WorldWideScience

Sample records for inspired visual representation

  1. A high-throughput screening approach to discovering good forms of biologically inspired visual representation.

    Nicolas Pinto

    2009-11-01

    Full Text Available While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor. In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.

  2. Constructing visual representations

    Huron, Samuel; Jansen, Yvonne; Carpendale, Sheelagh

    2014-01-01

    tangible building blocks. We learned that all participants, most of whom had little experience in visualization authoring, were readily able to create and talk about their own visualizations. Based on our observations, we discuss participants’ actions during the development of their visual representations......The accessibility of infovis authoring tools to a wide audience has been identified as a major research challenge. A key task in the authoring process is the development of visual mappings. While the infovis community has long been deeply interested in finding effective visual mappings......, comparatively little attention has been placed on how people construct visual mappings. In this paper, we present the results of a study designed to shed light on how people transform data into visual representations. We asked people to create, update and explain their own information visualizations using only...

  3. Collective form generation through visual participatory representation

    Day, Dennis; Sharma, Nishant; Punekar, Ravi

    2012-01-01

    In order to inspire and inform designers with the users data from participatory research, it may be important to represent data in a visual format that is easily understandable to the designers. For a case study in vehicle design, the paper outlines visual representation of data and the use of the...

  4. New contributions in overcomplete image representations inspired from the functional architecture of the primary visual cortex = Nuevas contribuciones en representaciones sobrecompletas de imágenes inspiradas por la arquitectura funcional de la corteza visual primaria

    Fischer, Sylvain Gael Frederic

    2007-01-01

    The present thesis aims at investigating parallelisms between the functional architecture of primary visual areas and image processing methods. A first objective is to refine existing models of biological vision on the base of information theory statements and a second is to develop original solutions for image processing inspired from natural vision. The available data on visual systems contains physiological and psychophysical studies, Gestalt psychology and statistics on natural images The...

  5. Learned image representations for visual recognition

    Larsen, Anders Boesen Lindbo

    This thesis addresses the problem of extracting image structures for representing images effectively in order to solve visual recognition tasks. Problems from diverse research areas (medical imaging, material science and food processing) have motivated large parts of the methodological development...... new image representation for texture-like patterns based on count statistics of second-order image structure. We demonstrate the discriminative capabilities of this representation on medical images and perform both cell classification and mitosis detection. Moreover, we develop an object....... The solutions are inspired by and extend state-of-the-art techniques for describing and learning image content. More specifically, the thesis explores two approaches to constructing image representations, namely feature engineering and feature learning. In the feature engineering approach, we devise a...

  6. Visual representations of Iranian transgenders.

    Shakerifar, Elhum

    2011-01-01

    Transsexuality in Iran has gained much attention and media coverage in the past few years, particularly in its questionable depiction as a permitted loophole for homosexuality, which is prohibited under Iran's Islamic-inspired legal system. Of course, attention in the West is also encouraged by the “shock” that sex change is available in Iran, a country that Western media and society delights in portraying as monolithically repressive. As a result, Iranian filmmakers inevitably have their own agendas, which are unsurprisingly brought into the film making process—from a desire to sell a product that will appeal to the Western market, to films that endorse specific socio-political agendas. This paper is an attempt to situate sex change and representations of sex change in Iran within a wider theoretical framework than the frequently reiterated conflation with homosexuality, and to open and engage with a wider debate concerning transsexuality in Iran, as well as to specifically analyze the representation of transexuality, in view of its current prominent presence in media. PMID:21910275

  7. Differences between spatial and visual mental representations

    Jan FrederikSima

    2013-05-01

    Full Text Available This article investigates the relationship between visual mental representations and spatial mental representations in human visuo-spatial processing. By comparing two common theories of visuo-spatial processing - mental model theory and the theory of mental imagery - we identified two open questions: 1 which representations are modality-specific, and 2 what is the role of the two representations in reasoning. Two experiments examining eye movements and preferences for under-specified problems were conducted to investigate these questions. We found that significant spontaneous eye movements along the processed spatial relations occurred only when a visual mental representation is employed, but not with a spatial mental representation. Furthermore, the preferences for the answers of the under-specified problems differed between the two mental representations. The results challenge assumptions made by mental model theory and the theory of mental imagery.

  8. Mid-level Representation for Visual Recognition

    Nabi, Moin

    2015-01-01

    Visual Recognition is one of the fundamental challenges in AI, where the goal is to understand the semantics of visual data. Employing mid-level representation, in particular, shifted the paradigm in visual recognition. The mid-level image/video representation involves discovering and training a set of mid-level visual patterns (e.g., parts and attributes) and represent a given image/video utilizing them. The mid-level patterns can be extracted from images and videos using the motion and appe...

  9. Conceptual size representation in ventral visual cortex.

    Gabay, Shai; Kalanthroff, Eyal; Henik, Avishai; Gronau, Nurit

    2016-01-29

    Recent findings suggest that visual objects may be mapped along the ventral occipitotemporal cortex according to their real-world size (Konkle and Oliva, 2012). It has been argued that such mapping does not reflect an abstract, conceptual size representation, but rather the visual or functional properties associated with small versus big real-world objects. To determine whether a more abstract conceptual size representation may affect visual cortical activation we used meaningless geometrical shapes, devoid of semantic or functional associations, which were associated with specific size representations by virtue of extensive training. Following training, participants underwent functional magnetic resonance imaging (fMRI) scanning while performing a conceptual size comparison task on the geometrical shapes. In addition, a size comparison task was conducted for numeral digits denoting small and big numbers. A region-of-interest analysis revealed larger blood oxygenation level dependent (BOLD) responses for conceptually 'big' than for conceptually 'small' shapes, as well as for big versus small numbers, within medial (parahippocampal place area, PPA) and lateral (occipital place area, OPA) place-selective regions. Processing of the 'big' visual shapes further elicited enhanced activation in early visual cortex, possibly reflecting top-down projections from PPA. By using arbitrary shapes and numbers we minimized visual, categorical, or functional influences on fMRI measurement, providing evidence for a possible neural mechanism underlying the representation of abstract conceptual size within the ventral visual stream. PMID:26731198

  10. Distorted representation in visual tourism research

    Jensen, Martin Trandberg

    2016-01-01

    Tourism research has recently been informed by non-representational theories to highlight the socio-material, embodied and heterogeneous composition of tourist experiences. These advances have contributed to further reflexivity and called for novel ways to animate representations. On this...... background, this paper develops the notion ‘distorted representation’ to illustrate that blurred and obscure photos can in fact be intelligible and sensible in understanding tourism. Through an exploration of the overwhelmed and unintended practices of visual fieldwork, distorted representation illustrates...... how photographic materialities, performativities and sensations contribute to new tourism knowledges. While highlighting the potential of distorted representation, the paper posits a cautionary note in regards to the influential role of academic journals in determining the qualities of visual data...

  11. Learned image representations for visual recognition

    Larsen, Anders Boesen Lindbo; Larsen, Rasmus; Dahl, Anders Bjorholm

    2016-01-01

    This thesis addresses the problem of extracting image structures for representing images effectively in order to solve visual recognition tasks. Problems from diverse research areas (medical imaging, material science and food processing) have motivated large parts of the methodological development. The solutions are inspired by and extend state-of-the-art techniques for describing and learning image content.More specifically, the thesis explores two approaches to constructing image representa...

  12. Ant- and Ant-Colony-Inspired ALife Visual Art.

    Greenfield, Gary; Machado, Penousal

    2015-01-01

    Ant- and ant-colony-inspired ALife art is characterized by the artistic exploration of the emerging collective behavior of computational agents, developed using ants as a metaphor. We present a chronology that documents the emergence and history of such visual art, contextualize ant- and ant-colony-inspired art within generative art practices, and consider how it relates to other ALife art. We survey many of the algorithms that artists have used in this genre, address some of their aims, and explore the relationships between ant- and ant-colony-inspired art and research on ant and ant colony behavior. PMID:26280070

  13. On visual determination of full inspiration on CT images

    The aim of this study was to evaluate the ability of experienced thoracic radiologists to assess full inspiration based on two CT slices, one above and one below the carina, in normal subjects. Ten healthy volunteers were studied. Total lung capacity (TLC) was measured with a body plethysmograph. High-resolution computed tomography (HRCT) was performed in two slices at TLC and at various expired volumes. Mean Hounsfield values (HU) were calculated. Unidentifiable images, stored on a web server, were analysed visually by experienced thoracic radiologists. The results show that the mean lung density at TLC varied by approximately 40 HU between individuals. Within an individual this may correspond to a decrease in lung volume of approximately 25% of TLC. On visual determination of images taken at 65-74% of TLC, more than one-third of the images were assessed as taken at full inspiration; of the images taken at 75-84% of TLC, approximately 50% were assessed as taken at full inspiration. We conclude that visual determination of full inspiration on CT images in normal subjects is highly inaccurate. If quantitative density measurements are to be used in the diagnosis or follow-up of lung disease, thorough control of full inspiration is recommended. (orig.)

  14. Robust Visual Tracking via Fuzzy Kernel Representation

    Zhiqiang Wen

    2013-05-01

    Full Text Available A robust visual kernel tracking approach is presented for solving the problem of existing background pixels in object model. At first, after definition of fuzzy set on image is given, a fuzzy factor is embedded into object model to form the fuzzy kernel representation. Secondly, a fuzzy membership functions are generated by center-surround approach and log likelihood ratio of feature distributions. Thirdly, details about fuzzy kernel tracking algorithm is provided. After that, methods of parameter selection and performance evaluation for tracking algorithm are proposed. At last, a mass of experimental results are done to show our method can reduce the influence of the incomplete representation of object model via integrating both color features and background features.

  15. Visual Knowledge Representation and Intelligent Image Segmentation

    1992-01-01

    Automatic medical image analysis shows that image segmentation is a crucial task for any practical AI system in this field.On the basis of evaluation of the existing segmentation methods,a new image segmentation method is presented.To seek the perfct solution to knowledge representation in low level machine vision,a new knowledge representation approach--“Notebbok”approach is proposed and the processing of visual knowledge is discussed at all levels.To integrate the computer vision theory with Gestalt psychology and knowledge engineering,a new integrated method for intelligent image segmentation of sonargraphs- “Generalized-pattern guided segmentation”is proposed.With the methods and techniques mentioned above,the medical diagnosis expert system for sonargraphs can be built The work on the preliminary experiments is also introduced.

  16. Natural Scene Classification Inspired by Visual Perception and Cognition Mechanisms

    ZHANG Rui

    2011-01-01

    The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes. Inspired by this fact, we propose a biologically plausible approach for natural scene image classification. This approach consists of one visual perception model and two visual cognition models. The visual perception model, composed of two steps, is used to extract discriminative features from natural scene images. In the first step, we mimic the oriented and bandpass properties of human primary visual cortex by a special complex wavelets transform, which can decompose a natural scene image into a series of 2D spatial structure signals. In the second step, a hybrid statistical feature extraction method is used to generate gist features from those 2D spatial structure signals. Then we design a cognitive feedback model to realize adaptive optimization for the visual perception model. At last, we build a multiple semantics based cognition model to imitate human cognitive mode in rapid natural scene categorization. Experiments on natural scene datasets show that the proposed method achieves high efficiency and accuracy for natural scene classification.

  17. Visual texture accurate material appearance measurement, representation and modeling

    Haindl, Michal

    2013-01-01

    This book surveys the state of the art in multidimensional, physically-correct visual texture modeling. Features: reviews the entire process of texture synthesis, including material appearance representation, measurement, analysis, compression, modeling, editing, visualization, and perceptual evaluation; explains the derivation of the most common representations of visual texture, discussing their properties, advantages, and limitations; describes a range of techniques for the measurement of visual texture, including BRDF, SVBRDF, BTF and BSSRDF; investigates the visualization of textural info

  18. Acoustic Tactile Representation of Visual Information

    Silva, Pubudu Madhawa

    Our goal is to explore the use of hearing and touch to convey graphical and pictorial information to visually impaired people. Our focus is on dynamic, interactive display of visual information using existing, widely available devices, such as smart phones and tablets with touch sensitive screens. We propose a new approach for acoustic-tactile representation of visual signals that can be implemented on a touch screen and allows the user to actively explore a two-dimensional layout consisting of one or more objects with a finger or a stylus while listening to auditory feedback via stereo headphones. The proposed approach is acoustic-tactile because sound is used as the primary source of information for object localization and identification, while touch is used for pointing and kinesthetic feedback. A static overlay of raised-dot tactile patterns can also be added. A key distinguishing feature of the proposed approach is the use of spatial sound (directional and distance cues) to facilitate the active exploration of the layout. We consider a variety of configurations for acoustic-tactile rendering of object size, shape, identity, and location, as well as for the overall perception of simple layouts and scenes. While our primary goal is to explore the fundamental capabilities and limitations of representing visual information in acoustic-tactile form, we also consider a number of relatively simple configurations that can be tied to specific applications. In particular, we consider a simple scene layout consisting of objects in a linear arrangement, each with a distinct tapping sound, which we compare to a ''virtual cane.'' We will also present a configuration that can convey a ''Venn diagram.'' We present systematic subjective experiments to evaluate the effectiveness of the proposed display for shape perception, object identification and localization, and 2-D layout perception, as well as the applications. Our experiments were conducted with visually blocked

  19. Deep neural networks rival the representation of primate IT cortex for core visual object recognition.

    Charles F Cadieu

    2014-12-01

    Full Text Available The primate visual system achieves remarkable visual object recognition performance even in brief presentations, and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition. This remarkable performance is mediated by the representation formed in inferior temporal (IT cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs. It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations, such as the amount of noise, the number of neural recording sites, and the number of trials, and computational limitations, such as the complexity of the decoding classifier and the number of classifier training examples. In this work, we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of "kernel analysis" that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT, and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds.

  20. Drawing Connections across Conceptually Related Visual Representations in Science

    Hansen, Janice

    2013-01-01

    This dissertation explored beliefs about learning from multiple related visual representations in science, and compared beliefs to learning outcomes. Three research questions were explored: 1) What beliefs do pre-service teachers, non-educators and children have about learning from visual representations? 2) What format of presenting those…

  1. A Visually Inspired Variational Method for Automatic Image Registration

    WANG Huixian

    2015-08-01

    Full Text Available A visually inspired variational method for automatic image registration is proposed to solve local deformation which traditional global registration model cannot well satisfy. The variational model considers local transformation, global smoothness and visual constraints. To account for intensity variations, we incorporate change of local contrast and brightness into our model. Firstly, the data entry of registration model is built according to the root-mean-square error of intensity; secondly, adaptive constraint using H1 half norm is used to ensure the global smooth in the model; finally, in order to make sure that the spatial attributes of the image satisfy the visual requirements and without distortion, the linear features are used as priori constraints. During the solution of model parameters, the whole image is used to globally estimate the transformation parameters, and then local estimation of the parameters is taken in a small neighbor. The entire procedure is built upon a multi-level differential framework, and the transformation parameters are calculated iteratively, which can consider both global smoothness and local distortion. To assess the quality of the proposed method, ZY-3 satellite images were used. Visual and quantitative analysis proved that the proposed method can significantly improve the registration precision.

  2. Visual representations are dominated by intrinsic fluctuations correlated between areas

    Henriksson, Linda; Khaligh-Razavi, Seyed-Mahdi; Kay, Kendrick; Kriegeskorte, Nikolaus

    2015-01-01

    Intrinsic cortical dynamics are thought to underlie trial-to-trial variability of visually evoked responses in animal models. Understanding their function in the context of sensory processing and representation is a major current challenge. Here we report that intrinsic cortical dynamics strongly affect the representational geometry of a brain region, as reflected in response-pattern dissimilarities, and exaggerate the similarity of representations between brain regions. We characterized the representations in several human visual areas by representational dissimilarity matrices (RDMs) constructed from fMRI response-patterns for natural image stimuli. The RDMs of different visual areas were highly similar when the response-patterns were estimated on the basis of the same trials (sharing intrinsic cortical dynamics), and quite distinct when patterns were estimated on the basis of separate trials (sharing only the stimulus-driven component). We show that the greater similarity of the representational geometries can be explained by coherent fluctuations of regional-mean activation within visual cortex, reflecting intrinsic dynamics. Using separate trials to study stimulus-driven representations revealed clearer distinctions between the representational geometries: a Gabor wavelet pyramid model explained representational geometry in visual areas V1–3 and a categorical animate–inanimate model in the object-responsive lateral occipital cortex. PMID:25896934

  3. Visual Representations of the Water Cycle in Science Textbooks

    Vinisha, K.; Ramadas, J.

    2013-01-01

    Visual representations, including photographs, sketches and schematic diagrams, are a valuable yet often neglected aspect of textbooks. Visual means of communication are particularly helpful in introducing abstract concepts in science. For effective communication, visuals and text need to be appropriately integrated within the textbook. This study…

  4. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.

    Harvey, Ben M; Dumoulin, Serge O

    2016-02-15

    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. PMID:26666897

  5. Educating "The Simpsons": Teaching Queer Representations in Contemporary Visual Media

    Padva, Gilad

    2008-01-01

    This article analyzes queer representation in contemporary visual media and examines how the episode "Homer's Phobia" from Matt Groening's animation series "The Simpsons" can be used to deconstruct hetero- and homo-sexual codes of behavior, socialization, articulation, representation and visibility. The analysis is contextualized in the…

  6. Fundamentals of Guidelines for Visual Representation of Information

    Friborz Doroudi

    2008-07-01

    Full Text Available Information visualization is a computer-assisted method for data representation. By processing the information into a visual framework, it enables the user to observe, browse, receive and understand information. Information visualization is a new research field that concentrates on using visualizing techniques towards helping people understand and analyze data. The fundamentals of visualization includes GUI design, Computer Graphics, HCI, cognitive theories and graphic design. Based on Schneiderman’s classification, information visualization includes one, two, three ad multidimensional as well as time-based, hierarchical and network data.

  7. The epistemic representation: visual production and communication of scientific knowledge.

    Francisco López Cantos

    2015-03-01

    Full Text Available Despite its great influence on the History of Science, visual representations have attracted marginal interest until very recently and have often been regarded as a simple aid for mere illustration or scientific demonstration. However, it has been shown that visualization is an integral element of reasoning and a highly effective and common heuristic strategy in the scientific community and that the study of the conditions of visual production and communication are essential in the development of scientific knowledge. In this paper we deal with the nature of the various forms of visual representation of knowledge that have been happening throughout the history of science, taking as its starting point the illustrated monumental works and three-dimensional models that begin to develop within the scientific community around the fifteenth century. The main thesis of this paper is that any scientific visual representations have common elements that allow us to approach them from epistemic nature, heuristic and communicative dimension.

  8. Visual Literacy in Biology: A Comparison of Visual Representations in Textbooks and Journal Articles

    Rybarczyk, Brian

    2011-01-01

    Using course materials to promote visual literacy skills is an important aspect of undergraduate science education. A comparison study was undertaken to determine the composition of visual representations, specifically representations of data generated from experimental research, found in general biology and discipline-specific textbooks compared…

  9. The epistemic representation: visual production and communication of scientific knowledge.

    Francisco López Cantos

    2015-01-01

    Despite its great influence on the History of Science, visual representations have attracted marginal interest until very recently and have often been regarded as a simple aid for mere illustration or scientific demonstration. However, it has been shown that visualization is an integral element of reasoning and a highly effective and common heuristic strategy in the scientific community and that the study of the conditions of visual production and communication are essential in the developmen...

  10. Ambiguous science and the visual representation of the real

    Newbold, Curtis Robert

    The emergence of visual media as prominent and even expected forms of communication in nearly all disciplines, including those scientific, has raised new questions about how the art and science of communication epistemologically affect the interpretation of scientific phenomena. In this dissertation I explore how the influence of aesthetics in visual representations of science inevitably creates ambiguous meanings. As a means to improve visual literacy in the sciences, I call awareness to the ubiquity of visual ambiguity and its importance and relevance in scientific discourse. To do this, I conduct a literature review that spans interdisciplinary research in communication, science, art, and rhetoric. Furthermore, I create a paradoxically ambiguous taxonomy, which functions to exploit the nuances of visual ambiguities and their role in scientific communication. I then extrapolate the taxonomy of visual ambiguity and from it develop an ambiguous, rhetorical heuristic, the Tetradic Model of Visual Ambiguity. The Tetradic Model is applied to a case example of a scientific image as a demonstration of how scientific communicators may increase their awareness of the epistemological effects of ambiguity in the visual representations of science. I conclude by demonstrating how scientific communicators may make productive use of visual ambiguity, even in communications of objective science, and I argue how doing so strengthens scientific communicators' visual literacy skills and their ability to communicate more ethically and effectively.

  11. Preserved visual representations despite change blindness in infants

    Wang, Su-Hua; Mitroff, Stephen R.

    2009-01-01

    Combining theoretical hypotheses of infant cognition and adult perception, we present evidence that infants can maintain visual representations despite their failure to detect a change. Infants under 12 months typically fail to notice a change to an object’s height in a covering event. The present experiments demonstrated that 11-month-old infants can nevertheless maintain a viable representation of both the pre- and post-change heights despite their ‘change blindness’. These results suggest ...

  12. Visual Representation Determines Search Difficulty: Explaining Visual Search Asymmetries

    Neil Bruce

    2011-07-01

    Full Text Available In visual search experiments there exist a variety of experimental paradigms in which a symmetric set of experimental conditions yields asymmetric corresponding task performance. There are a variety of examples of this that currently lack a satisfactory explanation. In this paper, we demonstrate that distinct classes of asymmetries may be explained by virtue of a few simple conditions that are consistent with current thinking surrounding computational modeling of visual search and coding in the primate brain. This includes a detailed look at the role that stimulus familiarity plays in the determination of search performance. Overall, we demonstrate that all of these asymmetries have a common origin, namely, they are a consequence of the encoding that appears in the visual cortex. The analysis associated with these cases yields insight into the problem of visual search in general and predictions of novel search asymmetries.

  13. Visual Representation Determines Search Difficulty: Explaining Visual Search Asymmetries

    Neil Bruce

    2011-01-01

    In visual search experiments there exist a variety of experimental paradigms in which a symmetric set of experimental conditions yields asymmetric corresponding task performance. There are a variety of examples of this that currently lack a satisfactory explanation. In this paper, we demonstrate that distinct classes of asymmetries may be explained by virtue of a few simple conditions that are consistent with current thinking surrounding computational modeling of visual search and coding in t...

  14. Drawing Connections Across Conceptually Related Visual Representations in Science

    Hansen, Janice

    This dissertation explored beliefs about learning from multiple related visual representations in science, and compared beliefs to learning outcomes. Three research questions were explored: 1) What beliefs do pre-service teachers, non-educators and children have about learning from visual representations? 2) What format of presenting those representations is most effective for learning? And, 3) Can children's ability to process conceptually related science diagrams be enhanced with added support? Three groups of participants, 89 pre-service teachers, 211 adult non-educators, and 385 middle school children, were surveyed about whether they felt related visual representations presented serially or simultaneously would lead to better learning outcomes. Two experiments, one with adults and one with child participants, explored the validity of these beliefs. Pre-service teachers did not endorse either serial or simultaneous related visual representations for their own learning. They were, however, significantly more likely to indicate that children would learn better from serially presented diagrams. In direct contrast to the educators, middle school students believed they would learn better from related visual representations presented simultaneously. Experimental data indicated that the beliefs adult non-educators held about their own learning needs matched learning outcomes. These participants endorsed simultaneous presentation of related diagrams for their own learning. When comparing learning from related diagrams presented simultaneously to learning from the same diagrams presented serially indicate that those in the simultaneously condition were able to create more complex mental models. A second experiment compared children's learning from related diagrams across four randomly-assigned conditions: serial, simultaneous, simultaneous with signaling, and simultaneous with structure mapping support. Providing middle school students with simultaneous related diagrams

  15. Learning STEM Through Integrative Visual Representations

    Virk, Satyugjit Singh

    Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with integrated animations of the key neural signal transmission subcomponents where the interrelationships between subcomponents are visually and verbally explicit, were hypothesized to perform significantly better on free response and diagram labeling questions, than students presented with isolated animations of these subcomponents. This is because the internal attentional cognitive load of chunking these concepts is greatly reduced and hence the overall cognitive load is less for the integrated visuals group than the isolated group, despite the higher external load for the integrated group of having the interrelationships between subcomponents presented explicitly. Experiment 1 demonstrated that integrating the subcomponents of the neuron significantly enhanced comprehension of the interconnections between cellular subcomponents and approached significance for enhancing comprehension of the layered molecular correlates of the cellular structures and their interconnections. Experiment 2 corrected time on task confounds from Experiment 1 and focused on the cellular subcomponents of the neuron only. Results from the free response essay subcomponent subscores did demonstrate significant differences in favor of the integrated group as well as some evidence from the diagram labeling section. Results from free response, short answer and What-If (problem solving), and diagram labeling detailed interrelationship subscores demonstrated the integrated group did indeed learn the extra material they were presented with. This data demonstrating the integrated group learned the extra material they were presented with provides some initial

  16. Carl Linnaeus and the visual representation of nature.

    Charmantier, Isabelle

    2011-01-01

    The Swedish naturalist Carl Linnaeus (1707-1778) is reputed to have transformed botanical practice by shunning the process of illustrating plants and relying on the primacy of literary descriptions of plant specimens. Botanists and historians have long debated Linnaeus's capacities as a draftsman. While some of his detailed sketches of plants and insects reveal a sure hand, his more general drawings of landscapes and people seem ill-executed. The overwhelming consensus, based mostly on his Lapland diary (1732), is that Linnaeus could not draw. Little has been said, however, on the role of drawing and other visual representations in Linnaeus's daily work as seen in his other numerous manuscripts. These manuscripts, held mostly at the Linnean Society of London, are peppered with sketches, maps, tables, and diagrams. Reassessing these manuscripts, along with the printed works that also contain illustrations of plant species, shows that Linnaeus's thinking was profoundly visual and that he routinely used visual representational devices in his various publications. This paper aims to explore the full range of visual representations Linnaeus used through his working life, and to reevaluate the epistemological value of visualization in the making of natural knowledge. By analyzing Linnaeus's use of drawings, maps, tables, and diagrams, I will show that he did not, as has been asserted, reduce the discipline of botany to text, and that his visual thinking played a fundamental role in his construction of new systems of classification. PMID:22363966

  17. Visualizing spin states using the spin coherent state representation

    Lee Loh, Yen; Kim, Monica

    2015-01-01

    Orbital angular momentum eigenfunctions are readily understood in terms of spherical harmonics. However, the quantum mechanical phenomenon of spin is often said to be mysterious and hard to visualize, with no classical analog. Many textbooks give a heuristic and somewhat unsatisfying picture of a precessing spin vector. Here, we show that the spin-coherent-state representation is a striking, elegant, and mathematically meaningful tool for visualizing spin states. We also demonstrate that cartographic projections such as the Hammer projection are useful for visualizing functions defined on spherical surfaces.

  18. Data Representations, Transformations, and Statistics for Visual Reasoning

    Maciejewski, Ross

    2011-01-01

    Analytical reasoning techniques are methods by which users explore their data to obtain insight and knowledge that can directly support situational awareness and decision making. Recently, the analytical reasoning process has been augmented through the use of interactive visual representations and tools which utilize cognitive, design and perceptual principles. These tools are commonly referred to as visual analytics tools, and the underlying methods and principles have roots in a variety of disciplines. This chapter provides an introduction to young researchers as an overview of common visual

  19. Visualization Through Knowledge Representation Model for Social Networks

    Hussain, Dil Muhammad Akbar; Athar Javed, Muhammad; Ahmed, Zaki

    2011-01-01

    the process of knowing, learning and creating knowledge is the relevant aspect (Nonaka and Takeuchi 1995). In this paper knowledge representation is presented in 3D style for the understanding and visualization of dynamics of complex social networks by developing a TANetworkTool (Task Analysis Network Tool......). The standard or normal representation of a typical social network is through a graph data structure in 2D. The dynamics of larger social networks is so complex some time it becomes difficult to understand the various levels of interactions and dependencies just by mere representation through a tree or graph...... of complex social networks and complimenting the analytical results. This representation can also help authorities not necessarily having specific scientific background to understand and perhaps take preventive actions required in certain specific scenarios for example dealing with terrorist/covert networks....

  20. Physiological Responese Measrement to Identify Online Visual Representation Designs

    Yu-Ping Hsu

    2014-10-01

    Full Text Available This research involved the identification and validation of text-related visual display design principles from the literature. Representations were designed and developed that illustrated the intent of each visual display design principle included in the study. The representations were embedded in a research intervention and included validated examples of accurate displays of each principle and examples with varying degrees of inaccuracies. The representations were created based on design theories of human cognition: perceptual, attention memory, and mental models [1][2][3][4][5], and presented via a monitor in a controlled research environment. The environmental controls included space appropriate to the experiment, constant temperature, consistent lighting, management of distractions including sound, monitoring of operation of the measurement device and the use of standardized instructions. Bertin’s seven visual variables: position, size, color, shape, value, orientation and texture, were also examined within the design principles [6]. The result of the independent samples t test did not find significant differences between good and poor visual designs for all images across subjects. However, the results of the paired-samples t test found significant mean differences between Bertin’s principles for color, value and orientation of visual designs across subjects. The findings support future online instructional designs and investigate the implications for the design of online instruction.

  1. Visual Tracking Based on Extreme Learning Machine and Sparse Representation

    Baoxian Wang

    2015-10-01

    Full Text Available The existing sparse representation-based visual trackers mostly suffer from both being time consuming and having poor robustness problems. To address these issues, a novel tracking method is presented via combining sparse representation and an emerging learning technique, namely extreme learning machine (ELM. Specifically, visual tracking can be divided into two consecutive processes. Firstly, ELM is utilized to find the optimal separate hyperplane between the target observations and background ones. Thus, the trained ELM classification function is able to remove most of the candidate samples related to background contents efficiently, thereby reducing the total computational cost of the following sparse representation. Secondly, to further combine ELM and sparse representation, the resultant confidence values (i.e., probabilities to be a target of samples on the ELM classification function are used to construct a new manifold learning constraint term of the sparse representation framework, which tends to achieve robuster results. Moreover, the accelerated proximal gradient method is used for deriving the optimal solution (in matrix form of the constrained sparse tracking model. Additionally, the matrix form solution allows the candidate samples to be calculated in parallel, thereby leading to a higher efficiency. Experiments demonstrate the effectiveness of the proposed tracker.

  2. The neural representation of Arabic digits in visual cortex

    Lien ePeters

    2015-09-01

    Full Text Available In this study, we investigated how Arabic digits are represented in the visual cortex, and how their representation changes throughout the ventral visual processing stream, compared to the representation of letters. We probed these questions with two fMRI experiments. In Experiment 1, we explored whether we could find brain regions that were more activated for digits than for number words in a subtraction task. One such region was detected in lateral occipital cortex. However, the activity in this region might have been confounded by string length – number words contain more characters than digits. We therefore conducted a second experiment in which string length was systematically controlled. Experiment 2 revealed that the findings of the first experiment were task dependent (as it was only observed in a task in which numerosity was relevant or stimulus dependent (as it was only observed when the number of characters of a stimulus was not controlled.We further explored the characteristics of the activation patterns for digit and letter strings across the ventral visual processing stream through multi-voxel pattern analyses. We found an alteration in representations throughout the ventral processing stream from clustering based on amount of visual information in primary visual cortex towards clustering based on symbolic stimulus category higher in the visual hierarchy. The present findings converge to the conclusion that in the ventral visual system, as far as can be detected with fMRI, the distinction between Arabic digits and letter strings is represented in terms of distributed patterns rather than separate regions.

  3. Negative emotion boosts quality of visual working memory representation.

    Xie, Weizhen; Zhang, Weiwei

    2016-08-01

    Negative emotion impacts a variety of cognitive processes, including working memory (WM). The present study investigated whether negative emotion modulated WM capacity (quantity) or resolution (quality), 2 independent limits on WM storage. In Experiment 1, observers tried to remember several colors over 1-s delay and then recalled the color of a randomly picked memory item by clicking a best-matching color on a continuous color wheel. On each trial, before the visual WM task, 1 of 3 emotion conditions (negative, neutral, or positive) was induced by having observers to rate the valence of an International Affective Picture System image. Visual WM under negative emotion showed enhanced resolution compared with neutral and positive conditions, whereas the number of retained representations was comparable across the 3 emotion conditions. These effects were generalized to closed-contour shapes in Experiment 2. To isolate the locus of these effects, Experiment 3 adopted an iconic memory version of the color recall task by eliminating the 1-s retention interval. No significant change in the quantity or quality of iconic memory was observed, suggesting that the resolution effects in the first 2 experiments were critically dependent on the need to retain memory representations over a short period of time. Taken together, these results suggest that negative emotion selectively boosts visual WM quality, supporting the dissociable nature quantitative and qualitative aspects of visual WM representation. (PsycINFO Database Record PMID:27078744

  4. COSFIRE : A Brain-Inspired Approach to Visual Pattern Recognition

    Azzopardi, G.; Petkov, N.

    2014-01-01

    The primate visual system has an impressive ability to generalize and to discriminate between numerous objects and it is robust to many geometrical transformations as well as lighting conditions. The study of the visual system has been an active reasearch field in neuropysiology for more than half a

  5. Lenses – Light, Bodies and Representations. A paper on the optical device that enables visual perception through representation

    Rehder, Mads

    I will discuss the many unique lenses available to visual anthropological research and how a nuanced and differentiated view on them can be the key to understanding the complexity of the representations we, as visual anthropologist, are creating....

  6. The body voyage as visual representation and art performance

    Olsén, Jan-Eric

    2011-01-01

    with it. A further aim with the paper is to discuss what kind of image of the body that is conveyed through medical visual technologies, such as endoscopy, and relate it to contemporary discussions on embodiment, embodied vision and bodily presence. The paper concludes with a recent exhibition......This paper looks at the notion of the body as an interior landscape that is made intelligible through visual representation. It discerns the key figure of the inner corporeal voyage, identifies its main elements and examines how contemporary artists working with performances and installations deal...... by the French artist Christian Boltanski, which gives a somewhat different meaning to the idea of the body voyage....

  7. Novice Interpretations of Visual Representations of Geosciences Data

    Burkemper, L. K.; Arthurs, L.

    2013-12-01

    Past cognition research of individual's perception and comprehension of bar and line graphs are substantive enough that they have resulted in the generation of graph design principles and graph comprehension theories; however, gaps remain in our understanding of how people process visual representations of data, especially of geologic and atmospheric data. This pilot project serves to build on others' prior research and begin filling the existing gaps. The primary objectives of this pilot project include: (i) design a novel data collection protocol based on a combination of paper-based surveys, think-aloud interviews, and eye-tracking tasks to investigate student data handling skills of simple to complex visual representations of geologic and atmospheric data, (ii) demonstrate that the protocol yields results that shed light on student data handling skills, and (iii) generate preliminary findings upon which tentative but perhaps helpful recommendations on how to more effectively present these data to the non-scientist community and teach essential data handling skills. An effective protocol for the combined use of paper-based surveys, think-aloud interviews, and computer-based eye-tracking tasks for investigating cognitive processes involved in perceiving, comprehending, and interpreting visual representations of geologic and atmospheric data is instrumental to future research in this area. The outcomes of this pilot study provide the foundation upon which future more in depth and scaled up investigations can build. Furthermore, findings of this pilot project are sufficient for making, at least, tentative recommendations that can help inform (i) the design of physical attributes of visual representations of data, especially more complex representations, that may aid in improving students' data handling skills and (ii) instructional approaches that have the potential to aid students in more effectively handling visual representations of geologic and atmospheric data

  8. Enhanced image and video representation for visual recognition

    Jain, Mihir

    2014-01-01

    The subject of this thesis is about image and video representations for visual recognition. This thesis first focuses on image search, both for image and textual queries, and then considers the classification and the localization of actions in videos. In image retrieval, images similar to the query image are retrieved from a large dataset. On this front, we propose an asymmetric version of the Hamming Embedding method, where the comparison of query and database descriptors relies on a vector-...

  9. Effects of Computer-Based Visual Representation on Mathematics Learning and Cognitive Load

    Yung, Hsin I.; Paas, Fred

    2015-01-01

    Visual representation has been recognized as a powerful learning tool in many learning domains. Based on the assumption that visual representations can support deeper understanding, we examined the effects of visual representations on learning performance and cognitive load in the domain of mathematics. An experimental condition with visual…

  10. Visual Attention: from Bio-Inspired Modeling to Real-Time Implementation

    Ouerhani, Nabil; Hügli, Heinz

    2004-01-01

    Visual Attention: From Bio-Inspired Modeling to Visual attention is the ability of a vision system, be it biological or artificial, to rapidly select the most salient and thus the most relevant data about the environment in which the system is operating. The main goal of this visual mechanism is to drastically reduce the amount of visual information that must be processed by high level and thus complex tasks, such as object recognition, which leads to a considerable speed up of the entire vis...

  11. Visual Representations of DNA Replication: Middle Grades Students' Perceptions and Interpretations

    Patrick, Michelle D.; Carter, Glenda; Wiebe, Eric N.

    2005-01-01

    Visual representations play a critical role in the communication of science concepts for scientists and students alike. However, recent research suggests that novice students experience difficulty extracting relevant information from representations. This study examined students' interpretations of visual representations of DNA replication. Each…

  12. Geological and hydrological visualization models for Digital Earth representation

    Ziolkowska, Jadwiga R.; Reyes, Reuben

    2016-09-01

    This paper presents techniques and interactive models for multi-dimensional analyses and geospatial visualization in virtual globes based on three application examples: (1) earthquakes around the world, (2) groundwater well levels in Texas, and (3) geothermal subsurface heat indexes in Texas. While studies are known that represent multi-dimensional geospatial data points, we develop and suggest multi-dimensional models for virtual globes using KML and KMZ (compressed KML files) with a complete and static time series data set. The benefit of this approach for the user is the ability to view and analyze time-based correlations interactively over the entire time span in one instance, which is not possible with animated (dynamic) models. The methods embedded in our models include: (a) depth layered cueing within subsurface Earth visualization for a better orientation when maneuvering below the ground, (b) a technique with Ternary Visual Shape Logic (TVSL) as a quick indicator of change over time, and (c) different visual representations of multiple dimensions for the addressed case study examples. The models can be applied to a variety of problems in different disciplines, especially to support decision-making processes.

  13. Visual Literacy and Biochemistry Learning: The role of external representations

    V.J.S.V. Santos

    2011-04-01

    Full Text Available Visual Literacy can bedefined as people’s ability to understand, use, think, learn and express themselves through external representations (ER in a given subject. This research aims to investigate the development of abilities of ERs reading and interpretation by students from a Biochemistry graduate course of theFederal University of São João Del-Rei. In this way, Visual Literacy level was  assessed using a questionnaire validatedin a previous educational research. This diagnosis questionnaire was elaborated according to six visual abilitiesidentified as essential for the study of the metabolic pathways. The initial statistical analysis of data collectedin this study was carried out using ANOVA method. Results obtained showed that the questionnaire used is adequate for the research and indicated that the level of Visual Literacy related to the metabolic processes increased significantly with the progress of the students in the graduation course. There was also an indication of a possible interference in the student’s performancedetermined by the cutoff punctuation in the university selection process.

  14. Online Metric-Weighted Linear Representations for Robust Visual Tracking.

    Li, Xi; Shen, Chunhua; Dick, Anthony; Zhang, Zhongfei Mark; Zhuang, Yueting

    2016-05-01

    In this paper, we propose a visual tracker based on a metric-weighted linear representation of appearance. In order to capture the interdependence of different feature dimensions, we develop two online distance metric learning methods using proximity comparison information and structured output learning. The learned metric is then incorporated into a linear representation of appearance. We show that online distance metric learning significantly improves the robustness of the tracker, especially on those sequences exhibiting drastic appearance changes. In order to bound growth in the number of training samples, we design a time-weighted reservoir sampling method. Moreover, we enable our tracker to automatically perform object identification during the process of object tracking, by introducing a collection of static template samples belonging to several object classes of interest. Object identification results for an entire video sequence are achieved by systematically combining the tracking information and visual recognition at each frame. Experimental results on challenging video sequences demonstrate the effectiveness of the method for both inter-frame tracking and object identification. PMID:26390446

  15. Representation of Maximally Regular Textures in Human Visual Cortex.

    Kohler, Peter J; Clarke, Alasdair; Yakovleva, Alexandra; Liu, Yanxi; Norcia, Anthony M

    2016-01-20

    Naturalistic textures with an intermediate degree of statistical regularity can capture key structural features of natural images (Freeman and Simoncelli, 2011). V2 and later visual areas are sensitive to these features, while primary visual cortex is not (Freeman et al., 2013). Here we expand on this work by investigating a class of textures that have maximal formal regularity, the 17 crystallographic wallpaper groups (Fedorov, 1891). We used texture stimuli from four of the groups that differ in the maximum order of rotation symmetry they contain, and measured neural responses in human participants using functional MRI and high-density EEG. We found that cortical area V3 has a parametric representation of the rotation symmetries in the textures that is not present in either V1 or V2, the first discovery of a stimulus property that differentiates processing in V3 from that of lower-level areas. Parametric responses were also seen in higher-order ventral stream areas V4, VO1, and lateral occipital complex (LOC), but not in dorsal stream areas. The parametric response pattern was replicated in the EEG data, and source localization indicated that responses in V3 and V4 lead responses in LOC, which is consistent with a feedforward mechanism. Finally, we presented our stimuli to four well developed feedforward models and found that none of them were able to account for our results. Our results highlight structural regularity as an important stimulus dimension for distinguishing the early stages of visual processing, and suggest a previously unrecognized role for V3 in the visual form-processing hierarchy. Significance statement: Hierarchical processing is a fundamental organizing principle in visual neuroscience, with each successive processing stage being sensitive to increasingly complex stimulus properties. Here, we probe the encoding hierarchy in human visual cortex using a class of visual textures--wallpaper patterns--that are maximally regular. Through a

  16. Visual Awareness Is Limited by the Representational Architecture of the Visual System.

    Cohen, Michael A; Nakayama, Ken; Konkle, Talia; Stantić, Mirta; Alvarez, George A

    2015-11-01

    Visual perception and awareness have strict limitations. We suggest that one source of these limitations is the representational architecture of the visual system. Under this view, the extent to which items activate the same neural channels constrains the amount of information that can be processed by the visual system and ultimately reach awareness. Here, we measured how well stimuli from different categories (e.g., faces and cars) blocked one another from reaching awareness using two distinct paradigms that render stimuli invisible: visual masking and continuous flash suppression. Next, we used fMRI to measure the similarity of the neural responses elicited by these categories across the entire visual hierarchy. Overall, we found strong brain-behavior correlations within the ventral pathway, weaker correlations in the dorsal pathway, and no correlations in early visual cortex (V1-V3). These results suggest that the organization of higher level visual cortex constrains visual awareness and the overall processing capacity of visual cognition. PMID:26226078

  17. Algebra of the Visual: The London Underground Map and the Art It Has Inspired

    Alan Ashton-Smith

    2011-01-01

    "Algebra of the Visual: The London Underground Map and the Art It Has Inspired" by Alan Ashton-Smith. The London Underground symbolizes London, and the London Underground map, designed by Harry Beck in 1931, symbolizes the London Underground. Accordingly, Beck’s map has in itself come to be a recognizable signifier of London. Its impact resonates beyond this city though: it is also the prototype for metro maps worldwide, with its basic topological structure having been adopted for use on the ...

  18. Loosely coupled web representations: a REST service and JavaScript wrapper for sharing web-based visual representations

    Collins, Trevor; Quick, Kevin; Joiner, Richard; Littleton, Karen

    2013-01-01

    This paper presents the design and application of a web service architecture for providing shared access to web-based visual representations, such as dynamic models, simulations and visualizations. The Shared Representations (SR) system was created to facilitate the development of collaborative and co-operative learning activities over the web, and has been applied to provide shared group access to: a high-resolution image viewer, a virtual petrological microscope, and a forces and motion spr...

  19. Teaching with Concrete and Abstract Visual Representations: Effects on Students' Problem Solving, Problem Representations, and Learning Perceptions

    Moreno, Roxana; Ozogul, Gamze; Reisslein, Martin

    2011-01-01

    In 3 experiments, we examined the effects of using concrete and/or abstract visual problem representations during instruction on students' problem-solving practice, near transfer, problem representations, and learning perceptions. In Experiments 1 and 2, novice students learned about electrical circuit analysis with an instructional program that…

  20. Fixed-Rank Representation for Unsupervised Visual Learning

    Liu, Risheng; De la Torre, Fernando; Su, Zhixun

    2012-01-01

    Subspace clustering and feature extraction are two of the most extensive unsupervised visual learning tasks in computer vision and pattern recognition. In this paper, we pose these two problems in a unified framework, named fixed-rank representation (FRR). For subspace clustering, our first contribution is to show that, when the data is clean, we can efficiently solve FRR in closed-form and the global optimal solution to FRR can exactly recover the multiple subspace structure. Furthermore, we prove that under some suitable conditions, even with insufficient observations, the memberships of data points still can be exactly recovered by FRR. In the case that the data is corrupted by noises and outliers, a sparse regularization is introduced to achieve robustness for FRR. For feature extraction, we provide some new insights to understand existing methods, which lead to a new approach for robust feature extraction. As a non-trivial byproduct, a fast numerical solver is developed for FRR. Experimental results on b...

  1. A unified data representation theory for network visualization, ordering and coarse-graining

    Kovács, István A; Csermely, Peter

    2014-01-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of huge data sets in science, by reve...

  2. Exploring Middle School Students' Representational Competence in Science: Development and Verification of a Framework for Learning with Visual Representations

    Tippett, Christine Diane

    Scientific knowledge is constructed and communicated through a range of forms in addition to verbal language. Maps, graphs, charts, diagrams, formulae, models, and drawings are just some of the ways in which science concepts can be represented. Representational competence---an aspect of visual literacy that focuses on the ability to interpret, transform, and produce visual representations---is a key component of science literacy and an essential part of science reading and writing. To date, however, most research has examined learning from representations rather than learning with representations. This dissertation consisted of three distinct projects that were related by a common focus on learning from visual representations as an important aspect of scientific literacy. The first project was the development of an exploratory framework that is proposed for use in investigations of students constructing and interpreting multimedia texts. The exploratory framework, which integrates cognition, metacognition, semiotics, and systemic functional linguistics, could eventually result in a model that might be used to guide classroom practice, leading to improved visual literacy, better comprehension of science concepts, and enhanced science literacy because it emphasizes distinct aspects of learning with representations that can be addressed though explicit instruction. The second project was a metasynthesis of the research that was previously conducted as part of the Explicit Literacy Instruction Embedded in Middle School Science project (Pacific CRYSTAL, http://www.educ.uvic.ca/pacificcrystal). Five overarching themes emerged from this case-to-case synthesis: the engaging and effective nature of multimedia genres, opportunities for differentiated instruction using multimodal strategies, opportunities for assessment, an emphasis on visual representations, and the robustness of some multimodal literacy strategies across content areas. The third project was a mixed

  3. Parametric eigenspace representation for visual learning and recognition

    Murase, H.; Nayar, Shree K.

    1993-06-01

    We address the problem of automatically learning object models for recognition and pose estimation. In contrast to the traditional approach, we formulate the recognition problem as one of matching visual appearance rather than shape. The appearance of an object in a two- dimensional image depends on its shape, reflectance properties, pose in the scene, and the illumination conditions. While shape and reflectance are intrinsic properties of an object and are constant, pose and illumination vary from scene to scene. We present a new compact representation of object appearance that is parametrized by pose and illumination. For each object of interest, a large set of images is obtained by automatically varying pose and illumination. This large image set is compressed to obtain a low-dimensional subspace, called the eigenspace, in which the object is represented as a hypersurface. Given an unknown input image, the recognition system projects the image onto the eigenspace. The object is recognized based on the hypersurface it lies on. The exact position of the projection on the hypersurface determines the object's pose in the image. We have conducted experiments using several objects with complex appearance characteristics. We conclude with a discussion on various issues related to the learning and recognition techniques proposed in the paper.

  4. Virtual-real spatial information visualization registration using affine representations

    Wu, Xueling; Ren, Fu; Du, Qingyun

    2009-10-01

    Virtual-real registration in Outdoor Augmented Reality is committed to enhance user's spatial cognition by overlaying virtual geographical objects on real scene. According to analyze fiducial detection registration method in indoor AR, for the purpose of avoiding complex and tedious process of position tracking and camera calibration in traditional registration methods, it puts forward and practices a virtual-real spatial information visualization registration method using affine representations. Based on the observation from Koenderink and van Doorn, Ullman and Basri in 1991 which is given a set of four or more non-coplanar 3D points, the projection of all points in the set can be computed as a linear combination of the projection of just four of the points, it sets up global affine coordinate system in light of world coordinates, camera coordinates and virtual coordinates and extracts four feature points from scene image and calculates the global affine coordinates of key points of virtual objects. Then according to a linear homogeneous coordinates of the four feature point's projection, it calculates projection pixel coordinates of key points of virtual objects. In addition, it proposes an approach to obtain pixel relative depth for hidden surface removal. Finally, by a case study, it verifies the feasibility and efficiency of the registration methods. The method would not only explore a new research direction for Geographical Information Science, but also would provide location-based information and services for outdoor AR.

  5. A neuron-inspired computational architecture for spatiotemporal visual processing: real-time visual sensory integration for humanoid robots.

    Holzbach, Andreas; Cheng, Gordon

    2014-06-01

    In this article, we present a neurologically motivated computational architecture for visual information processing. The computational architecture's focus lies in multiple strategies: hierarchical processing, parallel and concurrent processing, and modularity. The architecture is modular and expandable in both hardware and software, so that it can also cope with multisensory integrations - making it an ideal tool for validating and applying computational neuroscience models in real time under real-world conditions. We apply our architecture in real time to validate a long-standing biologically inspired visual object recognition model, HMAX. In this context, the overall aim is to supply a humanoid robot with the ability to perceive and understand its environment with a focus on the active aspect of real-time spatiotemporal visual processing. We show that our approach is capable of simulating information processing in the visual cortex in real time and that our entropy-adaptive modification of HMAX has a higher efficiency and classification performance than the standard model (up to ∼+6%). PMID:24687170

  6. Virtual images inspired consolidate collaborative representation-based classification method for face recognition

    Liu, Shigang; Zhang, Xinxin; Peng, Yali; Cao, Han

    2016-07-01

    The collaborative representation-based classification method performs well in the field of classification of high-dimensional images such as face recognition. It utilizes training samples from all classes to represent a test sample and assigns a class label to the test sample using the representation residuals. However, this method still suffers from the problem that limited number of training sample influences the classification accuracy when applied to image classification. In this paper, we propose a modified collaborative representation-based classification method (MCRC), which exploits novel virtual images and can obtain high classification accuracy. The procedure to produce virtual images is very simple but the use of them can bring surprising performance improvement. The virtual images can sufficiently denote the features of original face images in some case. Extensive experimental results doubtlessly demonstrate that the proposed method can effectively improve the classification accuracy. This is mainly attributed to the integration of the collaborative representation and the proposed feature-information dominated virtual images.

  7. Sparse representation, modeling and learning in visual recognition theory, algorithms and applications

    Cheng, Hong

    2015-01-01

    This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: provides a thorough introduction to the fundamentals of sparse representation, modeling and learning, and the application of these techniques in visual recognition; describes sparse recovery approaches, robust and efficient sparse represen

  8. Autonomous Visual Navigation of an Indoor Environment Using a Parsimonious, Insect Inspired Familiarity Algorithm.

    Gaffin, Douglas D; Brayfield, Brad P

    2016-01-01

    The navigation of bees and ants from hive to food and back has captivated people for more than a century. Recently, the Navigation by Scene Familiarity Hypothesis (NSFH) has been proposed as a parsimonious approach that is congruent with the limited neural elements of these insects' brains. In the NSFH approach, an agent completes an initial training excursion, storing images along the way. To retrace the path, the agent scans the area and compares the current scenes to those previously experienced. By turning and moving to minimize the pixel-by-pixel differences between encountered and stored scenes, the agent is guided along the path without having memorized the sequence. An important premise of the NSFH is that the visual information of the environment is adequate to guide navigation without aliasing. Here we demonstrate that an image landscape of an indoor setting possesses ample navigational information. We produced a visual landscape of our laboratory and part of the adjoining corridor consisting of 2816 panoramic snapshots arranged in a grid at 12.7-cm centers. We show that pixel-by-pixel comparisons of these images yield robust translational and rotational visual information. We also produced a simple algorithm that tracks previously experienced routes within our lab based on an insect-inspired scene familiarity approach and demonstrate that adequate visual information exists for an agent to retrace complex training routes, including those where the path's end is not visible from its origin. We used this landscape to systematically test the interplay of sensor morphology, angles of inspection, and similarity threshold with the recapitulation performance of the agent. Finally, we compared the relative information content and chance of aliasing within our visually rich laboratory landscape to scenes acquired from indoor corridors with more repetitive scenery. PMID:27119720

  9. Autonomous Visual Navigation of an Indoor Environment Using a Parsimonious, Insect Inspired Familiarity Algorithm.

    Douglas D Gaffin

    Full Text Available The navigation of bees and ants from hive to food and back has captivated people for more than a century. Recently, the Navigation by Scene Familiarity Hypothesis (NSFH has been proposed as a parsimonious approach that is congruent with the limited neural elements of these insects' brains. In the NSFH approach, an agent completes an initial training excursion, storing images along the way. To retrace the path, the agent scans the area and compares the current scenes to those previously experienced. By turning and moving to minimize the pixel-by-pixel differences between encountered and stored scenes, the agent is guided along the path without having memorized the sequence. An important premise of the NSFH is that the visual information of the environment is adequate to guide navigation without aliasing. Here we demonstrate that an image landscape of an indoor setting possesses ample navigational information. We produced a visual landscape of our laboratory and part of the adjoining corridor consisting of 2816 panoramic snapshots arranged in a grid at 12.7-cm centers. We show that pixel-by-pixel comparisons of these images yield robust translational and rotational visual information. We also produced a simple algorithm that tracks previously experienced routes within our lab based on an insect-inspired scene familiarity approach and demonstrate that adequate visual information exists for an agent to retrace complex training routes, including those where the path's end is not visible from its origin. We used this landscape to systematically test the interplay of sensor morphology, angles of inspection, and similarity threshold with the recapitulation performance of the agent. Finally, we compared the relative information content and chance of aliasing within our visually rich laboratory landscape to scenes acquired from indoor corridors with more repetitive scenery.

  10. Weighted Graph Theory Representation of Quantum Information Inspired by Lie Algebras

    Belhaj, Abdelilah; Machkouri, Larbi; Sedra, Moulay Brahim; Ziti, Soumia

    2016-01-01

    Borrowing ideas from the relation between simply laced Lie algebras and Dynkin diagrams, a weighted graph theory representation of quantum information is addressed. In this way, the density matrix of a quantum state can be interpreted as a signless Laplacian matrix of an associated graph. Using similarities with root systems of simply laced Lie algebras, one-qubit theory is analyzed in some details and is found to be linked to a non-oriented weighted graph having two vertices. Moreover, this one-qubit theory is generalized to n-qubits. In this representation, quantum gates correspond to graph weight operations preserving the probability condition. A speculation from string theory, via D-brane quivers, is also given.

  11. Visual Representations on High School Biology, Chemistry, Earth Science, and Physics Assessments

    LaDue, Nicole D.; Libarkin, Julie C.; Thomas, Stephen R.

    2015-12-01

    The pervasive use of visual representations in textbooks, curricula, and assessments underscores their importance in K-12 science education. For example, visual representations figure prominently in the recent publication of the Next Generation Science Standards (NGSS Lead States in Next generation science standards: for states, by states. Achieve, Inc. on behalf of the twenty-six states and partners that collaborated on the NGSS, 2013). Although assessments of the NGSS have yet to be developed, most students are currently evaluated on their ability to interpret science visuals. While numerous studies exist on particular visuals, it is unclear whether the same types of visuals are emphasized in all science disciplines. The present study is an evaluation of the similarities and differences of visuals used to assess students' knowledge of chemistry, earth science, living environment (biology), and physics on the New York State Regents examination. Analysis of 266 distinct visual representations categorized across the four content examinations reveals that the frequency and type of visuals vary greatly between disciplines. Diagrams, Graphs, Tables, and Maps are the most prevalent across all science disciplines. Maps, Cartograms, and Time Charts are unique to the Earth Science examination, and Network Diagrams are unique to the living environment (biology) examination. This study identifies which representations are most critical for training students across the science disciplines in anticipation of the implementation and eventual assessment of the NGSS.

  12. Scene statistics: neural representation of real-world structure in rapid visual perception

    I.I.A. Groen

    2014-01-01

    How does the brain represent our visual environment? Research has revealed brain areas that respond to specific information such as faces and objects, but how a representation of an entire visual scene is formed is still unclear. This thesis explores the idea that scene statistics play an important

  13. Evidence for optimal integration of visual feature representations across saccades

    Oostwoud Wijdenes, L.; Marshall, L.; Bays, P.M.

    2015-01-01

    We explore the visual world through saccadic eye movements, but saccades also present a challenge to visual processing by shifting externally stable objects from one retinal location to another. The brain could solve this problem in two ways: by overwriting preceding input and starting afresh with e

  14. Learning Visual Representations for Perception-Action Systems

    Piater, Justus; Jodogne, Sebastien; Detry, Renaud;

    2011-01-01

    We discuss vision as a sensory modality for systems that effect actions in response to perceptions. While the internal representations informed by vision may be arbitrarily complex, we argue that in many cases it is advantageous to link them rather directly to action via learned mappings...... and RLJC, our second method learns structural object models for robust object detection and pose estimation by probabilistic inference. To these models, the method associates grasp experiences autonomously learned by trial and error. These experiences form a nonparametric representation of grasp success...

  15. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles. PMID:21527730

  16. The spatiotopic representation of visual objects across time.

    Collins, Thérèse

    2016-08-01

    Each eye movement introduces changes in the retinal location of objects. How a stable spatiotopic representation emerges from such variable input is an important question for the study of vision. Researchers have classically probed human observers' performance in a task requiring a location judgment about an object presented at different locations across a saccade. Correct performance on this task requires realigning or remapping retinal locations to compensate for the saccade. A recent study showed that performance improved with longer presaccadic viewing time, suggesting that accurate spatiotopic representations take time to build up. The first goal of the study was to replicate that finding. Two experiments, one an exact replication and the second a modified version, failed to replicate improved performance with longer presaccadic viewing time. The second goal of this study was to examine the role of attention in constructing spatiotopic representations, as theoretical and neurophysiological accounts of remapping have proposed that only attended targets are remapped. A third experiment thus manipulated attention with a spatial cueing paradigm and compared transsaccadic location performance of attended versus unattended targets. No difference in spatiotopic performance was found between attended and unattended targets. Although only negative results are reported, they might nevertheless suggest that spatiotopic representations are relatively stable over time. PMID:27349426

  17. Population coding of visual space: comparison of spatial representations in the dorsal and ventral pathways

    Anne B Sereno

    2011-02-01

    Full Text Available Although the representation of space is as fundamental to visual processing as the representation of shape, it has received relatively little attention from neurophysiological investigations. In this study we characterize representations of space within visual cortex, and examine how they differ in a first direct comparison between dorsal and ventral subdivisions of the visual pathways. Neural activities were recorded in anterior inferotemporal cortex (AIT and lateral intraparietal cortex (LIP of awake behaving monkeys, structures associated with the ventral and dorsal visual pathways respectively, as a stimulus was presented at different locations within the visual field. In spatially selective cells, we find greater modulation of cell responses in LIP with changes in stimulus position. Further, using a novel population-based statistical approach (namely, multidimensional scaling, we recover the spatial map implicit within activities of neural populations, allowing us to quantitatively compare the geometry of neural space with physical space. We show that a population of spatially selective LIP neurons, despite having large receptive fields, is able to almost perfectly reconstruct stimulus locations within a low-dimensional representation. In contrast, a population of AIT neurons, despite each cell being spatially selective, provide less accurate low-dimensional reconstructions of stimulus locations. They produce instead only a topologically (categorically correct rendition of space, which nevertheless might be critical for object and scene recognition. Furthermore, we found that the spatial representation recovered from population activity shows greater translation invariance in LIP than in AIT. We suggest that LIP spatial representations may be dimensionally isomorphic with 3D physical space, while in AIT spatial representations may reflect a more categorical representation of space (e.g., next to or above.

  18. North Korea and the Politics of Visual Representation

    Shim, David; Nabers, Dirk

    2011-01-01

    Within international discourses on security, North Korea is often associated with risk and danger, emanating paradoxically from what can be called its strengths - particularly military strength, as embodied by its missile and nuclear programs - and its weaknesses - such as its ever-present political, economic, and food crises - which are considered to be imminent threats to international peace and stability. We argue that images play an important role in these representations, and suggest tha...

  19. Visual representations in portuguese produced english language teaching coursebooks

    Nicolas Robert Hurst

    2014-01-01

    This paper examines the role of illustrations in the context of English Language Teaching (ELT) coursebooks produced in Portugal. Taking illustrations to be one pilar in the construction of meaning through the representation of culture, the discussion shifts between their use over the last 35 years and their potential as a source of innovation and improvement in this area of ELT materials development. The central issue relates to the need for illustrations to perform s...

  20. Contour junctions underlie neural representations of scene categories in high-level human visual cortex.

    Choo, Heeyoung; Walther, Dirk B

    2016-07-15

    Humans efficiently grasp complex visual environments, making highly consistent judgments of entry-level category despite their high variability in visual appearance. How does the human brain arrive at the invariant neural representations underlying categorization of real-world environments? We here show that the neural representation of visual environments in scene-selective human visual cortex relies on statistics of contour junctions, which provide cues for the three-dimensional arrangement of surfaces in a scene. We manipulated line drawings of real-world environments such that statistics of contour orientations or junctions were disrupted. Manipulated and intact line drawings were presented to participants in an fMRI experiment. Scene categories were decoded from neural activity patterns in the parahippocampal place area (PPA), the occipital place area (OPA) and other visual brain regions. Disruption of junctions but not orientations led to a drastic decrease in decoding accuracy in the PPA and OPA, indicating the reliance of these areas on intact junction statistics. Accuracy of decoding from early visual cortex, on the other hand, was unaffected by either image manipulation. We further show that the correlation of error patterns between decoding from the scene-selective brain areas and behavioral experiments is contingent on intact contour junctions. Finally, a searchlight analysis exposes the reliance of visually active brain regions on different sets of contour properties. Statistics of contour length and curvature dominate neural representations of scene categories in early visual areas and contour junctions in high-level scene-selective brain regions. PMID:27118087

  1. Parallel representation of stimulus identity and intensity in a dual pathway model inspired by the olfactory system of the honeybee

    Michael eSchmuker

    2011-12-01

    Full Text Available The honeybee Apis mellifera has a remarkable ability to detect and locate food sources during foraging, and to associate odor cues with food rewards. In the honeybee’s olfactory system, sensory input is first processed in the antennal lobe (AL network. Uniglomerular projection neurons (PNs convey the sensory code from the AL to higher brain regions via two parallel but anatomically distinct pathways, the lateral and the medial antenno-cerebral tract (l- and m-ACT. Neurons innervating either tract show characteristic differences in odor selectivity, concentration dependence, and representation of mixtures. It is still unknown how this differential stimulus representation is achieved within the AL network. In this contribution, we use a computational network model to demonstrate that the experimentally observed features of odor coding in PNs can be reproduced by varying lateral inhibition and gain control in an otherwise unchanged AL network. We show that odor coding in the l-ACT supports detection and accurate identification of weak odor traces at the expense of concentration sensitivity, while odor coding in the m-ACT provides the basis for the computation and following of concentration gradients but provides weaker discrimination power. Both coding strategies are mutually exclusive, which creates a tradeoff between detection accuracy and sensitivity. The development of two parallel systems may thus reflect an evolutionary solution to this problem that enables honeybees to achieve both tasks during bee foraging in their natural environment, and which could inspire the development of artificial chemosensory devices for odor-guided navigation in robots.

  2. Visual Metaphors in the Representation of Communication Technology.

    Kaplan, Stuart Jay

    1990-01-01

    Examines the role of metaphors (particularly visual metaphors) in communicating social values associated with new communication technology by analyzing magazine advertisements for computing and advanced telecommunications products and services. Finds that the "lever" and the "synthesis of old and new values" metaphors are dominant in both general…

  3. Challenging cavalier perspective: an iconological study of visual perception of depth in Chinese representational space

    Xiao, Jing

    2013-01-01

    Cavalier Perspective has previously been described as merely a pictorial technique of spatial representation within the history of Chinese painting. It is a common belief that this unique visual system is capable of providing an experience of three-dimensional spatial perception in both representational art and actual space, in a manner similar to technique of foreshortening and perspective in post-renaissance western art. However, as Chinese ancient artists have a different understanding of ...

  4. A review of visual memory capacity: Beyond individual items and towards structured representations

    Brady, Timothy F.; Konkle, Talia; Alvarez, George A.

    2011-01-01

    Traditional memory research has focused on identifying separate memory systems and exploring different stages of memory processing. This approach has been valuable for establishing a taxonomy of memory systems and characterizing their function, but has been less informative about the nature of stored memory representations. Recent research on visual memory has shifted towards a representation-based emphasis, focusing on the contents of memory, and attempting to determine the format and struct...

  5. Visual Representations Is Lexical Learning Environments: Application To The Alexia System

    Chanier, Thierry; Selva, Thierry

    1998-01-01

    Cognition-based arguments in support of using multimedia aids for the learning of vocabulary have so far offered only an imprecise, general framework. CALL experimentalists have also tried to establish the effectiveness of multimedia for vocabulary learning, but their attempts reveal that the underlying representations have not been clearly defined. After reviewing these points, we propose criteria for evaluating the quality of a visual representation in a lexical environment. These criteria ...

  6. Digital representations of the real world how to capture, model, and render visual reality

    Magnor, Marcus A; Sorkine-Hornung, Olga; Theobalt, Christian

    2015-01-01

    Create Genuine Visual Realism in Computer Graphics Digital Representations of the Real World: How to Capture, Model, and Render Visual Reality explains how to portray visual worlds with a high degree of realism using the latest video acquisition technology, computer graphics methods, and computer vision algorithms. It explores the integration of new capture modalities, reconstruction approaches, and visual perception into the computer graphics pipeline.Understand the Entire Pipeline from Acquisition, Reconstruction, and Modeling to Realistic Rendering and ApplicationsThe book covers sensors fo

  7. Visual representations in portuguese produced english language teaching coursebooks

    Nicolas Robert Hurst

    2014-01-01

    Full Text Available This paper examines the role of illustrations in the context of English Language Teaching (ELT coursebooks produced in Portugal. Taking illustrations to be one pilar in the construction of meaning through the representation of culture, the discussion shifts between their use over the last 35 years and their potential as a source of innovation and improvement in this area of ELT materials development. The central issue relates to the need for illustrations to perform something more than a decorative function in ELT coursebooks. Further discussion deals with the general issue of cultural content in language teaching materials, its importance in relation to situating language learning as both meaningful and purposeful. There are clear links themes related to foreign language teaching methodology (the learner-centred approach and to curriculum development (citizenship education.It is argued that local coursebook publishers and writers should pay closer attention to the importance of cultural representation in language teaching materials, in this case to the use of illustrations, as a way of optimising the long-held influence of coursebooks as significant educational instruments.

  8. Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)

    2016-01-01

    The visual wulst is the telencephalic target of the avian thalamofugal visual system. It contains several retinotopically organised representations of the contralateral visual field. We used optical imaging of intrinsic signals, electrophysiological recordings, and retrograde tracing with two fluorescent tracers to evaluate properties of these representations in the zebra finch, a songbird with laterally placed eyes. Our experiments revealed that there is some variability of the neuronal maps between individuals and also concerning the number of detectable maps. It was nonetheless possible to identify three different maps, a posterolateral, a posteromedial, and an anterior one, which were quite constant in their relation to each other. The posterolateral map was in contrast to the two others constantly visible in each successful experiment. The topography of the two other maps was mirrored against that map. Electrophysiological recordings in the anterior and the posterolateral map revealed that all units responded to flashes and to moving bars. Mean directional preferences as well as latencies were different between neurons of the two maps. Tracing experiments confirmed previous reports on the thalamo-wulst connections and showed that the anterior and the posterolateral map receive projections from separate clusters within the thalamic nuclei. Maps are connected to each other by wulst intrinsic projections. Our experiments confirm that the avian visual wulst contains several separate retinotopic maps with both different physiological properties and different thalamo-wulst afferents. This confirms that the functional organization of the visual wulst is very similar to its mammalian equivalent, the visual cortex. PMID:27139912

  9. Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata).

    Bischof, Hans-Joachim; Eckmeier, Dennis; Keary, Nina; Löwel, Siegrid; Mayer, Uwe; Michael, Neethu

    2016-01-01

    The visual wulst is the telencephalic target of the avian thalamofugal visual system. It contains several retinotopically organised representations of the contralateral visual field. We used optical imaging of intrinsic signals, electrophysiological recordings, and retrograde tracing with two fluorescent tracers to evaluate properties of these representations in the zebra finch, a songbird with laterally placed eyes. Our experiments revealed that there is some variability of the neuronal maps between individuals and also concerning the number of detectable maps. It was nonetheless possible to identify three different maps, a posterolateral, a posteromedial, and an anterior one, which were quite constant in their relation to each other. The posterolateral map was in contrast to the two others constantly visible in each successful experiment. The topography of the two other maps was mirrored against that map. Electrophysiological recordings in the anterior and the posterolateral map revealed that all units responded to flashes and to moving bars. Mean directional preferences as well as latencies were different between neurons of the two maps. Tracing experiments confirmed previous reports on the thalamo-wulst connections and showed that the anterior and the posterolateral map receive projections from separate clusters within the thalamic nuclei. Maps are connected to each other by wulst intrinsic projections. Our experiments confirm that the avian visual wulst contains several separate retinotopic maps with both different physiological properties and different thalamo-wulst afferents. This confirms that the functional organization of the visual wulst is very similar to its mammalian equivalent, the visual cortex. PMID:27139912

  10. Berries Bittersweet: Visual Representations of Black Female Sexuality in Contemporary American Pornography

    Cruz, Ariane Renee

    2010-01-01

    My dissertation, Berries Bittersweet: Visual Representations of Black Female Sexuality in Contemporary American Pornography interrogates how pornography, from the 1930s to the present, functions as an essential site in the production of black female sexuality. Closely reading a diverse pool of primary pornographic visual materials, across print, moving image and the internet, such as photographs, magazines, trade magazines, videos, DVDs, and internet website viewings, I argue that pornograph...

  11. Robust visual tracking of infrared object via sparse representation model

    Ma, Junkai; Liu, Haibo; Chang, Zheng; Hui, Bin

    2014-11-01

    In this paper, we propose a robust tracking method for infrared object. We introduce the appearance model and the sparse representation in the framework of particle filter to achieve this goal. Representing every candidate image patch as a linear combination of bases in the subspace which is spanned by the target templates is the mechanism behind this method. The natural property, that if the candidate image patch is the target so the coefficient vector must be sparse, can ensure our algorithm successfully. Firstly, the target must be indicated manually in the first frame of the video, then construct the dictionary using the appearance model of the target templates. Secondly, the candidate image patches are selected in following frames and the sparse coefficient vectors of them are calculated via l1-norm minimization algorithm. According to the sparse coefficient vectors the right candidates is determined as the target. Finally, the target templates update dynamically to cope with appearance change in the tracking process. This paper also addresses the problem of scale changing and the rotation of the target occurring in tracking. Theoretic analysis and experimental results show that the proposed algorithm is effective and robust.

  12. Representations of the Moon in Children's Literature: An Analysis of Written and Visual Text

    Trundle, Kathy Cabe; Troland, Thomas H.; Pritchard, T. Gail

    2008-01-01

    This review focused on the written and visual representation of the moon in 80 children's books, including Caldecott Medal and Honor books over the past 20 years. Results revealed that many of these books misrepresent the moon and even reinforce misconceptions about lunar phases. Teachers who use children's literature that misrepresents the moon…

  13. The Uses of Literacy in Studying Computer Games: Comparing Students' Oral and Visual Representations of Games

    Pelletier, Caroline

    2005-01-01

    This paper compares the oral and visual representations which 12 to 13-year-old students produced in studying computer games as part of an English and Media course. It presents the arguments for studying multimodal texts as part of a literacy curriculum and then provides an overview of the games course devised by teachers and researchers. The…

  14. Computational intelligence in multi-feature visual pattern recognition hand posture and face recognition using biologically inspired approaches

    Pisharady, Pramod Kumar; Poh, Loh Ai

    2014-01-01

    This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good...

  15. Emergence of realism: Enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage.

    Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2014-05-01

    Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient׳s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient׳s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. PMID:24631259

  16. Sparse representation of global features of visual images in human primary visual cortex: Evidence from fMRI

    ZHAO SongNian; YAO Li; JIN Zhen; XIONG XiaoYun; WU Xia; ZOU Qi; YAO GuoZheng; CAI XiaoHong; LIU YiJun

    2008-01-01

    In fMRI experiments on object representation in visual cortex, we designed two types of stimuli: one is the gray face image and its line drawing, and the other is the illusion and its corresponding completed illusion. Both of them have the same global features with different minute details so that the results of fMRI experiments can be compared with each other. The first kind of visual stimuli was used in a block design fMRI experiment, and the second was used in an event-related fMRI experiment. Comparing and analyzing interesting visual cortex activity patterns and blood oxygenation level dependent (BOLD)-fMRI signal, we obtained results to show some invariance of global features of visual images. A plau-sible explanation about the invariant mechanism is related with the cooperation of synchronized re-sponse to the global features of the visual image with a feedback of shape perception from higher cortex to cortex V1, namely the integration of global features and embodiment of sparse representation and distributed population code.

  17. Visual dream content, graphical representation and EEG alpha activity in congenitally blind subjects.

    Bértolo, Helder; Paiva, Teresa; Pessoa, Lara; Mestre, Tiago; Marques, Raquel; Santos, Rosa

    2003-02-01

    It is currently claimed that congenitally blind do not have visual imagery and are therefore unable to present visual contents in their dreams. The aim of our study was to quantitatively evaluate the existence of visual imagery in born-blind dreams and to correlate it with objective measures, such as sleep EEG frequency components, namely with alpha attenuation (regarded as an indicator of visual activity), and graphical analysis of dream pictorial representations. The investigation was carried out via simultaneous recordings of dream reports and polysomnography, during nocturnal sleep at volunteers' homes; scheduled regular awakenings during the night provided the data for dream and EEG analysis. In the morning, subjects were asked to make a drawing of their dream images. Congenitally blind (n=10) were comparable to normal sighted subjects (n=9): the two groups presented equivalent visual activity indices, and no differences in the analysis of graphical representation of dreaming imagery. However, blind subjects presented a lower rate of dream recall than sighted (27% versus 42%). Both groups had significant negative correlation between Visual Activity Index (VAI) and alpha power in the central and occipital O2 derivations (blind: C4: r=-0.615, Pblind in O1 (r=-0.573, PBlind individuals have significantly lower alpha activity in the central derivation. In conclusion, the congenitally blind have visual content in their dreams and are able to draw it and, as expected, their VAI is negatively correlated with EEG alpha power. PMID:12527101

  18. Perisaccadic Updating of Visual Representations and Attentional States: Linking Behavior and Neurophysiology.

    Marino, Alexandria C; Mazer, James A

    2016-01-01

    During natural vision, saccadic eye movements lead to frequent retinal image changes that result in different neuronal subpopulations representing the same visual feature across fixations. Despite these potentially disruptive changes to the neural representation, our visual percept is remarkably stable. Visual receptive field remapping, characterized as an anticipatory shift in the position of a neuron's spatial receptive field immediately before saccades, has been proposed as one possible neural substrate for visual stability. Many of the specific properties of remapping, e.g., the exact direction of remapping relative to the saccade vector and the precise mechanisms by which remapping could instantiate stability, remain a matter of debate. Recent studies have also shown that visual attention, like perception itself, can be sustained across saccades, suggesting that the attentional control system can also compensate for eye movements. Classical remapping could have an attentional component, or there could be a distinct attentional analog of visual remapping. At this time we do not yet fully understand how the stability of attentional representations relates to perisaccadic receptive field shifts. In this review, we develop a vocabulary for discussing perisaccadic shifts in receptive field location and perisaccadic shifts of attentional focus, review and synthesize behavioral and neurophysiological studies of perisaccadic perception and perisaccadic attention, and identify open questions that remain to be experimentally addressed. PMID:26903820

  19. A biologically-inspired framework for contour detection using superpixel-based candidates and hierarchical visual cues.

    Sun, Xiao; Shang, Ke; Ming, Delie; Tian, Jinwen; Ma, Jiayi

    2015-01-01

    Contour detection has been extensively investigated as a fundamental problem in computer vision. In this study, a biologically-inspired candidate weighting framework is proposed for the challenging task of detecting meaningful contours. In contrast to previous models that detect contours from pixels, a modified superpixel generation processing is proposed to generate a contour candidate set and then weigh the candidates by extracting hierarchical visual cues. We extract the low-level visual local cues to weigh the contour intrinsic property and mid-level visual cues on the basis of Gestalt principles for weighting the contour grouping constraint. Experimental results tested on the BSDS benchmark show that the proposed framework exhibits promising performances to capture meaningful contours in complex scenes. PMID:26492252

  20. Women And Visual Representations Of Space In Two Chinese Film Adaptations Of Hamlet

    CHEANG WAI FONG

    2014-12-01

    Full Text Available This paper studies two Chinese film adaptations of Shakespeare’s Hamlet, Xiaogang Feng’s The Banquet (2006 and Sherwood Hu’s Prince of the Himalayas (2006, by focusing on their visual representations of spaces allotted to women. Its thesis is that even though on the original Shakespearean stage details of various spaces might not be as vividly represented as in modern film productions, spaces are still crucial dramatic elements imbued with powerful significations. By analyzing the two Chinese film adaptations alongside the original Hamlet text, the paper attempts to reinterpret their different representations of spaces in relation to their different historical-cultural gender notions.

  1. The Focus of Attention in Visual Working Memory: Protection of Focused Representations and Its Individual Variation

    Heuer, Anna; Schubö, Anna

    2016-01-01

    Visual working memory can be modulated according to changes in the cued task relevance of maintained items. Here, we investigated the mechanisms underlying this modulation. In particular, we studied the consequences of attentional selection for selected and unselected items, and the role of individual differences in the efficiency with which attention is deployed. To this end, performance in a visual working memory task as well as the CDA/SPCN and the N2pc, ERP components associated with visual working memory and attentional processes, were analysed. Selection during the maintenance stage was manipulated by means of two successively presented retrocues providing spatial information as to which items were most likely to be tested. Results show that attentional selection serves to robustly protect relevant representations in the focus of attention while unselected representations which may become relevant again still remain available. Individuals with larger retrocueing benefits showed higher efficiency of attentional selection, as indicated by the N2pc, and showed stronger maintenance-associated activity (CDA/SPCN). The findings add to converging evidence that focused representations are protected, and highlight the flexibility of visual working memory, in which information can be weighted according its relevance. PMID:27099938

  2. Sharper, Stronger, Faster Upper Visual Field Representation in Primate Superior Colliculus.

    Hafed, Ziad M; Chen, Chih-Yang

    2016-07-11

    Visually guided behavior in three-dimensional environments entails handling immensely different sensory and motor conditions across retinotopic visual field locations: peri-personal ("near") space is predominantly viewed through the lower retinotopic visual field (LVF), whereas extra-personal ("far") space encompasses the upper visual field (UVF). Thus, when, say, driving a car, orienting toward the instrument cluster below eye level is different from scanning an upcoming intersection, even with similarly sized eye movements. However, an overwhelming assumption about visuomotor circuits for eye-movement exploration, like those in the primate superior colliculus (SC), is that they represent visual space in a purely symmetric fashion across the horizontal meridian. Motivated by ecological constraints on visual exploration of far space, containing small UVF retinal-image features, here we found a large, multi-faceted difference in the SC's representation of the UVF versus LVF. Receptive fields are smaller, more finely tuned to image spatial structure, and more sensitive to image contrast for neurons representing the UVF. Stronger UVF responses also occur faster. Analysis of putative synaptic activity revealed a particularly categorical change when the horizontal meridian is crossed, and our observations correctly predicted novel eye-movement effects. Despite its appearance as a continuous layered sheet of neural tissue, the SC contains functional discontinuities between UVF and LVF representations, paralleling a physical discontinuity present in cortical visual areas. Our results motivate the recasting of structure-function relationships in the visual system from an ecological perspective, and also exemplify strong coherence between brain-circuit organization for visually guided exploration and the nature of the three-dimensional environment in which we function. PMID:27291052

  3. Contextual effects in visual working memory reveal hierarchically structured memory representations.

    Brady, Timothy F; Alvarez, George A

    2015-01-01

    Influential slot and resource models of visual working memory make the assumption that items are stored in memory as independent units, and that there are no interactions between them. Consequently, these models predict that the number of items to be remembered (the set size) is the primary determinant of working memory performance, and therefore these models quantify memory capacity in terms of the number and quality of individual items that can be stored. Here we demonstrate that there is substantial variance in display difficulty within a single set size, suggesting that limits based on the number of individual items alone cannot explain working memory storage. We asked hundreds of participants to remember the same sets of displays, and discovered that participants were highly consistent in terms of which items and displays were hardest or easiest to remember. Although a simple grouping or chunking strategy could not explain this individual-display variability, a model with multiple, interacting levels of representation could explain some of the display-by-display differences. Specifically, a model that includes a hierarchical representation of items plus the mean and variance of sets of the colors on the display successfully accounts for some of the variability across displays. We conclude that working memory representations are composed only in part of individual, independent object representations, and that a major factor in how many items are remembered on a particular display is interitem representations such as perceptual grouping, ensemble, and texture representations. PMID:26575192

  4. Non-sparse Linear Representations for Visual Tracking with Online Reservoir Metric Learning

    Li, Xi; Shi, Qinfeng; Dick, Anthony; Hengel, Anton van den

    2012-01-01

    Most sparse linear representation-based trackers need to solve a computationally expensive L1-regularized optimization problem. To address this problem, we propose a visual tracker based on non-sparse linear representations, which admit an efficient closed-form solution without sacrificing accuracy. Moreover, in order to capture the correlation information between different feature dimensions, we learn a Mahalanobis distance metric in an online fashion and incorporate the learned metric into the optimization problem for obtaining the linear representation. We show that online metric learning using proximity comparison significantly improves the robustness of the tracking, especially on those sequences exhibiting drastic appearance changes. Furthermore, in order to prevent the unbounded growth in the number of training samples for the metric learning, we design a time-weighted reservoir sampling method to maintain and update limited-sized foreground and background sample buffers for balancing sample diversity ...

  5. Invariance of brain-wave representations of simple visual images and their names

    Suppes, Patrick; Han, Bing; Epelboim, Julie; Lu, Zhong-Lin

    1999-01-01

    In two experiments, electric brain waves of 14 subjects were recorded under several different conditions to study the invariance of brain-wave representations of simple patches of colors and simple visual shapes and their names, the words blue, circle, etc. As in our earlier work, the analysis consisted of averaging over trials to create prototypes and test samples, to both of which Fourier transforms were applied, followed by filtering and an inverse transformation to the time domain. A leas...

  6. A Graphical Representation Framework for Enhanced Visualization of Construction Control Processes

    Hays, Benjamin James

    2002-01-01

    Graphical representation for construction control information--processes such as scheduling, budgeting and RFIs--follows no formalized method. Many graphics neglect relevant information necessary to highlight trends in or relationships between processes. The principles of data graphics offer visual capabilities beyond those currently employed by the construction industry to display appropriate information in a manner that enhances comprehension of control processes. This paper describes a ...

  7. Visual representation of knowledge in the field of Library and Information Science of IRAN

    Afsoon Sabetpour; Gholamreza Fadaie; Nader Naghshineh; Vafa Ghobadpour

    2015-01-01

    Purpose: The present research has been done to visual representation of knowledge and determination vacuum and density points of scientific trends of faculty members of state universities of IRAN in Library & Information Science field. Method: Curriculum Vitae of each faculty member with census method were collected and its content analyzed. Then using a checklist, the rate scientific tendencies were extracted. NodeXL software was deployed to map out the levels. Results: The results showed th...

  8. Attention enhances stimulus representations in macaque visual cortex without affecting their signal-to-noise level

    Daliri, Mohammad Reza; Kozyrev, Vladislav; Treue, Stefan

    2016-01-01

    The magnitude of the attentional modulation of neuronal responses in visual cortex varies with stimulus contrast. Whether the strength of these attentional influences is similarly dependent on other stimulus properties is unknown. Here we report the effect of spatial attention on responses in the medial-temporal area (MT) of macaque visual cortex to moving random dots pattern of various motion coherences, i.e. signal-to-noise ratios. Our data show that allocating spatial attention causes a gain change in MT neurons. The magnitude of this attentional modulation is independent of the attended stimulus’ motion coherence, creating a multiplicative scaling of the neuron’s coherence-response function. This is consistent with the characteristics of gain models of attentional modulation and suggests that attention strengthens the neuronal representation of behaviorally relevant visual stimuli relative to unattended stimuli, but without affecting their signal-to-noise ratios. PMID:27283275

  9. The influence of visual representations of “the Other” in the system of modern sociocultural communications

    Kolodii Nataliya

    2016-01-01

    Full Text Available The paper deals with the way and the form of modern humanitaristics understanding of the problem of visual representation of “the Other”. The authors’ tasks were to comprehend the nature and dynamics of visualization, to give a distinct working definition of visual competence. Besides, the purpose of the paper was to state the components of visual competence, its criteria, estimation methods and in this context to interpret the image of “the Other” decoded in scientific philosophic and cultural literature and in daily cultural practices. And the final task was to reduce the visual message to the verbal one. The doctrine that the image may be read is the common prejudice, which prevents the formation of a new approach to visuality. The first step towards the solution of problem is to describe the techniques, which help in potential understanding of the visual structure. Understanding the image diversity and its possible text analogues should help in establishing the specific requirements, which can be and must be applicable to visual representation of “the Other”. Representations in the visual culture (photography, cinematography, media, painting, advertisement influence the social image, affects the daily social practices and communications. Visual representations are of interest for social theorists as well as cultural texts, as they give an idea on the context of cultural production, social interaction and individual experience.

  10. When memory is not enough: Electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention

    Carlisle, Nancy B.; Woodman, Geoffrey F.

    2011-01-01

    Biased competition theory proposes that representations in working memory drive visual attention to select similar inputs. However, behavioral tests of this hypothesis have led to mixed results. These inconsistent findings could be due to the inability of behavioral measures to reliably detect the early, automatic effects on attentional deployment that the memory representations exert. Alternatively, executive mechanisms may govern how working memory representations influence attention based ...

  11. The Effects of Visual Cues and Learners' Field Dependence in Multiple External Representations Environment for Novice Program Comprehension

    Wei, Liew Tze; Sazilah, Salam

    2012-01-01

    This study investigated the effects of visual cues in multiple external representations (MER) environment on the learning performance of novices' program comprehension. Program codes and flowchart diagrams were used as dual representations in multimedia environment to deliver lessons on C-Programming. 17 field independent participants and 16 field…

  12. Social Categories Shape the Neural Representation of Emotion: Evidence from a Visual Face Adaptation Task.

    Marte eOtten

    2012-02-01

    Full Text Available A number of recent behavioral studies have shown that emotional expressions are differently perceived depending on the race of a face, and that that perception of race cues is influenced by emotional expressions. However, neural processes related to the perception of invariant cues that indicate the identity of a face (such as race are often described to proceed independently of processes related to the perception of cues that can vary over time (such as emotion. Using a visual face adaptation paradigm, we tested whether these behavioral interactions between emotion and race also reflect interdependent neural representation of emotion and race. We compared visual emotion aftereffects when the adapting face and ambiguous test face differed in race or not. Emotion aftereffects were much smaller in different race trials than same race trials, indicating that the neural representation of a facial expression is significantly different depending on whether the emotional face is black or white. It thus seems that invariable cues such as race interact with variable face cues such as emotion not just at a response level, but also at the level of perception and neural representation.

  13. Multivoxel Object Representations in Adult Human Visual Cortex Are Flexible: An Associative Learning Study.

    Senoussi, Mehdi; Berry, Isabelle; VanRullen, Rufin; Reddy, Leila

    2016-06-01

    Learning associations between co-occurring events enables us to extract structure from our environment. Medial-temporal lobe structures are critical for associative learning. However, the role of the ventral visual pathway (VVP) in associative learning is not clear. Do multivoxel object representations in the VVP reflect newly formed associations? We show that VVP multivoxel representations become more similar to each other after human participants learn arbitrary new associations between pairs of unrelated objects (faces, houses, cars, chairs). Participants were scanned before and after 15 days of associative learning. To evaluate how object representations changed, a classifier was trained on discriminating two nonassociated categories (e.g., faces/houses) and tested on discriminating their paired associates (e.g., cars/chairs). Because the associations were arbitrary and counterbalanced across participants, there was initially no particular reason for this cross-classification decision to tend toward either alternative. Nonetheless, after learning, cross-classification performance increased in the VVP (but not hippocampus), on average by 3.3%, with some voxels showing increases of up to 10%. For example, a chair multivoxel representation that initially resembled neither face nor house representations was, after learning, classified as more similar to that of faces for participants who associated chairs with faces and to that of houses for participants who associated chairs with houses. Additionally, learning produced long-lasting perceptual consequences. In a behavioral priming experiment performed several months later, the change in cross-classification performance was correlated with the degree of priming. Thus, VVP multivoxel representations are not static but become more similar to each other after associative learning. PMID:26836513

  14. A Reggio-Inspired Music Atelier: Opening the Door between Visual Arts and Music

    Hanna, Wendell

    2014-01-01

    The Reggio Emilia approach is based on the idea that every child has at least, "one hundred languages" available for expressing perspectives of the world, and one of those languages is music. While all of the arts (visual, music, dance, drama) are considered equally important in Reggio schools, the visual arts have been particularly…

  15. Joint Low-Rank and Sparse Principal Feature Coding for Enhanced Robust Representation and Visual Classification.

    Zhang, Zhao; Li, Fanzhang; Zhao, Mingbo; Zhang, Li; Yan, Shuicheng

    2016-06-01

    Recovering low-rank and sparse subspaces jointly for enhanced robust representation and classification is discussed. Technically, we first propose a transductive low-rank and sparse principal feature coding (LSPFC) formulation that decomposes given data into a component part that encodes low-rank sparse principal features and a noise-fitting error part. To well handle the outside data, we then present an inductive LSPFC (I-LSPFC). I-LSPFC incorporates embedded low-rank and sparse principal features by a projection into one problem for direct minimization, so that the projection can effectively map both inside and outside data into the underlying subspaces to learn more powerful and informative features for representation. To ensure that the learned features by I-LSPFC are optimal for classification, we further combine the classification error with the feature coding error to form a unified model, discriminative LSPFC (D-LSPFC), to boost performance. The model of D-LSPFC seamlessly integrates feature coding and discriminative classification, so the representation and classification powers can be enhanced. The proposed approaches are more general, and several recent existing low-rank or sparse coding algorithms can be embedded into our problems as special cases. Visual and numerical results demonstrate the effectiveness of our methods for representation and classification. PMID:27046875

  16. Body ownership affects visual perception of object size by rescaling the visual representation of external space.

    van der Hoort, Björn; Ehrsson, H Henrik

    2014-07-01

    Size perception is most often explained by a combination of cues derived from the visual system. However, this traditional cue approach neglects the role of the observer's body beyond mere visual comparison. In a previous study, we used a full-body illusion to show that objects appear larger and farther away when participants experience a small artificial body as their own and that objects appear smaller and closer when they assume ownership of a large artificial body ("Barbie-doll illusion"; van der Hoort, Guterstam, & Ehrsson, PLoS ONE, 6(5), e20195, 2011). The first aim of the present study was to test the hypothesis that this own-body-size effect is distinct from the role of the seen body as a direct familiar-size cue. To this end, we developed a novel setup that allowed for occlusion of the artificial body during the presentation of test objects. Our results demonstrate that the feeling of ownership of an artificial body can alter the perceived sizes of objects without the need for a visible body. Second, we demonstrate that fixation shifts do not contribute to the own-body-size effect. Third, we show that the effect exists in both peri-personal space and distant extra-personal space. Finally, through a meta-analysis, we demonstrate that the own-body-size effect is independent of and adds to the classical visual familiar-size cue effect. Our results suggest that, by changing body size, the entire spatial layout rescales and new objects are now perceived according to this rescaling, without the need to see the body. PMID:24806404

  17. Bio-inspired modeling and implementation of the ocelli visual system of flying insects.

    Gremillion, Gregory; Humbert, J Sean; Krapp, Holger G

    2014-12-01

    Two visual sensing modalities in insects, the ocelli and compound eyes, provide signals used for flight stabilization and navigation. In this article, a generalized model of the ocellar visual system is developed for a 3-D visual simulation environment based on behavioral, anatomical, and electrophysiological data from several species. A linear measurement model is estimated from Monte Carlo simulation in a cluttered urban environment relating state changes of the vehicle to the outputs of the ocellar model. A fully analog-printed circuit board sensor based on this model is designed and fabricated. Open-loop characterization of the sensor to visual stimuli induced by self motion is performed. Closed-loop stabilizing feedback of the sensor in combination with optic flow sensors is implemented onboard a quadrotor micro-air vehicle and its impulse response is characterized. PMID:25217116

  18. Visual Behaviour Based Bio-Inspired Polarization Techniques in Computer Vision and Robotics

    Shabayek, Abd El Rahman; Morel, Olivier; Fofi, David

    2012-01-01

    For long time, it was thought that the sensing of polarization by animals is invariably related to their behavior, such as navigation and orientation. Recently, it was found that polarization can be part of a high-level visual perception, permitting a wide area of vision applications. Polarization vision can be used for most tasks of color vision including object recognition, contrast enhancement, camouflage breaking, and signal detection and discrimination. The polarization based visual beha...

  19. The Concept of Happiness as Conveyed in Visual Representations: Analysis of the Work of Early Childhood Educators

    Russo-Zimet, Gila; Segel, Sarit

    2014-01-01

    This research was designed to examine how early-childhood educators pursuing their graduate degrees perceive the concept of happiness, as conveyed in visual representations. The research methodology combines qualitative and quantitative paradigms using the metaphoric collage, a tool used to analyze visual and verbal aspects. The research…

  20. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  1. Picture this: The value of multiple visual representations for student learning of quantum concepts in general chemistry

    Allen, Emily Christine

    Mental models for scientific learning are often defined as, "cognitive tools situated between experiments and theories" (Duschl & Grandy, 2012). In learning, these cognitive tools are used to not only take in new information, but to help problem solve in new contexts. Nancy Nersessian (2008) describes a mental model as being "[loosely] characterized as a representation of a system with interactive parts with representations of those interactions. Models can be qualitative, quantitative, and/or simulative (mental, physical, computational)" (p. 63). If conceptual parts used by the students in science education are inaccurate, then the resulting model will not be useful. Students in college general chemistry courses are presented with multiple abstract topics and often struggle to fit these parts into complete models. This is especially true for topics that are founded on quantum concepts, such as atomic structure and molecular bonding taught in college general chemistry. The objectives of this study were focused on how students use visual tools introduced during instruction to reason with atomic and molecular structure, what misconceptions may be associated with these visual tools, and how visual modeling skills may be taught to support students' use of visual tools for reasoning. The research questions for this study follow from Gilbert's (2008) theory that experts use multiple representations when reasoning and modeling a system, and Kozma and Russell's (2005) theory of representational competence levels. This study finds that as students developed greater command of their understanding of abstract quantum concepts, they spontaneously provided additional representations to describe their more sophisticated models of atomic and molecular structure during interviews. This suggests that when visual modeling with multiple representations is taught, along with the limitations of the representations, it can assist students in the development of models for reasoning about

  2. Biologically Inspired Visual Model With Preliminary Cognition and Active Attention Adjustment.

    Qiao, Hong; Xi, Xuanyang; Li, Yinlin; Wu, Wei; Li, Fengfu

    2015-11-01

    Recently, many computational models have been proposed to simulate visual cognition process. For example, the hierarchical Max-Pooling (HMAX) model was proposed according to the hierarchical and bottom-up structure of V1 to V4 in the ventral pathway of primate visual cortex, which could achieve position- and scale-tolerant recognition. In our previous work, we have introduced memory and association into the HMAX model to simulate visual cognition process. In this paper, we improve our theoretical framework by mimicking a more elaborate structure and function of the primate visual cortex. We will mainly focus on the new formation of memory and association in visual processing under different circumstances as well as preliminary cognition and active adjustment in the inferior temporal cortex, which are absent in the HMAX model. The main contributions of this paper are: 1) in the memory and association part, we apply deep convolutional neural networks to extract various episodic features of the objects since people use different features for object recognition. Moreover, to achieve a fast and robust recognition in the retrieval and association process, different types of features are stored in separated clusters and the feature binding of the same object is stimulated in a loop discharge manner and 2) in the preliminary cognition and active adjustment part, we introduce preliminary cognition to classify different types of objects since distinct neural circuits in a human brain are used for identification of various types of objects. Furthermore, active cognition adjustment of occlusion and orientation is implemented to the model to mimic the top-down effect in human cognition process. Finally, our model is evaluated on two face databases CAS-PEAL-R1 and AR. The results demonstrate that our model exhibits its efficiency on visual recognition process with much lower memory storage requirement and a better performance compared with the traditional purely computational

  3. DeepTrack: Learning Discriminative Feature Representations Online for Robust Visual Tracking.

    Hanxi Li; Yi Li; Porikli, Fatih

    2016-04-01

    Deep neural networks, albeit their great success on feature learning in various computer vision tasks, are usually considered as impractical for online visual tracking, because they require very long training time and a large number of training samples. In this paper, we present an efficient and very robust tracking algorithm using a single convolutional neural network (CNN) for learning effective feature representations of the target object in a purely online manner. Our contributions are multifold. First, we introduce a novel truncated structural loss function that maintains as many training samples as possible and reduces the risk of tracking error accumulation. Second, we enhance the ordinary stochastic gradient descent approach in CNN training with a robust sample selection mechanism. The sampling mechanism randomly generates positive and negative samples from different temporal distributions, which are generated by taking the temporal relations and label noise into account. Finally, a lazy yet effective updating scheme is designed for CNN training. Equipped with this novel updating algorithm, the CNN model is robust to some long-existing difficulties in visual tracking, such as occlusion or incorrect detections, without loss of the effective adaption for significant appearance changes. In the experiment, our CNN tracker outperforms all compared state-of-the-art methods on two recently proposed benchmarks, which in total involve over 60 video sequences. The remarkable performance improvement over the existing trackers illustrates the superiority of the feature representations, which are learned purely online via the proposed deep learning framework. PMID:26841390

  4. DeepTrack: Learning Discriminative Feature Representations Online for Robust Visual Tracking

    Li, Hanxi; Li, Yi; Porikli, Fatih

    2016-04-01

    Deep neural networks, albeit their great success on feature learning in various computer vision tasks, are usually considered as impractical for online visual tracking because they require very long training time and a large number of training samples. In this work, we present an efficient and very robust tracking algorithm using a single Convolutional Neural Network (CNN) for learning effective feature representations of the target object, in a purely online manner. Our contributions are multifold: First, we introduce a novel truncated structural loss function that maintains as many training samples as possible and reduces the risk of tracking error accumulation. Second, we enhance the ordinary Stochastic Gradient Descent approach in CNN training with a robust sample selection mechanism. The sampling mechanism randomly generates positive and negative samples from different temporal distributions, which are generated by taking the temporal relations and label noise into account. Finally, a lazy yet effective updating scheme is designed for CNN training. Equipped with this novel updating algorithm, the CNN model is robust to some long-existing difficulties in visual tracking such as occlusion or incorrect detections, without loss of the effective adaption for significant appearance changes. In the experiment, our CNN tracker outperforms all compared state-of-the-art methods on two recently proposed benchmarks which in total involve over 60 video sequences. The remarkable performance improvement over the existing trackers illustrates the superiority of the feature representations which are learned

  5. Building ensemble representations: How the shape of preceding distractor distributions affects visual search.

    Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni

    2016-08-01

    Perception allows us to extract information about regularities in the environment. Observers can quickly determine summary statistics of a group of objects and detect outliers. The existing body of research has, however, not revealed how such ensemble representations develop over time. Moreover, the correspondence between the physical distribution of features in the external world and their potential internal representation as a probability density function (PDF) by the visual system is still unknown. Here, for the first time we demonstrate that such internal PDFs are built during visual search and show how they can be assessed with repetition and role-reversal effects. Using singleton search for an oddly oriented target line among differently oriented distractors (a priming of pop-out paradigm), we test how different properties of previously observed distractor distributions (mean, variability, and shape) influence search times. Our results indicate that observers learn properties of distractor distributions over and above mean and variance; in fact, response times also depend on the shape of the preceding distractor distribution. Response times decrease as a function of target distance from the mean of preceding Gaussian distractor distributions, and the decrease is steeper when preceding distributions have small standard deviations. When preceding distributions are uniform, however, this decrease in response times can be described by a two-piece function corresponding to the uniform distribution PDF. Moreover, following skewed distributions response times function is skewed in accordance with the skew in distributions. Indeed, internal PDFs seem to be specifically tuned to the observed feature distribution. PMID:27232163

  6. A biologically inspired psychometric function for accuracy of visual identification as a function of exposure duration

    Petersen, Anders; Andersen, Tobias

    modelling human performance in whole and partial report tasks in which multiple simultaneously presented letters are to be reported (Shibuya & Bundesen, 1988). Therefore, we investigated visual letter identification as a function of exposure duration. On each trial, a single randomly chosen letter (A-Z) was...

  7. Fast and automatic activation of an abstract representation of money in the human ventral visual pathway.

    Catherine Tallon-Baudry

    Full Text Available Money, when used as an incentive, activates the same neural circuits as rewards associated with physiological needs. However, unlike physiological rewards, monetary stimuli are cultural artifacts: how are monetary stimuli identified in the first place? How and when does the brain identify a valid coin, i.e. a disc of metal that is, by social agreement, endowed with monetary properties? We took advantage of the changes in the Euro area in 2002 to compare neural responses to valid coins (Euros, Australian Dollars with neural responses to invalid coins that have lost all monetary properties (French Francs, Finnish Marks. We show in magneto-encephalographic recordings, that the ventral visual pathway automatically distinguishes between valid and invalid coins, within only ∼150 ms. This automatic categorization operates as well on coins subjects were familiar with as on unfamiliar coins. No difference between neural responses to scrambled controls could be detected. These results could suggest the existence of a generic, all-purpose neural representation of money that is independent of experience. This finding is reminiscent of a central assumption in economics, money fungibility, or the fact that a unit of money is substitutable to another. From a neural point of view, our findings may indicate that the ventral visual pathway, a system previously thought to analyze visual features such as shape or color and to be influenced by daily experience, could also able to use conceptual attributes such as monetary validity to categorize familiar as well as unfamiliar visual objects. The symbolic abilities of the posterior fusiform region suggested here could constitute an efficient neural substrate to deal with culturally defined symbols, independently of experience, which probably fostered money's cultural emergence and success.

  8. Fast and automatic activation of an abstract representation of money in the human ventral visual pathway.

    Tallon-Baudry, Catherine; Meyniel, Florent; Bourgeois-Gironde, Sacha

    2011-01-01

    Money, when used as an incentive, activates the same neural circuits as rewards associated with physiological needs. However, unlike physiological rewards, monetary stimuli are cultural artifacts: how are monetary stimuli identified in the first place? How and when does the brain identify a valid coin, i.e. a disc of metal that is, by social agreement, endowed with monetary properties? We took advantage of the changes in the Euro area in 2002 to compare neural responses to valid coins (Euros, Australian Dollars) with neural responses to invalid coins that have lost all monetary properties (French Francs, Finnish Marks). We show in magneto-encephalographic recordings, that the ventral visual pathway automatically distinguishes between valid and invalid coins, within only ∼150 ms. This automatic categorization operates as well on coins subjects were familiar with as on unfamiliar coins. No difference between neural responses to scrambled controls could be detected. These results could suggest the existence of a generic, all-purpose neural representation of money that is independent of experience. This finding is reminiscent of a central assumption in economics, money fungibility, or the fact that a unit of money is substitutable to another. From a neural point of view, our findings may indicate that the ventral visual pathway, a system previously thought to analyze visual features such as shape or color and to be influenced by daily experience, could also able to use conceptual attributes such as monetary validity to categorize familiar as well as unfamiliar visual objects. The symbolic abilities of the posterior fusiform region suggested here could constitute an efficient neural substrate to deal with culturally defined symbols, independently of experience, which probably fostered money's cultural emergence and success. PMID:22140556

  9. Evidence for Integrated Visual Face and Body Representations in the Anterior Temporal Lobes.

    Harry, Bronson B; Umla-Runge, Katja; Lawrence, Andrew D; Graham, Kim S; Downing, Paul E

    2016-08-01

    Research on visual face perception has revealed a region in the ventral anterior temporal lobes, often referred to as the anterior temporal face patch (ATFP), which responds strongly to images of faces. To date, the selectivity of the ATFP has been examined by contrasting responses to faces against a small selection of categories. Here, we assess the selectivity of the ATFP in humans with a broad range of visual control stimuli to provide a stronger test of face selectivity in this region. In Experiment 1, participants viewed images from 20 stimulus categories in an event-related fMRI design. Faces evoked more activity than all other 19 categories in the left ATFP. In the right ATFP, equally strong responses were observed for both faces and headless bodies. To pursue this unexpected finding, in Experiment 2, we used multivoxel pattern analysis to examine whether the strong response to face and body stimuli reflects a common coding of both classes or instead overlapping but distinct representations. On a voxel-by-voxel basis, face and whole-body responses were significantly positively correlated in the right ATFP, but face and body-part responses were not. This finding suggests that there is shared neural coding of faces and whole bodies in the right ATFP that does not extend to individual body parts. In contrast, the same approach revealed distinct face and body representations in the right fusiform gyrus. These results are indicative of an increasing convergence of distinct sources of person-related perceptual information proceeding from the posterior to the anterior temporal cortex. PMID:27054399

  10. Object representations in visual working memory change according to the task context.

    Balaban, Halely; Luria, Roy

    2016-08-01

    This study investigated whether an item's representation in visual working memory (VWM) can be updated according to changes in the global task context. We used a modified change detection paradigm, in which the items moved before the retention interval. In all of the experiments, we presented identical color-color conjunction items that were arranged to provide a common fate Gestalt grouping cue during their movement. Task context was manipulated by adding a condition highlighting either the integrated interpretation of the conjunction items or their individuated interpretation. We monitored the contralateral delay activity (CDA) as an online marker of VWM. Experiment 1 employed only a minimal global context; the conjunction items were integrated during their movement, but then were partially individuated, at a late stage of the retention interval. The same conjunction items were perfectly integrated in an integration context (Experiment 2). An individuation context successfully produced strong individuation, already during the movement, overriding Gestalt grouping cues (Experiment 3). In Experiment 4, a short priming of the individuation context managed to individuate the conjunction items immediately after the Gestalt cue was no longer available. Thus, the representations of identical items changed according to the task context, suggesting that VWM interprets incoming input according to global factors which can override perceptual cues. PMID:27160997

  11. Searching for Category-Consistent Features: A Computational Approach to Understanding Visual Category Representation.

    Yu, Chen-Ping; Maxfield, Justin T; Zelinsky, Gregory J

    2016-06-01

    This article introduces a generative model of category representation that uses computer vision methods to extract category-consistent features (CCFs) directly from images of category exemplars. The model was trained on 4,800 images of common objects, and CCFs were obtained for 68 categories spanning subordinate, basic, and superordinate levels in a category hierarchy. When participants searched for these same categories, targets cued at the subordinate level were preferentially fixated, but fixated targets were verified faster when they followed a basic-level cue. The subordinate-level advantage in guidance is explained by the number of target-category CCFs, a measure of category specificity that decreases with movement up the category hierarchy. The basic-level advantage in verification is explained by multiplying the number of CCFs by sibling distance, a measure of category distinctiveness. With this model, the visual representations of real-world object categories, each learned from the vast numbers of image exemplars accumulated throughout everyday experience, can finally be studied. PMID:27142461

  12. Separating the Innocents from the Illegals: visual representation of the victims of sex trafficking in anti-trafficking campaigns

    Stolic, Tijana

    2014-01-01

    This thesis critically explores the discursive formations around the visual representation of the victims of sex trafficking in six anti-trafficking campaigns totalling 18 photographs. Critical discourse analysis is utilised as a methodological approach, while semiotics and iconography are used as methods of visual analysis. Picking up on the previous studies of the discourses of trafficking, the study aims to place the dominant discourses of trafficking into the context of humanitarian appea...

  13. Incidental learning of probability information is differentially affected by the type of visual working memory representation.

    van Lamsweerde, Amanda E; Beck, Melissa R

    2015-12-01

    In this study, we investigated whether the ability to learn probability information is affected by the type of representation held in visual working memory. Across 4 experiments, participants detected changes to displays of coloured shapes. While participants detected changes in 1 dimension (e.g., colour), a feature from a second, nonchanging dimension (e.g., shape) predicted which object was most likely to change. In Experiments 1 and 3, items could be grouped by similarity in the changing dimension across items (e.g., colours and shapes were repeated in the display), while in Experiments 2 and 4 items could not be grouped by similarity (all features were unique). Probability information from the predictive dimension was learned and used to increase performance, but only when all of the features within a display were unique (Experiments 2 and 4). When it was possible to group by feature similarity in the changing dimension (e.g., 2 blue objects appeared within an array), participants were unable to learn probability information and use it to improve performance (Experiments 1 and 3). The results suggest that probability information can be learned in a dimension that is not explicitly task-relevant, but only when the probability information is represented with the changing dimension in visual working memory. PMID:26010021

  14. High dynamic range imaging pipeline: perception-motivated representation of visual content

    Mantiuk, Rafal; Krawczyk, Grzegorz; Mantiuk, Radoslaw; Seidel, Hans-Peter

    2007-02-01

    The advances in high dynamic range (HDR) imaging, especially in the display and camera technology, have a significant impact on the existing imaging systems. The assumptions of the traditional low-dynamic range imaging, designed for paper print as a major output medium, are ill suited for the range of visual material that is shown on modern displays. For example, the common assumption that the brightest color in an image is white can be hardly justified for high contrast LCD displays, not to mention next generation HDR displays, that can easily create bright highlights and the impression of self-luminous colors. We argue that high dynamic range representation can encode images regardless of the technology used to create and display them, with the accuracy that is only constrained by the limitations of the human eye and not a particular output medium. To facilitate the research on high dynamic range imaging, we have created a software package (http://pfstools.sourceforge.net/) capable of handling HDR data on all stages of image and video processing. The software package is available as open source under the General Public License and includes solutions for high quality image acquisition from multiple exposures, a range of tone mapping algorithms and a visual difference predictor for HDR images. Examples of shell scripts demonstrate how the software can be used for processing single images as well as video sequences.

  15. The Culture of Visual Representations in Spectroscopic Education and Laboratory Instruction

    Hentschel, Klaus

    This study on spectroscopic training mainly from 1860-1914 drawing on archival documentation at the Massachusetts Institute of Technology and Wellesley College reveals a conspicuous emphasis on drawing skills and consultation of spectral maps, besides textbooks. This culture of visual representations liberated science education from a philologically dominated pedagogy in the late 19th century. Student notebooks are ladened with sketches from laboratory observations, lantern-slide projections, or posters. I describe the various didactic techniques used to facilitate visualization and memorization of specific spectroscopic Gestalten and show how these graphic resources were used to train the difficult skill of classifying stellar spectra. In its heyday, spectroscopy was firmly integrated in the curriculum to become an important part of the practical training not only of scientists but also of liberal arts students, even finding its way into vocational schools and Gymnasia. Within the framework of this Anschauungsunterricht I identify the teaching traditions and link them to the laboratory exercises by Kohlrausch, Pickering, Lockyer and Weinhold.

  16. Evaluation of target and cardiac position during visually monitored deep inspiration breath-hold for breast radiotherapy.

    Conroy, Leigh; Yeung, Rosanna; Watt, Elizabeth; Quirk, Sarah; Long, Karen; Hudson, Alana; Phan, Tien; Smith, Wendy L

    2016-01-01

    A low-resource visually monitored deep inspiration breath-hold (VM-DIBH) technique was successfully implemented in our clinic to reduce cardiac dose in left-sided breast radiotherapy. In this study, we retrospectively characterized the chest wall and heart positioning accuracy of VM-DIBH using cine portal images from 42 patients. Central chest wall position from field edge and in-field maximum heart distance (MHD) were manually measured on cine images and compared to the planned positions based on the digitally reconstructed radiographs (DRRs). An in-house program was designed to measure left anterior descending artery (LAD) and chest wall separation on the planning DIBH CT scan with respect to breath-hold level (BHL) during simulation to determine a minimum BHL for VM-DIBH eligibility. Systematic and random setup uncertainties of 3.0 mm and 2.6 mm, respectively, were found for VM-DIBH treatment from the chest wall measurements. Intrabeam breath-hold stability was found to be good, with over 96% of delivered fields within 3 mm. Average treatment MHD was significantly larger for those patients where some of the heart was planned in the field compared to patients whose heart was completely shielded in the plan (p < 0.001). No evidence for a minimum BHL was found, suggesting that all patients who can tolerate DIBH may yield a benefit from it. PMID:27455494

  17. When memory is not enough: electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention.

    Carlisle, Nancy B; Woodman, Geoffrey F

    2011-10-01

    Biased competition theory proposes that representations in working memory drive visual attention to select similar inputs. However, behavioral tests of this hypothesis have led to mixed results. These inconsistent findings could be due to the inability of behavioral measures to reliably detect the early, automatic effects on attentional deployment that the memory representations exert. Alternatively, executive mechanisms may govern how working memory representations influence attention based on higher-level goals. In the present study, we tested these hypotheses using the N2pc component of participants' event-related potentials to directly measure the early deployments of covert attention. Participants searched for a target in an array that sometimes contained a memory-matching distractor. In Experiments 1 to 3, we manipulated the difficulty of the target discrimination and the proximity of distractors, but consistently observed that covert attention was deployed to the search targets and not the memory-matching distractors. In Experiment 4, we showed that when participants' goal involved attending to memory-matching items, these items elicited a large and early N2pc. Our findings demonstrate that working memory representations alone are not sufficient to guide early deployments of visual attention to matching inputs and that goal-dependent executive control mediates the interactions between working memory representations and visual attention. PMID:21254796

  18. Features of the retinotopic representation in the visual wulst of a laterally eyed bird, the zebra finch (Taeniopygia guttata).

    Michael, Neethu; Löwel, Siegrid; Bischof, Hans-Joachim

    2015-01-01

    The visual wulst of the zebra finch comprises at least two retinotopic maps of the contralateral eye. As yet, it is not known how much of the visual field is represented in the wulst neuronal maps, how the organization of the maps is related to the retinal architecture, and how information from the ipsilateral eye is involved in the activation of the wulst. Here, we have used autofluorescent flavoprotein imaging and classical anatomical methods to investigate such characteristics of the most posterior map of the multiple retinotopic representations. We found that the visual wulst can be activated by visual stimuli from a large part of the visual field of the contralateral eye. Horizontally, the visual field representation extended from -5° beyond the beak tip up to +125° laterally. Vertically, a small strip from -10° below to about +25° above the horizon activated the visual wulst. Although retinal ganglion cells had a much higher density around the fovea and along a strip extending from the fovea towards the beak tip, these areas were not overrepresented in the wulst map. The wulst area activated from the foveal region of the ipsilateral eye, overlapped substantially with the middle of the three contralaterally activated regions in the visual wulst, and partially with the other two. Visual wulst activity evoked by stimulation of the frontal visual field was stronger with contralateral than with binocular stimulation. This confirms earlier electrophysiological studies indicating an inhibitory influence of the activation of the ipsilateral eye on wulst activity elicited by stimulating the contralateral eye. The lack of a foveal overrepresentation suggests that identification of objects may not be the primary task of the zebra finch visual wulst. Instead, this brain area may be involved in the processing of visual information necessary for spatial orientation. PMID:25853253

  19. A bio-inspired method and system for visual object-based attention and segmentation

    Huber, David J.; Khosla, Deepak

    2010-04-01

    This paper describes a method and system of human-like attention and object segmentation in visual scenes that (1) attends to regions in a scene in their rank of saliency in the image, (2) extracts the boundary of an attended proto-object based on feature contours, and (3) can be biased to boost the attention paid to specific features in a scene, such as those of a desired target object in static and video imagery. The purpose of the system is to identify regions of a scene of potential importance and extract the region data for processing by an object recognition and classification algorithm. The attention process can be performed in a default, bottom-up manner or a directed, top-down manner which will assign a preference to certain features over others. One can apply this system to any static scene, whether that is a still photograph or imagery captured from video. We employ algorithms that are motivated by findings in neuroscience, psychology, and cognitive science to construct a system that is novel in its modular and stepwise approach to the problems of attention and region extraction, its application of a flooding algorithm to break apart an image into smaller proto-objects based on feature density, and its ability to join smaller regions of similar features into larger proto-objects. This approach allows many complicated operations to be carried out by the system in a very short time, approaching real-time. A researcher can use this system as a robust front-end to a larger system that includes object recognition and scene understanding modules; it is engineered to function over a broad range of situations and can be applied to any scene with minimal tuning from the user.

  20. What Happens to Student Learning When Color Is Added to a New Knowledge Representation Strategy? Implications from Visual Thinking Networking.

    Longo, Palma J.

    A long-term study was conducted to test the effectiveness of visual thinking networking (VTN), a new generation of knowledge representation strategies with 56 ninth grade earth science students. The recent findings about the brain's organization and processing conceptually ground VTN as a new cognitive tool used by learners when making their…

  1. VISUAL REPRESENTATION OF MAIN ACTORS POVERTY IN SERBIA: SEMIOTIC ANALYSIS OF TELEVISION IMAGE AND PHOTOGRAPHY IN MEDIA TEXTS

    Brankica Drašković

    2012-12-01

    Full Text Available This paper analyzes the media's visual representation of various poverty groups within Serbia.The visual representation is not simply a reflection of reality, but rather an instrument that plays an important role in prescribing different meaning  to media events and their appearances in public.The aim of this research is to determine how the visual code transmits messages about poverty and socially excluded groups, in the analyzed television news, newspaper and online photographs. Based on the sample of  410 articles on poverty, collected between the 14th and  28th of  October 2010 and 2011, this paper critically analyses the medias representation of poverty within Serbian society through methods of content analysis, critical discourse studies, and the use of semiotic approahes to images. Analysis of the structure of discourse shows that the visual representation of the poor in Serbian society is highly simplified, stereotyped and is seperated from the wider societal context of poverty. It is rather reduced to bits and  pieces of media images, which do not properly indicate the seriousnes of the problem of poverty making it difficult for mass audiences to identify with.

  2. VStops: A Thinking Strategy and Visual Representation Approach in Mathematical Word Problem Solving toward Enhancing STEM Literacy

    Abdullah, Nasarudin; Halim, Lilia; Zakaria, Effandi

    2014-01-01

    This study aimed to determine the impact of strategic thinking and visual representation approaches (VStops) on the achievement, conceptual knowledge, metacognitive awareness, awareness of problem-solving strategies, and student attitudes toward mathematical word problem solving among primary school students. The experimental group (N = 96)…

  3. The effects of a visualization-centered curriculum on conceptual understanding and representational competence in high school biology

    Wilder, Anna

    The purpose of this study was to investigate the effects of a visualization-centered curriculum, Hemoglobin: A Case of Double Identity, on conceptual understanding and representational competence in high school biology. Sixty-nine students enrolled in three sections of freshman biology taught by the same teacher participated in this study. Online Chemscape Chime computer-based molecular visualizations were incorporated into the 10-week curriculum to introduce students to fundamental structure and function relationships. Measures used in this study included a Hemoglobin Structure and Function Test, Mental Imagery Questionnaire, Exam Difficulty Survey, the Student Assessment of Learning Gains, the Group Assessment of Logical Thinking, the Attitude Toward Science in School Assessment, audiotapes of student interviews, students' artifacts, weekly unit activity surveys, informal researcher observations and a teacher's weekly questionnaire. The Hemoglobin Structure and Function Test, consisting of Parts A and B, was administered as a pre and posttest. Part A used exclusively verbal test items to measure conceptual understanding, while Part B used visual-verbal test items to measure conceptual understanding and representational competence. Results of the Hemoglobin Structure and Function pre and posttest revealed statistically significant gains in conceptual understanding and representational competence, suggesting the visualization-centered curriculum implemented in this study was effective in supporting positive learning outcomes. The large positive correlation between posttest results on Part A, comprised of all-verbal test items, and Part B, using visual-verbal test items, suggests this curriculum supported students' mutual development of conceptual understanding and representational competence. Evidence based on student interviews, Student Assessment of Learning Gains ratings and weekly activity surveys indicated positive attitudes toward the use of Chemscape Chime

  4. Disentangling Representations of Object Shape and Object Category in Human Visual Cortex: The Animate-Inanimate Distinction.

    Proklova, Daria; Kaiser, Daniel; Peelen, Marius V

    2016-05-01

    Objects belonging to different categories evoke reliably different fMRI activity patterns in human occipitotemporal cortex, with the most prominent distinction being that between animate and inanimate objects. An unresolved question is whether these categorical distinctions reflect category-associated visual properties of objects or whether they genuinely reflect object category. Here, we addressed this question by measuring fMRI responses to animate and inanimate objects that were closely matched for shape and low-level visual features. Univariate contrasts revealed animate- and inanimate-preferring regions in ventral and lateral temporal cortex even for individually matched object pairs (e.g., snake-rope). Using representational similarity analysis, we mapped out brain regions in which the pairwise dissimilarity of multivoxel activity patterns (neural dissimilarity) was predicted by the objects' pairwise visual dissimilarity and/or their categorical dissimilarity. Visual dissimilarity was measured as the time it took participants to find a unique target among identical distractors in three visual search experiments, where we separately quantified overall dissimilarity, outline dissimilarity, and texture dissimilarity. All three visual dissimilarity structures predicted neural dissimilarity in regions of visual cortex. Interestingly, these analyses revealed several clusters in which categorical dissimilarity predicted neural dissimilarity after regressing out visual dissimilarity. Together, these results suggest that the animate-inanimate organization of human visual cortex is not fully explained by differences in the characteristic shape or texture properties of animals and inanimate objects. Instead, representations of visual object properties and object category may coexist in more anterior parts of the visual system. PMID:26765944

  5. Remapping, Spatial Stability, and Temporal Continuity: From the Pre-Saccadic to Postsaccadic Representation of Visual Space in LIP.

    Mirpour, Koorosh; Bisley, James W

    2016-07-01

    As our eyes move, we have a strong percept that the world is stable in space and time; however, the signals in cortex coming from the retina change with each eye movement. It is not known how this changing input produces the visual percept we experience, although the predictive remapping of receptive fields has been described as a likely candidate. To explain how remapping accounts for perceptual stability, we examined responses of neurons in the lateral intraparietal area while animals performed a visual foraging task. When a stimulus was brought into the response field of a neuron that exhibited remapping, the onset of the postsaccadic representation occurred shortly after the saccade ends. Whenever a stimulus was taken out of the response field, the presaccadic representation abruptly ended shortly after the eyes stopped moving. In the 38% (20/52) of neurons that exhibited remapping, there was no more than 30 ms between the end of the presaccadic representation and the start of the postsaccadic representation and, in some neurons, and the population as a whole, it was continuous. We conclude by describing how this seamless shift from a presaccadic to postsaccadic representation could contribute to spatial stability and temporal continuity. PMID:26142462

  6. Location-Unbound Color-Shape Binding Representations in Visual Working Memory.

    Saiki, Jun

    2016-02-01

    The mechanism by which nonspatial features, such as color and shape, are bound in visual working memory, and the role of those features' location in their binding, remains unknown. In the current study, I modified a redundancy-gain paradigm to investigate these issues. A set of features was presented in a two-object memory display, followed by a single object probe. Participants judged whether the probe contained any features of the memory display, regardless of its location. Response time distributions revealed feature coactivation only when both features of a single object in the memory display appeared together in the probe, regardless of the response time benefit from the probe and memory objects sharing the same location. This finding suggests that a shared location is necessary in the formation of bound representations but unnecessary in their maintenance. Electroencephalography data showed that amplitude modulations reflecting location-unbound feature coactivation were different from those reflecting the location-sharing benefit, consistent with the behavioral finding that feature-location binding is unnecessary in the maintenance of color-shape binding. PMID:26710821

  7. Visual representation of knowledge in the field of Library and Information Science of IRAN

    Afsoon Sabetpour

    2015-05-01

    Full Text Available Purpose: The present research has been done to visual representation of knowledge and determination vacuum and density points of scientific trends of faculty members of state universities of IRAN in Library & Information Science field. Method: Curriculum Vitae of each faculty member with census method were collected and its content analyzed. Then using a checklist, the rate scientific tendencies were extracted. NodeXL software was deployed to map out the levels. Results: The results showed that the trends are concentrated in Scientometrics, Research method in Library & Information Science, information organization, information resources, psychology, Education, Management, the Web, Knowledge management, Academic Libraries, Information services, Information Theories and collection management. Apparently, the Library & Information Science community of experts pays little or no attention to the Library & Information Science applications in the fields of chemistry, Cartography, museum, law, art, school libraries as well as to independent subject clusters such as minorities in library, information architecture, mentoring in library science, library automation, preservation, oral history, cybernetics, copyright, information marketing and information economy. Lack of efforts on these areas is remarkable.

  8. Contrasting vertical and horizontal representations of affect in emotional visual search.

    Damjanovic, Ljubica; Santiago, Julio

    2016-02-01

    Independent lines of evidence suggest that the representation of emotional evaluation recruits both vertical and horizontal spatial mappings. These two spatial mappings differ in their experiential origins and their productivity, and available data suggest that they differ in their saliency. Yet, no study has so far compared their relative strength in an attentional orienting reaction time task that affords the simultaneous manifestation of both types of mapping. Here, we investigated this question using a visual search task with emotional faces. We presented angry and happy face targets and neutral distracter faces in top, bottom, left, and right locations on the computer screen. Conceptual congruency effects were observed along the vertical dimension supporting the 'up = good' metaphor, but not along the horizontal dimension. This asymmetrical processing pattern was observed when faces were presented in a cropped (Experiment 1) and whole (Experiment 2) format. These findings suggest that the 'up = good' metaphor is more salient and readily activated than the 'right = good' metaphor, and that the former outcompetes the latter when the task context affords the simultaneous activation of both mappings. PMID:26106061

  9. Images as representations : Visual sources on education and childhood in the past

    Dekker, Jeroen J.H.

    2015-01-01

    The challenge of using images for the history of education and childhood will be addressed in this article by looking at them as representations. Central is the relationship between representations and reality. The focus is on the power of paintings as representations of aspects of realities. First

  10. The use of multiple representations and visualizations in student learning of introductory physics: An example from work and energy

    Zou, Xueli

    In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic

  11. Learners' perspectives of identity and difference: a narrative study on visual and verbal representation of self and other

    Vinha, Maria Hilrani Gondim Lima

    2011-01-01

    This thesis discusses children‘s perceptions of self and others in the context of the inclusion debate, including debates about the conceptualisation of disability from the medical/individual and social models. The chosen media to investigate children‘s perceptions are their visual and verbal representation of differences. Therefore, this investigation is concerned with the verbal and non-verbal aspects of communication, including an interest in finding spontaneously emerging metaphors. Linke...

  12. KCRC-LCD: Discriminative Kernel Collaborative Representation with Locality Constrained Dictionary for Visual Categorization

    Liu, Weiyang; Yu, Zhiding; Lu, Lijia; Wen, Yandong; Hui LI; Zou, Yuexian

    2014-01-01

    We consider the image classification problem via kernel collaborative representation classification with locality constrained dictionary (KCRC-LCD). Specifically, we propose a kernel collaborative representation classification (KCRC) approach in which kernel method is used to improve the discrimination ability of collaborative representation classification (CRC). We then measure the similarities between the query and atoms in the global dictionary in order to construct a locality constrained ...

  13. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p 2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  14. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    Cerviño, Laura I.; Gupta, Sonia; Rose, Mary A.; Yashar, Catheryn; Jiang, Steve B.

    2009-11-01

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p 2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  15. The Effect of Visual-Chunking-Representation Accommodation on Geometry Testing for Students with Math Disabilities

    Zhang, Dake; Ding, Yi; Stegall, Joanna; Mo, Lei

    2012-01-01

    Students who struggle with learning mathematics often have difficulties with geometry problem solving, which requires strong visual imagery skills. These difficulties have been correlated with deficiencies in visual working memory. Cognitive psychology has shown that chunking of visual items accommodates students' working memory deficits. This…

  16. Retrieval from long-term memory reduces working memory representations for visual features and their bindings.

    van Lamsweerde, Amanda E; Beck, Melissa R; Elliott, Emily M

    2015-02-01

    The ability to remember feature bindings is an important measure of the ability to maintain objects in working memory (WM). In this study, we investigated whether both object- and feature-based representations are maintained in WM. Specifically, we tested the hypotheses that retaining a greater number of feature representations (i.e., both as individual features and bound representations) results in a more robust representation of individual features than of feature bindings, and that retrieving information from long-term memory (LTM) into WM would cause a greater disruption to feature bindings. In four experiments, we examined the effects of retrieving a word from LTM on shape and color-shape binding change detection performance. We found that binding changes were more difficult to detect than individual-feature changes overall, but that the cost of retrieving a word from LTM was the same for both individual-feature and binding changes. PMID:25301564

  17. Writing Inspired

    Tischhauser, Karen

    2015-01-01

    Students need inspiration to write. Assigning is not teaching. In order to inspire students to write fiction worth reading, teachers must take them through the process of writing. Physical objects inspire good writing with depth. In this article, the reader will be taken through the process of inspiring young writers through the use of boxes.…

  18. TMRPres2D: high quality visual representation of transmembrane protein models.

    Spyropoulos, Ioannis C; Liakopoulos, Theodore D; Bagos, Pantelis G; Hamodrakas, Stavros J

    2004-11-22

    The 'TransMembrane protein Re-Presentation in 2-Dimensions' (TMRPres2D) tool, automates the creation of uniform, two-dimensional, high analysis graphical images/models of alpha-helical or beta-barrel transmembrane proteins. Protein sequence data and structural information may be acquired from public protein knowledge bases, emanate from prediction algorithms, or even be defined by the user. Several important biological and physical sequence attributes can be embedded in the graphical representation. PMID:15201184

  19. Toward an evolutionary perspective on conceptual representation: species-specific calls activate visual and affective processing systems in the macaque.

    Gil-da-Costa, Ricardo; Braun, Allen; Lopes, Marco; Hauser, Marc D; Carson, Richard E; Herscovitch, Peter; Martin, Alex

    2004-12-14

    Non-human primates produce a diverse repertoire of species-specific calls and have rich conceptual systems. Some of their calls are designed to convey information about concepts such as predators, food, and social relationships, as well as the affective state of the caller. Little is known about the neural architecture of these calls, and much of what we do know is based on single-cell physiology from anesthetized subjects. By using positron emission tomography in awake rhesus macaques, we found that conspecific vocalizations elicited activity in higher-order visual areas, including regions in the temporal lobe associated with the visual perception of object form (TE/TEO) and motion (superior temporal sulcus) and storing visual object information into long-term memory (TE), as well as in limbic (the amygdala and hippocampus) and paralimbic regions (ventromedial prefrontal cortex) associated with the interpretation and memory-encoding of highly salient and affective material. This neural circuitry strongly corresponds to the network shown to support representation of conspecifics and affective information in humans. These findings shed light on the evolutionary precursors of conceptual representation in humans, suggesting that monkeys and humans have a common neural substrate for representing object concepts. PMID:15583132

  20. Visual Word Recognition is Accompanied by Covert Articulation: Evidence for a Speech-like Phonological Representation

    Eiter, Brianna M.; INHOFF, ALBRECHT W.

    2008-01-01

    Two lexical decision task (LDT) experiments examined whether visual word recognition involves the use of a speech-like phonological code that may be generated via covert articulation. In Experiment 1, each visual item was presented with an irrelevant spoken word (ISW) that was either phonologically identical, similar, or dissimilar to it. An ISW delayed classification of a visual word when the two were phonologically similar, and it delayed the classification of a pseudoword when it was ident...

  1. Visual representation of costs in the productive process: a case study on a footwear industry in Portugal

    Levi da Silva Guimarães

    2015-12-01

    Full Text Available Over the last decades, conventional production systems have gone through changes in the face of intensified competition among companies. The occurrence of these changes has boosted the development of decision-making assistance tools for the production systems. However, most of these instruments do not allow the visualization of the costs involved throughout industrial operations. This study comprises the integration of the "Waste Identification Diagrams" (WID, current tool for visualization and analysis of production processes, along with "Time-Driven Activity-Based Costing" (TDABC, strategic management cost tool, seeking to create a model that visually demonstrates waste and relate its occurrence to operating costs. For that, the research adopted a descriptive-exploratory approach, based on a case study carried out in a footwear industry. The analysis showed that the integration of tools allowed for the representation of costs based on the time equations from the TDABC, associated with the visualization of the production process by the WID. The study concludes that the WID can be integrated to the TDABC tool, creating a management model for making decisions based on the operating costs of the production process.

  2. Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL

    Surya, Edy; Sabandar, Jozua; Kusumah, Yaya S.; Darhim

    2013-01-01

    The students' difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal mathematical understanding, and mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was…

  3. The time course of protecting a visual memory representation from perceptual interference

    Dirk evan Moorselaar

    2015-01-01

    Full Text Available Cueing a remembered item during the delay of a visual memory task leads to enhanced recall of the cued item compared to when an item is not cued. This cueing benefit has been proposed to reflect attention within visual memory being shifted from a distributed mode to a focused mode, thus protecting the cued item against perceptual interference. Here we investigated the dynamics of building up this mnemonic protection against visual interference by systematically varying the SOA between cue onset and a subsequent visual mask in an orientation memory task. Experiment 1 showed that a cue counteracted the deteriorating effect of pattern masks. Experiment 2 demonstrated that building up this protection is a continuous process that is completed in approximately half a second after cue onset. The similarities between shifting attention in perceptual and remembered space are discussed.

  4. Visualization and Representation of Physical Systems: Wavemaker as an Aid to Conceptualizing Wave Phenomena.

    Sadler, Philip M.; Whitney, Charles A.; Shore, Linda; Deutsch, Freeman

    1999-01-01

    Describes Wavemaker, a simulation environment developed to graphically reveal the behavior of periodic systems using a series of increasingly sophisticated visual tools. Results indicate that the software is helpful in connecting real to simulated systems. (Author/CCM)

  5. Resilience to the contralateral visual field bias as a window into object representations.

    Garcea, Frank E; Kristensen, Stephanie; Almeida, Jorge; Mahon, Bradford Z

    2016-08-01

    Viewing images of manipulable objects elicits differential blood oxygen level-dependent (BOLD) contrast across parietal and dorsal occipital areas of the human brain that support object-directed reaching, grasping, and complex object manipulation. However, it is unknown which object-selective regions of parietal cortex receive their principal inputs from the ventral object-processing pathway and which receive their inputs from the dorsal object-processing pathway. Parietal areas that receive their inputs from the ventral visual pathway, rather than from the dorsal stream, will have inputs that are already filtered through object categorization and identification processes. This predicts that parietal regions that receive inputs from the ventral visual pathway should exhibit object-selective responses that are resilient to contralateral visual field biases. To test this hypothesis, adult participants viewed images of tools and animals that were presented to the left or right visual fields during functional magnetic resonance imaging (fMRI). We found that the left inferior parietal lobule showed robust tool preferences independently of the visual field in which tool stimuli were presented. In contrast, a region in posterior parietal/dorsal occipital cortex in the right hemisphere exhibited an interaction between visual field and category: tool-preferences were strongest contralateral to the stimulus. These findings suggest that action knowledge accessed in the left inferior parietal lobule operates over inputs that are abstracted from the visual input and is contingent on analysis by the ventral visual pathway, consistent with its putative role in supporting object manipulation knowledge. PMID:27160998

  6. A STUDY ON MENTAL REPRESENTATIONS FOR REALISTIC VISUALIZATION THE PARTICULAR CASE OF SKI TRAIL MAPPING

    Balzarini, R.; Dalmasso, A.; Murat, M.

    2015-01-01

    This article presents preliminary results from a research project in progress that brings together geographers, cognitive scientists, historians and computer scientists. The project investigates the evolution of a particular territorial model: ski trails maps. Ski resorts, tourist and sporting innovations for mountain economies since the 1930s, have needed cartographic representations corresponding to new practices of the space.Painter artists have been involved in producing ski maps with pai...

  7. A modeling language for 3D process plant layout representation, exchange and visualization

    Paviot, Thomas; Fortineau, Virginie; Lamouri, Samir; Louis-Sidney, Ludovic

    2012-01-01

    International Conference on Product Lifecycle Management (PLM12), IFIP WG5.1. In the nuclear industry, achieving Long Term Data Preservation is a requirement for nuclear power plants to be safely built, operated over five or six decades and retired. Among them, CAD data suffers from some strong dependencies on the software vendors and its data model thus leading to a possible weakness in the preservation workflow. This paper presents a modeling language, suitable for the 3D representation ...

  8. The role of visual representations in the learning and teaching of science: An introduction

    John K. GILBERT

    2010-06-01

    Full Text Available Representations are the entities with which all thinking is considered to take place. Hence they are central to the process of learning and consequently to that of teaching. They are therefore important in the conduct and learning of science, given the central commitment of that discipline to providing evidence-based explanations of natural phenomena, in which underlying entities and mechanisms have to be postulated and substantiated on the basis of empirical enquiry. The three generic types of representation and the modes in which they are expressed are presented against the background of an established model of their acquisition, processing and display. The two meanings of ‘visualization’ are discussed as is the key role played by fluency in them in the attainment of expert status in the processes of science. The nature and origins of students’ problems in attaining this ‘metavisual competence’ are derived from a review of the literature. Good practice in the teaching of the conventions of representation is suggested. Specific research and development is needed if this key aspect of knowledge acquisition and display is to be fully recognised in the varied curricula of formal science education and in the provision of opportunities for the informal communication of science.

  9. a Study on Mental Representations for Realistic Visualization the Particular Case of Ski Trail Mapping

    Balzarini, R.; Dalmasso, A.; Murat, M.

    2015-08-01

    This article presents preliminary results from a research project in progress that brings together geographers, cognitive scientists, historians and computer scientists. The project investigates the evolution of a particular territorial model: ski trails maps. Ski resorts, tourist and sporting innovations for mountain economies since the 1930s, have needed cartographic representations corresponding to new practices of the space.Painter artists have been involved in producing ski maps with painting techniques and panoramic views, which are by far the most common type of map, because they allow the resorts to look impressive to potential visitors. These techniques have evolved throughout the mutations of the ski resorts. Paper ski maps no longer meet the needs of a large part of the customers; the question now arises of their adaptation to digital media. In a computerized process perspective, the early stage of the project aims to identify the artist-representations, based on conceptual and technical rules, which are handled by users-skiers to perform a task (location, wayfinding, decision-making) and can be transferred to a computer system. This article presents the experimental phase that analyzes artist and user mental representations that are at stake during the making and the reading of a paper ski map. It particularly focuses on how the invention of the artist influences map reading.

  10. Representation of the visual field in the anterior thalamus of the leopard frog, Rana pipiens.

    Skorina, Laura K; Recktenwald, Eric W; Dudkin, Elizabeth A; Saidel, William M; Gruberg, Edward R

    2016-05-16

    We used physiological and anatomical methods to elucidate how the visual field is represented in the part of the dorsal anterior thalamus of the leopard frog that receives direct retinal projections. We recorded extracellularly while presenting visual stimuli, and characterized a physiologically defined region that encompasses the retinal projections as well as an extended zone beyond them. We probed the area systematically to determine if the zone is organized in a visuotopic map: we found that it is not. We found that units in this region respond only to stimuli in the contralateral half of the visual field, which is similar to what is seen in the dorsal lateral geniculate nucleus in mammals. When we backfilled retinal ganglion cells from application of HRP to the anterior thalamus, we found labeled cells only in those parts of the retina corresponding to the contralateral hemifield, confirming our physiological observations. PMID:27064110

  11. Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons.

    Carlo Baldassi

    Full Text Available The anterior inferotemporal cortex (IT is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects. In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics, we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex.

  12. Newly Qualifying Teachers' Perspectives of Diversity and Inclusion: "Understanding through Visual Representations"

    Phillipson, Sivanes; Forlin, Chris

    2011-01-01

    This research explores the use of visual imagery as a strategy for gaining a greater understanding of diversity and inclusion within regular schools as perceived from the perspective of 118 newly qualifying teachers in Hong Kong. Dyads or small groups of teachers participating in a teacher education course were asked to represent their…

  13. Modes of Self-Representation : Visualized Identities of former Yugoslav Migrant Women in The Netherlands

    van Gorp, Jasmijn

    2014-01-01

    This study investigates visualized identities of ‘former Yugoslav’ migrant women in the Netherlands. Ten women with roots in Serbia, Bosnia-Herzegovina or Croatia were asked to depict their identities in a series of photographs over the course of one week. Subsequently they were prompted to contextu

  14. Visual working memory representations guide the detection of emotional faces: An ERP study.

    Fan, Lingxia; Ding, Cody; Guo, Renlu; Xu, Mengsi; Diao, Liuting; Yang, Dong

    2016-02-01

    We investigated the correlates of the influences exerted by visual working memory (VWM) on attentional selection of emotional faces using electrophysiological method. Participants performed a search task to detect happy or angry faces among groups of neutral faces while simultaneously keeping in VWM a colour cue presented initially. A visual working memory test was required at last to ensure that the cue had been maintained in VWM. Happy faces elicited a larger amplitude N2pc ERP component when VWM features matched the target face (valid condition) and a smaller amplitude when VWM features matched a distractor face (invalid condition), compared with the neutral condition (wherein VWM features did not match any face in the search array). Additionally, angry faces elicited a greater N2pc amplitude in valid trials than in neutral and invalid trials. Although VWM could guide the attentional deployment of angry and happy faces, the guidance was subject to an anger superiority effect. PMID:26731647

  15. Flow visualization study of a two-dimensional representation of the Space Shuttle launch pad configuration

    Mclachland, B. G.; Zilliac, G. G.; Davis, S. S.

    1987-01-01

    The loss of the Space Shuttle Challenger was caused by the failure of the aft joint O-ring seals in its right solid rocket booster. It has been suggested by several sources that wind conditions through a reduction in temperature of the right solid rocket booster caused by the wind blowing across the cold external tank, played a role in the O-ring failure. To check the plausibility of the wind theory, an experiment was carried out in a water towing tank to visualize the flow past a two-dimensional model representing a cross section of the Space Shuttle launch configuration. The periodic formation of vortices was found to characterize the wake generated by the model. It is suggested that this organized motion in the flow is the dominant mechanism that accomplishes heat transfer from the external tank to the right solid rocket booster. Flow visualization results consisting of photographs that show instantaneous streamline patterns of the flow are presented.

  16. Linked Data based Health Information Representation, Visualization and Retrieval System on the Semantic Web

    Tilahun, Binyam Chakilu

    2013-01-01

    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies. To better facilitate health information dissemination, using flexible ways to represent, query and visualize health data becomes increasingly important. Semantic Web technologies, which provide a common framework by allowing data to be shared and reused between applications, can be applied to the management of health data. Linked open data - a new se...

  17. Hierarchical Novelty-Familiarity Representation in the Visual System by Modular Predictive Coding

    Vladimirskiy, Boris; Urbanczik, Robert; Senn, Walter

    2015-01-01

    Predictive coding has been previously introduced as a hierarchical coding framework for the visual system. At each level, activity predicted by the higher level is dynamically subtracted from the input, while the difference in activity continuously propagates further. Here we introduce modular predictive coding as a feedforward hierarchy of prediction modules without back-projections from higher to lower levels. Within each level, recurrent dynamics optimally segregates the input into novelty...

  18. The Cartographic Representation of Language: Understanding language map construction and visualizing language diversity

    Luebbering, Candice Rae

    2011-01-01

    Language maps provide illustrations of linguistic and cultural diversity and distribution, appearing in outlets ranging from textbooks and news articles to websites and wall maps. They are valuable visual aids that accompany discussions of our cultural climate. Despite the prevalent use of language maps as educational tools, little recent research addresses the difficult task of map construction for this fluid cultural characteristic. The display and analysis capabilities of current geogra...

  19. Preliminary tests of a possible outdoor light adaptation solution for a fly inspired visual sensor: a biomimetic solution - biomed 2011.

    Dean, Brian K; Wright, Cameron H G; Barrett, Steven F

    2011-01-01

    Two previous papers, presented at RMBS in 2009 and 2010, introduced a fly inspired vision sensor that could adapt to indoor light conditions by mimicking the light adaptation process of the commonhousefly, Muscadomestica. A new system has been designed that should allow the sensor to adapt to outdoor light conditions which will enable the sensor’s use inapplications such as: unmanned aerial vehicle (UAV) obstacle avoidance, UAV landing support, target tracking, wheelchair guidance, large structure monitoring, and many other outdoor applications. A sensor of this type is especially suited for these applications due to features of hyperacuity (or an ability to achieve movement resolution beyond the theoretical limit), extreme sensitivity to motion, and (through software simulation) image edge extraction, motion detection, and orientation and location of a line.Many of these qualities are beyond the ability of traditional computervision sensors such as charge coupled device (CCD) arrays.To achieve outdoor light adaptation, a variety of design obstacles have to be overcome such as infrared interference, dynamic range expansion, and light saturation. The newly designed system overcomes the latter two design obstacles by mimicking the fly’s solution of logarithmic compression followed by removal of the average background light intensity. This paper presents the new design and the preliminary tests that were conducted to determine its effectiveness. PMID:21525612

  20. 'Investigating gender-based visual representations on the websites of entry-level occupational therapy programmes in Ireland and the United Kingdom.???

    Mahon, Lochlainn

    2013-01-01

    non-peer-reviewed Objectives - The purpose of this research is to gain an insight into the online visual marketing of the occupational therapy undergraduate and graduate entry-level courses within Ireland and the United Kingdom. This study examines the specific characteristics of the current visual representations that exist across these university websites. As there are a small proportion of men within the occupational therapy profession, it has become imperative to explore the current pr...

  1. The visual representations of motion and of gravity are functionally independent: Evidence of a differential effect of smooth pursuit eye movements.

    De Sá Teixeira, Nuno Alexandre

    2016-09-01

    The memory for the final position of a moving object which suddenly disappears has been found to be displaced forward, in the direction of motion, and downwards, in the direction of gravity. These phenomena were coined, respectively, Representational Momentum and Representational Gravity. Although both these and similar effects have been systematically linked with the functioning of internal representations of physical variables (e.g. momentum and gravity), serious doubts have been raised for a cognitively based interpretation, favouring instead a major role of oculomotor and perceptual factors which, more often than not, were left uncontrolled and even ignored. The present work aims to determine the degree to which Representational Momentum and Representational Gravity are epiphenomenal to smooth pursuit eye movements. Observers were required to indicate the offset locations of targets moving along systematically varied directions after a variable imposed retention interval. Each participant completed the task twice, varying the eye movements' instructions: gaze was either constrained or left free to track the targets. A Fourier decomposition analysis of the localization responses was used to disentangle both phenomena. The results show unambiguously that constraining eye movements significantly eliminates the harmonic components which index Representational Momentum, but have no effect on Representational Gravity or its time course. The found outcomes offer promising prospects for the study of the visual representation of gravity and its neurological substrates. PMID:27106480

  2. Prior Knowledge about Objects Determines Neural Color Representation in Human Visual Cortex.

    Vandenbroucke, A R E; Fahrenfort, J J; Meuwese, J D I; Scholte, H S; Lamme, V A F

    2016-04-01

    To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investigated the influence of object knowledge on the neural substrates underlying subjective color vision. In a functional magnetic resonance imaging experiment, human subjects viewed a color that lay midway between red and green (ambiguous with respect to its distance from red and green) presented on either typical red (e.g., tomato), typical green (e.g., clover), or semantically meaningless (nonsense) objects. Using decoding techniques, we could predict whether subjects viewed the ambiguous color on typical red or typical green objects based on the neural response of veridical red and green. This shift of neural response for the ambiguous color did not occur for nonsense objects. The modulation of neural responses was observed in visual areas (V3, V4, VO1, lateral occipital complex) involved in color and object processing, as well as frontal areas. This demonstrates that object memory influences wavelength information relatively early in the human visual system to produce subjective color vision. PMID:25323417

  3. Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage

    Vikstroem, Johan; Hjelstuen, Mari H.B.; Mjaaland, Ingvil; Dybvik, Kjell Ivar (Dept. of Radiotherapy, Stavanger Univ. Hospital, Stavanger (Norway)), e-mail: vijo@sus.no

    2011-01-15

    Background and purpose. Cardiac disease and pulmonary complications are documented risk factors in tangential breast irradiation. Respiratory gating radiotherapy provides a possibility to substantially reduce cardiopulmonary doses. This CT planning study quantifies the reduction of radiation doses to the heart and lung, using deep inspiration breath-hold (DIBH). Patients and methods. Seventeen patients with early breast cancer, referred for adjuvant radiotherapy, were included. For each patient two CT scans were acquired; the first during free breathing (FB) and the second during DIBH. The scans were monitored by the Varian RPM respiratory gating system. Audio coaching and visual feedback (audio-visual guidance) were used. The treatment planning of the two CT studies was performed with conformal tangential fields, focusing on good coverage (V95>98%) of the planning target volume (PTV). Dose-volume histograms were calculated and compared. Doses to the heart, left anterior descending (LAD) coronary artery, ipsilateral lung and the contralateral breast were assessed. Results. Compared to FB, the DIBH-plans obtained lower cardiac and pulmonary doses, with equal coverage of PTV. The average mean heart dose was reduced from 3.7 to 1.7 Gy and the number of patients with >5% heart volume receiving 25 Gy or more was reduced from four to one of the 17 patients. With DIBH the heart was completely out of the beam portals for ten patients, with FB this could not be achieved for any of the 17 patients. The average mean dose to the LAD coronary artery was reduced from 18.1 to 6.4 Gy. The average ipsilateral lung volume receiving more than 20 Gy was reduced from 12.2 to 10.0%. Conclusion. Respiratory gating with DIBH, utilizing audio-visual guidance, reduces cardiac and pulmonary doses for tangentially treated left sided breast cancer patients without compromising the target coverage

  4. Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage

    Background and purpose. Cardiac disease and pulmonary complications are documented risk factors in tangential breast irradiation. Respiratory gating radiotherapy provides a possibility to substantially reduce cardiopulmonary doses. This CT planning study quantifies the reduction of radiation doses to the heart and lung, using deep inspiration breath-hold (DIBH). Patients and methods. Seventeen patients with early breast cancer, referred for adjuvant radiotherapy, were included. For each patient two CT scans were acquired; the first during free breathing (FB) and the second during DIBH. The scans were monitored by the Varian RPM respiratory gating system. Audio coaching and visual feedback (audio-visual guidance) were used. The treatment planning of the two CT studies was performed with conformal tangential fields, focusing on good coverage (V95>98%) of the planning target volume (PTV). Dose-volume histograms were calculated and compared. Doses to the heart, left anterior descending (LAD) coronary artery, ipsilateral lung and the contralateral breast were assessed. Results. Compared to FB, the DIBH-plans obtained lower cardiac and pulmonary doses, with equal coverage of PTV. The average mean heart dose was reduced from 3.7 to 1.7 Gy and the number of patients with >5% heart volume receiving 25 Gy or more was reduced from four to one of the 17 patients. With DIBH the heart was completely out of the beam portals for ten patients, with FB this could not be achieved for any of the 17 patients. The average mean dose to the LAD coronary artery was reduced from 18.1 to 6.4 Gy. The average ipsilateral lung volume receiving more than 20 Gy was reduced from 12.2 to 10.0%. Conclusion. Respiratory gating with DIBH, utilizing audio-visual guidance, reduces cardiac and pulmonary doses for tangentially treated left sided breast cancer patients without compromising the target coverage

  5. Physical Properties, Exciton Analysis, and Visualization of Core-Excited States: An Intermediate State Representation Approach.

    Wenzel, Jan; Dreuw, Andreas

    2016-03-01

    The theoretical simulation of X-ray absorption spectra is in general a challenging task. However, for small and medium-sized organic molecules, the algebraic diagrammatic construction scheme (ADC) for the polarization operator in combination with the core-valence separation approximation (CVS) has proven to yield core-excitation energies and transition moments with almost quantitative accuracy allowing for reliable construction of X-ray absorption spectra. Still, to understand core-excitation processes in detail, it is not sufficient to only compute energies, but also properties like static dipole moments and state densities are important as they provide deeper insight into the nature of core-excited states. Here, we present for the first time an implementation of the intermediate state representation (ISR) approach in combination with the CVS approximation (CVS-ISR), which gives, in combination with the CVS-ADC method, direct access to core-excited state properties. The performance of the CVS-ADC/CVS-ISR approach is demonstrated by means of small- and medium-sized organic molecules. Besides the calculation of core-excited state dipole moments, advanced analyses of core-excited state densities are performed using descriptors like exciton sizes and distances. Plotting electron and hole densities helps to determine the character of the state, and in particular, the investigation of detachment/attachment densities provides information about orbital relaxation effects that are crucial for understanding core excitations. PMID:26845396

  6. Visual and narrative representations of mental health and addiction by law enforcement.

    Boyd, Jade; Boyd, Susan; Kerr, Thomas

    2015-07-01

    In Vancouver, British Columbia, Canada's third largest city, the Vancouver Police Department (VPD), has positioned itself as being at the forefront of mental health regulation. The VPD problematization of the "mental health crisis" in Vancouver draws on discourses of addiction and dangerousness. This is partially achieved by the twinning of mental health with addiction (dual diagnoses) and a focus on illegal drug consumption, and is supported through law enforcement's role as active claims-makers. Consequently, there is a mobilization of resources to identify, discipline, and contain people identified as mentally ill and addicted with little examination of both the textual and visual discourses that serve this purpose. This article addresses this gap through an analysis of the images and discursive framing of people with mental illness and addictions by the VPD in two Vancouver Police Department reports published in 2008 and 2009. PMID:25980943

  7. Effects of Visual Representation on Social Influence in Computer-Mediated Communication: Experimental Tests of the Social Identity Model of Deindividuation Effects

    Lee, Eun-Ju

    2004-01-01

    Two experiments investigated if and how visual representation of interactants affects depersonalization and conformity to group norms in anonymous computer-mediated communication (CMC). In Experiment 1, a 2 (intergroup versus interpersonal) x 2 (same character versus different character) between-subjects design experiment (N=60), each participant…

  8. Visual Representation of Body Shape in African-American and European American Women: Clinical Considerations

    Capers, Patrice L.; Kinsey, Amber W.; Miskell, Edrika L.; Affuso, Olivia

    2016-01-01

    BACKGROUND Body mass index (BMI) has been used widely among clinicians to assess obesity in their patients due to its ease and availability. However, BMI has some diagnostic limitations and other measures related to health risks; in particular, body shape may be of greater relevance to health outcomes. OBJECTIVE The objective of this study was to illustrate the importance of body shape assessments above and beyond BMI and its relationship to health risk among a sample of African-American and European American women. METHODS African-American and European American women aged 19–78 years (n = 552) in Birmingham, Alabama, were recruited and stratified by menopausal status (ie, pre- or postmenopausal). Pictorial body shapes were derived from digital photographs, while body fat distribution defined by android–gynoid ratio (AGR) and body composition were obtained from dual-energy X-ray absorptiometry. RESULTS Images of BMI and age-matched women illustrate variability in fat distribution. Among both menopausal status groups, more than 50% of women had a pear body shape (AGR < 1). An apple body shape was associated with higher odds of having diabetes (unadjusted odds ratio [OR]: 4.1, 95% confidence interval [CI]: 1.9–9.3), hypertension (unadjusted OR: 3.1, 95% CI: 2.0–4.7), and high cholesterol (unadjusted OR: 3.0, 95% CI: 1.8–5.1). CONCLUSION Use of visual cues alongside traditional methods of weight status assessment may help to facilitate weight management conversations between physicians and female patients. However, next steps should include the validation of visual assessments of body shape in women for use by physicians. PMID:27478392

  9. Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations.

    Peterson, Dwight J; Gözenman, Filiz; Arciniega, Hector; Berryhill, Marian E

    2015-10-01

    Recent studies have demonstrated that factors influencing perception, such as Gestalt grouping cues, can influence the storage of information in visual working memory (VWM). In some cases, stationary cues, such as stimulus similarity, lead to superior VWM performance. However, the neural correlates underlying these benefits to VWM performance remain unclear. One neural index, the contralateral delay activity (CDA), is an event-related potential that shows increased amplitude according to the number of items held in VWM and asymptotes at an individual's VWM capacity limit. Here, we applied the CDA to determine whether previously reported behavioral benefits supplied by similarity, proximity, and uniform connectedness were reflected as a neural savings such that the CDA amplitude was reduced when these cues were present. We implemented VWM change-detection tasks with arrays including similarity and proximity (Experiment 1); uniform connectedness (Experiments 2a and 2b); and similarity/proximity and uniform connectedness (Experiment 3). The results indicated that when there was a behavioral benefit to VWM, this was echoed by a reduction in CDA amplitude, which suggests more efficient processing. However, not all perceptual grouping cues provided a VWM benefit in the same measure (e.g., accuracy) or of the same magnitude. We also found unexpected interactions between cues. We observed a mixed bag of effects, suggesting that these powerful perceptual grouping benefits are not as predictable in VWM. The current findings indicate that when grouping cues produce behavioral benefits, there is a parallel reduction in the neural resources required to maintain grouped items within VWM. PMID:26018644

  10. The VIPER project (Visualization Integration Platform for Exploration Research): a biologically inspired autonomous reconfigurable robotic platform for diverse unstructured environments

    Schubert, Oliver J.; Tolle, Charles R.

    2004-09-01

    highly unstructured environment, but also gains robotic manipulation abilities, normally relegated as secondary add-ons within existing vehicles, all within one small condensed package. The prototype design presented includes a Beowulf style computing system for advanced guidance calculations and visualization computations. All of the design and implementation pertaining to the SEW robot discussed in this paper is the product of a student team under the summer fellowship program at the DOEs INEEL.

  11. The Effect of Using a Visual Representation Tool in a Teaching-Learning Sequence for Teaching Newton's Third Law

    Savinainen, Antti; Mäkynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2015-09-01

    This paper presents a research-based teaching-learning sequence (TLS) that focuses on the notion of interaction in teaching Newton's third law (N3 law) which is, as earlier studies have shown, a challenging topic for students to learn. The TLS made systematic use of a visual representation tool—an interaction diagram (ID)—highlighting interactions between objects and addressing the learning demand related to N3 law. This approach had been successful in enhancing students' understanding of N3 law in pilot studies conducted by teacher-researchers. However, it was unclear whether teachers, who have neither been involved with the research nor received intensive tutoring, could replicate the positive results in ordinary school settings. To address this question, we present an empirical study conducted in 10 Finnish upper secondary schools with students (n = 261, aged 16) taking their mandatory physics course. The study design involved three groups: the heavy ID group (the TLS with seven to eight exercises on IDs), the light ID group (two to three exercises on IDs) and the no ID group (no exercises on IDs). The heavy and light ID groups answered eight ID questions, and all the students answered four questions on N3 law after teaching the force concept. The findings clearly suggest that systematic use of the IDs in teaching the force concept significantly fostered students' understanding of N3 law even with teachers who have no intensive tutoring or research background.

  12. Does using a visual-representation tool foster students' ability to identify forces and construct free-body diagrams?

    Savinainen, Antti; Mäkynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2013-06-01

    Earlier research has shown that after physics instruction, many students have difficulties with the force concept, and with constructing free-body diagrams (FBDs). It has been suggested that treating forces as interactions could help students to identify forces as well as to construct the correct FBDs. While there is evidence that identifying interactions helps students in quantitative problem solving, there is no previous research investigating the effect of a visual-representation tool—an interaction diagram (ID)—on students’ ability to identify forces, and to construct the correct FBDs. We present an empirical study conducted in 11 Finnish high schools on students (n=335, aged 16) taking their first, mandatory, introductory physics course. The study design involved groups of students having heavy, light, or no use of IDs. The heavy and light ID groups answered eight pairs of ID and FBD questions in various physical contexts and the no ID group answered two of the eight FBD questions. The results indicate that the heavy ID group outperformed both the light and the no ID groups in identifying forces and constructing the correct FBDs. The analysis of these data indicates that the use of IDs is especially beneficial in identifying forces when constructing FBDs.

  13. INSPIRE - Premission

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  14. Reduced lung dose and improved inspiration level reproducibility in visually guided DIBH compared to audio coached EIG radiotherapy for breast cancer patients

    Damkjær, Sidsel Marie Skov; Aznar, Marianne Camille; Pedersen, Anders Navrsted;

    2013-01-01

    Patients with left-sided breast cancer with lymph node involvement have routinely been treated with enhanced inspiration gating (EIG) for a decade at our institution. In a transition from EIG to deep inspiration breath hold (DIBH) we compared the two techniques with focus on target coverage, dose...

  15. SU-E-J-62: Breath Hold for Left-Sided Breast Cancer: Visually Monitored Deep Inspiration Breath Hold Amplitude Evaluated Using Real-Time Position Management

    Purpose: We used Real-Time Position Management (RPM) to evaluate breath hold amplitude and variability when gating with a visually monitored deep inspiration breath hold technique (VM-DIBH) with retrospective cine image chest wall position verification. Methods: Ten patients with left-sided breast cancer were treated using VM-DIBH. Respiratory motion was passively collected once weekly using RPM with the marker block positioned at the xiphoid process. Cine images on the tangent medial field were acquired on fractions with RPM monitoring for retrospective verification of chest wall position during breath hold. The amplitude and duration of all breath holds on which treatment beams were delivered were extracted from the RPM traces. Breath hold position coverage was evaluated for symmetric RPM gating windows from ± 1 to 5 mm centered on the average breath hold amplitude of the first measured fraction as a baseline. Results: The average (range) breath hold amplitude and duration was 18 mm (3–36 mm) and 19 s (7–34 s). The average (range) of amplitude standard deviation per patient over all breath holds was 2.7 mm (1.2–5.7 mm). With the largest allowable RPM gating window (± 5 mm), 4 of 10 VM-DIBH patients would have had ≥ 10% of their breath hold positions excluded by RPM. Cine verification of the chest wall position during the medial tangent field showed that the chest wall was greater than 5 mm from the baseline in only 1 out of 4 excluded patients. Cine images verify the chest wall/breast position only, whether this variation is acceptable in terms of heart sparing is a subject of future investigation. Conclusion: VM-DIBH allows for greater breath hold amplitude variability than using a 5 mm gating window with RPM, while maintaining chest wall positioning accuracy within 5 mm for the majority of patients

  16. SU-E-J-62: Breath Hold for Left-Sided Breast Cancer: Visually Monitored Deep Inspiration Breath Hold Amplitude Evaluated Using Real-Time Position Management

    Conroy, L; Quirk, S; Smith, WL [The University of Calgary, Calgary, AB (Canada); Tom Baker Cancer Centre, Calgary, AB (Canada); Yeung, R; Phan, T [The University of Calgary, Calgary, AB (Canada); Hudson, A [Tom Baker Cancer Centre, Calgary, AB (Canada)

    2015-06-15

    Purpose: We used Real-Time Position Management (RPM) to evaluate breath hold amplitude and variability when gating with a visually monitored deep inspiration breath hold technique (VM-DIBH) with retrospective cine image chest wall position verification. Methods: Ten patients with left-sided breast cancer were treated using VM-DIBH. Respiratory motion was passively collected once weekly using RPM with the marker block positioned at the xiphoid process. Cine images on the tangent medial field were acquired on fractions with RPM monitoring for retrospective verification of chest wall position during breath hold. The amplitude and duration of all breath holds on which treatment beams were delivered were extracted from the RPM traces. Breath hold position coverage was evaluated for symmetric RPM gating windows from ± 1 to 5 mm centered on the average breath hold amplitude of the first measured fraction as a baseline. Results: The average (range) breath hold amplitude and duration was 18 mm (3–36 mm) and 19 s (7–34 s). The average (range) of amplitude standard deviation per patient over all breath holds was 2.7 mm (1.2–5.7 mm). With the largest allowable RPM gating window (± 5 mm), 4 of 10 VM-DIBH patients would have had ≥ 10% of their breath hold positions excluded by RPM. Cine verification of the chest wall position during the medial tangent field showed that the chest wall was greater than 5 mm from the baseline in only 1 out of 4 excluded patients. Cine images verify the chest wall/breast position only, whether this variation is acceptable in terms of heart sparing is a subject of future investigation. Conclusion: VM-DIBH allows for greater breath hold amplitude variability than using a 5 mm gating window with RPM, while maintaining chest wall positioning accuracy within 5 mm for the majority of patients.

  17. Automatic Activation of Prototype Representation in Insight: The Sources of Inspiration%顿悟中原型激活的大脑自动响应机制:灵感机制初探

    张庆林; 田燕; 邱江

    2012-01-01

    In this study,we selected forty scientific invention problems(every problem had a prototype with heuristic function for problem solving) as the experiment material and adopted the two-stage experimental paradigm: prototype learning and problem solving.Through manipulating the number of learning prototypes(5 or 10),without marks vs.with marks highlighting the function of prototype and semantic similarity of function between prototypes and problems,we investigated the cognitive mechanism of insight.Regression analysis with the activation rate of prototypal representation as the independent variable and the accuracy of problem solving as the dependent variable showed that R2=0.85,p0.001,which proved that activation of prototypal representation was an important factor of problem solving.The activation rate of prototypal representation was not significantly affected by the number of learning prototypes,indicating that activation of prototypal representation might be an automatic process.The effects of without marks vs.with marks and semantic similarity of function were significant on the activation rate of prototypal representation,which proved that the link of semantics of function between problem and prototype might be the cognitive mechanism of activation of prototypal representation.The automatic activation of prototypal representation might be the sources of inspiration.%以40个科学发明创造领域的顿悟问题为实验材料,采用"学习多个原型—测试多个问题"的两阶段实验范式,通过操纵原型学习个数(5/10)、标志有无(原型材料中是否标志出特征性功能的词语)和功能语义相似度(原型的特征性功能与问题的需求性功能的语义相似度),考察了顿悟问题解决中原型表征自动激活的认知机制,为进一步探索灵感发生机制奠定了基础.结果发现:①以原型激活率为自变量,以问题解决正确率为因变量进行回归分析,得到R2=0.85(p〈0

  18. Inspired Landscapes

    Brandon, Robert; Spruch, Arthur

    2008-01-01

    It has been nearly 400 years since Harvard College was created, and since then, thousands of colleges and universities have been built across the United States. From the classically inspired lines of Thomas Jefferson's University of Virginia to the Spanish architecture at Stanford University, every campus has its own personality. It's not unusual,…

  19. What recent research on diagrams suggests about learning with rather than learning from visual representations in science

    Tippett, Christine D.

    2016-03-01

    The move from learning science from representations to learning science with representations has many potential and undocumented complexities. This thematic analysis partially explores the trends of representational uses in science instruction, examining 80 research studies on diagram use in science. These studies, published during 2000-2014, were located through searches of journal databases and books. Open coding of the studies identified 13 themes, 6 of which were identified in at least 10% of the studies: eliciting mental models, classroom-based research, multimedia principles, teaching and learning strategies, representational competence, and student agency. A shift in emphasis on learning with rather than learning from representations was evident across the three 5-year intervals considered, mirroring a pedagogical shift from science instruction as transmission of information to constructivist approaches in which learners actively negotiate understanding and construct knowledge. The themes and topics in recent research highlight areas of active interest and reveal gaps that may prove fruitful for further research, including classroom-based studies, the role of prior knowledge, and the use of eye-tracking. The results of the research included in this thematic review of the 2000-2014 literature suggest that both interpreting and constructing representations can lead to better understanding of science concepts.

  20. Ant Robotic Swarm for Visualizing Invisible Hazardous Substances

    John Oyekan

    2013-01-01

    Full Text Available Inspired by the simplicity of how nature solves its problems, this paper presents a novel approach that would enable a swarm of ant robotic agents (robots with limited sensing, communication, computational and memory resources form a visual representation of distributed hazardous substances within an environment dominated by diffusion processes using a decentralized approach. Such a visual representation could be very useful in enabling a quicker evacuation of a city’s population affected by such hazardous substances. This is especially true if the ratio of emergency workers to the population number is very small.

  1. Towards a visual social psychology of identity and representation: photographing the self, weaving the family in a multicultural British community

    Howarth, Caroline

    2011-01-01

    This comprehensive volume provides an unprecedented illustration of the potential for visual methods in psychology. Each chapter explores the set of theoretical, methodological, as well as ethical and analytical issues that shape the ways in which visual qualitative research is conducted in psychology. Using a variety of forms of visual data, including photography, documentary film-making, drawing, internet media, model making, walking and map drawing, video recording and collages, each autho...

  2. On the self-organization of a hierarchical memory for compositional object representation in the visual cortex

    Jitsev, Evgueni

    2011-01-01

    At present, there is a huge lag between the artificial and the biological information processing systems in terms of their capability to learn. This lag could be certainly reduced by gaining more insight into the higher functions of the brain like learning and memory. For instance, primate visual cortex is thought to provide the long-term memory for the visual objects acquired by experience. The visual cortex handles effortlessly arbitrary complex objects by decomposing them rapidly into cons...

  3. Sociocultural Knowledge and Visual Re(-)Presentations of Black Masculinity and Community: Reading "The Wire" for Critical Multicultural Teacher Education

    Brown, Keffrelyn D.; Kraehe, Amelia

    2011-01-01

    In this article we consider the implications of using popular visual media as a pedagogic tool for helping teachers acquire critical sociocultural knowledge to work more effectively with students of color, particularly Black males. Drawing from a textual analysis (McKee 2001, 2003; Rose 2001) conducted in the critical visual studies tradition…

  4. External and Internal Representations in the Acquisition and Use of Knowledge: Visualization Effects on Mental Model Construction

    Schnotz, Wolfgang; Kurschner, Christian

    2008-01-01

    This article investigates whether different formats of visualizing information result in different mental models constructed in learning from pictures, whether the different mental models lead to different patterns of performance in subsequently presented tasks, and how these visualization effects can be modified by further external…

  5. The Sound of Vision Project: On the Feasibility of an Audio-Haptic Representation of the Environment, for the Visually Impaired.

    Jóhannesson, Ómar I; Balan, Oana; Unnthorsson, Runar; Moldoveanu, Alin; Kristjánsson, Árni

    2016-01-01

    The Sound of Vision project involves developing a sensory substitution device that is aimed at creating and conveying a rich auditory representation of the surrounding environment to the visually impaired. However, the feasibility of such an approach is strongly constrained by neural flexibility, possibilities of sensory substitution and adaptation to changed sensory input. We review evidence for such flexibility from various perspectives. We discuss neuroplasticity of the adult brain with an emphasis on functional changes in the visually impaired compared to sighted people. We discuss effects of adaptation on brain activity, in particular short-term and long-term effects of repeated exposure to particular stimuli. We then discuss evidence for sensory substitution such as Sound of Vision involves, while finally discussing evidence for adaptation to changes in the auditory environment. We conclude that sensory substitution enterprises such as Sound of Vision are quite feasible in light of the available evidence, which is encouraging regarding such projects. PMID:27355966

  6. The Sound of Vision Project: On the Feasibility of an Audio-Haptic Representation of the Environment, for the Visually Impaired

    Ómar I. Jóhannesson

    2016-06-01

    Full Text Available The Sound of Vision project involves developing a sensory substitution device that is aimed at creating and conveying a rich auditory representation of the surrounding environment to the visually impaired. However, the feasibility of such an approach is strongly constrained by neural flexibility, possibilities of sensory substitution and adaptation to changed sensory input. We review evidence for such flexibility from various perspectives. We discuss neuroplasticity of the adult brain with an emphasis on functional changes in the visually impaired compared to sighted people. We discuss effects of adaptation on brain activity, in particular short-term and long-term effects of repeated exposure to particular stimuli. We then discuss evidence for sensory substitution such as Sound of Vision involves, while finally discussing evidence for adaptation to changes in the auditory environment. We conclude that sensory substitution enterprises such as Sound of Vision are quite feasible in light of the available evidence, which is encouraging regarding such projects.

  7. A robust index of lexical representation in the left occipito-temporal cortex as evidenced by EEG responses to fast periodic visual stimulation.

    Lochy, Aliette; Van Belle, Goedele; Rossion, Bruno

    2015-01-01

    Despite decades of research on reading, including the relatively recent contributions of neuroimaging and electrophysiology, identifying selective representations of whole visual words (in contrast to pseudowords) in the human brain remains challenging, in particular without an explicit linguistic task. Here we measured discrimination responses to written words by means of electroencephalography (EEG) during fast periodic visual stimulation. Sequences of pseudofonts, nonwords, or pseudowords were presented through sinusoidal contrast modulation at a periodic 10 Hz frequency rate (F), in which words were interspersed at regular intervals of every fifth item (i.e., F/5, 2 Hz). Participants monitored a central cross color change and had no linguistic task to perform. Within only 3 min of stimulation, a robust discrimination response for words at 2 Hz (and its harmonics, i.e., 4 and 6 Hz) was observed in all conditions, located predominantly over the left occipito-temporal cortex. The magnitude of the response was largest for words embedded in pseudofonts, and larger in nonwords than in pseudowords, showing that list context effects classically reported in behavioral lexical decision tasks are due to visual discrimination rather than decisional processes. Remarkably, the oddball response was significant even for the critical words/pseudowords discrimination condition in every individual participant. A second experiment replicated this words/pseudowords discrimination, and showed that this effect is not accounted for by a higher bigram frequency of words than pseudowords. Without any explicit task, our results highlight the potential of an EEG fast periodic visual stimulation approach for understanding the representation of written language. Its development in the scientific community might be valuable to rapidly and objectively measure sensitivity to word processing in different human populations, including neuropsychological patients with dyslexia and other reading

  8. Perceptually-Inspired Computing

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  9. Visual perception from the perspective of a representational, non-reductionistic, level-dependent account of perception and conscious awareness

    Overgaard, Morten; Mogensen, Jesper

    2014-01-01

    analysis in a ‘situational algorithmic strategy’ that reflects the general state of an individual. We argue that conscious experience is intrinsically related to representations that are available to guide behaviour. From this perspective, we find that blindsight and subliminal perception can be explained...

  10. Visual Representations of Language Knowledge and Teaching Application from Perspective of Visual Learning%视觉学习视角下的语言可视化表征与教学应用

    严晓蓉; 何高大

    2015-01-01

    Visual learning is an emerging and important paradigm to learn, especially for the digital generation growing up with technology. In this “era of visual survival”, the dominant mode of presenting knowledge is visual, thus it has become an inevitable trend to learn visually. Visual learning is now transforming the methodology in classroom teaching, especially changing the way of acquiring knowledge for foreign language learners. Language knowledge visualization is a new educational model which emphasizes intelligent processing in presenting, transferring and acquiring knowledge of language. Appropriate application of visual representations in language teaching can enhance the effects of presenting implicit and explicit knowledge and assisting the conversion between these two kinds of knowledge so as to fulfill the objectives of transferring knowledge, cultivating creative thinking and facilitating language learning and acquisition.%视觉学习是一种新型的、符合现代数字一代成长的学习范式,也是图像化生存时代知识呈现可视化的必然趋势。它正在改变着课堂教学,特别是外语学习者获取知识的方式。语言知识的可视化是语言知识类型呈现、传递和习得的智能化,是一种新的教学理念和实践。在外语教学中,借助可视化手段,可以有效增强显性知识和隐性知识的表征效果及促进二者之间的相互转化,从而实现知识传递,培养创新思维,促进语言知识的学得与习得。

  11. A new computer program for topological, visual analysis of 3D particle configurations based on visual representation of radial distribution function peaks as bonds

    Metere, Alfredo; Dzugutov, Mikhail

    2015-01-01

    We present a new program able to perform unique visual analysis on generic particle systems: PASYVAT (PArticle SYstem Visual Analysis Tool). More specifically, it can perform a selection of multiple interparticle distance ranges from a radial distribution function (RDF) plot and display them in 3D as bonds. This software can be used with any data set representing a system of particles in 3D. In this manuscript the reader will find a description of the program and its internal structure, with emphasis on its applicability in the study of certain particle configurations, obtained from classical molecular dynamics simulation in condensed matter physics.

  12. Representation is representation of similarities.

    Edelman, S

    1998-08-01

    Advanced perceptual systems are faced with the problem of securing a principled (ideally, veridical) relationship between the world and its internal representation. I propose a unified approach to visual representation, addressing the need for superordinate and basic-level categorization and for the identification of specific instances of familiar categories. According to the proposed theory, a shape is represented internally by the responses of a small number of tuned modules, each broadly selective for some reference shape, whose similarity to the stimulus it measures. This amounts to embedding the stimulus in a low-dimensional proximal shape space spanned by the outputs of the active modules. This shape space supports representations of distal shape similarities that are veridical as Shepard's (1968) second-order isomorphisms (i.e., correspondence between distal and proximal similarities among shapes, rather than between distal shapes and their proximal representations). Representation in terms of similarities to reference shapes supports processing (e.g., discrimination) of shapes that are radically different from the reference ones, without the need for the computationally problematic decomposition into parts required by other theories. Furthermore, a general expression for similarity between two stimuli, based on comparisons to reference shapes, can be used to derive models of perceived similarity ranging from continuous, symmetric, and hierarchical ones, as in multidimensional scaling (Shepard 1980), to discrete and nonhierarchical ones, as in the general contrast models (Shepard & Arabie 1979; Tversky 1977). PMID:10097019

  13. Effect of temperature and light intensity on the representation of motion information in the fly's visual system

    Spavieri, Deusdedit

    2009-01-01

    To comprehend how the brain performs efficient computation, it is important to understand the way sensory information is represented in the nervous system. Under natural conditions, sensory signals have to be processed with sufficient accuracy under functional and resources constraints. Here I use motion vision in the fly Calliphora vicina to study the influence of two behaviorally relevant environmental properties - temperature and light intensity - on the representation of motion informatio...

  14. Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets

    Daniel eKress

    2014-09-01

    Full Text Available During locomotion animals rely heavily on visual cues gained from the environment to guide their behavior. Examples are basic behaviors like collision avoidance or the approach to a goal. The saccadic gaze strategy of flying flies, which separates translational from rotational phases of locomotion, has been suggested to facilitate the extraction of environmental information, because only image flow evoked by translational self-motion contains relevant distance information about the surrounding world. In contrast to the translational phases of flight during which gaze direction is kept largely constant, walking flies experience continuous rotational image flow that is coupled to their stride-cycle. The consequences of these self-produced image shifts for the extraction of environmental information are still unclear. To assess the impact of stride-coupled image shifts on visual information processing, we performed electrophysiological recordings from the HSE cell, a motion sensitive wide-field neuron in the blowfly visual system. This cell has been concluded to play a key role in mediating optomotor behavior, self-motion estimation and spatial information processing. We used visual stimuli that were based on the visual input experienced by walking blowflies while approaching a black vertical bar. The response of HSE to these stimuli was dominated by periodic membrane potential fluctuations evoked by stride-coupled image shifts. Nevertheless, during the approach the cell’s response contained information about the bar and its background. The response components evoked by the bar were larger than the responses to its background, especially during the last phase of the approach. However, as revealed by targeted modifications of the visual input during walking, the extraction of distance information on the basis of HSE responses is much impaired by stride-coupled retinal image shifts. Possible mechanisms that may cope with these stride

  15. Effects of Solid Objects and Two-Dimensional Representation of the Objects on Visual Observation and Comparison Among Urban Children

    Barufaldi, James P.; Dietz, Maureen A.

    1975-01-01

    A sample of 228 elementary school children in a large eastern city was administered tasks which tested visual perceptions of solid objects, and photographs and drawings of these objects. Results showed that children in grades one, four, and six demonstrate a tendency to perform more efficiently on observation and comparison tasks employing solid…

  16. Representation of behaviourally relevant information by blowfly motion-sensitive visual interneurons requires precise compensatory head movements

    Kern, R.; Hateren, J.H. van; Egelhaaf, M.

    2006-01-01

    Flying blowflies shift their gaze by saccadic turns of body and head, keeping their gaze basically fixed between saccades. For the head, this results in almost pure translational optic flow between saccades, enabling visual interneurons in the fly motion pathway to extract information about translat

  17. Deep generative learning of location-invariant visual word recognition

    Maria GraziaDi Bono; MarcoZorzi

    2013-01-01

    It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representa...

  18. Representations of modality-specific affective processing for visual and auditory stimuli derived from functional magnetic resonance imaging data.

    Shinkareva, Svetlana V; Wang, Jing; Kim, Jongwan; Facciani, Matthew J; Baucom, Laura B; Wedell, Douglas H

    2014-07-01

    There is converging evidence that people rapidly and automatically encode affective dimensions of objects, events, and environments that they encounter in the normal course of their daily routines. An important research question is whether affective representations differ with sensory modality. This research examined the nature of the dependency of affect and sensory modality at a whole-brain level of analysis in an incidental affective processing paradigm. Participants were presented with picture and sound stimuli that differed in positive or negative valence in an event-related functional magnetic resonance imaging experiment. Global statistical tests, applied at a level of the individual, demonstrated significant sensitivity to valence within modality, but not valence across modalities. Modality-general and modality-specific valence hypotheses predict distinctly different multidimensional patterns of the stimulus conditions. Examination of lower dimensional representation of the data demonstrated separable dimensions for valence processing within each modality. These results provide support for modality-specific valence processing in an incidental affective processing paradigm at a whole-brain level of analysis. Future research should further investigate how stimulus-specific emotional decoding may be mediated by the physical properties of the stimuli. PMID:24302696

  19. Sparse Representations-Based Super-Resolution of Key-Frames Extracted from Frames-Sequences Generated by a Visual Sensor Network

    Muhammad Sajjad

    2014-02-01

    Full Text Available Visual sensor networks (VSNs usually generate a low-resolution (LR frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP. This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  20. Sparse representations-based super-resolution of key-frames extracted from frames-sequences generated by a visual sensor network.

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-01-01

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes. PMID:24566632

  1. Representation of geographic information visualization for mobile devices%面向移动设备的地理信息可视化表达

    辛欣; 姜华; 孟令学; 刘芳

    2011-01-01

    With the development of Mobile GIS and Mobile Computing of which two research domain there tend to be syncretic current. Due to the complicated application and environment, how to use and represent the geographic information effectively become more and more prominent. In this paper, The representation of geographic information visualization characteristic for mobile devices is summarized, based on which,methods and technology of the representation for mobile devices is researched.%随着Mobile GIS研究的深入和Mobile Computing技术的发展,这两个研究领域间出现一种相互融合的发展趋势,由于应用范围和环境的复杂性,使得移动设备中地理信息的有效利用和表达问题显得越来越突出.总结面向移动设备地理信息可视化表达的特殊性,在此基础上对面向移动设备的地理信息表达方法和手段进行研究.

  2. Unsupervised classification and visual representation of situations in surveillance videos using slow feature analysis for situation retrieval applications

    Pagel, Frank

    2015-03-01

    Today, video surveillance systems produce thousands of terabytes of data. This source of information can be very valuable, as it contains spatio-temporal information about abnormal, similar or periodic activities. However, a search for certain situations or activities in unstructured large-scale video footage can be exhausting or even pointless. Searching surveillance video footage is extremely difficult due to the apparent similarity of situations, especially for human observers. In order to keep this amount manageable and hence usable, this paper aims at clustering situations regarding their visual content as well as motion patterns. Besides standard image content descriptors like HOG, we present and investigate novel descriptors, called Franklets, which explicitly encode motion patterns for certain image regions. Slow feature analysis (SFA) will be performed for dimension reduction based on the temporal variance of the features. By reducing the dimension with SFA, a higher feature discrimination can be reached compared to standard PCA dimension reduction. The effects of dimension reduction via SFA will be investigated in this paper. Cluster results on real data from the Hamburg Harbour Anniversary 2014 will be presented with both, HOG feature descriptors and Franklets. Furthermore, we could show that by using SFA an improvement to standard PCA techniques could be achieved. Finally, an application to visual clustering with self-organizing maps will be introduced.

  3. Virtual visual reminiscing pain stimulation of allodynia patients activates cortical representation of pain and emotions. fMRI study

    It is widely known that sensation of the pain is derived from sensory-discriminative factor and emotional factor. Especially in chronic pain, emotional factors and psychosocial backgrounds are more likely to contribute for the patients' discomfort. The aim of this study is to investigate how emotional factor of pain participates in intractable pain. We employed functional MRI (fMRI) to compare the brain activations occurring in the orthopaedic neuropathic pain patients with allodynia and normal individuals in response to the visual virtual painful experience. During fMRI scanning, a video demonstrating an actual tactile stimulation of the palm and its imitation were shown to participants. In contrast to normal individuals, allodynia patients also displayed activation of the areas reflecting emotions: frontal lobe and anterior cingulate. These findings suggest that brain have important role in the development and maintaining of peripheral originated chronic painful condition. (author)

  4. Visualizing Summary Statistics and Uncertainty

    Potter, K.

    2010-08-12

    The graphical depiction of uncertainty information is emerging as a problem of great importance. Scientific data sets are not considered complete without indications of error, accuracy, or levels of confidence. The visual portrayal of this information is a challenging task. This work takes inspiration from graphical data analysis to create visual representations that show not only the data value, but also important characteristics of the data including uncertainty. The canonical box plot is reexamined and a new hybrid summary plot is presented that incorporates a collection of descriptive statistics to highlight salient features of the data. Additionally, we present an extension of the summary plot to two dimensional distributions. Finally, a use-case of these new plots is presented, demonstrating their ability to present high-level overviews as well as detailed insight into the salient features of the underlying data distribution. © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  5. Effect of 1% Inspired CO2 During Head-Down Tilt on Ocular Structures, Cerebral Blood Flow, and Visual Acuity in Healthy Human Subjects

    Laurie, S. S.; Hu, X.; Lee, S. M. C.; Martin, D. S.; Phillips, T. R.; Ploutz-Snyder, R.; Smith, S. M.; Stenger, M. B.; Taibbi, G.; Zwart, S. R.; Vizzeri, G.

    2016-01-01

    The cephalad fluid shift induced by microgravity has been hypothesized to elevate intracranial pressure (ICP) and contribute to the development of the visual impairment/intracranial pressure (VIIP) syndrome experienced by many astronauts during and after long-duration space flight. In addition, elevated ambient partial pressure of carbon dioxide (PCO2) on the International Space Station (ISS) has also been hypothesized to contribute to the development of VIIP. We seek to determine if an acute, mild CO2 exposure, similar to that occurring on the ISS, combined with the cephalad fluid shift induced by head-down tilt will induce ophthalmic and ICP changes consistent with the VIIP syndrome.

  6. Translation-Invariant Representation for Cumulative Foot Pressure Images

    Zheng, Shuai; Tan, Tieniu

    2010-01-01

    Human can be distinguished by different limb movements and unique ground reaction force. Cumulative foot pressure image is a 2-D cumulative ground reaction force during one gait cycle. Although it contains pressure spatial distribution information and pressure temporal distribution information, it suffers from several problems including different shoes and noise, when putting it into practice as a new biometric for pedestrian identification. In this paper, we propose a hierarchical translation-invariant representation for cumulative foot pressure images, inspired by the success of Convolutional deep belief network for digital classification. Key contribution in our approach is discriminative hierarchical sparse coding scheme which helps to learn useful discriminative high-level visual features. Based on the feature representation of cumulative foot pressure images, we develop a pedestrian recognition system which is invariant to three different shoes and slight local shape change. Experiments are conducted on...

  7. Embedded data representations

    Willett, W.; Jansen, Yvonne; Dragicevic, P.

    2016-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles ......-situated, situated, and embedded data displays, including both visualizations and physicalizations. Based on our observations, we identify a variety of design challenges for embedded data representation, and suggest opportunities for future research and applications.......We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles...... are making it increasingly easier to display data in-context. While researchers and artists have already begun to create embedded data representations, the benefits, trade-offs, and even the language necessary to describe and compare these approaches remain unexplored. In this paper, we formalize the notion...

  8. Retina-inspired Filter

    Doutsi, Effrosyni; Fillatre, Lionel; Antonini, Marc; Gaulmin, Julien

    2016-01-01

    This paper introduces a novel filter which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model “virtual retina”. This model is the cornerstone to derive the non-separable spatiotemporal OPL retina-inspired filter, briefly renamed retina- insp...

  9. Bioarchitecture - Inspirations From Nature

    eryıldız, semih halil; MEZINI, Ledita

    2012-01-01

    Engineers, architects, and artists often refer to nature as a basis. Many engineers find their structural inspiration from plant life, in a spider’s web, a piece of coral, a beehive, or in the structural development of animals. Bioarchitecture is a particular moment in which architecture, engineering, and art converge as they are using the same inspirations. By taking a look around, designers can find inspiration everywhere – particularly in nature. Nature provides us with an amaz...

  10. A Bio-Inspired AER Temporal Tri-Color Differentiator Pixel Array.

    Farian, Łukasz; Leñero-Bardallo, Juan Antonio; Häfliger, Philipp

    2015-10-01

    This article investigates the potential of a bio-inspired vision sensor with pixels that detect transients between three primary colors. The in-pixel color processing is inspired by the retinal color opponency that are found in mammalian retinas. Color transitions in a pixel are represented by voltage spikes, which are akin to a neuron's action potential. These spikes are conveyed off-chip by the Address Event Representation (AER) protocol. To achieve sensitivity to three different color spectra within the visual spectrum, each pixel has three stacked photodiodes at different depths in the silicon substrate. The sensor has been fabricated in the standard TSMC 90 nm CMOS technology. A post-processing method to decode events into color transitions has been proposed and implemented as a custom interface to display real-time color changes in the visual scene. Experimental results are provided. Color transitions can be detected at high speed (up to 2.7 kHz). The sensor has a dynamic range of 58 dB and a power consumption of 22.5 mW. This type of sensor can be of use in industrial, robotics, automotive and other applications where essential information is contained in transient emissions shifts within the visual spectrum. PMID:26540694

  11. Fotografías de indígenas en manuales escolares argentinos: representaciones visuales y connotaciones textuales Photographs of indigenous people in argentinian school textbooks: visual representations and textual connotations

    María José Saletta

    2012-07-01

    Full Text Available El objetivo de este trabajo es analizar las fotografías de pueblos originarios argentinos utilizadas en manuales escolares de 2o y 3o ciclo publicados por dos editoriales: Santillana y Aique. Se presentan los resultados de un análisis cuantitativo y cualitativo de 93 fotografías correspondientes a 38 manuales publicados entre los anos 2000 y 2005. Se reconoce qué tipo de imágenes son utilizadas, la presencia o no de cultura material autóctona, la utilización de epígrafes y la adscripción étnica de los retratados. Se concluye que existe una representación diferencial a favor de aquellas imágenes que muestran pueblos originarios con su cultura material, pero, al mismo tiempo, una utilización de un lenguaje que emplea términos como "aborigen", que implica un sesgo homogeneizador. Las fotografías son empleadas sólo en su función denotativa, mientras que se deja de lado la connotación visual en privilegio de la textual. La información presente en epígrafes y textos que acompanan a las imágenes no cumple con los requisitos necesarios de precisión y rigurosidad.The aim of this paper is to analyze photographs of native people in Argentinean primary and secondary school textbooks published by two companies, Santillana and Aique. Results from quantitative and qualitative analyses of 93 images taken from 38 school text books published between 2000 and 2005 are presented. Type of image used, presence of autochthonous material culture, use of epigraphs, and the ethnic adscription of the subjects portrayed are analyzed. It is concluded that there is differential representation in favor of those images showing native people with their material culture, although the use of language that contains derogative terms such as "aborigen" (i.e., native people at the same time clearly indicates an homogenizing bias. Images are used mostly denotatively, while textual connotation is privileged over visual connotation. Information on the epigraphs and

  12. Computing with scale-invariant neural representations

    Howard, Marc; Shankar, Karthik

    The Weber-Fechner law is perhaps the oldest quantitative relationship in psychology. Consider the problem of the brain representing a function f (x) . Different neurons have receptive fields that support different parts of the range, such that the ith neuron has a receptive field at xi. Weber-Fechner scaling refers to the finding that the width of the receptive field scales with xi as does the difference between the centers of adjacent receptive fields. Weber-Fechner scaling is exponentially resource-conserving. Neurophysiological evidence suggests that neural representations obey Weber-Fechner scaling in the visual system and perhaps other systems as well. We describe an optimality constraint that is solved by Weber-Fechner scaling, providing an information-theoretic rationale for this principle of neural coding. Weber-Fechner scaling can be generated within a mathematical framework using the Laplace transform. Within this framework, simple computations such as translation, correlation and cross-correlation can be accomplished. This framework can in principle be extended to provide a general computational language for brain-inspired cognitive computation on scale-invariant representations. Supported by NSF PHY 1444389 and the BU Initiative for the Physics and Mathematics of Neural Systems,.

  13. Bio-inspired vision

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980's, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ''neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  14. Bio-inspired vision

    Posch, C.

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980`s, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ``neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  15. You shall know an object by the company it keeps: An investigation of semantic representations derived from object co-occurrence in visual scenes.

    Sadeghi, Zahra; McClelland, James L; Hoffman, Paul

    2015-09-01

    An influential position in lexical semantics holds that semantic representations for words can be derived through analysis of patterns of lexical co-occurrence in large language corpora. Firth (1957) famously summarised this principle as "you shall know a word by the company it keeps". We explored whether the same principle could be applied to non-verbal patterns of object co-occurrence in natural scenes. We performed latent semantic analysis (LSA) on a set of photographed scenes in which all of the objects present had been manually labelled. This resulted in a representation of objects in a high-dimensional space in which similarity between two objects indicated the degree to which they appeared in similar scenes. These representations revealed similarities among objects belonging to the same taxonomic category (e.g., items of clothing) as well as cross-category associations (e.g., between fruits and kitchen utensils). We also compared representations generated from this scene dataset with two established methods for elucidating semantic representations: (a) a published database of semantic features generated verbally by participants and (b) LSA applied to a linguistic corpus in the usual fashion. Statistical comparisons of the three methods indicated significant association between the structures revealed by each method, with the scene dataset displaying greater convergence with feature-based representations than did LSA applied to linguistic data. The results indicate that information about the conceptual significance of objects can be extracted from their patterns of co-occurrence in natural environments, opening the possibility for such data to be incorporated into existing models of conceptual representation. PMID:25196838

  16. Physicists get INSPIREd

    CERN Bulletin

    2010-01-01

    Particle physicists thrive on information. They first create information by performing experiments or elaborating theoretical conjectures and then they share it through publications and various web tools. The INSPIRE service, just released, will bring state of the art information retrieval to the fingertips of researchers.   Keeping track of the information shared within the particle physics community has long been the task of libraries at the larger labs, such as CERN, DESY, Fermilab and SLAC, as well as the focus of indispensible services like arXiv and those of the Particle Data Group. In 2007, many providers of information in the field came together for a summit at SLAC to see how physics information resources could be enhanced, and the INSPIRE project emerged from that meeting. The vision behind INSPIRE was built by a survey launched by the four labs to evaluate the real needs of the community. INSPIRE responds to these directives from the community by combining the most successful aspe...

  17. Perceptually-Inspired Computing

    Ming Lin

    2015-01-01

    Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In par...

  18. Cognitive Imaging in Visual Data-Driven Decision-Support Systems

    Gorohov, V.; Vitkovskiy, V.

    2010-12-01

    Within data-driven types of decision-support systems (DDDSS, DSS), visual decision-support systems are those that try to inspire operator to find solution (decision) by producing visual representation of the data. Traditional approaches, that utilize traditional scientific visualization techniques such as 2D and 3D plots, vector fields, surface maps etc, works well when subject to represent is relatively simply structured data, low-dimensioned and weak interconnected. However, modern scientific experiments, as those in astrophysics observations, generate huge volumes of multidimensional complicated data. More sophisticated approach for visualizing of big volumes of multidimensional data is that based on the cognitive machine graphics techniques, which, for example, are used in visualization system Space Walker (SW). In contrast to illustrative ones, the cognitive images are aimed to make clear and evident some difficult scientific concepts and promote us with a new knowledge.

  19. Elementary School Students' Mental Representation of Fractions

    Pitta-Pantazi, Demetra; Gray, Eddie M.; Christou, Constantinos

    2004-01-01

    Based on psychological approaches that evoke mental representations through verbal and visual cues, this paper investigates the different kinds of mental representations projected by 8 to 11 year old children of identified arithmetical achievement when responding to verbal and visual stimuli associated with fractions. It examines how the visual…

  20. Interaction for visualization

    Tominski, Christian

    2015-01-01

    Visualization has become a valuable means for data exploration and analysis. Interactive visualization combines expressive graphical representations and effective user interaction. Although interaction is an important component of visualization approaches, much of the visualization literature tends to pay more attention to the graphical representation than to interaction.The goal of this work is to strengthen the interaction side of visualization. Based on a brief review of general aspects of interaction, we develop an interaction-oriented view on visualization. This view comprises five key as

  1. 工作记忆表征引导视觉注意选择的眼动研究%Working Memory Representation Does Guide Visual Attention:Evidence from Eye Movements

    张豹; 黄赛; 祁禄

    2013-01-01

    工作记忆表征能否引导视觉注意选择?目前实验结果尚不一致.有研究者认为能否观察到注意引导效应取决于视觉搜索类型.研究采用工作记忆任务与视觉搜索任务相结合的双任务范式,结合眼动追踪技术,对不同视觉搜索类型下的注意引导效应进行验证.实验1结果发现,不管视觉搜索任务的靶子是否变化,在早期的眼动指标上都发现了显著的注意引导效应,但注意引导效应在靶子固定的视觉搜索任务下表现得更强.实验2在平衡两种视觉搜索任务中的工作记忆负载后发现,两种视觉搜索任务下都出现了显著的注意引导效应,但没有发现实验1中所出现的任务间差异.实验结果否定了视觉搜索类型对注意引导效应的决定性影响,同时也提示工作记忆负载可能在注意引导效应中起重要作用.%Whether the working memory representations could guide visual attention to select the matching stimuli in visual search is still controversial. By requiring the participants to perform a visual search task while online keeping some objects in working memory, some researchers have observed a stronger interference from the distractor when it was identical or related to the object held in memory. But other researchers did not observe such attentional guidance effect even using similar procedures. Olivers (2009) examined several possible influencing factors through a series of experiments and finally attributed the discrepancy to the search type whether the search target was varied or not across trials throughout the experiment. However, according to our analysis, there were several factors might confound the results in the critical experiment of Olivers (2009). So here, we used the classic dual task combined with eye movement tracking technology to reexamine and evaluate the effect of the search type on the top-down guiding process of visual attention from working memory representations

  2. Numerical representations in primates.

    Hauser, M D; MacNeilage, P; M. Ware

    1996-01-01

    Research has demonstrated that human infants and nonhuman primates have a rudimentary numerical system that enables them to count objects or events. More recently, however, studies using a preferential looking paradigm have suggested that preverbal human infants are capable of simple arithmetical operations, such as adding and subtracting a small number of visually presented objects. These findings implicate a relatively sophisticated representational system in the absence of language. To exp...

  3. #IWD2016 Academic Inspiration

    Meier, Ninna

    2016-01-01

    What academics or books have inspired you in your writing and research, or helped to make sense of the world around you? In this feature essay, Ninna Meier returns to her experience of reading Hannah Arendt as she sought to understand work and how it relates to value production in capitalist...

  4. Ndebele Inspired Houses

    Rice, Nicole

    2012-01-01

    The house paintings of the South African Ndebele people are more than just an attempt to improve the aesthetics of a community; they are a source of identity and significance for Ndebele women. In this article, the author describes an art project wherein students use the tradition of Ndebele house painting as inspiration for creating their own…

  5. Value Representations

    Rasmussen, Majken Kirkegaard; Petersen, Marianne Graves

    2011-01-01

    the perspective brings valuable insights on different approaches to technology, but instead to view gender through a value lens. Contributing to this perspective, we have developed Value Representations as a design-oriented instrument for staging a reflective dialogue with users. Value Representations...... are fictional, value-driven concepts developed to promote dialogue with users about their values and how they may materialize with respect to interaction design in their everyday lives....

  6. Icon of the Holy Mandylion and representation of multi-layered visual identity of Božidar Vuković

    Borozan Igor

    2015-01-01

    Full Text Available It was in the monastery of Saint Francis in Venice in the year 1520 when Božidar Vuković purchased the icon of the Holy Mandylion. By that particular acquisition, this prominent publisher originating from Zeta has visualized his new position in the sixteenth century Venice. The multi-layered identity of Božidar Vuković was manifested by the subsequent inclusion of the noble coat of arms of the House of Vuković on the back of the icon. By the use of verbal and visual language the artificial initiation of Božidar Vuković within the distinguished members of Venetian society has been confirmed. [Projekat Ministarstva nauke Republike Srbije, br. 177001: Predstave identiteta u verbalno-vizuelnoj kulturi novog doba

  7. Representational Inquiry Competences in Science Games

    Magnussen, Rikke

    2009-01-01

    support work with genuine scientific inquiry and to meet the seventh- to tenth grade curriculum objectives for science and Danish education in Danish schools. This paper comprises a presentation of the results of a long-term empirical study done of four school classes who have played the game. The chapter...... includes studies of how students construct visual representations of the cases they investigate and how they use these representations to establish hypotheses and evidence. The term ‘Representational Inquiry Competences' is developed; it refers to the students' ability to construct, productively use......, transform and criticize visual representations as an integrated part of conducting an inquiry in the science game...

  8. Sparse Representations-Based Super-Resolution of Key-Frames Extracted from Frames-Sequences Generated by a Visual Sensor Network

    Muhammad Sajjad; Irfan Mehmood; Sung Wook Baik

    2014-01-01

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured b...

  9. Data specifications for INSPIRE

    Portele, Clemens; Woolf, Andrew; Cox, Simon

    2010-05-01

    In Europe a major recent development has been the entering in force of the INSPIRE Directive in May 2007, establishing an infrastructure for spatial information in Europe to support Community environmental policies, and policies or activities which may have an impact on the environment. INSPIRE is based on the infrastructures for spatial information established and operated by the 27 Member States of the European Union. The Directive addresses 34 spatial data themes needed for environmental applications, with key components specified through technical implementing rules. This makes INSPIRE a unique example of a legislative "regional" approach. One of the requirements of the INSPIRE Directive is to make existing spatial data sets with relevance for one of the spatial data themes available in an interoperable way, i.e. where the spatial data from different sources in Europe can be combined to a coherent result. Since INSPIRE covers a wide range of spatial data themes, the first step has been the development of a modelling framework that provides a common foundation for all themes. This framework is largely based on the ISO 19100 series of standards. The use of common generic spatial modelling concepts across all themes is an important enabler for interoperability. As a second step, data specifications for the first set of themes has been developed based on the modelling framework. The themes include addresses, transport networks, protected sites, hydrography, administrative areas and others. The data specifications were developed by selected experts nominated by stakeholders from all over Europe. For each theme a working group was established in early 2008 working on their specific theme and collaborating with the other working groups on cross-theme issues. After a public review of the draft specifications starting in December 2008, an open testing process and thorough comment resolution process, the draft technical implementing rules for these themes have been

  10. An Active System for Visually-Guided Reaching in 3D across Binocular Fixations

    Ester Martinez-Martin

    2014-01-01

    Full Text Available Based on the importance of relative disparity between objects for accurate hand-eye coordination, this paper presents a biological approach inspired by the cortical neural architecture. So, the motor information is coded in egocentric coordinates obtained from the allocentric representation of the space (in terms of disparity generated from the egocentric representation of the visual information (image coordinates. In that way, the different aspects of the visuomotor coordination are integrated: an active vision system, composed of two vergent cameras; a module for the 2D binocular disparity estimation based on a local estimation of phase differences performed through a bank of Gabor filters; and a robotic actuator to perform the corresponding tasks (visually-guided reaching. The approach’s performance is evaluated through experiments on both simulated and real data.