WorldWideScience

Sample records for inspired visual representation

  1. Constructing visual representations

    DEFF Research Database (Denmark)

    Huron, Samuel; Jansen, Yvonne; Carpendale, Sheelagh

    2014-01-01

    The accessibility of infovis authoring tools to a wide audience has been identified as a major research challenge. A key task in the authoring process is the development of visual mappings. While the infovis community has long been deeply interested in finding effective visual mappings......, comparatively little attention has been placed on how people construct visual mappings. In this paper, we present the results of a study designed to shed light on how people transform data into visual representations. We asked people to create, update and explain their own information visualizations using only...... tangible building blocks. We learned that all participants, most of whom had little experience in visualization authoring, were readily able to create and talk about their own visualizations. Based on our observations, we discuss participants’ actions during the development of their visual representations...

  2. Constructing visual representations

    DEFF Research Database (Denmark)

    Huron, Samuel; Jansen, Yvonne; Carpendale, Sheelagh

    2014-01-01

    , comparatively little attention has been placed on how people construct visual mappings. In this paper, we present the results of a study designed to shed light on how people transform data into visual representations. We asked people to create, update and explain their own information visualizations using only......The accessibility of infovis authoring tools to a wide audience has been identified as a major research challenge. A key task in the authoring process is the development of visual mappings. While the infovis community has long been deeply interested in finding effective visual mappings...... tangible building blocks. We learned that all participants, most of whom had little experience in visualization authoring, were readily able to create and talk about their own visualizations. Based on our observations, we discuss participants’ actions during the development of their visual representations...

  3. Collective form generation through visual participatory representation

    DEFF Research Database (Denmark)

    Day, Dennis; Sharma, Nishant; Punekar, Ravi

    2012-01-01

    In order to inspire and inform designers with the users data from participatory research, it may be important to represent data in a visual format that is easily understandable to the designers. For a case study in vehicle design, the paper outlines visual representation of data and the use of the...

  4. Visual representations of Iranian transgenders.

    Science.gov (United States)

    Shakerifar, Elhum

    2011-01-01

    Transsexuality in Iran has gained much attention and media coverage in the past few years, particularly in its questionable depiction as a permitted loophole for homosexuality, which is prohibited under Iran's Islamic-inspired legal system. Of course, attention in the West is also encouraged by the “shock” that sex change is available in Iran, a country that Western media and society delights in portraying as monolithically repressive. As a result, Iranian filmmakers inevitably have their own agendas, which are unsurprisingly brought into the film making process—from a desire to sell a product that will appeal to the Western market, to films that endorse specific socio-political agendas. This paper is an attempt to situate sex change and representations of sex change in Iran within a wider theoretical framework than the frequently reiterated conflation with homosexuality, and to open and engage with a wider debate concerning transsexuality in Iran, as well as to specifically analyze the representation of transexuality, in view of its current prominent presence in media. PMID:21910275

  5. Transformation Properties of Learned Visual Representations

    OpenAIRE

    Cohen, Taco S.; Welling, Max

    2014-01-01

    When a three-dimensional object moves relative to an observer, a change occurs on the observer's image plane and in the visual representation computed by a learned model. Starting with the idea that a good visual representation is one that transforms linearly under scene motions, we show, using the theory of group representations, that any such representation is equivalent to a combination of the elementary irreducible representations. We derive a striking relationship betwe...

  6. A Lambda Term Representation Inspired by Linear Ordered Logic

    Directory of Open Access Journals (Sweden)

    Andreas Abel

    2011-10-01

    Full Text Available We introduce a new nameless representation of lambda terms inspired by ordered logic. At a lambda abstraction, number and relative position of all occurrences of the bound variable are stored, and application carries the additional information where to cut the variable context into function and argument part. This way, complete information about free variable occurrence is available at each subterm without requiring a traversal, and environments can be kept exact such that they only assign values to variables that actually occur in the associated term. Our approach avoids space leaks in interpreters that build function closures. In this article, we prove correctness of the new representation and present an experimental evaluation of its performance in a proof checker for the Edinburgh Logical Framework. Keywords: representation of binders, explicit substitutions, ordered contexts, space leaks, Logical Framework.

  7. A Lambda Term Representation Inspired by Linear Ordered Logic

    CERN Document Server

    Abel, Andreas; 10.4204/EPTCS.71.1

    2011-01-01

    We introduce a new nameless representation of lambda terms inspired by ordered logic. At a lambda abstraction, number and relative position of all occurrences of the bound variable are stored, and application carries the additional information where to cut the variable context into function and argument part. This way, complete information about free variable occurrence is available at each subterm without requiring a traversal, and environments can be kept exact such that they only assign values to variables that actually occur in the associated term. Our approach avoids space leaks in interpreters that build function closures. In this article, we prove correctness of the new representation and present an experimental evaluation of its performance in a proof checker for the Edinburgh Logical Framework. Keywords: representation of binders, explicit substitutions, ordered contexts, space leaks, Logical Framework.

  8. Unsupervised Learning of Visual Representations using Videos

    OpenAIRE

    Wang, Xiaolong; Gupta, Abhinav

    2015-01-01

    Is strong supervision necessary for learning a good visual representation? Do we really need millions of semantically-labeled images to train a Convolutional Neural Network (CNN)? In this paper, we present a simple yet surprisingly powerful approach for unsupervised learning of CNN. Specifically, we use hundreds of thousands of unlabeled videos from the web to learn visual representations. Our key idea is that visual tracking provides the supervision. That is, two patches connected by a track...

  9. Distorted representation in visual tourism research

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    2015-01-01

    Tourism research has recently been informed by non-representational theories to highlight the socio-material, embodied and heterogeneous composition of tourist experiences. These advances have contributed to further reflexivity and called for novel ways to animate representations. On this background, this paper develops the notion ‘distorted representation’ to illustrate that blurred and obscure photos can in fact be intelligible and sensible in understanding tourism. Through an exploration of the overwhelmed and unintended practices of visual fieldwork, distorted representation illustrates how photographic materialities, performativities and sensations contribute to new tourism knowledges. While highlighting the potential of distorted representation, the paper posits a cautionary note in regards to the influential role of academic journals in determining the qualities of visual data. The paper exemplifies distorted representation through three impressionistic tales derived from ethnographic research on the European rail travel phenomenon: interrail.

  10. On visual determination of full inspiration on CT images

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the ability of experienced thoracic radiologists to assess full inspiration based on two CT slices, one above and one below the carina, in normal subjects. Ten healthy volunteers were studied. Total lung capacity (TLC) was measured with a body plethysmograph. High-resolution computed tomography (HRCT) was performed in two slices at TLC and at various expired volumes. Mean Hounsfield values (HU) were calculated. Unidentifiable images, stored on a web server, were analysed visually by experienced thoracic radiologists. The results show that the mean lung density at TLC varied by approximately 40 HU between individuals. Within an individual this may correspond to a decrease in lung volume of approximately 25% of TLC. On visual determination of images taken at 65-74% of TLC, more than one-third of the images were assessed as taken at full inspiration; of the images taken at 75-84% of TLC, approximately 50% were assessed as taken at full inspiration. We conclude that visual determination of full inspiration on CT images in normal subjects is highly inaccurate. If quantitative density measurements are to be used in the diagnosis or follow-up of lung disease, thorough control of full inspiration is recommended. (orig.)

  11. Reconstructing representations of dynamic visual objects in early visual cortex.

    Science.gov (United States)

    Chong, Edmund; Familiar, Ariana M; Shim, Won Mok

    2016-02-01

    As raw sensory data are partial, our visual system extensively fills in missing details, creating enriched percepts based on incomplete bottom-up information. Despite evidence for internally generated representations at early stages of cortical processing, it is not known whether these representations include missing information of dynamically transforming objects. Long-range apparent motion (AM) provides a unique test case because objects in AM can undergo changes both in position and in features. Using fMRI and encoding methods, we found that the "intermediate" orientation of an apparently rotating grating, never presented in the retinal input but interpolated during AM, is reconstructed in population-level, feature-selective tuning responses in the region of early visual cortex (V1) that corresponds to the retinotopic location of the AM path. This neural representation is absent when AM inducers are presented simultaneously and when AM is visually imagined. Our results demonstrate dynamic filling-in in V1 for object features that are interpolated during kinetic transformations. PMID:26712004

  12. Reconstructing representations of dynamic visual objects in early visual cortex

    Science.gov (United States)

    Chong, Edmund; Familiar, Ariana M.; Shim, Won Mok

    2016-01-01

    As raw sensory data are partial, our visual system extensively fills in missing details, creating enriched percepts based on incomplete bottom-up information. Despite evidence for internally generated representations at early stages of cortical processing, it is not known whether these representations include missing information of dynamically transforming objects. Long-range apparent motion (AM) provides a unique test case because objects in AM can undergo changes both in position and in features. Using fMRI and encoding methods, we found that the “intermediate” orientation of an apparently rotating grating, never presented in the retinal input but interpolated during AM, is reconstructed in population-level, feature-selective tuning responses in the region of early visual cortex (V1) that corresponds to the retinotopic location of the AM path. This neural representation is absent when AM inducers are presented simultaneously and when AM is visually imagined. Our results demonstrate dynamic filling-in in V1 for object features that are interpolated during kinetic transformations. PMID:26712004

  13. Visual texture accurate material appearance measurement, representation and modeling

    CERN Document Server

    Haindl, Michal

    2013-01-01

    This book surveys the state of the art in multidimensional, physically-correct visual texture modeling. Features: reviews the entire process of texture synthesis, including material appearance representation, measurement, analysis, compression, modeling, editing, visualization, and perceptual evaluation; explains the derivation of the most common representations of visual texture, discussing their properties, advantages, and limitations; describes a range of techniques for the measurement of visual texture, including BRDF, SVBRDF, BTF and BSSRDF; investigates the visualization of textural info

  14. A Visually Inspired Variational Method for Automatic Image Registration

    Directory of Open Access Journals (Sweden)

    WANG Huixian

    2015-08-01

    Full Text Available A visually inspired variational method for automatic image registration is proposed to solve local deformation which traditional global registration model cannot well satisfy. The variational model considers local transformation, global smoothness and visual constraints. To account for intensity variations, we incorporate change of local contrast and brightness into our model. Firstly, the data entry of registration model is built according to the root-mean-square error of intensity; secondly, adaptive constraint using H1 half norm is used to ensure the global smooth in the model; finally, in order to make sure that the spatial attributes of the image satisfy the visual requirements and without distortion, the linear features are used as priori constraints. During the solution of model parameters, the whole image is used to globally estimate the transformation parameters, and then local estimation of the parameters is taken in a small neighbor. The entire procedure is built upon a multi-level differential framework, and the transformation parameters are calculated iteratively, which can consider both global smoothness and local distortion. To assess the quality of the proposed method, ZY-3 satellite images were used. Visual and quantitative analysis proved that the proposed method can significantly improve the registration precision.

  15. Cross-cultural understanding through visual representation

    Scientific Electronic Library Online (English)

    Kristina, Beckman; Susan N, Smith.

    2006-01-01

    Full Text Available Este artículo analiza los dibujos de los estudiantes internacionales que hicieron de su país natal para su tarea de composición. Estos estudiantes de inglés como segundo idioma a menudo tienen dificultad llenando los requisitos del programa de escritura cuyo enfoque es el discurso argumentativo con [...] tesis y apoyo. Cualquier ensayo considerado irrelevante se censura y se considera estar "fuera del topico". Algunos estudiantes ven esta estructura demasiado directa e irrespetuosa. Mientras que no todos los estudiantes encuentran fácil la representación visual, los dibujos relevan ciertas características multiculturales básicias incrustadas en la escritura que se reflejan en las asignaturas. Primeramente discutimos los dibujos para el contenido retórico y luego lo discutimos utilizando la perspectiva de los estudiantes. Finalmente, analizamos como se formó nuestra propia pedagogía. Abstract in english This article analyzes international students' drawings of their home countries' essay assignments. These English as a Second Language (ESL) students often have difficulty in meeting the local demands of our Writing Program, which centers on argumentative writing with thesis and support. Any part of [...] an essay deemed irrelevant is censured as "off topic;" some students see this structure as too direct or even impolite. While not all students found visual representation easy, the drawings reveal some basic assumptions about writing embodied in their native cultures' assignments. We discuss the drawings first for visual rhetorical content, then in the students' own terms. Last, we consider how our own pedagogy has been shaped.

  16. Acoustic Tactile Representation of Visual Information

    Science.gov (United States)

    Silva, Pubudu Madhawa

    Our goal is to explore the use of hearing and touch to convey graphical and pictorial information to visually impaired people. Our focus is on dynamic, interactive display of visual information using existing, widely available devices, such as smart phones and tablets with touch sensitive screens. We propose a new approach for acoustic-tactile representation of visual signals that can be implemented on a touch screen and allows the user to actively explore a two-dimensional layout consisting of one or more objects with a finger or a stylus while listening to auditory feedback via stereo headphones. The proposed approach is acoustic-tactile because sound is used as the primary source of information for object localization and identification, while touch is used for pointing and kinesthetic feedback. A static overlay of raised-dot tactile patterns can also be added. A key distinguishing feature of the proposed approach is the use of spatial sound (directional and distance cues) to facilitate the active exploration of the layout. We consider a variety of configurations for acoustic-tactile rendering of object size, shape, identity, and location, as well as for the overall perception of simple layouts and scenes. While our primary goal is to explore the fundamental capabilities and limitations of representing visual information in acoustic-tactile form, we also consider a number of relatively simple configurations that can be tied to specific applications. In particular, we consider a simple scene layout consisting of objects in a linear arrangement, each with a distinct tapping sound, which we compare to a ''virtual cane.'' We will also present a configuration that can convey a ''Venn diagram.'' We present systematic subjective experiments to evaluate the effectiveness of the proposed display for shape perception, object identification and localization, and 2-D layout perception, as well as the applications. Our experiments were conducted with visually blocked subjects. The results are evaluated in terms of accuracy and speed, and they demonstrate the advantages of spatial sound for guiding the scanning finger or pointer in shape perception, object localization, and layout exploration. We show that these advantages increase with the amount of detail (smaller object size) in the display. Our experimental results show that the proposed system outperforms the state of the art in shape perception, including variable friction displays. We also demonstrate that, even though they are currently available only as static overlays, raised dot patterns provide the best shape rendition in terms of both the accuracy and speed. Our experiments with layout rendering and perception demonstrate that simultaneous representation of objects, using the most effective approaches for directionality and distance rendering, approaches the optimal performance level provided by visual layout perception. Finally, experiments with the virtual cane and Venn diagram configurations demonstrate that the proposed techniques can be used effectively in simple but nontrivial real-world applications. One of the most important conclusions of our experiments is that there is a clear performance gap between experienced and inexperienced subjects, which indicates that there is a lot of room for improvement with appropriate and extensive training. By exploring a wide variety of design alternatives and focusing on different aspects of the acoustic-tactile interfaces, our results offer many valuable insights and great promise for the design of future systematic tests visually impaired and visually blocked subjects, utilizing the most effective configurations.

  17. Separate visual representations for perception and for visually guided behavior

    Science.gov (United States)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  18. String-inspired representations of photon/gluon amplitudes

    CERN Document Server

    Ahmadiniaz, Naser; Villanueva, Victor M

    2012-01-01

    The string-based Bern-Kosower rules provide an efficient way for obtaining parameter integral representations of the one-loop N - photon/gluon amplitudes involving a scalar, spinor or gluon loop, starting from a master formula and using a certain integration-by-parts (`IBP') procedure. Strassler observed that this algorithm also relates to gauge invariance, since it leads to the absorption of polarization vectors into field strength tensors. Here we present a systematic IBP algorithm that works for arbitrary N and leads to an integrand that is not only suitable for the application of the Bern-Kosower rules but also optimized with respect to gauge invariance. In the photon case this means manifest transversality at the integrand level, in the gluon case that a form factor decomposition of the amplitude into transversal and longitudinal parts is generated naturally by the IBP, without the necessity to consider the nonabelian Ward identities. Our algorithm is valid off-shell, and provides an extremely efficient ...

  19. Visual Representations of the Water Cycle in Science Textbooks

    Science.gov (United States)

    Vinisha, K.; Ramadas, J.

    2013-01-01

    Visual representations, including photographs, sketches and schematic diagrams, are a valuable yet often neglected aspect of textbooks. Visual means of communication are particularly helpful in introducing abstract concepts in science. For effective communication, visuals and text need to be appropriately integrated within the textbook. This study…

  20. Distorted representation in visual tourism research

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    2015-01-01

    Tourism research has recently been informed by non-representational theories to highlight the socio-material, embodied and heterogeneous composition of tourist experiences. These advances have contributed to further reflexivity and called for novel ways to animate representations. On this background, this paper develops the notion ‘distorted representation’ to illustrate that blurred and obscure photos can in fact be intelligible and sensible in understanding tourism. Through an exploration of t...

  1. Learning Shared, Discriminative, and Compact Representations for Visual Recognition.

    Science.gov (United States)

    Lobel, Hans; Vidal, Rene; Soto, Alvaro

    2015-11-01

    Dictionary-based and part-based methods are among the most popular approaches to visual recognition. In both methods, a mid-level representation is built on top of low-level image descriptors and high-level classifiers are trained on top of the mid-level representation. While earlier methods built the mid-level representation without supervision, there is currently great interest in learning both representations jointly to make the mid-level representation more discriminative. In this work we propose a new approach to visual recognition that jointly learns a shared, discriminative, and compact mid-level representation and a compact high-level representation. By using a structured output learning framework, our approach directly handles the multiclass case at both levels of abstraction. Moreover, by using a group-sparse prior in the structured output learning framework, our approach encourages sharing of visual words and thus reduces the number of words used to represent each class. We test our proposed method on several popular benchmarks. Our results show that, by jointly learning mid- and high-level representations, and fostering the sharing of discriminative visual words among target classes, we are able to achieve state-of-the-art recognition performance using far less visual words than previous approaches. PMID:26440263

  2. Efficient visual tracking via low-complexity sparse representation

    Science.gov (United States)

    Lu, Weizhi; Zhang, Jinglin; Kpalma, Kidiyo; Ronsin, Joseph

    2015-12-01

    Thanks to its good performance on object recognition, sparse representation has recently been widely studied in the area of visual object tracking. Up to now, little attention has been paid to the complexity of sparse representation, while most works are focused on the performance improvement. By reducing the computation load related to sparse representation hundreds of times, this paper proposes by far the most computationally efficient tracking approach based on sparse representation. The proposal simply consists of two stages of sparse representation, one is for object detection and the other for object validation. Experimentally, it achieves better performance than some state-of-the-art methods in both accuracy and speed.

  3. High-Level Visual Object Representations Are Constrained by Position

    OpenAIRE

    Kravitz, Dwight J.; Kriegeskorte, Nikolaus; Baker, Chris I.

    2010-01-01

    It is widely assumed that high-level visual object representations are position-independent (or invariant). While there is sensitivity to position in high-level object-selective cortex, position and object identity are thought to be encoded independently in the population response such that position information is available across objects and object information is available across positions. Contrary to this view, we show, with both behavior and neuroimaging, that visual object representation...

  4. Educating "The Simpsons": Teaching Queer Representations in Contemporary Visual Media

    Science.gov (United States)

    Padva, Gilad

    2008-01-01

    This article analyzes queer representation in contemporary visual media and examines how the episode "Homer's Phobia" from Matt Groening's animation series "The Simpsons" can be used to deconstruct hetero- and homo-sexual codes of behavior, socialization, articulation, representation and visibility. The analysis is contextualized in the…

  5. Educating "The Simpsons": Teaching Queer Representations in Contemporary Visual Media

    Science.gov (United States)

    Padva, Gilad

    2008-01-01

    This article analyzes queer representation in contemporary visual media and examines how the episode "Homer's Phobia" from Matt Groening's animation series "The Simpsons" can be used to deconstruct hetero- and homo-sexual codes of behavior, socialization, articulation, representation and visibility. The analysis is contextualized in the…

  6. Fundamentals of Guidelines for Visual Representation of Information

    Directory of Open Access Journals (Sweden)

    Friborz Doroudi

    2008-07-01

    Full Text Available Information visualization is a computer-assisted method for data representation. By processing the information into a visual framework, it enables the user to observe, browse, receive and understand information. Information visualization is a new research field that concentrates on using visualizing techniques towards helping people understand and analyze data. The fundamentals of visualization includes GUI design, Computer Graphics, HCI, cognitive theories and graphic design. Based on Schneiderman’s classification, information visualization includes one, two, three ad multidimensional as well as time-based, hierarchical and network data.

  7. Visual Literacy in Biology: A Comparison of Visual Representations in Textbooks and Journal Articles

    Science.gov (United States)

    Rybarczyk, Brian

    2011-01-01

    Using course materials to promote visual literacy skills is an important aspect of undergraduate science education. A comparison study was undertaken to determine the composition of visual representations, specifically representations of data generated from experimental research, found in general biology and discipline-specific textbooks compared…

  8. Representation and adaptation in the primary visual cortex

    OpenAIRE

    Beck, Oliver

    2005-01-01

    We investigate the processing of visual stimuli in local networks of the primary visual cortex. Cortical cells can display highly stereotypical behavior for some aspects of a stimulus, but show considerable plasticity with respect to others. Here, we investigate both, how neurons in the primary visual cortex achieve the stable representation of oriented contours and the cause of their adaptation to prolonged stimuli. The formation of orientation tuned responses is one of the best-explored fea...

  9. Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory

    OpenAIRE

    Williams, Melonie; Pouget, Pierre; Boucher, Leanne; Woodman, Geoffrey F.

    2013-01-01

    Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers’ eye movements while remembering a variable number of objects during change-detection tasks. We observed that during the...

  10. Visual Representation Determines Search Difficulty: Explaining Visual Search Asymmetries

    Directory of Open Access Journals (Sweden)

    Neil Bruce

    2011-07-01

    Full Text Available In visual search experiments there exist a variety of experimental paradigms in which a symmetric set of experimental conditions yields asymmetric corresponding task performance. There are a variety of examples of this that currently lack a satisfactory explanation. In this paper, we demonstrate that distinct classes of asymmetries may be explained by virtue of a few simple conditions that are consistent with current thinking surrounding computational modeling of visual search and coding in the primate brain. This includes a detailed look at the role that stimulus familiarity plays in the determination of search performance. Overall, we demonstrate that all of these asymmetries have a common origin, namely, they are a consequence of the encoding that appears in the visual cortex. The analysis associated with these cases yields insight into the problem of visual search in general and predictions of novel search asymmetries.

  11. The body voyage as visual representation and art performance

    DEFF Research Database (Denmark)

    Olsén, Jan-Eric

    2011-01-01

    This paper looks at the notion of the body as an interior landscape that is made intelligible through visual representation. It discerns the key figure of the inner corporeal voyage, identifies its main elements and examines how contemporary artists working with performances and installations deal...

  12. Efficient visual system processing of spatial and luminance statistics in representational and non-representational art

    Science.gov (United States)

    Graham, Daniel J.; Friedenberg, Jay D.; Rockmore, Daniel N.

    2009-02-01

    An emerging body of research suggests that artists consistently seek modes of representation that are efficiently processed by the human visual system, and that these shared properties could leave statistical signatures. In earlier work, we showed evidence that perceived similarity of representational art could be predicted using intensity statistics to which the early visual system is attuned, though semantic content was also found to be an important factor. Here we report two studies that examine the visual perception of similarity. We test a collection of non-representational art, which we argue possesses useful statistical and semantic properties, in terms of the relationship between image statistics and basic perceptual responses. We find two simple statistics-both expressed as single values-that predict nearly a third of the overall variance in similarity judgments of abstract art. An efficient visual system could make a quick and reasonable guess as to the relationship of a given image to others (i.e., its context) by extracting these basic statistics early in the visual stream, and this may hold for natural scenes as well as art. But a major component of many types of art is representational content. In a second study, we present findings related to efficient representation of natural scene luminances in landscapes by a well-known painter. We show empirically that elements of contemporary approaches to high-dynamic range tone-mapping-which are themselves deeply rooted in an understanding of early visual system coding-are present in the way Vincent Van Gogh transforms scene luminances into painting luminances. We argue that global tone mapping functions are a useful descriptor of an artist's perceptual goals with respect to global illumination and we present evidence that mapping the scene to a painting with different implied lighting properties produces a less efficient mapping. Together, these studies suggest that statistical regularities in art can shed light on visual processing.

  13. Data Representations, Transformations, and Statistics for Visual Reasoning

    CERN Document Server

    Maciejewski, Ross

    2011-01-01

    Analytical reasoning techniques are methods by which users explore their data to obtain insight and knowledge that can directly support situational awareness and decision making. Recently, the analytical reasoning process has been augmented through the use of interactive visual representations and tools which utilize cognitive, design and perceptual principles. These tools are commonly referred to as visual analytics tools, and the underlying methods and principles have roots in a variety of disciplines. This chapter provides an introduction to young researchers as an overview of common visual

  14. Visual Tracking Based on Extreme Learning Machine and Sparse Representation.

    Science.gov (United States)

    Wang, Baoxian; Tang, Linbo; Yang, Jinglin; Zhao, Baojun; Wang, Shuigen

    2015-01-01

    The existing sparse representation-based visual trackers mostly suffer from both being time consuming and having poor robustness problems. To address these issues, a novel tracking method is presented via combining sparse representation and an emerging learning technique, namely extreme learning machine (ELM). Specifically, visual tracking can be divided into two consecutive processes. Firstly, ELM is utilized to find the optimal separate hyperplane between the target observations and background ones. Thus, the trained ELM classification function is able to remove most of the candidate samples related to background contents efficiently, thereby reducing the total computational cost of the following sparse representation. Secondly, to further combine ELM and sparse representation, the resultant confidence values (i.e., probabilities to be a target) of samples on the ELM classification function are used to construct a new manifold learning constraint term of the sparse representation framework, which tends to achieve robuster results. Moreover, the accelerated proximal gradient method is used for deriving the optimal solution (in matrix form) of the constrained sparse tracking model. Additionally, the matrix form solution allows the candidate samples to be calculated in parallel, thereby leading to a higher efficiency. Experiments demonstrate the effectiveness of the proposed tracker. PMID:26506359

  15. Modulating foveal representation can influence visual discrimination in the periphery.

    Science.gov (United States)

    Yu, Qing; Shim, Won Mok

    2016-02-01

    A previous study by Williams et al. (2008) provided evidence for a novel form of feedback in the visual system, whereby peripheral information is contained in foveal retinotopic cortex. Beyond its possible implication for peripheral object recognition, few studies have examined the effect of a direct behavioral manipulation of the foveal feedback representation. To address this question, we measured participants' peripheral visual discrimination performance while modulating their foveal representation in a series of psychophysical experiments. On each trial, participants discriminated the identities of briefly presented novel, three-dimensional objects or the orientations of gratings in a peripheral location while fixating at the center. Besides the peripheral target, another stimulus (foil) was also presented and masked at the fovea. Our results showed that for objects, when the foveal foil that was identical to the peripheral target was presented 150 ms after the onset of the peripheral target, visual discrimination of the peripheral target was improved. This congruency effect occurred even though participants did not consciously perceive the foveal stimulus. No such effect was observed when the foveal foil was presented simultaneously with the peripheral target, or when the foil was presented in a parafoveal location. The foil effect in gratings was different from that in objects in terms of its effective timing and foveal specificity, suggesting that foveal feedback may be specific to high-level objects. These results indicate that modulating foveal information can affect individuals' ability to discriminate peripheral objects, suggesting a functional role of foveal representations in peripheral visual perception. PMID:26885627

  16. Prior expectations bias sensory representations in visual cortex.

    Science.gov (United States)

    Kok, Peter; Brouwer, Gijs Joost; van Gerven, Marcel A J; de Lange, Floris P

    2013-10-01

    Perception is strongly influenced by expectations. Accordingly, perception has sometimes been cast as a process of inference, whereby sensory inputs are combined with prior knowledge. However, despite a wealth of behavioral literature supporting an account of perception as probabilistic inference, the neural mechanisms underlying this process remain largely unknown. One important question is whether top-down expectation biases stimulus representations in early sensory cortex, i.e., whether the integration of prior knowledge and bottom-up inputs is already observable at the earliest levels of sensory processing. Alternatively, early sensory processing may be unaffected by top-down expectations, and integration of prior knowledge and bottom-up input may take place in downstream association areas that are proposed to be involved in perceptual decision-making. Here, we implicitly manipulated human subjects' prior expectations about visual motion stimuli, and probed the effects on both perception and sensory representations in visual cortex. To this end, we measured neural activity noninvasively using functional magnetic resonance imaging, and applied a forward modeling approach to reconstruct the motion direction of the perceived stimuli from the signal in visual cortex. Our results show that top-down expectations bias representations in visual cortex, demonstrating that the integration of prior information and sensory input is reflected at the earliest stages of sensory processing. PMID:24107959

  17. Lenses – Light, Bodies and Representations. A paper on the optical device that enables visual perception through representation

    DEFF Research Database (Denmark)

    Rehder, Mads

    2012-01-01

    I will discuss the many unique lenses available to visual anthropological research and how a nuanced and differentiated view on them can be the key to understanding the complexity of the representations we, as visual anthropologist, are creating.

  18. Novice Interpretations of Visual Representations of Geosciences Data

    Science.gov (United States)

    Burkemper, L. K.; Arthurs, L.

    2013-12-01

    Past cognition research of individual's perception and comprehension of bar and line graphs are substantive enough that they have resulted in the generation of graph design principles and graph comprehension theories; however, gaps remain in our understanding of how people process visual representations of data, especially of geologic and atmospheric data. This pilot project serves to build on others' prior research and begin filling the existing gaps. The primary objectives of this pilot project include: (i) design a novel data collection protocol based on a combination of paper-based surveys, think-aloud interviews, and eye-tracking tasks to investigate student data handling skills of simple to complex visual representations of geologic and atmospheric data, (ii) demonstrate that the protocol yields results that shed light on student data handling skills, and (iii) generate preliminary findings upon which tentative but perhaps helpful recommendations on how to more effectively present these data to the non-scientist community and teach essential data handling skills. An effective protocol for the combined use of paper-based surveys, think-aloud interviews, and computer-based eye-tracking tasks for investigating cognitive processes involved in perceiving, comprehending, and interpreting visual representations of geologic and atmospheric data is instrumental to future research in this area. The outcomes of this pilot study provide the foundation upon which future more in depth and scaled up investigations can build. Furthermore, findings of this pilot project are sufficient for making, at least, tentative recommendations that can help inform (i) the design of physical attributes of visual representations of data, especially more complex representations, that may aid in improving students' data handling skills and (ii) instructional approaches that have the potential to aid students in more effectively handling visual representations of geologic and atmospheric data that they might encounter in a course, television news, newspapers and magazines, and websites. Such recommendations would also be the potential subject of future investigations and have the potential to impact the design features when data is presented to the public and instructional strategies not only in geoscience courses but also other science, technology, engineering, and mathematics (STEM) courses.

  19. Learning Visual Representations for Perception-Action Systems

    DEFF Research Database (Denmark)

    Piater, Justus; Jodogne, Sebastien; Detry, Renaud; Kraft, Dirk; Krüger, Norbert; Kroemer, Oliver; Peters, Jan

    2011-01-01

    We discuss vision as a sensory modality for systems that effect actions in response to perceptions. While the internal representations informed by vision may be arbitrarily complex, we argue that in many cases it is advantageous to link them rather directly to action via learned mappings. These arguments are illustrated by two examples of our own work. First, our RLVC algorithm performs reinforcement learning directly on the visual input space. To make this very large space manageable, RLVC inte...

  20. Visualization Through Knowledge Representation Model for Social Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Athar Javed, Muhammad

    2011-01-01

    Knowledge management is a systematic and organizationally specified process and knowledge management system is all those technological components; software, hardware, people and processes supporting knowledge management initiative. These initiatives includes work flow maps, web sites, portals, document/team management system, data warehouses, data mining processes, databases, contact lists, virtual teams, collaboration tools, customer relationship management, applications and news (Davenport and Prusak 1998, Jashapara 2004). Knowledge is not important per se (Agostini et al 2003) instead the process of knowing, learning and creating knowledge is the relevant aspect (Nonaka and Takeuchi 1995). In this paper knowledge representation is presented in 3D style for the understanding and visualization of dynamics of complex social networks by developing a TANetworkTool (Task Analysis Network Tool). The standard or normal representation of a typical social network is through a graph data structure in 2D. The dynamics of larger social networks is so complex some time it becomes difficult to understand the various levels of interactions and dependencies just by mere representation through a tree or graph. Although, many analytical methods provide relationship dependencies, role of different nodes and their importance in the network. In this paper we are presenting a visualization of networks by rotating the network through various dimensions to provide a more realistic view to understand the dynamics of complex social networks and complimenting the analytical results. This representation can also help authorities not necessarily having specific scientific background to understand and perhaps take preventive actions required in certain specific scenarios for example dealing with terrorist/covert networks.

  1. Visual Representations of DNA Replication: Middle Grades Students' Perceptions and Interpretations

    Science.gov (United States)

    Patrick, Michelle D.; Carter, Glenda; Wiebe, Eric N.

    2005-01-01

    Visual representations play a critical role in the communication of science concepts for scientists and students alike. However, recent research suggests that novice students experience difficulty extracting relevant information from representations. This study examined students' interpretations of visual representations of DNA replication. Each…

  2. Visual Literacy and Biochemistry Learning: The role of external representations

    Directory of Open Access Journals (Sweden)

    V.J.S.V. Santos

    2011-04-01

    Full Text Available Visual Literacy can bedefined as people’s ability to understand, use, think, learn and express themselves through external representations (ER in a given subject. This research aims to investigate the development of abilities of ERs reading and interpretation by students from a Biochemistry graduate course of theFederal University of São João Del-Rei. In this way, Visual Literacy level was  assessed using a questionnaire validatedin a previous educational research. This diagnosis questionnaire was elaborated according to six visual abilitiesidentified as essential for the study of the metabolic pathways. The initial statistical analysis of data collectedin this study was carried out using ANOVA method. Results obtained showed that the questionnaire used is adequate for the research and indicated that the level of Visual Literacy related to the metabolic processes increased significantly with the progress of the students in the graduation course. There was also an indication of a possible interference in the student’s performancedetermined by the cutoff punctuation in the university selection process.

  3. Visual Awareness Is Limited by the Representational Architecture of the Visual System.

    Science.gov (United States)

    Cohen, Michael A; Nakayama, Ken; Konkle, Talia; Stanti?, Mirta; Alvarez, George A

    2015-11-01

    Visual perception and awareness have strict limitations. We suggest that one source of these limitations is the representational architecture of the visual system. Under this view, the extent to which items activate the same neural channels constrains the amount of information that can be processed by the visual system and ultimately reach awareness. Here, we measured how well stimuli from different categories (e.g., faces and cars) blocked one another from reaching awareness using two distinct paradigms that render stimuli invisible: visual masking and continuous flash suppression. Next, we used fMRI to measure the similarity of the neural responses elicited by these categories across the entire visual hierarchy. Overall, we found strong brain-behavior correlations within the ventral pathway, weaker correlations in the dorsal pathway, and no correlations in early visual cortex (V1-V3). These results suggest that the organization of higher level visual cortex constrains visual awareness and the overall processing capacity of visual cognition. PMID:26226078

  4. Object class recognition based on compressive sensing with sparse features inspired by hierarchical model in visual cortex

    Science.gov (United States)

    Lu, Pei; Xu, Zhiyong; Yu, Huapeng; Chang, Yongxin; Fu, Chengyu; Shao, Jianxin

    2012-11-01

    According to models of object recognition in cortex, the brain uses a hierarchical approach in which simple, low-level features having high position and scale specificity are pooled and combined into more complex, higher-level features having greater location invariance. At higher levels, spatial structure becomes implicitly encoded into the features themselves, which may overlap, while explicit spatial information is coded more coarsely. In this paper, the importance of sparsity and localized patch features in a hierarchical model inspired by visual cortex is investigated. As in the model of Serre, Wolf, and Poggio, we first apply Gabor filters at all positions and scales; feature complexity and position/scale invariance are then built up by alternating template matching and max pooling operations. In order to improve generalization performance, the sparsity is proposed and data dimension is reduced by means of compressive sensing theory and sparse representation algorithm. Similarly, within computational neuroscience, adding the sparsity on the number of feature inputs and feature selection is critical for learning biologically model from the statistics of natural images. Then, a redundancy dictionary of patch-based features that could distinguish object class from other categories is designed and then object recognition is implemented by the process of iterative optimization. The method is test on the UIUC car database. The success of this approach suggests a proof for the object class recognition in visual cortex.

  5. Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.

    Science.gov (United States)

    Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-11-01

    The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of orientation in visual working memory. PMID:26226929

  6. Shape representations in the primate dorsal visual stream

    Science.gov (United States)

    Theys, Tom; Romero, Maria C.; van Loon, Johannes; Janssen, Peter

    2015-01-01

    The primate visual system extracts object shape information for object recognition in the ventral visual stream. Recent research has demonstrated that object shape is also processed in the dorsal visual stream, which is specialized for spatial vision and the planning of actions. A number of studies have investigated the coding of 2D shape in the anterior intraparietal area (AIP), one of the end-stage areas of the dorsal stream which has been implicated in the extraction of affordances for the purpose of grasping. These findings challenge the current understanding of area AIP as a critical stage in the dorsal stream for the extraction of object affordances. The representation of three-dimensional (3D) shape has been studied in two interconnected areas known to be critical for object grasping: area AIP and area F5a in the ventral premotor cortex (PMv), to which AIP projects. In both areas neurons respond selectively to 3D shape defined by binocular disparity, but the latency of the neural selectivity is approximately 10 ms longer in F5a compared to AIP, consistent with its higher position in the hierarchy of cortical areas. Furthermore, F5a neurons were more sensitive to small amplitudes of 3D curvature and could detect subtle differences in 3D structure more reliably than AIP neurons. In both areas, 3D-shape selective neurons were co-localized with neurons showing motor-related activity during object grasping in the dark, indicating a close convergence of visual and motor information on the same clusters of neurons. PMID:25954189

  7. Comparing visual and motor cortex: representational coding versus dynamical systems

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Seely

    2012-06-01

    Full Text Available Systems neuroscience often employs models that explain neural responses in terms of represented stimulus features or movement parameters. These models can be powerful, but do not apply equally well to all circuits. For example, the activity of a central pattern generator is best captured by its intrinsic dynamics. Here, we examine the population response in a number of cortical areas, and ask whether responses appear stimulus driven (i.e. are better described as a function of external parameters or internally generated (i.e. are better described by a dynamical system. We analyzed datasets (44 - 218 single and/or multi-unit isolations from visual areas V1 and MT (recorded during the presentation of visual stimuli and from primary motor and premotor cortex (recorded during a delayed reach task. Our analyses did not fit particular representational or dynamical models, but instead asked whether basic features of the data tended to obey or violate the expectations of a dynamical system. The principal expectation is, for a k-dimensional dynamical system, the number of temporal patterns (modes present in the data should tend to be 1. For the neural data from visual areas (2 datasets the ratio lay close to the stimulus-driven prediction (ratios = 0.8, 1.1, while the population response from the motor areas (4 datasets appeared more dynamical (ratios = 1.6, 1.8, 1.8, 2.4. These results indicate that, in visual areas the overall structure of the data is consistent with responses being largely a function of stimulus parameters. In contrast, in motor areas the structure of the data argues that responses are more strongly dominated by internal dynamics.

  8. Visualization Through Knowledge Representation Model for Social Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Athar Javed, Muhammad; Ahmed, Zaki

    Knowledge management is a systematic and organizationally specified process and knowledge management system is all those technological components; software, hardware, people and processes supporting knowledge management initiative. These initiatives includes work flow maps, web sites, portals......, document/team management system, data warehouses, data mining processes, databases, contact lists, virtual teams, collaboration tools, customer relationship management, applications and news (Davenport and Prusak 1998, Jashapara 2004). Knowledge is not important per se (Agostini et al 2003) instead the...... process of knowing, learning and creating knowledge is the relevant aspect (Nonaka and Takeuchi 1995). In this paper knowledge representation is presented in 3D style for the understanding and visualization of dynamics of complex social networks by developing a TANetworkTool (Task Analysis Network Tool...

  9. A unified data representation theory for network visualization, ordering and coarse-graining

    CERN Document Server

    Kovács, István A; Csermely, Peter

    2014-01-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of huge data sets in science, by reve...

  10. A unified data representation theory for network visualization, ordering and coarse-graining

    Science.gov (United States)

    Kovács, István A.; Mizsei, Réka; Csermely, Péter

    2015-09-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form.

  11. Representational momentum reveals visual anticipation differences in the upper and lower visual fields.

    Science.gov (United States)

    Gottwald, Victoria M; Lawrence, Gavin P; Hayes, Amy E; Khan, Michael A

    2015-08-01

    Recent empirical research has revealed differences in functional capacity between the upper and lower visual fields (VFs), with the lower VF exhibiting superiority in visual perception skills. Similarly, functional differences between the left and right hemispheres elicit a predominance for visuospatial processing in the left visual field (left VF). Both anatomical as well as evolutionary arguments have been adopted in accounting for these variations in function. Preceding upper and lower VF research has typically investigated either static stimulus perception or the visual processing of upper limb action. The aim of the current research was to investigate whether the lower VF benefits associated with limb control transcend to visual anticipation (the perception of motion). Methods were based on Khan and Lawrence (Exp Brain Res 164:395-398, 2005), who investigated upper/lower VF differences in visuomotor control, but utilising a representational momentum paradigm to isolate perceptual processes. Thirty-two participants were randomised into either a left or right VF group and completed a perceptual computer-based task in the upper and lower VF, where they were required to judge the final position of a moving object before it disappeared. Two aspects of the distributions of same responses were then analysed; the central tendency (weighted means) and the variability. Results revealed that in the left VF, weighted means for the lower VF were significantly greater than for the upper VF [t(14) = 2.242, p = 0.042]. In both left and right VFs, variability was greater in the upper compared to lower VF. This provides new findings regarding visual processes in the different visual fields. While visual search and large scene perception has been found to be superior in the upper VF, here we find that visual anticipation, like target-directed visuomotor skill, is superior in the lower VF. PMID:25929553

  12. A neuron-inspired computational architecture for spatiotemporal visual processing: real-time visual sensory integration for humanoid robots.

    Science.gov (United States)

    Holzbach, Andreas; Cheng, Gordon

    2014-06-01

    In this article, we present a neurologically motivated computational architecture for visual information processing. The computational architecture's focus lies in multiple strategies: hierarchical processing, parallel and concurrent processing, and modularity. The architecture is modular and expandable in both hardware and software, so that it can also cope with multisensory integrations - making it an ideal tool for validating and applying computational neuroscience models in real time under real-world conditions. We apply our architecture in real time to validate a long-standing biologically inspired visual object recognition model, HMAX. In this context, the overall aim is to supply a humanoid robot with the ability to perceive and understand its environment with a focus on the active aspect of real-time spatiotemporal visual processing. We show that our approach is capable of simulating information processing in the visual cortex in real time and that our entropy-adaptive modification of HMAX has a higher efficiency and classification performance than the standard model (up to ?+6%). PMID:24687170

  13. Exploring Middle School Students' Representational Competence in Science: Development and Verification of a Framework for Learning with Visual Representations

    Science.gov (United States)

    Tippett, Christine Diane

    Scientific knowledge is constructed and communicated through a range of forms in addition to verbal language. Maps, graphs, charts, diagrams, formulae, models, and drawings are just some of the ways in which science concepts can be represented. Representational competence---an aspect of visual literacy that focuses on the ability to interpret, transform, and produce visual representations---is a key component of science literacy and an essential part of science reading and writing. To date, however, most research has examined learning from representations rather than learning with representations. This dissertation consisted of three distinct projects that were related by a common focus on learning from visual representations as an important aspect of scientific literacy. The first project was the development of an exploratory framework that is proposed for use in investigations of students constructing and interpreting multimedia texts. The exploratory framework, which integrates cognition, metacognition, semiotics, and systemic functional linguistics, could eventually result in a model that might be used to guide classroom practice, leading to improved visual literacy, better comprehension of science concepts, and enhanced science literacy because it emphasizes distinct aspects of learning with representations that can be addressed though explicit instruction. The second project was a metasynthesis of the research that was previously conducted as part of the Explicit Literacy Instruction Embedded in Middle School Science project (Pacific CRYSTAL, http://www.educ.uvic.ca/pacificcrystal). Five overarching themes emerged from this case-to-case synthesis: the engaging and effective nature of multimedia genres, opportunities for differentiated instruction using multimodal strategies, opportunities for assessment, an emphasis on visual representations, and the robustness of some multimodal literacy strategies across content areas. The third project was a mixed-methods verification study that was conducted to refine and validate the theoretical framework. This study examined middle school students' representational competence and focused on students' creation of visual representations such as labelled diagrams, a form of representation commonly found in science information texts and textbooks. An analysis of the 31 Grade 6 participants' representations and semistructured interviews revealed five themes, each of which supports one or more dimensions of the exploratory framework: participants' use of color, participants' choice of representation (form and function), participants' method of planning for representing, participants' knowledge of conventions, and participants' selection of information to represent. Together, the results of these three projects highlight the need for further research on learning with rather than learning from representations.

  14. Transformation-invariant visual representations in self-organizing spiking neural networks

    OpenAIRE

    BenjaminEvans

    2012-01-01

    The ventral visual pathway achieves object and face recognition by building transformation-invariant representations from elementary visual features. In previous computer simulation studies with rate-coded neural networks, the development of transformation-invariant representations has been demonstrated using either of two biologically plausible learning mechanisms, Trace learning and Continuous Transformation (CT) learning. However, it has not previously been investigated how transformation-...

  15. Visual Representations on High School Biology, Chemistry, Earth Science, and Physics Assessments

    Science.gov (United States)

    LaDue, Nicole D.; Libarkin, Julie C.; Thomas, Stephen R.

    2015-01-01

    The pervasive use of visual representations in textbooks, curricula, and assessments underscores their importance in K-12 science education. For example, visual representations figure prominently in the recent publication of the Next Generation Science Standards (NGSS Lead States in Next generation science standards: for states, by states.…

  16. Invariant Representations of Visual Streams in the Spike Domain

    Directory of Open Access Journals (Sweden)

    Aurel A Lazar

    2009-08-01

    Full Text Available We investigate a model architecture for invariant representations of visual stimuli such as natural and synthetic video streams (movies, animation in the spike domain. The stimuli are encoded with a population of spiking neurons, processed in the spike domain and finally decoded. The population of spiking neurons includes interconnected neural circuits with level crossing spiking mechanisms as well as integrate-and-fire neuron models with feedback. A number of spike domain processing algorithms are demonstrated including faithful stimulus recovery, as well as simple operations on the original visual stimulus such as translations, rotations and zooming. All these operations are executed in the spike domain. Finally, the processed spike trains are decoded and the faithful recovery of the stimulus and its transformations is obtained. We show that the class of linear operations described above can easily be realized with the same basic stimulus decoding algorithm [1]. What changes in the architecture, however, is the switching matrix (i.e., the input/output "wiring' of the spike domain switching building block. For example, for a particular setting of the switching matrix, the original stimulus is faithfully recovered. For other settings, translations, rotations and dilations (or combinations of these operations of the original video stream are obtained. The implementability of these elementary transformations originates from the structure of the neuron receptive fields that form an overcomplete spatial (or spatiotemporal filterbank. Our architecture suggests that identity-preserving transformations between different layers of the visual system are easily obtained by changing the connectivity between the different neural layers. Combinations of the aforementioned elementary transformations realize any linear transformation (e.g., zoom into a particular region. This addresses the correspondence problem of identifying equivalent stimuli while constantly changing visual fixations. Furthermore, our architecture generates in real-time the entire object manifold [2]. The latter is obtained by a set of identity-preserving transformations, and thereby, it is invariant with respect to (essentially arbitrary translations, rotations and zooming. By computing the object manifold in real-time, the problem of object recognition is therefore mapped into one of determining whether any arbitrary stored object belongs to the just-computed object manifold [3]. Acknowledgements:The work presented here was supported in part by NIH under grant number R01 DC008701-01 and in part by NSF under grant number CCF-06-35252. E.A. Pnevmatikakis was also supported by the Onassis Public Benefit Foundation.

  17. Size-Sensitive Perceptual Representations Underlie Visual and Haptic Object Recognition

    OpenAIRE

    Craddock, M; Lawson, R.

    2009-01-01

    A variety of similarities between visual and haptic object recognition suggests that the two modalities may share common representations. However, it is unclear whether such common representations preserve low-level perceptual features or whether transfer between vision and haptics is mediated by high-level, abstract representations. Two experiments used a sequential shape-matching task to examine the effects of size changes on unimodal and crossmodal visual and haptic object recognition. Par...

  18. Virtual-real spatial information visualization registration using affine representations

    Science.gov (United States)

    Wu, Xueling; Ren, Fu; Du, Qingyun

    2009-10-01

    Virtual-real registration in Outdoor Augmented Reality is committed to enhance user's spatial cognition by overlaying virtual geographical objects on real scene. According to analyze fiducial detection registration method in indoor AR, for the purpose of avoiding complex and tedious process of position tracking and camera calibration in traditional registration methods, it puts forward and practices a virtual-real spatial information visualization registration method using affine representations. Based on the observation from Koenderink and van Doorn, Ullman and Basri in 1991 which is given a set of four or more non-coplanar 3D points, the projection of all points in the set can be computed as a linear combination of the projection of just four of the points, it sets up global affine coordinate system in light of world coordinates, camera coordinates and virtual coordinates and extracts four feature points from scene image and calculates the global affine coordinates of key points of virtual objects. Then according to a linear homogeneous coordinates of the four feature point's projection, it calculates projection pixel coordinates of key points of virtual objects. In addition, it proposes an approach to obtain pixel relative depth for hidden surface removal. Finally, by a case study, it verifies the feasibility and efficiency of the registration methods. The method would not only explore a new research direction for Geographical Information Science, but also would provide location-based information and services for outdoor AR.

  19. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    Science.gov (United States)

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles. PMID:21527730

  20. New contributions in overcomplete image representations inspired from the functional architecture of the visal cortex

    OpenAIRE

    Fischer, Sylvain

    2007-01-01

    [ES] La presente tesis doctoral tiene como objetivo indagar en algunos paralelismos entre la arquitectura funcional de las áreas visuales primarias y el tratamiento de imágenes. Un primer objetivo consiste en mejorar los modelos existentes de visión biológica basándose en la teoría de la información. Un segundo es el desarrollo de nuevos algoritmos de tratamiento de imágenes inspirados de la visión natural. Los datos disponibles sobre el sistema visual abarcan estudios fisiológ...

  1. Numbers in the dark : early visual deprivation and the semantic numerical representation/

    OpenAIRE

    Castronovo, Julie

    2007-01-01

    Study of the impact of early visual deprivation and its following experience with numbers and numerosities on the elaboration of the semantic numerical representation with the same properties to those postulated in sighted people.

  2. Visual representations in knowledge management: framework and cases

    OpenAIRE

    Eppler, Martin J.; Burkhard, Remo A.

    2009-01-01

    The purpose of this article is to explore the potential of visualization for corporate knowledge management. The employed methodology consists of a taxonomy of visualization formats that are embedded in a conceptual framework to guide the application of visualization in knowledge management according to the type of knowledge that is visualized, the knowledge management objective, the target group, and the application situation. This conceptual framework is illustrated through real-life exampl...

  3. The Comparison of Visual Working Memory Representations with Perceptual Inputs

    Science.gov (United States)

    Hyun, Joo-seok; Woodman, Geoffrey F.; Vogel, Edward K.; Hollingworth, Andrew; Luck, Steven J.

    2009-01-01

    The human visual system can notice differences between memories of previous visual inputs and perceptions of new visual inputs, but the comparison process that detects these differences has not been well characterized. In this study, the authors tested the hypothesis that differences between the memory of a stimulus array and the perception of a…

  4. Sparse representation, modeling and learning in visual recognition theory, algorithms and applications

    CERN Document Server

    Cheng, Hong

    2015-01-01

    This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: provides a thorough introduction to the fundamentals of sparse representation, modeling and learning, and the application of these techniques in visual recognition; describes sparse recovery approaches, robust and efficient sparse represen

  5. Learning Subclass Representations for Visually-varied Image Classification

    OpenAIRE

    Li, Xinchao; XU Peng; Shi, Yue; Larson, Martha; Hanjalic, Alan

    2016-01-01

    In this paper, we present a subclass-representation approach that predicts the probability of a social image belonging to one particular class. We explore the co-occurrence of user-contributed tags to find subclasses with a strong connection to the top level class. We then project each image on to the resulting subclass space to generate a subclass representation for the image. The novelty of the approach is that subclass representations make use of not only the content of the photos themselv...

  6. The Nature of Experience Determines Object Representations in the Visual System

    Science.gov (United States)

    Wong, Yetta K.; Folstein, Jonathan R.; Gauthier, Isabel

    2012-01-01

    Visual perceptual learning (PL) and perceptual expertise (PE) traditionally lead to different training effects and recruit different brain areas, but reasons for these differences are largely unknown. Here, we tested how the learning history influences visual object representations. Two groups were trained with tasks typically used in PL or PE…

  7. "Radio-Active" Learning: Visual Representation of Radioactive Decay Using Dice

    Science.gov (United States)

    Klein, Lynda; Kagan, David

    2010-01-01

    The idea of using a dice game to simulate radioactive decay is not new. However, modern pedagogy encourages, if not requires, us to provide multiple representations and visualizations for our students. The advantage of interactive engagement methods also has been made clear. Here we describe a highly visual and interactive use of dice to develop…

  8. Visual Representations on High School Biology, Chemistry, Earth Science, and Physics Assessments

    Science.gov (United States)

    LaDue, Nicole D.; Libarkin, Julie C.; Thomas, Stephen R.

    2015-12-01

    The pervasive use of visual representations in textbooks, curricula, and assessments underscores their importance in K-12 science education. For example, visual representations figure prominently in the recent publication of the Next Generation Science Standards (NGSS Lead States in Next generation science standards: for states, by states. Achieve, Inc. on behalf of the twenty-six states and partners that collaborated on the NGSS, 2013). Although assessments of the NGSS have yet to be developed, most students are currently evaluated on their ability to interpret science visuals. While numerous studies exist on particular visuals, it is unclear whether the same types of visuals are emphasized in all science disciplines. The present study is an evaluation of the similarities and differences of visuals used to assess students' knowledge of chemistry, earth science, living environment (biology), and physics on the New York State Regents examination. Analysis of 266 distinct visual representations categorized across the four content examinations reveals that the frequency and type of visuals vary greatly between disciplines. Diagrams, Graphs, Tables, and Maps are the most prevalent across all science disciplines. Maps, Cartograms, and Time Charts are unique to the Earth Science examination, and Network Diagrams are unique to the living environment (biology) examination. This study identifies which representations are most critical for training students across the science disciplines in anticipation of the implementation and eventual assessment of the NGSS.

  9. Visual Representations on High School Biology, Chemistry, Earth Science, and Physics Assessments

    Science.gov (United States)

    LaDue, Nicole D.; Libarkin, Julie C.; Thomas, Stephen R.

    2015-05-01

    The pervasive use of visual representations in textbooks, curricula, and assessments underscores their importance in K-12 science education. For example, visual representations figure prominently in the recent publication of the Next Generation Science Standards (NGSS Lead States in Next generation science standards: for states, by states. Achieve, Inc. on behalf of the twenty-six states and partners that collaborated on the NGSS, 2013). Although assessments of the NGSS have yet to be developed, most students are currently evaluated on their ability to interpret science visuals. While numerous studies exist on particular visuals, it is unclear whether the same types of visuals are emphasized in all science disciplines. The present study is an evaluation of the similarities and differences of visuals used to assess students' knowledge of chemistry, earth science, living environment (biology), and physics on the New York State Regents examination. Analysis of 266 distinct visual representations categorized across the four content examinations reveals that the frequency and type of visuals vary greatly between disciplines. Diagrams, Graphs, Tables, and Maps are the most prevalent across all science disciplines. Maps, Cartograms, and Time Charts are unique to the Earth Science examination, and Network Diagrams are unique to the living environment (biology) examination. This study identifies which representations are most critical for training students across the science disciplines in anticipation of the implementation and eventual assessment of the NGSS.

  10. Spinal cord injury affects the interplay between visual and sensorimotor representations of the body

    Science.gov (United States)

    Ionta, Silvio; Villiger, Michael; Jutzeler, Catherine R; Freund, Patrick; Curt, Armin; Gassert, Roger

    2016-01-01

    The brain integrates multiple sensory inputs, including somatosensory and visual inputs, to produce a representation of the body. Spinal cord injury (SCI) interrupts the communication between brain and body and the effects of this deafferentation on body representation are poorly understood. We investigated whether the relative weight of somatosensory and visual frames of reference for body representation is altered in individuals with incomplete or complete SCI (affecting lower limbs’ somatosensation), with respect to controls. To study the influence of afferent somatosensory information on body representation, participants verbally judged the laterality of rotated images of feet, hands, and whole-bodies (mental rotation task) in two different postures (participants’ body parts were hidden from view). We found that (i) complete SCI disrupts the influence of postural changes on the representation of the deafferented body parts (feet, but not hands) and (ii) regardless of posture, whole-body representation progressively deteriorates proportionally to SCI completeness. These results demonstrate that the cortical representation of the body is dynamic, responsive, and adaptable to contingent conditions, in that the role of somatosensation is altered and partially compensated with a change in the relative weight of somatosensory versus visual bodily representations. PMID:26842303

  11. Learning Visual Representations for Perception-Action Systems

    DEFF Research Database (Denmark)

    Piater, Justus; Jodogne, Sebastien; Detry, Renaud; Kraft, Dirk; Krüger, Norbert; Kroemer, Oliver; Peters, Jan

    2011-01-01

    We discuss vision as a sensory modality for systems that effect actions in response to perceptions. While the internal representations informed by vision may be arbitrarily complex, we argue that in many cases it is advantageous to link them rather directly to action via learned mappings. These...... RLJC, our second method learns structural object models for robust object detection and pose estimation by probabilistic inference. To these models, the method associates grasp experiences autonomously learned by trial and error. These experiences form a nonparametric representation of grasp success...

  12. Perisaccadic Updating of Visual Representations and Attentional States: Linking Behavior and Neurophysiology

    OpenAIRE

    Marino, Alexandria C.; James A. Mazer

    2016-01-01

    During natural vision, saccadic eye movements lead to frequent retinal image changes that result in different neuronal subpopulations representing the same visual feature across fixations. Despite these potentially disruptive changes to the neural representation, our visual percept is remarkably stable. Visual receptive field remapping, characterized as an anticipatory shift in the position of a neuron’s spatial receptive field immediately before saccades, has been proposed as one possible ne...

  13. Visualization and Rule Validation in Human-Behavior Representation

    Science.gov (United States)

    Moya, Lisa Jean; McKenzie, Frederic D.; Nguyen, Quynh-Anh H.

    2008-01-01

    Human behavior representation (HBR) models simulate human behaviors and responses. The Joint Crowd Federate [TM] cognitive model developed by the Virginia Modeling, Analysis, and Simulation Center (VMASC) and licensed by WernerAnderson, Inc., models the cognitive behavior of crowds to provide credible crowd behavior in support of military…

  14. Newborn chickens generate invariant object representations at the onset of visual object experience.

    Science.gov (United States)

    Wood, Justin N

    2013-08-20

    To recognize objects quickly and accurately, mature visual systems build invariant object representations that generalize across a range of novel viewing conditions (e.g., changes in viewpoint). To date, however, the origins of this core cognitive ability have not yet been established. To examine how invariant object recognition develops in a newborn visual system, I raised chickens from birth for 2 weeks within controlled-rearing chambers. These chambers provided complete control over all visual object experiences. In the first week of life, subjects' visual object experience was limited to a single virtual object rotating through a 60° viewpoint range. In the second week of life, I examined whether subjects could recognize that virtual object from novel viewpoints. Newborn chickens were able to generate viewpoint-invariant representations that supported object recognition across large, novel, and complex changes in the object's appearance. Thus, newborn visual systems can begin building invariant object representations at the onset of visual object experience. These abstract representations can be generated from sparse data, in this case from a visual world containing a single virtual object seen from a limited range of viewpoints. This study shows that powerful, robust, and invariant object recognition machinery is an inherent feature of the newborn brain. PMID:23918372

  15. A visually impaired savant artist: interacting perceptual and memory representations.

    Science.gov (United States)

    Hermelin, B; Pring, L; Buhler, M; Wolff, S; Heaton, P

    1999-10-01

    In this single case study, paintings by a visually impaired and cognitively handicapped savant artist are evaluated. He paints his pictures exclusively from memory, either after having looked at a natural scene through binoculars, or after studying landscape photographs in brochures, catalogues, and books. The paintings are compared with the models from which they were derived, and the resulting generative changes are accounted for by an interaction between impaired visual input and memory transformations. PMID:10576541

  16. Population coding of visual space: comparison of spatial representations in the dorsal and ventral pathways

    Directory of Open Access Journals (Sweden)

    Anne B Sereno

    2011-02-01

    Full Text Available Although the representation of space is as fundamental to visual processing as the representation of shape, it has received relatively little attention from neurophysiological investigations. In this study we characterize representations of space within visual cortex, and examine how they differ in a first direct comparison between dorsal and ventral subdivisions of the visual pathways. Neural activities were recorded in anterior inferotemporal cortex (AIT and lateral intraparietal cortex (LIP of awake behaving monkeys, structures associated with the ventral and dorsal visual pathways respectively, as a stimulus was presented at different locations within the visual field. In spatially selective cells, we find greater modulation of cell responses in LIP with changes in stimulus position. Further, using a novel population-based statistical approach (namely, multidimensional scaling, we recover the spatial map implicit within activities of neural populations, allowing us to quantitatively compare the geometry of neural space with physical space. We show that a population of spatially selective LIP neurons, despite having large receptive fields, is able to almost perfectly reconstruct stimulus locations within a low-dimensional representation. In contrast, a population of AIT neurons, despite each cell being spatially selective, provide less accurate low-dimensional reconstructions of stimulus locations. They produce instead only a topologically (categorically correct rendition of space, which nevertheless might be critical for object and scene recognition. Furthermore, we found that the spatial representation recovered from population activity shows greater translation invariance in LIP than in AIT. We suggest that LIP spatial representations may be dimensionally isomorphic with 3D physical space, while in AIT spatial representations may reflect a more categorical representation of space (e.g., “next to” or “above”.

  17. Parallel representation of stimulus identity and intensity in a dual pathway model inspired by the olfactory system of the honeybee

    Directory of Open Access Journals (Sweden)

    Michael Schmuker

    2011-12-01

    Full Text Available The honeybee Apis mellifera has a remarkable ability to detect and locate food sources during foraging, and to associate odor cues with food rewards. In the honeybee’s olfactory system, sensory input is first processed in the antennal lobe (AL network. Uniglomerular projection neurons (PNs convey the sensory code from the AL to higher brain regions via two parallel but anatomically distinct pathways, the lateral and the medial antenno-cerebral tract (l- and m-ACT. Neurons innervating either tract show characteristic differences in odor selectivity, concentration dependence, and representation of mixtures. It is still unknown how this differential stimulus representation is achieved within the AL network. In this contribution, we use a computational network model to demonstrate that the experimentally observed features of odor coding in PNs can be reproduced by varying lateral inhibition and gain control in an otherwise unchanged AL network. We show that odor coding in the l-ACT supports detection and accurate identification of weak odor traces at the expense of concentration sensitivity, while odor coding in the m-ACT provides the basis for the computation and following of concentration gradients but provides weaker discrimination power. Both coding strategies are mutually exclusive, which creates a tradeoff between detection accuracy and sensitivity. The development of two parallel systems may thus reflect an evolutionary solution to this problem that enables honeybees to achieve both tasks during bee foraging in their natural environment, and which could inspire the development of artificial chemosensory devices for odor-guided navigation in robots.

  18. North Korea and the politics of visual representation

    OpenAIRE

    Shim, David; Nabers, Dirk

    2011-01-01

    Within international discourses on security, North Korea is often associated with risk and danger, emanating paradoxically from what can be called its strengths - particularly military strength, as embodied by its missile and nuclear programs - and its weaknesses - such as its ever-present political, economic, and food crises - which are considered to be imminent threats to international peace and stability. We argue that images play an important role in these representations, and suggest tha...

  19. Visual representations in portuguese produced english language teaching coursebooks

    OpenAIRE

    Nicolas Robert Hurst

    2014-01-01

    This paper examines the role of illustrations in the context of English Language Teaching (ELT) coursebooks produced in Portugal. Taking illustrations to be one pilar in the construction of meaning through the representation of culture, the discussion shifts between their use over the last 35 years and their potential as a source of innovation and improvement in this area of ELT materials development. The central issue relates to the need for illustrations to perform s...

  20. Visual representations in portuguese produced english language teaching coursebooks

    OpenAIRE

    Hurst, Nicolas

    2014-01-01

    This paper examines the role of illustrations in the context of English Language Teaching (ELT) coursebooks produced in Portugal. Taking illustrations to be one pilar in the construction of meaning throughthe representation of culture, the discussion shifts between their useover the last 35 years and their potential as a source of innovation andimprovement in this area of ELT materials development. The centralissue relates to the need for illustrations to perform something more thana decorati...

  1. Computational intelligence in multi-feature visual pattern recognition hand posture and face recognition using biologically inspired approaches

    CERN Document Server

    Pisharady, Pramod Kumar; Poh, Loh Ai

    2014-01-01

    This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good...

  2. Human visual cortex gradually transitions from 2D to 3D spatial representations.

    Science.gov (United States)

    Finlayson, Nonie; Golomb, Julie

    2015-09-01

    We live in a 3D world, and yet the majority of vision research is restricted to 2D phenomena. Previous research has shown that neural representations of 2D visual space are present throughout visual cortex. Many of these visual areas are also known to be sensitive to depth information (including V3, V3A, V3B/KO, V7, LO, and MT) - how does this depth information interact with 2D spatial information? Using fMRI and multi-voxel pattern analysis, we investigated the relationship between horizontal (x), vertical (y), and depth (z) representations in the brain. Participants viewed random dot stereograms with red/green anaglyph glasses. Eight different locations were stimulated in a blocked design: each location was defined by x, y, and z location (left or right, above or below, and in front or behind the fixation cross). The patterns of activation for each of the x, y, and z location conditions were compared across the brain with a searchlight analysis and within functionally localized ROIs. As expected, both x and y location information was present all along the visual pathways, with x information outperforming y information in higher visual areas. Importantly, while only 2D location information could be decoded in early visual cortex, all three types of location information could be decoded in several higher visual cortex regions. Moreover, this pattern seemed to emerge gradually: we found opposite trends for y and z location information, with y information decreasing and z information increasing along the visual hierarchy (both dorsal and ventral streams). In addition, we found that representations of depth are dependent on x location, but tolerant of changes in y location. We conclude that what begins as purely 2D spatial information in early visual areas gradually transitions to 3D spatial representations higher along the visual hierarchy. Meeting abstract presented at VSS 2015. PMID:26326977

  3. Visual representation of age as a function of the level of ageism.

    Science.gov (United States)

    Dion Marcoux, Youna; Blais, Caroline; Fiset, Daniel; Goulet, Arianne; Pruneau, Chloë; Forget, Hélène

    2015-09-01

    Recently, it has been shown that visual representations of ethnic outgroup faces are negatively biased in prejudiced individuals (Dotsch et al., 2008). The present study verified if the visual representations of young vs. old-aged prototypical individuals are influenced by the level of ageism of the observer. In phase 1 of the experiment, 28 young participants (Mage=20.43) took part in a reverse correlation task (Mangini & Biederman, 2004). On each trial, two stimuli were created by adding visual noise to a base face (i.e. morph of 40 young and 40 old faces), and were simultaneously presented to the participant. The task was to indicate which one was the most prototypical of the young-aged group (500 trials), or of the old-aged group (500 trials). The implicit age bias was measured with the Implicit Association Test (Lane et al., 2007). For each participant, the visual representation of the young-aged group (vs. old-aged group) was revealed by summing the noise fields of the stimuli selected as the most typical of the young-aged (vs. old-aged) group. In phase 2, 24 naive participants were asked to estimate, on a scale from 11 to 101, the age of the individual visual representations measured in phase 1. The average estimate across the judge participants was calculated for each of the individual visual representation. The age estimates of the visual representations of the nine participants with the highest vs. lowest level of ageism were compared. For the visual representation of the young-aged group, we found no effet of the level of ageism [Mhigh=28.86; Mlow=29.97; t(23)=1.55, p=0.13]. However, we showed that the visual representation of a prototypical old-aged individual is older in the mind of the high ageism individuals [Mhigh=44.30; Mlow=40.92; t(23)=-4.19, p=0.0004]. Thus, our results suggest that ageism alters the perception of old-aged individuals by making them appear older. Meeting abstract presented at VSS 2015. PMID:26326909

  4. Digital representations of the real world how to capture, model, and render visual reality

    CERN Document Server

    Magnor, Marcus A; Sorkine-Hornung, Olga; Theobalt, Christian

    2015-01-01

    Create Genuine Visual Realism in Computer Graphics Digital Representations of the Real World: How to Capture, Model, and Render Visual Reality explains how to portray visual worlds with a high degree of realism using the latest video acquisition technology, computer graphics methods, and computer vision algorithms. It explores the integration of new capture modalities, reconstruction approaches, and visual perception into the computer graphics pipeline.Understand the Entire Pipeline from Acquisition, Reconstruction, and Modeling to Realistic Rendering and ApplicationsThe book covers sensors fo

  5. A review of visual memory capacity: Beyond individual items and towards structured representations

    OpenAIRE

    Brady, Timothy F.; Konkle, Talia; Alvarez, George A

    2011-01-01

    Traditional memory research has focused on identifying separate memory systems and exploring different stages of memory processing. This approach has been valuable for establishing a taxonomy of memory systems and characterizing their function, but has been less informative about the nature of stored memory representations. Recent research on visual memory has shifted towards a representation-based emphasis, focusing on the contents of memory, and attempting to determine the format and struct...

  6. Challenging cavalier perspective: an iconological study of visual perception of depth in Chinese representational space

    OpenAIRE

    Xiao, Jing

    2013-01-01

    Cavalier Perspective has previously been described as merely a pictorial technique of spatial representation within the history of Chinese painting. It is a common belief that this unique visual system is capable of providing an experience of three-dimensional spatial perception in both representational art and actual space, in a manner similar to technique of foreshortening and perspective in post-renaissance western art. However, as Chinese ancient artists have a different understanding of ...

  7. Parsed and fixed block representations of visual information for image retrieval

    Science.gov (United States)

    Bae, Soo Hyun; Juang, Biing-Hwang

    2009-02-01

    The theory of linguistics teaches us the existence of a hierarchical structure in linguistic expressions, from letter to word root, and on to word and sentences. By applying syntax and semantics beyond words, one can further recognize the grammatical relationship between among words and the meaning of a sequence of words. This layered view of a spoken language is useful for effective analysis and automated processing. Thus, it is interesting to ask if a similar hierarchy of representation of visual information does exist. A class of techniques that have a similar nature to the linguistic parsing is found in the Lempel-Ziv incremental parsing scheme. Based on a new class of multidimensional incremental parsing algorithms extended from the Lempel-Ziv incremental parsing, a new framework for image retrieval, which takes advantage of the source characterization property of the incremental parsing algorithm, was proposed recently. With the incremental parsing technique, a given image is decomposed into a number of patches, called a parsed representation. This representation can be thought of as a morphological interface between elementary pixel and a higher level representation. In this work, we examine the properties of two-dimensional parsed representation in the context of imagery information retrieval and in contrast to vector quantization; i.e. fixed square-block representations and minimum average distortion criteria. We implemented four image retrieval systems for the comparative study; three, called IPSILON image retrieval systems, use parsed representation with different perceptual distortion thresholds and one uses the convectional vector quantization for visual pattern analysis. We observe that different perceptual distortion in visual pattern matching does not have serious effects on the retrieval precision although allowing looser perceptual thresholds in image compression result poor reconstruction fidelity. We compare the effectiveness of the use of the parsed representations, as constructed under the latent semantic analysis (LSA) paradigm so as to investigate their varying capabilities in capturing semantic concepts. The result clearly demonstrates the superiority of the parsed representation.

  8. Representation of concurrent stimuli by population activity in visual cortex

    OpenAIRE

    Busse, L.; Wade, A. R.; Carandini, M

    2009-01-01

    How do neuronal populations represent concurrent stimuli? We measured population responses in cat primary visual cortex (V1) using electrode arrays. Population responses to two superimposed gratings were weighted sums of the individual grating responses. The weights depended strongly on the relative contrasts of the components. When the contrasts were similar the population performed an approximately equal summation. When the contrasts differed markedly, however, the population performed appr...

  9. Newborn chickens generate invariant object representations at the onset of visual object experience

    OpenAIRE

    Wood, Justin N.

    2013-01-01

    To recognize objects quickly and accurately, mature visual systems build invariant object representations that generalize across a range of novel viewing conditions (e.g., changes in viewpoint). To date, however, the origins of this core cognitive ability have not yet been established. To examine how invariant object recognition develops in a newborn visual system, I raised chickens from birth for 2 weeks within controlled-rearing chambers. These chambers provided complete control over all vi...

  10. Hierarchical representation of shapes in visual cortex - from localized features to figural shape segregation

    Directory of Open Access Journals (Sweden)

    Stephan Tschechne

    2014-08-01

    Full Text Available Visual structures in the environment are effortlessly segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. At this stage, highly articulated changes in shape boundary as well as very subtle curvature changes contribute to the perception of an object.We propose a recurrent computational network architecture that utilizes a hierarchical distributed representation of shape features to encode boundary features over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback from representations generated at higher stages. In so doing, global configurational as well as local information is available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. This combines separate findings about the generation of cortical shape representation using hierarchical representations with figure-ground segregation mechanisms.Our model is probed with a selection of artificial and real world images to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.

  11. A Biologically-Inspired Framework for Contour Detection Using Superpixel-Based Candidates and Hierarchical Visual Cues

    Directory of Open Access Journals (Sweden)

    Xiao Sun

    2015-10-01

    Full Text Available Contour detection has been extensively investigated as a fundamental problem in computer vision. In this study, a biologically-inspired candidate weighting framework is proposed for the challenging task of detecting meaningful contours. In contrast to previous models that detect contours from pixels, a modified superpixel generation processing is proposed to generate a contour candidate set and then weigh the candidates by extracting hierarchical visual cues. We extract the low-level visual local cues to weigh the contour intrinsic property and mid-level visual cues on the basis of Gestalt principles for weighting the contour grouping constraint. Experimental results tested on the BSDS benchmark show that the proposed framework exhibits promising performances to capture meaningful contours in complex scenes.

  12. A Biologically-Inspired Framework for Contour Detection UsingSuperpixel-Based Candidates and Hierarchical Visual Cues.

    Science.gov (United States)

    Sun, Xiao; Shang, Ke; Ming, Delie; Tian, Jinwen; Ma, Jiayi

    2015-01-01

    Contour detection has been extensively investigated as a fundamental problem in computer vision. In this study, a biologically-inspired candidate weighting framework is proposed for the challenging task of detecting meaningful contours. In contrast to previous models that detect contours from pixels, a modified superpixel generation processing is proposed to generate a contour candidate set and then weigh the candidates by extracting hierarchical visual cues. We extract the low-level visual local cues to weigh the contour intrinsic property and mid-level visual cues on the basis of Gestalt principles for weighting the contour grouping constraint. Experimental results tested on the BSDS benchmark show that the proposed framework exhibits promising performances to capture meaningful contours in complex scenes. PMID:26492252

  13. Emergence of realism: Enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage.

    Science.gov (United States)

    Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2014-05-01

    Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient?s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient?s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. PMID:24631259

  14. Real-time Visual Tracking Using Sparse Representation

    CERN Document Server

    Li, Hanxi; Shi, Qinfeng

    2010-01-01

    The $\\ell_1$ tracker obtains robustness by seeking a sparse representation of the tracking object via $\\ell_1$ norm minimization \\cite{Xue_ICCV_09_Track}. However, the high computational complexity involved in the $ \\ell_1 $ tracker restricts its further applications in real time processing scenario. Hence we propose a Real Time Compressed Sensing Tracking (RTCST) by exploiting the signal recovery power of Compressed Sensing (CS). Dimensionality reduction and a customized Orthogonal Matching Pursuit (OMP) algorithm are adopted to accelerate the CS tracking. As a result, our algorithm achieves a real-time speed that is up to $6,000$ times faster than that of the $\\ell_1$ tracker. Meanwhile, RTCST still produces competitive (sometimes even superior) tracking accuracy comparing to the existing $\\ell_1$ tracker. Furthermore, for a stationary camera, a further refined tracker is designed by integrating a CS-based background model (CSBM). This CSBM-equipped tracker coined as RTCST-B, outperforms most state-of-the-a...

  15. Generating and Analyzing Visual Representations of Conic Sections with the Use of Technological Tools

    Science.gov (United States)

    Santos-Trigo, Manuel; Espinosa-Perez, Hugo; Reyes-Rodriguez, Aaron

    2006-01-01

    Technological tools have the potential to offer students the possibility to represent information and relationships embedded in problems and concepts in ways that involve numerical, algebraic, geometric, and visual approaches. In this paper, the authors present and discuss an example in which an initial representation of a mathematical object…

  16. Priming Contour-Deleted Images: Evidence for Immediate Representations in Visual Object Recognition.

    Science.gov (United States)

    Biederman, Irving; Cooper, Eric E.

    1991-01-01

    Speed and accuracy of identification of pictures of objects are facilitated by prior viewing. Contributions of image features, convex or concave components, and object models in a repetition priming task were explored in 2 studies involving 96 college students. Results provide evidence of intermediate representations in visual object recognition.…

  17. Representations of the Moon in Children's Literature: An Analysis of Written and Visual Text

    Science.gov (United States)

    Trundle, Kathy Cabe; Troland, Thomas H.; Pritchard, T. Gail

    2008-01-01

    This review focused on the written and visual representation of the moon in 80 children's books, including Caldecott Medal and Honor books over the past 20 years. Results revealed that many of these books misrepresent the moon and even reinforce misconceptions about lunar phases. Teachers who use children's literature that misrepresents the moon…

  18. Developing Explanations and Developing Understanding: Students Explain the Phases of the Moon Using Visual Representations

    Science.gov (United States)

    Parnafes, Orit

    2012-01-01

    This article presents a theoretical model of the process by which students construct and elaborate explanations of scientific phenomena using visual representations. The model describes progress in the underlying conceptual processes in students' explanations as a reorganization of fine-grained knowledge elements based on the Knowledge in Pieces…

  19. Emerging Object Representations in the Visual System Predict Reaction Times for Categorization.

    Science.gov (United States)

    Ritchie, J Brendan; Tovar, David A; Carlson, Thomas A

    2015-06-01

    Recognizing an object takes just a fraction of a second, less than the blink of an eye. Applying multivariate pattern analysis, or "brain decoding", methods to magnetoencephalography (MEG) data has allowed researchers to characterize, in high temporal resolution, the emerging representation of object categories that underlie our capacity for rapid recognition. Shortly after stimulus onset, object exemplars cluster by category in a high-dimensional activation space in the brain. In this emerging activation space, the decodability of exemplar category varies over time, reflecting the brain's transformation of visual inputs into coherent category representations. How do these emerging representations relate to categorization behavior? Recently it has been proposed that the distance of an exemplar representation from a categorical boundary in an activation space is critical for perceptual decision-making, and that reaction times should therefore correlate with distance from the boundary. The predictions of this distance hypothesis have been born out in human inferior temporal cortex (IT), an area of the brain crucial for the representation of object categories. When viewed in the context of a time varying neural signal, the optimal time to "read out" category information is when category representations in the brain are most decodable. Here, we show that the distance from a decision boundary through activation space, as measured using MEG decoding methods, correlates with reaction times for visual categorization during the period of peak decodability. Our results suggest that the brain begins to read out information about exemplar category at the optimal time for use in choice behaviour, and support the hypothesis that the structure of the representation for objects in the visual system is partially constitutive of the decision process in recognition. PMID:26107634

  20. DESIGNING FOR MULTIPLE SENSES WHILE USING VISUAL REPRESENTATION TECHNIQUES? CROSSMODAL CORRESPONDENCES AS A COUNTERFORCE TO THE DOMINANCE OF THE VISUAL SENSE

    OpenAIRE

    Adams, Carmen; PETERMANS, Ann; Vanrie, Jan; JANSSENS, WIM

    2014-01-01

    In design practice designers often use visual representation techniques to communicate to their clients. The use of visual representation techniques has been critiqued to add to a dominance of the visual sense, which is seen as a potential weakness since the other senses might by subordinated. In this paper the authors therefore introduce the concept of crossmodal correspondences. Crossmodal correspondences refer to the tendency for a feature or attribute in one sensory modality to be matched...

  1. Perisaccadic Updating of Visual Representations and Attentional States: Linking Behavior and Neurophysiology.

    Science.gov (United States)

    Marino, Alexandria C; Mazer, James A

    2016-01-01

    During natural vision, saccadic eye movements lead to frequent retinal image changes that result in different neuronal subpopulations representing the same visual feature across fixations. Despite these potentially disruptive changes to the neural representation, our visual percept is remarkably stable. Visual receptive field remapping, characterized as an anticipatory shift in the position of a neuron's spatial receptive field immediately before saccades, has been proposed as one possible neural substrate for visual stability. Many of the specific properties of remapping, e.g., the exact direction of remapping relative to the saccade vector and the precise mechanisms by which remapping could instantiate stability, remain a matter of debate. Recent studies have also shown that visual attention, like perception itself, can be sustained across saccades, suggesting that the attentional control system can also compensate for eye movements. Classical remapping could have an attentional component, or there could be a distinct attentional analog of visual remapping. At this time we do not yet fully understand how the stability of attentional representations relates to perisaccadic receptive field shifts. In this review, we develop a vocabulary for discussing perisaccadic shifts in receptive field location and perisaccadic shifts of attentional focus, review and synthesize behavioral and neurophysiological studies of perisaccadic perception and perisaccadic attention, and identify open questions that remain to be experimentally addressed. PMID:26903820

  2. Women And Visual Representations Of Space In Two Chinese Film Adaptations Of Hamlet

    Directory of Open Access Journals (Sweden)

    CHEANG WAI FONG

    2014-12-01

    Full Text Available This paper studies two Chinese film adaptations of Shakespeare’s Hamlet, Xiaogang Feng’s The Banquet (2006 and Sherwood Hu’s Prince of the Himalayas (2006, by focusing on their visual representations of spaces allotted to women. Its thesis is that even though on the original Shakespearean stage details of various spaces might not be as vividly represented as in modern film productions, spaces are still crucial dramatic elements imbued with powerful significations. By analyzing the two Chinese film adaptations alongside the original Hamlet text, the paper attempts to reinterpret their different representations of spaces in relation to their different historical-cultural gender notions.

  3. Comparing visual representations across human fMRI and computational vision.

    Science.gov (United States)

    Leeds, Daniel D; Seibert, Darren A; Pyles, John A; Tarr, Michael J

    2013-01-01

    Feedforward visual object perception recruits a cortical network that is assumed to be hierarchical, progressing from basic visual features to complete object representations. However, the nature of the intermediate features related to this transformation remains poorly understood. Here, we explore how well different computer vision recognition models account for neural object encoding across the human cortical visual pathway as measured using fMRI. These neural data, collected during the viewing of 60 images of real-world objects, were analyzed with a searchlight procedure as in Kriegeskorte, Goebel, and Bandettini (2006): Within each searchlight sphere, the obtained patterns of neural activity for all 60 objects were compared to model responses for each computer recognition algorithm using representational dissimilarity analysis (Kriegeskorte et al., 2008). Although each of the computer vision methods significantly accounted for some of the neural data, among the different models, the scale invariant feature transform (Lowe, 2004), encoding local visual properties gathered from "interest points," was best able to accurately and consistently account for stimulus representations within the ventral pathway. More generally, when present, significance was observed in regions of the ventral-temporal cortex associated with intermediate-level object perception. Differences in model effectiveness and the neural location of significant matches may be attributable to the fact that each model implements a different featural basis for representing objects (e.g., more holistic or more parts-based). Overall, we conclude that well-known computer vision recognition systems may serve as viable proxies for theories of intermediate visual object representation. PMID:24273227

  4. Computational Modelling of the Neural Representation of Object Shape in the Primate Ventral Visual System

    Directory of Open Access Journals (Sweden)

    Akihiro Eguchi

    2015-08-01

    Full Text Available Neurons in successive stages of the primate ventral visual pathway encode the spatial structure of visual objects. In this paper, we investigate through computer simulation how these cell firing properties may develop through unsupervised visually-guided learning. Individual neurons in the model are shown to exploit statistical regularity and temporal continuity of the visual inputs during training to learn firing properties that are similar to neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour elements at a particular position within an object regardless of the location of the object on the retina, while neurons in TEO integrate information from multiple boundary contour elements. This representation goes beyond mere object recognition, in which neurons simply respond to the presence of a whole object, but provides an essential foundation from which the brain is subsequently able to recognise the whole object.

  5. Computational modeling of the neural representation of object shape in the primate ventral visual system

    Science.gov (United States)

    Eguchi, Akihiro; Mender, Bedeho M. W.; Evans, Benjamin D.; Humphreys, Glyn W.; Stringer, Simon M.

    2015-01-01

    Neurons in successive stages of the primate ventral visual pathway encode the spatial structure of visual objects. In this paper, we investigate through computer simulation how these cell firing properties may develop through unsupervised visually-guided learning. Individual neurons in the model are shown to exploit statistical regularity and temporal continuity of the visual inputs during training to learn firing properties that are similar to neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour elements at a particular position within an object regardless of the location of the object on the retina, while neurons in TEO integrate information from multiple boundary contour elements. This representation goes beyond mere object recognition, in which neurons simply respond to the presence of a whole object, but provides an essential foundation from which the brain is subsequently able to recognize the whole object. PMID:26300766

  6. Visual perception involves event-type representations: The case of containment versus occlusion.

    Science.gov (United States)

    Strickland, Brent; Scholl, Brian J

    2015-06-01

    Recent infant cognition research suggests that core knowledge involves event-type representations: During perception, the mind automatically categorizes physical events into broad types (e.g., occlusion and containment), which then guide attention to different properties (e.g., with width processed at a younger age than height in containment events but not occlusion events). We tested whether this aspect of infant cognition also structures adults' visual processing. In 6 experiments, adults had to detect occasional changes in ongoing dynamic displays that depicted repeating occlusion or containment events. Mirroring the developmental progression, change detection was better for width versus height changes in containment events, but no such difference was found for otherwise equivalent occlusion events, even though most observers were not even aware of the subtle occlusion-containment difference. These results suggest for the first time that event-type representations exist and operate automatically and unconsciously as part of the underlying currency of adult visual cognition. PMID:25867222

  7. Experience-driven formation of parts-based representations in a model of layered visual memory

    CERN Document Server

    Jitsev, Jenia

    2009-01-01

    Growing neuropsychological and neurophysiological evidence suggests that the visual cortex uses parts-based representations to encode, store and retrieve relevant objects. In such a scheme, objects are represented as a set of spatially distributed local features, or parts, arranged in stereotypical fashion. To encode the local appearance and to represent the relations between the constituent parts, there has to be an appropriate memory structure formed by previous experience with visual objects. Here, we propose a model how a hierarchical memory structure supporting efficient storage and rapid recall of parts-based representations can be established by an experience-driven process of self-organization. The process is based on the collaboration of slow bidirectional synaptic plasticity and homeostatic unit activity regulation, both running at the top of fast activity dynamics with winner-take-all character. These neural mechanisms lay down the basis for cooperation and competition between the distributed units...

  8. Visual enhancement based on salient region detection and layered difference representation

    Science.gov (United States)

    Li, Yi; Zhang, Yunfeng; Cao, Lihua; Chen, Juan

    2016-02-01

    We propose a novel image enhancement method based on salient region detection and a layered difference representation of 2D histograms. We first obtain the visual salient region corresponding to maximal human attention using saliency filters. Then, we obtain a difference vector for the visual salient region by solving a constrained optimization problem of the layered difference representation at a specified layer. Finally, the new difference vector and the difference vector of the original image are aggregated to enhance the salient region and protect other regions from overstretching or brightness shift. Experimental results including comparisons with other methods show that our proposed algorithm produces more suitable enhanced images compared with the results of existing algorithms.

  9. A Reggio-Inspired Music Atelier: Opening the Door between Visual Arts and Music

    Science.gov (United States)

    Hanna, Wendell

    2014-01-01

    The Reggio Emilia approach is based on the idea that every child has at least, "one hundred languages" available for expressing perspectives of the world, and one of those languages is music. While all of the arts (visual, music, dance, drama) are considered equally important in Reggio schools, the visual arts have been particularly…

  10. A Reggio-Inspired Music Atelier: Opening the Door between Visual Arts and Music

    Science.gov (United States)

    Hanna, Wendell

    2014-01-01

    The Reggio Emilia approach is based on the idea that every child has at least, "one hundred languages" available for expressing perspectives of the world, and one of those languages is music. While all of the arts (visual, music, dance, drama) are considered equally important in Reggio schools, the visual arts have been particularly…

  11. Non-sparse Linear Representations for Visual Tracking with Online Reservoir Metric Learning

    CERN Document Server

    Li, Xi; Shi, Qinfeng; Dick, Anthony; Hengel, Anton van den

    2012-01-01

    Most sparse linear representation-based trackers need to solve a computationally expensive L1-regularized optimization problem. To address this problem, we propose a visual tracker based on non-sparse linear representations, which admit an efficient closed-form solution without sacrificing accuracy. Moreover, in order to capture the correlation information between different feature dimensions, we learn a Mahalanobis distance metric in an online fashion and incorporate the learned metric into the optimization problem for obtaining the linear representation. We show that online metric learning using proximity comparison significantly improves the robustness of the tracking, especially on those sequences exhibiting drastic appearance changes. Furthermore, in order to prevent the unbounded growth in the number of training samples for the metric learning, we design a time-weighted reservoir sampling method to maintain and update limited-sized foreground and background sample buffers for balancing sample diversity ...

  12. Invariance of brain-wave representations of simple visual images and their names

    OpenAIRE

    Suppes, Patrick; Han, Bing; Epelboim, Julie; Lu, Zhong-Lin

    1999-01-01

    In two experiments, electric brain waves of 14 subjects were recorded under several different conditions to study the invariance of brain-wave representations of simple patches of colors and simple visual shapes and their names, the words blue, circle, etc. As in our earlier work, the analysis consisted of averaging over trials to create prototypes and test samples, to both of which Fourier transforms were applied, followed by filtering and an inverse transformation to the time domain. A leas...

  13. Feature integration and object representations along the dorsal stream visual hierarchy

    OpenAIRE

    Carolyn Jeane Perry; Mazyar Fallah

    2014-01-01

    The visual system is split into two processing streams: a ventral stream that receives color and form information and a dorsal stream that receives motion information. Each stream processes that information hierarchically, with each stage building upon the previous. In the ventral stream this leads to the formation of object representations that ultimately allow for object recognition regardless of changes in the surrounding environment. In the dorsal stream, this hierarchical processing has ...

  14. Representations of facial identity information in the ventral visual stream investigated with multivoxel pattern analyses

    OpenAIRE

    E. Goesaert; H. P. Op de Beeck

    2013-01-01

    The neural basis of face recognition has been investigated extensively. Using fMRI, several regions have been identified in the human ventral visual stream that seem to be involved in processing and identifying faces, but the nature of the face representations in these regions is not well known. In particular, multivoxel pattern analyses have revealed distributed maps within these regions, but did not reveal the organizing principles of these maps. Here we isolated different types of perceptu...

  15. Knowledge practices in design: The role of visual representations as 'epistemic objects'

    OpenAIRE

    Ewenstein, B; J. Whyte

    2009-01-01

    We use a detailed study of the knowledge work around visual representations to draw attention to the multidimensional nature of `objects'. Objects are variously described in the literatures as relatively stable or in flux; as abstract or concrete; and as used within or across practices. We clarify these dimensions, drawing on and extending the literature on boundary objects, and connecting it with work on epistemic and technical objects. In particular, we highlight the epistemic role of objec...

  16. The Rise and Fall of Priming: How Visual Exposure Shapes Cortical Representations of Objects

    OpenAIRE

    Zago, Laure; Fenske, Mark J.; Aminoff, Elissa; Bar, Moshe

    2005-01-01

    How does the amount of time for which we see an object influence the nature and content of its cortical representation? To address this question, we varied the duration of initial exposure to visual objects and then measured functional magnetic resonance imaging (fMRI) signal and behavioral performance during a subsequent repeated presentation of these objects. We report a novel ‘rise-and-fall’ pattern relating exposure duration and the corresponding magnitude of fMRI cortical signal. Compare...

  17. Transform-invariant visual representations in self-organizing spiking neural networks

    Directory of Open Access Journals (Sweden)

    Benjamin Evans

    2012-07-01

    Full Text Available The ventral visual pathway achieves object and face recognition by building transform-invariant representations from elementary visual features. In previous computer simulation studies with rate-coded neural networks, the development of transform invariant representations has been demonstrated using either of two biologically plausible learning mechanisms, Trace learning and Continuous Transformation (CT learning. However, it has not previously been investigated how transform invariant representations may be learned in a more biologically accurate spiking neural network. A key issue is how the synaptic connection strengths in such a spiking network might self-organize through Spike-Time Dependent Plasticity (STDP where the change in synaptic strength is dependent on the relative times of the spikes emitted by the pre- and postsynaptic neurons rather than simply correlated activity driving changes in synaptic efficacy. Here we present simulations with conductance-based integrate-and-fire (IF neurons using a STDP learning rule to address these gaps in our understanding. It is demonstrated that with the appropriate selection of model pa- rameters and training regime, the spiking network model can utilize either Trace-like or CT-like learning mechanisms to achieve transform-invariant representations.

  18. Body ownership affects visual perception of object size by rescaling the visual representation of external space

    OpenAIRE

    van der Hoort B; Ehrsson HH

    2014-01-01

    Size perception is most often explained by a combination of cues derived from the visual system. However, this traditional cue approach neglects the role of the observer’s body beyond mere visual comparison. In a previous study, we used a full-body illusion to show that objects appear larger and farther away when participants experience a small artificial body as their own and that objects appear smaller and closer when they assume ownership of a large artificial body (“Barbie-doll illusion”;...

  19. Representação visual de estruturas biológicas em materiais de ensino Visual representation of biological structures in teaching material

    Directory of Open Access Journals (Sweden)

    Marina Azevedo Morato

    1998-10-01

    Full Text Available Este trabalho foi motivado pela necessidade de se definir parâmetros de apresentação e tratamento da informação científica em materiais de ensino. Através de consultas a bibliotecas e a especialistas em ciências da saúde e artes gráficas e visuais, fez-se uma pesquisa que resultou na descrição comparativa entre as primeiras manifestações da ilustração científica na anatomia e a trajetória da representação visual do conhecimento sobre a célula. O estudo traz ainda exemplos significativos de ilustrações utilizadas como elementos de análise.Parameters must be defined for presenting and handling scientific information presented in the form of teaching materials. Through library research and consultations with specialists in the health sciences and in graphic arts and design, this study undertook a comparative description of the first examples of scientific illustrations of anatomy and the evolution of visual representations of knowledge on the cell. The study includes significant examples of illustrations which served as elements of analysis.

  20. Visual Behaviour Based Bio-Inspired Polarization Techniques in Computer Vision and Robotics

    OpenAIRE

    Shabayek, Abd El Rahman; Morel, Olivier; Fofi, David

    2012-01-01

    For long time, it was thought that the sensing of polarization by animals is invariably related to their behavior, such as navigation and orientation. Recently, it was found that polarization can be part of a high-level visual perception, permitting a wide area of vision applications. Polarization vision can be used for most tasks of color vision including object recognition, contrast enhancement, camouflage breaking, and signal detection and discrimination. The polarization based visual beha...

  1. Visual representation of National Institute of Allergy and Infectious Disease and Food Allergy and Anaphylaxis Network criteria for anaphylaxis

    OpenAIRE

    Manivannan, Veena; Decker, Wyatt W.; Latha G. Stead; Li, James T.C.; Campbell, Ronna L.

    2009-01-01

    We present a user-friendly visual representation of The National Institute of Allergy and Infectious Disease and the Food Allergy and Anaphylaxis Network criteria so as to enhance recognition of anaphylaxis and active teaching and learning.

  2. Biologically Inspired Visual Model With Preliminary Cognition and Active Attention Adjustment.

    Science.gov (United States)

    Qiao, Hong; Xi, Xuanyang; Li, Yinlin; Wu, Wei; Li, Fengfu

    2015-11-01

    Recently, many computational models have been proposed to simulate visual cognition process. For example, the hierarchical Max-Pooling (HMAX) model was proposed according to the hierarchical and bottom-up structure of V1 to V4 in the ventral pathway of primate visual cortex, which could achieve position- and scale-tolerant recognition. In our previous work, we have introduced memory and association into the HMAX model to simulate visual cognition process. In this paper, we improve our theoretical framework by mimicking a more elaborate structure and function of the primate visual cortex. We will mainly focus on the new formation of memory and association in visual processing under different circumstances as well as preliminary cognition and active adjustment in the inferior temporal cortex, which are absent in the HMAX model. The main contributions of this paper are: 1) in the memory and association part, we apply deep convolutional neural networks to extract various episodic features of the objects since people use different features for object recognition. Moreover, to achieve a fast and robust recognition in the retrieval and association process, different types of features are stored in separated clusters and the feature binding of the same object is stimulated in a loop discharge manner and 2) in the preliminary cognition and active adjustment part, we introduce preliminary cognition to classify different types of objects since distinct neural circuits in a human brain are used for identification of various types of objects. Furthermore, active cognition adjustment of occlusion and orientation is implemented to the model to mimic the top-down effect in human cognition process. Finally, our model is evaluated on two face databases CAS-PEAL-R1 and AR. The results demonstrate that our model exhibits its efficiency on visual recognition process with much lower memory storage requirement and a better performance compared with the traditional purely computational methods. PMID:25532204

  3. When memory is not enough: Electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention

    OpenAIRE

    Carlisle, Nancy B.; Woodman, Geoffrey F.

    2011-01-01

    Biased competition theory proposes that representations in working memory drive visual attention to select similar inputs. However, behavioral tests of this hypothesis have led to mixed results. These inconsistent findings could be due to the inability of behavioral measures to reliably detect the early, automatic effects on attentional deployment that the memory representations exert. Alternatively, executive mechanisms may govern how working memory representations influence attention based ...

  4. Social Categories Shape the Neural Representation of Emotion: Evidence from a Visual Face Adaptation Task.

    Directory of Open Access Journals (Sweden)

    Marte Otten

    2012-02-01

    Full Text Available A number of recent behavioral studies have shown that emotional expressions are differently perceived depending on the race of a face, and that that perception of race cues is influenced by emotional expressions. However, neural processes related to the perception of invariant cues that indicate the identity of a face (such as race are often described to proceed independently of processes related to the perception of cues that can vary over time (such as emotion. Using a visual face adaptation paradigm, we tested whether these behavioral interactions between emotion and race also reflect interdependent neural representation of emotion and race. We compared visual emotion aftereffects when the adapting face and ambiguous test face differed in race or not. Emotion aftereffects were much smaller in different race trials than same race trials, indicating that the neural representation of a facial expression is significantly different depending on whether the emotional face is black or white. It thus seems that invariable cues such as race interact with variable face cues such as emotion not just at a response level, but also at the level of perception and neural representation.

  5. Body ownership affects visual perception of object size by rescaling the visual representation of external space.

    Science.gov (United States)

    van der Hoort, Björn; Ehrsson, H Henrik

    2014-07-01

    Size perception is most often explained by a combination of cues derived from the visual system. However, this traditional cue approach neglects the role of the observer's body beyond mere visual comparison. In a previous study, we used a full-body illusion to show that objects appear larger and farther away when participants experience a small artificial body as their own and that objects appear smaller and closer when they assume ownership of a large artificial body ("Barbie-doll illusion"; van der Hoort, Guterstam, & Ehrsson, PLoS ONE, 6(5), e20195, 2011). The first aim of the present study was to test the hypothesis that this own-body-size effect is distinct from the role of the seen body as a direct familiar-size cue. To this end, we developed a novel setup that allowed for occlusion of the artificial body during the presentation of test objects. Our results demonstrate that the feeling of ownership of an artificial body can alter the perceived sizes of objects without the need for a visible body. Second, we demonstrate that fixation shifts do not contribute to the own-body-size effect. Third, we show that the effect exists in both peri-personal space and distant extra-personal space. Finally, through a meta-analysis, we demonstrate that the own-body-size effect is independent of and adds to the classical visual familiar-size cue effect. Our results suggest that, by changing body size, the entire spatial layout rescales and new objects are now perceived according to this rescaling, without the need to see the body. PMID:24806404

  6. Characterizing the information content of a newly hatched chick's first visual object representation.

    Science.gov (United States)

    Wood, Justin N

    2015-03-01

    How does object recognition emerge in the newborn brain? To address this question, I examined the information content of the first visual object representation built by newly hatched chicks (Gallus gallus). In their first week of life, chicks were raised in controlled-rearing chambers that contained a single virtual object rotating around a single axis. In their second week of life, I tested whether subjects had encoded information about the identity and viewpoint of the virtual object. The results showed that chicks built object representations that contained both object identity information and view-specific information. However, there was a trade-off between these two types of information: subjects who were more sensitive to identity information were less sensitive to view-specific information, and vice versa. This pattern of results is predicted by iterative, hierarchically organized visual processing machinery, the machinery that supports object recognition in adult primates. More generally, this study shows that invariant object recognition is a core cognitive ability that can be operational at the onset of visual object experience. PMID:24980274

  7. Objets Sonores: Une Repr\\'esentation Bio-Inspir\\'ee Hi\\'erarchique Parcimonieuse \\`A Tr\\`es Grandes Dimensions Utilisable En Reconnaissance; Auditory Objects: Bio-Inspired Hierarchical Sparse High Dimensional Representation for Recognition

    OpenAIRE

    Brodeur, Simon; Rouat, Jean

    2013-01-01

    L'accent est plac\\'e dans cet article sur la structure hi\\'erarchique, l'aspect parcimonieux de la repr\\'esentation de l'information sonore, la tr\\`es grande dimension des caract\\'eristiques ainsi que sur l'ind\\'ependance des caract\\'eristiques permettant de d\\'efinir les composantes des objets sonores. Les notions d'objet sonore et de repr\\'esentation neuronale sont d'abord introduites, puis illustr\\'ees avec une application en analyse de signaux sonores vari\\'es: parole, m...

  8. A biologically inspired psychometric function for accuracy of visual identification as a function of exposure duration

    DEFF Research Database (Denmark)

    Petersen, Anders; Andersen, Tobias

    The psychometric function of letter identification is typically described as a function of stimulus intensity. However, the effect of stimulus exposure duration on letter identification remains poorly described. This is surprising because the effect of exposure duration has played a central role ...... into Bundesen’s Theory of Visual Attention (Bundesen, 1990), the new psychometric function enables closer fits to data from a previous whole and partial report experiment....... rising from zero, then peaking, and finally decaying to a somewhat sustained plateau, mimicking closely observed instantaneous firing rates of monkey visual cortex neurons. The new psychometric function fits well to experimental data in both the present study and in a previous study of single......-letter identification accuracy (Bundesen & Harms, 1999). Also, we conducted a follow-up experiment to test the ability of the psychometric functions to fit single-letter identification data, at different stimulus contrast levels; also in this experiment the new psychometric function prevailed. Further, after insertion...

  9. Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.

    Science.gov (United States)

    Silva, Pedro; Matos, Vitor; Santos, Cristina P

    2014-02-01

    There is an increasing interest in conceiving robotic systems that are able to move and act in an unstructured and not predefined environment, for which autonomy and adaptability are crucial features. In nature, animals are autonomous biological systems, which often serve as bio-inspiration models, not only for their physical and mechanical properties, but also their control structures that enable adaptability and autonomy-for which learning is (at least) partially responsible. This work proposes a system which seeks to enable a quadruped robot to online learn to detect and to avoid stumbling on an obstacle in its path. The detection relies in a forward internal model that estimates the robot's perceptive information by exploring the locomotion repetitive nature. The system adapts the locomotion in order to place the robot optimally before attempting to step over the obstacle, avoiding any stumbling. Locomotion adaptation is achieved by changing control parameters of a central pattern generator (CPG)-based locomotion controller. The mechanism learns the necessary alterations to the stride length in order to adapt the locomotion by changing the required CPG parameter. Both learning tasks occur online and together define a sensorimotor map, which enables the robot to learn to step over the obstacle in its path. Simulation results show the feasibility of the proposed approach. PMID:24469319

  10. Product design for elderly-visual design information inspired a new perspective in design education:

    OpenAIRE

    Langeveld, L.H.

    2014-01-01

    A workshop Product Design for Elderly was held in Beijing and organized by the School of Digital Media and Design, Beijing University of Posts and Telecommunications. A domestic appliances company had sponsored a part of the workshop and brought in the topics. The objectives of the workshop were creating a product design by each design team. and gaining design competence with use of visual design information. The work method was based on the sequential design process of Pahl and Beitz. The ar...

  11. The Concept of Happiness as Conveyed in Visual Representations: Analysis of the Work of Early Childhood Educators

    Science.gov (United States)

    Russo-Zimet, Gila; Segel, Sarit

    2014-01-01

    This research was designed to examine how early-childhood educators pursuing their graduate degrees perceive the concept of happiness, as conveyed in visual representations. The research methodology combines qualitative and quantitative paradigms using the metaphoric collage, a tool used to analyze visual and verbal aspects. The research…

  12. A biologically inspired psychometric function for accuracy of visual identification as a function of exposure duration

    DEFF Research Database (Denmark)

    Petersen, Anders; Andersen, Tobias

    The psychometric function of letter identification is typically described as a function of stimulus intensity. However, the effect of stimulus exposure duration on letter identification remains poorly described. This is surprising because the effect of exposure duration has played a central role in modelling human performance in whole and partial report tasks in which multiple simultaneously presented letters are to be reported (Shibuya & Bundesen, 1988). Therefore, we investigated visual letter identification as a function of exposure duration. On each trial, a single randomly chosen letter (A-Z) was presented at the centre of the screen. Exposure duration was varied from 5 to 210 milliseconds. The letter was followed by a pattern mask. Three subjects each completed 54,080 trials in a 26-Alternative Forced Choice procedure. We compared the exponential, the gamma and the Weibull psychometric functions, all of these having a temporal offset included, as well as the ex-Gaussian, and finally a new psychometric function, motivated from single-neuron studies by (Albrecht, Geisler, Frazor & Crane, 2002). The new psychometric function stands out by having a nonmonotonous hazard rate which is initially rising from zero, then peaking, and finally decaying to a somewhat sustained plateau, mimicking closely observed instantaneous firing rates of monkey visual cortex neurons. The new psychometric function fits well to experimental data in both the present study and in a previous study of single-letter identification accuracy (Bundesen & Harms, 1999). Also, we conducted a follow-up experiment to test the ability of the psychometric functions to fit single-letter identification data, at different stimulus contrast levels; also in this experiment the new psychometric function prevailed. Further, after insertion into Bundesen’s Theory of Visual Attention (Bundesen, 1990), the new psychometric function enables closer fits to data from a previous whole and partial report experiment.

  13. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  14. Mapping human visual representations in space and time by neural networks.

    Science.gov (United States)

    Cichy, Radoslaw; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2015-09-01

    The neural machinery underlying visual object recognition comprises a hierarchy of cortical regions in the ventral visual stream. The spatiotemporal dynamics of information flow in this hierarchy of regions is largely unknown. Here we tested the hypothesis that there is a correspondence between the spatiotemporal neural processes in the human brain and the layer hierarchy of a deep convolutional neural network (CNN). We presented 118 images of real-world objects to human participants (N=15) while we measured their brain activity with functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). We trained an 8 layer (5 convolutional layers, 3 fully connected layers) CNN to predict 683 object categories with 900K training images from the ImageNet dataset. We obtained layer-specific CNN responses to the same 118 images. To compare brain-imaging data with the CNN in a common framework, we used representational similarity analysis. The key idea is that if two conditions evoke similar patterns in brain imaging data, they should also evoke similar patterns in the computer model. We thus determined 'where' (fMRI) and 'when' (MEG) the CNNs predicted brain activity. We found a correspondence in hierarchy between cortical regions, processing time, and CNN layers. Low CNN layers predicted MEG activity early and high layers relatively later; low CNN layers predicted fMRI activity in early visual regions, and high layers in late visual regions. Surprisingly, the correspondence between CNN layer hierarchy and cortical regions held for the ventral and dorsal visual stream. Results were dependent on amount of training and type of training material. Our results show that CNNs are a promising formal model of human visual object recognition. Combined with fMRI and MEG, they provide an integrated spatiotemporal and algorithmically explicit view of the first few hundred milliseconds of object recognition. Meeting abstract presented at VSS 2015. PMID:26326064

  15. The role of visual representations in the learning and teaching of science: An introduction

    Directory of Open Access Journals (Sweden)

    John K. GILBERT

    2010-06-01

    Full Text Available Representations are the entities with which all thinking is considered to take place. Hence they are central to the process of learning and consequently to that of teaching. They are therefore important in the conduct and learning of science, given the central commitment of that discipline to providing evidence-based explanations of natural phenomena, in which underlying entities and mechanisms have to be postulated and substantiated on the basis of empirical enquiry. The three generic types of representation and the modes in which they are expressed are presented against the background of an established model of their acquisition, processing and display. The two meanings of ‘visualization’ are discussed as is the key role played by fluency in them in the attainment of expert status in the processes of science. The nature and origins of students’ problems in attaining this ‘metavisual competence’ are derived from a review of the literature. Good practice in the teaching of the conventions of representation is suggested. Specific research and development is needed if this key aspect of knowledge acquisition and display is to be fully recognised in the varied curricula of formal science education and in the provision of opportunities for the informal communication of science.

  16. How to Make a Good Animation: A Grounded Cognition Model of How Visual Representation Design Affects the Construction of Abstract Physics Knowledge

    Science.gov (United States)

    Chen, Zhongzhou; Gladding, Gary

    2014-01-01

    Visual representations play a critical role in teaching physics. However, since we do not have a satisfactory understanding of how visual perception impacts the construction of abstract knowledge, most visual representations used in instructions are either created based on existing conventions or designed according to the instructor's…

  17. A bio-inspired method and system for visual object-based attention and segmentation

    Science.gov (United States)

    Huber, David J.; Khosla, Deepak

    2010-04-01

    This paper describes a method and system of human-like attention and object segmentation in visual scenes that (1) attends to regions in a scene in their rank of saliency in the image, (2) extracts the boundary of an attended proto-object based on feature contours, and (3) can be biased to boost the attention paid to specific features in a scene, such as those of a desired target object in static and video imagery. The purpose of the system is to identify regions of a scene of potential importance and extract the region data for processing by an object recognition and classification algorithm. The attention process can be performed in a default, bottom-up manner or a directed, top-down manner which will assign a preference to certain features over others. One can apply this system to any static scene, whether that is a still photograph or imagery captured from video. We employ algorithms that are motivated by findings in neuroscience, psychology, and cognitive science to construct a system that is novel in its modular and stepwise approach to the problems of attention and region extraction, its application of a flooding algorithm to break apart an image into smaller proto-objects based on feature density, and its ability to join smaller regions of similar features into larger proto-objects. This approach allows many complicated operations to be carried out by the system in a very short time, approaching real-time. A researcher can use this system as a robust front-end to a larger system that includes object recognition and scene understanding modules; it is engineered to function over a broad range of situations and can be applied to any scene with minimal tuning from the user.

  18. Internal reference frames for representation and storage of visual information: the role of gravity.

    Science.gov (United States)

    McIntyre, Joseph; Lipshits, Mark; Zaoui, Mohamed; Berthoz, Alain; Gurfinkel, Victor

    2001-08-01

    Experimental studies of visual mechanisms suggest that the CNS represents image information with respect to preferred horizontal and vertical axes, as shown by a phenomenon known as the "oblique effect". In the current study we used this effect to evaluate the influence of gravity on the representation and storage of visual orientation information. Subjects performed a psychophysical task in which a visually-presented stimulus line was aligned with the remembered orientation of a reference stimulus line presented moments before. The experiments were made on 5 cosmonauts during orbital space flight and additionally on 13 subjects in conditions of normal gravity with a tilting chair. Data were analyzed with respect to response variability and timing. On earth, these measurements for this task show a distinct preference for horizontally and vertically oriented stimuli when the body and gravitational axes were aligned. This preference was markedly decreased or disappeared when the body axis was tilted with respect to gravity; this effect was not connected with ocular counter-rolling nor could we find a preference of any other intermediate axis between the gravity and body aligned axes. On the other hand, the preference for vertical and horizontal axes was maintained for tests performed in microgravity over the course of a 6 month flight, starting from flight day 6. We concluded that subjects normally process visual orientation information in a multi-modal reference frame that combines both proprioceptive and gravitational cues when both are available, but that a proprioceptive reference frame is sufficient for this task in the absence of gravity after a short period of adaptation. Some of the results from this study have been previously published in a preliminary report [7].

  19. Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex

    OpenAIRE

    Fritjof Helmchen

    2011-01-01

    How are visual scenes encoded in local neural networks of visual cortex? In rodents, visual cortex lacks a columnar organization so that processing of diverse features from a spot in visual space could be performed locally by populations of neighboring neurons. To examine how complex visual scenes are represented by local microcircuits in mouse visual cortex we measured visually-evoked responses of layer 2/3 neuronal populations using 3D two-photon calcium imaging. Both natural and artificial...

  20. Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex

    OpenAIRE

    Kampa, B M; Roth, M. M.; Göbel, W; Helmchen, F.

    2011-01-01

    How are visual scenes encoded in local neural networks of visual cortex? In rodents, visual cortex lacks a columnar organization so that processing of diverse features from a spot in visual space could be performed locally by populations of neighboring neurons. To examine how complex visual scenes are represented by local microcircuits in mouse visual cortex we measured visually evoked responses of layer 2/3 neuronal populations using 3D two-photon calcium imaging. Both natural and artificial...

  1. Exploiting a Reliable Structural Appearance Model for Visual Tracking with Sparse Representation

    Directory of Open Access Journals (Sweden)

    Hainan Zhao

    2013-01-01

    Full Text Available This study proposes a novel approach of exploiting a reliable structural appearance model for visual tracking. The proposed method samples overlapped local image patches within the target region and evaluates the reliabilities of these local patches respectively by introducing a sample based local sparse representation for each local patch. The occluded or deteriorative patches are excluded, only the stable ones are employed to construct a reliable structural appearance model, which is used for likelihood computation. In addition, the reliability evaluation of local patch facilitates our selective update scheme, by which we reduce the influence of the occluded target template and alleviate the drift problem. Experiments on challenging video sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods.

  2. Separating the Innocents from the Illegals: visual representation of the victims of sex trafficking in anti-trafficking campaigns

    OpenAIRE

    Stolic, Tijana

    2014-01-01

    This thesis critically explores the discursive formations around the visual representation of the victims of sex trafficking in six anti-trafficking campaigns totalling 18 photographs. Critical discourse analysis is utilised as a methodological approach, while semiotics and iconography are used as methods of visual analysis. Picking up on the previous studies of the discourses of trafficking, the study aims to place the dominant discourses of trafficking into the context of humanitarian appea...

  3. The Concept of Happiness as Conveyed in Visual Representations: Analysis of the Work of Early Childhood Educators

    OpenAIRE

    Gila Russo-Zimet; Sarit Segel

    2014-01-01

    This research was designed to examine how early-childhood educators pursuing their graduate degrees perceive the concept of happiness, as conveyed in visual representations. The research methodology combines qualitative and quantitative paradigms using the metaphoric collage, a tool used to analyze visual and verbal aspects. The research population included 32 students from various locations in Israel. The findings revealed that the concept of happiness is perceived as love, spirituality and ...

  4. Incidental learning of probability information is differentially affected by the type of visual working memory representation.

    Science.gov (United States)

    van Lamsweerde, Amanda E; Beck, Melissa R

    2015-12-01

    In this study, we investigated whether the ability to learn probability information is affected by the type of representation held in visual working memory. Across 4 experiments, participants detected changes to displays of coloured shapes. While participants detected changes in 1 dimension (e.g., colour), a feature from a second, nonchanging dimension (e.g., shape) predicted which object was most likely to change. In Experiments 1 and 3, items could be grouped by similarity in the changing dimension across items (e.g., colours and shapes were repeated in the display), while in Experiments 2 and 4 items could not be grouped by similarity (all features were unique). Probability information from the predictive dimension was learned and used to increase performance, but only when all of the features within a display were unique (Experiments 2 and 4). When it was possible to group by feature similarity in the changing dimension (e.g., 2 blue objects appeared within an array), participants were unable to learn probability information and use it to improve performance (Experiments 1 and 3). The results suggest that probability information can be learned in a dimension that is not explicitly task-relevant, but only when the probability information is represented with the changing dimension in visual working memory. (PsycINFO Database Record PMID:26010021

  5. Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)

    Science.gov (United States)

    Michael, Neethu; Löwel, Siegrid; Bischof, Hans-Joachim

    2015-01-01

    The visual wulst of the zebra finch comprises at least two retinotopic maps of the contralateral eye. As yet, it is not known how much of the visual field is represented in the wulst neuronal maps, how the organization of the maps is related to the retinal architecture, and how information from the ipsilateral eye is involved in the activation of the wulst. Here, we have used autofluorescent flavoprotein imaging and classical anatomical methods to investigate such characteristics of the most posterior map of the multiple retinotopic representations. We found that the visual wulst can be activated by visual stimuli from a large part of the visual field of the contralateral eye. Horizontally, the visual field representation extended from -5° beyond the beak tip up to +125° laterally. Vertically, a small strip from -10° below to about +25° above the horizon activated the visual wulst. Although retinal ganglion cells had a much higher density around the fovea and along a strip extending from the fovea towards the beak tip, these areas were not overrepresented in the wulst map. The wulst area activated from the foveal region of the ipsilateral eye, overlapped substantially with the middle of the three contralaterally activated regions in the visual wulst, and partially with the other two. Visual wulst activity evoked by stimulation of the frontal visual field was stronger with contralateral than with binocular stimulation. This confirms earlier electrophysiological studies indicating an inhibitory influence of the activation of the ipsilateral eye on wulst activity elicited by stimulating the contralateral eye. The lack of a foveal overrepresentation suggests that identification of objects may not be the primary task of the zebra finch visual wulst. Instead, this brain area may be involved in the processing of visual information necessary for spatial orientation. PMID:25853253

  6. VISUAL REPRESENTATION OF MAIN ACTORS POVERTY IN SERBIA: SEMIOTIC ANALYSIS OF TELEVISION IMAGE AND PHOTOGRAPHY IN MEDIA TEXTS

    Directory of Open Access Journals (Sweden)

    Brankica Draškovi?

    2012-12-01

    Full Text Available This paper analyzes the media's visual representation of various poverty groups within Serbia.The visual representation is not simply a reflection of reality, but rather an instrument that plays an important role in prescribing different meaning  to media events and their appearances in public.The aim of this research is to determine how the visual code transmits messages about poverty and socially excluded groups, in the analyzed television news, newspaper and online photographs. Based on the sample of  410 articles on poverty, collected between the 14th and  28th of  October 2010 and 2011, this paper critically analyses the medias representation of poverty within Serbian society through methods of content analysis, critical discourse studies, and the use of semiotic approahes to images. Analysis of the structure of discourse shows that the visual representation of the poor in Serbian society is highly simplified, stereotyped and is seperated from the wider societal context of poverty. It is rather reduced to bits and  pieces of media images, which do not properly indicate the seriousnes of the problem of poverty making it difficult for mass audiences to identify with.

  7. VStops: A Thinking Strategy and Visual Representation Approach in Mathematical Word Problem Solving toward Enhancing STEM Literacy

    Science.gov (United States)

    Abdullah, Nasarudin; Halim, Lilia; Zakaria, Effandi

    2014-01-01

    This study aimed to determine the impact of strategic thinking and visual representation approaches (VStops) on the achievement, conceptual knowledge, metacognitive awareness, awareness of problem-solving strategies, and student attitudes toward mathematical word problem solving among primary school students. The experimental group (N = 96)…

  8. Images as Representations: Visual Sources on Education and Childhood in the Past

    Science.gov (United States)

    Dekker, Jeroen J.H.

    2015-01-01

    The challenge of using images for the history of education and childhood will be addressed in this article by looking at them as representations. Central is the relationship between representations and reality. The focus is on the power of paintings as representations of aspects of realities. First the meaning of representation for images as…

  9. Queering boundaries: semen and visual representations from the Middle Ages and in the era of the AIDS crisis.

    Science.gov (United States)

    Ricco, J P

    1994-01-01

    In this essay I address some of the ways in which certain images, which share visual and verbal vocabularies of body fluids, visualize male-male sexual identities and body practices. Through the articulation of these terms, and most especially semen, body boundaries are at once delineated and transgressed. The differential relatedness of these images from the Middle Ages and the late 1980s and 1990s is underlined by the ways they subvert contemporary conventions of visual representation while always remaining accessible. It is this efficacy which allows me to link these representations, and which I attempt to articulate. To put this in other terms, I am interested in the ways in which boundaries of the body prove themselves fluid, as fluids of the body cross body-boundaries. PMID:7798608

  10. Dynamic visualization in a developing framework for the representation of geographic data

    Directory of Open Access Journals (Sweden)

    Connie Blok

    2000-11-01

    Full Text Available In order to translate the characteristics of geographic data into signs and signals that can be perceived from a map, a language consisting of building blocks and a syntax are required. The first language to be developed was a graphic sign language, introduced by Bertin. His framework has been adapted and extended. It now includes languages for other senses, like touch and hearing, and even smell and taste are currently being investigated. In this paper it has been argued that the overall framework is continuously growing under the influence of technological, conceptual and user-oriented developments. Technological developments in particular are rapid. For example, they allow the representation of geographic data in virtual environments, which can be experienced through multiple senses. If cartographers want to play a role here, they should be willing to contribute to further extension of the framework, which may never be complete. In addition, current definitions of the concepts 'cartography' and 'map' have to be adapted. An example of user-oriented developments is the growing awareness of different types of map use, ranging from presentation to analysis/exploration. Application of the sign language may be different for each type of use, so the framework also needs further development in this direction. As an example, research ideas with respect to the use of dynamic visualization variables in cartographic animations for exploration purposes are included.

  11. Contrasting vertical and horizontal representations of affect in emotional visual search.

    Science.gov (United States)

    Damjanovic, Ljubica; Santiago, Julio

    2016-02-01

    Independent lines of evidence suggest that the representation of emotional evaluation recruits both vertical and horizontal spatial mappings. These two spatial mappings differ in their experiential origins and their productivity, and available data suggest that they differ in their saliency. Yet, no study has so far compared their relative strength in an attentional orienting reaction time task that affords the simultaneous manifestation of both types of mapping. Here, we investigated this question using a visual search task with emotional faces. We presented angry and happy face targets and neutral distracter faces in top, bottom, left, and right locations on the computer screen. Conceptual congruency effects were observed along the vertical dimension supporting the 'up = good' metaphor, but not along the horizontal dimension. This asymmetrical processing pattern was observed when faces were presented in a cropped (Experiment 1) and whole (Experiment 2) format. These findings suggest that the 'up = good' metaphor is more salient and readily activated than the 'right = good' metaphor, and that the former outcompetes the latter when the task context affords the simultaneous activation of both mappings. PMID:26106061

  12. Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex

    Directory of Open Access Journals (Sweden)

    Fritjof Helmchen

    2011-12-01

    Full Text Available How are visual scenes encoded in local neural networks of visual cortex? In rodents, visual cortex lacks a columnar organization so that processing of diverse features from a spot in visual space could be performed locally by populations of neighboring neurons. To examine how complex visual scenes are represented by local microcircuits in mouse visual cortex we measured visually-evoked responses of layer 2/3 neuronal populations using 3D two-photon calcium imaging. Both natural and artificial movie scenes (10-s duration evoked distributed and sparsely organized responses in local populations of 70 to 150 neurons within the sampled volumes. About 50% of neurons showed calcium transients during visual scene presentation, of which about half displayed reliable temporal activation patterns. The majority of the reliably responding neurons were activated primarily by one of the four visual scenes applied. Consequently, single neurons performed poorly in decoding, which visual scene had been presented. In contrast, high levels of decoding performance (>80% were reached when considering population responses, requiring about 80 randomly picked cells or 20 reliable responders. Furthermore, reliable responding neurons tended to have neighbors sharing the same stimulus preference. Because of this local redundancy, it was beneficial for efficient scene decoding to read out activity from spatially distributed rather than locally clustered neurons. Our results suggest a population code in layer 2/3 of visual cortex, where the visual environment is dynamically represented in the activation of distinct functional sub-networks.

  13. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    Science.gov (United States)

    Cerviño, Laura I.; Gupta, Sonia; Rose, Mary A.; Yashar, Catheryn; Jiang, Steve B.

    2009-11-01

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p 2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  14. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    International Nuclear Information System (INIS)

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p 2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  15. The use of multiple representations and visualizations in student learning of introductory physics: An example from work and energy

    Science.gov (United States)

    Zou, Xueli

    In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.

  16. Inter-modal attention shifts trigger the selective activation of task-relevant tactile or visual working memory representations.

    Science.gov (United States)

    Katus, Tobias; Grubert, Anna; Eimer, Martin

    2015-09-01

    The sensory recruitment account of working memory (WM) assumes that the short-term retention of visual or tactile stimuli is implemented by cortical areas that are also responsible for the perceptual processing of these stimuli. Focal attention supports the short-term retention of sensory information, but it is unknown whether attention can also be flexibly shifted between visual and tactile WM representations. This study explored such inter-modal attention shifts in a task that required memory for simultaneously presented tactile and visual stimuli. A set of bilateral tactile and visual sample stimuli was followed after a retention period by a set of test stimuli. In different blocks, participants were instructed to memorize all stimuli on either the left or the right side. An auditory retro-cue, presented 500 ms after the sample sets, signalled whether the tactile or visual stimuli were relevant for the upcoming memory test. To study how these cues affect tactile and visual short-term storage, we measured the visual contralateral delay activity (CDA component) of the event-related potential (ERP) and its tactile counterpart (tCDA) that are elicited over modality-specific visual and somatosensory cortex. Scalp current density transforms were used to minimize volume-conduction, and to simultaneously measure these components over somatosensory and visual regions of interest (ROIs). A significant ROI x cued modality interaction demonstrated that visual and tactile WM was affected by the cued task-relevance of these sensory modalities. The tCDA component over somatosensory scalp regions was present only when touch was cued. The CDA over visual cortex was present in both cueing conditions, but was larger when vision was cued. Our results suggest that tactile and visual stimuli are stored separately in modality-specific memory systems. We conclude that retro-cues elicit inter-modal attention shifts that selectively activate information in the currently task-relevant modality. Meeting abstract presented at VSS 2015. PMID:26326549

  17. Writing Inspired

    Science.gov (United States)

    Tischhauser, Karen

    2015-01-01

    Students need inspiration to write. Assigning is not teaching. In order to inspire students to write fiction worth reading, teachers must take them through the process of writing. Physical objects inspire good writing with depth. In this article, the reader will be taken through the process of inspiring young writers through the use of boxes.…

  18. Adding words to the brain's visual dictionary: novel word learning selectively sharpens orthographic representations in the VWFA.

    Science.gov (United States)

    Glezer, Laurie S; Kim, Judy; Rule, Josh; Jiang, Xiong; Riesenhuber, Maximilian

    2015-03-25

    The nature of orthographic representations in the human brain is still subject of much debate. Recent reports have claimed that the visual word form area (VWFA) in left occipitotemporal cortex contains an orthographic lexicon based on neuronal representations highly selective for individual written real words (RWs). This theory predicts that learning novel words should selectively increase neural specificity for these words in the VWFA. We trained subjects to recognize novel pseudowords (PWs) and used fMRI rapid adaptation to compare neural selectivity with RWs, untrained PWs (UTPWs), and trained PWs (TPWs). Before training, PWs elicited broadly tuned responses, whereas responses to RWs indicated tight tuning. After training, TPW responses resembled those of RWs, whereas UTPWs continued to show broad tuning. This change in selectivity was specific to the VWFA. Therefore, word learning appears to selectively increase neuronal specificity for the new words in the VWFA, thereby adding these words to the brain's visual dictionary. PMID:25810526

  19. A perceptual representation in the frontal eye field during covert visual search that is more reliable than the behavioral report

    OpenAIRE

    Trageser, Jason C.; Monosov, Ilya E.; Zhou, Yifeng; Thompson, Kirk G.

    2008-01-01

    Neuronal activity in the frontal eye field (FEF) identifies locations of behaviorally important objects for guiding attention and eye movements. We recorded neural activity in the FEF of monkeys trained to manually turn a lever towards the location of a pop-out target of a visual search array without shifting gaze. We examined whether the reliability of the neural representation of the salient target location predicted the monkeys’ accuracy of reporting target location. We found that FEF neur...

  20. Representación social de los prestadores de servicios de salud en la discapacidad visual / Social representation of the health service providers in visual disability

    Scientific Electronic Library Online (English)

    Guillermo, Díaz Llanes; Judith, Prieto Sedano.

    2014-03-01

    Full Text Available Introducción: el conocimiento de la representación social de los prestadores de servicios de salud resulta de suma importancia para la salud pública, debido a su influencia en la calidad de su relación con los pacientes. Objetivo: caracterizar la representación social de los prestadores de servicios [...] de salud acerca de la discapacidad visual. Métodos: estudio de caso realizado en el policlínico "Hermanos Ruíz Aboy" en San Miguel del Padrón en el período de enero a junio de 2012. Participaron 33 informantes clave escogidos por muestreo intencional. Las técnicas de indagación empleadas fueron la asociación libre de palabras y las entrevistas en profundidad. Resultados: el estudio reveló la existencia en los prestadores de una representación angustiosa-conmiserativa-dependiente que configura elementos provenientes de referentes experienciales, componentes afectivos e insumos informacionales relacionados con las personas en situación de discapacidad visual. Conclusiones: los prestadores de servicios de salud investigados tiene en el núcleo de sus representaciones experiencias y conocimientos relacionados con el daño anatómico que condiciona limitación e incapacidad para la participación en la vida social de las personas con discapacidad visual, pero las asociaciones relativas a las necesidades de atención, definen un deficiente reconocimiento de elementos que garantizarían la compensación e integración psicosocial en estas personas. Abstract in english Introduction: knowing the social representation of the health service providers is very important for the public health, due to their influence on the quality of relationship with the patients. Objective: to characterize the social representation of the health service providers on visual disability. [...] Methods: case study performed in "Hermanos Ruiz Aboy" in San Miguel del Padron municipality in the period of January through June, 2012. Thirty three key informants selected by intentional sampling participated. The research techniques were free association of words and in-depth interviews. Results: this study disclosed the existence in health providers of an anguishing-commisserative-dependent representation that shapes elements from experience referents, affective components and informational inputs related to the persons facing visual disability. Conclusions: the health service providers under research have, in the core of their representation, experiences and knowledge linked to the anatomical damage that causes limitation and disability to be involved in the people with visual disability; however, the relative associations with the care requirements define a poor recognition of those elements that would assure compensation and psychosocial integration of these people.

  1. Learning multisensory representations for auditory-visual transfer of sequence category knowledge: a probabilistic language of thought approach.

    Science.gov (United States)

    Yildirim, Ilker; Jacobs, Robert A

    2015-06-01

    If a person is trained to recognize or categorize objects or events using one sensory modality, the person can often recognize or categorize those same (or similar) objects and events via a novel modality. This phenomenon is an instance of cross-modal transfer of knowledge. Here, we study the Multisensory Hypothesis which states that people extract the intrinsic, modality-independent properties of objects and events, and represent these properties in multisensory representations. These representations underlie cross-modal transfer of knowledge. We conducted an experiment evaluating whether people transfer sequence category knowledge across auditory and visual domains. Our experimental data clearly indicate that we do. We also developed a computational model accounting for our experimental results. Consistent with the probabilistic language of thought approach to cognitive modeling, our model formalizes multisensory representations as symbolic "computer programs" and uses Bayesian inference to learn these representations. Because the model demonstrates how the acquisition and use of amodal, multisensory representations can underlie cross-modal transfer of knowledge, and because the model accounts for subjects' experimental performances, our work lends credence to the Multisensory Hypothesis. Overall, our work suggests that people automatically extract and represent objects' and events' intrinsic properties, and use these properties to process and understand the same (and similar) objects and events when they are perceived through novel sensory modalities. PMID:25338656

  2. The role of visual representations within working memory for paired-associate and serial order of spoken words.

    Science.gov (United States)

    Ueno, Taiji; Saito, Satoru

    2013-09-01

    Caplan and colleagues have recently explained paired-associate learning and serial-order learning with a single-mechanism computational model by assuming differential degrees of isolation. Specifically, two items in a pair can be grouped together and associated to positional codes that are somewhat isolated from the rest of the items. In contrast, the degree of isolation among the studied items is lower in serial-order learning. One of the key predictions drawn from this theory is that any variables that help chunking of two adjacent items into a group should be beneficial to paired-associate learning, more than serial-order learning. To test this idea, the role of visual representations in memory for spoken verbal materials (i.e., imagery) was compared between two types of learning directly. Experiment 1 showed stronger effects of word concreteness and of concurrent presentation of irrelevant visual stimuli (dynamic visual noise: DVN) in paired-associate memory than in serial-order memory, consistent with the prediction. Experiment 2 revealed that the irrelevant visual stimuli effect was boosted when the participants had to actively maintain the information within working memory, rather than feed it to long-term memory for subsequent recall, due to cue overloading. This indicates that the sensory input from irrelevant visual stimuli can reach and affect visual representations of verbal items within working memory, and that this disruption can be attenuated when the information within working memory can be efficiently supported by long-term memory for subsequent recall. PMID:23472610

  3. Computational Modelling of the Neural Representation of Object Shape in the Primate Ventral Visual System

    OpenAIRE

    Akihiro Eguchi

    2015-01-01

    Neurons in successive stages of the primate ventral visual pathway encode the spatial structure of visual objects. In this paper, we investigate through computer simulation how these cell firing properties may develop through unsupervised visually-guided learning. Individual neurons in the model are shown to exploit statistical regularity and temporal continuity of the visual inputs during training to learn firing properties that are similar to neurons in V4 and TEO. Neurons in V4 encode the ...

  4. The Effect of Visual-Chunking-Representation Accommodation on Geometry Testing for Students with Math Disabilities

    Science.gov (United States)

    Zhang, Dake; Ding, Yi; Stegall, Joanna; Mo, Lei

    2012-01-01

    Students who struggle with learning mathematics often have difficulties with geometry problem solving, which requires strong visual imagery skills. These difficulties have been correlated with deficiencies in visual working memory. Cognitive psychology has shown that chunking of visual items accommodates students' working memory deficits. This…

  5. Ant Robotic Swarm for Visualizing Invisible Hazardous Substances

    OpenAIRE

    John Oyekan; Huosheng Hu

    2013-01-01

    Inspired by the simplicity of how nature solves its problems, this paper presents a novel approach that would enable a swarm of ant robotic agents (robots with limited sensing, communication, computational and memory resources) form a visual representation of distributed hazardous substances within an environment dominated by diffusion processes using a decentralized approach. Such a visual representation could be very useful in enabling a quicker evacuation of a city’s population affected by...

  6. Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey.

    Science.gov (United States)

    Omer, David B; Hildesheim, Rina; Grinvald, Amiram

    2013-11-15

    Fundamental understanding of higher cognitive functions can greatly benefit from imaging of cortical activity with high spatiotemporal resolution in the behaving non-human primate. To achieve rapid imaging of high-resolution dynamics of cortical representations of spontaneous and evoked activity, we designed a novel data acquisition protocol for sensory stimulation by rapidly interleaving multiple stimuli in continuous sessions of optical imaging with voltage-sensitive dyes. We also tested a new algorithm for the "temporally structured component analysis" (TSCA) of a multidimensional time series that was developed for our new data acquisition protocol, but was tested only on simulated data (Blumenfeld, 2010). In addition to the raw data, the algorithm incorporates prior knowledge about the temporal structure of the data as well as input from other information. Here we showed that TSCA can successfully separate functional signal components from other signals referred to as noise. Imaging of responses to multiple visual stimuli, utilizing voltage-sensitive dyes, was performed on the visual cortex of awake monkeys. Multiple cortical representations, including orientation and ocular dominance maps as well as the hitherto elusive retinotopic representation of orientation stimuli, were extracted in only 10s of imaging, approximately two orders of magnitude faster than accomplished by conventional methods. Since the approach is rather general, other imaging techniques may also benefit from the same stimulation protocol. This methodology can thus facilitate rapid optical imaging explorations in monkeys, rodents and other species with a versatility and speed that were not feasible before. PMID:23689017

  7. Representações visuais para recuperação de informação na BDTD-UFPE / Visual representations to information retrieval in BDTD-UFPE

    Scientific Electronic Library Online (English)

    Renato Fernandes, Correa; Jessica Monique de Lira, Vieira.

    2013-12-01

    Full Text Available Analisa a aplicabilidade de visualizações, como interfaces amigáveis para Sistemas de Recuperação de Informação (SRIs), bem como discute a construção de representação visual de informações para o SRI da Biblioteca Digital de Teses e Dissertações (BDTD) da Universidade Federal de Pernambuco (UFPE). A [...] metodologia consiste em estudo de caso, envolvendo análise do uso de visualizações em sites de SRIs e discussão dos caminhos percorridos para construção de visualizações para recuperação de teses e dissertações do Programa de Pós-Graduação em Direto da UFPE. Conclui-se que interfaces de SRIs, que disponibilizam visualizações, transmitem informações de forma agradável e interativa, possibilitando a recuperação de documentos relevantes e garantido melhor socialização dos conhecimentos. Entretanto, a escolha da visualização a ser construída para determinado SRI, deve levar em conta não só as vantagens do uso das mesmas pelo usuário, mas, também, o atendimento aos requisitos de organização da informação necessários para construção de cada visualização. Abstract in english This article analyzes the applicability of visualizations as friendly interfaces for Information Retrieval Systems (IRSs) and discusses the construction of visual representation of information to the IRS of the Digital Library of Theses and Dissertations (BDTD) at Federal University of Pernambuco (U [...] FPE). The methodology consists of case study involving analysis of the use of visualizations in SRIs sites, and discussion of the paths chosen to build visualizations for retrieval of theses and dissertations of the Law Graduate Program at UFPE. We conclude that SRI interfaces that provide visualizations convey information so enjoyable and interactive, allowing the retrieval of relevant documents and ensuring better socialization of knowledge. However, the choice of one visualization to be built for a specific SRI, should take into account not only the advantages for users of using the same, but also meeting the requirements of information organizing required for construction of each visualization.

  8. The Crossmodal Facilitation of Visual Object Representations by Sound: Evidence from the Backward Masking Paradigm

    Science.gov (United States)

    Chen, Yi-Chuan; Spence, Charles

    2011-01-01

    We report a series of experiments designed to demonstrate that the presentation of a sound can facilitate the identification of a concomitantly presented visual target letter in the backward masking paradigm. Two visual letters, serving as the target and its mask, were presented successively at various interstimulus intervals (ISIs). The results…

  9. Students' Use of Three Different Visual Representations to Interpret Whether Molecules Are Polar or Nonpolar

    Science.gov (United States)

    Host, Gunnar E.; Schonborn, Konrad J.; Palmerius, Karljohan E. Lundin

    2012-01-01

    Visualizing molecular properties is often crucial for constructing conceptual understanding in chemistry. However, research has revealed numerous challenges surrounding students' meaningful interpretation of the relationship between the geometry and electrostatic properties of molecules. This study explored students' (n = 18) use of three visual…

  10. Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL

    Science.gov (United States)

    Surya, Edy; Sabandar, Jozua; Kusumah, Yaya S.; Darhim

    2013-01-01

    The students' difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal mathematical understanding, and mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was…

  11. The time course of protecting a visual memory representation from perceptual interference

    Directory of Open Access Journals (Sweden)

    Eren Gunseli

    2015-01-01

    Full Text Available Cueing a remembered item during the delay of a visual memory task leads to enhanced recall of the cued item compared to when an item is not cued. This cueing benefit has been proposed to reflect attention within visual memory being shifted from a distributed mode to a focused mode, thus protecting the cued item against perceptual interference. Here we investigated the dynamics of building up this mnemonic protection against visual interference by systematically varying the SOA between cue onset and a subsequent visual mask in an orientation memory task. Experiment 1 showed that a cue counteracted the deteriorating effect of pattern masks. Experiment 2 demonstrated that building up this protection is a continuous process that is completed in approximately half a second after cue onset. The similarities between shifting attention in perceptual and remembered space are discussed.

  12. Neuronal learning of invariant object representation in the ventral visual stream is not dependent on reward

    OpenAIRE

    Li, Nuo; Dicarlo, James J.

    2012-01-01

    Neurons at the top of primate ventral visual stream (inferior temporal cortex, IT) have selectivity for objects that is highly tolerant to variation in the object’s appearance on the retina. Previous non-human primate (Macaca mulatta) studies suggest that this neuronal tolerance is at least partly supported by the natural temporal contiguity of visual experience, because altering that temporal contiguity can robustly alter adult IT position and size tolerance. According to that work, it is th...

  13. The Effect of Visual Representation Style in Problem-Solving: A Perspective from Cognitive Processes

    OpenAIRE

    Nyamsuren, Enkhbold,; Taatgen, Niels A.

    2013-01-01

    Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath pa...

  14. A Neural Representation of Depth from Motion Parallax in Macaque Visual Cortex

    OpenAIRE

    Nadler, Jacob W.; ANGELAKI, DORA E.; DeAngelis, Gregory C

    2008-01-01

    Perception of depth is a fundamental challenge for the visual system, particularly for observers moving through their environment. The brain makes use of multiple visual cues to reconstruct the three-dimensional structure of a scene. One potent cue, motion parallax, frequently arises during translation of the observer because the images of objects at different distances move across the retina with different velocities. Human psychophysical studies have demonstrated that motion parallax can be...

  15. Preliminary tests of a possible outdoor light adaptation solution for a fly inspired visual sensor: a biomimetic solution - biomed 2011.

    Science.gov (United States)

    Dean, Brian K; Wright, Cameron H G; Barrett, Steven F

    2011-01-01

    Two previous papers, presented at RMBS in 2009 and 2010, introduced a fly inspired vision sensor that could adapt to indoor light conditions by mimicking the light adaptation process of the commonhousefly, Muscadomestica. A new system has been designed that should allow the sensor to adapt to outdoor light conditions which will enable the sensor’s use inapplications such as: unmanned aerial vehicle (UAV) obstacle avoidance, UAV landing support, target tracking, wheelchair guidance, large structure monitoring, and many other outdoor applications. A sensor of this type is especially suited for these applications due to features of hyperacuity (or an ability to achieve movement resolution beyond the theoretical limit), extreme sensitivity to motion, and (through software simulation) image edge extraction, motion detection, and orientation and location of a line.Many of these qualities are beyond the ability of traditional computervision sensors such as charge coupled device (CCD) arrays.To achieve outdoor light adaptation, a variety of design obstacles have to be overcome such as infrared interference, dynamic range expansion, and light saturation. The newly designed system overcomes the latter two design obstacles by mimicking the fly’s solution of logarithmic compression followed by removal of the average background light intensity. This paper presents the new design and the preliminary tests that were conducted to determine its effectiveness. PMID:21525612

  16. Multi resolution representations and interactive visualization of huge unstructured volume meshes

    OpenAIRE

    Sondershaus, Ralf

    2007-01-01

    Modern scientists must consume ever bigger volumes of data gushing out of supercomputer simulations or high-powered sensors. Often, the data are represented as vast blocks of numbers which need to be transformed into a graphic representation which enables and improves understanding and analyzation. On their way from raw data to interactive visualizion, huge scientific datasets need algorithms out of three areas of research: reduction with a controllable approximation error, out-of-core techni...

  17. a Study on Mental Representations for Realistic Visualization the Particular Case of Ski Trail Mapping

    Science.gov (United States)

    Balzarini, R.; Dalmasso, A.; Murat, M.

    2015-08-01

    This article presents preliminary results from a research project in progress that brings together geographers, cognitive scientists, historians and computer scientists. The project investigates the evolution of a particular territorial model: ski trails maps. Ski resorts, tourist and sporting innovations for mountain economies since the 1930s, have needed cartographic representations corresponding to new practices of the space.Painter artists have been involved in producing ski maps with painting techniques and panoramic views, which are by far the most common type of map, because they allow the resorts to look impressive to potential visitors. These techniques have evolved throughout the mutations of the ski resorts. Paper ski maps no longer meet the needs of a large part of the customers; the question now arises of their adaptation to digital media. In a computerized process perspective, the early stage of the project aims to identify the artist-representations, based on conceptual and technical rules, which are handled by users-skiers to perform a task (location, wayfinding, decision-making) and can be transferred to a computer system. This article presents the experimental phase that analyzes artist and user mental representations that are at stake during the making and the reading of a paper ski map. It particularly focuses on how the invention of the artist influences map reading.

  18. Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage

    International Nuclear Information System (INIS)

    Background and purpose. Cardiac disease and pulmonary complications are documented risk factors in tangential breast irradiation. Respiratory gating radiotherapy provides a possibility to substantially reduce cardiopulmonary doses. This CT planning study quantifies the reduction of radiation doses to the heart and lung, using deep inspiration breath-hold (DIBH). Patients and methods. Seventeen patients with early breast cancer, referred for adjuvant radiotherapy, were included. For each patient two CT scans were acquired; the first during free breathing (FB) and the second during DIBH. The scans were monitored by the Varian RPM respiratory gating system. Audio coaching and visual feedback (audio-visual guidance) were used. The treatment planning of the two CT studies was performed with conformal tangential fields, focusing on good coverage (V95>98%) of the planning target volume (PTV). Dose-volume histograms were calculated and compared. Doses to the heart, left anterior descending (LAD) coronary artery, ipsilateral lung and the contralateral breast were assessed. Results. Compared to FB, the DIBH-plans obtained lower cardiac and pulmonary doses, with equal coverage of PTV. The average mean heart dose was reduced from 3.7 to 1.7 Gy and the number of patients with >5% heart volume receiving 25 Gy or more was reduced from four to one of the 17 patients. With DIBH the heart was completely out of the beam portals for ten patients, with FB this could not be achieved for any of the 17 patients. The average mean dose to the LAD coronary artery was reduced from 18.1 to 6.4 Gy. The average ipsilateral lung volume receiving more than 20 Gy was reduced from 12.2 to 10.0%. Conclusion. Respiratory gating with DIBH, utilizing audio-visual guidance, reduces cardiac and pulmonary doses for tangentially treated left sided breast cancer patients without compromising the target coverage

  19. Neural Correlates of Visual Short-term Memory Dissociate between Fragile and Working Memory Representations.

    Science.gov (United States)

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; de Vries, Jade G; Cohen, Michael X; Lamme, Victor A F

    2015-12-01

    Evidence is accumulating that the classic two-stage model of visual STM (VSTM), comprising iconic memory (IM) and visual working memory (WM), is incomplete. A third memory stage, termed fragile VSTM (FM), seems to exist in between IM and WM [Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F. Manipulations of attention dissociate fragile visual STM from visual working memory. Neuropsychologia, 49, 1559-1568, 2011; Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. Are there multiple visual STM stores? PLoS One, 3, e1699, 2008]. Although FM can be distinguished from IM using behavioral and fMRI methods, the question remains whether FM is a weak expression of WM or a separate form of memory with its own neural signature. Here, we tested whether FM and WM in humans are supported by dissociable time-frequency features of EEG recordings. Participants performed a partial-report change detection task, from which individual differences in FM and WM capacity were estimated. These individual FM and WM capacities were correlated with time-frequency characteristics of the EEG signal before and during encoding and maintenance of the memory display. FM capacity showed negative alpha correlations over peri-occipital electrodes, whereas WM capacity was positively related, suggesting increased visual processing (lower alpha) to be related to FM capacity. Furthermore, FM capacity correlated with an increase in theta power over central electrodes during preparation and processing of the memory display, whereas WM did not. In addition to a difference in visual processing characteristics, a positive relation between gamma power and FM capacity was observed during both preparation and maintenance periods of the task. On the other hand, we observed that theta-gamma coupling was negatively correlated with FM capacity, whereas it was slightly positively correlated with WM. These data show clear differences in the neural substrates of FM versus WM and suggest that FM depends more on visual processing mechanisms compared with WM. This study thus provides novel evidence for a dissociation between different stages in VSTM. PMID:26351862

  20. A layered neural architecture for the consolidation, maintenance, and updating of representations in visual working memory

    OpenAIRE

    Johnson, Jeffrey S; Spencer, John P; Schöner, Gregor

    2009-01-01

    Many everyday tasks rely on our ability to hold information about a perceived stimulus in mind after that stimulus is no longer visible and to compare this information with incoming perceptual information. This ability has been shown to rely on a short-term form of visual memory that has come to be known as visual working memory. Research and theory at both the behavioral and neural levels has begun to provide important insights into the basic properties of the neuro-cognitive systems underly...

  1. The effect of visual representation style in problem-solving: a perspective from cognitive processes.

    Science.gov (United States)

    Nyamsuren, Enkhbold; Taatgen, Niels A

    2013-01-01

    Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath patterns in the two tasks. Results from our study indicate that low-level subconscious visual processes, such as differential acuity in peripheral vision and low-level iconic memory, can have indirect, but significant effects on decision making during a problem-solving task. We have developed two ACT-R models that employ the same basic strategy but deal with different presentations styles. Our ACT-R models confirm that changes in low-level visual processes triggered by changes in presentation style can propagate to higher-level cognitive processes. Such a domino effect can significantly affect reaction times and eye movements, without affecting the overall strategy of problem solving. PMID:24260415

  2. The Effect of Visual Representation Style in Problem-Solving: A Perspective from Cognitive Processes

    Science.gov (United States)

    Nyamsuren, Enkhbold; Taatgen, Niels A.

    2013-01-01

    Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath patterns in the two tasks. Results from our study indicate that low-level subconscious visual processes, such as differential acuity in peripheral vision and low-level iconic memory, can have indirect, but significant effects on decision making during a problem-solving task. We have developed two ACT-R models that employ the same basic strategy but deal with different presentations styles. Our ACT-R models confirm that changes in low-level visual processes triggered by changes in presentation style can propagate to higher-level cognitive processes. Such a domino effect can significantly affect reaction times and eye movements, without affecting the overall strategy of problem solving. PMID:24260415

  3. Specific and Nonspecific Neural Activity during Selective Processing of Visual Representations in Working Memory

    Science.gov (United States)

    Oh, Hwamee; Leung, Hoi-Chung

    2010-01-01

    In this fMRI study, we investigated prefrontal cortex (PFC) and visual association regions during selective information processing. We recorded behavioral responses and neural activity during a delayed recognition task with a cue presented during the delay period. A specific cue ("Face" or "Scene") was used to indicate which one of the two…

  4. Social categories shape the neural representation of emotion: evidence from a visual face adaptation task

    OpenAIRE

    Otten, Marte; Banaji, Mahzarin R.

    2012-01-01

    A number of recent behavioral studies have shown that emotional expressions are differently perceived depending on the race of a face, and that perception of race cues is influenced by emotional expressions. However, neural processes related to the perception of invariant cues that indicate the identity of a face (such as race) are often described to proceed independently of processes related to the perception of cues that can vary over time (such as emotion). Using a visual face adaptation p...

  5. Visual-somatosensory interactions in mental representations of the body and the face

    OpenAIRE

    Beck, Brianna

    2015-01-01

    The body is represented in the brain at levels that incorporate multisensory information. This thesis focused on interactions between vision and cutaneous sensations (i.e., touch and pain). Experiment 1 revealed that there are partially dissociable pathways for visual enhancement of touch (VET) depending upon whether one sees one’s own body or the body of another person. This indicates that VET, a seeming low-level effect on spatial tactile acuity, is actually sensitive to body identity. ...

  6. Linked Data based Health Information Representation, Visualization and Retrieval System on the Semantic Web

    OpenAIRE

    Tilahun, Binyam Chakilu

    2013-01-01

    To better facilitate health information dissemination, using flexible ways to represent, query and visualize health data becomes increasingly important. Semantic Web technologies, which provide a common framework by allowing data to be shared and reused between applications, can be applied to the management of health data. Linked open data - a new semantic web standard to publish and link heterogonous data- allows not only human, but also machine to brows data in unlimited w...

  7. statnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data

    OpenAIRE

    Mark S. Handcock; Hunter, David R; Carter T. Butts; Goodreau, Steven M.; Martina Morris

    2007-01-01

    statnet is a suite of software packages for statistical network analysis. The packages implement recent advances in network modeling based on exponential-family random graph models (ERGM). The components of the package provide a comprehensive framework for ERGM-based network modeling, including tools for model estimation, model evaluation, model-based network simulation, and network visualization. This broad functionality is powered by a central Markov chain Monte Carlo (MCMC) algorithm. The ...

  8. Advancing Bag-of-Visual-Words Representations for Lesion Classification in Retinal Images

    OpenAIRE

    Pires, Ramon; Jelinek, Herbert F.; Wainer, Jacques; Valle, Eduardo; Rocha, Anderson

    2014-01-01

    Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as m...

  9. Functional organization and visual representations of human ventral lateral prefrontal cortex

    OpenAIRE

    Chan, Annie W.-Y.

    2013-01-01

    Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex (VLPFC) even in the absence of working memory (WM) demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the VLPFC remain unclear. In a broader sense, how do these findings relate to our current understandings of later...

  10. Functional organization and visual representations in human ventral lateral prefrontal cortex

    OpenAIRE

    AnnieWai YiuChan

    2013-01-01

    Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current...

  11. The Representation of S-cone Signals in Primary Visual Cortex

    OpenAIRE

    Johnson, Elizabeth N.; Van Hooser, Stephen D.; Fitzpatrick, David

    2010-01-01

    Recent studies of middle- (M-) and long- (L-) wavelength-sensitive cone responses in primate primary visual cortex (V1) have challenged the view that color and form are represented by distinct neuronal populations. Individual V1 neurons exhibit hallmarks of both color and form processing (cone-opponency and orientation-selectivity), and many display cone interactions that do not fit classic chromatic/achromatic classifications. Comparable analysis of short-wavelength-sensitive (S-) cone respo...

  12. Incremental Learning of 3D-DCT Compact Representations for Robust Visual Tracking

    OpenAIRE

    Li, xi; Dick, Anthony; Shen, Chunhua; Hengel, Anton van den; Wang, Hanzi

    2012-01-01

    Visual tracking usually requires an object appearance model that is robust to changing illumination, pose and other factors encountered in video. In this paper, we construct an appearance model using the 3D discrete cosine transform (3D-DCT). The 3D-DCT is based on a set of cosine basis functions, which are determined by the dimensions of the 3D signal and thus independent of the input video data. In addition, the 3D-DCT can generate a compact energy spectrum whose high-freq...

  13. Prior Knowledge about Objects Determines Neural Color Representation in Human Visual Cortex.

    Science.gov (United States)

    Vandenbroucke, A R E; Fahrenfort, J J; Meuwese, J D I; Scholte, H S; Lamme, V A F

    2016-04-01

    To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investigated the influence of object knowledge on the neural substrates underlying subjective color vision. In a functional magnetic resonance imaging experiment, human subjects viewed a color that lay midway between red and green (ambiguous with respect to its distance from red and green) presented on either typical red (e.g., tomato), typical green (e.g., clover), or semantically meaningless (nonsense) objects. Using decoding techniques, we could predict whether subjects viewed the ambiguous color on typical red or typical green objects based on the neural response of veridical red and green. This shift of neural response for the ambiguous color did not occur for nonsense objects. The modulation of neural responses was observed in visual areas (V3, V4, VO1, lateral occipital complex) involved in color and object processing, as well as frontal areas. This demonstrates that object memory influences wavelength information relatively early in the human visual system to produce subjective color vision. PMID:25323417

  14. Large Scale Isosurface Bicubic Subdivision-Surface Wavelets for Representation and Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, M.; Duchaineau, M.A.; Hamann, B.; Joy, K.I.

    2000-01-05

    We introduce a new subdivision-surface wavelet transform for arbitrary two-manifolds with boundary that is the first to use simple lifting-style filtering operations with bicubic precision. We also describe a conversion process for re-mapping large-scale isosurfaces to have subdivision connectivity and fair parameterizations so that the new wavelet transform can be used for compression and visualization. The main idea enabling our wavelet transform is the circular symmetrization of the filters in irregular neighborhoods, which replaces the traditional separation of filters into two 1-D passes. Our wavelet transform uses polygonal base meshes to represent surface topology, from which a Catmull-Clark-style subdivision hierarchy is generated. The details between these levels of resolution are quickly computed and compactly stored as wavelet coefficients. The isosurface conversion process begins with a contour triangulation computed using conventional techniques, which we subsequently simplify with a variant edge-collapse procedure, followed by an edge-removal process. This provides a coarse initial base mesh, which is subsequently refined, relaxed and attracted in phases to converge to the contour. The conversion is designed to produce smooth, untangled and minimally-skewed parameterizations, which improves the subsequent compression after applying the transform. We have demonstrated our conversion and transform for an isosurface obtained from a high-resolution turbulent-mixing hydrodynamics simulation, showing the potential for compression and level-of-detail visualization.

  15. Hierarchical visual representations enhance complex pattern learning in honeybees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Adrian G Dyer

    2013-02-01

    Full Text Available Traditional views of insect vision use parameterised high-contrast stimuli and assume both simple reflexive responses to stimuli and an incapacity to configure pattern elements in a unified percept [1]; but such models cannot account for the wide range of very complex visual discriminations that the bee visual system masters with continued experience [2-6]. We test the learning of configured flower patterns, or non-configured elements. Bees were trained with differential conditioning to discriminate similar [2-5] flower stimuli, scrambled or high contrast stimuli (Fig. 1. After 12 trials (36 bees/group only the correctly configured 'normal' contrast flower stimuli were learnt to a level significantly different from chance expectation (*1 sample t-test, df35, p Figure 1. Four independent groups of bees were individually trained to the stimuli (rows 1&3 in the respective columns (e.g. one group of bees learnt flowers in column 1. The stimuli are complex and contain similar low level cues [2-5], represented here by the FFT of stimuli (rows 2&4 under stimuli. Only configured flowers of ‘normal’ contrast were learnt (mean choice frequency +/-S.E.M..

  16. The VIPER project (Visualization Integration Platform for Exploration Research): a biologically inspired autonomous reconfigurable robotic platform for diverse unstructured environments

    Science.gov (United States)

    Schubert, Oliver J.; Tolle, Charles R.

    2004-09-01

    Over the last decade the world has seen numerous autonomous vehicle programs. Wheels and track designs are the basis for many of these vehicles. This is primarily due to four main reasons: a vast preexisting knowledge base for these designs, energy efficiency of power sources, scalability of actuators, and the lack of control systems technologies for handling alternate highly complex distributed systems. Though large efforts seek to improve the mobility of these vehicles, many limitations still exist for these systems within unstructured environments, e.g. limited mobility within industrial and nuclear accident sites where existing plant configurations have been extensively changed. These unstructured operational environments include missions for exploration, reconnaissance, and emergency recovery of objects within reconfigured or collapsed structures, e.g. bombed buildings. More importantly, these environments present a clear and present danger for direct human interactions during the initial phases of recovery operations. Clearly, the current classes of autonomous vehicles are incapable of performing in these environments. Thus the next generation of designs must include highly reconfigurable and flexible autonomous robotic platforms. This new breed of autonomous vehicles will be both highly flexible and environmentally adaptable. Presented in this paper is one of the most successful designs from nature, the snake-eel-worm (SEW). This design implements shape memory alloy (SMA) actuators which allow for scaling of the robotic SEW designs from sub-micron scale to heavy industrial implementations without major conceptual redesigns as required in traditional hydraulic, pneumatic, or motor driven systems. Autonomous vehicles based on the SEW design posses the ability to easily move between air based environments and fluid based environments with limited or no reconfiguration. Under a SEW designed vehicle, one not only achieves vastly improved maneuverability within a highly unstructured environment, but also gains robotic manipulation abilities, normally relegated as secondary add-ons within existing vehicles, all within one small condensed package. The prototype design presented includes a Beowulf style computing system for advanced guidance calculations and visualization computations. All of the design and implementation pertaining to the SEW robot discussed in this paper is the product of a student team under the summer fellowship program at the DOEs INEEL.

  17. Visual representation of carbon dioxide adsorption in a low-volatile bituminous coal molecular model

    Energy Technology Data Exchange (ETDEWEB)

    Marielle R. Narkiewicz; Jonathan P. Mathews [Pennsylvania State University, University Park, PA (United States). Department of Energy and Minerals Engineering

    2009-09-15

    Carbon dioxide can be sequestered in unmineable coal seams to aid in mitigating global climate change, while concurrently CH{sub 4} can be desorbed from the coal seam and used as a domestic energy source. In this work, a previously constructed molecular representation was used to simulate several processes that occur during sequestration, such as sorption capacities of CO{sub 2} and CH{sub 4}, CO{sub 2}-induced swelling, contraction because of CH{sub 4} and water loss, and the pore-blocking role of moisture. This is carried out by calculating the energy minima of the molecular model with different amounts of CO{sub 2}, CH{sub 4}, and H{sub 2}O. The model used is large (>2000 atoms) and contains a molecular-weight distribution, so that it has the flexibility to be used by other researchers and for other purposes in the future. In the low-level molecular modeling presented here, it was anticipated that CO{sub 2} would be adsorbed more readily than CH{sub 4}, that swelling would be anisotropic, greater perpendicular to the bedding plane because of the rank of this coal, and finally, that, with the addition of moisture, CO{sub 2} capacity in the coal would be reduced. As expected with this high-rank coal, there was swelling when CO{sub 2} perturbed the structure of approximately 5%. It was found that, on the basis of the interconnected pore structure and molecular sizes, CO{sub 2} was able to access 12.4% more of the pore volume (as defined by helium) than CH{sub 4}, in the rigid molecular representation. With water as stationary molecules, mostly hydrogen bound to the coal oxygen functionality, pore access decreased by 5.1% of the pore volume for CO{sub 2} accessibility and 4.7% of the pore volume for CH{sub 4} accessibility. 36 refs., 12 figs., 1 tab.

  18. Remembering to Forget: Marginalised Visual Representations in the Irish Nation Narrative

    Directory of Open Access Journals (Sweden)

    Gail Baylis

    2014-12-01

    Full Text Available The period 1890 to 1914 witnesses a European-wide crisis in masculinity and an acceleration of modern nationalism.  The figure of the boy becomes a central symbol for re-securing both masculinity and the nation.  As a consequence boy culture became increasing associated with militarism.  Nation states are masculine institutions and therefore it hardly surprises that the story that the modern state tells to legitimise its origins prioritises masculine concerns. This study focuses on the construction of visual nation-building narratives expressed through nationalist boy culture in Ireland at the beginning of the twentieth century. It aims to connect these currents to the broader European context and, in the process, evaluate the relationship between gendering and nationalism at this specific historical juncture. It argues that by focusing on the role and development of boy culture during this period we can better understand why the nation narrative prioritises one vi­su­alised story of national self-determinacy over a num­ber of competing versions, and it foregrounds the re­silience of hegemonic masculinity in this. In this context, which photographs are chosen to support the nation narrative and which get forgotten is significant because it indicates the gendered nature of nation formation.

  19. Inspired Landscapes

    Science.gov (United States)

    Brandon, Robert; Spruch, Arthur

    2008-01-01

    It has been nearly 400 years since Harvard College was created, and since then, thousands of colleges and universities have been built across the United States. From the classically inspired lines of Thomas Jefferson's University of Virginia to the Spanish architecture at Stanford University, every campus has its own personality. It's not unusual,…

  20. Does using a visual-representation tool foster students' ability to identify forces and construct free-body diagrams?

    Science.gov (United States)

    Savinainen, Antti; Mäkynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2013-06-01

    Earlier research has shown that after physics instruction, many students have difficulties with the force concept, and with constructing free-body diagrams (FBDs). It has been suggested that treating forces as interactions could help students to identify forces as well as to construct the correct FBDs. While there is evidence that identifying interactions helps students in quantitative problem solving, there is no previous research investigating the effect of a visual-representation tool—an interaction diagram (ID)—on students’ ability to identify forces, and to construct the correct FBDs. We present an empirical study conducted in 11 Finnish high schools on students (n=335, aged 16) taking their first, mandatory, introductory physics course. The study design involved groups of students having heavy, light, or no use of IDs. The heavy and light ID groups answered eight pairs of ID and FBD questions in various physical contexts and the no ID group answered two of the eight FBD questions. The results indicate that the heavy ID group outperformed both the light and the no ID groups in identifying forces and constructing the correct FBDs. The analysis of these data indicates that the use of IDs is especially beneficial in identifying forces when constructing FBDs.

  1. The Effect of Using a Visual Representation Tool in a Teaching-Learning Sequence for Teaching Newton's Third Law

    Science.gov (United States)

    Savinainen, Antti; Mäkynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2015-09-01

    This paper presents a research-based teaching-learning sequence (TLS) that focuses on the notion of interaction in teaching Newton's third law (N3 law) which is, as earlier studies have shown, a challenging topic for students to learn. The TLS made systematic use of a visual representation tool—an interaction diagram (ID)—highlighting interactions between objects and addressing the learning demand related to N3 law. This approach had been successful in enhancing students' understanding of N3 law in pilot studies conducted by teacher-researchers. However, it was unclear whether teachers, who have neither been involved with the research nor received intensive tutoring, could replicate the positive results in ordinary school settings. To address this question, we present an empirical study conducted in 10 Finnish upper secondary schools with students (n = 261, aged 16) taking their mandatory physics course. The study design involved three groups: the heavy ID group (the TLS with seven to eight exercises on IDs), the light ID group (two to three exercises on IDs) and the no ID group (no exercises on IDs). The heavy and light ID groups answered eight ID questions, and all the students answered four questions on N3 law after teaching the force concept. The findings clearly suggest that systematic use of the IDs in teaching the force concept significantly fostered students' understanding of N3 law even with teachers who have no intensive tutoring or research background.

  2. Effects of abstract versus concrete visual representations in an instructional simulation on students' declarative knowledge, learning transfer, and perceptions of the simulation

    Science.gov (United States)

    Mejia, William Ernesto

    2011-12-01

    Thanks to different multimedia authoring tools and specialized software that facilitate the design and development of computer-based simulations, science teachers and instructional media designers have a variety of simulations to support instructional delivery. However, there is a lack of research on how instructional designers and science teachers can select, design, and implement science simulations most effectively based on the simulations' visual attributes. One of the design principles that play an important part in the simulation design process is the visual representation of on-screen objects used to describe science concepts or principles. The purpose of this study was to investigate the effects of abstract and concrete visual representation of electricity concepts and principles in an instructional simulation on students' declarative knowledge, learning transfer, and perceptions of the simulation. The participants in this study were 39 elementary education pre-service teachers who were randomly assigned to either the concrete or the abstract treatment. The educational intervention was conducted over three 100-minute sessions. Since the sample violated the normality assumption, Mann-Whitney tests were conducted to verify whether the independent variable had significant effects on the three dependent variables. The data analysis found no statistically significant difference on learners' declarative knowledge, learning transfer, and perceptions about the simulation's attributes between those assigned to the concrete treatment and those assigned to the abstract treatment (p>.05). This finding did not favor one type of visual representation over the other.

  3. Concurrent Dynamic Visualizations With Expressive Petri Net Representations to Enrich the Understanding of Biological and Pathological Processes: an Application to Signaling Pathways

    Scientific Electronic Library Online (English)

    F., Ramos; C., Hallal; A., Nieto; D., García; J., Berúmen; D., Escárcega.

    2012-10-01

    Full Text Available En biología de sistemas la visualización dinámica y las representaciones expresivas son necesarias para representar interacciones múltiples que ocurren durante los procesos biológicos en bioredes. La visualización dinámica facilita a los usuarios interactuar con modelos de bioredes, mientras que las [...] representaciones deben expresar como se llevan a cabo las interacciones dentro de éstas. A pesar de que diversas bases de datos proveen de redes a los usuarios, generalmente la información y representación contenidas en cada una son diferentes, y la interacción usuario-biored es restringida debido a la visualización estática. Una solución que se ha adoptado es hacer converger varias representaciones para obtener una más completa. Sin embargo, debido al uso de diferentes formatos incompatibles entre ellos y a las múltiples conexiones involucradas en las redes, la integración frecuentemente resulta en modelos erróneos y en una maraña de conexiones representadas en la red que son muy difíciles de analizar y manipular. En este trabajo introducimos la visualización dinámica concurrente (VDC) de una misma vía, la cual es recuperada de diferentes bases de datos y transformada a representaciones en redes de Petri para facilitar el entendimiento de los procesos biológicos y modificar las vías obtenidas interactuando con ellas. Hemos aplicado esta estrategia al análisis de la vía de señalización de Notch, asociada a cáncer cérvicouterino, obteniéndola de tres diferentes fuentes, comparándolas y manipulándolas simultáneamente interactuando con la VDC provista, hasta la generación de una vía personalizada. Abstract in english Dynamic visualizations and expressive representations are needed in systems biology to handle multiple interactions occurring during the biological processes of biopathway representations. Dynamic visualizations allow users an ease of interaction with pathway models. At the same time, representation [...] s of biopathways should express how interactions take place. In spite of the fact that diverse databases provide users with pathways, their information and representation are frequently different from each other and show restricted interactions because of their static visualization. An adopted solution is to merge diverse representations to obtain a richer one. However, due to different formats and the multiple links involved in the pathway representations, the merge results frequently in erroneous models and in a tangle web of relations very hard to be manipulated. Instead, this work introduces a concurrent dynamic visualization (CDV) of the same pathway, which is retrieved from different sites and then transformed into Petri net representations to facilitate the understanding of their biological processes by interacting with them. We applied this approach to the analysis of the Notch signaling pathway, associated with cervical cancer; we obtained it from different sources which we compared and manipulated simultaneously by interacting with the provided CDV until the user generated a personalized pathway.

  4. Object representations in ventral and dorsal visual streams: fMRI repetition effects depend on attention and part–whole configuration

    OpenAIRE

    Thoma, Volker; Henson, Richard N.

    2011-01-01

    The effects of attention and object configuration on the neural responses to short-lag visual image repetition were investigated with fMRI. Attention to one of two object images in a prime display was cued spatially. The images were either intact or split vertically; a manipulation that negates the influence of view-based representations. A subsequent single intact probe image was named covertly. Behavioural priming observed as faster button presses was found for attended primes in both intac...

  5. Questions of Representations in Architecture

    DEFF Research Database (Denmark)

    2015-01-01

    Questions of Representations in Architecture is the first major Danish contribution to the current international discussion on architects' use of representations and the significance of visual media for architecture.......Questions of Representations in Architecture is the first major Danish contribution to the current international discussion on architects' use of representations and the significance of visual media for architecture....

  6. Ant Robotic Swarm for Visualizing Invisible Hazardous Substances

    Directory of Open Access Journals (Sweden)

    John Oyekan

    2013-01-01

    Full Text Available Inspired by the simplicity of how nature solves its problems, this paper presents a novel approach that would enable a swarm of ant robotic agents (robots with limited sensing, communication, computational and memory resources form a visual representation of distributed hazardous substances within an environment dominated by diffusion processes using a decentralized approach. Such a visual representation could be very useful in enabling a quicker evacuation of a city’s population affected by such hazardous substances. This is especially true if the ratio of emergency workers to the population number is very small.

  7. Endogenous Biologically Inspired Art of Complex Systems.

    Science.gov (United States)

    Ji, Haru; Wakefield, Graham

    2016-01-01

    Since 2007, Graham Wakefield and Haru Ji have looked to nature for inspiration as they have created a series of "artificial natures," or interactive visualizations of biologically inspired complex systems that can evoke nature-like aesthetic experiences within mixed-reality art installations. This article describes how they have applied visualization, sonification, and interaction design in their work with artificial ecosystems and organisms using specific examples from their exhibited installations. PMID:26780760

  8. Visual perception from the perspective of a representational, non-reductionistic, level-dependent account of perception and conscious awareness

    DEFF Research Database (Denmark)

    Overgaard, Morten; Mogensen, Jesper

    2014-01-01

    that mental representations consist of functions at several different levels of analysis, including truly localized perceptual elementary functions and perceptual algorithmic modules, which are interconnections of the elementary functions. We suggest that conscious content relates to the 'top level' of...

  9. Towards a visual social psychology of identity and representation: photographing the self, weaving the family in a multicultural British community

    OpenAIRE

    Howarth, Caroline

    2011-01-01

    This comprehensive volume provides an unprecedented illustration of the potential for visual methods in psychology. Each chapter explores the set of theoretical, methodological, as well as ethical and analytical issues that shape the ways in which visual qualitative research is conducted in psychology. Using a variety of forms of visual data, including photography, documentary film-making, drawing, internet media, model making, walking and map drawing, video recording and collages, each autho...

  10. The Effect of Visual Devices Based on Bruner's Modes of Representation on Teaching Concepts of Electrostatics to Elementary School Children

    Science.gov (United States)

    McIntyre, Patrick J.; Reed, Jack A.

    1976-01-01

    Visual devices were used, corresponding to Bruner's three types of information-processing models: enactive (action), iconic (imagery), and symbolic (language). Concluded that the type of visual device had no significant effect on the subjects' achievement on an electrostatics concepts test. (MLH)

  11. Sociocultural Knowledge and Visual Re(-)Presentations of Black Masculinity and Community: Reading "The Wire" for Critical Multicultural Teacher Education

    Science.gov (United States)

    Brown, Keffrelyn D.; Kraehe, Amelia

    2011-01-01

    In this article we consider the implications of using popular visual media as a pedagogic tool for helping teachers acquire critical sociocultural knowledge to work more effectively with students of color, particularly Black males. Drawing from a textual analysis (McKee 2001, 2003; Rose 2001) conducted in the critical visual studies tradition…

  12. Sociocultural Knowledge and Visual Re(-)Presentations of Black Masculinity and Community: Reading "The Wire" for Critical Multicultural Teacher Education

    Science.gov (United States)

    Brown, Keffrelyn D.; Kraehe, Amelia

    2011-01-01

    In this article we consider the implications of using popular visual media as a pedagogic tool for helping teachers acquire critical sociocultural knowledge to work more effectively with students of color, particularly Black males. Drawing from a textual analysis (McKee 2001, 2003; Rose 2001) conducted in the critical visual studies tradition…

  13. Visual perception from the perspective of a representational, non-reductionistic, level-dependent account of perception and conscious awareness.

    Science.gov (United States)

    Overgaard, Morten; Mogensen, Jesper

    2014-05-01

    This article proposes a new model to interpret seemingly conflicting evidence concerning the correlation of consciousness and neural processes. Based on an analysis of research of blindsight and subliminal perception, the reorganization of elementary functions and consciousness framework suggests that mental representations consist of functions at several different levels of analysis, including truly localized perceptual elementary functions and perceptual algorithmic modules, which are interconnections of the elementary functions. We suggest that conscious content relates to the 'top level' of analysis in a 'situational algorithmic strategy' that reflects the general state of an individual. We argue that conscious experience is intrinsically related to representations that are available to guide behaviour. From this perspective, we find that blindsight and subliminal perception can be explained partly by too coarse-grained methodology, and partly by top-down enhancing of representations that normally would not be relevant to action. PMID:24639581

  14. Visual perception from the perspective of a representational, non-reductionistic, level-dependent account of perception and conscious awareness

    DEFF Research Database (Denmark)

    Overgaard, Morten; Mogensen, Jesper

    2014-01-01

    This article proposes a new model to interpret seemingly conflicting evidence concerning the correlation of consciousness and neural processes. Based on an analysis of research of blindsight and subliminal perception, the reorganization of elementary functions and consciousness framework suggests that mental representations consist of functions at several different levels of analysis, including truly localized perceptual elementary functions and perceptual algorithmic modules, which are interconnections of the elementary functions. We suggest that conscious content relates to the 'top level' of analysis in a 'situational algorithmic strategy' that reflects the general state of an individual. We argue that conscious experience is intrinsically related to representations that are available to guide behaviour. From this perspective, we find that blindsight and subliminal perception can be explained partly by too coarse-grained methodology, and partly by top-down enhancing of representations that normally would not be relevant to action.

  15. Visual perception from the perspective of a representational, non-reductionistic, level-dependent account of perception and conscious awareness

    DEFF Research Database (Denmark)

    Overgaard, Morten; Mogensen, Jesper

    2014-01-01

    that mental representations consist of functions at several different levels of analysis, including truly localized perceptual elementary functions and perceptual algorithmic modules, which are interconnections of the elementary functions. We suggest that conscious content relates to the ‘top level’ of...... analysis in a ‘situational algorithmic strategy’ that reflects the general state of an individual. We argue that conscious experience is intrinsically related to representations that are available to guide behaviour. From this perspective, we find that blindsight and subliminal perception can be explained...

  16. The crime scene of representation - A case study of the visual identity of the exhibition Rauma Biennale Balticum 2014

    OpenAIRE

    Kokkonen, Laura

    2015-01-01

    In this thesis, I have researched the visual identity of the exhibition Rauma Biennale Balticum 2014 – Crime Scene that I co-curated with Henna Paunu and Janne Koski. The exhibition at Rauma Art Museum presented fifteen contemporary art projects that addressed issues of crime and punishment; activism; ethics; and social justice. In my research I have analyzed two images which were part of the exhibition’s visual identity, designed by Kasino Creative Studio. They presented the face of a young ...

  17. Celebrated, Dispossessed and Worshiped. Representations of the Tragic Destiny of the Hero in Contemporary Caribbean Visual Imaginary

    OpenAIRE

    Garrido Castellano, Carlos

    2012-01-01

    The present paper focuses on analyzing the images of violence through the representation of heroes associated to combat contexts. Specifically, we will examine those cases in which that hero, despite its champion condition, appears defeated, overcome by the context. The reflections of artists such as Marcos Lora Read (Dominican Republic), Javier Castro (Cuba) and Ebony Patterson (Jamaica), by using various artistic mediums, have used the image of the hero to deconstruct elements of their soci...

  18. Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets

    Directory of Open Access Journals (Sweden)

    Daniel Kress

    2014-09-01

    Full Text Available During locomotion animals rely heavily on visual cues gained from the environment to guide their behavior. Examples are basic behaviors like collision avoidance or the approach to a goal. The saccadic gaze strategy of flying flies, which separates translational from rotational phases of locomotion, has been suggested to facilitate the extraction of environmental information, because only image flow evoked by translational self-motion contains relevant distance information about the surrounding world. In contrast to the translational phases of flight during which gaze direction is kept largely constant, walking flies experience continuous rotational image flow that is coupled to their stride-cycle. The consequences of these self-produced image shifts for the extraction of environmental information are still unclear. To assess the impact of stride-coupled image shifts on visual information processing, we performed electrophysiological recordings from the HSE cell, a motion sensitive wide-field neuron in the blowfly visual system. This cell has been concluded to play a key role in mediating optomotor behavior, self-motion estimation and spatial information processing. We used visual stimuli that were based on the visual input experienced by walking blowflies while approaching a black vertical bar. The response of HSE to these stimuli was dominated by periodic membrane potential fluctuations evoked by stride-coupled image shifts. Nevertheless, during the approach the cell’s response contained information about the bar and its background. The response components evoked by the bar were larger than the responses to its background, especially during the last phase of the approach. However, as revealed by targeted modifications of the visual input during walking, the extraction of distance information on the basis of HSE responses is much impaired by stride-coupled retinal image shifts. Possible mechanisms that may cope with these stride-coupled responses are discussed.

  19. Representaciones visuales del cuerpo humano: análisis de los nuevos libros de primaria de ciencias naturales en la reforma educativa mexicana / Visual Representations of the Human Body: An Analysis of the New Elementary Science Textbooks in Mexico's Educational Reform

    Scientific Electronic Library Online (English)

    Yolanda, Postigo; Asunción, López-Manjón.

    2012-06-01

    Full Text Available En este trabajo analizamos las concepciones sobre la naturaleza de las representaciones visuales sobre el cuerpo humano que dirigen su selección, diseño y tratamiento didáctico en los nuevos libros de primaria de ciencias naturales (3° a 6° grados) de la Reforma Integral de la Educación Básica en Mé [...] xico. Se describen dos tipos de concepciones: una intuitiva, que asume una simplicidad y facilidad en el uso de las imágenes junto con una naturaleza realista de las mismas, y una más compleja, de naturaleza constructivista, en la que se consideran las imágenes como un sistema externo de representación con las dificultades que demanda su uso. Los resultados muestran que la concepción que subyace a las imágenes sobre el cuerpo humano de 3° a 6° grados corresponde a una de tipo intuitivo con pocos cambios respecto de su tratamiento en los libros de texto anteriores a la Reforma. Abstract in english This study analyzes the natural conceptions of the visual representations of the human body that guide selection, design, and didactic treatment in the new elementary science textbooks (3rd grade to 6th grade) of Mexico's Integral Reform of Basic Education. Two types of conceptions are described: an [...] intuitive conception, which assumes simplicity and facility in the use of images, along with a realistic representation; and a more complex conception of a constructivist nature that considers images to be an external system of representation with the difficulties their use demands. The results show that the underlying conception of the images of the human body from the 3rd to the 6th grades corresponds to an intuitive type with few changes, with respect to textbooks prior to the Reform.

  20. Celebrated, Dispossessed and Worshiped. Representations of the Tragic Destiny of the Hero in Contemporary Caribbean Visual Imaginary

    Directory of Open Access Journals (Sweden)

    Garrido Castellano, Carlos

    2012-01-01

    Full Text Available The present paper focuses on analyzing the images of violence through the representation of heroes associated to combat contexts. Specifically, we will examine those cases in which that hero, despite its champion condition, appears defeated, overcome by the context. The reflections of artists such as Marcos Lora Read (Dominican Republic, Javier Castro (Cuba and Ebony Patterson (Jamaica, by using various artistic mediums, have used the image of the hero to deconstruct elements of their societies, offering a discourse able to produce subversive values from the heroic tragedy.

  1. Sparse representations-based super-resolution of key-frames extracted from frames-sequences generated by a visual sensor network.

    Science.gov (United States)

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-01-01

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes. PMID:24566632

  2. Sparse Representations-Based Super-Resolution of Key-Frames Extracted from Frames-Sequences Generated by a Visual Sensor Network

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad

    2014-02-01

    Full Text Available Visual sensor networks (VSNs usually generate a low-resolution (LR frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP. This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  3. Does using a visual-representation tool foster students ability to identify forces and construct free-body diagrams?

    OpenAIRE

    Savinainen, Antti; Mäkynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2013-01-01

    Earlier research has shown that after physics instruction, many students have difficulties with the force concept, and with constructing free-body diagrams (FBDs). It has been suggested that treating forces as interactions could help students to identify forces as well as to construct the correct FBDs. While there is evidence that identifying interactions helps students in quantitative problem solving, there is no previous research investigating the effect of a visual-representati...

  4. Effect of 1% Inspired CO2 During Head-Down Tilt on Ocular Structures, Cerebral Blood Flow, and Visual Acuity in Healthy Human Subjects

    Science.gov (United States)

    Laurie, S. S.; Hu, X.; Lee, S. M. C.; Martin, D. S.; Phillips, T. R.; Ploutz-Snyder, R.; Smith, S. M.; Stenger, M. B.; Taibbi, G.; Zwart, S. R.; Vizzeri, G.

    2016-01-01

    The cephalad fluid shift induced by microgravity has been hypothesized to elevate intracranial pressure (ICP) and contribute to the development of the visual impairment/intracranial pressure (VIIP) syndrome experienced by many astronauts during and after long-duration space flight. In addition, elevated ambient partial pressure of carbon dioxide (PCO2) on the International Space Station (ISS) has also been hypothesized to contribute to the development of VIIP. We seek to determine if an acute, mild CO2 exposure, similar to that occurring on the ISS, combined with the cephalad fluid shift induced by head-down tilt will induce ophthalmic and ICP changes consistent with the VIIP syndrome.

  5. The Inspirational Leader

    Science.gov (United States)

    Benigni, Mark D.; Hughes, Mark A

    2012-01-01

    Amid the focus on improved standardized test scores, differentiated instruction, value-added initiatives and improved teacher evaluation, one must not ignore an education leader's need to inspire and be inspired. But how do education leaders inspire their students and teachers during some of the most difficult economic times the nation has ever…

  6. Directional multiresolution image representations

    OpenAIRE

    Do, Minh N.

    2002-01-01

    Efficient representation of visual information lies at the foundation of many image processing tasks, including compression, filtering, and feature extraction. Efficiency of a representation refers to the ability to capture significant information of an object of interest in a small description. For practical applications, this representation has to be realized by structured transforms and fast algorithms. Recently, it has become evident that commonly used separable transforms (such as wavele...

  7. Sistema de visualización remota para la representación interactiva de volúmenes de datos médicos / Remote visualization system for interactive representation of medical volume dataset

    Scientific Electronic Library Online (English)

    Osvaldo, Pereira Bárzaga; Leitniz, Pérez Buján; Ramón, Carrasco Velar.

    2013-12-01

    Full Text Available Las aplicaciones de visualización médica han adquirido un elevado auge en la medicina a nivel mundial, ya que les permite a los médicos especialistas realizar diagnósticos preoperatorios no invasivos y de alta precisión desde una perspectiva 3D. La idea principal de la misma es obtener un modelo tri [...] dimensional de alta resolución gráfica a partir de imágenes médicas digitales de las modalidades de Tomografía Axial Computarizada y Resonancia Magnética Nuclear. Los usuarios de este tipo de aplicaciones demandan de forma creciente que las aplicaciones permitan el diagnóstico de patologías en un entorno de trabajo colaborativo. En este trabajo presentamos una arquitectura para sistemas de visualización remota basados en la transmisión de imágenes. El esquema de comunicación y transmisión de datos e imágenes entre el servidor y los clientes utiliza RTP como protocolo de comunicación. Los resultados obtenidos demuestran que la variante de algoritmo RLE implementada permite obtener visualizaciones interactivas y en tiempo real con un consumo mínimo del ancho de banda de la red. Abstract in english Three-dimensional medical visualization applications have acquired a high rise in medicine. They allow specialized doctors to make preoperative diagnostics with high accuracy from a 3D perspective. The main idea of medical visualization is to obtain a three-dimensional and high-resolution graphics f [...] rom digital medical imaging modalities like computed tomography and magnetic resonance imaging. The users of these applications increasingly demand that applications allow diagnosis in a collaborative work environment. Architecture for remote visualization systems based on image is presented. The server and client scheme of communication and transmission of data and images use RTP as communication protocol. Our results show that the implemented variant of RLE algorithm allows interactive and real time representation with a minimum of bandwidth.

  8. Visualizing Summary Statistics and Uncertainty

    KAUST Repository

    Potter, K.

    2010-08-12

    The graphical depiction of uncertainty information is emerging as a problem of great importance. Scientific data sets are not considered complete without indications of error, accuracy, or levels of confidence. The visual portrayal of this information is a challenging task. This work takes inspiration from graphical data analysis to create visual representations that show not only the data value, but also important characteristics of the data including uncertainty. The canonical box plot is reexamined and a new hybrid summary plot is presented that incorporates a collection of descriptive statistics to highlight salient features of the data. Additionally, we present an extension of the summary plot to two dimensional distributions. Finally, a use-case of these new plots is presented, demonstrating their ability to present high-level overviews as well as detailed insight into the salient features of the underlying data distribution. © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  9. Virtual visual reminiscing pain stimulation of allodynia patients activates cortical representation of pain and emotions. fMRI study

    International Nuclear Information System (INIS)

    It is widely known that sensation of the pain is derived from sensory-discriminative factor and emotional factor. Especially in chronic pain, emotional factors and psychosocial backgrounds are more likely to contribute for the patients' discomfort. The aim of this study is to investigate how emotional factor of pain participates in intractable pain. We employed functional MRI (fMRI) to compare the brain activations occurring in the orthopaedic neuropathic pain patients with allodynia and normal individuals in response to the visual virtual painful experience. During fMRI scanning, a video demonstrating an actual tactile stimulation of the palm and its imitation were shown to participants. In contrast to normal individuals, allodynia patients also displayed activation of the areas reflecting emotions: frontal lobe and anterior cingulate. These findings suggest that brain have important role in the development and maintaining of peripheral originated chronic painful condition. (author)

  10. Eesti õpetaja pälvis Inspiration Software'i stipendiumi / Ave Lauringson

    Index Scriptorium Estoniae

    Lauringson, Ave

    2007-01-01

    USA tarkvarafirma Inspiration Software tegi teatavaks 30 õpetaja nimed üle maailma, kes saavad 2007. aasta haridusstipendiumi (Inspired Teacher Scholarships for Visual Learning). Nende seas on ka Lasnamäe Lasteaia-Algkooli õpetaja, Tiigrihüppe SA ekspert ja koolitaja ning Tiigri Tegija 2007 auhinnasaaja Ingrid Maadvere

  11. Translation-Invariant Representation for Cumulative Foot Pressure Images

    CERN Document Server

    Zheng, Shuai; Tan, Tieniu

    2010-01-01

    Human can be distinguished by different limb movements and unique ground reaction force. Cumulative foot pressure image is a 2-D cumulative ground reaction force during one gait cycle. Although it contains pressure spatial distribution information and pressure temporal distribution information, it suffers from several problems including different shoes and noise, when putting it into practice as a new biometric for pedestrian identification. In this paper, we propose a hierarchical translation-invariant representation for cumulative foot pressure images, inspired by the success of Convolutional deep belief network for digital classification. Key contribution in our approach is discriminative hierarchical sparse coding scheme which helps to learn useful discriminative high-level visual features. Based on the feature representation of cumulative foot pressure images, we develop a pedestrian recognition system which is invariant to three different shoes and slight local shape change. Experiments are conducted on...

  12. Context Effects and Inter-Representation Activation: An Experimental Study

    OpenAIRE

    Wachelke, J.

    2012-01-01

    The paper concerns the study of structural relations among social representations. Departing from the assumption that social representations are interconnected forming representational systems, the research aim was to verify if context salience of a cognem from one social representation is associated with a higher activation rate of a cognem from another representation within the same representational system. The rationale is inspired by Moliner’s studies about context effects, social images ...

  13. Distributed system load visualization

    OpenAIRE

    Larrea, Martín Leonardo; Martig, Sergio R.; Castro, Silvia Mabel

    2006-01-01

    In this article we show how the interface design for the visualization of distributed system load can benefit from the combination of concepts and techniques from Information Visualization and Human Computer Interaction (HCI). The use of visual representations and interactions to accelerate the insight into complex data is what distinguishes visual analytic software form other types of analytical tools. Visual representations translate data into a visible form that highlights important data f...

  14. Clay Bells: Edo Inspiration

    Science.gov (United States)

    Wagner, Tom

    2010-01-01

    The ceremonial copper and iron bells at the Smithsonian's National Museum of African Art were the author's inspiration for an interdisciplinary unit with a focus on the contributions various cultures make toward the richness of a community. The author of this article describes an Edo bell-inspired ceramic project incorporating slab-building…

  15. Bio-inspired vision

    International Nuclear Information System (INIS)

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980's, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ''neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems, if they are to succeed in demanding applications such as autonomous robot navigation, micro-manipulation or high-speed tracking, must exploit the power of the asynchronous, frame-free, biomimetic approach.

  16. Bio-inspired vision

    Science.gov (United States)

    Posch, C.

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980`s, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ``neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems, if they are to succeed in demanding applications such as autonomous robot navigation, micro-manipulation or high-speed tracking, must exploit the power of the asynchronous, frame-free, biomimetic approach.

  17. Integrating visual information across camera movements with a visual-motor calibration map

    Energy Technology Data Exchange (ETDEWEB)

    Prokopowicz, P.N. [Univ. of Chicago, IL (United States); Cooper, P.R. [Northwestern Univ., Evanston, IL (United States)

    1996-12-31

    Facing the competing demands for wider field of view and higher spatial resolution, computer vision will evolve toward greater use of foveal sensors and frequent camera movements. Integration of visual information across movements becomes a fundamental problem. We show that integration is possible using a biologically-inspired representation we call the visual-motor calibration map. The map is a memory-based model of the relationship between camera movements and corresponding pixel locations before and after any movement. The map constitutes a self-calibration that can compensate for non-uniform sampling, lens distortion, mechanical misalignments, and arbitrary pixel reordering. Integration takes place entirely in a retinotopic frame, using a short-term, predictive visual memory.

  18. Elementary School Students' Mental Representation of Fractions

    Science.gov (United States)

    Pitta-Pantazi, Demetra; Gray, Eddie M.; Christou, Constantinos

    2004-01-01

    Based on psychological approaches that evoke mental representations through verbal and visual cues, this paper investigates the different kinds of mental representations projected by 8 to 11 year old children of identified arithmetical achievement when responding to verbal and visual stimuli associated with fractions. It examines how the visual…

  19. Hyperspectral image visualization based on a human visual model

    Science.gov (United States)

    Zhang, Hongqin; Peng, Honghong; Fairchild, Mark D.; Montag, Ethan D.

    2008-02-01

    Hyperspectral image data can provide very fine spectral resolution with more than 200 bands, yet presents challenges for visualization techniques for displaying such rich information on a tristimulus monitor. This study developed a visualization technique by taking advantage of both the consistent natural appearance of a true color image and the feature separation of a PCA image based on a biologically inspired visual attention model. The key part is to extract the informative regions in the scene. The model takes into account human contrast sensitivity functions and generates a topographic saliency map for both images. This is accomplished using a set of linear "center-surround" operations simulating visual receptive fields as the difference between fine and coarse scales. A difference map between the saliency map of the true color image and that of the PCA image is derived and used as a mask on the true color image to select a small number of interesting locations where the PCA image has more salient features than available in the visible bands. The resulting representations preserve hue for vegetation, water, road etc., while the selected attentional locations may be analyzed by more advanced algorithms.

  20. Physicists get INSPIREd

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Particle physicists thrive on information. They first create information by performing experiments or elaborating theoretical conjectures and then they share it through publications and various web tools. The INSPIRE service, just released, will bring state of the art information retrieval to the fingertips of researchers.   Keeping track of the information shared within the particle physics community has long been the task of libraries at the larger labs, such as CERN, DESY, Fermilab and SLAC, as well as the focus of indispensible services like arXiv and those of the Particle Data Group. In 2007, many providers of information in the field came together for a summit at SLAC to see how physics information resources could be enhanced, and the INSPIRE project emerged from that meeting. The vision behind INSPIRE was built by a survey launched by the four labs to evaluate the real needs of the community. INSPIRE responds to these directives from the community by combining the most successful aspe...

  1. Fear Selectively Modulates Visual Mental Imagery and Visual Perception

    OpenAIRE

    Kosslyn, Stephen Michael; Borst, Grégoire

    2010-01-01

    Emotions have been shown to modulate low-level visual processing of simple stimuli. In this study, we investigate whether emotions only modulate processing of visual representations created from direct visual inputs or whether they also modulate representations that underlie visual mental images. Our results demonstrate that when participants visualize or look at the global shape of written words (low-spatial-frequency visual information), the prior brief presentation of fearful faces enhance...

  2. Instructional Design and Visualization.

    Science.gov (United States)

    Hortin, John A.

    1983-01-01

    Discusses the roles of visual thinking, visual rehearsal, and introspection in educational technology, and suggests that instructional designers should externalize their internal representations and involve the internal and external representations of content specialists and learners in the instructional design. Fifteen references are listed. (MBR)

  3. Interaction for visualization

    CERN Document Server

    Tominski, Christian

    2015-01-01

    Visualization has become a valuable means for data exploration and analysis. Interactive visualization combines expressive graphical representations and effective user interaction. Although interaction is an important component of visualization approaches, much of the visualization literature tends to pay more attention to the graphical representation than to interaction.The goal of this work is to strengthen the interaction side of visualization. Based on a brief review of general aspects of interaction, we develop an interaction-oriented view on visualization. This view comprises five key as

  4. Inspiration, anyone? (Editorial)

    OpenAIRE

    Lindsay Glynn

    2006-01-01

    I have to admit that writing an editorial for this issue was a struggle. Trying to sit down and write when the sun was shining outside and most of my colleagues were on vacation was, to say the least, difficult. Add to that research projects and conferences…let’s just say that I found myself less than inspired. A pitiful plea for ideas to a colleague resulted in the reintroduction to a few recent evidence based papers and resources which inspired further searching and reading. Thoug...

  5. You shall know an object by the company it keeps: An investigation of semantic representations derived from object co-occurrence in visual scenes

    Science.gov (United States)

    Sadeghi, Zahra; McClelland, James L.; Hoffman, Paul

    2015-01-01

    An influential position in lexical semantics holds that semantic representations for words can be derived through analysis of patterns of lexical co-occurrence in large language corpora. Firth (1957) famously summarised this principle as “you shall know a word by the company it keeps”. We explored whether the same principle could be applied to non-verbal patterns of object co-occurrence in natural scenes. We performed latent semantic analysis (LSA) on a set of photographed scenes in which all of the objects present had been manually labelled. This resulted in a representation of objects in a high-dimensional space in which similarity between two objects indicated the degree to which they appeared in similar scenes. These representations revealed similarities among objects belonging to the same taxonomic category (e.g., items of clothing) as well as cross-category associations (e.g., between fruits and kitchen utensils). We also compared representations generated from this scene dataset with two established methods for elucidating semantic representations: (a) a published database of semantic features generated verbally by participants and (b) LSA applied to a linguistic corpus in the usual fashion. Statistical comparisons of the three methods indicated significant association between the structures revealed by each method, with the scene dataset displaying greater convergence with feature-based representations than did LSA applied to linguistic data. The results indicate that information about the conceptual significance of objects can be extracted from their patterns of co-occurrence in natural environments, opening the possibility for such data to be incorporated into existing models of conceptual representation. PMID:25196838

  6. Bio-Inspired Motion Vision for Aerial Course Control

    OpenAIRE

    Plett, Johannes

    2013-01-01

    The visual system of the fly constitutes an ideal source of inspiration for technical deployment due to its high speed, precision and robustness. This interdisciplinary work focuses on neurobiological assessment, control oriented analysis, practical implementation and experimental evaluation of a biologically inspired motion sensor. This novel strategy exhibits substantial improvements over conventional approaches and thereby serves as a guidepost example of synergies between neurobiology and...

  7. Perceptions of Talented Students in Their Visual Representations about the Future World and Technology (Üstün Yetenekli Ö?rencilerin Görsel Anlat?mlar?nda Gelece?in Dünyas?na ve Teknolojisine ?li?kin Alg?lar?

    Directory of Open Access Journals (Sweden)

    S. Duygu Eri?ti

    2012-12-01

    Full Text Available Purpose and significance: The present study aimed at investigating talented students’ artistic representations and perceptions regarding the future world and technology through their animated designs according to their design-based representations. A learning environment which allows talented students to use their ability, thoughts and creativity in the process of design-based instructional activities is of great interest for them. It is important for talented students to have instructional experiences which provide independent and unique learning opportunities and special application areas that allow these students to show their abilities (CfBT, 2008. Results: The participants of the study were talented elementary school students attending the Education Programs for Talented Students (EPTS at Anadolu University. The criterion sampling method was used to select the research participants. The criterion for selecting the participants was attendance in the course of ‘Computer-Aided Graphics Design’ offered in the EPTS. The participants included a total of 35 elementary school 6th, 7th and 8th grade talented students. The study was conducted in three phases: instruction process, design process and evaluation process. Some preliminary preparations related to the design program were carried out considering that the students would use them while doing animated designs through the instruction process. The instruction phase involved an animated representation study during which the students designed their own animations. In the last phase, all the animate designs of the talented students were analyzed. The thematic analysis based on qualitative research method along with art-based inquiry was used. The thematic coding system for analyzing concepts revealed from the research data was implemented. The visual language used in pictorial representations produce messages, with its specialized codes. The degree of students’ understanding and explaining their perceptions of technology in future composes the visual codes in this research. The results obtained in the study were grouped under two themes: talented elementary school students’ ways of perception of the future world and talented elementary school students’ ways of perception of future technology.Discussion: Students’ perceptions about the future world in their visual representations and in the interview forms based on their visual representations were mostly classified under the theme of the extinction of the world, nature and universe. Students had quite unusual and original ideas about future technology. It was seen that the students put forward such subthemes as voyages between planets and space cars, flying cars, aliens’ visit to the world, street air-conditioners, voyage to the moon by space rockets and voyage via teleportation. The students who generally had negative views about the future world considered technology as a way of solution to the awaiting problems in future. In the research process, based on the researcher’s observations, it could be stated that the students taking design education were in the process of making design-related decisions and testing and discussing their knowledge about a certain goal; that they revised their needs, efficacies and creative potentials regarding the goal determined; and that they experimented, evaluated, developed and associated their decisions with the design process.Conclusions: Depending on the findings of the present study, it can be concluded that students’ perceptions of the future world and technology reveal quite a negative picture in general. There could be a number of reasons for this negative picture; however, considering the technology and media interaction involving students, it could be stated that there are negative reflections of such environments and the popular culture within this context. In addition, the themes regarding the extinction of the world and collision of the planets envisaged by the talented students for the future world as well as the students’ visual repr

  8. Laptops and Inspired Writing

    Science.gov (United States)

    Warschauer, Mark; Arada, Kathleen; Zheng, Binbin

    2010-01-01

    Can daily access to laptop computers help students become better writers? Are such programs affordable? Evidence from the Inspired Writing program in Littleton Public Schools, Colorado, USA, provides a resounding yes to both questions. The program employs student netbooks, open-source software, cloud computing, and social media to help students in…

  9. In Search of Inspiration

    Science.gov (United States)

    Powers, Keith

    2013-01-01

    Keeping one's self inspired in the music classroom is all about connections. Sometimes educators need to look at what they're doing from a different perspective. Luckily, there's no shortage of ways to revitalize one's classroom approach, and to help the author explores a few, he made use of some connections of his own, turning to five educators…

  10. Inspirations in medical genetics.

    Science.gov (United States)

    Asadollahi, Reza

    2016-02-01

    There are abundant instances in the history of genetics and medical genetics to illustrate how curiosity, charisma of mentors, nature, art, the saving of lives and many other matters have inspired great discoveries. These achievements from deciphering genetic concepts to characterizing genetic disorders have been crucial for management of the patients. There remains, however, a long pathway ahead. PMID:24658215

  11. Visually Exploring Transportation Schedules.

    Science.gov (United States)

    Palomo, Cesar; Guo, Zhan; Silva, Cláudio T; Freire, Juliana

    2016-01-01

    Public transportation schedules are designed by agencies to optimize service quality under multiple constraints. However, real service usually deviates from the plan. Therefore, transportation analysts need to identify, compare and explain both eventual and systemic performance issues that must be addressed so that better timetables can be created. The purely statistical tools commonly used by analysts pose many difficulties due to the large number of attributes at trip- and station-level for planned and real service. Also challenging is the need for models at multiple scales to search for patterns at different times and stations, since analysts do not know exactly where or when relevant patterns might emerge and need to compute statistical summaries for multiple attributes at different granularities. To aid in this analysis, we worked in close collaboration with a transportation expert to design TR-EX, a visual exploration tool developed to identify, inspect and compare spatio-temporal patterns for planned and real transportation service. TR-EX combines two new visual encodings inspired by Marey's Train Schedule: Trips Explorer for trip-level analysis of frequency, deviation and speed; and Stops Explorer for station-level study of delay, wait time, reliability and performance deficiencies such as bunching. To tackle overplotting and to provide a robust representation for a large numbers of trips and stops at multiple scales, the system supports variable kernel bandwidths to achieve the level of detail required by users for different tasks. We justify our design decisions based on specific analysis needs of transportation analysts. We provide anecdotal evidence of the efficacy of TR-EX through a series of case studies that explore NYC subway service, which illustrate how TR-EX can be used to confirm hypotheses and derive new insights through visual exploration. PMID:26529697

  12. Mussel-Inspired Materials

    DEFF Research Database (Denmark)

    Krogsgaard, Marie; Nue, Vicki; Birkedal, Henrik

    2016-01-01

    Improved understanding of the underwater attachment strategy of the blue mussels and other marine organisms has inspired researchers to find new routes to advanced materials. Mussels use polyphenols, such as the catechol-containing amino acid 3,4-dihydroxyphenylalanine (DOPA), to attach to surfaces....... Catechols and their analogues can undergo both oxidative covalent cross-linking under alkaline conditions and take part in coordination chemistry. The former has resulted in the widespread use of polydopamine and related materials. The latter is emerging as a tool to make self-healing materials due to the...... reversible nature of coordination bonds. We review how mussel-inspired materials have been made with a focus on the less developed use of metal coordination and illustrate how this chemistry can be widely to make self-healing materials....

  13. Inspiral into Gargantua

    CERN Document Server

    Gralla, Samuel E; Warburton, Niels

    2016-01-01

    We model the inspiral of a compact object into a more massive black hole rotating very near the theoretical maximum. We find that once the body enters the near-horizon regime the gravitational radiation is characterized by a constant frequency, equal to (twice) the horizon frequency, with an exponentially damped profile. This contrasts with the usual "chirping" behavior and, if detected, would constitute a "smoking gun" for a near-extremal black hole in nature.

  14. Nanotechnology: Inspiration from Nature

    OpenAIRE

    Sheeparamatti B; Sheeparamatti R; Kadadevaramath J

    2007-01-01

    Nanotechnology is molecular manipulation. Any branch of technology that results from our ability to control and manipulate matter on length scales of 1-100 nm can be treated as nanotechnology. Nanotechnology is not new to nature. Nature has been doing molecular manipulation to build its systems like plants and animals. After observing and understanding the fundamental design principles of natural products, one gets inspiration to build his own nanoproducts. This paper stimulates a nanotechnic...

  15. Loop Representations

    OpenAIRE

    Bruegmann, B.

    1993-01-01

    The loop representation plays an important role in canonical quantum gravity because loop variables allow a natural treatment of the constraints. In these lectures we give an elementary introduction to (i) the relevant history of loops in knot theory and gauge theory, (ii) the loop representation of Maxwell theory, and (iii) the loop representation of canonical quantum gravity. (Based on lectures given at the 117. Heraeus Seminar, Bad Honnef, Sept. 1993)

  16. Inspiring a generation

    CERN Multimedia

    2012-01-01

    The motto of the 2012 Olympic and Paralympic Games is ‘Inspire a generation’ so it was particularly pleasing to see science, the LHC and Higgs bosons featuring so strongly in the opening ceremony of the Paralympics last week.   It’s a sign of just how far our field has come that such a high-profile event featured particle physics so strongly, and we can certainly add our support to that motto. If the legacy of London 2012 is a generation inspired by science as well as sport, then the games will have more than fulfilled their mission. Particle physics has truly inspiring stories to tell, going well beyond Higgs and the LHC, and the entire community has played its part in bringing the excitement of frontier research in particle physics to a wide audience. Nevertheless, we cannot rest on our laurels: maintaining the kind of enthusiasm for science we witnessed at the Paralympic opening ceremony will require constant vigilance, and creative thinking about ways to rea...

  17. Quantum-Inspired Maximizer

    Science.gov (United States)

    Zak, Michail

    2008-01-01

    A report discusses an algorithm for a new kind of dynamics based on a quantum- classical hybrid-quantum-inspired maximizer. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen 'computational' potential. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables, using classical methods. Such optimal combination of characteristics is a perfect match for quantum-inspired computing. As an application, an algorithm for global maximum of an arbitrary integrable function is proposed. The idea of the proposed algorithm is very simple: based upon the Quantum-inspired Maximizer (QIM), introduce a positive function to be maximized as the probability density to which the solution is attracted. Then the larger value of this function will have the higher probability to appear. Special attention is paid to simulation of integer programming and NP-complete problems. It is demonstrated that the problem of global maximum of an integrable function can be found in polynomial time by using the proposed quantum- classical hybrid. The result is extended to a constrained maximum with applications to integer programming and TSP (Traveling Salesman Problem).

  18. Poetic representation

    DEFF Research Database (Denmark)

    Wulf-Andersen, Trine Østergaard

    2012-01-01

    , and dialogue, of situated participants. The article includes a lengthy example of a poetic representation of one participant’s story, and the author comments on the potentials of ‘doing’ poetic representations as an example of writing in ways that challenges what sometimes goes unasked in...

  19. Point cloud representation.

    OpenAIRE

    Linsen, Lars

    2007-01-01

    Reconstructing a surface out of a three-dimensional set of points, which is obtained by sampling an object's boundary, is done by generating an arbitrary triangular mesh. Our approach is to obviate the computation of such a mesh connectivity and to represent the object's surface only by the point cloud. We discuss how such a point cloud representation can be visualized and present processing steps like coarsifying and smoothing, which are important for dealing with the ...

  20. An active system for visually-guided reaching in 3D across binocular fixations.

    Science.gov (United States)

    Martinez-Martin, Ester; del Pobil, Angel P; Chessa, Manuela; Solari, Fabio; Sabatini, Silvio P

    2014-01-01

    Based on the importance of relative disparity between objects for accurate hand-eye coordination, this paper presents a biological approach inspired by the cortical neural architecture. So, the motor information is coded in egocentric coordinates obtained from the allocentric representation of the space (in terms of disparity) generated from the egocentric representation of the visual information (image coordinates). In that way, the different aspects of the visuomotor coordination are integrated: an active vision system, composed of two vergent cameras; a module for the 2D binocular disparity estimation based on a local estimation of phase differences performed through a bank of Gabor filters; and a robotic actuator to perform the corresponding tasks (visually-guided reaching). The approach's performance is evaluated through experiments on both simulated and real data. PMID:24672295

  1. When science inspires art

    CERN Multimedia

    Anaïs Vernède

    2011-01-01

    On Tuesday 18 January 2011, artist Pipilotti Rist came to CERN to find out how science could provide her with a source of inspiration for her art and perhaps to get ideas for future work. Pipilotti, who is an eclectic artist always on the lookout for an original source of inspiration, is almost as passionate about physics as she is about art.   Ever Is Over All, 1997, audio video installation by Pipilotti Rist.  View of the installation at the National Museum for Foreign Art, Sofia, Bulgaria. © Pipilotti Rist. Courtesy the artist and Hauser & Wirth. Photo by Angel Tzvetanov. Swiss video-maker Pipilotti Rist (her real name is Elisabeth Charlotte Rist), who is well-known in the international art world for her highly colourful videos and creations, visited CERN for the first time on Tuesday 18 January 2011.  Her visit represented a trip down memory lane, since she originally studied physics before becoming interested in pursuing a career as an artist and going on to de...

  2. Poetic representation

    DEFF Research Database (Denmark)

    Wulf-Andersen, Trine Østergaard

    2012-01-01

    be written up and disseminated. The article takes a methodological focus, considering general aims and methods of the research project, before turning to the elaboration on how poetic representations have been constructed and employed as a vehicle for certain kinds of participation, representation......, and dialogue, of situated participants. The article includes a lengthy example of a poetic representation of one participant’s story, and the author comments on the potentials of ‘doing’ poetic representations as an example of writing in ways that challenges what sometimes goes unasked in...... participative social work research. The article moves to ‘trouble’ understandings of participative research as egalitarian and consensus-driven, and proposes a focus on the tensions and positioning of knowledge production....

  3. Visual Semiotics & Uncertainty Visualization: An Empirical Study.

    Science.gov (United States)

    MacEachren, A M; Roth, R E; O'Brien, J; Li, B; Swingley, D; Gahegan, M

    2012-12-01

    This paper presents two linked empirical studies focused on uncertainty visualization. The experiments are framed from two conceptual perspectives. First, a typology of uncertainty is used to delineate kinds of uncertainty matched with space, time, and attribute components of data. Second, concepts from visual semiotics are applied to characterize the kind of visual signification that is appropriate for representing those different categories of uncertainty. This framework guided the two experiments reported here. The first addresses representation intuitiveness, considering both visual variables and iconicity of representation. The second addresses relative performance of the most intuitive abstract and iconic representations of uncertainty on a map reading task. Combined results suggest initial guidelines for representing uncertainty and discussion focuses on practical applicability of results. PMID:26357158

  4. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that...

  5. Social representations, alternative representations and semantic barriers

    OpenAIRE

    Gillespie, Alex

    2008-01-01

    Social representations research has tended to focus upon the representations that groups have in relation to some object. The present article elaborates the concept of social representations by pointing to the existence of “alternative representations” as sub-components within social representations. Alternative representations are the ideas and images the group has about how other groups represent the given object. Alternative representations are thus representations of other people's repres...

  6. Visualization rhetoric: framing effects in narrative visualization.

    Science.gov (United States)

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation. PMID:22034342

  7. UNIVERSO REPRESENTACIONAL DEL ARTE RUPESTRE DEL SITIO LOS MELLIZOS (PROVINCIA DEL CHOAPA:: CONVENCIONES VISUALES Y RELACIONES CULTURALES REPRESENTATIONAL UNIVERSE OF LOS MELLIZOS ROCK ART SITE (CHOAPA PROVINCE:: VISUAL CONVENTIONS AND CULTURAL RELATIONS

    Directory of Open Access Journals (Sweden)

    Paola González Carvajal

    2011-01-01

    Full Text Available Este trabajo examina nuevos caminos metodológicos para el estudio de la iconografía del arte rupestre del sitio Los Mellizos. En particular, se emplean los principios geométricos de la simetría en la descripción y la comprensión de este arte visual. Luego se clasifican sus formas y estructuras subyacentes. Al mismo tiempo, la estructura del diseño ha demostrado ser un atributo sensible a problemas relacionados con la identidad de grupo y los procesos de intercambio e interacción. Para abordar este último aspecto, un segundo esfuerzo fue realizado al comparar los patrones decorativos de Los Mellizos con patrones decorativos de la decoración cerámica de culturas prehispánicas presentes en la región. Como resultado de este ejercicio identificamos una fuerte presencia de iconografía Inka o Diaguita-Inka, así como otras influencias culturales.This paper examines new methodological approaches to the systematic study of Los Mellizos rock art iconography. In particular, we use the geometrical principles of symmetry to describe and understand this visual art, then classify the forms and underlying structures. At the same time, the structure of the design has been shown to be sensitive to issues of group identity, exchange and interaction. Therefore, a secondary effort compares Los Mellizos decorative patterns with ceramic decorative patterns of the pre-Hispanic cultures present in the region. As a result of this exercise, we identified the strong presence of Inka and Diaguita-Inka visual patterns and other cultural influences.

  8. A recurrent working memory architecture for emergent speech representation

    OpenAIRE

    Mark Elshaw

    2009-01-01

    This research considers a recurrent self-organising map (RSOM) working memory architecture for emergent speech representation, which is inspired by evidence from human neuroscience studies. The main purpose of this research is to demonstrate that a neural architecture can develop meaningful self-organised representations of speech using phone-like structures. By using this representational approach it should be possible, in a similar fashion to infants, to improve the performance of automatic...

  9. Visuo-haptic multisensory object recognition, categorization, and representation

    OpenAIRE

    SimonLacey

    2014-01-01

    Visual and haptic unisensory object processing show many similarities in terms of categorization, recognition, and representation. In this review, we discuss how these similarities contribute to multisensory object processing. In particular, we show that similar unisensory visual and haptic representations lead to a shared multisensory representation underlying both cross-modal object recognition and view-independence. This shared representation suggests a common neural substrate and we revie...

  10. Quiver representations

    CERN Document Server

    Schiffler, Ralf

    2014-01-01

    This book is intended to serve as a textbook for a course in Representation Theory of Algebras at the beginning graduate level. The text has two parts. In Part I, the theory is studied in an elementary way using quivers and their representations. This is a very hands-on approach and requires only basic knowledge of linear algebra. The main tool for describing the representation theory of a finite-dimensional algebra is its Auslander-Reiten quiver, and the text introduces these quivers as early as possible. Part II then uses the language of algebras and modules to build on the material developed before. The equivalence of the two approaches is proved in the text. The last chapter gives a proof of Gabriel’s Theorem. The language of category theory is developed along the way as needed.

  11. Group representations

    CERN Document Server

    Karpilovsky, G

    1994-01-01

    This third volume can be roughly divided into two parts. The first part is devoted to the investigation of various properties of projective characters. Special attention is drawn to spin representations and their character tables and to various correspondences for projective characters. Among other topics, projective Schur index and projective representations of abelian groups are covered. The last topic is investigated by introducing a symplectic geometry on finite abelian groups. The second part is devoted to Clifford theory for graded algebras and its application to the corresponding theory

  12. Representational Machines

    DEFF Research Database (Denmark)

    Petersson, Dag; Dahlgren, Anna; Vestberg, Nina Lager

    Photography not only represents space. Space is produced photographically. Since its inception in the 19th century, photography has brought to light a vast array of represented subjects. Always situated in some spatial order, photographic representations have been operatively underpinned by social...... the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments......, technological possibilities, and genre distinctions. Presenting several distinct ways of producing space photographically, this book opens a new and important field of inquiry for photography research....

  13. Value Representations

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegaard; Petersen, Marianne Graves

    2011-01-01

    Stereotypic presumptions about gender affect the design process, both in relation to how users are understood and how products are designed. As a way to decrease the influence of stereotypic presumptions in design process, we propose not to disregard the aspect of gender in the design process, as...... the perspective brings valuable insights on different approaches to technology, but instead to view gender through a value lens. Contributing to this perspective, we have developed Value Representations as a design-oriented instrument for staging a reflective dialogue with users. Value Representations...

  14. Biologically inspired emotion recognition from speech

    Science.gov (United States)

    Caponetti, Laura; Buscicchio, Cosimo Alessandro; Castellano, Giovanna

    2011-12-01

    Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM) recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC) and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  15. Biologically inspired emotion recognition from speech

    Directory of Open Access Journals (Sweden)

    Buscicchio Cosimo

    2011-01-01

    Full Text Available Abstract Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  16. Immuno-inspired robotic applications: a review

    CERN Document Server

    Raza, Ali

    2012-01-01

    Artificial immune systems primarily mimic the adaptive nature of biological immune functions. Their ability to adapt to varying pathogens makes such systems a suitable choice for various robotic applications. Generally, AIS-based robotic applications map local instantaneous sensory information into either an antigen or a co-stimulatory signal, according to the choice of representation schema. Algorithms then use relevant immune functions to output either evolved antibodies or maturity of dendritic cells, in terms of actuation signals. It is observed that researchers, in an attempt to solve the problem in hand, do not try to replicate the biological immunity but select necessary immune functions instead, resulting in an ad-hoc manner these applications are reported. Authors, therefore, present a comprehensive review of immuno-inspired robotic applications in an attempt to categorize them according to underlying immune definitions. Implementation details are tabulated in terms of corresponding mathematical expr...

  17. Inspired by CERN

    CERN Multimedia

    2004-01-01

    Art students inspired by CERN will be returning to show their work 9 to 16 October in Building 500, outside the Auditorium. Seventeen art students from around Europe visited CERN last January for a week of introductions to particle physics and astrophysics, and discussions with CERN scientists about their projects. A CERN scientist "adopted"each artist so they could ask questions during and after the visit. Now the seeds planted during their visit have come to fruition in a show using many media and exploring varied concepts, such as how people experience the online world, the sheer scale of CERN's equipment, and the abstractness of the entities scientists are looking for. "The work is so varied, people are going to love some pieces and detest others," says Andrew Charalambous, the project coordinator from University College London who is also curating the exhibition. "It's contemporary modern art, and that's sometimes difficult to take in." For more information on this thought-provoking show, see: htt...

  18. Holography Inspired Stringy Hadrons

    CERN Document Server

    Sonnenschein, Jacob

    2016-01-01

    Holography inspired stringy hadrons (HISH) is a set of models that describe hadrons: mesons, baryons and glueballs as strings in at four dimensional space time. The models are based on a \\map" from stringy hadrons of holographic confining backgrounds. In this note we review the "derivation" of the models. We start with a brief reminder of the passage from the AdS5xS5 string theory to certain flavored confining holographic models. We then describe the string configurations in holographic backgrounds that correspond to a Wilson line,a meson,a baryon and a glueball. The key ingredients of the four dimensional picture of hadrons are the \\string endpoint mass" and the "baryonic string vertex". We determine the classical trajectories of the HISH. We review the current understanding of the quantization of the hadronic strings. We end with a summary of the comparison of the outcome of the HISH models with the PDG data about mesons and baryons. We extract the values of the tension, masses and intercepts from best ?ts,...

  19. 3D hierarchical spatial representation and memory of multimodal sensory data

    Science.gov (United States)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine/robot degrees of freedom, the desired movements and action can be computed from these different levels in the hierarchy. The most basic embodiment of this machine could be a pan-tilt camera system, an array of microphones, a machine with arm/hand like structure or/and a robot with some or all of the above capabilities. We describe the approach, system and present preliminary results on a real-robotic platform.

  20. Visualization analysis and design

    CERN Document Server

    Munzner, Tamara

    2015-01-01

    Visualization Analysis and Design provides a systematic, comprehensive framework for thinking about visualization in terms of principles and design choices. The book features a unified approach encompassing information visualization techniques for abstract data, scientific visualization techniques for spatial data, and visual analytics techniques for interweaving data transformation and analysis with interactive visual exploration. It emphasizes the careful validation of effectiveness and the consideration of function before form. The book breaks down visualization design according to three questions: what data users need to see, why users need to carry out their tasks, and how the visual representations proposed can be constructed and manipulated. It walks readers through the use of space and color to visually encode data in a view, the trade-offs between changing a single view and using multiple linked views, and the ways to reduce the amount of data shown in each view. The book concludes with six case stu...

  1. Digital models for architectonical representation

    Directory of Open Access Journals (Sweden)

    Stefano Brusaporci

    2011-12-01

    Full Text Available Digital instruments and technologies enrich architectonical representation and communication opportunities. Computer graphics is organized according the two phases of visualization and construction, that is modeling and rendering, structuring dichotomy of software technologies. Visualization modalities give different kinds of representations of the same 3D model and instruments produce a separation between drawing and image’s creation. Reverse modeling can be related to a synthesis process, ‘direct modeling’ follows an analytic procedure. The difference between interactive and not interactive applications is connected to the possibilities offered by informatics instruments, and relates to modeling and rendering. At the same time the word ‘model’ describes different phenomenon (i.e. files: mathematical model of the building and of the scene; raster representation and post-processing model. All these correlated different models constitute the architectonical interpretative model, that is a simulation of reality made by the model for improving the knowledge.

  2. Glyph-Based Comparative Visualization for Diffusion Tensor Fields.

    Science.gov (United States)

    Zhang, Changgong; Schultz, Thomas; Lawonn, Kai; Eisemann, Elmar; Vilanova, Anna

    2016-01-01

    Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject. PMID:26529729

  3. Inspiration, anyone? (Editorial

    Directory of Open Access Journals (Sweden)

    Lindsay Glynn

    2006-09-01

    Full Text Available I have to admit that writing an editorial for this issue was a struggle. Trying to sit down and write when the sun was shining outside and most of my colleagues were on vacation was, to say the least, difficult. Add to that research projects and conferences…let’s just say that I found myself less than inspired. A pitiful plea for ideas to a colleague resulted in the reintroduction to a few recent evidence based papers and resources which inspired further searching and reading. Though I generally find myself surrounded (more like buried in research papers and EBLIP literature, somehow I had missed the great strides that have been made of late in the world of evidence based library and information practice. I realize now that I am inspired by the researchers, authors and innovators who are putting EBLIP on the proverbial map. My biggest beef with library literature in general has been the plethora of articles highlighting what we should be doing. Take a close look at the evidence based practitioners in the information professions: these are some of the people who are actively practicing what has been preached for the past few years. Take, for example, the about?to?be released Libraries using Evidence Toolkit by Northern Sydney Central Coast Health and The University of Newcastle, Australia (see their announcement in this issue. An impressive advisory group is responsible for maintaining the currency and relevancy of the site as well as promoting the site and acting as a steering committee for related projects. This group is certainly doing more than “talking the talk”: they took their experience at the 3rd International Evidence Based Librarianship Conference and did something with the information they obtained by implementing solutions that worked in their environment. The result? The creation of a collection of tools for all of us to use. This toolkit is just what EBLIP needs: a portal to resources aimed at supporting the information specialists who want to adopt the evidence based model of practice. I have already got it bookmarked and set up an RSS feed. Even before the official toolkit launch, a wealth of information is available on the website including presentations, project and events information, and a blog containing site updates. There has been much discussion on increasing the knowledge base from which to draw evidence for library and information practitioners. Original research needs to be published so that we can use it as evidence to support our decision making. The literature is lacking the significant numbers of publication types widely considered to be the highest level of evidence: systematic reviews, meta?analyses and randomized controlled trials. This issue of Evidence Based Library and Information Practice proudly boasts both a systematic review/meta?analysis and a randomized controlled trial. Denise Koufogiannakis and Natasha Wiebe, in their systematic review/meta?analysis, provide evidence that shows that computer assisted instruction is as effective as traditional instruction for students at an introductory, undergraduate level. Nicola Pearce?Smith compared the effectiveness of self?directed, web?based learning with a classroom?based, interactive workshop in her randomized controlled trial. I am looking forward to reading and utilizing more and more of these in the future. Another example is even closer to home. I recently attended a strategic planning meeting at my institution where new services and procedures were discussed. Unlike the past, when new initiatives were implemented and later evaluated, all librarians instinctively indicated that the literature should be searched first to see if there was any evidence either for or against changing or adding new services or procedures. The evidence based model of practice is catching on. I know that there are numerous examples of information practitioners taking a proactive role in putting research into practice, and many research papers that are worth mentioning. To highlight them all would be a task muc

  4. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  5. Manipulating Representations

    OpenAIRE

    Recchia-Luciani, Angelo N. M.

    2011-01-01

    The present paper proposes a definition for the complex polysemic concepts of consciousness and awareness (in humans as well as in other species), and puts forward the idea of a progressive ontological development of consciousness from a state of ‘childhood’ awareness, in order to explain that humans are not only able to manipulate objects, but also their mental representations. The paper builds on the idea of qualia intended as entities posing regular invariant requests to neural processes, ...

  6. Representational Advantages

    OpenAIRE

    Casati, Roberto

    2003-01-01

    Descriptive metaphysics investigates our naive ontology as this is articulated in the content of our perception or of our pre-reflective thought about the world. But is access to such content reliable? Sceptics about the standard modes of access (introspection, or language-driven intuitions) may think that investigations in descriptive metaphysics can be aided by the controlled findings of cognitive science. Cognitive scientists have studied a promising range of representational advantages, t...

  7. Geodezija in direktiva INSPIRE : Geodesy And INSPIRE Directive

    Directory of Open Access Journals (Sweden)

    Tomaž Petek

    2008-01-01

    Full Text Available SI: ?Direktiva Evropskega parlamenta in Sveta EU INSPIRE je bila sprejeta 24. aprila 2008 in je za?ela veljati 15. maja 2008. Zdaj se kon?uje obdobje njenega prenosa v pravni red držav ?lanic in se za?enja njeno izvajanje. Direktiva INSPIRE ureja izhodiš?a za vzpostavitev evropske podatkovne infrastrukture za prostorske informacije v državah ?lanicah EU, imenovane tudi INSPIRE (Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE.V veliki ve?ini evropskih držav bo uskladitev dolo?b Direktive INSPIRE z nacionalno zakonodajo izvedena s pripravo novega zakona, ki bo dodelil osrednje mesto državnim geodetskim in kartografskim službam. Državne geodetske službe so v obveznostih, ki jih državam ?lanicam nalaga direktiva, videle priložnost za aktivno udejstvovanje. Za uspešno izvedbo Direktive INSPIRE je namre? klju?nega pomena, da pri tem sodelujejo vsi upravljavci in uporabniki podatkov o prostoru in okolju (v nadaljevanju prostorskih podatkov, ki so navedeni v prilogah k direktivi. Tako je treba vzpostaviti tudi dolo?ene organizacijske strukture. Direktiva INSPIRE namre? opredeljuje na?in usklajevanja na podro?ju prostorske podatkovne infrastrukture med državami ?lanicami EU in institucijami EU. Izvajanje Direktive INSPIRE bo vplivalo na poslovanje vseh organov javne uprave, ki vodijo in vzdržujejo prostorske podatke. Ve? kot dve tretjini podatkov, navedenih v prilogah k Direktivi INSPIRE, so podatki, ki jih v Sloveniji že danes vodi in vzdržuje državna geodetska služba. ?EN: The Directive of the European Parliament and of the Council INSPIRE was adopted on 24th April 2008 and it entered into force on 15th May 2008. The transposition period into national legal framework is finishing and we are at the beginning of the implementation period. The purpose of the Directive is to lay down general rules aimed at the establishment of the infrastructure for spatial information in the European Community (hereinafter referred to as INSPIRE, for the purposes of Community environmental policies and policies or activities which may have an impact on environment. In many European countries the transposition phase will be done with adoption of a new law, where national mapping and cadastral agencies will have leading role. Successful implementation calls for strong cooperation between all stakeholders (data providers and users from environmental and spatial fields. So it is necessary to establish appropriate coordination mechanisms and structures. Directive INSPIRE also defines organisational measures for the coordination in the field of spatial data infrastructure between Member States and Community institutions. The Republic of Slovenia state geodetic authority already manages more than two thirds of data types listed in annexes to the Directive INSPIRE. Metadata services and data viewers are already available to users through web portal ‘prostor’. Slovenian geodesy has already assured users good access to data and services related to spatial data and their use. Search services for most of the spatial data are available to users without unnecessary administrative obstacles and for the majority of spatial data also metadata descriptions exist. ?But we are facing a big challenge and responsibility for establishing Slovenian spatial data infrastructure (hereinafter SDI and mechanisms for coordination of all stakeholders. It is necessary to define legal and technical details of spatial data interoperability, review data access rules for spatial data, which are managed by public authorities in Slovenia and harmonise pricing policy rules. In the article we try to describe possibilities and challenges the Slovenian geodetic sector is facing and are related to the establishment of Slovenian SDI.

  8. Physicists Get INSPIREd: INSPIRE Project and Grid Applications

    Science.gov (United States)

    Klem, Jukka; Iwaszkiewicz, Jan

    2011-12-01

    INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.

  9. Physicists Get INSPIREd: INSPIRE Project and Grid Applications

    International Nuclear Information System (INIS)

    INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.

  10. Brain-inspired Stochastic Models and Implementations

    KAUST Repository

    Al-Shedivat, Maruan

    2015-05-12

    One of the approaches to building artificial intelligence (AI) is to decipher the princi- ples of the brain function and to employ similar mechanisms for solving cognitive tasks, such as visual perception or natural language understanding, using machines. The recent breakthrough, named deep learning, demonstrated that large multi-layer networks of arti- ficial neural-like computing units attain remarkable performance on some of these tasks. Nevertheless, such artificial networks remain to be very loosely inspired by the brain, which rich structures and mechanisms may further suggest new algorithms or even new paradigms of computation. In this thesis, we explore brain-inspired probabilistic mechanisms, such as neural and synaptic stochasticity, in the context of generative models. The two questions we ask here are: (i) what kind of models can describe a neural learning system built of stochastic components? and (ii) how can we implement such systems e ̆ciently? To give specific answers, we consider two well known models and the corresponding neural architectures: the Naive Bayes model implemented with a winner-take-all spiking neural network and the Boltzmann machine implemented in a spiking or non-spiking fashion. We propose and analyze an e ̆cient neuromorphic implementation of the stochastic neu- ral firing mechanism and study the e ̄ects of synaptic unreliability on learning generative energy-based models implemented with neural networks.

  11. Cognition inspired framework for indoor scene annotation

    Science.gov (United States)

    Ye, Zhipeng; Liu, Peng; Zhao, Wei; Tang, Xianglong

    2015-09-01

    We present a simple yet effective scene annotation framework based on a combination of bag-of-visual words (BoVW), three-dimensional scene structure estimation, scene context, and cognitive theory. From a macroperspective, the proposed cognition-based hybrid motivation framework divides the annotation problem into empirical inference and real-time classification. Inspired by the inference ability of human beings, common objects of indoor scenes are defined for experience-based inference, while in the real-time classification stage, an improved BoVW-based multilayer abstract semantics labeling method is proposed by introducing abstract semantic hierarchies to narrow the semantic gap and improve the performance of object categorization. The proposed framework was evaluated on a variety of common data sets and experimental results proved its effectiveness.

  12. Development & Implementation of a PyMOL 'putty' Representation

    OpenAIRE

    Mura, Cameron

    2014-01-01

    The PyMOL molecular graphics program has been modi?ed to introduce a new 'putty' cartoon representation, akin to the 'sausage'-style representation of the MOLMOL molecular visualization (MolVis) software package. This document outlines the development and implementation of the putty representation.

  13. Inspiring Student Self-Motivation

    Directory of Open Access Journals (Sweden)

    Virginia Brackett

    2007-01-01

    Full Text Available While normally appreciative of the invitation to join colleagues in a discussion of pedagogy and what “works” in the classroom, I have in most instances reluctantly participated in discussion of student motivation. I dip my toe into this philosophical quagmire only if permitted license to substitute the phrase student inspiration in place of student motivation. I also find it helpful to turn the rhetorical tables, as it were, and consider self-motivation on the part of students. The concept of individuals who hold some sense of self that a classroom mentor may nurture through student inspiration is one in which I place a modicum of trust. To “inspire” is literally to “breathe in,” to actively pull sustenance from a proffered external source. Active student determination based on some sense of self may couple with instructor inspiration to promote academic success.

  14. Generative Representations for Automated Design of Robots

    Science.gov (United States)

    Homby, Gregory S.; Lipson, Hod; Pollack, Jordan B.

    2007-01-01

    A method of automated design of complex, modular robots involves an evolutionary process in which generative representations of designs are used. The term generative representations as used here signifies, loosely, representations that consist of or include algorithms, computer programs, and the like, wherein encoded designs can reuse elements of their encoding and thereby evolve toward greater complexity. Automated design of robots through synthetic evolutionary processes has already been demonstrated, but it is not clear whether genetically inspired search algorithms can yield designs that are sufficiently complex for practical engineering. The ultimate success of such algorithms as tools for automation of design depends on the scaling properties of representations of designs. A nongenerative representation (one in which each element of the encoded design is used at most once in translating to the design) scales linearly with the number of elements. Search algorithms that use nongenerative representations quickly become intractable (search times vary approximately exponentially with numbers of design elements), and thus are not amenable to scaling to complex designs. Generative representations are compact representations and were devised as means to circumvent the above-mentioned fundamental restriction on scalability. In the present method, a robot is defined by a compact programmatic form (its generative representation) and the evolutionary variation takes place on this form. The evolutionary process is an iterative one, wherein each cycle consists of the following steps: 1. Generative representations are generated in an evolutionary subprocess. 2. Each generative representation is a program that, when compiled, produces an assembly procedure. 3. In a computational simulation, a constructor executes an assembly procedure to generate a robot. 4. A physical-simulation program tests the performance of a simulated constructed robot, evaluating the performance according to a fitness criterion to yield a figure of merit that is fed back into the evolutionary subprocess of the next iteration. In comparison with prior approaches to automated evolutionary design of robots, the use of generative representations offers two advantages: First, a generative representation enables the reuse of components in regular and hierarchical ways and thereby serves a systematic means of creating more complex modules out of simpler ones. Second, the evolved generative representation may capture intrinsic properties of the design problem, so that variations in the representations move through the design space more effectively than do equivalent variations in a nongenerative representation. This method has been demonstrated by using it to design some robots that move, variously, by walking, rolling, or sliding. Some of the robots were built (see figure). Although these robots are very simple, in comparison with robots designed by humans, their structures are more regular, modular, hierarchical, and complex than are those of evolved designs of comparable functionality synthesized by use of nongenerative representations.

  15. Representation learning for histopathology image analysis

    OpenAIRE

    Arevalo Ovalle, John Edilson

    2013-01-01

    Abstract. Nowadays, automatic methods for image representation and analysis have been successfully applied in several medical imaging problems leading to the emergence of novel research areas like digital pathology and bioimage informatics. The main challenge of these methods is to deal with the high visual variability of biological structures present in the images, which increases the semantic gap between their visual appearance and their high level meaning. Particularly, the visual variabil...

  16. Visual interference disrupts visual and only visual knowledge.

    Science.gov (United States)

    Edmiston, Pierce; Lupyan, Gary

    2015-09-01

    Visual imagery and the making of visual judgments involves activation of cortical regions that underlie visual perception (e.g., reporting that taxicabs are yellow recruits color sensitive regions of cortex, Simmons et al., 2007). Such results, however, leave open the critical question of whether perceptual representations are constitutive of visual knowledge (Barsalou, Simmons, Barbey, & Wilson, 2003; Mahon & Caramazza, 2008). We report evidence that visual interference disrupts the activation of visual and only visual knowledge. Recognizing an upright object next to a rotated picture of the same object is known to be aided by cueing; hearing word cues that match the subsequently presented pictures (e.g., hearing "alligator" prior to seeing pictures of alligators) improves performance, whereas hearing invalid cues (e.g., hearing "alligator" prior to seeing pictures of dogs) impairs it. We show that we can reduce this cueing effect by 46% by presenting a visual mask during or after the auditory word cue. The mask did not affect performance on no-cue trials, showing that the effect of the visual interference disrupts the knowledge activated by the word. In subsequent studies we show that the same type of visual interference affects knowledge probed by verbal propositions. For example, hearing the word "table" while viewing visual noise patterns made participants 1.4 times more likely to make an error in affirming the visual property that tables have flat surfaces but not the more general (and equally difficult) property that tables are furniture. These results provide a convincing resolution of a longstanding debate in cognitive psychology and neuroscience about the format of visual knowledge. Although much of our knowledge abstracts away from perceptual details, knowledge of what things look like appears to be represented in a visual format. Meeting abstract presented at VSS 2015. PMID:26325698

  17. Neural representation of objects in space: a dual coding account.

    OpenAIRE

    Humphreys, G. W.

    1998-01-01

    I present evidence on the nature of object coding in the brain and discuss the implications of this coding for models of visual selective attention. Neuropsychological studies of task-based constraints on: (i) visual neglect; and (ii) reading and counting, reveal the existence of parallel forms of spatial representation for objects: within-object representations, where elements are coded as parts of objects, and between-object representations, where elements are coded as independent objects. ...

  18. Inspiration fra NY-times

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye

    2015-01-01

    NY-times har en ugentlig klumme med gode råd. For nogle uger siden var ugens inspiration henvendt til lærere/undervisere og drejede sig om, hvordan man skaber taletid til alle uden at have favoritter og overse de mere stille elever.......NY-times har en ugentlig klumme med gode råd. For nogle uger siden var ugens inspiration henvendt til lærere/undervisere og drejede sig om, hvordan man skaber taletid til alle uden at have favoritter og overse de mere stille elever....

  19. Bio-Inspired Antifouling Strategies

    Science.gov (United States)

    Kirschner, Chelsea M.; Brennan, Anthony B.

    2012-08-01

    Biofouling is a complex, dynamic problem that globally impacts both the economy and environment. Interdisciplinary research in marine biology, polymer science, and engineering has led to the implementation of bio-inspired strategies for the development of the next generation of antifouling marine coatings. Natural fouling defense mechanisms have been mimicked through chemical, physical, and/or stimuli-responsive strategies. This review outlines the detrimental effects associated with biofouling, describes the theoretical basis for antifouling coating design, and highlights prominent advances in bio-inspired antifouling technologies.

  20. Scientific visualization uncertainty, multifield, biomedical, and scalable visualization

    CERN Document Server

    Chen, Min; Johnson, Christopher; Kaufman, Arie; Hagen, Hans

    2014-01-01

    Based on the seminar that took place in Dagstuhl, Germany in June 2011, this contributed volume studies the four important topics within the scientific visualization field: uncertainty visualization, multifield visualization, biomedical visualization and scalable visualization. • Uncertainty visualization deals with uncertain data from simulations or sampled data, uncertainty due to the mathematical processes operating on the data, and uncertainty in the visual representation, • Multifield visualization addresses the need to depict multiple data at individual locations and the combination of multiple datasets, • Biomedical is a vast field with select subtopics addressed from scanning methodologies to structural applications to biological applications, • Scalability in scientific visualization is critical as data grows and computational devices range from hand-held mobile devices to exascale computational platforms. Scientific Visualization will be useful to practitioners of scientific visualization, ...

  1. Measuring visual abilities and visual knowledge of aviation security screeners

    OpenAIRE

    Schwaninger, Adrian; Hardmeier, Diana; Hofer, Franziska

    2004-01-01

    A central aspect of airport security is reliable detection of forbidden objects in passenger bags using X-ray screening equipment. Human recognition involves visual processing of the X-ray image and matching items with object representations stored in visual memory. Thus, without knowing which objects are forbidden and what they look like, prohibited items are difficult to recognize (aspect of visual knowledge). In order to measure whether a screener has acquired the necessary visual knowledg...

  2. Representations of content: psychological foundations and didactical background

    Directory of Open Access Journals (Sweden)

    TomᚠJanko

    2012-03-01

    Full Text Available This theoretical study concerns the issue of representations. Representation is a concept used when analysing and explaining human perception, cognition, communication, and learning. Firstly, we introduce the psychological foundations of the concept. Secondly, we clarify the concept of representations and its division in cognitive psychology. We define two basic forms of external representations - verbal and visual. In social psychology, the concept is used for explaining of how much individual cognition is determined by socio-cultural factors. Further, we mention the concept of representations that draws on the Theory of social representations (Moscovici and Vygotsky's ideas. The author seeks to develop a concept of representations usable in didactic discourse. The importance of representations for content-oriented didactics is clarified. We also define the levels on which a teacher reasons when using representations during instruction. Representations of curricular content, which are believed to play an important role when presenting the content to students, are also mentioned.

  3. Bio-Inspired Computer Vision: Setting the Basis for a New Departure

    OpenAIRE

    Medathati, N V Kartheek; Neumann, Heiko; Masson, Guillaume; Kornprobst, Pierre

    2015-01-01

    Studies in biological vision have always been a great source of inspiration for design of computer vision algorithms. In the past, several successful methods were designed with varying degrees of correspondence with biological vision studies, ranging from purely functional inspiration to methods that utilize models that were primarily developed for explaining biological observations. Even though it seems well recognized that computational models of visual cortex can help in design of computer...

  4. Ventral-stream-like shape representation: from pixel intensity values to trainable object-selective COSFIRE models

    Directory of Open Access Journals (Sweden)

    George Azzopardi

    2014-07-01

    Full Text Available The remarkable abilities of the primate visual cortex have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 -> V4 -> TEO. Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. A S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms.

  5. Ventral-stream-like shape representation: from pixel intensity values to trainable object-selective COSFIRE models.

    Science.gov (United States)

    Azzopardi, George; Petkov, Nicolai

    2014-01-01

    The remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses) and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 → V4 → TEO). Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. An S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable) objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms. PMID:25126068

  6. The matrix of inspiration

    Science.gov (United States)

    Oehlmann, Dietmar; Ohlmann, Odile M.; Danzebrink, Hans U.

    2005-04-01

    The research of Odile Meulien and Dietmar Ohlmann is about perceiving a multidimensional world. Not about the cyberspace created for new cinema creation, nor the reality which seems to be created by communication. It's the search for the reality we perceive, when the mind "touches" an object with its senses. In fact, it is a study of the surface of an object, which we can record in its visual appearing, its structure, shape and colors. When using photographic media, the tactile sense of the structure is missing, when using some other reproductive media; we experience somewhere a sensation of fault, something different. When using holography, we are able to record some three dimensional shape which has in fact a lot of parameter of a realistic copy. What is missing is the touch, the smell, the way we can go close and far, surround the object, relate the reflected light to its surrounding. The only interesting attribute of a hologram is for Dietmar Ohlmann its capacity to illustrate a continuum. He likes its changing diffractive character during daytime and surrounds lighting. For Odile Meulien the continuum of a hologram represents a new possible model for understanding wholeness in a social context. In fact, both are working on an educational process together, helping children and adults to find a new position of their own in harmony with living surrounding. Dietmar Ohlmann is working on his artistic side, while Odile Meulien works on educational programs experiencing the perspective of a curator and social analyst. New is the implication of using the latest of the techniques like the atomic force microscopy, which make possible to touch the holographic grating while the holographic image remains untouched. In other words it is the reverse of the usual approach of objects which at first we touch to investigate further. Their difference in experiencing and perceiving scientific and technical approach brings a lot of paradigm in their discussion. Together they will perform this exchange, as a matrix, understood as source, of new ideas.

  7. The Molecule Cloud - compact visualization of large collections of molecules

    Directory of Open Access Journals (Sweden)

    Ertl Peter

    2012-07-01

    Full Text Available Abstract Background Analysis and visualization of large collections of molecules is one of the most frequent challenges cheminformatics experts in pharmaceutical industry are facing. Various sophisticated methods are available to perform this task, including clustering, dimensionality reduction or scaffold frequency analysis. In any case, however, viewing and analyzing large tables with molecular structures is necessary. We present a new visualization technique, providing basic information about the composition of molecular data sets at a single glance. Summary A method is presented here allowing visual representation of the most common structural features of chemical databases in a form of a cloud diagram. The frequency of molecules containing particular substructure is indicated by the size of respective structural image. The method is useful to quickly perceive the most prominent structural features present in the data set. This approach was inspired by popular word cloud diagrams that are used to visualize textual information in a compact form. Therefore we call this approach “Molecule Cloud”. The method also supports visualization of additional information, for example biological activity of molecules containing this scaffold or the protein target class typical for particular scaffolds, by color coding. Detailed description of the algorithm is provided, allowing easy implementation of the method by any cheminformatics toolkit. The layout algorithm is available as open source Java code. Conclusions Visualization of large molecular data sets using the Molecule Cloud approach allows scientists to get information about the composition of molecular databases and their most frequent structural features easily. The method may be used in the areas where analysis of large molecular collections is needed, for example processing of high throughput screening results, virtual screening or compound purchasing. Several example visualizations of large data sets, including PubChem, ChEMBL and ZINC databases using the Molecule Cloud diagrams are provided.

  8. Hyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2015-01-01

    Full Text Available Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI. Super-resolution (SR imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation.

  9. Hyperspectral imagery super-resolution by compressive sensing inspired dictionary learning and spatial-spectral regularization.

    Science.gov (United States)

    Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui

    2015-01-01

    Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation. PMID:25608212

  10. Institutionalizing New Ideas Through Visualization

    DEFF Research Database (Denmark)

    Meyer, Renate; Jancsary, Dennis; Höllerer, Markus A.; Boxenbaum, Eva

    How do visualization and visual forms of communication influence the process of transforming a novel idea into established organizational practice? In this paper, we build theory with regard to the role of visuals in manifesting and giving form to an innovative idea as it proceeds through various...... representations diffuse more rapidly and further than the practices themselves. Consolidating the relationship between abstract ideas and specific practice, such visual or multi-modal representations facilitate the implementation of novel ideas, reinforce particular translations, and imbue associated...

  11. Supporting Polyrepresentation in a Quantum-inspired geometrical Retrieval Framework

    DEFF Research Database (Denmark)

    Frommholz, Ingo; Larsen, Birger

    2010-01-01

    The relevance of a document has many facets, going beyond the usual topical one, which have to be considered to satisfy a user's information need. Multiple representations of documents, like user-given reviews or the actual document content, can give evidence towards certain facets of relevance. In this respect polyrepresentation of documents, where such evidence is combined, is a crucial concept to estimate the relevance of a document. In this paper, we discuss how a geometrical retrieval framework inspired by quantum mechanics can be extended to support polyrepresentation. We show by example how different representations of a document can be modelled in a Hilbert space, similar to physical systems known from quantum mechanics. We further illustrate how these representations are combined by means of the tensor product to support polyrepresentation, and discuss the case that representations of documents are not independent from a user point of view. Besides giving a principled framework for polyrepresentation, the potential of this approach is to capture and formalise the complex interdependent relationships that the different representations can have between each other.

  12. Social insects inspire human design

    OpenAIRE

    Holbrook, C. Tate; Clark, Rebecca M.; Moore, Dani; Overson, Rick P.; Penick, Clint A.; Smith, Adrian A.

    2010-01-01

    The international conference ‘Social Biomimicry: Insect Societies and Human Design’, hosted by Arizona State University, USA, 18–20 February 2010, explored how the collective behaviour and nest architecture of social insects can inspire innovative and effective solutions to human design challenges. It brought together biologists, designers, engineers, computer scientists, architects and businesspeople, with the dual aims of enriching biology and advancing biomimetic design.

  13. Novel locomotion via biological inspiration

    Science.gov (United States)

    Quinn, Roger D.; Boxerbaum, Alexander; Palmer, Luther; Chiel, Hillel; Diller, Eric; Hunt, Alexander; Bachmann, Richard

    2011-05-01

    Animal behavioral, physiological and neurobiological studies are providing a wealth of inspirational data for robot design and control. Several very different biologically inspired mobile robots will be reviewed. A robot called DIGbot is being developed that moves independent of the direction of gravity using Distributed Inward Gripping (DIG) as a rapid and robust attachment mechanism observed in climbing animals. DIGbot is an 18 degree of freedom hexapod with onboard power and control systems. Passive compliance in its feet, which is inspired by the flexible tarsus of the cockroach, increases the robustness of the adhesion strategy and enables DIGbot to execute large steps and stationary turns while walking on mesh screens. A Whegs™ robot, inspired by insect locomotion principles, is being developed that can be rapidly reconfigured between tracks and wheel-legs and carry GeoSystems Zipper Mast. The mechanisms that cause it to passively change its gait on irregular terrain have been integrated into its hubs for a compact and modular design. The robot is designed to move smoothly on moderately rugged terrain using its tracks and run on irregular terrain and stairs using its wheel-legs. We are also developing soft bodied robots that use peristalsis, the same method of locomotion earthworms use. We present a technique of using a braided mesh exterior to produce fluid waves of motion along the body of the robot that increase the robot's speed relative to previous designs. The concept is highly scalable, for endoscopes to water, oil or gas line inspection.

  14. London: An Art Teacher's Inspiration

    Science.gov (United States)

    Guhin, Paula

    2012-01-01

    Often overshadowed in people's minds by Paris, London is truly an artist's jewel. The art and architecture, history, gardens and museums are inspiring, yes, but there's so much more to this ancient city. The performances, attractions and markets are a boon to the creative soul. London can be surprisingly inexpensive to visit. Gazing at statues,…

  15. Abstract and associatively based representations in human sequence learning.

    OpenAIRE

    Spiegel, Rainer; McLaren, I P L

    2003-01-01

    We give an analysis of performance in an artificial neural network for which the claim had been made that it could learn abstract representations. Our argument is that this network is associative in nature, and cannot develop abstract representations. The network thus converges to a solution that is solely based on the statistical regularities of the training set. Inspired by human experiments that have shown that humans can engage in both associative (statistical) and abstract learning, we p...

  16. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology

    Science.gov (United States)

    Kornyshev, Alexei A.

    2010-10-01

    The conference 'From DNA-Inspired Physics to Physics-Inspired Biology' (1-5 June 2009, International Center for Theoretical Physics, Trieste, Italy) that myself and two former presidents of the American Biophysical Society—Wilma Olson (Rutgers University) and Adrian Parsegian (NIH), with the support of an ICTP team (Ralf Gebauer (Local Organizer) and Doreen Sauleek (Conference Secretary)), have organized was intended to establish stronger links between the biology and physics communities on the DNA front. The relationships between them were never easy. In 1997, Adrian published a paper in Physics Today ('Harness the Hubris') summarizing his thoughts about the main obstacles for a successful collaboration. The bottom line of that article was that physicists must seriously learn biology before exploring it and even having an interpreter, a friend or co-worker, who will be cooperating with you and translating the problems of biology into a physical language, may not be enough. He started his story with a joke about a physicist asking a biologist: 'I want to study the brain. Tell me something about it!' Biologist: 'First, the brain consists of two parts, and..' Physicist: 'Stop. You have told me too much.' Adrian listed a few direct avenues where physicists' contributions may be particularly welcome. This gentle and elegantly written paper caused, however, a stormy reaction from Bob Austin (Princeton), published together with Adrian's notes, accusing Adrian of forbidding physicists to attack big questions in biology straightaway. Twelve years have passed and many new developments have taken place in the biologist-physicist interaction. This was something I addressed in my opening conference speech, with my position lying somewhere inbetween Parsegian's and Austin's, which is briefly outlined here. I will first recall certain precepts or 'dogmas' that fly in the air like Valkyries, poisoning those relationships. Since the early seventies when I was a first year PhD student at the Frumkin Institute in Moscow attending hot theoretical seminars chaired by Benjamin Levich (1917-1986, a pupil of Landau and the founding father of physical-chemical hydrodynamics), I particularly remember one of his many jokes he used to spice up his seminar. When some overly enthusiastic speaker was telling us with 100% confidence how the electron transfers between atomic moieties in a solvent near an electrode, and what the molecules exactly do to promote the transfer, he used to ask the speaker: 'How do you know it? Have you been there?' Today this is no longer a question or even a joke. We have plenty of experimental tools to 'get there'. The list of such techniques is too long to cover fully, I may just refer to FIONA (fluorescence imaging with nanometer accuracy) which allows us to trace the motion of myosin on actin or kinesin on microtubules and similar aspects of protein motility in vivo and in vitro (fluorescence methods were at the center of the Biological and Molecular Machine Program at Kavli ITP, Santa Barbara, where the founders of those techniques taught us what we can learn using them) or visualizing the positions of adsorbed counterions on DNA by synchrotron radiation. Therefore, the following dogmas can be given: Dogma 1: 'Seeing is believing'. Once, I asked an Assistant Professor from one of the top US universities, who was preaching such methods, had he tried to plot his data in some coordinates, where I would have expected his data to lie on a straight line. The answer was, 'Come on, what you speak about is 20th century science; it's no longer interesting!' I am afraid he was not unique in his generation, voting for what I would call 'MTV-science'. This science does make you dance, but on its own is not sufficient without a deep theoretical analysis of what you actually see. Otherwise, 'what you see is what you get' and not more. Dogma 2: 'A theory must contain not more than exponential functions, logarithms and alike. Otherwise the job should be left with computers. No Bessel functions, please!' This point of view was advocat

  17. Representación visual de la movilización estudiantil en Chile: las fotografías de las marchas como espacios de narración, actuación e identificación política (Visual representation of the student mobilization in Chile: the photographs of marches as spaces of narrative, action and political identification

    Directory of Open Access Journals (Sweden)

    Camila Cárdenas Neira

    2014-12-01

    Full Text Available El artículo explora la representación visual de las marchas estudiantiles suscitadas en Chile durante el 2011, con el propósito de describir los actores e identidades grupales simbolizadas, así como las acciones sociales y los modos como son legitimadas o deslegitimadas en la interacción. Se analiza un corpus fotográfico del libro "Marchas" (Yutronic y Ortiz, 2012, desde un marco teórico-metodológico que considera aportaciones de los Estudios Críticos del Discurso y la Semiótica Social. Se plantea que las fotografías de las marchas constituyen una narración capaz de organizar significados que estructuran formas de actuación e identificación política en oposición, excluyendo a otros participantes críticos del conflicto educativo, como las élites políticas y económicas. Se construye así un tipo de confrontación entre jóvenes y fuerzas policiales, que simplifica la lucha ideológica y refuerza estereotipos sobre grupos cuya acción, al ser objeto de una mediatización permanente, es cognitivamente reforzada. Se concluye que la narración indagada constituye una opción de representación que enfatiza el carácter histórico de la protesta estudiantil, proveyendo un espacio de visibilización de la acción juvenil postdictatorial. (This paper explores the visual representation of student’s protests raised in Chile during 2011. The purpose is to describe the actors and symbolized group identities, as well as the social actions and the ways in which these specific actions are legitimized or delegitimized in the interaction. The corpus is a photographic book entitled "Marchas" (Marches (Yutronic & Ortiz, 2012, which is analyzed from a theoretical and methodological framework that considers input from Critical Discourse Studies and Social Semiotics. The paper claims that the photographs of marches are able to organize narrative meanings which structure opposite forms of performance and political identification, excluding other critical participants in the educational conflict, such as political and economic elites. Thus, it is constructed a type of confrontation between young people and police, which simplifies the ideological struggle and reinforces stereotypes about groups whose action, being subject to constant media coverage, is, therefore, cognitively enhanced. The paper concludes that the narration inquired is an option of representation that emphasizes the historical character of the students’ protest, providing in this way a space that makes visible the postdictatorial action of youth.

  18. Deep generative learning of location-invariant visual word recognition

    Directory of Open Access Journals (Sweden)

    Maria GraziaDi Bono

    2013-09-01

    Full Text Available It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters from their eye-centred (i.e., retinal locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Conversely, there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words – which was the model’s learning objective – is largely based on letter-level information.

  19. Computer aided surface representation

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R.E.

    1990-02-19

    The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a surface defined on a surface''. Sometimes properties of an already defined surface are desired, which is geometry processing''. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

  20. A Tony Thomas-Inspired Guide to INSPIRE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, Heath B.; /Fermilab

    2010-04-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  1. The Creative Dimension of Visuality

    DEFF Research Database (Denmark)

    Michelsen, Anders Ib

    This essay reflects critically on the notion of visuality, a centrepiece of current theory on visual culture and its underlying idea of a structural ‘discursive determination’ of visual phenomena. Is the visual really to be addressed through the post-war heritage of discourse and representation...... analysis relying on language/linguistics as a model for explaining culture? More specifically, how can the – creative – novelty of visual culture be addressed by a notion of discourse? This essay will argue that the debate on visual culture is lacking with regard to discerning the creative dimension of its...

  2. Kinds of inspiration in interaction design

    DEFF Research Database (Denmark)

    Halskov, Kim

    2010-01-01

    In this paper, we explore the role of sources of inspiration in interaction design. We identify four strategies for relating sources of inspiration to emerging ideas: selection; adaptation; translation; and combination. As our starting point, we argue that sources of inspiration are a form of...

  3. E6 inspired composite Higgs model

    Science.gov (United States)

    Nevzorov, R.; Thomas, A. W.

    2015-10-01

    We consider a composite Higgs model embedded into a grand unified theory (GUT) based on the E6 gauge group. The phenomenological viability of this E6inspired composite Higgs model (E6CHM ) implies that standard model (SM) elementary fermions with different baryon or lepton number should stem from 27 different representations of E6. We present a six-dimensional orbifold GUT model in which the E6 gauge symmetry is broken to the SM gauge group so that the appropriate splitting of the bulk 27-plets takes place. In this model the strongly coupled sector is localized on one of the branes and possesses an S U (6 ) global symmetry that contains the S U (3 )C×S U (2 )W×U (1 )Y subgroup. In this case the approximate gauge coupling unification can be attained if the right-handed top quark is a composite state and the elementary sector involves extra exotic matter beyond the SM which ensures anomaly cancellation. The breakdown of the approximate S U (6 ) symmetry at low energies in this model results in a set of the pseudo-Nambu-Goldstone states which include a Higgs doublet and scalar color triplet. We discuss the generation of the masses of the SM fermions in the E6CHM . The presence of the TeV scale vectorlike exotic quarks and scalar color triplet may provide spectacular new physics signals that can be observed at the LHC.

  4. E6 inspired composite Higgs model

    CERN Document Server

    Nevzorov, R

    2015-01-01

    We consider a composite Higgs model embedded into a Grand Unified Theory(GUT) based on the E_6 gauge group. The phenomenological viability of this E_6 inspired composite Higgs model (E6CHM) implies that standard model (SM) elementary fermions with different baryon or lepton number should stem from different 27 representations of E_6. We present a six-dimensional orbifold GUT model in which the E_6 gauge symmetry is broken to the SM gauge group so that the appropriate splitting of the bulk 27-plets takes place. In this model the strongly coupled sector is localised on one of the branes and possesses an SU(6) global symmetry that contains the SU(3)_C\\times SU(2)_W\\times U(1)_Y subgroup. In this case the approximate gauge coupling unification can be attained if the right-handed top quark is a composite state and the elementary sector involves extra exotic matter beyond the SM which ensures anomaly cancellation. The breakdown of the approximate SU(6) symmetry at low energies in this model results in a set of the ...

  5. Why is Information Displaced from Visual Working Memory during Visual Search?

    OpenAIRE

    Woodman, Geoffrey F.; Luck, Steven J.

    2009-01-01

    Research has shown that performing visual search while maintaining representations in visual working memory displaces up to one object’s worth of information from memory. This memory displacement has previously been attributed to a nonspecific disruption of the memory representation by the mere presentation of the visual search array, and the goal of the present study was to determine whether it instead reflects the use of visual working memory in the actual search process. The first hypothes...

  6. Decrypting $SO(10)$-inspired leptogenesis

    CERN Document Server

    Di Bari, Pasquale; Fiorentin, Michele Re

    2014-01-01

    Encouraged by the recent results from neutrino oscillation experiments, we perform an analytical study of $SO(10)$-inspired models and leptogenesis with hierarchical right-handed (RH) neutrino spectrum. Under the approximation of negligible misalignment between the neutrino Yukawa basis and the charged lepton basis, we find an analytical expression for the final asymmetry directly in terms of the low energy neutrino parameters that fully reproduces previous numerical results. This expression also shows that is possible to identify an effective leptogenesis phase for these models. When we also impose the wash-out of a large pre-existing asymmetry $N^{\\rm p,i}_{B-L}$, the strong thermal (ST) condition, we derive analytically all those constraints on the low energy neutrino parameters that characterise the {\\rm ST}-$SO(10)$-inspired leptogenesis solution, confirming previous numerical results. In particular we show why, though neutrino masses have to be necessarily normally ordered, the solution implies an analy...

  7. Biologically inspired models for swarming

    Science.gov (United States)

    Justh, Eric W.; Kowtha, Vijayanand

    2007-04-01

    "Understanding" the behavior of a biological system typically means formulating a sensible model, postulating a feedback law (incorporating biologically plausible sensory measurements), and experimentally verifying that the model and feedback law are consistent with nature. This approach is illustrated well in the work of K. Ghose, T. K. Horiuchi, P. S. Krishnaprasad, and C. F. Moss (and colleagues) on insect pursuit by echolocating bats. In work of F. Zhang, E. W. Justh, and P. S. Krishnaprasad, similar modeling principles and feedback laws have also been shown to play an important role in biologically-inspired formation-control and obstacle-avoidance laws. Building on this earlier work, we seek to identify a bio-inspired framework for cooperative swarming, in which the apparently complicated trajectories of individuals are explained by feedback laws which take a relatively simple form. The objectives of such swarming (e.g., for teams of unmanned vehicles) could include rendezvous, target capture (or destruction), and cooperative sensing.

  8. Inspiring Student Self-Motivation

    OpenAIRE

    Virginia Brackett

    2007-01-01

    While normally appreciative of the invitation to join colleagues in a discussion of pedagogy and what “works” in the classroom, I have in most instances reluctantly participated in discussion of student motivation. I dip my toe into this philosophical quagmire only if permitted license to substitute the phrase student inspiration in place of student motivation. I also find it helpful to turn the rhetorical tables, as it were, and consider self-motivation on the part of students. The concept o...

  9. Knowledge Representations for Planning Manipulation Tasks

    OpenAIRE

    Zacharias, Franziska

    2011-01-01

    In this thesis, the capability map, a novel general representation of the kinematic capabilities of a robot arm, is introduced. The capability map allows to determine how well regions of the workspace are reachable for the end effector in different orientations. It is a representation that can be machine processed as well as intuitively visualized for the human. The capability map and the derived algorithms are a valuable source of information for high- and low-level planning processes. T...

  10. Graphical representation of squeezed-state variances

    Science.gov (United States)

    Loudon, Rodney

    1989-02-01

    A geometrical representation of quadrature variances using Booth's (1873) elliptical lemniscate has been applied to the description of squeezed states of a single-mode radiation field and a two-level atom. It is found that the pedal curve of the usual ellipse, a form of lemniscate, provides a more direct representation of the required phase-dependent variances. The principal squeezing axes discussed by Luks et al., (1988) can be simply visualized using these curves.

  11. Exploration of complex visual feature spaces for object perception

    Directory of Open Access Journals (Sweden)

    Daniel D. Leeds

    2014-09-01

    Full Text Available The mid- and high-level visual properties supporting object perception in the ventral visual pathway are poorly understood. In the absence of well-specified theory, many groups have adopted a data-driven approach in which they progressively interrogate neural units to establish each unit’s selectivity. Such methods are challenging in that they require search through a wide space of feature models and stimuli using a limited number of samples. To more rapidly identify higher-level features underlying human cortical object perception, we implemented a novel method in which visual stimuli are selected in real-time based on BOLD responses to recently shown stimuli. This work was inspired by earlier primate physiology work, in which neural selectivity for mid-level features in IT was characterized using a simple parametric approach (Hung 2012. To extend such work to human neuroimaging, we used natural and synthetic object stimuli embedded in feature spaces constructed on the basis of the complex visual properties of the objects themselves. During fMRI scanning, we employed a real-time search method to control continuous stimulus selection within each image space. This search was designed to maximize neural responses across a pre-determined 1 cm3 brain region within ventral cortex. To assess the value of this method for understanding object encoding, we examined both the behavior of the method itself and the complex visual properties the method identified as reliably activating selected brain regions. We observed: 1 Regions selective for both holistic and component object features and for a variety of surface properties; 2 Object stimulus pairs near one another in feature space that produce responses at the opposite extremes of the measured activity range. Together, these results suggest that real-time fMRI methods may yield more widely informative measures of selectivity within the broad classes of visual features associated with cortical object representation.

  12. Perception, Cognition, and Visualization.

    Science.gov (United States)

    Arnheim, Rudolf

    1991-01-01

    Described are how pictures can combine aspects of naturalistic representation with more formal shapes to enhance cognitive understanding. These "diagrammatic" shapes derive from geometrical elementary and thereby bestow visual concreteness to concepts conveyed by the pictures. Leonardo da Vinci's anatomical drawings are used as examples…

  13. Visual Mining of Epidemic Networks

    CERN Document Server

    Clémençon, Stéphan; Rossi, Fabrice; Tran, Viet Chi; 10.1007/978-3-642-21498-1_35

    2012-01-01

    We show how an interactive graph visualization method based on maximal modularity clustering can be used to explore a large epidemic network. The visual representation is used to display statistical tests results that expose the relations between the propagation of HIV in a sexual contact network and the sexual orientation of the patients.

  14. 3D texture-based hybrid visualizations

    OpenAIRE

    Boada, Imma; Navazo Álvaro, Isabel

    2003-01-01

    In this paper, the visualization of hybrid scenes that contain volume data and a fitted extracted surface is addressed. The proposed algorithm is based on a integrated octree-based representation: the ‘‘hybrid octree.’’ The hybrid octree allows to obtain multiresolution representation of the volume data and it also maintains a decimated surface codification. The proposed visualization approach uses three-dimensional-textures for the visualization of the volume data and integrates the surface ...

  15. Toward Turing's A-type Unorganised Machines in an Unconventional Substrate: a Dynamic Representation in Compartmentalised Excitable Chemical Media

    OpenAIRE

    Bull, Larry; Holley, Julian; Costello, Ben De Lacy; Adamatzky, Andrew

    2012-01-01

    Turing presented a general representation scheme by which to achieve artificial intelligence - unorganised machines. Significantly, these were a form of discrete dynamical system and yet such representations remain relatively unexplored. Further, at the same time as also suggesting that natural evolution may provide inspiration for search mechanisms to design machines, he noted that mechanisms inspired by the social aspects of learning may prove useful. This paper presents initial results fro...

  16. Factorizations and physical representations

    International Nuclear Information System (INIS)

    A Hilbert space in M dimensions is shown explicitly to accommodate representations that reflect the decomposition of M into prime numbers. Representations that exhibit the factorization of M into two relatively prime numbers: the kq representation (Zak J 1970 Phys. Today 23 51), and related representations termed q1q2 representations (together with their conjugates) are analysed, as well as a representation that exhibits the complete factorization of M. In this latter representation each quantum number varies in a subspace that is associated with one of the prime numbers that make up M

  17. The Representational Consequences of Intentional Forgetting: Impairments to Both the Probability and Fidelity of Long-Term Memory

    Science.gov (United States)

    2016-01-01

    We investigated whether intentional forgetting impacts only the likelihood of later retrieval from long-term memory or whether it also impacts the fidelity of those representations that are successfully retrieved. We accomplished this by combining an item-method directed forgetting task with a testing procedure and modeling approach inspired by the delayed-estimation paradigm used in the study of visual short-term memory (STM). Abstract or concrete colored images were each followed by a remember (R) or forget (F) instruction and sometimes by a visual probe requiring a speeded detection response (E1–E3). Memory was tested using an old–new (E1–E2) or remember-know-no (E3) recognition task followed by a continuous color judgment task (E2–E3); a final experiment included only the color judgment task (E4). Replicating the existing literature, more “old” or “remember” responses were made to R than F items and RTs to postinstruction visual probes were longer following F than R instructions. Color judgments were more accurate for successfully recognized or recollected R than F items (E2–E3); a mixture model confirmed a decrease to both the probability of retrieving the F items as well as the fidelity of the representation of those F items that were retrieved (E4). We conclude that intentional forgetting is an effortful process that not only reduces the likelihood of successfully encoding an item for later retrieval, but also produces an impoverished memory trace even when those items are retrieved; these findings draw a parallel between the control of memory representations within working and long-term memory. PMID:26709589

  18. Contested Urbanism : Struggles About Representation

    DEFF Research Database (Denmark)

    PlØger, John

    2010-01-01

    Iconic architecture plays a crucial role in cities' interurban competition. This is also the case with Copenhagen which has used iconic architecture as part of its boosterism to gain investment, to increase tourism and to attract the creative class. This battle over the symbolic representation of city dynamism, architectural identity and market competitiveness is expressed in discourses and visual signs in space—be it cyberspace, on location, in newspapers or debates. The articulation of representations and meaning can produce conflicts which show the voids, ruptures, and rational generatives at play. This article will exemplify how actors' use of a specific spatial dispositif of visibility and legibility may be intertwined with particular discourses on community, architectural heritage and identity of place. Two cases are chosen, the first concerns resistance towards high-rise buildings and the second concerns a current debate about the development of a 'metropol-zone'. Both cases concern Copenhagen. The signifying dispositifs (content, argument, rationality) in each case will be identified and the paper will emphasise how certain dispositifs of the visible and the arguable become strategically intertwined through symbolic, visual and virtual representations of the wrongs of current urban planning

  19. Visual grouping in human parietal cortex

    OpenAIRE

    Chun, Marvin M.; Xu, Yaoda

    2007-01-01

    To efficiently extract visual information from complex visual scenes to guide behavior and thought, visual input needs to be organized into discrete units that can be selectively attended and processed. One important such selection unit is visual objects. A crucial factor determining object-based selection is the grouping between visual elements. Although human lesion data have pointed to the importance of the parietal cortex in object-based representations, our understanding of these parieta...

  20. A Biologically Inspired CMOS Image Sensor

    CERN Document Server

    Sarkar, Mukul

    2013-01-01

    Biological systems are a source of inspiration in the development of small autonomous sensor nodes. The two major types of optical vision systems found in nature are the single aperture human eye and the compound eye of insects. The latter are among the most compact and smallest vision sensors. The eye is a compound of individual lenses with their own photoreceptor arrays.  The visual system of insects allows them to fly with a limited intelligence and brain processing power. A CMOS image sensor replicating the perception of vision in insects is discussed and designed in this book for industrial (machine vision) and medical applications. The CMOS metal layer is used to create an embedded micro-polarizer able to sense polarization information. This polarization information is shown to be useful in applications like real time material classification and autonomous agent navigation. Further the sensor is equipped with in pixel analog and digital memories which allow variation of the dynamic range and in-pixel b...

  1. Towards Ecology Inspired Software Engineering

    OpenAIRE

    Baudry, Benoit; Monperrus, Martin

    2012-01-01

    Les écosystèmes sont des systèmes complexes et dynamiques. Au cours de l'évolution, ils ont développé des capacités avancées pour fournir des fonctions stables, et ce malgré des changements constants dans l'environnement. Dans ce papier, nous discutons l'hypothèse que les lois dirigeant l'organisation et le développement des écosystèmes sont une source d'inspiration riche pour l'architecture et la construction des logiciels.

  2. Visualization of Social Networks

    Science.gov (United States)

    Chen, Ing-Xiang; Yang, Cheng-Zen

    With the ubiquitous characteristic of the Internet, today many online social environments are provided to connect people. Various social relationships are thus created, connected, and migrated from our real lives to the Internet environment from different social groups. Many social communities and relationships are also quickly constructed and connected via instant personal messengers, blogs, Twitter, Facebook, and a great variety of online social services. Since social network visualizations can structure the complex relationships between different groups of individuals or organizations, they are helpful to analyze the social activities and relationships of actors, particularly over a large number of nodes. Therefore, many studies and visualization tools have been investigated to present social networks with graph representations. In this chapter, we will first review the background of social network analysis and visualization methods, and then introduce various novel visualization applications for social networks. Finally, the challenges and the future development of visualizing online social networks are discussed.

  3. Visualizing structures of speech expressiveness

    DEFF Research Database (Denmark)

    Herbelin, Bruno; Jensen, Karl Kristoffer; Graugaard, Lars

    vowels and consonants, and which converts the speech energy into visual particles that form complex visual structures, provides us with a mean to present the expressiveness of speech into a visual mode. This system is presented in an artwork whose scenario is inspired from the reasons of language. The...... Babel myth speaks about distance created when aspiring to the heaven as the reason for language division. Meanwhile, Locquin states through thorough investigations that only a few phonemes are present throughout history. Our interpretation is that a system able to recognize archetypal phonemes through...... artwork is presented at the Re:New festival in May 2008....

  4. Kernel polynomial representation of imaginary-time Green's functions

    CERN Document Server

    Huang, Li

    2012-01-01

    Inspired by the recent proposed Legendre orthogonal polynomial representation of imaginary-time Green's functions, we develop an alternate representation for the Green's functions of quantum impurity models and combine it with the hybridization expansion continuous-time quantum Monte Carlo impurity solver. This representation is based on the kernel polynomial method, which introduces various integral kernels to filter fluctuations caused by the explicit truncations of polynomial expansion series and improve the computational precision significantly. As an illustration of the new representation, we reexamine the imaginary-time Green's functions of single-band Hubbard model in the framework of dynamical mean-field theory. The calculated results suggest that with carefully chosen integral kernels the Gibbs oscillations found in previous orthogonal polynomial representation have been suppressed vastly and remarkable corrections to the measured Green's functions have been obtained.

  5. Institutionalizing New Ideas Through Visualization

    DEFF Research Database (Denmark)

    Meyer, Renate; Jancsary, Dennis

    How do visualization and visual forms of communication influence the process of transforming a novel idea into established organizational practice? In this paper, we build theory with regard to the role of visuals in manifesting and giving form to an innovative idea as it proceeds through various stages of institutionalization. Ideas become institutionalized not merely through widespread diffusion in a cognitive-discursive form but eventually through their translation into concrete activities and transformation into specific patterns of organizational practice. We argue that visualization plays a pivotal and unique role in this process. Visualization bridges the ideational with the practical realm by providing representations of ideas, connecting them to existing knowledge, and illustrating the specific actions that instantiate them. Similar to verbal discourse, and often in tandem, visual representations diffuse more rapidly and further than the practices themselves. Consolidating the relationship between abstract ideas and specific practice, such visual or multi-modal representations facilitate the implementation of novel ideas, reinforce particular translations, and imbue associated organizational practice with legitimacy – and thus solidify the coupling of innovative ideas and organizational practice. Extending existing research, we develop a set of propositions linking dimensions of visuality and visualization to the different stages of institutionalization in order to explain the institutional trajectory of new ideas. Our analysis advances insight into a core dimension of institutionalization: the transformation of an idea into practice.

  6. Learning sparse discriminative representations for land cover classification in the Arctic

    Science.gov (United States)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Gangodagamage, Chandana

    2012-10-01

    Neuroscience-inspired machine vision algorithms are of current interest in the areas of detection and monitoring of climate change impacts, and general Land Use/Land Cover classification using satellite image data. We describe an approach for automatic classification of land cover in multispectral satellite imagery of the Arctic using sparse representations over learned dictionaries. We demonstrate our method using DigitalGlobe Worldview-2 8-band visible/near infrared high spatial resolution imagery of the MacKenzie River basin. We use an on-line batch Hebbian learning rule to build spectral-textural dictionaries that are adapted to this multispectral data. We learn our dictionaries from millions of overlapping image patches and then use a pursuit search to generate sparse classification features. We explore unsupervised clustering in the sparse representation space to produce land-cover category labels. This approach combines spectral and spatial textural characteristics to detect geologic, vegetative, and hydrologic features. We compare our technique to standard remote sensing algorithms. Our results suggest that neuroscience-based models are a promising approach to practical pattern recognition problems in remote sensing, even for datasets using spectral bands not found in natural visual systems.

  7. Guard Cell and Tropomyosin Inspired Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Jacquelyn K.S. Nagel

    2013-10-01

    Full Text Available Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function of the guard cell coupled with the morphology (form and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

  8. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Nielsen, Morten

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active...... related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein of...

  9. Using models and representations in learning and teaching about the atom : A systematic literature review

    OpenAIRE

    Netzell, Elisabeth

    2015-01-01

    This study is a systematic literature review on the role of models and representations in the teaching, learning and understanding of the atom and atomic concepts. The aim of the study is to investigate the role of different visual representations, what models and representations are used in the science classroom, how learners interpret different external representations of the atom, what mental models students construct, and how the representations can be used and designed for meaningful lea...

  10. Integrated Visualization Environment for Science Mission Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work will provide NASA with an integrated visualization environment providing greater insight and a more intuitive representation of large technical...

  11. The Spatial Representation of Dynamic Scenes - An Integrative Approach

    Science.gov (United States)

    Huff, Markus; Schwan, Stephan; Garsoffky, Bärbel

    This paper addresses the spatial representation of dynamic scenes, particularly the question whether recognition performance is viewpoint dependent or viewpoint invariant. Beginning with the delimitation of static and dynamic scene recognition, the viewpoint dependency of visual recognition performance and the structure of the underlying mental representation are discussed. In the following, two parameters (an easy to identify event model and salient static features) are identified which appeared to be accountable for viewpoint dependency or viewpoint invariance of visual recognition performance for dynamic scenes.

  12. Cognitive and artificial representations in handwriting recognition

    Science.gov (United States)

    Lenaghan, Andrew P.; Malyan, Ron

    1996-03-01

    Both cognitive processes and artificial recognition systems may be characterized by the forms of representation they build and manipulate. This paper looks at how handwriting is represented in current recognition systems and the psychological evidence for its representation in the cognitive processes responsible for reading. Empirical psychological work on feature extraction in early visual processing is surveyed to show that a sound psychological basis for feature extraction exists and to describe the features this approach leads to. The first stage of the development of an architecture for a handwriting recognition system which has been strongly influenced by the psychological evidence for the cognitive processes and representations used in early visual processing, is reported. This architecture builds a number of parallel low level feature maps from raw data. These feature maps are thresholded and a region labeling algorithm is used to generate sets of features. Fuzzy logic is used to quantify the uncertainty in the presence of individual features.

  13. Sensitivity to the visual field origin of natural image patches in human low-level visual cortex

    OpenAIRE

    Damien J Mannion

    2015-01-01

    Asymmetries in the response to visual patterns in the upper and lower visual fields (above and below the centre of gaze) have been associated with ecological factors relating to the structure of typical visual environments. Here, we investigated whether the content of the upper and lower visual field representations in low-level regions of human visual cortex are specialised for visual patterns that arise from the upper and lower visual fields in natural images. We presented image patches, dr...

  14. Visual Impairment

    Science.gov (United States)

    ... How Can I Help a Friend Who Cuts? Visual Impairment KidsHealth > For Teens > Visual Impairment Print A ... with the brain, making vision impossible. What Is Visual Impairment? Many people have some type of visual ...

  15. Visual field

    Science.gov (United States)

    Perimetry; Tangent screen exam; Automated perimetry exam; Goldmann visual field exam; Humphrey visual field exam ... Confrontation visual field exam : This is a quick and basic check of the visual field. The health care provider ...

  16. Orienting Attention to Sound Object Representations Attenuates Change Deafness

    Science.gov (United States)

    Backer, Kristina C.; Alain, Claude

    2012-01-01

    According to the object-based account of attention, multiple objects coexist in short-term memory (STM), and we can selectively attend to a particular object of interest. Although there is evidence that attention can be directed to visual object representations, the assumption that attention can be oriented to sound object representations has yet…

  17. Collide@CERN: sharing inspiration

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Late last year, Julius von Bismarck was appointed to be CERN's first "artist in residence" after winning the Collide@CERN Digital Arts award. He’ll be spending two months at CERN starting this March but, to get a flavour of what’s in store, he visited the Organization last week for a crash course in its inspiring activities.   Julius von Bismarck, taking a closer look... When we arrive to interview German artist Julius von Bismarck, he’s being given a presentation about antiprotons’ ability to kill cancer cells. The whiteboard in the room contains graphs and equations that might easily send a non-scientist running, yet as Julius puts it, “if I weren’t interested, I’d be asleep”. Given his numerous questions, he must have been fascinated. “This ‘introduction’ week has been exhilarating,” says Julius. “I’ve been able to interact ...

  18. Neural Schematics as a unified formal graphical representation of large-scale Neural Network Structures

    Directory of Open Access Journals (Sweden)

    Matthias Ehrlich

    2013-10-01

    Full Text Available One of the major outcomes of neuroscientific research are models of Neural Network Structures. Descriptions of these models usually consist of a non-standardized mixture of text, figures, and other means of visual information communication in print media. However, as neuroscience is an interdisciplinary domain by nature, a standardized way of consistently representing models of Neural Network Structures is required. While generic descriptions of such models in textual form have recently been developed, a formalized way of schematically expressing them does not exist to date. Hence, in this paper we present Neural Schematics as a concept inspired by similar approaches from other disciplines for a generic two dimensional representation of said structures. After introducing Neural Network Structures in general, a set of current visualizations of models of Neural Network Structures is reviewed and analyzed for what information they convey and how their elements are rendered. This analysis then allows for the definition of general items and symbols to consistently represent these models as Neural Schematics on a two dimensional plane. We will illustrate the possibilities an agreed upon standard can yield on sampled diagrams transformed into Neural Schematics and an example application for the design and modeling of large-scale Neural Network Structures.

  19. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  20. Decrypting SO(10-inspired leptogenesis

    Directory of Open Access Journals (Sweden)

    Pasquale Di Bari

    2015-04-01

    Full Text Available Encouraged by the recent results from neutrino oscillation experiments, we perform an analytical study of SO(10-inspired models and leptogenesis with hierarchical right-handed (RH neutrino spectrum. Under the approximation of negligible misalignment between the neutrino Yukawa basis and the charged lepton basis, we find an analytical expression for the final asymmetry directly in terms of the low energy neutrino parameters that fully reproduces previous numerical results. This expression also shows that it is possible to identify an effective leptogenesis phase for these models. When we also impose the wash-out of a large pre-existing asymmetry NB−Lp,i, the strong thermal (ST condition, we derive analytically all those constraints on the low energy neutrino parameters that characterise the ST-SO(10-inspired leptogenesis solution, confirming previous numerical results. In particular we show why, though neutrino masses have to be necessarily normally ordered, the solution implies an analytical lower bound on the effective neutrino-less double beta decay neutrino mass, mee≳8 meV, for NB−Lp,i=10−3, testable with next generation experiments. This, in combination with an upper bound on the atmospheric mixing angle, necessarily in the first octant, forces the lightest neutrino mass within a narrow range m1≃(10–30 meV (corresponding to ∑imi≃(75–125 meV. We also show why the solution could correctly predict a non-vanishing reactor neutrino mixing angle and requires the Dirac phase to be in the fourth quadrant, implying sin⁡δ (and JCP negative as hinted by current global analyses. Many of the analytical results presented (expressions for the orthogonal matrix, RH neutrino mixing matrix, masses and phases can have applications beyond leptogenesis.

  1. An Exploration of Design Students' Inspiration Process

    Science.gov (United States)

    Dazkir, Sibel S.; Mower, Jennifer M.; Reddy-Best, Kelly L.; Pedersen, Elaine L.

    2013-01-01

    Our purpose was to explore how different sources of inspiration influenced two groups of students' inspiration process and their attitudes toward their design projects. Assigned sources of inspiration and instructor's assistance in the search for inspiration varied for two groups of students completing a small culture inspired product…

  2. Flavor A Language for Media Representation

    CERN Document Server

    Eleftheriadis, A; Eleftheriadis, Alexandros; Hong, Danny

    2003-01-01

    Flavor (Formal Language for Audio-Visual Object Representation) has been created as a language for describing coded multimedia bitstreams in a formal way so that the code for reading and writing bitstreams can be automatically generated. It is an extension of C++ and Java, in which the typing system incorporates bitstream representation semantics. This allows describing in a single place both the in-memory representation of data as well as their bitstream-level (compressed) representation. Flavor also comes with a translator that automatically generates standard C++ or Java code from the Flavor source code so that direct access to compressed multimedia information by application developers can be achieved with essentially zero programming. Flavor has gone through many enhancements and this paper fully describes the latest version of the language and the translator. The software has been made into an open source project as of Version 4.1, and the latest downloadable Flavor package is available at http://flavor...

  3. The representational dynamics of remembered projectile locations.

    Science.gov (United States)

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Oliveira, Armando Mónica

    2013-12-01

    When people are instructed to locate the vanishing location of a moving target, systematic errors forward in the direction of motion (M-displacement) and downward in the direction of gravity (O-displacement) are found. These phenomena came to be linked with the notion that physical invariants are embedded in the dynamic representations generated by the perceptual system. We explore the nature of these invariants that determine the representational mechanics of projectiles. By manipulating the retention intervals between the target's disappearance and the participant's responses, while measuring both M- and O-displacements, we were able to uncover a representational analogue of the trajectory of a projectile. The outcomes of three experiments revealed that the shape of this trajectory is discontinuous. Although the horizontal component of such trajectory can be accounted for by perceptual and oculomotor factors, its vertical component cannot. Taken together, the outcomes support an internalization of gravity in the visual representation of projectiles. PMID:23398260

  4. Applied research in auditory data representation

    Science.gov (United States)

    Frysinger, Steve P.

    1990-08-01

    A class of data displays, characterized generally as Auditory Data Representation, is described and motivated. This type of data representation takes advantage of the tremendous pattern recognition capability of the human auditory channel. Audible displays offer an alternative means of conveying quantitative data to the analyst to facilitate information extraction, and are successfully used alone and in conjunction with visual displays. The Auditory Data Representation literature is reviewed, along with elements of the allied fields of investigation, Psychoacoustics and Musical Perception. A methodology for applied research in this field, based upon the well-developed discipline of psychophysics, is elaborated using a recent experiment as a case study. This method permits objective estimation of a data representation technique by comparing it to alternative displays for the pattern recognition task at hand. The psychophysical threshold of signal to noise level, for constant pattern recognition performance, is the measure of display effectiveness.

  5. Business Inspiration: Small Business Leadership in Recovery?

    Science.gov (United States)

    Rae, David; Price, Liz; Bosworth, Gary; Parkinson, Paul

    2012-01-01

    Business Inspiration was a short, action-centred leadership and innovation development programme designed for owners and managers of smaller firms to address business survival and repositioning needs arising from the UK's economic downturn. The article examines the design and delivery of Business Inspiration and the impact of the programme on…

  6. Bio-inspired silicon-based materials

    CERN Document Server

    Zelisko, Paul

    2014-01-01

    The contributed volume addresses a wide range of topics including, but not limited to, biotechnology, synthetic chemistry, polymer chemistry and materials chemistry. The book will serve as a specialized review of the field of biologically inspired silicon-based structures. Researchers studying biologically inspired silicon materials chemistry will find this volume invaluable.

  7. Learning Deep Face Representation

    OpenAIRE

    Fan, Haoqiang; Cao, Zhimin; Jiang, Yuning; Yin, Qi; Doudou, Chinchilla

    2014-01-01

    Face representation is a crucial step of face recognition systems. An optimal face representation should be discriminative, robust, compact, and very easy-to-implement. While numerous hand-crafted and learning-based representations have been proposed, considerable room for improvement is still present. In this paper, we present a very easy-to-implement deep learning framework for face representation. Our method bases on a new structure of deep network (called Pyramid CNN). The proposed Pyrami...

  8. Deep learning of orthographic representations in baboons.

    Science.gov (United States)

    Hannagan, Thomas; Ziegler, Johannes C; Dufau, Stéphane; Fagot, Joël; Grainger, Jonathan

    2014-01-01

    What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map real visual inputs (pixels) of letter strings onto binary word/nonword responses. We show that the networks' highest levels of representations were indeed sensitive to letter combinations as postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning networks that can simulate the whole processing chain all the way from the visual input to the response while allowing researchers to analyze the complex representations that emerge during the learning process. PMID:24416300

  9. MUlti-Store Tracker (MUSTer): a Cognitive Psychology Inspired Approach to Object Tracking

    OpenAIRE

    Zhibin, Hong; Chen, Zhe; Wang, Chaohui; Mei, Xue; Prokhorov, Danil; Tao, Dacheng

    2015-01-01

    Variations in the appearance of a tracked object, such as changes in geometry/photometry, camera viewpoint, illumination , or partial occlusion, pose a major challenge to object tracking. Here, we adopt cognitive psychology principles to design a flexible representation that can adapt to changes in object appearance during tracking. Inspired by the well-known Atkinson-Shiffrin Memory Model, we propose MUlti-Store Tracker (MUSTer), a dual-component approach consisting of short-and long-term me...

  10. Highly eccentric inspirals into a black hole

    Science.gov (United States)

    Osburn, Thomas; Warburton, Niels; Evans, Charles R.

    2016-03-01

    We model the inspiral of a compact stellar-mass object into a massive nonrotating black hole including all dissipative and conservative first-order-in-the-mass-ratio effects on the orbital motion. The techniques we develop allow inspirals with initial eccentricities as high as e ˜0.8 and initial separations as large as p ˜50 to be evolved through many thousands of orbits up to the onset of the plunge into the black hole. The inspiral is computed using an osculating elements scheme driven by a hybridized self-force model, which combines Lorenz-gauge self-force results with highly accurate flux data from a Regge-Wheeler-Zerilli code. The high accuracy of our hybrid self-force model allows the orbital phase of the inspirals to be tracked to within ˜0.1 radians or better. The difference between self-force models and inspirals computed in the radiative approximation is quantified.

  11. New Inspirations in Nature: A Survey

    Directory of Open Access Journals (Sweden)

    Nitesh Maganlal Sureja

    2012-11-01

    Full Text Available Over the past few decades, the studies on algorithms inspired by nature have shown that these methods can be efficiently used to eliminate most of the difficulties of classical methods. Nature inspired algorithms are widely used to solve optimization problems with complex nature. Various research works are carried out and algorithms are presented based on that during last few decades. Recently, some new algorithms inspired from nature are proposed to further improve the solutions obtained by the algorithms presented before. In this paper, a survey of five recently introduced Nature inspired algorithms is carried out. They include Firefly algorithm (FA, Cuckoo Search (CS, and Bat Inspired Algorithm (BA. Each of these algorithms are introduced and applied on various numerical optimization functions by various authors. We have tried to review and study the papers published by the authors and present a conclusion of this survey based on the results obtained.

  12. Visual Learning in Application of Integration

    Science.gov (United States)

    Bt Shafie, Afza; Barnachea Janier, Josefina; Bt Wan Ahmad, Wan Fatimah

    Innovative use of technology can improve the way how Mathematics should be taught. It can enhance student's learning the concepts through visualization. Visualization in Mathematics refers to us of texts, pictures, graphs and animations to hold the attention of the learners in order to learn the concepts. This paper describes the use of a developed multimedia courseware as an effective tool for visual learning mathematics. The focus is on the application of integration which is a topic in Engineering Mathematics 2. The course is offered to the foundation students in the Universiti Teknologi of PETRONAS. Questionnaire has been distributed to get a feedback on the visual representation and students' attitudes towards using visual representation as a learning tool. The questionnaire consists of 3 sections: Courseware Design (Part A), courseware usability (Part B) and attitudes towards using the courseware (Part C). The results showed that students demonstrated the use of visual representation has benefited them in learning the topic.

  13. Visualizing abstract objects and relations

    CERN Document Server

    Kamada, Tomihisa

    1989-01-01

    Pictorial representations are very useful for humans to understand complicated relations or structures. This is the reason that the user interface of information systems is strongly required to visualize many kinds of information in a wide variety of graphical forms. At present, however, only some very specialized visualization techniques have been developed probably because the generality in the visualization has not been appreciated correctly. This book presents a visualization framework for translating abstract objects and relations, typically represented in textual forms, into pictorial re

  14. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen FrØlund; Nielsen, Morten

    2012-01-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active sites, etc. in biological sequences. Accurate generation of sequence logos is often compromised by sequence redundancy and low number of observations. Moreover, most methods available for sequence logo generation focus on displaying the position-specific enrichment of amino acids, discarding the equally valuable information related to amino acid depletion. Seq2logo aims at resolving these issues allowing the user to include sequence weighting to correct for data redundancy, pseudo counts to correct for low number of observations and different logotype representations each capturing different aspects related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein of interest. The output from the server is a sequence logo and a PSSM. Seq2Logo is available at http://www.cbs.dtu.dk/biotools/Seq2Logo (14 May 2012, date last accessed).

  15. Bio-inspired method and system for actionable intelligence

    Science.gov (United States)

    Khosla, Deepak; Chelian, Suhas E.

    2009-05-01

    This paper describes a bio-inspired VISion based actionable INTelligence system (VISINT) that provides automated capabilities to (1) understand objects, patterns, events and behaviors in vision data; (2) translate this understanding into timely recognition of novel and anomalous entities; and (3) discover underlying hierarchies and relationships between disparate labels entered by multiple users to provide a consistent data representation. VISINT is both a system and a novel collection of novel bio-inspired algorithms/modules. These modules can be used independently for various aspects of the actionable intelligence problem or sequenced together for an end-to-end actionable intelligence system. The algorithms can be useful in many other applications such as scene understanding, behavioral analysis, automatic surveillance systems, etc. The bio-inspired algorithms are a novel combination of hierarchical spatial and temporal networks based on the Adaptive Resonance Theory (ART). The novel aspects of this work are that it is an end-to-end system for actionable intelligence that combines existing and novel implementations of various modules in innovative ways to develop a system concept for actionable intelligence. Although there are other algorithms/implementations of several of the modules in VISINT, they suffer from various limitations and often system integration is not considered. The overall VISINT system can be viewed an incremental learning system where no offline training is required and data from multiple sources and times can be seamlessly integrated. The user is in the loop, but due to the semi-supervised nature of the underlying algorithms, only significant variations of entities, not all false alarms, are shown to the user. It does not forget the past even with new learning. While VISINT is designed as a vision-based system, it could also work with other kinds of sensor data that can recognize and locate individual objects in the scene. Beyond that stage of object recognition and localization, all aspects of VISINT are applicable to other kinds of sensor data.

  16. Neural pathways for visual speech perception

    OpenAIRE

    Bernstein, Lynne E.; Liebenthal, Einat

    2014-01-01

    This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision bra...

  17. Augmented Segmentation and Visualization for Presentation Videos

    OpenAIRE

    Haubold, Alexander; Kender, John R.

    2005-01-01

    We investigate methods of segmenting, visualizing, and indexing presentation videos by separately considering audio and visual data. The audio track is segmented by speaker, and augmented with key phrases which are extracted using an Automatic Speech Recognizer (ASR). The video track is segmented by visual dissimilarities and augmented by representative key frames. An interactive user interface combines a visual representation of audio, video, text, and key frames, and allows the user to navi...

  18. Visual Vocabulary Learning and Its Application to 3D and Mobile Visual Search

    OpenAIRE

    Cao, Liujuan

    2012-01-01

    In this technical report, we review related works and recent trends in visual vocabulary based web image search, object recognition, mobile visual search, and 3D object retrieval. Especial focuses would be also given for the recent trends in supervised/unsupervised vocabulary optimization, compact descriptor for visual search, as well as in multi-view based 3D object representation.

  19. Parallel graphics and visualization

    OpenAIRE

    Santos, Luís Paulo; Raffin, Bruno; Heirich, Alan

    2007-01-01

    Computer Graphics and Visualization are two fields that continue to evolve at a fast pace, always addressing new application areas and achieving better and faster results. The volume of data processed by such applications keeps getting larger and the illumination and light transport models used to generate pictorial representations of this data keep getting more sophisticated. Richer illumination and light transport models allow the generation of richer images that con...

  20. Visualizing guided tours

    DEFF Research Database (Denmark)

    Poulsen, Signe Herbers; Fjord-Larsen, Mads; Hansen, Frank Allan; Christensen, Bent Guldbjerg

    This paper identifies several problems with navigating and visualizing guided tours in traditional hypermedia systems. We discuss solutions to these problems, including the representation of guided tours as 3D metro maps with content preview. Issues regarding navigation and disorientation are...... addressed and we suggest a combination of the metro map and an intuitive navigation system. Finally we present a prototype (Webvise3D) which implements our ideas....

  1. Multi-Field Visualization

    OpenAIRE

    Obermaier, Harald

    2011-01-01

    Modern science utilizes advanced measurement and simulation techniques to analyze phenomena from fields such as medicine, physics, or mechanics. The data produced by application of these techniques takes the form of multi-dimensional functions or fields, which have to be processed in order to provide meaningful parts of the data to domain experts. Definition and implementation of such processing techniques with the goal to produce visual representations of portions of the data are topic of re...

  2. Multi-field visualization

    OpenAIRE

    Obermaier, H.

    2011-01-01

    Modern science utilizes advanced measurement and simulation techniques to analyze phenomena from fields such as medicine, physics, or mechanics. The data produced by application of these techniques takes the form of multi-dimensional functions or fields, which have to be processed in order to provide meaningful parts of the data to domain experts. Definition and implementation of such processing techniques with the goal to produce visual representations of portions of the data are topic of re...

  3. The greenhouse effect visualizer: a tool for the science classroom

    OpenAIRE

    Gordin, Douglas N.; Edelson, Daniel C.; Pea, Roy D.

    1995-01-01

    The Greenhouse Effect Visualizer (GEV) is designed to help students visualize data sets related to the earth's energy balance. This work was inspired by the benefits scientific visualization have provided to scientists in discovering patterns and presenting the results of their work to broad communities. The hope is that scientific visualization can provide equal assistance to students trying to learn science. The philosophy underlying this approach links learning with practice. Hence, studen...

  4. Finding the best visualization of an ontology

    DEFF Research Database (Denmark)

    Fabritius, Christina; Madsen, Nadia; Clausen, Jens; Larsen, Jesper

    2006-01-01

    An ontology is a classification model for a given domain.In information retrieval ontologies are used to perform broad searches.An ontology can be visualized as nodes and edges. Each node represents an element and each edge a relation between a parent and a child element. Working with an ontology...... becomes easier with a visual representation. An idea is to use the expressive power that a 3D representation to provide visualization for the user. In this paper we propose a new method for positioning the elements of the visualized concept lattice in the 3D world based on Operations Research (OR) methods...

  5. Finding the best visualization of an ontology

    DEFF Research Database (Denmark)

    Fabritius, Christina Valentin; Madsen, Nadia Lyngaa; Clausen, Jens; Larsen, Jesper

    2004-01-01

    An ontology is a classification model for a given domain. In information retrieval ontologies are used to perform broad searches. An ontology can be visualized as nodes and edges. Each node represents an element and each edge a relation between a parent and a child element. Working with an ontology...... becomes easier with a visual representation. An idea is to use the expressive power that a 3D representation to provide visualization for the user. In this paper we propose a new method for positioning the elements of the visualized concept lattice in the 3D world based on Operations Research (OR) methods...

  6. On the Visualization of German Grammar

    Science.gov (United States)

    Clausing, Gerhard

    1975-01-01

    Shows the advantages of using visual representations of certain systematic aspects of a grammar. Simplified diagrams prove useful as mnemonic and explanation devices in the foreign language classroom. Two examples are given for teaching German to speakers of English. (TL)

  7. Canonical Visual Size for Real-World Objects

    Science.gov (United States)

    Konkle, Talia; Oliva, Aude

    2011-01-01

    Real-world objects can be viewed at a range of distances and thus can be experienced at a range of visual angles within the visual field. Given the large amount of visual size variation possible when observing objects, we examined how internal object representations represent visual size information. In a series of experiments which required…

  8. Canonical Visual Size for Real-World Objects

    Science.gov (United States)

    Konkle, Talia; Oliva, Aude

    2011-01-01

    Real-world objects can be viewed at a range of distances and thus can be experienced at a range of visual angles within the visual field. Given the large amount of visual size variation possible when observing objects, we examined how internal object representations represent visual size information. In a series of experiments which required…

  9. Fracture Mechanics: Inspirations from Nature

    Directory of Open Access Journals (Sweden)

    David Taylor

    2014-10-01

    Full Text Available In Nature there are many examples of materials performing structural functions. Nature requires materials which are stiff and strong to provide support against various forces, including self-weight, the dynamic forces involved in movement, and external loads such as wind or the actions of a predator. These materials and structures have evolved over millions of years; the science of Biomimetics seeks to understand Nature and, as a result, to find inspiration for the creation of better engineering solutions. There has been relatively little fundamental research work in this area from a fracture mechanics point of view. Natural materials are quite brittle and, as a result, they have evolved several interesting strategies for preventing failure by crack propagation. Fatigue is also a major problem for many animals and plants. In this paper, several examples will be given of recent work in the Bioengineering Research Centre at Trinity College Dublin, investigating fracture and fatigue in such diverse materials as bamboo, the legs and wings of insects, and living cells.

  10. Inspired at a book fair

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    During the Frankfurt book fair last October, the CERN stand drew quite the crowd. Director-General Rolf Heuer was there to promote CERN’s mission and the "LHC: the Large Hadron Collider" book. He met a lot of visitors and for one of them there was also a nice follow-up…   Marcus and his father visiting the LINAC facility. Fifteen year-old Marcus lives in Lauterecken near Frankfurt. The popular book fair last autumn was for him a nice opportunity to get in touch with the CERN environment. Inspired by the stand and what the CERN people were describing, he started to ask more and more questions… So many, that Rolf Heuer decided to invite him to come to CERN and find out some of the answers for himself. A few weeks later, while recovering from an exciting visit to the ATLAS underground cavern and other CERN installations with a cup of tea in Restaurant 1, Marcus shared his enthusiasm about the Organization: “When I was younger, my moth...

  11. Biologically-inspired soft exosuit.

    Science.gov (United States)

    Asbeck, Alan T; Dyer, Robert J; Larusson, Arnar F; Walsh, Conor J

    2013-06-01

    In this paper, we present the design and evaluation of a novel soft cable-driven exosuit that can apply forces to the body to assist walking. Unlike traditional exoskeletons which contain rigid framing elements, the soft exosuit is worn like clothing, yet can generate moments at the ankle and hip with magnitudes of 18% and 30% of those naturally generated by the body during walking, respectively. Our design uses geared motors to pull on Bowden cables connected to the suit near the ankle. The suit has the advantages over a traditional exoskeleton in that the wearer's joints are unconstrained by external rigid structures, and the worn part of the suit is extremely light, which minimizes the suit's unintentional interference with the body's natural biomechanics. However, a soft suit presents challenges related to actuation force transfer and control, since the body is compliant and cannot support large pressures comfortably. We discuss the design of the suit and actuation system, including principles by which soft suits can transfer force to the body effectively and the biological inspiration for the design. For a soft exosuit, an important design parameter is the combined effective stiffness of the suit and its interface to the wearer. We characterize the exosuit's effective stiffness, and present preliminary results from it generating assistive torques to a subject during walking. We envision such an exosuit having broad applicability for assisting healthy individuals as well as those with muscle weakness. PMID:24187272

  12. Perception-inspired tone mapping

    OpenAIRE

    Krawczyk, Grzegorz Marek

    2007-01-01

    The display of high dynamic range images and video requires a tonemapping algorithm to depict their original appearance on existing display devices whose capabilities in terms of dynamic range are insufficient. The insightful application of knowledge about human visual system can assure high fidelity of depiction in such an algorithm. In this thesis, we design new tone mapping models and improve existing algorithms by an informed use of human perception to provide a high fidelity depiction of...

  13. Diagrammatic Representational Constraints of Spatial Scale in Earth-Moon System Astronomy Instruction

    Science.gov (United States)

    Taylor, Roger S.; Grundstrom, Erika D.

    2011-01-01

    Given that astronomy heavily relies on visual representations it is especially likely for individuals to assume that instructional materials, such as visual representations of the Earth-Moon system (EMS), would be relatively accurate. However, in our research, we found that images in middle-school textbooks and educational webpages were commonly…

  14. AER synthetic generation in hardware for bio-inspired spiking systems

    Science.gov (United States)

    Linares-Barranco, Alejandro; Linares-Barranco, Bernabe; Jimenez-Moreno, Gabriel; Civit-Balcells, Anton

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) convert conventional frame-based video stream in the computer into AER and inject it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. This paper addresses the problem of converting, in a computer, a conventional frame-based video stream into the spike event based representation AER. There exist several proposed software methods for synthetic generation of AER for bio-inspired systems. This paper presents a hardware implementation for one method, which is based on Linear-Feedback-Shift-Register (LFSR) pseudo-random number generation. The sequence of events generated by this hardware, which follows a Poisson distribution like a biological neuron, has been reconstructed using two AER integrator cells. The error of reconstruction for a set of images that produces different traffic loads of event in the AER bus is used as evaluation criteria. A VHDL description of the method, that includes the Xilinx PCI Core, has been implemented and tested using a general purpose PCI-AER board. This PCI-AER board has been developed by authors, and uses a Spartan II 200 FPGA. This system for AER Synthetic Generation is capable of transforming frames of 64x64 pixels, received through a standard computer PCI bus, at a frame rate of 25 frames per second, producing spike events at a peak rate of 107 events per second.

  15. Bio-inspired computation in telecommunications

    CERN Document Server

    Yang, Xin-She; Ting, TO

    2015-01-01

    Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

  16. Flexible Retinotopy: Motion-Dependent Position Coding in the Visual Cortex

    OpenAIRE

    Whitney, David; Goltz, Herbert C.; Thomas, Christopher G.; Gati, Joseph S; Menon, Ravi S.; Goodale, Melvyn A.

    2003-01-01

    Although the visual cortex is organized retinotopically, it is not clear whether the cortical representation of position necessarily reflects perceived position. Using functional magnetic resonance imaging (fMRI), we show that the retinotopic representation of a stationary object in the cortex was systematically shifted when visual motion was present in the scene. Whereas the object could appear shifted in the direction of the visual motion, the representation of the object in the visual cort...

  17. Text Representation by a Computational Model of Reading

    OpenAIRE

    Serrano Moreno, José Ignacio; Castillo Sobrino, María Dolores del

    2006-01-01

    Abstract. Traditional document indexing methods, although useful, do not take into account some important aspects of language, such as syntax and semantics. Unlikely, semantic hyperspaces are mathematical and statistical-based techniques that do it. However, although they are an improvement on traditional methods, the output representation is still vector like. This paper proposes a computational model of text reading, called Cognitive Reading Indexing (CRIM), inspired by so...

  18. NodeTrix: Hybrid Representation for Analyzing Social Networks

    CERN Document Server

    Henry, Nathalie; Mcguffin, Michael

    2007-01-01

    The need to visualize large social networks is growing as hardware capabilities make analyzing large networks feasible and many new data sets become available. Unfortunately, the visualizations in existing systems do not satisfactorily answer the basic dilemma of being readable both for the global structure of the network and also for detailed analysis of local communities. To address this problem, we present NodeTrix, a hybrid representation for networks that combines the advantages of two traditional representations: node-link diagrams are used to show the global structure of a network, while arbitrary portions of the network can be shown as adjacency matrices to better support the analysis of communities. A key contribution is a set of interaction techniques. These allow analysts to create a NodeTrix visualization by dragging selections from either a node-link or a matrix, flexibly manipulate the NodeTrix representation to explore the dataset, and create meaningful summary visualizations of their findings....

  19. Understanding representations in design

    DEFF Research Database (Denmark)

    Bødker, Susanne

    1998-01-01

    Representing computer applications and their use is an important aspect of design. In various ways, designers need to externalize design proposals and present them to other designers, users, or managers. This article deals with understanding design representations and the work they do in design....... The article is based on a series of theoretical concepts coming out of studies of scientific and other work practices and on practical experiences from design of computer applications. The article presents alternatives to the ideas that design representations are mappings of present or future work...... situations and computer applications. It suggests that representations are primarily containers of ideas and that representation is situated at the same time as representations are crossing boundaries between various design and use activities. As such, representations should be carriers of their own contexts...

  20. Why the verbal may be experienced as visual.

    Czech Academy of Sciences Publication Activity Database

    Fedrová, Stanislava; Jedli?ková, Alice

    Newcastle upon Tyne : Cambridge Scholars publishing, 2010 - (Dadejík, O.; Stejskal, J.), s. 76-88 ISBN 978-1-4438-2428-6 Institutional research plan: CEZ:AV0Z90560517 Keywords : verbal representation * visual representation * visuality * multisensoriality * description * experientiality * intermediality * intertextuality * mental imagery Subject RIV: AJ - Letters, Mass-media, Audiovision

  1. Visual Perception of Force: Comment on White (2012)

    Science.gov (United States)

    Hubbard, Timothy L.

    2012-01-01

    White (2012) proposed that kinematic features in a visual percept are matched to stored representations containing information regarding forces (based on prior haptic experience) and that information in the matched, stored representations regarding forces is then incorporated into visual perception. Although some elements of White's (2012) account…

  2. Nature-inspired computing for control systems

    CERN Document Server

    2016-01-01

    The book presents recent advances in nature-inspired computing, giving a special emphasis to control systems applications. It reviews different techniques used for simulating physical, chemical, biological or social phenomena at the purpose of designing robust, predictive and adaptive control strategies. The book is a collection of several contributions, covering either more general approaches in control systems, or methodologies for control tuning and adaptive controllers, as well as exciting applications of nature-inspired techniques in robotics. On one side, the book is expected to motivate readers with a background in conventional control systems to try out these powerful techniques inspired by nature. On the other side, the book provides advanced readers with a deeper understanding of the field and a broad spectrum of different methods and techniques. All in all, the book is an outstanding, practice-oriented reference guide to nature-inspired computing addressing graduate students, researchers and practi...

  3. INSPIRE and SPIRES Log File Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Cole; /Wheaton Coll. /SLAC

    2012-08-31

    SPIRES, an aging high-energy physics publication data base, is in the process of being replaced by INSPIRE. In order to ease the transition from SPIRES to INSPIRE it is important to understand user behavior and the drivers for adoption. The goal of this project was to address some questions in regards to the presumed two-thirds of the users still using SPIRES. These questions are answered through analysis of the log files from both websites. A series of scripts were developed to collect and interpret the data contained in the log files. The common search patterns and usage comparisons are made between INSPIRE and SPIRES, and a method for detecting user frustration is presented. The analysis reveals a more even split than originally thought as well as the expected trend of user transition to INSPIRE.

  4. Biologically inspired toys using artificial muscles

    Science.gov (United States)

    Bar-Cohen, Y.

    2001-01-01

    Recent developments in electroactive polymers, so-called artificial muscles, could one day be used to make bionics possible. Meanwhile, as this technology evolves novel mechanisms are expected to emerge that are biologically inspired.

  5. Arbitrary waveform generator biologically inspired

    International Nuclear Information System (INIS)

    Highlights: • A system biologically inspired that produces arbitrary analog signals is studied. • The proposed system is based in the BVAM biological model. • The system is analyzed with a discrete equivalent system defined by a Poincaré map. • The operation regimes of the system are identified changing the control parameter. • The system functionality is shown by the simulations obtained from SIMULINK™. -- Abstract: This work shows and analyzes a system that produces arbitrary waveforms, which is a simplification, based on spatial discretization, of the BVAM model proposed by Barrio et al. in 1999 [1] to model the biological pattern formation. Since the analytical treatment of non-linear terms of this system is often prohibitive, its dynamic has been analyzed using a discrete equivalent system defined by a Poincaré map. In this analysis, the bifurcation diagrams and the Lyapunov exponent are the tools used to identify the different operating regimes of the system and to provide evidence of the periodicity and randomness of the generated waveforms. Also, it is shown that the analyzed system presents the period doubling phenomenon, the values of its bifurcation points are related by the Feigenbaum constant and they converge to the onset of chaos. It is shown that, the analyzed system can be electronically implemented using operational amplifiers to produce arbitrary waveforms when varying a single control parameter. The functionality and behavior of the ideal electronic implementation of the analyzed system is shown by the simulations obtained from the MatLab–Simulink™ toolbox. Finally, some problems related to a real electronic implementation are discussed. This paper gives a brief overview of how ideas from biology can be used to design new systems that produce arbitrary waveforms

  6. Towards a Unifying Visualization Ontology

    OpenAIRE

    Voigt, Martin; Polowinski, Jan

    2011-01-01

    Although many terminologies, taxonomies and also first ontologies for visualization have been suggested, there is still no unified and formal knowledge representation including the various fields of this interdisciplinary domain. We moved a step towards such an ontology by systematically reviewing existing models and classifications, identifying important fields and discussing inconsistently used terms. Finally, we specified an initial visualization ontology which can be used for both classif...

  7. Inspirational Catalogue of Master Thesis Proposals 2015

    DEFF Research Database (Denmark)

    Thorndahl, Søren

    2015-01-01

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project.......This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project....

  8. Veto studies for LIGO inspiral triggers

    International Nuclear Information System (INIS)

    LIGO recently conducted its third scientific data run, S3. Here, we summarize the veto and data quality studies conducted by the LIGO Scientific Collaboration in connection with the search for binary inspiral signals in the S3 data. The veto results presented here come from studies on the S3 playground data. LIGO's interferometer channels and physical environmental monitors were monitored, and events in these channels coincident with inspiral triggers were examined

  9. Voice Coil Controlled Inspiration and Expiration Valves

    OpenAIRE

    Bergqvist, Per; Kemmler, Linus

    2012-01-01

    This master thesis was performed at Maquet Critical Care located in Solna, Stockholm. Maquet Critical Care is a market leader in high performance medical ventilators. A ventilator is a medical device that helps patients to breathe. Two of the most vital components of a ventilator are the valves that are closest to the patient. These are the inspiration valve and the expiration valve. The main purpose with this thesis is to get, theoretical as well as practical insights into the inspiration an...

  10. Visualizing Dynamic Networks with Matrix Cubes

    OpenAIRE

    Bach, Benjamin; Pietriga, Emmanuel; Fekete, Jean-Daniel

    2014-01-01

    Designing visualizations of dynamic networks is challenging, both because the data sets tend to be complex and because the tasks associated with them are often cognitively demand­ ing. We introduce the Matrix Cube, a novel visual representa­ tion and navigation model for dynamic networks, inspired by the way people comprehend and manipulate physical cubes. Users can change their perspective on the data by rotating or decomposing the 3D cube. These manipulations can produce a range of differen...

  11. INSPIRE from the JRC Point of View

    Directory of Open Access Journals (Sweden)

    Vlado Cetl

    2012-12-01

    Full Text Available This paper summarises some recent developments in INSPIRE implementation from the JRC (Joint Research Centre point of view. The INSPIRE process started around 11 years ago and today, clear results and benefits can be seen. Spatial data are more accessible and shared more frequently between countries and at the European level. In addition to this, efficient, unified coordination and collaboration between different stakeholders and participants has been achieved, which is another great success. The JRC, as a scientific think-tank of the European Commission, has played a very important role in this process from the very beginning. This role is in line with its mission, which is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of European Union (EU policies. The JRC acts as the overall technical coordinator of INSPIRE, but it also carries out the activities necessary to support the coherent implementation of INSPIRE, by helping member states in the implementation process. Experiences drawn from collaboration and negotiation in each country and at the European level will be of great importance in the revision of the INSPIRE Directive, which is envisaged for 2014. Keywords: spatial data infrastructure (SDI; INSPIRE; development; Joint Research Centre (JRC

  12. Configuration space representation in parallel coordinates

    Science.gov (United States)

    Fiorini, Paolo; Inselberg, Alfred

    1989-01-01

    By means of a system of parallel coordinates, a nonprojective mapping from R exp N to R squared is obtained for any positive integer N. In this way multivariate data and relations can be represented in the Euclidean plane (embedded in the projective plane). Basically, R squared with Cartesian coordinates is augmented by N parallel axes, one for each variable. The N joint variables of a robotic device can be represented graphically by using parallel coordinates. It is pointed out that some properties of the relation are better perceived visually from the parallel coordinate representation, and that new algorithms and data structures can be obtained from this representation. The main features of parallel coordinates are described, and an example is presented of their use for configuration space representation of a mechanical arm (where Cartesian coordinates cannot be used).

  13. The Roles of Representations in Building Design

    DEFF Research Database (Denmark)

    Harty, Chris; Tryggestad, Kjell

    Mock-ups, scale models and drawings are ubiquitous in building design processes, circulating between various stakeholders. They contribute to the gradual evolution of design, but what else can specific material representations do for the building design and project? The full scale model of a...... hospital single bed room can be different in terms of detail and medium, but in what sense might it perform different and similar functions? The mobilization of multiple forms of representations and visualizations suggest that design materialization might have several important roles to play in negotiating...... optimum (or minimum) spatial requirements should be to allow effective care of patients. The first representation is a three dimensional augmented reality model of a single room for a new hospital in the UK, using a CAVE (Cave Automatic Virtual Environment) where the room is reproduced virtually at one...

  14. Modulation of visual responses in the superior temporal sulcus by audio-visual congruency

    OpenAIRE

    Logothetis, Nikos K.

    2010-01-01

    Our ability to identify or recognize visual objects is often enhanced by evidence provided by other sensory modalities. Yet, where and how visual object processing benefits from the information received by the other senses remains unclear. One candidate region is the temporal lobe, which features neural representations of visual objects, and in which previous studies have provided evidence for multisensory influences on neural responses. In the present study we directly tested whether visual ...

  15. Modulation of Visual Responses in the Superior Temporal Sulcus by Audio-Visual Congruency

    OpenAIRE

    Dahl, Christoph D.; Logothetis, Nikos K.; Kayser, Christoph

    2010-01-01

    Our ability to identify or recognize visual objects is often enhanced by evidence provided by other sensory modalities. Yet, where and how visual object processing benefits from the information received by the other senses remains unclear. One candidate region is the temporal lobe, which features neural representations of visual objects, and in which previous studies have provided evidence for multisensory influences on neural responses. In the present study we directly tested whether visual ...

  16. VACS : Visual Analytics Suite for Cyber Security - Visual Exploration of Cyber Security Datasets

    OpenAIRE

    Fischer, Fabian; Keim, Daniel

    2013-01-01

    Visual exploration of cyber security datasets is an important andhighly relevant field of research. To address the cyber securitychallenge of the VAST Challenge 2013, we utilized our novel VisualAnalytics Suite for Cyber Security (VACS) to visually explorethe given datasets using a combination of different visual representations.VACS primarily provides a dashboard view, host-basedthumbnail overview and a querying interface to retrieve and drilldown to investigate suspicious hosts.

  17. Autonomous UAV persistent surveillance using bio-inspired strategies

    Science.gov (United States)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Isaacs, Jason; Venkateswaran, Sriram; Pham, Tien

    2012-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara, the Army Research Laboratory, the Engineer Research and Development Center, and IBM UK is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bioinspired techniques for autonomous search provide a novel strategy to detect, capture and fuse data from heterogeneous sensor networks. The bio-inspired algorithm is based on chemotaxis or the motion of bacteria seeking nutrients in their environment. Field tests of a bio-inspired system that routed UAVs were conducted in June 2011 at Camp Roberts, CA. The field test results showed that such a system can autonomously detect and locate the source of terrestrial events with very high accuracy and visually verify the event. In June 2011, field tests of the system were completed and include the use of multiple autonomously controlled UAVs, detection and disambiguation of multiple acoustic events occurring in short time frames, optimal sensor placement based on local phenomenology and the use of the International Technology Alliance (ITA) Sensor Network Fabric. The system demonstrated TRL 6 performance in the field at Camp Roberts.

  18. Student Representation in Polytechnics

    Science.gov (United States)

    Cox, Caroline; Marks, John

    1975-01-01

    Discusses student representation in academic government with particular reference to the academic boards of the 30 designated polytechnics in England and Wales. In addition to discussing underlying principles of student representation, the article gives data for polytechnic university senates. (Author/PG)

  19. Large-scale functional models of visual cortex for remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Brumby, Steven P [Los Alamos National Laboratory; Kenyon, Garrett [Los Alamos National Laboratory; Rasmussen, Craig E [Los Alamos National Laboratory; Swaminarayan, Sriram [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Landecker, Will [PORTLAND STATE UNIV.

    2009-01-01

    Neuroscience has revealed many properties of neurons and of the functional organization of visual cortex that are believed to be essential to human vision, but are missing in standard artificial neural networks. Equally important may be the sheer scale of visual cortex requiring {approx}1 petaflop of computation. In a year, the retina delivers {approx}1 petapixel to the brain, leading to massively large opportunities for learning at many levels of the cortical system. We describe work at Los Alamos National Laboratory (LANL) to develop large-scale functional models of visual cortex on LANL's Roadrunner petaflop supercomputer. An initial run of a simple region VI code achieved 1.144 petaflops during trials at the IBM facility in Poughkeepsie, NY (June 2008). Here, we present criteria for assessing when a set of learned local representations is 'complete' along with general criteria for assessing computer vision models based on their projected scaling behavior. Finally, we extend one class of biologically-inspired learning models to problems of remote sensing imagery.

  20. Capturing lived experiences in movement educational contexts through videographic participation and visual narratives

    DEFF Research Database (Denmark)

    DegerbØl, Stine Mikés; Svendler Nielsen, Charlotte

    This paper explores and reflects upon possibilities and challenges of using “videographic participation” (Svendler Nielsen 2009a) as a research method combining filmic ethnography (Møhl 2003) and phenomenology (van Manen 1990; Todres 2007) in movement educational contexts. The research method helps visualizing and communicating the meaning-making of the participants and emphasizes the role of the researcher’s embodied involvement when ‘looking for lived experiences’. The paper exemplifies the use of videographic participation and presents (audio)visual narratives from two educational contexts: children in a primary school participating in a collaboration with a professional dance company and youngsters ages 18-26 doing contemporary circus training. Both studies use film as a knowledge creating practice (Møhl 2003) in combination with a hermeneutic-phenomenological analysis (van Manen 1990) to cast light on ways of understanding embodied learning. The use of videographic participation in the two contexts of educational practice are explored, compared and discussed. On an overall methodological level it is discussed how it is possible to capture lived experiences in fields of movement education by use of videographic participation and what the challenges of ‘looking for lived experiences’ in movement can be. Inspired by Performative Social Science (Jones et al. 2008; Gergen and Jones 2008) the paper exemplifies and discusses (re)presentation of research data in artistic forms by highlighting the question of how meaning-making of the participants can be captured and disseminated through (audio)visual narratives.

  1. A Visual Information Retrieval Tool.

    Science.gov (United States)

    Zhang, Jin

    2000-01-01

    Discussion of visualization for information retrieval, that transforms unseen internal semantic representation of a document collection into visible geometric displays, focuses on DARE (Distance Angle Retrieval Environment). Highlights include expression of information need; interpretation and manipulation of information retrieval models; ranking…

  2. Beyond sensory images: Object-based representation in the human ventral pathway

    OpenAIRE

    Pietrini, Pietro; Furey, Maura L.; Ricciardi, Emiliano; Gobbini, M. Ida; Wu, W.-H. Carolyn; Cohen, Leonardo; Guazzelli, Mario; Haxby, James V.

    2004-01-01

    We investigated whether the topographically organized, category-related patterns of neural response in the ventral visual pathway are a representation of sensory images or a more abstract representation of object form that is not dependent on sensory modality. We used functional MRI to measure patterns of response evoked during visual and tactile recognition of faces and manmade objects in sighted subjects and during tactile recognition in blind subjects. Results showed that visual and tactil...

  3. The Trade-offs with Space Time Cube Representation of Spatiotemporal Patterns

    OpenAIRE

    Kristensson, Per Ola; Dahlback, Nils; Anundi, Daniel; Bjornstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Martensson, Ingrid; Nordvall, Matttias; Stahl, Josefin

    2007-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Fast and correct analysis of such information is important in for instance geospatial and social visualization applications. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a dataset to users. The argument is based on the fact that both t...

  4. Measurement of the flow past a cactus-inspired cylinder

    Science.gov (United States)

    Oweis, Ghanem F.; El-Makdah, Adnan M.

    2012-11-01

    Desert cacti are tall cylindrical plants characterized by longitudinal u- or v-shaped grooves that run parallel to the plant axis, covering its surface area. We study the wake flow modifications resulting from the introduction of cactus-inspired surface grooves to a circular cylinder. Particle image velocimetry PIV is implemented in a wind tunnel to visualize and quantify the wake flow from a cactus cylinder in cross wind and an equivalent circular cylinder at Re O(1E5). The cactus wake exhibits superior behavior over its circular counterpart as seen from the mean and turbulent velocity profiles. The surface flow within the grooves is also probed to elucidate the origins of the wake alterations. Lastly, we use simple statistical analysis based only on the wake velocity fields, under the assumption of periodicity of the shedding, to recover the time varying flow from the randomly acquired PIV snapshots.

  5. Musca domestica inspired machine vision sensor with hyperacuity.

    Science.gov (United States)

    Riley, D T; Harmann, W M; Barrett, S F; Wright, C H G

    2008-06-01

    A fiber optic sensor inspired by the compound eye of the common housefly, Musca domestica, has been developed. The sensor coupled with analog preprocessing hardware has the potential to extract edge information quickly and in parallel. The design is motivated by the parallel nature of the fly's vision system and its demonstrated hyperacuity or precision of visual localization beyond the conventional resolution limit. The fly's anatomy supporting the design is reviewed, followed by the design of a one-dimensional, cartridge-based sensor. The sensor's ability to locate a line stimulus in a two-dimensional space is demonstrated. Discussion is provided to extend this work in scale, cartridge dimension, information and array processing. PMID:18441410

  6. A Brief Review of Nature-Inspired Algorithms for Optimization

    OpenAIRE

    Fister Jr, Iztok; Yang, Xin-She; Fister, Iztok; Brest, Janez; Fister, Dušan

    2013-01-01

    Swarm intelligence and bio-inspired algorithms form a hot topic in the developments of new algorithms inspired by nature. These nature-inspired metaheuristic algorithms can be based on swarm intelligence, biological systems, physical and chemical systems. Therefore, these algorithms can be called swarm-intelligence-based, bio-inspired, physics-based and chemistry-based, depending on the sources of inspiration. Though not all of them are efficient, a few algorithms have proved to be very effic...

  7. Full Restoration of Visual Encrypted Color Images

    CERN Document Server

    Persson, Simeon

    2011-01-01

    While strictly black and white images have been the basis for visual cryptography, there has been a lack of an easily implemented format for colour images. This paper establishes a simple, yet secure way of implementing visual cryptography with colour, assuming a binary data representation.

  8. Modulation of visual responses in the superior temporal sulcus by audio-visual congruency

    Directory of Open Access Journals (Sweden)

    Nikos K Logothetis

    2010-04-01

    Full Text Available Our ability to identify or recognize visual objects is often enhanced by evidence provided by other sensory modalities. Yet, where and how visual object processing benefits from the information received by the other senses remains unclear. One candidate region is the temporal lobe, which features neural representations of visual objects, and in which previous studies have provided evidence for multisensory influences on neural responses. In the present study we directly tested whether visual representations in the lower bank of the superior temporal sulcus (STS benefit from acoustic information. To this end, we recorded neural responses in alert monkeys passively watching audio-visual scenes, and quantified the impact of simultaneously presented sounds on responses elicited by the presentation of naturalistic visual scenes. Using methods of stimulus decoding and information theory, we then asked whether the responses of STS neurons become more reliable and informative in multisensory contexts. Our results demonstrate that STS neurons are indeed sensitive to the modality composition of the sensory stimulus. Importantly, information provided by STS neurons’ responses about the particular visual stimulus being presented was highest during congruent audio-visual and unimodal visual stimulation, but was reduced during incongruent bimodal stimulation. Together, these findings demonstrate that higher visual representations in the STS not only convey information about the visual input but also depend on the acoustic context of a visual scene.

  9. Visual Mementos: Reflecting Memories with Personal Data.

    Science.gov (United States)

    Thudt, Alice; Baur, Dominikus; Huron, Samuel; Carpendale, Sheelagh

    2016-01-01

    In this paper we discuss the creation of visual mementos as a new application area for visualization. We define visual mementos as visualizations of personally relevant data for the purpose of reminiscing, and sharing of life experiences. Today more people collect digital information about their life than ever before. The shift from physical to digital archives poses new challenges and opportunities for self-reflection and self-representation. Drawing on research on autobiographical memory and on the role of artifacts in reminiscing, we identified design challenges for visual mementos: mapping data to evoke familiarity, expressing subjectivity, and obscuring sensitive details for sharing. Visual mementos can make use of the known strengths of visualization in revealing patterns to show the familiar instead of the unexpected, and extend representational mappings beyond the objective to include the more subjective. To understand whether people's subjective views on their past can be reflected in a visual representation, we developed, deployed and studied a technology probe that exemplifies our concept of visual mementos. Our results show how reminiscing has been supported and reveal promising new directions for self-reflection and sharing through visual mementos of personal experiences. PMID:26529711

  10. Blood Clotting Inspired Polymer Physics

    Science.gov (United States)

    Sing, Charles Edward

    The blood clotting process is one of the human body's masterpieces in targeted molecular manipulation, as it requires the activation of the clotting cascade at a specific place and a specific time. Recent research in the biological sciences have discovered that one of the protein molecules involved in the initial stages of the clotting response, von Willebrand Factor (vWF), exhibits counterintuitive and technologically useful properties that are driven in part by the physical environment in the bloodstream at the site of a wound. In this thesis, we take inspiration from initial observations of the vWF in experiments, and aim to describe the behaviors observed in this process within the context of polymer physics. By understanding these physical principles, we hope to harness nature's ability to both direct molecules in both spatial and conformational coordinates. This thesis is presented in three complementary sections. After an initial introduction describing the systems of interest, we first describe the behavior of collapsed Lennard-Jones polymers in the presence of an infinite medium. It has been shown that simple bead-spring homopolymer models describe vWF quite well in vitro. We build upon this previous work to first describe the behavior of a collapsed homopolymer in an elongational fluid flow. Through a nucleation-protrusion mechanism, scaling relationships can be developed to provide a clear picture of a first-order globule-stretch transition and its ramifications in dilute-solution rheology. The implications of this behavior and its relation to the current literature provides qualitative explanations for the physiological process of vasoconstriction. In an effort to generalize these observations, we present an entire theory on the behavior of polymer globules under influence of any local fluid flow. Finally, we investigate the internal dynamics of these globules by probing their pulling response in an analogous fashion to force spectroscopy. We elucidate the presence of both a solid-liquid dynamic globule transition and a contour-based description of internal globule friction. It is possible to incrementally add levels of details to these Lennard-Jones polymer models to more accurately represent biological molecules. In the second section of this thesis, we investigate the consequences of incorporating a Bell-model behavior into single homopolymer interactions to describe a "self-associating'' polymer. We first demonstrate how this model is, in equilibrium, essentially the same as a Lennard-Jones polymer, however we demonstrate that the polymer dynamics are indeed both drastically different and tunable. This has ramifications under the presence of dynamic loads, and we investigate single-molecule response to both shear and pulling stimuli. In the former, we find novel and tunable giant non-monotonic stretching responses. In the latter, we use our observations to develop a complete and general theory of pulling these types of molecules that has ramifications in both the study of biological polymers and in the design of soft materials with tunable mechanical response. The final section introduces concepts related to the behavior of collapsed polymers in fluid flows near surfaces. During the blood clotting process, vWF undergoes a counterintuitive adsorption process and here we begin to develop the physical fundamentals required to understand this process. After a brief introduction to the relevant hydrodynamic treatment we use in simulations, we first describe the presence of a hydrodynamic lift force and the formalism we use as we include it in the context of our theory. We reveal the presence of a non-monotonic lift force, and subsequently utilize this theoretical formalism to describe the adsorption and desorption behavior of a collapsed polymer globule near an attractive surface. We investigate the limit of large flows and highly attractive surfaces by providing a description of the conformational and hydrodynamic behavior of a polymer tethered at a surface. We finally discuss the behaviors of a polymer

  11. Design and globalization can graphic design in mass communication inspire a global culture?

    OpenAIRE

    Nguyen, V.; Prebys, C. (C.)

    2010-01-01

    In this paper I deliver four points which support my assertion that graphic design in mass communication can inspire a global culture informed by Christianity. First, I argue that the environment in which people consistently find themselves will over time influence and affect the interior dispositions of the person, and when occurring in great numbers, the culture. I argue for the importance of graphic design as a vital component in the development of culture and how as visual ...

  12. Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology

    OpenAIRE

    Brinkworth, Russell S. A.; O'Carroll, David C.

    2009-01-01

    The extraction of accurate self-motion information from the visual world is a difficult problem that has been solved very efficiently by biological organisms utilizing non-linear processing. Previous bio-inspired models for motion detection based on a correlation mechanism have been dogged by issues that arise from their sensitivity to undesired properties of the image, such as contrast, which vary widely between images. Here we present a model with multiple levels of non-linear dynamic adapt...

  13. Highly eccentric inspirals into a black hole

    CERN Document Server

    Osburn, Thomas; Evans, Charles R

    2015-01-01

    We model the inspiral of a compact stellar-mass object into a massive non-rotating black hole including all dissipative and conservative first-order-in-the-mass-ratio effects on the orbital motion. The techniques we develop allow inspirals with initial eccentricities as high as $e\\sim0.8$ and initial separations as large as $\\sim 100M$ to be evolved through many thousands of orbits up to the onset of the plunge into the black hole. The inspiral is computed using an osculating elements scheme driven by a hybridized self-force model, which combines Lorenz-gauge self-force results with highly accurate flux data from a Regge-Wheeler-Zerilli code. The high accuracy of our hybrid self-force model allows the orbital phase of the inspirals to be tracked to within $\\sim0.1$ radians or better. The difference between self-force models and inspirals computed in the radiative approximation is quantified.

  14. Biologically Inspired Hierarchical Model for Feature Extraction and Localization

    CERN Document Server

    Wu, L

    2006-01-01

    Feature extraction and matching are among central problems of computer vision. It is inefficent to search features over all locations and scales. Neurophysiological evidence shows that to locate objects in a digital image the human visual system employs visual attention to a specific object while ignoring others. The brain also has a mechanism to search from coarse to fine. In this paper, we present a feature extractor and an associated hierarchical searching model to simulate such processes. With the hierarchical representation of the object, coarse scanning is done through the matching of the larger scale and precise localization is conducted through the matching of the smaller scale. Experimental results justify the proposed model in its effectiveness and efficiency to localize features.

  15. Representation, philosophical issues about.

    Science.gov (United States)

    Roth, Martin A

    2010-01-01

    The concept of representation plays a central role in philosophical and scientific theorizing about the mind, and according to the representational theory of mind (RTM), a wide variety of cognitive and perceptual capacities are best explained in terms of the occurrence and processing of mental representations. The concept of representation remains elusive, however, and there is no widespread agreement among philosophers or cognitive scientists over what it is for one thing to represent another. One reason for the lack of consensus is that philosophers and scientists deploy the concept in many different ways for many different purposes. Another reason for the lack of consensus is that, while it is generally agreed that a scientifically useful notion of representation should be informed and constrained by what we know about brains, there is disagreement over what contemporary neuroscience does or does not suggest about the nature of representation. This article discusses some of the key issues involved in developing a general theory of mental representation, in light of these divergent purposes and conflicting views. Copyright © 2009 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. PMID:26272836

  16. Finding the best visualization of an ontology

    DEFF Research Database (Denmark)

    Fabritius, Christina; Madsen, Nadia; Clausen, Jens; Larsen, Jesper

    2006-01-01

    An ontology is a classification model for a given domain.In information retrieval ontologies are used to perform broad searches.An ontology can be visualized as nodes and edges. Each node represents an element and each edge a relation between a parent and a child element. Working with an ontology becomes easier with a visual representation. An idea is to use the expressive power that a 3D representation to provide visualization for the user. In this paper we propose a new method for positioning ...

  17. Finding the best visualization of an ontology

    OpenAIRE

    Fabritius, Christina Valentin; Madsen, Nadia Lyngaa; Clausen, Jens; Larsen, Jesper

    2004-01-01

    An ontology is a classification model for a given domain. In information retrieval ontologies are used to perform broad searches. An ontology can be visualized as nodes and edges. Each node represents an element and each edge a relation between a parent and a child element. Working with an ontology becomes easier with a visual representation. An idea is to use the expressive power that a 3D representation to provide visualization for the user. In this paper we propose a new method for positio...

  18. Dimensionality of object representations in monkey inferotemporal cortex

    Science.gov (United States)

    Lehky, Sidney R.; Kiani, Roozbeh; Esteky, Hossein; Tanaka, Keiji

    2014-01-01

    We have calculated the intrinsic dimensionality of visual object representations in anterior inferotemporal (AIT) cortex, based on responses of a large sample of cells stimulated with photographs of diverse objects. As dimensionality was dependent on data set size, we determined asymptotic dimensionality as both the number of neurons and number of stimulus image approached infinity. Our final dimensionality estimate was 93 (SD: ± 11), indicating that there is basis set of approximately a hundred independent features that characterize the dimensions of neural object space. We believe this is the first estimate of the dimensionality of neural visual representations based on single-cell neurophysiological data. The dimensionality of AIT object representations was much lower than the dimensionality of the stimuli. We suggest that there may be a gradual reduction in the dimensionality of object representations in neural populations going from retina to inferotemporal cortex, as receptive fields become increasingly complex. PMID:25058707

  19. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  20. Canonical Visual Size for Real-World Objects

    OpenAIRE

    Konkle, Talia; Oliva, Aude

    2011-01-01

    Real-world objects can be viewed at a range of distances and thus can be experienced at a range of visual angles within the visual field. Given the large amount of visual size variation possible when observing objects, we examined how internal object representations represent visual size information. In a series of experiments which required observers to access existing object knowledge, we observed that real-world objects have a consistent visual size at which they are drawn, imagined, and p...

  1. String and string-inspired phenomenology

    CERN Document Server

    López, J L

    1994-01-01

    In these lectures I review the progress made over the last few years in the subject of string and string-inspired phenomenology. I take a practical approach, thereby concentrating more on explicit examples rather than on formal developments. Topics covered include: introduction to string theory the free-fermionic formulation and its general features, generic conformal field theory properties, SU(5)\\times U(1) GUT and string model-building, supersymmetry breaking, the bottom-up approach to string-inspired models, radiative electroweak symmetry breaking, the determination of the allowed parameter space of supergravity models and the experimental constraints on this class of models, and prospects for direct and indirect tests of string-inspired models. (Lectures delivered at the XXII ITEP International Winter School of Physics, Moscow, Russia, February 22 -- March 2, 1994)

  2. Category-Epitomes : Discriminatively Minimalist Representations for Object Categories

    OpenAIRE

    Sarvadevabhatla, Ravi Kiran; Babu, R. Venkatesh

    2015-01-01

    Freehand line sketches are an interesting and unique form of visual representation. Typically, such sketches are studied and utilized as an end product of the sketching process. However, we have found it instructive to study the sketches as sequentially accumulated composition of drawing strokes added over time. Studying sketches in this manner has enabled us to create novel sparse yet discriminative sketch-based representations for object categories which we term category-epitomes. Our proce...

  3. Dualgrid : a closed representation space for consistent spatial databases

    OpenAIRE

    Cotelo Lema, José Antonio

    2012-01-01

    [Abstract] In the past decades, much effort has been devoted to the integration of spatial information within more traditional information systems. To support such integration, spatial data representation technology has been intensively improved, from conceptual and discrete models for data representation and query languages, to indexing and visualization technologies and interoperability standards. As a result of all these efforts, Geographic Information Systems (GIS) are nowadays a widely u...

  4. Vectors of Locally Aggregated Centers for Compact Video Representation

    OpenAIRE

    Abbas, Alhabib; Deligiannis, Nikos; Andreopoulos, Yiannis

    2015-01-01

    We propose a novel vector aggregation technique for compact video representation, with application in accurate similarity detection within large video datasets. The current state-of-the-art in visual search is formed by the vector of locally aggregated descriptors (VLAD) of Jegou et. al. VLAD generates compact video representations based on scale-invariant feature transform (SIFT) vectors (extracted per frame) and local feature centers computed over a training set. With the ...

  5. Students' Responses To Different Representations Of A Vector Addition Question

    OpenAIRE

    Hawkins, Jeffrey M.; Thompson, John R; Michael C. Wittmann; Eleanor C. Sayre; Frank, Brian W.

    2010-01-01

    We investigate if the visual representation of vectors can affect which methods students use to add them. We gave students one of four questions with different graphical representations, asking students to add the same two vectors. For students in an algebra-based class the arrangement of the vectors had a statistically significant effect on the vector addition method chosen while the addition or removal of a grid did not.

  6. Signal- and Symbol-based Representations in Computer Vision

    DEFF Research Database (Denmark)

    Krüger, Norbert; Felsberg, Michael

    We discuss problems of signal-- and symbol based representations in terms of three dilemmas which are faced in the design of each vision system. Signal- and symbol-based representations are opposite ends of a spectrum of conceivable design decisions caught at opposite sides of the dilemmas. We make...... inherent problems explicit and describe potential design decisions for artificial visual systems to deal with the dilemmas....

  7. An Adaptive Quantum-inspired Differential Evolution Algorithm for 0-1 Knapsack Problem

    CERN Document Server

    Hota, Ashish Ranjan

    2011-01-01

    Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces. However, the design of its operators makes it unsuitable for many real-life constrained combinatorial optimization problems which operate on binary space. On the other hand, the quantum inspired evolutionary algorithm (QEA) is very well suitable for handling such problems by applying several quantum computing techniques such as Q-bit representation and rotation gate operator, etc. This paper extends the concept of differential operators with adaptive parameter control to the quantum paradigm and proposes the adaptive quantum-inspired differential evolution algorithm (AQDE). The performance of AQDE is found to be significantly superior as compared to QEA and a discrete version of DE on the standard 0-1 knapsack problem for all the considered test cases.

  8. Representations and Relations.

    Czech Academy of Sciences Publication Activity Database

    Ko?átko, Petr

    2014-01-01

    Ro?. 21, ?. 3 (2014), s. 282-302. ISSN 1335-0668 Institutional support: RVO:67985955 Keywords : representation * proposition * truth-conditions * belief-ascriptions * reference * externalism * fiction Subject RIV: AA - Philosophy ; Religion

  9. Hyperfinite Representation of Distributions

    Indian Academy of Sciences (India)

    J Sousa Pinto; R F Hoskins

    2000-11-01

    Hyperfinite representation of distributions is studied following the method introduced by Kinoshita [2, 3], although we use a different approach much in the vein of [4]. Products and Fourier transforms of representatives of distributions are also analysed.

  10. Efficient image representations and features

    Science.gov (United States)

    Dorr, Michael; Vig, Eleonora; Barth, Erhardt

    2013-03-01

    Interdisciplinary research in human vision and electronic imaging has greatly contributed to the current state of the art in imaging technologies. Image compression and image quality are prominent examples and the progress made in these areas relies on a better understanding of what natural images are and how they are perceived by the human visual system. A key research question has been: given the (statistical) properties of natural images, what are the most efficient and perceptually relevant image representations, what are the most prominent and descriptive features of images and videos? We give an overview of how these topics have evolved over the 25 years of HVEI conferences and how they have influenced the current state of the art. There are a number of striking parallels between human vision and electronic imaging. The retina does lateral inhibition, one of the early coders was using a Laplacian pyramid; primary visual cortical areas have orientation- and frequency-selective neurons, the current JPEG standard defines similar wavelet transforms; the brain uses a sparse code, engineers are currently excited about sparse coding and compressed sensing. Some of this has indeed happened at the HVEI conferences and we would like to distill that.

  11. Visualization of Mined Pattern and Its Human Aspects

    CERN Document Server

    Jain, Ratnesh Kumar; Kasana, Dr R S

    2009-01-01

    Researchers got success in mining the Web usage data effectively and efficiently. But representation of the mined patterns is often not in a form suitable for direct human consumption. Hence mechanisms and tools that can represent mined patterns in easily understandable format are utilized. Different techniques are used for pattern analysis, one of them is visualization. Visualization can provide valuable assistance for data analysis and decision making tasks. In the data visualization process, technical representations of web pages are replaced by user attractive text interpretations. Experiments with the real world problems showed that the visualization can significantly increase the quality and usefulness of web log mining results. However, how decision makers perceive and interact with a visual representation can strongly influence their understanding of the data as well as the usefulness of the visual presentation. Human factors therefore contribute significantly to the visualization process and should p...

  12. On Number Representation

    OpenAIRE

    Rofa, Rafael I.

    2013-01-01

    Place value numbers, such as the binary or decimal numbers can be represented by the end vertices (leaf or pendant vertices) of rooted symmetrical trees. Numbers that consist of at most a fixed number of digits are represented by vertices that are equidistant from the root vertex and the corresponding number representations do not depend on the distance from the root vertex. In this paper, we introduce place value number systems which are representable by rooted symmetrical ...

  13. Autonomous Learning of Representations

    OpenAIRE

    Walter, Oliver; Häb-Umbach, Reinhold; Mokbel, Bassam; Paaßen, Benjamin; Hammer, Barbara

    2015-01-01

    Besides the core learning algorithm itself, one major question in machine learning is how to best encode given training data such that the learning technology can efficiently learn based thereon and generalize to novel data. While classical approaches often rely on a hand coded data representation, the topic of autonomous representation or feature learning plays a major role in modern learning architectures. The goal of this contribution is to give an overview about different principles of au...

  14. Lifting torsion Galois representations

    OpenAIRE

    Khare, Chandrashekhar; Ramakrishna, Ravi

    2014-01-01

    Typos in the abstract have been corrected. Let $\\rho_n$ be an ordinary weight two representation of absolute Galois group of the rationals to $GL_2(\\mathcal O/\\pi^n)$. Here $\\mathcal O$ is a ramified DVR with uniformiser $\\pi$. If $\\rho_n$ satisfies mild hypotheses we lift it to a characteristic zero $\\mathcal O$-valued geometric weight two representation. The earlier methods could handle only the unramified case. We show that the deformation ring of a residual representat...

  15. Exergy representations in thermodynamics

    OpenAIRE

    Favrat, Daniel; Maréchal, François

    2015-01-01

    The paper reviews various representations of exergy and exergy losses in energy systems going from simple heat exchanger (heat transfer, dissipation and embedded exergy) to the exergy of full energy systems from fossil or non fossil resources (including the diffusion exergy). The systems shown include shell in tube heat exchangers, thermal power cycles, cogeneration, heat pump direct heating systems and cryogenic systems. The representations include simple gravitational analogies to extended ...

  16. Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory

    OpenAIRE

    Lee, Sue-Hyun; Baker, Chris I

    2016-01-01

    The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we ...

  17. Storage and binding of object features in visual working memory

    OpenAIRE

    Bays, Paul M; Wu, Emma Y; Husain, Masud

    2010-01-01

    An influential conception of visual working memory is of a small number of discrete memory “slots”, each storing an integrated representation of a single visual object, including all its component features. When a scene contains more objects than there are slots, visual attention controls which objects gain access to memory.

  18. REcall Venice - Exploring disciplines of visual literacy through difficult heritage

    DEFF Research Database (Denmark)

    Fisker, Anna Marie; Tvedebrink, Tenna Doktor Olsen; Møller, Hans Ramsgaard

    According to James Elkin visual literacy is interpreted as material representations, which communicate knowledge and create insight through their visual appearance. Based on the EU Cultural Heritage project REcall, we argue that visual literacy can also relate to interdisciplinary knowledge roote...

  19. Three-dimensional shape representation in monkey cortex.

    Science.gov (United States)

    Sereno, Margaret E; Trinath, Torsten; Augath, Mark; Logothetis, Nikos K

    2002-02-14

    Using fMRI in anesthetized monkeys, this study investigates how the primate visual system constructs representations of three-dimensional (3D) shape from a variety of cues. Computer-generated 3D objects defined by shading, random dots, texture elements, or silhouettes were presented either statically or dynamically (rotating). Results suggest that 3D shape representations are highly localized, although widely distributed, in occipital, temporal, parietal, and frontal cortices and may involve common brain regions regardless of shape cue. This distributed network of areas cuts across both "what" and "where" processing streams, reflecting multiple uses for 3D shape representation in perception, recognition, and action. PMID:11856536

  20. Water Treatment Technologies Inspire Healthy Beverages

    Science.gov (United States)

    2013-01-01

    Mike Johnson, a former technician at Johnson Space Center, drew on his expertise as a wastewater engineer to create a line of kombucha-based probiotic drinks. Unpeeled Inc., based in Minneapolis-St. Paul, Minnesota, employs 12 people and has sold more than 6 million units of its NASA-inspired beverage.

  1. Wood Wasp Inspired Planetary and Earth Drill

    OpenAIRE

    Gouache, Thibault; Gao, Yang; Gourinat, Yves; Coste, Pierre

    2010-01-01

    The need for planetary sub-surface exploration techniques (to discover life on Mars for instance) and the limitations of classical drilling techniques in low gravity environments have fostered many technological developments. Amongst these a bio-mimetic solution inspired by

  2. Inspirational catalogue of Master Thesis proposals 2014

    DEFF Research Database (Denmark)

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project. If you have an idea for a project which is...

  3. Inspired by Athletes, Myths, and Poets

    Science.gov (United States)

    Melvin, Samantha

    2010-01-01

    Tales of love and hate, of athleticism, heroism, devotion to gods and goddesses that influenced myth and culture are a way of sharing ancient Greece's rich history. In this article, the author describes how her students created their own Greek-inspired clay vessels as artifacts of their study. (Contains 6 online resources.)

  4. Inspiration and the Texts of the Bible

    Directory of Open Access Journals (Sweden)

    Dirk Buchner

    1997-01-01

    Full Text Available This article seeks to explore what the inspired text of the Old Testament was as it existed for the New Testament authors, particularly for the author of the book of Hebrews. A quick look at the facts makes. it clear that there was, at the time, more than one 'inspired' text, among these were the Septuagint and the Masoretic Text 'to name but two'. The latter eventually gained ascendancy which is why it forms the basis of our translated Old Testament today. Yet we have to ask: what do we make of that other text that was the inspired Bible to the early Church, especially to the writer of the book of Hebrews, who ignored the Masoretic text? This article will take a brief look at some suggestions for a doctrine of inspiration that keeps up with the facts of Scripture. Allied to this, the article is something of a bibliographical study of recent developments in textual research following the discovery of the Dead Sea scrolls.

  5. $SO(10)$ inspired extended GMSB models

    CERN Document Server

    Jelinski, Tomasz

    2015-01-01

    Influence of messenger-matter superpotential interactions on the renormalization of Yukawa couplings in the context of extended GMSB models is analysed. We present a convenient method for treating decoupling of messengers and related redefinition of MSSM fields. Discussed approach is used to study top-bottom-tau Yukawa unification within specific $SO(10)$ inspired GUT model.

  6. Astrophysical constrains on Ungravity inspired models

    CERN Document Server

    Bertolami, O; Santos, P

    2009-01-01

    We use stellar dynamics arguments to constrain the relevant parameters of ungravity inspired models. We show that resulting bounds do constrain the parameters of the theory of unparticles, as far as its energy scale is higher than $\\Lambda_U > 1 TeV$ and $d_U$ is close to unity.

  7. Biologically Inspired Nanomaterials: A Conference Report

    CERN Document Server

    Demirel, Melik; Crespi, Vincent; Reed, Scott

    2007-01-01

    The understanding of the nanoscale physical properties of biomolecules and biomaterials will ultimately promote the research in the biological sciences. In this review, we focused on theory, simulation, and experiments involving nanoscale materials inspired by biological systems. Specifically, self-assembly in living and synthetic materials, bio-functionalized nanomaterials and probing techniques that use nanomaterials are discussed.

  8. Finding Inspiration in Middle School General Music

    Science.gov (United States)

    McAnally, Elizabeth Ann

    2011-01-01

    Middle school general music programs can be vibrant, exciting places, where students are inspired to learn more about music and themselves. In this article, the author discusses how to work with rather than against adolescents' age-appropriate characteristics when planning "content", "process", "assessment", and "classroom environment". Then, she…

  9. Inspiring a Life Full of Learning

    Science.gov (United States)

    Ludlam, John

    2012-01-01

    The Secrets and Words films had everything one would expect from a BBC drama--great writing, acting and directing allied with high production values. But the dramas were also powerful learning tools, co-commissioned by BBC Learning and aimed at inspiring people who have difficulty with reading and writing to seek help. The BBC's learning vision is…

  10. Pop Art--Inspired Self-Portraits

    Science.gov (United States)

    Goodwin, Donna J.

    2011-01-01

    In this article, the author describes an art lesson that was inspired by Andy Warhol's mass-produced portraits. Warhol began his career as a graphic artist and illustrator. His artwork was a response to the redundancy of the advertising images put in front of the American public. Celebrities and famous people in magazines and newspapers were seen…

  11. CWhatUC: a visual acuity simulator

    Science.gov (United States)

    Garcia, Daniel D.; Barsky, Brian A.; Klein, Stanley A.

    1998-06-01

    CWhatUC (pronounced 'see what you see') is a computer software system which will predict a patient's visual acuity using several techniques based on fundamentals of geometric optics. The scientific visualizations we propose can be clustered into two classes: retinal representations and corneal representations; however, in this paper, we focus our discussion on corneal representations. It is important to note that, for each method listed below, we can illustrate the visual acuity with or without spectacle correction. Corneal representations are meant to reveal how well the cornea focuses parallel light onto the fovea of the eye by providing a pseudo-colored display of various error metrics. These error metrics could be: (1) standard curvature representations, such as instantaneous or axial curvature, converted to refractive power maps by taking Snell's law into account; (2) the focusing distance from each refracted ray's average focus to the computed fovea; (3) the retinal distance on the retinal plane from each refracted ray to the chief ray (lateral spherical aberration). For each error metric, we show both real and simulated data, and illustrate how each representation contributes to the simulation of visual acuity.

  12. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS)

    OpenAIRE

    Troy Dale Kelley

    2008-01-01

    This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of ...

  13. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS)

    OpenAIRE

    Troy Dale Kelley

    2006-01-01

    This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of ...

  14. Data visualization

    CERN Document Server

    Azzam, Tarek

    2013-01-01

    Do you communicate data and information to stakeholders? In Part 1, we introduce recent developments in the quantitative and qualitative data visualization field and provide a historical perspective on data visualization, its potential role in evaluation practice, and future directions. Part 2 delivers concrete suggestions for optimally using data visualization in evaluation, as well as suggestions for best practices in data visualization design. It focuses on specific quantitative and qualitative data visualization approaches that include data dashboards, graphic recording, and geographic information systems (GIS). Readers will get a step-by-step process for designing an effective data dashboard system for programs and organizations, and various suggestions to improve their utility.

  15. Neuro-inspired smart image sensor: analog Hmax implementation

    Science.gov (United States)

    Paindavoine, Michel; Dubois, Jérôme; Musa, Purnawarman

    2015-03-01

    Neuro-Inspired Vision approach, based on models from biology, allows to reduce the computational complexity. One of these models - The Hmax model - shows that the recognition of an object in the visual cortex mobilizes V1, V2 and V4 areas. From the computational point of view, V1 corresponds to the area of the directional filters (for example Sobel filters, Gabor filters or wavelet filters). This information is then processed in the area V2 in order to obtain local maxima. This new information is then sent to an artificial neural network. This neural processing module corresponds to area V4 of the visual cortex and is intended to categorize objects present in the scene. In order to realize autonomous vision systems (consumption of a few milliwatts) with such treatments inside, we studied and realized in 0.35μm CMOS technology prototypes of two image sensors in order to achieve the V1 and V2 processing of Hmax model.

  16. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.

    Science.gov (United States)

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean

    2011-05-01

    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies. PMID:21626306

  17. Visual imagery without visual perception?

    OpenAIRE

    Helder Bértolo

    2005-01-01

    The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review some of the works providing evidence for both claims. It seems that studying visual imagery in blind subjects can be us...

  18. How visual is visual culture

    OpenAIRE

    Sonesson, Göran

    2007-01-01

    If we admit that, with the exception of language, human perception is predominantly visual, it is reasonable to think that all phenomena conveyed by the visual senses have something in common, but then visual semiotics/visual culture will comprehend much more than painting, sculpture, and architecture. The double coding hypotheses of cognitive psychology, as well as Lessing’s classical opposition between language and painting, tell us something about this basic opposition. But to understand v...

  19. Visual Imagery without Visual Perception?

    Science.gov (United States)

    Bertolo, Helder

    2005-01-01

    The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review…

  20. VisualPhysics.org

    Science.gov (United States)

    Sweetser, Douglas

    2009-05-01

    This new web site is designed to facilitate forming a community whose animations are every bit as sophisticated as the math encountered in any realm of physics, even quantum mechanics. All animations involve events embedded in spacetime. Events are treated mathematically as quaternions, with time as a scalar, and space as the 3-vector. A collection of quaternions can be sorted by time, put in the right frame for a finite animation, then with ray tracing software, drawn in space with shadows. The groups U(1), SU(2), U(1)xSU(2), and SU(3) all have new visual representations. In the talk I will present a visual explanation of the delayed-choice experiment of quantum mechanics.

  1. Dictionary learning in visual computing

    CERN Document Server

    Zhang, Qiang

    2015-01-01

    The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster c

  2. Using the INSPIRAL program to search for gravitational waves from low-mass binary inspiral

    International Nuclear Information System (INIS)

    The INSPIRAL program is the LIGO Scientific Collaboration's computational engine for the search for gravitational waves from binary neutron stars and sub-solar mass black holes. We describe how this program, which makes use of the FINDCHIRP algorithm, is integrated into a sophisticated data analysis pipeline that was used in the search for low-mass binary inspirals in data taken during the second LIGO science run

  3. Grassmannian sparse representations

    Science.gov (United States)

    Azary, Sherif; Savakis, Andreas

    2015-05-01

    We present Grassmannian sparse representations (GSR), a sparse representation Grassmann learning framework for efficient classification. Sparse representation classification offers a powerful approach for recognition in a variety of contexts. However, a major drawback of sparse representation methods is their computational performance and memory utilization for high-dimensional data. A Grassmann manifold is a space that promotes smooth surfaces where points represent subspaces and the relationship between points is defined by the mapping of an orthogonal matrix. Grassmann manifolds are well suited for computer vision problems because they promote high between-class discrimination and within-class clustering, while offering computational advantages by mapping each subspace onto a single point. The GSR framework combines Grassmannian kernels and sparse representations, including regularized least squares and least angle regression, to improve high accuracy recognition while overcoming the drawbacks of performance and dependencies on high dimensional data distributions. The effectiveness of GSR is demonstrated on computationally intensive multiview action sequences, three-dimensional action sequences, and face recognition datasets.

  4. Evidence for preserved representations in change blindness.

    Science.gov (United States)

    Simons, Daniel J; Chabris, Christopher F; Schnur, Tatiana; Levin, Daniel T

    2002-03-01

    People often fail to detect large changes to scenes, provided that the changes occur during a visual disruption. This phenomenon, known as "change blindness," occurs both in the laboratory and in real-world situations in which changes occur unexpectedly. The pervasiveness of the inability to detect changes is consistent with the theoretical notion that we internally represent relatively little information from our visual world from one glance at a scene to the next. However, evidence for change blindness does not necessarily imply the absence of such a representation---people could also miss changes if they fail to compare an existing representation of the pre-change scene to the post-change scene. In three experiments, we show that people often do have a representation of some aspects of the pre-change scene even when they fail to report the change. And, in fact, they appear to "discover" this memory and can explicitly report details of a changed object in response to probing questions. The results of these real-world change detection studies are discussed in the context of broader claims about change blindness. PMID:11883989

  5. Dynamic visual noise reduces confidence in short-term memory for visual information.

    Science.gov (United States)

    Kemps, Eva; Andrade, Jackie

    2012-05-01

    Previous research has shown effects of the visual interference technique, dynamic visual noise (DVN), on visual imagery, but not on visual short-term memory, unless retention of precise visual detail is required. This study tested the prediction that DVN does also affect retention of gross visual information, specifically by reducing confidence. Participants performed a matrix pattern memory task with three retention interval interference conditions (DVN, static visual noise and no interference control) that varied from trial to trial. At recall, participants indicated whether or not they were sure of their responses. As in previous research, DVN did not impair recall accuracy or latency on the task, but it did reduce recall confidence relative to static visual noise and no interference. We conclude that DVN does distort visual representations in short-term memory, but standard coarse-grained recall measures are insensitive to these distortions. PMID:22120748

  6. NodeTrix: Hybrid Representation for Analyzing Social Networks

    OpenAIRE

    Henry, Nathalie; Fekete, Jean-Daniel; Mcguffin, Michael,

    2007-01-01

    The need to visualize large social networks is growing as hardware capabilities make analyzing large networks feasible and many new data sets become available. Unfortunately, the visualizations in existing systems do not satisfactorily answer the basic dilemma of being readable both for the global structure of the network and also for detailed analysis of local communities. To address this problem, we present NodeTrix, a hybrid representation for networks that combines the advantages of two t...

  7. Representation Discovery using Harmonic Analysis

    CERN Document Server

    Mahadevan, Sridhar

    2008-01-01

    Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu

  8. Visual imagery without visual perception?

    Directory of Open Access Journals (Sweden)

    Helder Bértolo

    2005-01-01

    Full Text Available The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review some of the works providing evidence for both claims. It seems that studying visual imagery in blind subjects can be used as a way of answering some of those questions, namely if it is possible to have visual imagery without visual perception. We present results from the work of our group using visual activation in dreams and its relation with EEG?s spectral components, showing that congenitally blind have visual contents in their dreams and are able to draw them; furthermore their Visual Activation Index is negatively correlated with EEG alpha power. This study supports the hypothesis that it is possible to have visual imagery without visual experience.

  9. Towards Multimodal Content Representation

    CERN Document Server

    Bunt, Harry

    2009-01-01

    Multimodal interfaces, combining the use of speech, graphics, gestures, and facial expressions in input and output, promise to provide new possibilities to deal with information in more effective and efficient ways, supporting for instance: - the understanding of possibly imprecise, partial or ambiguous multimodal input; - the generation of coordinated, cohesive, and coherent multimodal presentations; - the management of multimodal interaction (e.g., task completion, adapting the interface, error prevention) by representing and exploiting models of the user, the domain, the task, the interactive context, and the media (e.g. text, audio, video). The present document is intended to support the discussion on multimodal content representation, its possible objectives and basic constraints, and how the definition of a generic representation framework for multimodal content representation may be approached. It takes into account the results of the Dagstuhl workshop, in particular those of the informal working group...

  10. Memetics of representation

    Directory of Open Access Journals (Sweden)

    Roberto De Rubertis

    2012-06-01

    Full Text Available This article will discuss about the physiological genesis of representation and then it will illustrate the developments, especially in evolutionary perspective, and it will show how these are mainly a result of accidental circumstances, rather than of deliberate intention of improvement. In particular, it will be argue that the representation has behaved like a meme that has arrived to its own progressive evolution coming into symbiosis with the different cultures in which it has spread, and using in this activity human work “unconsciously”. Finally it will be shown how in this action the geometry is an element key, linked to representation both to construct images using graphics operations and to erect buildings using concrete operations.

  11. Bio-inspired approach for intelligent unattended ground sensors

    Science.gov (United States)

    Hueber, Nicolas; Raymond, Pierre; Hennequin, Christophe; Pichler, Alexander; Perrot, Maxime; Voisin, Philippe; Moeglin, Jean-Pierre

    2015-05-01

    Improving the surveillance capacity over wide zones requires a set of smart battery-powered Unattended Ground Sensors capable of issuing an alarm to a decision-making center. Only high-level information has to be sent when a relevant suspicious situation occurs. In this paper we propose an innovative bio-inspired approach that mimics the human bi-modal vision mechanism and the parallel processing ability of the human brain. The designed prototype exploits two levels of analysis: a low-level panoramic motion analysis, the peripheral vision, and a high-level event-focused analysis, the foveal vision. By tracking moving objects and fusing multiple criteria (size, speed, trajectory, etc.), the peripheral vision module acts as a fast relevant event detector. The foveal vision module focuses on the detected events to extract more detailed features (texture, color, shape, etc.) in order to improve the recognition efficiency. The implemented recognition core is able to acquire human knowledge and to classify in real-time a huge amount of heterogeneous data thanks to its natively parallel hardware structure. This UGS prototype validates our system approach under laboratory tests. The peripheral analysis module demonstrates a low false alarm rate whereas the foveal vision correctly focuses on the detected events. A parallel FPGA implementation of the recognition core succeeds in fulfilling the embedded application requirements. These results are paving the way of future reconfigurable virtual field agents. By locally processing the data and sending only high-level information, their energy requirements and electromagnetic signature are optimized. Moreover, the embedded Artificial Intelligence core enables these bio-inspired systems to recognize and learn new significant events. By duplicating human expertise in potentially hazardous places, our miniature visual event detector will allow early warning and contribute to better human decision making.

  12. Visual Analysis of Weblog Content

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Michelle L.; Payne, Deborah A.; McColgin, Dave; Cramer, Nick O.; Love, Douglas V.

    2007-03-26

    In recent years, one of the advances of the World Wide Web is social media and one of the fastest growing aspects of social media is the blogosphere. Blogs make content creation easy and are highly accessible through web pages and syndication. With their growing influence, a need has arisen to be able to monitor the opinions and insight revealed within their content. In this paper we describe a technical approach for analyzing the content of blog data using a visual analytic tool, IN-SPIRE, developed by Pacific Northwest National Laboratory. We highlight the capabilities of this tool that are particularly useful for information gathering from blog data.

  13. Junction Type Representations of the Temperley-Lieb Algebra and Associated Symmetries

    Directory of Open Access Journals (Sweden)

    Anastasia Doikou

    2010-12-01

    Full Text Available Inspired by earlier works on representations of the Temperley-Lieb algebra we introduce a novel family of representations of the algebra. This may be seen as a generalization of the so called asymmetric twin representation. The underlying symmetry algebra is also examined and it is shown that in addition to certain obvious exact quantum symmetries non trivial quantum algebraic realizations that exactly commute with the representation also exist. Non trivial representations of the boundary Temperley-Lieb algebra as well as the related residual symmetries are also discussed. The corresponding novel R and K matrices solutions of the Yang-Baxter and reflection equations are identified, the relevant quantum spin chain is also constructed and its exact symmetries are studied.

  14. A Novel Quantum Inspired Cuckoo Search Algorithm for Bin Packing Problem

    Directory of Open Access Journals (Sweden)

    Abdesslem Layeb

    2012-05-01

    Full Text Available The Bin Packing Problem (BPP is one of the most known combinatorial optimization problems. This problem consists to pack a set of items into a minimum number of bins. There are several variants of this problem; the most basic problem is the one-dimensional bin packing problem (1-BPP. In this paper, we present a new approach based on the quantum inspired cuckoo search algorithm to deal with the 1-BPP problem. The contribution consists in defining an appropriate quantum representation based on qubit representation to represent bin packing solutions. The second contribution is proposition of a new hybrid quantum measure operation which uses first fit heuristic to pack no filled objects by the standard measure operation. The obtained results are very encouraging and show the feasibility and effectiveness of the proposed approach.

  15. Updating representations of temporal intervals.

    Science.gov (United States)

    Danckert, James; Anderson, Britt

    2015-12-01

    Effectively engaging with the world depends on accurate representations of the regularities that make up that world-what we call mental models. The success of any mental model depends on the ability to adapt to changes-to 'update' the model. In prior work, we have shown that damage to the right hemisphere of the brain impairs the ability to update mental models across a range of tasks. Given the disparate nature of the tasks we have employed in this prior work (i.e. statistical learning, language acquisition, position priming, perceptual ambiguity, strategic game play), we propose that a cognitive module important for updating mental representations should be generic, in the sense that it is invoked across multiple cognitive and perceptual domains. To date, the majority of our tasks have been visual in nature. Given the ubiquity and import of temporal information in sensory experience, we examined the ability to build and update mental models of time. We had healthy individuals complete a temporal prediction task in which intervals were initially drawn from one temporal range before an unannounced switch to a different range of intervals. Separate groups had the second range of intervals switch to one that contained either longer or shorter intervals than the first range. Both groups showed significant positive correlations between perceptual and prediction accuracy. While each group updated mental models of temporal intervals, those exposed to shorter intervals did so more efficiently. Our results support the notion of generic capacity to update regularities in the environment-in this instance based on temporal information. The task developed here is well suited to investigations in neurological patients and in neuroimaging settings. PMID:26303026

  16. Unilateral vestibular loss impairs external space representation.

    Science.gov (United States)

    Borel, Liliane; Redon-Zouiteni, Christine; Cauvin, Pierre; Dumitrescu, Michel; Devèze, Arnaud; Magnan, Jacques; Péruch, Patrick

    2014-01-01

    The vestibular system is responsible for a wide range of postural and oculomotor functions and maintains an internal, updated representation of the position and movement of the head in space. In this study, we assessed whether unilateral vestibular loss affects external space representation. Patients with Menière's disease and healthy participants were instructed to point to memorized targets in near (peripersonal) and far (extrapersonal) spaces in the absence or presence of a visual background. These individuals were also required to estimate their body pointing direction. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (one week and one month after the operation), and healthy participants were tested at similar times. Unilateral vestibular loss impaired the representation of both the external space and the body pointing direction: in the dark, the configuration of perceived targets was shifted toward the lesioned side and compressed toward the contralesioned hemifield, with higher pointing error in the near space. Performance varied according to the time elapsed after neurotomy: deficits were stronger during the early stages, while gradual compensation occurred subsequently. These findings provide the first demonstration of the critical role of vestibular signals in the representation of external space and of body pointing direction in the early stages after unilateral vestibular loss. PMID:24523916

  17. Additive and polynomial representations

    CERN Document Server

    Krantz, David H; Suppes, Patrick

    1971-01-01

    Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz

  18. ESQUEMAS VISUALES Y EMPLAZAMIENTO DE LAS REPRESENTACIONES RUPESTRES DE CAMÉLIDOS DEL LOA SUPERIOR EN TIEMPOS INCAICOS: ¿UNA NUEVA ESTRATEGIA DE INCORPORACIÓN DE ESTE TERRITORIO AL TAWANTINSUYU? VISUAL OUTLINES AND LOCATION OF CAMELIDS REPRESENTATIONS OF THE UPPER LOA DURING THE INCA TIMES: A NEW STRATEGY OF THE TAWANTINSUYU TO INCORPORATE THIS TERRITORY?

    OpenAIRE

    Marcela A Sepúlveda R

    2004-01-01

    Se presentan los resultados obtenidos del estudio del arte rupestre adscrito al período Tardío (1.450- 1.540 d.C.), correspondiente a la presencia Inka en la región del Loa Superior. En particular, se analizan las representaciones de camélidos de varios sitios de la cuenca del río Salado, en comparación con algunas del Alto Loa. Este trabajo expone, por un lado, un análisis de las formas anatómicas representadas, definidas como esquemas visuales; y, por otro, algunas observaciones acerca de l...

  19. Eye fixation determined by the visual shape and semantic matches in language-mediated visual search

    OpenAIRE

    Shi, Lei

    2007-01-01

    When participants are presented simultaneously a visual display with spoken input, eye fixation could be determined by a match between representations from spoken input and visual objects. Previous studies found that eye fixation on the semantic-related object and the shape competitor could be determined by the semantic match and the visual match (Huettig & Altmann, 2007). However, two matches could not be substituted by each other. Huettig and McQueen (2007) claimed the co-existence of the v...

  20. The Trade-offs with Space Time Cube Representation of Spatiotemporal Patterns

    CERN Document Server

    Kristensson, Per Ola; Anundi, Daniel; Bjornstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Martensson, Ingrid; Nordvall, Matttias; Stahl, Josefin

    2007-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Fast and correct analysis of such information is important in for instance geospatial and social visualization applications. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a dataset to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap we report on a between-subjects experiment comparing novice users error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions the error rat...