ground sweeps backward across their ventral viewfield and forms an "optic flow," which depends on both the groundspeed and the groundheight. To explain how these animals manage to avoid the ground by using this visual motion cue, we suggest that insect navigation hinges on a visual-feedback loop we have called the optic-flow regulator, which controls the vertical lift. To test this idea, we built a micro-helicopter equipped with an optic-flow regulator and a bio-inspired optic-flow sensor. This fly-by-sight micro-robot can perform exacting tasks such as take-off, level flight, and landing. Our control scheme accounts for many hitherto unexplained findings published during the last 70 years on insects' visually guided performances; for example, it accounts for the fact that honeybees descend in a headwind, land with a constant slope, and drown when travelling over mirror-smooth water. Our control scheme explains how insects manage to fly safely without any of the instruments used onboard aircraft to measure the groundheight, groundspeed, and descent speed. An optic-flow regulator is quite simple in terms of its neural implementation and just as appropriate for insects as it would be for aircraft. PMID:17291757

  13. Symbolic representation of recurrent neural network dynamics.

    Science.gov (United States)

    Huynh, Thuan Q; Reggia, James A

    2012-10-01

    Simple recurrent error backpropagation networks have been widely used to learn temporal sequence data, including regular and context-free languages. However, the production of relatively large and opaque weight matrices during learning has inspired substantial research on how to extract symbolic human-readable interpretations from trained networks. Unlike feedforward networks, where research has focused mainly on rule extraction, most past work with recurrent networks has viewed them as dynamical systems that can be approximated symbolically by finite-state machine (FSMs). With this approach, the network's hidden layer activation space is typically divided into a finite number of regions. Past research has mainly focused on better techniques for dividing up this activation space. In contrast, very little work has tried to influence the network training process to produce a better representation in hidden layer activation space, and that which has been done has had only limited success. Here we propose a powerful general technique to bias the error backpropagation training process so that it learns an activation space representation from which it is easier to extract FSMs. Using four publicly available data sets that are based on regular and context-free languages, we show via computational experiments that the modified learning method helps to extract FSMs with substantially fewer states and less variance than unmodified backpropagation learning, without decreasing the neural networks' accuracy. We conclude that modifying error backpropagation so that it more effectively separates learned pattern encodings in the hidden layer is an effective way to improve contemporary FSM extraction methods. PMID:24808009

  14. Filling gaps in visual motion for target capture.

    Science.gov (United States)

    Bosco, Gianfranco; Monache, Sergio Delle; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka; Lacquaniti, Francesco

    2015-01-01

    A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation. PMID:25755637

  15. Dry friction of microstructured polymer surfaces inspired by snake skin

    OpenAIRE

    Baum, Martina J.; Heepe, Lars; Fadeeva, Elena; Gorb, Stanislav N.

    2014-01-01

    The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae). Frictional properties of snake-inspired microstructured polymer surface (SIMPS) made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured...

  16. FIRST (For Inspiration and Recognition of Science and Technology)

    Science.gov (United States)

    Dean Kamen

    For Inspiration and Recognition of Science and Technology (FIRST) is a nonprofit organization dedicated to inspiring students' interest in science and technology. FIRST programs include technology-oriented competitions and challenges in which students participate in teams, assisted by mentors, to design and build robots and meet other technological challenges. The FIRST web site includes an overview of the organization, descriptions of its science and technology competitions, and information for sponsors and participants.

  17. Building Blocks Propagation in Quantum-Inspired Genetic Algorithm

    OpenAIRE

    Nowotniak, Robert; Kucharski, Jacek

    2010-01-01

    This paper presents an analysis of building blocks propagation in Quantum-Inspired Genetic Algorithm, which belongs to a new class of metaheuristics drawing their inspiration from both biological evolution and unitary evolution of quantum systems. The expected number of quantum chromosomes matching a schema has been analyzed and a random variable corresponding to this issue has been introduced. The results have been compared with Simple Genetic Algorithm. Also, it has been p...

  18. A Numerical Optimization Algorithm Inspired by the Strawberry Plant

    OpenAIRE

    Merrikh-bayat, F.

    2014-01-01

    This paper proposes a new numerical optimization algorithm inspired by the strawberry plant for solving complicated engineering problems. Plants like strawberry develop both runners and roots for propagation and search for water resources and minerals. In these plants, runners and roots can be thought of as tools for global and local searches, respectively. The proposed algorithm has three main differences with the trivial nature-inspired optimization algorithms: duplication...

  19. Biologically Inspired Target Recognition in Radar Sensor Networks

    OpenAIRE

    Liang Qilian

    2010-01-01

    One of the great mysteries of the brain is cognitive control. How can the interactions between millions of neurons result in behavior that is coordinated and appears willful and voluntary? There is consensus that it depends on the prefrontal cortex (PFC). Many PFC areas receive converging inputs from at least two sensory modalities. Inspired by human's innate ability to process and integrate information from disparate, network-based sources, we apply human-inspired information integration me...

  20. Object Visualization Support for Learning Data Structures

    Directory of Open Access Journals (Sweden)

    Jauhar Ali

    2011-01-01

    Full Text Available In this study, we design and implement a visualization tool that makes it easier for students to learn object-oriented data structures and related design patterns. A data structure is a core course in almost all Computing programs. The majority of textbooks and courses on data structures these days are based on Object-Oriented Programming (OOP. In many cases, they base their pedagogy on software design patterns. However, because of heavy reliance on abstraction, they place greater demands on learners. Our tool allows students to see and interact with a visual representation of object structures and patterns used in their programs.

  1. Adapting models of visual aesthetics for personalized content creation

    DEFF Research Database (Denmark)

    Liapis, Antonios; Yannakakis, Georgios N.

    2012-01-01

    This paper introduces a search-based approach to personalized content generation with respect to visual aesthetics. The approach is based on a two-step adaptation procedure where (1) the evaluation function that characterizes the content is adjusted to match the visual aesthetics of users and (2) the content itself is optimized based on the personalized evaluation function. To test the efficacy of the approach we design fitness functions based on universal properties of visual perception, inspired by psychological and neurobiological research. Using these visual properties we generate aesthetically pleasing 2D game spaceships via neuroevolutionary constrained optimization and evaluate the impact of the designed visual properties on the generated spaceships. The offline generated spaceships are used as the initial population of an interactive evolution experiment in which players are asked to choose spaceships according to their visual taste: the impact of the various visual properties is adjusted based on player preferences and new content is generated online based on the updated computational model of visual aesthetics of the player. Results are presented which show the potential of the approach in generating content which is based on subjective criteria of visual aesthetics.

  2. Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand.

    Science.gov (United States)

    Kent, Benjamin A; Engeberg, Erik D

    2014-12-01

    Effortless control of the human hand is mediated by the physical and neural couplings inherent in the structure of the hand. This concept was explored for environmental interaction tasks with the human hand, and a novel human-inspired feedback synergy (HFS) controller was developed for a robotic hand which synchronized position and force feedback signals to mimic observed human hand motions. This was achieved by first recording the finger joint motion profiles of human test subjects, where it was observed that the subjects would extend their fingers to maintain a natural hand posture when interacting with different surfaces. The resulting human joint angle data were used as inspiration to develop the HFS controller for the anthropomorphic robotic hand, which incorporated finger abduction and force feedback in the control laws for finger extension. Experimental results showed that by projecting a broader view of the tasks at hand to each specific joint, the HFS controller produced hand motion profiles that closely mimic the observed human responses and allowed the robotic manipulator to interact with the surfaces while maintaining a natural hand posture. Additionally, the HFS controller enabled the robotic hand to autonomously traverse vertical step discontinuities without prior knowledge of the environment, visual feedback, or traditional trajectory planning techniques. PMID:25381674

  3. Opposite Effects of Visual and Auditory Word-likeness on Activity in the Visual Word Form Area

    Directory of Open Access Journals (Sweden)

    PhilippLudersdorfer

    2013-08-01

    Full Text Available The present fMRI study investigated the effects of word-likeness of visual and auditory stimuli on activity along the ventral visual stream. In the context of a one-back task, we presented visual and auditory words, pseudowords, and artificial stimuli (i.e., false-fonts and reversed-speech, respectively. Main findings were regionally specific effects of word-likeness on activation in a left ventral occipitotemporal region corresponding to the classic localization of the Visual Word Form Area (VWFA. Specifically, we found an inverse word-likeness effect for the visual stimuli in the form of decreased activation for words compared to pseudowords which, in turn, elicited decreased activation compared to the artificial stimuli. For the auditory stimuli, we found positive word-likeness effects as both words and pseudowords elicited more activation than the artificial stimuli. This resulted from a marked deactivation in response to the artificial stimuli and no such deactivation for words and pseudowords. We suggest that the opposite effects of visual and auditory word-likeness on VWFA activation can be explained by assuming the involvement of visual orthographic memory representations. For the visual stimuli, these representations reduce the coding effort as a function of word-likeness. This results in highest activation to the artificial stimuli and least activation to words for which corresponding representations exist. The positive auditory word-likeness effects may result from activation of orthographic information associated with the auditory words and pseudowords. The view that the VWFA has a primarily visual function is supported by our findings of high activation to the visual artificial stimuli (which have no phonological or semantic associations and deactivation to the auditory artificial stimuli. According to the phenomenon of cross-modal sensory suppression such deactivations during demanding auditory processing are expected in visual regions.

  4. A new image representation for compact and secure communication

    International Nuclear Information System (INIS)

    In many areas of nuclear materials management there is a need for communication, archival, and retrieval of annotated image data between heterogeneous platforms and devices to effectively implement safety, security, and safeguards of nuclear materials. Current image formats such as JPEG are not ideally suited in such scenarios as they are not scalable to different viewing formats, and do not provide a high-level representation of images that facilitate automatic object/change detection or annotation. The new Scalable Vector Graphics (SVG) open standard for representing graphical information, recommended by the World Wide Web Consortium (W3C) is designed to address issues of image scalability, portability, and annotation. However, until now there has been no viable technology to efficiently field images of high visual quality under this standard. Recently, LANL has developed a vectorized image representation that is compatible with the SVG standard and preserves visual quality. This is based on a new geometric framework for characterizing complex features in real-world imagery that incorporates perceptual principles of processing visual information known from cognitive psychology and vision science, to obtain a polygonal image representation of high fidelity. This representation can take advantage of all textual compression and encryption routines unavailable to other image formats. Moreover, this vectorized image representation can be exploited to facilitate automatedn can be exploited to facilitate automated object recognition that can reduce time required for data review. The objects/features of interest in these vectorized images can be annotated via animated graphics to facilitate quick and easy display and comprehension of processed image content.

  5. Interpolation based "time of travel" scheme in a Visual Motion Sensor using a small 2D retina

    OpenAIRE

    Expert, Fabien; Roubieu, Fre?de?ric L.; Ruffier, Franck

    2012-01-01

    Insects flying abilities based on optic flow (OF) are nice bio-inspired models for Micro Aerial Vehicles (MAVs) endowed with a limited computational power. Most OF sensing robots developed so far have used numerically complex algorithms requiring large computational power often carried out offline. The present study shows the performances of our bio-inspired Visual Motion Sensor (VMS) based on a 3x4 matrix of auto-adaptive aVLSI photoreceptors pertaining to a custommade bio-inspired chip call...

  6. A new bio-inspired perceptual control architecture applied to solving navigation tasks

    Science.gov (United States)

    Arena, P.; De Fiore, S.; Patané, L.; Vitanza, A.

    2009-05-01

    In this paper a new general purpose perceptual control architecture is presented and applied to robot navigation in cluttered environments. In nature, insects show the ability to react to certain stimuli with simple reflexes using direct sensory-motor pathways, which can be considered as basic behaviors, while high brain regions provide secondary pathway allowing the emergence of a cognitive behavior which modulates the basic abilities. Taking inspiration from this evidence, our architecture modulates, through a reinforcement learning, a set of competitive and concurrent basic behaviors in order to accomplish the task assigned through a reward function. The core of the architecture is constituted by the Representation layer, where different stimuli, triggering competitive reflexes, are fused to form a unique abstract picture of the environment. The representation is formalized by means of Reaction-Diffusion nonlinear partial differential equations, under the paradigm of the Cellular Neural Networks, whose dynamics converges to steady-state Turing patterns. A suitable unsupervised learning, introduced at the afferent (input) stage, leads to the shaping of the basins of attractions of the Turing patterns in order to incrementally drive the association between sensor stimuli and patterns. In this way, at the end of the leaning stage, each pattern is characteristic of a particular behavior modulation, while its trained basin of attraction contains the set of all the environment conditions, as recorded through the sensors, leading to the emergence of that particular behavior modulation. Robot simulations are reported to demonstrate the potentiality and the effectiveness of the approach.

  7. Photorealism and Non-Photorealism in Virtual Heritage Representation

    OpenAIRE

    Roussou, Maria; Drettakis, George

    2003-01-01

    The area of virtual heritage has long been concentrated on generating digital reconstructions of historical or archaeological artefacts and sites with enough fidelity to be truly accurate representations of their real-world counterparts. In some cases, the advancement of tools and techniques for achieving greater visual realism has distracted from the development of other directions that enhance a virtual experience, such as interactivity, sound or touch. Recent trends in the area of non-phot...

  8. The effect of non-visual working memory load on top-down modulation of visual processing

    OpenAIRE

    Rissman, Jesse; Gazzaley, Adam; D Esposito, Mark

    2009-01-01

    While a core function of the working memory (WM) system is the active maintenance of behaviorally relevant sensory representations, it is also critical that distracting stimuli are appropriately ignored. We used functional magnetic resonance imaging to examine the role of domain-general WM resources in the top-down attentional modulation of task-relevant and irrelevant visual representations. In our dual-task paradigm, each trial began with the auditory presentation of six random (high load) ...

  9. Interactive visualization of particle beams for accelerator design

    International Nuclear Information System (INIS)

    We describe a hybrid data-representation and rendering technique for visualizing large-scale particle data generated from numerical modeling of beam dynamics. The basis of the technique is mixing volume rendering and point rendering according to particle density distribution, visibility, and the user's instruction. A hierarchical representation of the data is created on a parallel computer, allowing real-time partitioning into high-density areas for volume rendering, and low-density areas for point rendering. This allows the beam to be interactively visualized while preserving the fine structure usually visible only with slow point based rendering techniques

  10. A computer vision system for rapid search inspired by surface-based attention mechanisms from human perception.

    Science.gov (United States)

    Mohr, Johannes; Park, Jong-Han; Obermayer, Klaus

    2014-12-01

    Humans are highly efficient at visual search tasks by focusing selective attention on a small but relevant region of a visual scene. Recent results from biological vision suggest that surfaces of distinct physical objects form the basic units of this attentional process. The aim of this paper is to demonstrate how such surface-based attention mechanisms can speed up a computer vision system for visual search. The system uses fast perceptual grouping of depth cues to represent the visual world at the level of surfaces. This representation is stored in short-term memory and updated over time. A top-down guided attention mechanism sequentially selects one of the surfaces for detailed inspection by a recognition module. We show that the proposed attention framework requires little computational overhead (about 11 ms), but enables the system to operate in real-time and leads to a substantial increase in search efficiency. PMID:25241349

  11. Nucleon-nucleon potentials in phase-space representation

    CERN Document Server

    Feldmeier, H; Weber, D

    2014-01-01

    A phase-space representation of nuclear interactions, which depends on the distance $\\vec{r}$ and relative momentum $\\vec{p}$ of the nucleons, is presented. A method is developed that permits to extract the interaction $V(\\vec{r},\\vec{p})$ from antisymmetrized matrix elements given in a spherical basis with angular momentum quantum numbers, either in momentum or coordinate space representation. This representation visualizes in an intuitive way the non-local behavior introduced by cutoffs in momentum space or renormalization procedures that are used to adapt the interaction to low momentum many-body Hilbert spaces, as done in the unitary correlation operator method or with the similarity renormalization group. It allows to develop intuition about the various interactions and illustrates how the softened interactions reduce the short-range repulsion in favor of non-locality or momentum dependence while keeping the scattering phase shifts invariant. It also reveals that these effective interactions can have und...

  12. Geometry based visualization with OpenCL

    OpenAIRE

    Rogeiro, Joa?o Pedro Martins

    2011-01-01

    This work targets the design and implementation of an isosurface extraction solution capable of handling large datasets. The Marching Cubes algorithm is the method used to extract the isosurfaces. These are graphical representations of points with a constant value (e.g. matter density) within volumetric datasets. A very useful approach to visualize particular regions of such data. One of the major goals of this work is to get a significant performance improvement, compared to the curren...

  13. Biologically-inspired robust and adaptive multi-sensor fusion and active control

    Science.gov (United States)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.

  14. What is visual anticipation and how much does it rely on the dorsal stream?

    OpenAIRE

    Montagne, Gilles; Bastin, Julien; Jacobs, David

    2008-01-01

    Van der Kamp, Rivas, van Doorn, and Savelsbergh (2008) have recently introduced an ecologically-inspired framework for visual anticipation in ball sports. Their framework emphasizes the interacting contributions of the dorsal and ventral systems (e.g., Milner & Goodale, 1995). The framework is based on the idea that the ventral system is involved in perceiving which actions a particular situation affords and the dorsal system in the visual guidance of the action. In this commentary we further...

  15. Automatic Visual Bag-of-Words for Online Robot Navigation and Mapping

    OpenAIRE

    Nicosevici, Tudor; Garci?a Campos, Rafael

    2012-01-01

    Detecting already-visited regions based on their visual appearance helps reduce drift and position uncertainties in robot navigation and mapping. Inspired from content-based image retrieval, an efficient approach is the use of visual vocabularies to measure similarities between images. This way, images corresponding to the same scene region can be associated. State-of-theart proposals that address this topic use prebuilt vocabularies that generally require a priori knowledge of the environmen...

  16. A Framework for the Design of Effective Graphics for Scientific Visualization

    Science.gov (United States)

    Miceli, Kristina D.

    1992-01-01

    This proposal presents a visualization framework, based on a data model, that supports the production of effective graphics for scientific visualization. Visual representations are effective only if they augment comprehension of the increasing amounts of data being generated by modern computer simulations. These representations are created by taking into account the goals and capabilities of the scientist, the type of data to be displayed, and software and hardware considerations. This framework is embodied in an assistant-based visualization system to guide the scientist in the visualization process. This will improve the quality of the visualizations and decrease the time the scientist is required to spend in generating the visualizations. I intend to prove that such a framework will create a more productive environment for tile analysis and interpretation of large, complex data sets.

  17. Visualizing Economics

    Science.gov (United States)

    Mulbrandon, Catherine

    Taking a page from Adam Smith, the motto of this delightful site is "Making the 'Invisible Hand' Visible." Under the guidance of Catherine Mulbrandon, the site brings together economic data and the powerful techniques of information visualization. She does this quite effectively through such thematic maps as "Where do Britain's rich and poor live?" and the "United States Household Income Map". Visitors can make their way through the maps here at their leisure, and also post their comments as they see fit. Additionally, users can look through the "Most Popular Posts" area and sign up to receive updates about new maps via email. Overall, the site is quite a find, and could even be used to spark debate and discussion in the classroom or around the break room.

  18. Effect of inspiration on airway dimensions measured in maximal inspiration CT images of subjects without airflow limitation

    International Nuclear Information System (INIS)

    To study the effect of inspiration on airway dimensions measured in voluntary inspiration breath-hold examinations. 961 subjects with normal spirometry were selected from the Danish Lung Cancer Screening Trial. Subjects were examined annually for five years with low-dose CT. Automated software was utilized to segment lungs and airways, identify segmental bronchi, and match airway branches in all images of the same subject. Inspiration level was defined as segmented total lung volume (TLV) divided by predicted total lung capacity (pTLC). Mixed-effects models were used to predict relative change in lumen diameter (ALD) and wall thickness (AWT) in airways of generation 0 (trachea) to 7 and segmental bronchi (R1-R10 and L1-L10) from relative changes in inspiration level. Relative changes in ALD were related to relative changes in TLV/pTLC, and this distensibility increased with generation (p < 0.001). Relative changes in AWT were inversely related to relative changes in TLV/pTLC in generation 3-7 (p < 0.001). Segmental bronchi were widely dispersed in terms of ALD (5.7 ± 0.7 mm), AWT (0.86 ± 0.07 mm), and distensibility (23.5 ± 7.7 %). Subjects who inspire more deeply prior to imaging have larger ALD and smaller AWT. This effect is more pronounced in higher-generation airways. Therefore, adjustment of inspiration level is necessary to accurately assess airway dimensions. (orig.)

  19. Evaporation-induced transition from Nepenthes pitcher-inspired slippery surfaces to lotus leaf-inspired superoleophobic surfaces.

    Science.gov (United States)

    Zhang, Junping; Wu, Lei; Li, Bucheng; Li, Lingxiao; Seeger, Stefan; Wang, Aiqin

    2014-12-01

    The newly developed Nepenthes pitcher (NP)-inspired slippery surfaces, formed by immobilizing fluoroliquids on lotus leaf (LL)-inspired superoleophobic surfaces, are of great general interest, whereas there are many interesting phenomena and fundamental scientific issues remaining to be unveiled. Here we present our findings of the effects of evaporation of the fluoroliquid, an inevitable process in most cases, -induced transition from NP-inspired to LL-inspired surfaces on the wettability, transparency, and self-cleaning property of the surfaces. The transition is controlled by regulating the evaporation temperature of the model fluoroliquid, Krytox100. The evaporation of Krytox100 has great a influence on the wettability, transparency, and self-cleaning property. An intermediate "sticky" state is observed in the transition process. We believe that our findings in the transition process are helpful in understanding the similarities and differences between the NP-inspired and LL-inspired surfaces and in designing new bioinspired antiwetting surfaces and exploring their potential applications. PMID:25378097

  20. Medial temporal lobe damage impairs representation of simple stimuli

    Directory of Open Access Journals (Sweden)

    DanielTranel

    2010-05-01

    Full Text Available Medial temporal lobe damage in humans is typically thought to produce a circumscribed impairment in the acquisition of new enduring memories, but recent reports have documented deficits even in short-term maintenance. We examined possible maintenance deficits in a population of medial temporal lobe amnesics, with the goal of characterizing their impairments as either representational drift or outright loss of representation over time. Patients and healthy comparisons performed a visual search task in which the similarity of various lures to a target was varied parametrically. Stimuli were simple shapes varying along one of several visual dimensions. The task was performed in two conditions, one presenting a sample target simultaneously with the search array and the other imposing a delay between sample and array. Eye-movement data collected during search revealed that the duration of fixations to items varied with lure-target similarity for all participants, i.e., fixations were longer for items more similar to the target. In the simultaneous condition, patients and comparisons exhibited an equivalent effect of similarity on fixation durations. However, imposing a delay modulated the effect differently for the two groups: in comparisons, fixation duration to similar items was exaggerated; in patients, the original effect was diminished. These findings indicate that medial temporal lobe lesions subtly impair short-term maintenance of even simple stimuli, with performance reflecting not the complete loss of the maintained representation but rather a degradation or progressive drift of the representation over time.