WorldWideScience

Sample records for impervious soils

  1. Depleted soil carbon and nitrogen pools beneath impervious surfaces.

    Science.gov (United States)

    Raciti, Steve M; Hutyra, Lucy R; Finzi, Adrien C

    2012-05-01

    Urban soils and vegetation contain large pools of carbon (C) and nitrogen (N) and may sequester these elements at considerable rates; however, there have been no systematic studies of the composition of soils beneath the impervious surfaces that dominate urban areas. This has made it impossible to reliably estimate the net impact of urbanization on terrestrial C and N pools. In this study, we compared open area and impervious-covered soils in New York City and found that the C and N content of the soil (0-15 cm) under impervious surfaces was 66% and 95% lower, respectively. Analysis of extracellular enzyme activities in the soils suggests that recalcitrant compounds dominate the organic matter pool under impervious surfaces. If the differences between impervious-covered and open area soils represent a loss of C and N from urban ecosystems, the magnitude of these losses could offset sequestration in other parts of the urban landscape. PMID:22377903

  2. Depleted soil carbon and nitrogen pools beneath impervious surfaces

    International Nuclear Information System (INIS)

    Urban soils and vegetation contain large pools of carbon (C) and nitrogen (N) and may sequester these elements at considerable rates; however, there have been no systematic studies of the composition of soils beneath the impervious surfaces that dominate urban areas. This has made it impossible to reliably estimate the net impact of urbanization on terrestrial C and N pools. In this study, we compared open area and impervious-covered soils in New York City and found that the C and N content of the soil (0–15 cm) under impervious surfaces was 66% and 95% lower, respectively. Analysis of extracellular enzyme activities in the soils suggests that recalcitrant compounds dominate the organic matter pool under impervious surfaces. If the differences between impervious-covered and open area soils represent a loss of C and N from urban ecosystems, the magnitude of these losses could offset sequestration in other parts of the urban landscape. - The soils beneath impervious surfaces are depleted in C and N, which may have implications for the energy and nutrient balance of urban ecosystems.

  3. Density and Stability of Soil Organic Carbon beneath Impervious Surfaces in Urban Areas

    OpenAIRE

    Wei, Zongqiang; Wu, Shaohua; Yan, Xiao; Zhou, Shenglu

    2014-01-01

    Installation of impervious surfaces in urban areas has attracted increasing attention due to its potential hazard to urban ecosystems. Urban soils are suggested to have robust carbon (C) sequestration capacity; however, the C stocks and dynamics in the soils covered by impervious surfaces that dominate urban areas are still not well characterized. We compared soil organic C (SOC) densities and their stabilities under impervious surface, determined by a 28-d incubation experiment, with those i...

  4. Soil roughness, slope and surface storage relationship for impervious areas

    Science.gov (United States)

    Borselli, Lorenzo; Torri, Dino

    2010-11-01

    SummaryThe study of the relationships between surface roughness, local slope gradient and maximum volume of water storage in surface depressions is a fundamental element in the development of hydrological models to be used in soil and water conservation strategies. Good estimates of the maximum volume of water storage are important for runoff assessment during rainfall events. Some attempts to link surface storage to parameters such as indices of surface roughness and, more rarely, local gradient have been proposed by several authors with empirical equations often conflicting between them and usually based on a narrow range of slope gradients. This suggests care in selecting any of the proposed equations or models and invites one to verify the existence of more realistic experimental relationships, based on physical models of the surfaces and valid for a larger range of gradients. The aim of this study is to develop such a relation for predicting/estimating the maximum volume of water that a soil surface, with given roughness characteristics and local slope gradient, can store. Experimental work has been carried out in order to reproduce reliable rough surfaces able to maintain the following properties during the experimental activity: (a) impervious surface to avoid biased storage determination; (b) stable, un-erodible surfaces to avoid changes of retention volume during tests; (c) absence of hydrophobic behaviour. To meet the conditions a-c we generate physical surfaces with various roughness magnitude using plasticine (emulsion of non-expansible clay and oil). The plasticine surface, reproducing surfaces of arable soils, was then wetted and dirtied with a very fine timber sawdust. This reduced the natural hydrophobic behaviour of the plasticine to an undetectable value. Storage experiments were conducted with plasticine rough surfaces on top of large rigid polystyrene plates inclined at different slope gradient: 2%, 5%, 10%, 20%, 30%. Roughness data collected on the generated plasticine surfaces were successfully compared with roughness data collected on real soil surfaces for similar conditions. A set of roughness indices was computed for each surface using roughness profiles measured with a laser profile meter. Roughness indices included quantiles of the Abbot-Firestone curve, which is used in surface metrology for industrial application to characterize surface roughness in a non-parametric approach ( Whitehouse, 1994). Storage data were fitted with an empirical equation (double negative exponential of roughness and slope). Several roughness indices resulted well related to storage. The better results were obtained using the Abbot-Firestone curve parameter P100. Beside this storage empirical model (SEM) a geometrical model was also developed, trying to give a more physical basis to the result obtained so far. Depression geometry was approximated with spherical cups. A general physical model was derived (storage cup model - SCM). The cup approximation identifies where roughness elevation comes in and how it relates to slope gradient in defining depression volume. Moreover, the exponential decay used for assessing slope effect on storage volume in the empirical model of Eqs. (8) and (9) emerges as consistent with distribution of cup sizes.

  5. Rural impervious surfaces extraction from Landsat 8 imagery and rural impervious surface index

    Science.gov (United States)

    Zheng, Xinyu; Yu, Zhoulu; Ao, Weijiu; Wang, Youfu; Tahmassebi, Amir Reza; You, Shucheng; Deng, Jinsong; Wang, Ke

    2014-11-01

    There is an increasing need to understand pattern and growth of impervious surfaces in rural regions. However, studies using remote sensing of impervious surfaces have often focused on mapping impervious surfaces in urban regions with less emphasis placed on the rural impervious surfaces. In this paper, we proposed a new index, Rural Impervious Surface Index (RISI) by taking advantage of narrow spectral bands of Landsat 8 OLI for estimating impervious surfaces within rural land covers. This index is based on the combination of Normalized Difference Built-up Index (NDBI), Soil Adjusted Vegetation Index (SAVI) and Soil Index (SI). Respectively, these represent the three major rural land covers components: impervious surfaces, vegetation, and soil. The index was further used for estimating fraction of impervious surfaces using fuzzy KNN classifier. The performance of this technique was also compared with Linear Spectral Mixture Analysis (LSMA). Our results showed that RISI could accurately detect spatial pattern of rural impervious surfaces due to the suppressing background noise and minimizing spectral confusion. Accuracy assessment revealed that incorporation of RISI with fuzzy KNN classification generates higher correlation coefficient, lower root mean square and systematic error compared to the LSMA technique.

  6. Semi Impervious Subsurface Barrier for Water Conservation in Lateritic Formations

    Science.gov (United States)

    Udayakumar, G.; Mayya, S. G.

    2014-09-01

    The coastal districts of Karnataka in west coast of India experience acute shortage of drinking water during dry season in spite of heavy monsoon rains. Though sufficient recharge of ground water takes place, depletion of water table is very quick, once the rain recedes. It is mainly attributed to the presence of porous and highly permeable laterites and lateritic soils. The hydraulic conductivity of these soils varies in the range of 10-4 to 10-5 cm/s. The conventional water harvesting methods fail to solve the problem. It is necessary to explore innovative method to regulate the lateral subsurface flow and maintain a high water table over a prolonged period of time. The present work is an attempt to explore the possibility of using semi impervious Subsurface Barrier (SSB) to regulate and control the lateral flow of water in the unconfined aquifer in lateritic formations. Appropriate barrier material is arrived at using the locally available soil and the required properties are established. A SSB is built in a suitable location in an identified microwatershed using lateritic soil and the composite soil prepared by mixing requisite percentage of lateritic soil and clay. The hydraulic conductivity of these soils is maintained in the range of 10-6 to 10-7 cm/s so as to behave as semi impervious. The performance analysis is carried out by observing water levels in selected open observation wells before and after the construction of the barrier. The results have shown the successful performance of SSB in maintaining a high water table over a prolonged period of time during summer months, both in u/s and d/s of the barrier.

  7. EnviroAtlas - Durham, NC - Impervious Proximity Gradient

    U.S. Environmental Protection Agency — In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of impervious surface within 1 square kilometer centered over...

  8. EnviroAtlas - Green Bay, WI - Impervious Proximity Gradient

    U.S. Environmental Protection Agency — In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of impervious surface within 1 square kilometer centered over...

  9. EnviroAtlas - Fresno, CA - Impervious Proximity Gradient

    U.S. Environmental Protection Agency — In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of impervious surface within 1 square kilometer centered over...

  10. Determination effects of impervious areas on urban watershed.

    Science.gov (United States)

    ?im?ek Uygun, Burcu; Albek, Mine

    2015-02-01

    After the industrial revolution, urban growth has been increasing, especially with technological advances. Urbanization is accelerating environmental pollution and also affects climate significantly because of land use or land cover changes. In this study, the Hydrological Simulation Program-Fortran (HSPF) model developed by the United States Environment Protection Agency (USEPA) is used for modeling the impervious areas of Eski?ehir which is located in the Porsuk Stream Watershed in Inner Anatolia, Turkey. Effects of impervious areas of Eskisehir on the Porsuk Stream pollution between 1975 and 2010 have been investigated. Important water quality parameters like nitrate, orthophosphate, sediment, chloride, and total coliform are modeled. Impervious land segments have been found to be affecting all parameter concentrations and also surface flows significantly as determined using the t test with a confidence level of 95 %. PMID:25182427

  11. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: NLCD 2001 Imperviousness

    U.S. Geological Survey, Department of the Interior — This data set represents the mean percent impervious surface from the Imperviousness Layer of the National Land Cover Dataset 2001 (LaMotte and Wieczorek, 2010),...

  12. to characterize the impervious water storage with an urban surface-flux parameterization TERRA-MLU: evaluation and calibration for Toulouse city

    Science.gov (United States)

    Wouters, Hendrik; Demuzere, Matthias; De Ridder, Koen; van Lipzig, Nicole; Vogel, Gerd

    2013-04-01

    Evaporation from the urban impervious surface could have a considerable impact on the surface energy and moisture balance on rainy days. In particular, the ever increasing urbanization could alter the interaction between evaporation from the surface and precipitation within the urban climate (change) in the future. However, uncertainty exists within the determination of water storage parameters for the impervious surface, and hydrological parameters of the soil for the natural fraction in urban environments. In order to investigate the water balance over urban areas in more detail, TERRA-MLU, a new urban surface-flux parameterization, is applied over Toulouse city centre during the CAPITOUL campaign during 2004. The new urban parameterization covers a direct implementation of urban characteristics in TERRA_ML, Soil-Vegetation-Atmosphere Transfer model of COSMO. Besides anthropogenic heat, specific dynamic, radiative and thermal parameters including roughness length, heat capacity, conductivity, albedo and emissivity are assigned for the urban land-cover. A bluff-roughness thermal roughness length parametrization is used. New surface-layer transfer coefficients are adopted which can deal with very small thermal roughness lengths typical for urban surfaces. An new impervious water storage parameterization is introduced as well. TERRA-MLU is evaluated 'offline' for Marseille, Toulouse, Basel and Vancouver. Sensitivity analysis at the Toulouse site demonstrates that the maximum impervious water storage needs to be equal or less than 1kg/m2 if one only considers evaporation at a potential rate from the impervious surface. Furthermore, results are improved by implementing a storage form parameter that accounts for the reduction of evaporative surface fraction in case of small water content on the impervious surface. An offline sensitivity analysis is performed to estimate the maximum water storage and the storage form parameter. At last, it is found that the rooting depth of the vegetation needs to be described carefully in urban environments with large trees in order not to underestimate the latent heat during summer.

  13. Comparing Urban Impervious Surface Identification Using Landsat and High Resolution Aerial Photography

    OpenAIRE

    Campbell, James B.; Tammy E. Parece

    2013-01-01

    This paper evaluates accuracies of selected image classification strategies, as applied to Landsat imagery to assess urban impervious surfaces by comparing them to reference data manually delineated from high-resolution aerial photos. Our goal is to identify the most effective methods for delineating urban impervious surfaces using Landsat imagery, thereby guiding applications for selecting cost-effective delineation techniques. A high-resolution aerial photo was used to delineate impervious ...

  14. Mapping long-term temporal change in imperviousness using topographic maps

    OpenAIRE

    Miller, James D.; Grebby, Stephen

    2014-01-01

    Change in urban land use and impervious surface cover are valuable sources of information for determining the environmental impacts of urban development. However, our understanding of these impacts is limited due to the general lack of historical data beyond the last few decades. This study presents two methodologies for mapping and revealing long-term change in urban land use and imperviousness from topographic maps. Method 1 involves the generation of maps of fractional impervious surface f...

  15. Using Landsat Vegetation Indices to Estimate Impervious Surface Fractions for European Cities

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Fensholt, Rasmus

    2015-01-01

    Impervious surfaces (IS) are a key indicator of environmental quality, and mapping of urban IS is important for a wide range of applications including hydrological modelling, water management, urban and environmental planning and urban climate studies. This paper addresses the accuracy and applicability of vegetation indices (VI), from Landsat imagery, to estimate IS fractions for European cities. The accuracy of three different measures of vegetation cover is examined for eight urban areas at different locations in Europe. The Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) are converted to IS fractions using a regression modelling approach. Also, NDVI is used to estimate fractional vegetation cover (FR), and consequently IS fractions. All three indices provide fairly accurate estimates (MAEs ? 10%, MBE’s < 2%) of sub-pixel imperviousness, and are found to be applicable for cities with dissimilar climatic and vegetative conditions. The VI/IS relationship across cities is examined by quantifying the MAEs and MBEs between all combinations of models and urban areas. Also, regional regression models are developed by compiling data from multiple cities to examine the potential for developing and applying a single regression model to estimate IS fractions for numerous urban areas without reducing the accuracy considerably. Our findings indicate that the models can be applied broadly for multiple urban areas, and that the accuracy is reduced only marginally by applying the regional models. SAVI is identified as a superior index for the development of regional quantification models. The findings of this study highlight that IS fractions, and spatiotemporal changes herein, can be mapped by use of simple regression models based on VIs from remote sensors, and that the method presented enables simple, accurate and resource efficient quantification of IS.

  16. Procedure to detect impervious surfaces using satellite images and light detection and ranging (lidar) data

    Science.gov (United States)

    Rodríguez-Cuenca, B.; Alonso-Rodríguez, M. C.; Domenech-Tofiño, E.; Valcárcel Sanz, N.; Delgado-Hernández, J.; Peces-Morera, Juan José; Arozarena-Villar, Antonio

    2014-10-01

    The detection of impervious surfaces is an important issue in the study of urban and rural environments. Imperviousness refers to water's inability to pass through a surface. Although impervious surfaces represent a small percentage of the Earth's surface, knowledge of their locations is relevant to planning and managing human activities. Impervious structures are primarily manmade (e.g., roads and rooftops). Impervious surfaces are an environmental concern because many processes that modify the normal function of land, air, and water resources are initiated during their construction. This paper presents a novel method of identifying impervious surfaces using satellite images and light detection and ranging (LIDAR) data. The inputs for the procedure are SPOT images formed by four spectral bands (corresponding to red, green, near-infrared and mid-infrared wavelengths), a digital terrain model, and an .las file. The proposed method computes five decision indexes from the input data to classify the studied area into two categories: impervious (subdivided into buildings and roads) and non-impervious surfaces. The impervious class is divided into two subclasses because the elements forming this category (mainly roads and rooftops) have different spectral and height properties, and it is difficult to combine these elements into one group. The classification is conducted using a decision tree procedure. For every decision index, a threshold is set for which every surface is considered impervious or non-impervious. The proposed method has been applied to four different regions located in the north, center, and south of Spain, providing satisfactory results for every dataset.

  17. A MODELING APPROACH FOR ESTIMATING WATERSHED IMPERVIOUS SURFACE AREA FROM NATIONAL LAND COVER DATA 92

    Science.gov (United States)

    We used National Land Cover Data 92 (NLCD92), vector impervious surface data, and raster GIS overlay methods to derive impervious surface coefficients per NLCD92 class in portions of the Nfid-Atlantic physiographic region. The methods involve a vector to raster conversion of the ...

  18. An Integrated Method for Mapping Impervious and Pervious Areas in Urban Environments Using Hyperspectral and LiDAR Data

    Science.gov (United States)

    Hashemi Beni, L.; McArdle, S.; Khayer, Y.

    2014-11-01

    As urbanization continues to increase and extreme climatic events become more prevalent, urban planners and engineers are actively implementing adaptive measures to protect urban assets and communities. To support the urban planning adaptation process, mapping of impervious and pervious areas is essential to understanding the hydrodynamic environment within urban areas for flood risk planning. The application of advance geospatial data and analytical techniques using remote sensing and GIS can improve land surface characterization to better quantify surface run-off and infiltration. This study presents a method to combine airborne hyperspectral and LiDAR data for classifying pervious (e.g. vegetation, gravel, and soil) and impervious (e.g. asphalt and concrete) areas within road allowance areas for the City of Surrey, British Columbia, Canada. Hyperspectral data was acquired using the Compact Airborne Spectrographic Imager (CASI) at 1 m ground spatial resolution, consisting of 72 spectral bands, and LiDAR data acquired from Leica Airborne LiDAR system at a density of 20 points/m2. A spectral library was established using 10 cm orthophotography and GIS data to identify surface features. In addition to spectral functions such as mean and standard deviation, several spectral indices were developed to discriminate between asphalt, concrete, gravel, vegetation, and shadows respectively. A spectral analysis of selected endmembers was conducted and an initial classification technique was applied using Spectral Angle Mapper (SAM). The classification results (i.e. shadows) were improved by integrating LIDAR data with the hyperspectral data.

  19. Ecohydrology in semiarid urban ecosystems: Modeling the relationship between connected impervious area and ecosystem productivity

    Science.gov (United States)

    Shields, Catherine; Tague, Christina

    2015-01-01

    In water-stressed, semiarid urban environments, connections between impervious surfaces and drainage networks may strongly impact the water use and ecosystem productivity of neighboring vegetated areas. We use an ecohydrologic model, the Regional Hydro-Ecological Simulation System (RHESSys), to quantify the sensitivity of vegetation water use and net primary productivity (NPP) to fine-scale impervious surface connectivity. We develop a set of very fine-scale (2 m2) scenarios that vary both the percentage of impervious surface and fraction of this impervious surface with direct hydrologic connections to urban drainage systems for a small hillslope. When driven by Mediterranean climate forcing, model estimates suggest that total vegetation water use declines with increasing impervious area. However, when impervious area is hydrologically disconnected from the urban drainage network, declines in water and carbon fluxes with decreased vegetated area can be partially, or in some cases even completely, offset by increased transpiration and NPP in the remaining vegetation. Relative increases in water use and NPP of remaining vegetation are much greater for deeply rooted shrubs and trees and negligible for shallow rooted grasses. We extrapolate our findings to the catchment scale by developing a first-order approximation of fine-scale impervious connection impacts on aggregate watershed water and carbon flux estimates. Our approach offers a computationally and data-efficient method for estimating the impact of impervious area connectivity on these ecohydrologic fluxes. For our only partially urbanized Santa Barbara watershed, estimates of water use and NPP that account for fine-scale impervious connection differed by more than 10% from those that did not.

  20. An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery

    Science.gov (United States)

    Yang, L.; Huang, C.; Homer, C.G.; Wylie, B.K.; Coan, M.J.

    2003-01-01

    A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning, and resource management, require current and accurate geospatial data of urban impervious surfaces. We developed an approach to quantify urban impervious surfaces as a continuous variable by using multisensor and multisource datasets. Subpixel percent impervious surfaces at 30-m resolution were mapped using a regression tree model. The utility, practicality, and affordability of the proposed method for large-area imperviousness mapping were tested over three spatial scales (Sioux Falls, South Dakota, Richmond, Virginia, and the Chesapeake Bay areas of the United States). Average error of predicted versus actual percent impervious surface ranged from 8.8 to 11.4%, with correlation coefficients from 0.82 to 0.91. The approach is being implemented to map impervious surfaces for the entire United States as one of the major components of the circa 2000 national land cover database.

  1. Automatic mapping of urban areas from Landsat data using impervious surface fraction algorithm

    Science.gov (United States)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.

    2014-12-01

    Urbanization is a result of aggregation of people in urban areas that can help advance socioeconomic development and pull out people from the poverty line. However, if not monitored well, it can also lead to loss of farmlands, natural forests as well as to societal impacts including burgeoning growth of slums, pollution, and crime. Thus, spatiotemporal information that shapes the urbanization is thus critical to the process of urban planning. The overall objective of this study is to develop an impervious surface fraction algorithm (ISFA) for automatically mapping urban areas from Landsat data. We processed the data for 1986, 2001 and 2014 to trace the multi-decadal spatiotemporal change of Honduran capital city using a three-step procedure: (1) data pre-processing to perform image normalization as well as to produce the difference in the values (DVSS) between the simple ratio (SR) of green and shortwave bands and the soil adjust vegetation index (SAVI), (2) quantification of urban areas using ISFA, and (3) accuracy assessment of mapping results using the ground reference data constructed using land-cover maps and FORMOSAT-2 imagery. The mapping accuracy assessment was performed for 2001 and 2014 by comparing with the ground reference data indicated satisfactory results with the overall accuracies and Kappa coefficients generally higher than 90% and 0.8, respectively. When examining the urbanization between these years, it could be observed that the urban area was significantly expanded from 1986 to 2014, mainly driven by two factors of rapid population growth and socioeconomic development. This study eventually leads to a realization of the merit of using ISFA for multi-decadal monitoring of the urbanization of Honduran capital city from Landsat data. Results from this research can be used by urban planners as a general indicator to quantify urban change and environmental impacts. The methods were thus transferable to monitor urban growth in cities and their peri areas around the world.

  2. Mapping Impervious Surfaces Globally at 30m Resolution Using Global Land Survey Data

    Science.gov (United States)

    DeColstoun, Eric Brown; Huang, Chengquan; Tan, Bin; Smith, Sarah Elizabeth; Phillips, Jacqueline; Wang, Panshi; Ling, Pui-Yu; Zhan, James; Li, Sike; Taylor, Michael P.; Wolfe, Robert E.; Tilton, James C.

    2013-01-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (approx. 2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.

  3. Evaluation of a Moderate Resolution, Satellite-Based Impervious Surface Map Using an Independent, High-Resolution Validation Dataset

    Science.gov (United States)

    Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data ...

  4. A TECHNIQUE FOR ASSESSING THE ACCURACY OF SUB-PIXEL IMPERVIOUS SURFACE ESTIMATES DERIVED FROM LANDSAT TM IMAGERY

    Science.gov (United States)

    We developed a technique for assessing the accuracy of sub-pixel derived estimates of impervious surface extracted from LANDSAT TM imagery. We utilized spatially coincident sub-pixel derived impervious surface estimates, high-resolution planimetric GIS data, vector--to- r...

  5. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Imperviousness

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the mean percent impervious surface from the Imperviousness Layer of the National Land Cover Dataset 2001, (LaMotte and Wieczorek,...

  6. Enhancing endmember selection in multiple endmember spectral mixture analysis (MESMA) for urban impervious surface area mapping using spectral angle and spectral distance parameters

    Science.gov (United States)

    Fan, Fenglei; Deng, Yingbin

    2014-12-01

    Successful retrieval of urban impervious surface area is achieved with remote sensing data using the multiple endmember spectral mixture analysis (MESMA). MESMA is well suited for studying the urban impervious surface area because it allows the number and types of the endmembers to vary on a per-pixel basis, thereby, allowing the control of the large spectral variability. However, MESMA must calculate all potential endmember combinations of each pixel to determine the best-fit one. Therefore, it is a time-consuming and inefficient unmixing technology, especially for hyperspectral images because these images have more complicated endmember categories. Hence, in this paper, we design an improved MESMA (SASD-MESMA: spectral angle and spectral distance MESMA) to enhance the computational efficiency of conventional MESMA, and we validate this new method by analyzing the Hyperion image (Jan-2011) and the field-spectra data of Guangzhou (China). In SASD-MESMA, the parameters of spectral angle (SA) and spectral distance (SD) are used to evaluate the similarity degree between library spectra and image spectra in order to identify the most representative endmember combination for each pixel. Results demonstrate that the SA and SD parameters are useful to reduce misjudgment in selecting candidate endmembers and effective for determining the appropriate endmembers in one pixel. Meanwhile, this research indicates that the proposed SASD-MESMA performs very well in retrieving impervious surface area, forest, grass and soil distributions on the sub-pixel level (the overall root mean square error (RMSE) is 0.15 and the correlation coefficient of determination (R2) is 0.68).

  7. Comparing Urban Impervious Surface Identification Using Landsat and High Resolution Aerial Photography

    Directory of Open Access Journals (Sweden)

    James B. Campbell

    2013-10-01

    Full Text Available This paper evaluates accuracies of selected image classification strategies, as applied to Landsat imagery to assess urban impervious surfaces by comparing them to reference data manually delineated from high-resolution aerial photos. Our goal is to identify the most effective methods for delineating urban impervious surfaces using Landsat imagery, thereby guiding applications for selecting cost-effective delineation techniques. A high-resolution aerial photo was used to delineate impervious surfaces for selected census tracts for the City of Roanoke, Virginia. National Land Cover Database Impervious Surface data provided an overall accuracy benchmark at the city scale which was used to assess the Landsat classifications. Three different classification methods using three different band combinations provided overall accuracies in excess of 70% for the entire city. However, there were substantial variations in accuracy when the results were subdivided by census tract. No single classification method was found most effective across all census tracts; the best method for a specific tract depended on method, band combination, and physical characteristics of the area. These results highlight impacts of inherent local variability upon attempts to characterize physical structures of urban regions using a single metric, and the value of analysis at finer spatial scales.

  8. Spatial and temporal variations in land development and impervious surface creation in Oakland County, Michigan, 1945-2005

    Science.gov (United States)

    Aichele, Stephen S.; Andresen, Jeffrey A.

    2013-04-01

    SummaryImpervious surface has been recognized as a key indicator of watershed health and function. The rapid expansion of impervious surface associated with periurban development following the Second World War resulted in concerns that impervious surface would alter flow characteristics, water quality, sediment, and stream morphology. These effects have been documented in studies across many disciplines. Unfortunately, impervious surface is difficult to measure directly, and other forms of land-use data are often substituted as surrogates. This paper highlights the shortcomings in land-use data, particularly parcel-based land-use data, as a surrogate for impervious surface in a periurban environment. Periurban development has changed substantially in the last several decades. This study investigates changes in the form of periurban development in Oakland County, Michigan, from 1945 to 2005, with an emphasis on the accumulation of impervious surface. We first evaluate patterns in the sizes of parcels being developed to residential uses. Using an impervious surface map derived from aerial imagery, we then calculate amount of impervious surface created by different forms of development, both in parcels of similar sizes developed at different times, and across parcel sizes for the period of the study. The results indicate substantial variability in impervious surface within periurban residential development, from 5.4% of parcel area to 25.4% of total parcel area depending on parcel size. Even within relatively specific categories (for example, residential parcels less than 743 square metre) impervious surface varied between 18.5% and 34.6% of the parcel area between 1945 and 2000. Since 1980, the trend has been toward larger parcel sizes with lower impervious surface ratios. The overall effect is that land is being developed at a rate substantially greater than the rate impervious surface is being created. The bias created by the trend to larger parcel sizes with smaller impervious surface ratios results in a tendency to overestimate the effects of recent land development. In combination with the change in character of suburban development, this bias has a tendency to overestimate the hydrologic response to new development. This overestimation is easily overlooked because it is consistent with the expected effect of urbanization. However, this effect helps explain observed field results indicating little change in streamflow through time despite significant apparent periurban development.

  9. Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US

    Directory of Open Access Journals (Sweden)

    P. V. Caldwell

    2012-08-01

    Full Text Available Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land-use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of impervious cover and water withdrawal on river flow across the conterminous US at the 8-digit Hydrologic Unit Code (HUC watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "Low" and A2 "High" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2005 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Predicted ecohydrological impacts of land cover, water withdrawal, and climate change will likely include alteration of the terrestrial water balance, stream channel habitat, riparian and aquatic community structure in snow-dominated basins, and fish and mussel extirpations in heavily impacted watersheds. These changes may also require new infrastructure to support increasing anthropogenic demand for water, relocation of agricultural production, and/or water conservation measures. Given that the impacts of land use, withdrawals and climate may be either additive or offsetting in different magnitudes, integrated and spatially explicit modeling and management approaches are necessary to effectively manage water resources for aquatic life and human use in the face of global change.

  10. Monitoring urban impervious surface area change using China-Brazil Earth Resources Satellites and HJ-1 remote sensing images

    Science.gov (United States)

    Du, Peijun; Xia, Junshi; Feng, Li

    2015-01-01

    Impervious surface area (ISA) plays an important role in monitoring urbanization and related environmental changes, and has become a hotspot in urban and environmental studies. Xuzhou City, located in northwest Jiangsu Province, China, is chosen as the study area, and two scenes of China-Brazil Earth Resources Satellites images and one scene of HJ-1 image are employed to estimate ISA percentage and analyze the change trend from 2001 to 2009. Using a linear spectral mixture model (LSMM) and nonlinear backpropagation neural network (BPNN) method, all pixels are decomposed to derive four fraction images representing the abundance of four endmembers: vegetation, high-albedo objects, low-albedo objects, and soil. The ISA percentage is then derived by the combination of high- and low-albedo fraction images after removing the influence of water. Some high spatial resolution images are selected to validate the ISA estimation results, and the experimental results indicate that the accuracy of BPNN is higher than LSMM. By comparing the urban ISA abundances derived by BPNN from three dates, it is found that the ISA of Xuzhou City has increased rapidly from 2001 to 2009, especially in the northeast and southeast regions, corresponding to the urban planning scheme and fast urbanization. Compared to other medium remote sensing images, the revisit cycle of HJ-1 multispectral image is only two days, demonstrating the potential of such data for ISA extraction in urbanization, disaster, and other related applications.

  11. Ecologically relevant geomorphic attributes of streams are impaired by even low levels of watershed effective imperviousness

    Science.gov (United States)

    Vietz, Geoff J.; Sammonds, Michael J.; Walsh, Christopher J.; Fletcher, Tim D.; Rutherfurd, Ian D.; Stewardson, Michael J.

    2014-02-01

    Urbanization almost inevitably results in changes to stream morphology. Understanding the mechanisms for such impacts is a prerequisite to minimizing stream degradation and achieving restoration goals. However, investigations of urban-induced changes to stream morphology typically use indicators of watershed urbanization that may not adequately represent degrading mechanisms and commonly focus on geomorphic attributes such as channel dimensions that may be of little significance to the ecological goals for restoration. We address these shortcomings by testing if a measure characterizing urban stormwater drainage system connections to streams (effective imperviousness, EI) is a better predictor of change to ecologically relevant geomorphic attributes than a more general measure of urban density (total imperviousness, TI). We test this for 17 sites in independent watersheds across a gradient of urbanization. We found that EI was a better predictor of all geomorphic variables tested than was TI. Bank instability was positively correlated with EI, while width/depth (a measure of channel incision), bedload sediment depth, and frequency of bars, benches, and large wood were negatively correlated. Large changes in all geomorphic variables were detected at very low levels of EI (urban stormwater runoff, as represented by EI, drives geomorphic change in urban streams, highlighting the dominant role of the stormwater drainage system in efficiently transferring stormwater runoff from impervious surfaces to the stream, as found for ecological indicators. It is likely that geomorphic condition of streams in urbanizing watersheds, particularly those attributes of ecological relevance, can only be maintained if excess urban stormwater flows are kept out of streams through retention and harvesting. The extent to which EI can be reduced within urban and urbanizing watersheds, through techniques such as distributed stormwater harvesting and infiltration, and the components of the hydrologic regime to be addressed, requires further investigation. Urbanization influences stream morphology more than any other land use (Douglas, 2011): it alters hydrology and sediment inputs leading to deepening and widening of streams (Chin, 2006). Concomitantly, urbanization often directly impairs stream morphology through channel and riparian zone interventions, e.g., culverts (Hawley et al., 2012), rock protection (Vietz et al., 2012b), and constricted floodplains (Gurnell et al., 2007). These changes to channel geomorphology in turn contribute to poor in-stream ecological condition (Morley and Karr, 2002; Walsh et al., 2005b; Gurnell et al., 2007; Elosegi et al., 2010).The common conception is that channels undergo gross morphologic alterations if > 10-20% of their watershed is covered by impervious surfaces (total imperviousness, TI; Bledsoe and Watson, 2001; Chin, 2006; Table 1). Many of these studies may, however, underestimate the influence of urbanization by using insensitive channel metrics and assessing streams in early stages of urbanization. Most importantly, TI, as a measure of urban density, may not adequately represent the way in which urbanization alters the master variables of flow and sediment within a watershed.Hydrologists have long recognized that, rather than the proportion of impervious cover within a watershed, it is the proportion that is directly connected to the stream through stormwater drainage systems that may be a better predictor of urban-induced hydrologic change (Leopold, 1968). Referred to as effective imperviousness (EI) the proportion of impervious cover directly connected to the stream through stormwater drainage systems may also be a better predictor of geomorphic response than is TI. Over the last decade a direct measure of EI has been found to be a better predictor of ecological response in urban streams (Walsh et al., 2012), but use of such a metric has not found its way into geomorphic studies even though TI has been found to be ineffective (e.g., Bledsoe et al.,

  12. National Land Cover Database 2001 (NLCD01) Imperviousness Layer Tile 1, Northwest United States: IMPV01_1

    U.S. Geological Survey, Department of the Interior — This 30-meter resolution data set represents the imperviousness layer for the conterminous United States for the 2001 time period. The data have been arranged into...

  13. USGS Small-scale Dataset - 100-Meter Resolution Impervious Surface of the Conterminous United States 201301 TIFF

    U.S. Geological Survey, Department of the Interior — This map layer contains impervious surface data for the conterminous United States, in an Albers Equal-Area Conic projection and at a resolution of 100 meters. The...

  14. Subsoil Compaction: A hidden form of Soil Sealing in Europe

    OpenAIRE

    Jones, Robert J. A.; Montanarella, Luca

    2001-01-01

    There are two definitions of ‘soil sealing’: (I) ‘covering (sealing) the soil surface by impervious materials, e.g. concrete, metal, glass, tarmac and plastic’; and (II) ‘changing the nature of the soil such that it behaves as an impermeable medium, e.g. by compaction’. The main causes of soil sealing according to the first definition (I) are building development (e.g. industrial and residential premises) and transport (e.g. roads). Changing the nature of the soil s...

  15. Influence of Vegetation, Impervious Surface and Water Body on Land Thermal Fileld of Karst City

    Directory of Open Access Journals (Sweden)

    HU Dao-sheng

    2014-05-01

    Full Text Available In order to evaluate the impact of karst Guilin City rapid expansion on urban heat island effect, land surface temperature (LST, seven vegetation indexes (VI, percent impervious surface area (ISA and modified normalized difference water index (MNDWI were retrieved with model from TM image. After the influcence of temporal and spatial variation of vegetation, impervious surface and water body on land thermal field of karst city was studied. Results show that there is a significant negative linear relationship between LST and VI, so is between LST and MNDWI. Howerver, the relationship between LST and ISA shows significant positive linear. From 1989 to 2006, the medium and high vegetation covered area of NDVI>0.4 slashes from 76.89% to 32.65%, and the area without vegetation coverage of NDVI0.9 rises greatly from 12.1% to 32.1%.Those result in the high and sub-high surafce temperature areas rises from 7.9% to 15.9%, the low and sub-low surafce temperature areas drop substantially from 61.8% to 38.9%. Urban heat island effect markedly enhanced. Continuous large impervious surface area is one of the main factors contributing to urban heat island on karst city. But Vegetation on karst hills, urban forest and large water bodies such as rivers and lakes have very great impact on karst urban thermal environment and mitigate urban heat island.

  16. Importance of High-Resolution LiDAR Data in Modeling Runoff Levels Over Impervious Surfaces

    Science.gov (United States)

    Melosh, C.; Rao, M.

    2013-12-01

    Directly connected impervious areas collect and deliver unfiltered runoff to modified and impacted waterways. Modeling water flow over the landscape is an effective method of observing drainage patterns and predicting pollutant and sediment loadings. Improved models applying high-resolution elevation data can identify key areas with high pollutant output. This is a crucial issue in the Lake Tahoe Basin where lakeshore urban development has increased and lake clarity has been declining for years. This study aims to evaluate an integrated LiDAR and GIS-based modeling approach that uses a fine-scaled ground surface and impervious surface connectivity to predict the pollutant load in the Lake Tahoe Basin This study produced a fine-scaled surface model of nine subset catchments in the South Tahoe basin, including areas of low (below 20%), medium (30% to 50%) and high (above 50%) impervious surface cover. Our method integrated LiDAR, multispectral imagery, and GIS data to develop accurate terrain models, hydrologic routing, and directly connected impervious area layers for the Lake Tahoe basin. The high-density ground and object elevation data collected using Light Detection and Ranging (LiDAR) creates an accurate picture of water flow over the land, and obstacles to the flow such as buildings. High-resolution LiDAR data was obtained from the Round 10 Lake Tahoe Southern Nevada Public Land Management capital program from the year 2010. This data was processed to create a digital elevation model of the ground surface. Land use classification used object height information from the LiDAR cloud, NAIP 4-band images with 1-meter resolution and a normalized difference vegetation index image derived from the NAIP imagery. The US Army Core of Engineers hydrologic modeling system (HEC-HMS) will be used to model runoff. Based on long-term simulations the effect of directly connected impervious area on rainfall-runoff characteristics for the South Lake Tahoe catchments will be evaluated. Similar scenarios will be run on data derived from 10-meter resolution USGS elevation models. Regression analyses will be used to compare the simulation results derived using LiDAR data inputs to the results obtained using lower-resolution USGS elevation models and to observed monitoring data.

  17. Determining Trends in Impervious Cover for the Mobile Bay, AL Region for 1974-2008, Based on a Landsat Time Series

    Science.gov (United States)

    Spruce, Joseph P.; Smoot, James; Ellis, Jean; Swann, Roberta

    2011-01-01

    This presentation will discuss the development and use of Landsat-based impervious cover products in conjunction with land use land cover change products to assess multi-decadal urbanization across the Mobile Bay region at regional and watershed scales. This nationally important coastal region has undergone a variety of ephemeral and permanent land use land cover change since the mid-1970s, including gradual but consequential increases in urban surface cover. This urban sprawl corresponds with increased regional percent impervious cover. The region s coastal zone managers are concerned about the increasing percent impervious cover, since it can negatively influence water quality and is an important consideration for coastal conservation and restoration work. In response, we processed multi-temporal Landsat data to compute maps of percent impervious cover for multiple dates from 1974 through 2008, roughly at 5-year intervals. Each year of product was classified using one single date of leaf-on and leaf-off Landsat data in conjunction with Cubist software. We are assessing Landsat impervious cover product accuracy through comparisons to available reference data, including available NLCD impervious cover products from the USGS, raw Landsat data, plus higher spatial resolution aerial and satellite data. In particular, we are quantitatively comparing the 2008 Landsat impervious cover products to those from QuickBird 2.4-meter multispectral data. Initial visual comparisons with the QuickBird impervious cover product suggest that the 2008 Landsat product tends to underestimate impervious cover for high density urban areas and to overestimate impervious cover in established residential subdivisions mixed with forested cover. Landsat TM and ETM data appears to produce more accurate impervious cover products compared to those using lower resolution Landsat MSS data. Although imperfect, these Landsat impervious cover products have helped the Mobile Bay National Estuary Program visualize basic urbanization trends for multiple HUC-12 watersheds of concern to them and their constituents

  18. Soils

    Science.gov (United States)

    Pamela Gore

    1995-08-29

    The purpose of the handout is to identify the three major types of soils: pedalfer, pedocal, and laterite, and to understand the soil profile. This is accomplished with brief descriptions of the soil horizons and the designation of common elements to pedalfers, pedocals, and laterite soils. The handout is concluded with a discussion of soil erosion. Links are provided to the online Physical Geology resources at Georgia Perimeter College.

  19. High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery

    Directory of Open Access Journals (Sweden)

    P. Tokarczyk

    2015-01-01

    Full Text Available Modelling rainfall–runoff in urban areas is increasingly applied to support flood risk assessment particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the area. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increase as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data is unavailable. Modern unmanned air vehicles (UAVs allow acquiring high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility to derive high-resolution imperviousness maps for urban areas from UAV imagery and to use this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is tested and applied in a state-of-the-art urban drainage modelling exercise. In a real-life case study in the area of Lucerne, Switzerland, we compare imperviousness maps generated from a consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo. After assessing their correctness, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyze the surface runoff of the 307 individual subcatchments regarding relevant attributes, such as peak runoff and volume. Finally, we evaluate the model's channel flow prediction performance through a cross-comparison with reference flow measured at the catchment outlet. We show that imperviousness maps generated using UAV imagery processed with modern classification methods achieve accuracy comparable with standard, off-the-shelf aerial imagery. In the examined case study, we find that the different imperviousness maps only have a limited influence on modelled surface runoff and pipe flows. We conclude that UAV imagery represents a valuable alternative data source for urban drainage model applications due to the possibility to flexibly acquire up-to-date aerial images at a superior quality and a competitive price. Our analyses furthermore suggest that spatially more detailed urban drainage models can even better benefit from the full detail of UAV imagery.

  20. Enabling high-quality observations of surface imperviousness for water runoff modelling from unmanned aerial vehicles

    Science.gov (United States)

    Tokarczyk, Piotr; Leitao, Joao Paulo; Rieckermann, Jörg; Schindler, Konrad; Blumensaat, Frank

    2015-04-01

    Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk assessment particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the area. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increase as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data is unavailable. Modern unmanned air vehicles (UAVs) allow acquiring high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility to derive high-resolution imperviousness maps for urban areas from UAV imagery and to use this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is tested and applied in a state-of-the-art urban drainage modelling exercise. In a real-life case study in the area of Lucerne, Switzerland, we compare imperviousness maps generated from a consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their correctness, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyze the surface runoff of the 307 individual sub-catchments regarding relevant attributes, such as peak runoff and volume. Finally, we evaluate the model's channel flow prediction performance through a cross-comparison with reference flow measured at the catchment outlet. We show that imperviousness maps generated using UAV imagery processed with modern classification methods achieve accuracy comparable with standard, off-the-shelf aerial imagery. In the examined case study, we find that the different imperviousness maps only have a limited influence on modelled surface runoff and pipe flows. We conclude that UAV imagery represents a valuable alternative data source for urban drainage model applications due to the possibility to flexibly acquire up-to-date aerial images at a superior quality and a competitive price. Our analyses furthermore suggest that spatially more detailed urban drainage models can even better benefit from the full detail of UAV imagery.

  1. High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery

    Science.gov (United States)

    Tokarczyk, P.; Leitao, J. P.; Rieckermann, J.; Schindler, K.; Blumensaat, F.

    2015-01-01

    Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk assessment particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the area. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increase as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data is unavailable. Modern unmanned air vehicles (UAVs) allow acquiring high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility to derive high-resolution imperviousness maps for urban areas from UAV imagery and to use this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is tested and applied in a state-of-the-art urban drainage modelling exercise. In a real-life case study in the area of Lucerne, Switzerland, we compare imperviousness maps generated from a consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their correctness, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyze the surface runoff of the 307 individual subcatchments regarding relevant attributes, such as peak runoff and volume. Finally, we evaluate the model's channel flow prediction performance through a cross-comparison with reference flow measured at the catchment outlet. We show that imperviousness maps generated using UAV imagery processed with modern classification methods achieve accuracy comparable with standard, off-the-shelf aerial imagery. In the examined case study, we find that the different imperviousness maps only have a limited influence on modelled surface runoff and pipe flows. We conclude that UAV imagery represents a valuable alternative data source for urban drainage model applications due to the possibility to flexibly acquire up-to-date aerial images at a superior quality and a competitive price. Our analyses furthermore suggest that spatially more detailed urban drainage models can even better benefit from the full detail of UAV imagery.

  2. Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn region (Germany)

    Science.gov (United States)

    Braun, Matthias; Herold, Martin

    2004-02-01

    Information about imperviousness surface distributions is essential for several environmental applications and the planning and management of sustainable development of urban areas. Satellite remote sensing based mapping of imperviousness has shown important potentials to acquire such information in great spatial detail but the actual mapping process has been challenged by the heterogeneity of urban environment and limited spatial and spectral sensor capabilities. This study explores and compares two methods based on the vegetation fraction from linear spectral unmixing and the NDVI to map the degree of imperviousness in the urban agglomeration of Cologne/Bonn in Western Germany. The study employed data from the ASTER satellite sensor with improved spatial and spectral resolution. Fieldwork was carried out in the area of Bonn to obtain a comprehensive set of reference data with estimated degrees of imperviousness for different types of urban areas. Rural areas were excluded using data from the governmental land information system (ATKIS). The applied simple linear spectral unmixing approach revealed less suitable results for the built area fraction due to the heterogeneity of the spectral response from urban targets. The vegetation fraction and the NDVI provided sufficient results in estimating the impervious surface fraction that were used to derive related maps for the study areas.

  3. Spectral data treatments for impervious endmember derivation and fraction mapping from Landsat ETM+ imagery: a comparative analysis

    Science.gov (United States)

    Wang, Wei; Yao, Xinfeng; Ji, Minhe; Zhang, Jiao

    2015-06-01

    Various spectral data preprocessing approaches have been used to improve endmember extraction for urban landscape decomposition, yet little is known of their comparative adequacy for impervious surface mapping. This study tested four commonly used spectral data treatment strategies for endmember derivation, including original spectra, image fusion via principal component analysis, spectral normalization, and the minimum noise fraction (MNF) transformation. Land cover endmembers derived using each strategy were used to build a linear spectral mixture analysis (LSMA) model in order to unmix treated image pixels into fraction maps, and an urban imperviousness map was generated by combining the fraction maps representing imperviousness endmembers. A cross-map comparative analysis was then performed to rank the four data treatment types based on such common evaluation indices as the coefficient of determination ( R 2) and root mean square error (RMSE). A Landsat 7 ETM+ multispectral image covering the metropolitan region of Shanghai, China was used as the primary dataset, and the model results were evaluated using high-resolution colorinfrared aerial photographs of roughly the same time period. The test results indicated that, with the highest R 2 (0.812) and the lowest RMSE (0.097) among all four preprocessing treatments, the endmembers in the form of MNF-transformed spectra produced the best model output for characterizing urban impervious surfaces. The outcome of this study may provide useful guidance for future impervious surface mapping using medium-resolution remote sensing data.

  4. Assessing Changes in Impervious Area Using Land Use Maps of Different Resolution in the Croton NY City Water Supply Watershed

    Science.gov (United States)

    Somerlot, C.; Duncan, J.; Endreny, T.

    2001-05-01

    With the advance of remote sensing, options arise for the hydrologic modeler to access both public domain and privately contracted watershed land cover maps. Land use classification processes using aerial photographs are highly variable depending on tools and training, but distinction between impervious and pervious land cover is relatively simple. Hydrologic models will estimate different runoff timing, volume, and water quality depending on the percent imperviousness of the watershed. This research will examine how percent imperviousness varies with changes in both radiometric and spatial land cover map resolution. WinHSPF was run with four distinct land cover maps derived from remote imagery: MRLC (30 m), LULC (1 km), contracted aerial photos (1 m), and processed digital (1 M) ortho quarter quads. Comparisons were made between map percent impervious cover and runoff timing and volume. A modified export coefficient model that tracks pollutant discharge through down gradient filters examined how estimated nutrient loading changed with differences in these land cover map products. Methods are suggested for updating estimates of percent impervious cover in coarser resolution maps using field data or other means.

  5. Water table fluctuation in aquifers overlying a semi-impervious layer due to transient recharge from a circular basin

    Science.gov (United States)

    Ilias, Teloglou S.; Thomas, Zissis S.; Andreas, Panagopoulos C.

    2008-01-01

    SummaryAn analytical solution of a linearised form of Boussinesq equation is presented in this paper to describe the water table fluctuation in unconfined aquifers overlying a semi-impervious layer in response to transient recharge. This solution does not require the common assumption of an impervious formation underlain the unconfined aquifer. On the contrary, it shows that even when the hydraulic conductivity of the semi-impervious layer is several orders of magnitude less than the aquifer hydraulic conductivity, downward leakage can be important and can lead to large overestimations of water table heights if it is ignored. The rate of recharge is considered to decrease exponentially with time during a single cycle of recharge while two cycles of time varying recharge are approximated by continuous elements described by Nth degree polynomials. Numerical solution of the non-linear Boussinesq equation was implemented to validate the applied linearisation.

  6. Soil structural behaviour of flooded soils

    International Nuclear Information System (INIS)

    The objectives of this presentation are to: identify factors determining of the structural behaviour of flooded soils, as compared to those acting in upland soils; analyse the influence of reductive processes on aggregate stabilising agents; discuss mechanisms of structural deterioration and recovery during the flooding-drying cycle, on the basis of a case study: cattle trampling effects in the flooding Pampa of Argentina. Flooded soils, now known as Hydric soils, are characteristic of wetlands and irrigated fields cropped to rice (paddy soils). In them, water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year. Hydric soils belong to different taxa of the FAO-UNESCO Soil Map (2000). Fluvisols, Planosols and Gleysols are widespread distributed in the globe. The generation of redoximorphic features is due to different causes in each of them. Fluvisols are covered part of the year by surface water from river overflows; Planosols are soils having an impervious Bt horizon, supporting perched water during short periods; and Gleysols are soils affected by stagnant water tables during long periods

  7. Soils

    International Nuclear Information System (INIS)

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  8. Downscaling of thermal images over urban areas using the land surface temperature-impervious percentage relationship

    Science.gov (United States)

    Essa, W.; van der Kwast, J.; Verbeiren, B.; Batelaan, O.

    2013-08-01

    Intensive expansion and densification of urban areas decreases environmental quality and quality of urban life as exemplified by the urban heat island effect. For this reason, thermal information is becoming an increasingly important data source for integration in urban studies. It is expected that future spaceborne thermal sensors will provide data at appropriate spatial and temporal resolutions for urban studies. Until they become operational, research has to rely on downscaling algorithms increasing the spatial resolution of relatively coarse resolution thermal images albeit having a high temporal resolution. Existing downscaling algorithms, however, have been developed for sharpening images over rural and natural areas, resulting in large errors when applied to urban areas. The objective of this study is to adapt the DisTrad method for downscaling land surface temperature (LST) over urban areas using the relationship between LST and impervious percentage. The proposed approach is evaluated by sharpening aggregated LST derived from Landsat 7 ETM+ imagery collected over the city of Dublin on May 24th 2001. The new approach shows improved downscaling results over urban areas for all evaluated resolutions, especially in an environment with mixed land cover. The adapted DisTrad approach was most successful at a resolution of 480 m, resulting in a correlation of R2 = 0.84 with an observed image at the same resolution. Furthermore, sharpening using the adapted DisTrad approach was able to preserve the spatial autocorrelation present in urban environments. The unmixing performance of the adapted DisTrad approach improves with decreasing resolution due to the fact that the functional relationship between LST and impervious percentage was defined at coarse resolutions.

  9. Spatial and temporal resolution effects on urban catchments with different imperviousness degrees

    Science.gov (United States)

    Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.

    2015-04-01

    One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.

  10. Fabrication of gas impervious edge seal for a bipolar gas distribution assembly for use in a fuel cell

    International Nuclear Information System (INIS)

    A process is described for the preparation of a bipolar gas reactant distribution assembly having solid, gas impervious edge seals to prevent leakage of gaseous reactants, which comprises providing a pair of porous plate members provided with peripheral slits, the slits being generally parallel to, and spaced from each of two edges of the plate, filling the slits with a non-porous, fusible gas impervious edge sealing compound, assembling the plate members with the slits therein approximately perpendicular to one another and a layer of fusible sealing material interposed therebetween, hot pressing the assembly at a temperature sufficient to cause a redistribution of the sealant layer into the pores of the adjacent plate surfaces and the edge sealing compound to flow and impregnate the region of the plates adjacent the slits and comingle with the redistributed sealant material to form a continuous layer of sealant along the edges of the assembly

  11. Evaluating the effectiveness of drainage and impervious elements of concrete dams on bedrock (on example of Bureyskaya HPP

    Directory of Open Access Journals (Sweden)

    S.V. Solsky

    2014-06-01

    Full Text Available The proposed technique allows estimating the efficiency of individual elements of hydraulic structures that perform similar functions and work together, and determining the impact of their current state on the entire structure performance. The technique was elaborated for a separate evaluation of drainage and impervious elements of bases of concrete dams on bedrock when they work together. To implement this task, the authors used the method of numerical simulation (modeling and comparisons with field observations data, which allowed calibrating the ground model. The technique was tested on one of the gates at Bureyskaya HPP, and the influence of drainage and impervious elements effectiveness upon the backpressure on the base of the concrete dam was estimated. The result of these studies allows the authors to suggest appropriate safety criteria K1 and K2. It should be noted that the developed technique allows giving priorities in determining the composition and volume of the repair and / or reconstruction of hydraulic structures elements.

  12. Sub-Pixel Mapping of Tree Canopy, Impervious Surfaces, and Cropland in the Laurentian Great Lakes Basin Using MODIS Time-Series Data

    Science.gov (United States)

    This research examined sub-pixel land-cover classification performance for tree canopy, impervious surface, and cropland in the Laurentian Great Lakes Basin (GLB) using both timeseries MODIS (MOderate Resolution Imaging Spectroradiometer) NDVI (Normalized Difference Vegetation In...

  13. Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment

    Science.gov (United States)

    Ogden, Fred L.; Raj Pradhan, Nawa; Downer, Charles W.; Zahner, Jon A.

    2011-12-01

    The literature contains contradictory conclusions regarding the relative effects of urbanization on peak flood flows due to increases in impervious area, drainage density and width function, and the addition of subsurface storm drains. We used data from an urbanized catchment, the 14.3 km2 Dead Run watershed near Baltimore, Maryland, USA, and the physics-based gridded surface/subsurface hydrologic analysis (GSSHA) model to examine the relative effect of each of these factors on flood peaks, runoff volumes, and runoff production efficiencies. GSSHA was used because the model explicitly includes the spatial variability of land-surface and hydrodynamic parameters, including subsurface storm drains. Results indicate that increases in drainage density, particularly increases in density from low values, produce significant increases in the flood peaks. For a fixed land-use and rainfall input, the flood magnitude approaches an upper limit regardless of the increase in the channel drainage density. Changes in imperviousness can have a significant effect on flood peaks for both moderately extreme and extreme storms. For an extreme rainfall event with a recurrence interval in excess of 100 years, imperviousness is relatively unimportant in terms of runoff efficiency and volume, but can affect the peak flow depending on rainfall rate. Changes to the width function affect flood peaks much more than runoff efficiency, primarily in the case of lower density drainage networks with less impermeable area. Storm drains increase flood peaks, but are overwhelmed during extreme rainfall events when they have a negligible effect. Runoff in urbanized watersheds with considerable impervious area shows a marked sensitivity to rainfall rate. This sensitivity explains some of the contradictory findings in the literature.

  14. Modified multiple endmember spectral mixture analysis for mapping impervious surfaces in urban environments

    Science.gov (United States)

    Tan, Kun; Jin, Xiao; Du, Qian; Du, Peijun

    2014-01-01

    A modified multiple endmember spectral mixture analysis (MMESMA) approach is proposed for high-spatial-resolution hyperspectral imagery in the application of impervious surface mapping. Different from the original MESMA that usually selects one endmember spectral signature for each land-cover class, the proposed MMESMA allows the selection of multiple endmember signatures for each land-cover class. It is expected that the MMESMA can better accommodate within-class variations and yield better mapping results. Various unmixing models are compared, such as the linear mixing model, linear spectral mixture analysis using the original linear mixture model, original MESMA, and support vector machine using a nonlinear mixture model. Airborne 1-m resolution HySpex and ROSIS data are used in the experiments. For HySpex data, validation based on 25-cm synchronism aerial photography shows that MMESMA performs the best, with the root-mean-squared error (RMSE) of the estimated abundance fractions being 13.20% and the correlation coefficient (R2) being 0.9656. For ROSIS data, validation based on simulation shows that MMESMA performs the best, with the RMSE of the estimated abundance fraction being 4.51% and R2 being 0.9878. These demonstrate that the proposed MMESMA can generate more reliable abundance fractions for high-spatial-resolution hyperspectral imagery, which tends to include strong within-class spectral variations.

  15. The anthropogenic sealing of soils in urban areas

    OpenAIRE

    Ajmone Marsan, Franco; Scalenghe, Riccardo

    2009-01-01

    The sealing of soils by impervious materials is, normally, detrimental to its ecological functions. Exchanges of energy, water and gases are restricted or hampered and an increasing pressure is being exerted on adjacent, non-sealed areas. The negative effects span from loss of plant production and natural habitats to increased floods, pollution, and health risks and consequently higher social costs. Environmental Agencies produce periodical reports where the phenomenon of soil con...

  16. Evaluation of a moderate resolution, satellite-based impervious surface map using an independent, high-resolution validation data set

    Science.gov (United States)

    Jones, J.W.; Jarnagin, T.

    2009-01-01

    Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data products high quality, independently derived validation data are needed. High-resolution data were collected across a gradient of development within the Mid-Atlantic region to assess the accuracy of National Land Cover Data (NLCD) Landsat-based ISA estimates. Absolute error (satellite predicted area - "reference area") and relative error [satellite (predicted area - "reference area")/ "reference area"] were calculated for each of 240 sample regions that are each more than 15 Landsat pixels on a side. The ability to compile and examine ancillary data in a geographic information system environment provided for evaluation of both validation and NLCD data and afforded efficient exploration of observed errors. In a minority of cases, errors could be explained by temporal discontinuities between the date of satellite image capture and validation source data in rapidly changing places. In others, errors were created by vegetation cover over impervious surfaces and by other factors that bias the satellite processing algorithms. On average in the Mid-Atlantic region, the NLCD product underestimates ISA by approximately 5%. While the error range varies between 2 and 8%, this underestimation occurs regardless of development intensity. Through such analyses the errors, strengths, and weaknesses of particular satellite products can be explored to suggest appropriate uses for regional, satellite-based data in rapidly developing areas of environmental significance. ?? 2009 ASCE.

  17. Laboratory analysis of a system for catchment, pre-treatment and treatment (SCPT) of runoff from impervious pavements.

    Science.gov (United States)

    Fernández-Barrera, A H; Rodriguez-Hernandez, J; Castro-Fresno, D; Vega-Zamanillo, A

    2010-01-01

    This article reports the development and construction of a 1:1 scale laboratory prototype of a System for Catchment, Pre-treatment and Treatment (SCPT) of runoff polluted by contaminants washed from impervious pavements. The concept of the SCPT is an online system with an up-flow filter. The filter is composed of geotextile layers and limestone. The laboratory tests carried out were focused on determining the SCPT prototype behaviour under different working conditions. The variables studied were: inflow, pollutant loads and filtration system configuration. The results show that the system designed has a high capacity for treatment of solids and oil, with an average efficiency of 85% and 97% respectively. Moreover, the regression equations of the treatment efficiency were determined for each of the pollutants studied, for different inflow conditions and pollution loads. PMID:20371944

  18. Mapping Impervious Surface Expansion using Medium-resolution Satellite Image Time Series: A Case Study in the Yangtze River Delta, China

    Science.gov (United States)

    Gao, Feng; DeColstoun, Eric Brown; Ma, Ronghua; Weng, Qihao; Masek, Jeffrey G.; Chen, Jin; Pan, Yaozhong; Song, Conghe

    2012-01-01

    Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived from this study agree well with an existing urban extent polygon data set that was previously developed independently. The overall mapping accuracy was estimated at about 92.5% with 3% commission error and 12% omission error for the impervious type from all images regardless of image quality and initial spatial resolution.

  19. Influence of cracking in the desiccation process of clay soils

    OpenAIRE

    Levatti, Hector Ulises; Prat Catalán, Pere; Ledesma Villalba, Alberto

    2009-01-01

    It is well known that clayey soils undergoing desiccation tend to shrink and eventually crack. Analysis of the behaviour and influence of cracks in these types of soils is very important in several engineering fields such as mine tailing dams, long-term radioactive waste storage, impervious core of earth dams, and in any situation where clay is used as a barrier to fluid flow. Loss of humidity and cracking changes the permeability of such barriers that may no longer work properly and pose pot...

  20. The Integrated Use of DMSP-OLS Nighttime Light and MODIS Data for Monitoring Large-Scale Impervious Surface Dynamics: A Case Study in the Yangtze River Delta

    Directory of Open Access Journals (Sweden)

    Zhenfeng Shao

    2014-09-01

    Full Text Available The timely and reliable estimation of imperviousness is essential for the scientific understanding of human-Earth interactions. Due to the unique capacity of capturing artificial light luminosity and long-term data records, the Defense Meteorological Satellite Program (DMSP’s Operational Line-scan System (OLS nighttime light (NTL imagery offers an appealing opportunity for continuously characterizing impervious surface area (ISA at regional and continental scales. Although different levels of success have been achieved, critical challenges still remain in the literature. ISA results generated by DMSP-OLS NTL alone suffer from limitations due to systemic defects of the sensor. Moreover, the majority of developed methodologies seldom consider spatial heterogeneity, which is a key issue in coarse imagery applications. In this study, we proposed a novel method for multi-temporal ISA estimation. This method is based on a linear regression model developed between the sub-pixel ISA fraction and a multi-source index with the integrated use of DMSP-OLS NTL and MODIS NDVI. In contrast with traditional regression analysis, we incorporated spatial information to the regression model for obtaining spatially adaptive coefficients at the per-pixel level. To produce multi-temporal ISA maps using a mono-temporal reference dataset, temporally stable samples were extracted for model training and validation. We tested the proposed method in the Yangtze River Delta and generated annual ISA fraction maps for the decade 2000–2009. According to our assessments, the proposed method exhibited substantial improvements compared with the standard linear regression model and provided a feasible way to monitor large-scale impervious surface dynamics.

  1. Estimativa de área impermeabilizada diretamente conectada e sua utilização como coeficiente de escoamento superficial / Estimate of directly connected impervious areas and its use as runoff coefficient

    Scientific Electronic Library Online (English)

    Leonardo Monteiro, Garotti; Ademir Paceli, Barbassa.

    2010-03-01

    Full Text Available Neste estudo realizou-se a caracterização do uso e ocupação do solo na cidade de Ribeirão Preto (SP), além da análise detalhada da impermeabilização urbana e conectividade hidráulica dos lotes. Também foi avaliado o coeficiente de escoamento superficial (C) para seis sub-bacias, utilizando-se três m [...] étodos com diferentes níveis de precisão. Utilizando-se o Método Racional com os valores estimados de C, calcularam-se os picos de vazão para as sub-bacias. Identificou-se que a impermeabilização cresce com a redução da área do lote. As estimativas de C resultam em diferenças importantes em seus valores, refletindo na previsão da vazão. A utilização de tabelas com C detalhado e no seu limite superior se aproxima dos valores estimados por C AIDC. Recomenda-se estimar C AIDC a partir da área do lote ou pesquisa de campo. Abstract in english This paper presents a study of characterization of land occupation and its use in the city of Ribeirão Preto (São Paulo), as well as a detailed analysis of the urban imperviousness and hydraulic connectivity of the plots. The runoff coefficient (C) for siz sub-basins was evaluated on the basis of th [...] ree different definitions. The peaks of outflow for the sub-basins were calculated using the Rational Method with the estimated values of C. It was identified that the imperviousness increases as the area of the plot decreases. The estimative of the C show important differences in its values, influencing the outflow. The use of tables with detailed and maximal C values beyond its superior limitation is equivalent to the values estimated with C DCIA. It is recommended that the C DCIA relative to the area be estimated based on the plot or field researches.

  2. Toward a geoinformatics framework for understanding the social and biophysical influences on urban nutrient pollution due to residential impervious service connectivity

    Science.gov (United States)

    Miles, B.; Band, L. E.

    2012-12-01

    Water sustainability has been recognized as a fundamental problem of science whose solution relies in part on high-performance computing. Stormwater management is a major concern of urban sustainability. Understanding interactions between urban landcover and stormwater nutrient pollution requires consideration of fine-scale residential stormwater management, which in turn requires high-resolution LIDAR and landcover data not provided through national spatial data infrastructure, as well as field observation at the household scale. The objectives of my research are twofold: (1) advance understanding of the relationship between residential stormwater management practices and the export of nutrient pollution from stormwater in urbanized ecosystems; and (2) improve the informatics workflows used in community ecohydrology modeling as applied to heterogeneous urbanized ecosystems. In support of these objectives, I present preliminary results from initial work to: (1) develop an ecohydrology workflow platform that automates data preparation while maintaining data provenance and model metadata to yield reproducible workflows and support model benchmarking; (2) perform field observation of existing patterns of residential rooftop impervious surface connectivity to stormwater networks; and (3) develop Regional Hydro-Ecological Simulation System (RHESSys) models for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program); these models will be used to simulate nitrogen loading resulting from both baseline residential rooftop impervious connectivity and for disconnection scenarios (e.g. roof drainage to lawn v. engineered rain garden, upslope v. riparian). This research builds on work done as part of the NSF EarthCube Layered Architecture Concept Award where a RHESSys workflow is being implemented in an iRODS (integrated Rule-Oriented Data System) environment. Modeling the ecohydrology of urban ecosystems in a reliable and reproducible manner requires a flexible scientific workflow platform that allows rapid prototyping with large-scale spatial datasets and model refinement integrating expert knowledge with local datasets and household surveys.

  3. Soil moisture dynamics and their effect on bioretention performance in Northeast Ohio

    Science.gov (United States)

    Bush, S. A.; Jefferson, A.; Jarden, K.; Kinsman-Costello, L. E.; Grieser, J.

    2014-12-01

    Urban impervious surfaces lead to increases in stormwater runoff. Green infrastructure, like bioretention cells, is being used to mitigate negative impacts of runoff by disconnecting impervious surfaces from storm water systems and redirecting flow to decentralized treatment areas. While bioretention soil characteristics are carefully designed, little research is available on soil moisture dynamics within the cells and how these might relate to inter-storm variability in performance. Bioretentions have been installed along a residential street in Parma, Ohio to determine the impact of green infrastructure on the West Creek watershed, a 36 km2 subwatershed of the Cuyahoga River. Bioretentions were installed in two phases (Phase I in 2013 and Phase II in 2014); design and vegetation density vary slightly between the two phases. Our research focuses on characterizing soil moisture dynamics of multiple bioretentions and assessing their impact on stormwater runoff at the street scale. Soil moisture measurements were collected in transects for eight bioretentions over the course of one summer. Vegetation indices of canopy height, percent vegetative cover, species richness and NDVI were also measured. A flow meter in the storm drain at the end of the street measured storm sewer discharge. Precipitation was recorded from a meteorological station 2 km from the research site. Soil moisture increased in response to precipitation and decreased to relatively stable conditions within 3 days following a rain event. Phase II bioretentions exhibited greater soil moisture and less vegetation than Phase I bioretentions, though the relationship between soil moisture and vegetative cover is inconclusive for bioretentions constructed in the same phase. Data from five storms suggest that pre-event soil moisture does not control the runoff-to-rainfall ratio, which we use as a measure of bioretention performance. However, discharge data indicate that hydrograph characteristics, such as lag time and peak flow, are altered relative to a control street. This analysis suggests that street-scale implementation of bioretention can reduce the impact of impervious surface on stormflows, but more information is needed to fully understand how soil moisture of the bioretentions affects inter-storm variability in performance.

  4. Exploring the Influence of Impervious Surface Density and Shape on Urban Heat Islands in the Northeast USA Using MODIS and Landsat

    Science.gov (United States)

    Zhang, Ping; Imhoff, Marc L.; Bounoua, Lahouri; Wolfe, Robert E.

    2011-01-01

    Impervious surface area (ISA) from the National Land Cover Database (NLCD) 2001 and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature and its relationship to settlement size and shape, development intensity distribution, and land cover composition for 42 urban settlements embedded in forest biomes in the Northeastern United States. Development intensity zones, based on percent ISA, are defined for each urban area emanating outward from the urban core to nearby rural areas and are used to stratify land surface temperature. The stratification is further constrained by biome type and elevation to insure objective intercomparisons between urban zones within an urban settlement and between settlements. Stratification based on ISA allows the definition of hierarchically ordered urban zones that are consistent across urban settlements and scales. In addition to the surrounding ecological context, we find that the settlement size and shape as well as the development intensity distribution significantly influence the amplitude of summer daytime UHI. Within the Northeastern US temperate broadleaf mixed forest, UHI magnitude is positively related to the logarithm of the urban area size. Our study indicates that for similar urban area sizes, the development intensity distribution is one of the major drivers of UHI. In addition to urban area size and development intensity distribution, this analysis shows that both the shape of the urban area and the land cover composition in the surrounding rural area play an important role in modulating the UHI magnitude in different urban settlements. Our results indicate that remotely sensed urban area size and shape as well as the development intensity distribution influence UHI amplitude across regional scales.

  5. RNDSI: A ratio normalized difference soil index for remote sensing of urban/suburban environments

    Science.gov (United States)

    Deng, Yingbin; Wu, Changshan; Li, Miao; Chen, Renrong

    2015-07-01

    Understanding land use land cover change (LULCC) is a prerequisite for urban planning and environment management. For LULCC studies in urban/suburban environments, the abundance and spatial distributions of bare soil are essential due to its biophysically different properties when compared to anthropologic materials. Soil, however, is very difficult to be identified using remote sensing technologies majorly due to its complex physical and chemical compositions, as well as the lack of a direct relationship between soil abundance and its spectral signatures. This paper presents an empirical approach to enhance soil information through developing the ratio normalized difference soil index (RNDSI). The first step involves the generation of random samples of three major land cover types, namely soil, impervious surface areas (ISAs), and vegetation. With spectral signatures of these samples, a normalized difference soil index (NDSI) was proposed using the combination of bands 7 and 2 of Landsat Thematic Mapper Image. Finally, a ratio index was developed to further highlight soil covers through dividing the NDSI by the first component of tasseled cap transformation (TC1). Qualitative (e.g., frequency histogram and box charts) and quantitative analyses (e.g., spectral discrimination index and classification accuracy) were adopted to examine the performance of the developed RNDSI. Analyses of results and comparative analyses with two other relevant indices, biophysical composition index (BCI) and enhanced built-up and bareness Index (EBBI), indicate that RNDSI is promising in separating soil from ISAs and vegetation, and can serve as an input to LULCC models.

  6. Soil Composition

    Science.gov (United States)

    Chris Fox

    Soil is essential for life on Earth. It is needed for food, air, clothing and so much more. Discussion topics include the terms 'soil', 'dirt', and 'sediment', factors affecting the formation of soils, soil horizons, and the twelve orders of soils. In a hands-on activity, students will collect soil samples from three different locations, use online resources to determine texture and particle makeup, and record their observations.

  7. Gully Growth Patterns and Soil Loss under Rainfall at Urban Underground Drainage Construction Site, Uyo

    Directory of Open Access Journals (Sweden)

    O.E. Essien

    2012-08-01

    Full Text Available This study investigated, evaluated and modeled patterns of growth of gully morphometric dimension and soil loss volume under prevailing rainfall on the slopes of land graded for the construction of underground drainage at Uyo but delayed in completion. Land grading at underground (tunnel drainage construction site rendered the exposed surface very impervious but young ephemeral gullies developed due to delays in completion. Data on gully morphometric dimension, soil loss and depth of rainfall were analyzed using SPSS ver. 17 statistical package. Mean gully growth in length, width and depth were different at 2.54±0.86, 0.923±0.29 and 0.41±0.11 m, respectively, yielding 3.87±0.08 m2 as mean volume of soil loss at full stage. Cubic polynomial was best-fit model for growth in length (R2 = 79% and width (R2 = 69% using weekly rainfall for an annual season. All gully sites had constant depth change, better predicted by quadratic (R2 = 13% than linear (R2 = 9% functions. Mean volume of soil loss per unit rainfall amount varied with low, medium and high rainfall amount and was highest at slope bottom (33 cm3/cm and least at the crest (6.99 cm3/cm with R2 = 38-34%. Land grading to impervious sublayer produced constant depth change in all gullies at the sites. The models for morphometric incremental growth and soil loss volume under the rainfall effect was significantly improved (p<0.05 by bifurcating the lumped annual curve into two growth periods in a year: the periods for increasing rainfall (from week 10-30 and for receding rainfall (from week 31-43 in a year and applying quadratic regressing functions on each (R2 = 91-99%. Rainfall was the principal gully factor and construction delays should be avoided.

  8. Soil Moisture

    Science.gov (United States)

    NOAA's Climate Prediction Center offers this useful data site on soil moisture across the US. Soil moisture data are provided here as color contour maps that represent calculated soil moisture, anomalies, and percentiles for the most recent day, monthly, and twelve-month time periods. Also provided here are 25-year average soil moisture & soil wetness summaries. In addition to providing recent and historical data, the Soil Moisture site features soil moisture forecasts for two-week, monthly, and seasonal intervals, based on the National Weather Service Medium Range Forecast (MRF) and the Constructed Analog on Soil Moisture (CAS).

  9. Soil factors

    International Nuclear Information System (INIS)

    Progress is reported on the following research projects: effect of induced aggregation of soil materials on the chemical extractability of 90Sr and 147Pm contaminants; extractability of 238Pu and 242Cm from a contaminated soil as a function of pH and certain soil components; the determination of 238Pu and 242Cm in aqueous soil extracts; and liquid scintillation counting procedure for plutonium in soil extracts

  10. Soil carbonates and soil water

    Science.gov (United States)

    The presence of soil carbonates occurring as solidified masses or dispersed particles can alter soil water dynamics from what would be expected based on non-carbonate soil properties. Carbonate minerals in the soil can be derived from high carbonate parent material, additions in the form of carbonat...

  11. Extraction and Analysis of Impervious Surfaces Based on a Spectral Un-Mixing Method Using Pearl River Delta of China Landsat TM/ETM+ Imagery from 1998 to 2008

    Directory of Open Access Journals (Sweden)

    Renrong Chen

    2012-02-01

    Full Text Available Impervious surface area (ISA is considered as an indicator of environment change and is regarded as an important input parameter for hydrological cycle simulation, water management and area pollution assessment. The Pearl River Delta (PRD, the 3rd most important economic district of China, is chosen in this paper to extract the ISA information based on Landsat images of 1998, 2003 and 2008 by using a linear spectral un-mixing method and to monitor impervious surface change by analyzing the multi-temporal Landsat-derived fractional impervious surface. Results of this study were as follows: (1 the area of ISA in the PRD increased 79.09% from 1998 to 2003 and 26.88% from 2003 to 2008 separately; (2 the spatial distribution of ISA was described according to the 1998/2003 percentage respectively. Most of middle and high percentage ISA was located in northwestern and southeastern of the whole delta, and middle percentage ISA was mainly located in the city interior, high percentage ISA was mainly located in the suburban around the city accordingly; (3 the expanding direction and trend of high percentage ISA was discussed in order to understand the change of urban in this delta; High percentage ISA moved from inner city to edge of urban area during 1998–2003 and moved to the suburban area that far from the urban area mixed with jumpily and gradually during 2003–2008. According to the discussion of high percentage ISA spatial expanded direction, it could be found out that high percentage ISA moved outward from the centre line of Pearl River of the whole delta while a high ISA percentage in both shores of the Pearl River Estuary moved toward the Pearl River; (4 combining the change of ISA with social conditions, the driving relationship was analyzed in detail. It was evident that ISA percentage change had a deep relationship with the economic development of this region in the past ten years. Contemporaneous major sport events (16th Asia Games of Guangzhou, 26th Summer Universidad of Shenzhen and the government policies also promoted the development of the ISA. Meanwhile, topographical features like the National Nature Reserve of China restricted and affected the expansion of the ISA. Above all, this paper attempted to extract ISA in a major region of the PRD; the temporal and spatial analyses to PRD ISA demonstrated the drastic changes in developed areas of China. These results were important and valuable for land use management, ecological protection and policy establishment.

  12. Soil Taxonomy

    Science.gov (United States)

    From Alfisols to Vertisols, this substantial resource (.pdf format only) from the US Department of Agriculture's Natural Resources Conservation Service provides an in-depth treatment of soil taxonomy around the world. Published in 1999 (Second Edition), this Soil Taxonomy text includes 23 chapters, covering the basics of soil classification through the world distribution of orders and suborders. Soil taxonomy maps are provided separately, highlighting dominant soils in the US, as well as global soil regions. In addition, an Errata sheet lists corrections for the printed text. This magnificent volume will prove useful to researchers, students, and educators, alike.

  13. Soil Texture

    Science.gov (United States)

    This University of Florida website educates the public about soil texture, which is the distribution of sizes of mineral particles found in soils. After learning the basics about soil separates, students and educators can learn about the USDA textural triangle and the characteristics of the twelve textural classes. Researchers can discover how to determine the correct soil texture in the field. The website addresses the important role soil textures play in the determination of proper land use activities and management practices. Visitors will also find a short discussion about other factors that affect the behavior and qualities of soils.

  14. Groundwater Dynamics in Drained Soils of the Bi?-fi eld District

    Directory of Open Access Journals (Sweden)

    Ivan Musta?

    2011-03-01

    Full Text Available The main goal of five-year stationary investigations (2001-2006 was to assess groundwater dynamics in the Bi?-field district, as well as the type of soil moistening of agricultural soils spreading over 5838 ha. Detailed hydropedological investigations were carried out in 2000 and a soil map of the region was produced (scale = 1:10000 using universal kriging. Soil investigations identified six pedosystematic units: alluvial-gley, semigley-pseudogley, eugley hypogley, humogley, eugley amphigley and drained soils. Based on permanent monitoring of piezometer groundwater (piezometer depth up to 4.0 m in the period from 2001 to 2006, the following major soil moistening types and subtypes of the separated soil units were determined: semigley-pseudogely, hypogley, humogley, amphigley and drained. Using the correlation method, more intensive groundwater communication was determined in the studied soil profiles with the River Bi? water (r = 0.65-0.69 than with the River Sava water (r = 0.23-0.69, notably in hypogley soils, which cover 54.3% of the studied area. Analysis of the obtained piezometer water level curves indicated a very strong mutual correlation between the groundwater level dynamics in monitored hydrogeological piezometers of 9 m depth (r = 0.87-0.98, as well as a strong correlation (r = 0.75-0.94 between hydrogeological and hydropedological piezometers of 4 m depth. A particularly strong correlation (r = 0.85-0.94 was recorded between hydrogeological and hydropedological piezometers installed in hypogley soil. These data confirm marked vertical communication of groundwater in the deep aquifer with water of the shallow soil aquifer, indicating that the surface layer of the studied area, mainly made up of silty clay loams to silty clays, is not impervious.

  15. The sealing capacity of the cap rock above the Torre Alfina geothermal reservoir (Central Italy) revealed by soil CO2 flux investigations

    Science.gov (United States)

    Carapezza, Maria Luisa; Ranaldi, Massimo; Gattuso, Alessandro; Pagliuca, Nicola Mauro; Tarchini, Luca

    2015-01-01

    Torre Alfina is a medium enthalpy (T = 140 °C) geothermal field in Central Italy, hosted in buried fractured Mesozoic limestones, extensively explored in the 1970s and 1980s, but which so far has not been exploited. A detailed diffuse soil CO2 flux investigation (1336 measurements over a surface of 12.6 km2) and the periodic monitoring of soil CO2 flux from target areas indicate that in most of the area, even above a pressurized gas cap existing at the reservoir top, the soil CO2 flux is low and mostly within the background threshold (48 g m- 2 day- 1) and is likely generated by biological soil respiration. Anomalous values (up to 30.250 g m- 2 day- 1) are found only in the proximity of a small zone with gas vents whose composition is identical to that of the gas produced by the geothermal wells tapping the reservoir. This is the only zone where a fault connecting the deep geothermal reservoir with the surface does exist. These data are compared with those of the near Latera high enthalpy geothermal field (T = 210 °C), where anomalous soil CO2 flux is recorded above the productive reservoir. The difference of soil CO2 release in the two fields is attributed to the differences in the impervious cover (allochthonous flysch deposits) above the carbonate reservoir, which is thin and locally lacking at Latera, and continuous and thick (> 400 m) at Torre Alfina. Results demonstrate that soil CO2 flux investigations are useful in geothermal exploration, but only high flux values likely indicate the presence of a geothermal reservoir at depth, whereas low flux values can indicate either the lack of an active geothermal reservoir at depth or the presence of a very effective impervious cover above the reservoir.

  16. Solarization soil

    International Nuclear Information System (INIS)

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  17. Soil Compactability

    OpenAIRE

    Seig, D. A.

    1985-01-01

    Subsoiling and deep loosening are widely used to alleviate soil compaction but little is known about the mechanics of the compaction process. Further information is required on the process that soil goes through during compaction, along with the effect on the amount of soil compaction of various tyre configurations. Such information will allow more confident recommendations to farmers on the suceptability of their soil to compaction. Experimental work was conducted whe...

  18. SOIL DEGRADATION

    Science.gov (United States)

    Soil degradation can be defined as loss in the quality or productivity of soil, and is often the result of human activities, such as agriculture, deforestation, mining, waste disposal, or chemical spills. Degradation is attributed to changes in soil nutrient status, biota, loss of organic matter, d...

  19. Soil Investigations

    Science.gov (United States)

    Integrated Teaching and Learning Program,

    Students learn the basics about soil, including its formation through the cycling of the Earth's materials, as well as its characteristics and importance. They are also introduced to soil profiles and how engineers conduct site investigations to learn about soil quality for development, contamination transport, and assessing the general environmental health of an area.

  20. Overland flow generation on deep soils in Ethiopia (Lake Tana basin): role of soil texture and plough pan

    Science.gov (United States)

    Nyssen, Jan; Dessie, Mekete; Monsieurs, Elise; Poesen, Jean; Admasu, Teshager; Verhoest, Niko; Adgo, Enyew; Deckers, Jozef

    2014-05-01

    Different applications of rainfall/runoff models in Lake Tana basin (Ethiopia) tend to show that on hill slopes there are vast areas that yield a high runoff response and that behave as if the soil would be nearly impervious (up to 20 % of the hilly catchments). This is well beyond the area occupied by rock outcrops. Duricrusts or hardpans of pedogenetic origin are absent in this environment on basaltic rock with mild tropical climate: no silcretes, calcretes or even ferricretes are known to occur in the basin. Field observations show that runoff response from tilled farmlands can however be unexpectedly high, even when deep theoretically well drained Nitisols occur. In the rainy season, rills and ephemeral gullies are created and these often expose a rock-hard plough pan at some 15 cm depth. Due to repeated tillage at constant depth, the downward pressure of the tip of the ox-drawn ard plough compacts the soil aggregates that are located just below the tilled horizon. In this poster we will discuss the need to not only evaluate the effect of soil texture when interpreting rainfall-runoff relations, but also to investigate the structural and hydrological characteristics of such plough pans.

  1. Super Soil

    Science.gov (United States)

    2012-06-26

    In this outdoor activity, learners make their own organic-rich soil. Depending on where this activity is done, learners will probably discover that their local soil is low in organic matter. Then they will determine how much organic matter (compost, manure, or leaf mold) they must add to the local soil to match the organic content of a commercial soil mix. Background information discusses soil as a mixture of water, air, minerals, organic matter and living organisms, and explains more about organic matter in soil and its necessity in agriculture and gardening. The "Branching Out" section encourages learners to followup by planting seeds or seedlings of easy edible plants such as peas, beans, lettuce and Swiss chard.

  2. Soil suction

    OpenAIRE

    Mac?ek, Matej

    2006-01-01

    Suction is pore water pressure in unsaturated soils and influences other soil characteristics. Suction measurements for 4 different soils (bentonite, stone flour, gray clay “sivica” and brown clay “flysch”) are presented. Measurements were performed on compacted and loose material at different water contents using 4 different methods: WP4 dewpoint potentiometer, filter paper, tenziometer and pressure plate apparatus. Additionally the water adsorption was determined for ...

  3. Impacts of soil erosion

    OpenAIRE

    Dorren, Luuk; La Rosa, Diego; Theocharopoulos, Sid P.

    2004-01-01

    3.1 Definition of soil functions, soil quality and quality targets The identification of soil functions, properties and processes which are affected by soil erosion is needed to evaluate the impacts of erosion on the soil system. Definition of soil loss tolerance according to soil types and environmental characteristics. 3.2 Development of criteria and indicators to assess soil sustainable use and soil protection measures What are the impacts of soil erosion on soil...

  4. Soils electroremediation

    International Nuclear Information System (INIS)

    This paper presents data on decontamination experiments performed with soils contaminated by long-lived radioactive caesium isotopes. The contamination was formed about 30 years ago during an accident in the first nuclear power station in the former Czechoslovakia. Because of the large soil quantities that make excavation and storage of these soils in nuclear waste repositories inconvenient from economical and spatial point of view, various methods for in situ or ex situ remediation were sought and tested. For soil contamination by caesium, the time of contact of caesium with the soil is crucial because the caesium ions diffuse inside the crystalline structures of clay minerals where they are virtually irreversibly bound. For such materials, the efficiency of the classic 'soft' decontamination methods, such as leaching, phytoremediation etc., is rather low. Electrochemical decontamination was proposed as the decontamination technique for ex situ application. The method is based on electrolysis at a relatively high current density in a suitable electrolyte. The soil is kept in suspension close to the anode, and owing to the high acidity together with both the high temperature and ion flux, the soil structures are opened or partially disrupted and caesium ions are released. The ions can be separated from the solution, e.g., by using selective ion exchangers. The experimental electrolytic cell was designed for the treatment of thin soil layers containing about 3 g of thein soil layers containing about 3 g of the soil and about 100 mL of electrolyte. The influence of various system parameters, such as electrolyte composition, current-voltage, temperature, and time, on the decontamination efficiency was examined. In the most efficient configuration, a 99+% decontamination level was achieved. For the next step, a bench-scale apparatus was designed that should allow treatment of batches of up to 0.5 kg of soil in one step. (author)

  5. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    The Iron Park Superfund site, North Billerica, Massachusetts, is located within a 553 acre operating industrial complex and railyard located approximately 20 miles northwest of Boston. Fifteen acres of this site are designated as the Wastewater Lagoon Area containing lagoons and materials previously dredged from those lagoons. The U.S. Environmental Protection Agency (EPA) placed the Iron Horse Park facility on its National Priorities List in 1984, and a Remedial Investigation (RI) for the site as a whole began n 1985. In September 1988, responding to the presence of these site contaminants, the EPA issued the first Superfund Record of Decision (ROD) in EPA Region I that specified bioremediation as the remedial technology. Specifically, the EPA stipulated biological land treatment cell with an impervious lower liner. In this form of biotreatment, sludges and contaminated soil are placed in the cell in lifts (i.e. layers approximately one foot thick) and the lifts are frequently aerated by tilling while nutrients are applied at optimal levels to stimulate the degradation of organic contaminants by indigenous microorganisms. In its Administrative Order (September 1989), the EPA stipulated cleanup goals to be achieved, and required that a Predesign Evaluation be initiated to ascertain which soil/sludge piles would require treatment. The design and execution of this remediation-focused site evaluation by ENSR forms the subject of this paperthis paper

  6. Does Soil Disturbance Affect Soil Phosphorus Fractions?

    OpenAIRE

    Redel, Yonathan D.; Rudolf Schulz; Torsten Müller

    2013-01-01

    Increased turnover of organic matter as a result of soil disturbance (e.g. by soil tillage) is described in principle, but the direct influence of soil disturbance on soil P turnover especially for organic farming systems has not been sufficiently proven. The objective of the study was to evaluate the short term effect of soil disturbance on different soil P fractions in a soil shaking experiment. Four soils were incubated for 10 days in the dark with three different disturbance treatmen...

  7. Soil biology for resilient healthy soil

    Science.gov (United States)

    What is a resilient healthy soil? A resilient soil is capable of recovering or adapting to stress; the health of the living/biological component of the soil is crucial for soil resiliency. Soil health is tightly coupled to the concept of soil quality (Text Box 1) and the terms are frequently used ...

  8. Clay slurry and engineered soils as containment technologies for remediation of contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.R. [Reclamation Technology, Inc., Athens, GA (United States); Dudka, S.; Miller, W.P. [Univ. of Georgia, Athens, GA (United States); Johnson, D.O. [Argonne National Lab., IL (United States)

    1997-12-31

    Clay Slurry and Engineered Soils are containment technologies for remediation of waste disposal sites where leaching, groundwater plumes and surface runoff of contaminants are serious ecological hazards to adjacent environments. This technology is a patent-pending process which involves the use of conditioned clay materials mixed with sand and water to form a readily pourable suspension, a clay slurry, which is either placed into a trench barrier system or allowed to de-water to create Engineered Soils. The Engineered Soil forms a layer impervious to water and air, therefore by inhibiting both water and oxygen from penetrating through the soil the material. This material can be installed in layers and as a vertical barrier to create a surface barrier containment system. The clay percentage in the clay slurry and Engineered Soils varies depending on site characteristics and desired performance standards. For example Engineered Soils with 1-2% of clay (dry wt.) had a hydraulic conductivity (K) of 10{sup -8} to 10{sup -1} cm/sec. Tests of tailing materials from a kyanite and pyrite mine showed that the clay slurry was effective not only in reducing the permeability of the treated tailings, but also in decreasing their acidity due to the inherent alkalinity of the clay. The untreated tailings had pH values in the range of 2.4 - 3.1; whereas, the effluent from clay and tailings mixtures had pH values in a slightly alkaline range (7.7-7.9). Pug-mills and high volume slurry pumps can be readily adapted for use in constructing and placing caps and creating Engineered Soils. Moreover, material on site or from a local sand supply can be used to create clay slurries and engineered soils. Clay materials used in cap construction are likewise readily available commercially. As a result, the clay slurry system is very cost effective compared to other capping systems, including the commonly used High Density Polyethylene (HDPE) liner systems.

  9. Linking soil biodiversity and agricultural soil management

    OpenAIRE

    Thiele-bruhn, S.; Bloem, J.; Vries, F. T.; Kalbitz, K.; Wagg, C.

    2012-01-01

    Soil biodiversity vastly exceeds aboveground biodiversity, and is prerequisite for ecosystem stability and services. This review presents recent findings in soil biodiversity research focused on interrelations with agricultural soil management. Richness and community structure of soil biota depend on plant biodiversity and vice versa. Soil biota govern nutrient cycling and storage, soil organic matter (SOM) formation and turnover. Agriculture manipulates plants, soils and SOM. With intensific...

  10. Soil Solution

    OpenAIRE

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil solution with respect to plant development. One of the most striking differences between growing in the greenhouse and in the field is the exclusion of the natural precipitation in greenhouses, wh...

  11. Soil Survey Geographic (SSURGO) - Magnesic Soils

    California Department of Resources — Magnesic soils is a subset of the SSURGO dataset containing soil family selected based on the magnesic content and serpentinite parent material. The following soil...

  12. Soil Association

    Science.gov (United States)

    Since its inception over a half century ago, the Soil Association has "been working to raise awareness about the positive health and environmental benefits of organic food and farming and supporting farmers in producing natural food consumers can trust." Originally formed by a coalition of inspired scientists, nutritionists, and farmers, the Soil Association is now the leading organic farming and food certification and campaigning organization in the United Kingdom. Although primarily geared towards citizens of the United Kingdom, the Association website merits a perusal from anyone interested in the organic food movement. Site features include a large online library containing hundreds of documents listed under such categories as Animal Welfare, Biodiversity, Horticulture, Pesticides, and Education; profiles of many organic farms in the UK; a classified ads page with information about employment opportunities and items for sale; information about the Soil Association's standards for organic production and processing; and more.

  13. Soil-Net.com

    Science.gov (United States)

    Soil-Net.com provides teachers and students ages 5 through 16 (UK Key Stages 1-4) with extensive curriculum-based information about soil, one of our three major natural resources alongside air and water. The site helps users learn about what soil is, the teeming life in soil, the many environmental threats facing soils, and current developments affecting soils-related policymaking and soil science. Soil-Net.com was developed by the National Soil Resources Institute (NSRI) of Cranfield University, UK, the leading institution of soil science and soil-related research in England and Wales.

  14. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  15. Soil Stabilization Using Lime

    OpenAIRE

    ANKIT SINGH NEGI; MOHAMMED FAIZAN; DEVASHISH PANDEY SIDDHARTH; REHANJOT SINGH

    2013-01-01

    Soil stabilization can be explained as the alteration of the soil properties by chemical or physical means in order to enhance the engineering quality of the soil . The main objectives of the soil stabilization is to increase the bearing capacity of the soil ,its resistance to weathering process and soil permeability. The long-term performance of any construction project depends on the soundness of the underlying soils. Unstable soils can create significant problems for pavements or structure...

  16. Soils - Part 2: Physical Properties of Soil and Soil Water

    Science.gov (United States)

    This lesson will help you understand the major components of the physical properties of soil. You will learn such terms as texture, aggregation, soil structure, bulk density, and porosity as it relates to soils. You will learn how soil holds and transmits water and cultural practices that enhance or degrade physical properties of the soil.[This lesson, as well as the other nine lessons in the Soils series, is taken from the "Soils Home Study Course," published in 1999 by the University of Nebraska Cooperative Extension.

  17. Laboratory Assessment of Water Flow Simulator for Porous Parking Lots Reservoir and Soil Layers

    Directory of Open Access Journals (Sweden)

    Zul Fahmi Mohamed Jaafar

    2011-01-01

    Full Text Available Porous parking lots were implemented to fill the scarcity and strengthen the sustainable development of impervious surfaces in Malaysia to reduce surface runoff. The new methodology proposed enable simulation of reservoir course at stipulated air voids despite details study on water levels and infiltration of porous parking lots system. A uniformly graded choker and reservoir stones functioned as reservoir structure for temporary storm water detention. A specially fabricated water flow simulator allows laboratory simulation of the porous parking lot system. The ability to simulate 1.24 to 59.89 cm h-1 rainfall intensities enable laboratory testing to verify water level and discharge time correlations with different soil infiltration rate at various rainfall intensities. The laboratory tests of vertical infiltration were conducted under conditions of saturated soils. At 59.89 cm h-1 simulated rainfall intensity, the highest water level recorded inside the water flow simulators body without reservoir course is 55 cm from the surface of 0.254 cm h-1 soil infiltration rate. A total of 80.5 h duration was required to completely discharge the stored water between large aggregate particles due to low soil infiltration rate. Utilizing the same laterite soil as bottom layer, the depth increased by approximately 60% after installation of reservoir course with approximately 40% air voids. Over a 60 min duration, the soil with coefficient of permeability equaled to 25.4 cm h-1 had recorded water level 20 cm in height and completely dried within 32.2 min only.

  18. Soils - Part 4: Soil pH

    Science.gov (United States)

    Soil pH is defined and its implications for crop production are described in this lesson. How are soil pH and buffer pH determined? How are these assessments used in lime recommendations? The factors that influence pH variations in soils, the chemistry involved in changing the pH of a soil, and the benefits associated with liming acid soils will be discussed.[This lesson, as well as the other nine lessons in the Soils series, is taken from the "Soils Home Study Course," published in 1999 by the University of Nebraska Cooperative Extension.

  19. Soils; 1 : 500 000

    International Nuclear Information System (INIS)

    Soil associations forming map units express representation of soil units in the territory of Slovakia. They present the dominance of the soil units in associations and some other elements, above all the soil-forming substrates and in abbreviated classification also the extreme soil textures (light to heavy). Genetically related units are classified into groups of soil associations. The map was made by generalisation of cartographic materials of all soil investigations and mapping made since 1960 to the present day. (authors)

  20. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation.

    OpenAIRE

    Ayuke, F. O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D. K.; Kibunja, C. N.; Pulleman, M. M.

    2011-01-01

    Maintenance of soil organic matter through integrated soil fertility management is important for soil quality and agricultural productivity, and for the persistence of soil faunal diversity and biomass. Little is known about the interactive effects of soil fertility management and soil macrofauna diversity on soil aggregation and SOM dynamics in tropical arable cropping systems. A study was conducted in a long-term trial at Kabete, Central Kenya, to investigate the effects of organic inputs (...

  1. Soils - Part 3: Soil Organic Matter

    Science.gov (United States)

    In this lesson, you will learn such terms as organic, soil organic matter, nutrient, decomposition, humus, compost, and soil structure. In addition, you will be able to predict the effect of land uses on soil organic matter including the effects of different types of vegetation.[This lesson, as well as the other nine lessons in the Soils series, is taken from the "Soils Home Study Course," published in 1999 by the University of Nebraska Cooperative Extension.

  2. Soil Stabilization Using Lime

    Directory of Open Access Journals (Sweden)

    ANKIT SINGH NEGI

    2013-02-01

    Full Text Available Soil stabilization can be explained as the alteration of the soil properties by chemical or physical means in order to enhance the engineering quality of the soil . The main objectives of the soil stabilization is to increase the bearing capacity of the soil ,its resistance to weathering process and soil permeability. The long-term performance of any construction project depends on the soundness of the underlying soils. Unstable soils can create significant problems for pavements or structures, Therefore soil stabilization techniques are necessary to ensure the good stability of soil so that it can successfully sustain the load of the superstructure especially in case of soil which are highly active, also it saves a lot of time and millions of money when compared to the method of cutting out and replacing the unstable soil. This paper deals with the complete analysis of the improvement of soil properties and its stabilization using lime.

  3. The Twelve Soil Orders

    Science.gov (United States)

    At this website, the University of Idaho provides information and images of the twelve classifications of soil taxonomy. After learning about the soils, users can find world and United States maps illustrating where each are located. The website offers downloadable documents of the soil taxonomy text, maps and errata sheet for the second edition of _Soil Taxonomy, A Basic System of Soil Classification for Making and Interpreting Soil Surveys_. Students and educators can also find a link to the World Reference Base for Soil Resources. This website is tremendously helpful for anyone involved in soil science or soil mapping.

  4. Soil Core Sampling

    Science.gov (United States)

    Integrated Teaching and Learning Program,

    Students learn about one method used in environmental site assessments. They practice soil sampling by creating soil cores, studying soil profiles and characterizing soil profiles in borehole logs. They use their analysis to make predictions about what is going on in the soil and what it might mean to an engineer developing the area.

  5. In-situ determination of directional conductivities of soil

    International Nuclear Information System (INIS)

    Hydraulic conductivity K is a macroscopic parameter which depends on the properties of both the fluid as well as the porous matrix. Stratified soils are usually anisotropic in nature. In most soils, the water transmitting capacity in the horizontal direction is observed to be higher than the vertical conductivity. However, in many soils (e.g., loess), vertical joints, root holes and animal burrows make the vertical conductivity higher than the horizontal. Accurate estimations of the horizontal and the vertical conductivities of a soil medium in its natural water-saturated state is of considerable importance in obtaining rational solutions to drainage and other groundwater flow problems. This lecture will be mainly concerned with the development of a suitable auger hole seepage theory for the confined situation. The depth to the impervious layer, partial penetration of the auger hole, level of water in the auger hole, and confining pressure of the aquifer are taken, all distances being measured from the confining stratum. The saturated hydraulic conductivities of the soil in the horizontal and vertical directions are taken. Because of axial symmetry, we consider only one half of the flow domain for analysis located towards the right of the vertical axis passing through the origin O. For convenience, we take the z axis to be positive vertically downward and r axis to be positive towards the right. Further, in the analysis to follow, we assume the flow to be steady, the drawdown near the vicinity of the hole during one experimental cycle to be negligible the aquifer material and water to be incompressible and the principal directions of anisotropy of the aquifer to coincide with the horizontal and vertical directions, respectively. In order to obtain solution to the problem, the hydraulic head functions must be determined such that the governing equations. If the entire computation is repeated (again by taking M = N = 100) by neglecting the confining pressure, i.e. t = 0, the K value now turns out to be 2.90 m/day. It can be observed that this value differs considerably from that of 0.96 m/day obtained by considering the confining pressure of the aquifer. As can be seen, an error of about 200% occurs for this flow situation due to neglect of this confining water head

  6. Soil Science - 9th Grade

    Science.gov (United States)

    Mr. Allred

    2011-04-06

    What are four different soils in Alabama, and what are the charastics First, Read the Soil Regions page. Soil Regions Second, read the page discussing soil types. Read about the first four soil types. Soil Types Third, Please read the information relating to Marine Sediment soils. In this case, you will be learning about the Dothan variety of Marine Sediment soil. Marine Sediment Soils (Dothan Soils) Here is some useful information on Granite Soils, ...

  7. Detailed Soils 24K

    Kansas Data Access and Support Center — This data set is a digital soil survey and is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was...

  8. GeologicSoils_SOAG

    Vermont Center for Geographic Information — GeologicSoils_SOAG includes a pre-selected subset of SSURGO soil data depicting prime agricultural soils in Vermont. The SSURGO county coverages were joined to the...

  9. Soil Organic Carbon Stock

    U.S. Geological Survey, Department of the Interior — Soil organic carbon (SOC) is the carbon held within soil organic constituents (i.e., products produced as dead plants and animals decompose and the soil microbial...

  10. Soil micromorphology, soil structure stability and soil hydraulic properties.

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Rohošková, M.; Žigová, Anna; Kodeš, V.; Kutílek, M.

    Bratislava : Ústav hydrológie SAV, 2006 - (Ivan?o, J.; Pavelková, D.; Gomboš, M.; Tall, A.), s. 0-0 ISBN 80-89139-09-4. [Vedecká konferencia s medzinárodnou ú?as?ou Vplyv Antropogénnej ?innosti na vodný režim nížinného územia /6./ ; Slovensko-?esko-po?ský seminár Fyzika vody v pode /16./. Bratislava -Michalovce-Vinianske jazero (SK), 06.06.2006-08.06.2006] R&D Projects: GA AV ?R IAA300130504 Institutional research plan: CEZ:AV0Z30130516 Keywords : soil micromorphological properties * soil structure stability * soil porous system * soil hydraulic properties Subject RIV: DF - Soil Science

  11. Does Soil Disturbance Affect Soil Phosphorus Fractions?

    Directory of Open Access Journals (Sweden)

    Yonathan D. Redel

    2013-10-01

    Full Text Available Increased turnover of organic matter as a result of soil disturbance (e.g. by soil tillage is described in principle, but the direct influence of soil disturbance on soil P turnover especially for organic farming systems has not been sufficiently proven. The objective of the study was to evaluate the short term effect of soil disturbance on different soil P fractions in a soil shaking experiment. Four soils were incubated for 10 days in the dark with three different disturbance treatments: 1 no disturbance, 2 overhead shaking for 2 h at the beginning of the experiment and 3 continuous overhead shaking at 5 r. p. m. The four investigated soils were: 1 a silty loam soil with long term bio-compost application and 2 the corresponding soil without bio-compost application, 3 a long-term organically managed clay loam soil and 4 a clay loam soil with long time application of pig manure, all not and from Baden-Württemberg, Germany. We determined NaHCO3-, NaOH- and H2SO4-extractable inorganic and organic P fractions (Pi and Po, resp. in a sequential extraction. Furthermore, the potentially plant available P as Calcium-acetate-lactate-extractable P (CAL-P and P extractable by electro-ultra-filtration (EUF-P, and aqua regia extractable total P (PT were determined. Furthermore, we determined microbial biomass carbon (MBC, nitrogen (MBN and phosphorus (MBP, and acid phosphatase activity in soil. The organically managed soil had the highest PT contents (1300 mg·kg-1. The soil with pig manure application had the smallest potentially labile P fractions (NaHCO3-Pi and -Po and NaOH-Pi. The ecologically managed soil had the biggest organic P fractions (114 mg·kg-1 NaHCO3-Po and 463 mg·kg-1 NaOH-Po, but, this soil was the lowest in CAL-P (5 mg·kg-1. Short term soil disturbance had effects on labile organic P fractions of two of the four analyzed soils, but inorganic P was rather unaffected. In the compost amended COMP(+ soil, there was an incorporation of P from the less available NaOH-P fractions into the more available NaHCO3-Po fraction. However, if taking all investigated soils and treatments into account, the effects of soil disturbance were limited and not consistent.

  12. DEVELOPING WEED SUPPRESSIVE SOILS THROUGH IMPROVED SOIL QUALITY MANAGEMENT

    Science.gov (United States)

    Sustainable agriculture is based in part on efficient management of soil microorganisms for improving soil quality. However, identification of biological indicators of soil quality for predicting weed suppression in soils has received little attention. We investigated differences in soil microbial ...

  13. The Dirt on Soil

    Science.gov (United States)

    2008-01-01

    This page is from Discoveryschool.com. It has three sections. The first one, Down and Dirty, describes the various soil horizons. The second section, Field Guide, identifies some soil organisms and the third section, Soil Safari, is an animated tour of the soil beneath your feet.

  14. Soils as Construction Materials

    Science.gov (United States)

    Douglas Kowalewski

    This geotechnical project will introduce you with the concept of using soils as construction materials.This project involves characterizing soils using various laboratory analyses and applying the Unified Soil Classification System in naming the soil. Keywords: Geotechnical, Mass Wetness, Grain Size Analysis, Atterberg Limits

  15. Fundamentals of soil science

    Science.gov (United States)

    This study guide provides comments and references for professional soil scientists who are studying for the soil science fundamentals exam needed as the first step for certification. The performance objectives were determined by the Soil Science Society of America's Council of Soil Science Examiners...

  16. MILESTONES IN SOIL PHYSICS

    Science.gov (United States)

    This special issue of “Soil Science“ celebrates the enormous accomplishments made during the past century or more in the field of soil science, including some of the key articles published in Soil Science during its 90 years of existence. In this article, we focus on the contributions in soil physic...

  17. Soil organic matter studies

    International Nuclear Information System (INIS)

    A total of 77 papers were presented and discussed during this symposium, 37 are included in this Volume II. The topics covered in this volume include: biochemical transformation of organic matter in soils; bitumens in soil organic matter; characterization of humic acids; carbon dating of organic matter in soils; use of modern techniques in soil organic matter research; use of municipal sludge with special reference to heavy metals constituents, soil nitrogen, and physical and chemical properties of soils; relationship of soil organic matter and plant metabolism; interaction between agrochemicals and organic matter; and peat. Separate entries have been prepared for those 20 papers which discuss the use of nuclear techniques in these studies

  18. Restoring Soil Quality to Mitigate Soil Degradation

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2015-05-01

    Full Text Available Feeding the world population, 7.3 billion in 2015 and projected to increase to 9.5 billion by 2050, necessitates an increase in agricultural production of ~70% between 2005 and 2050. Soil degradation, characterized by decline in quality and decrease in ecosystem goods and services, is a major constraint to achieving the required increase in agricultural production. Soil is a non-renewable resource on human time scales with its vulnerability to degradation depending on complex interactions between processes, factors and causes occurring at a range of spatial and temporal scales. Among the major soil degradation processes are accelerated erosion, depletion of the soil organic carbon (SOC pool and loss in biodiversity, loss of soil fertility and elemental imbalance, acidification and salinization. Soil degradation trends can be reversed by conversion to a restorative land use and adoption of recommended management practices. The strategy is to minimize soil erosion, create positive SOC and N budgets, enhance activity and species diversity of soil biota (micro, meso, and macro, and improve structural stability and pore geometry. Improving soil quality (i.e., increasing SOC pool, improving soil structure, enhancing soil fertility can reduce risks of soil degradation (physical, chemical, biological and ecological while improving the environment. Increasing the SOC pool to above the critical level (10 to 15 g/kg is essential to set-in-motion the restorative trends. Site-specific techniques of restoring soil quality include conservation agriculture, integrated nutrient management, continuous vegetative cover such as residue mulch and cover cropping, and controlled grazing at appropriate stocking rates. The strategy is to produce “more from less” by reducing losses and increasing soil, water, and nutrient use efficiency.

  19. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start detachment. Studies on necessary kinetic energy to detach one kilogram of sediments by raindrop impact have shown that the minimum energy is required for particles of 0.125 mm. Particles between 0.063 to 0.250 mm are the most vulnerable to detachment. This means that soils with high content of particles into vulnerable range, for example silty loam, loamy, fine sandy, and sandy loam are the most susceptible soils to detachment. Many aspects of soil behaviour in the field such as hydraulic conductivity water retention, soil crusting, soil compaction, and workability are influenced strongly by the primary particles. In tropical soils also a negative relation between structure stability and particles of silt, fine sand and very fine sand has been found, this is attributed to low cohesiveness of these particles. The ability of a structure to persist is known as its stability. There are two principal types of stability: the ability of the soil to retain its structure under the action of water, and the ability of the soil to retain its structure under the action of external mechanical stresses. (e.g. by wheels). Both types of stability are related with susceptibility to erosion

  20. Remote sensing of soils

    OpenAIRE

    Wulf, Hendrik; Mulder, Titia; Schaepman, Michael E.; Keller, Armin; Jörg, Philip Claudio

    2015-01-01

    Global environmental changes are currently altering key ecosystem services that soils provide. Therefore, it is necessary to have up to date soil information on local, regional and global scales to monitor the state of soils and ensure that these ecosystem services continue to be provided. In this context, digital soil mapping (DSM) aims to provide and advance methods for data collection and analyses tailored towards detailed large-scale mapping and monitoring of soil properties. In particula...

  1. Remote Sensing of Soil

    OpenAIRE

    Mehrez Zribi; Nicolas Baghdadi; Michel Nolin

    2011-01-01

    Global environmental changes are currently altering key ecosystem services that soils provide. Therefore, it is necessary to have up to date soil information on local, regional and global scales to monitor the state of soils and ensure that these ecosystem services continue to be provided. In this context, digital soil mapping (DSM) aims to provide and advance methods for data collection and analyses tailored towards detailed large-scale mapping and monitoring of soil properties. In particula...

  2. Soil mapping in Spain

    OpenAIRE

    Iba?n?ez, J. J.; Rubio, J. L.; Lo?pez-lafuente, A.; Monturiol, F.

    1991-01-01

    The first soil maps representing Spain date from the beginning of the century: the Universal Soil Map of Glinka and that prepared by Sibirtzev and Ramman (Mudarra 1989). The first research work carried out on Spanish soil however must be attributed to E. Huguet del Villar, who was already pioneering soil surveys of the Iberian Peninsula in 1927 on the occasion of the first Intemational Soil Science Congress held in Washington (Huguet del Villar 1927). At that time, he collaborated on the worl...

  3. Fertilizers and soil improvers

    OpenAIRE

    Sonneveld, C.; Voogt, W.

    2009-01-01

    In greenhouse industry fertilizers as well as soil improvers are widely used. Fertilizers are mainly applied to optimize the physical-chemical conditions of the root environment and are used for growing in soils in situ as well as for growing in substrates. Soil improvers are materials solely added to soils in situ primarily to maintain or improve its physical properties, but it also can improve its chemical and biological properties. Thus the difference between fertilizers and soil improvers...

  4. Soil Erosion Studies

    OpenAIRE

    Godone, Danilo Francesco; Stanchi, Silvia

    2011-01-01

    Soil erosion affects a large part of the Earth surface, and accelerated soil erosion is recognized as one of the main soil threats, compromising soil productive and protective functions. The land management in areas affected by soil erosion is a relevant issue for landscape and ecosystems preservation. In this book we collected a series of papers on erosion, not focusing on agronomic implications, but on a variety of other relevant aspects of the erosion phenomena. The book is divided into th...

  5. Mass Transport within Soils

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend strongly on (1) the composition of the soil and physical state of the soil, (2) the chemical and p

  6. Soil hydraulic properties of Cuban soils

    International Nuclear Information System (INIS)

    Because soil hydraulic properties are indispensable for determining soil water retention and soil water movement, their input for deterministic crop simulation models is essential. From these models is possible to access the effect of the weather changes, soil type or different irrigation schedules on crop yields. With these models, possibilities are provided to answer questions regarding virtual 'what happen if' experiments with a minimum of fieldwork. Nevertheless, determining soil hydraulic properties can be very difficult owing to unavailability of necessary equipment or the lack of personal with the proper knowledge for those tasks. These deficiencies are a real problem in developing countries, and even more so when there is not enough financial possibilities for research work. This paper briefly presents the way these properties have been accessed for Cuban soils, which methods have been used and the work now in progress. (author)

  7. Soil washing technology evaluation

    International Nuclear Information System (INIS)

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis

  8. Soil Surveys (Online first)

    OpenAIRE

    Brus, D. J.; Lark, R. M.

    2012-01-01

    The aim of a soil survey is to predict soil conditions at unvisited sites. In traditional soil survey, the use of statistics is principally for post hoc evaluation of the quality of the choropleth map in terms of purity and within- and between-map unit variance of soil properties. Probability sampling designs have been proposed for this. Pedometrical soil surveys treat all phases of the soil survey explicitly as a statistical problem. This had led to the adoption and development of, amongst o...

  9. Remediation of Contaminated Soils

    International Science & Technology Center (ISTC)

    Development of Methods for Remediation of Soils with Increased Contents of Heavy Metals, Radionuclides and Improvement of Soils for Ecologically Clean Agricultural Production Systems Taking into Account the Population Health Indicators

  10. GeologicSoils_ONSITE

    Vermont Center for Geographic Information — ONSITE is a pre-selected subset of SSURGO certified soil data depicting onsite sewage disposal ratings of Vermont soils. The SSURGO county coverages were joined to...

  11. Lime stabilization of soils

    OpenAIRE

    Charalambous, Charalambos ?.

    1994-01-01

    This project, as it 1S obvious by the title is aboutstabilization of soils using lime. An account on soil stabilization and the various methods used 1S given in chapter one as well as some special stabilization methods. In chapter two it is discussed how certain soil properties .are influenced by stabilization. As it can be seen volume stability, strength, permeability and durability are the properties that are most influenced. Then, chapter three elaborates on soil stabilization using ...

  12. Experimental unsaturated soil mechanics

    OpenAIRE

    Delage, Pierre

    2008-01-01

    In this general report, experimental systems and procedures of investigating the hydro-mechanical behaviour of unsaturated soils are presented. The water retention properties of unsaturated soils are commented and linked to various physical parameters and properties of the soils. Techniques of controlling suction are described together with their adaptation in various laboratory testing devices. Some typical features of the mechanical behaviour of unsaturated soils are prese...

  13. Soil conservation measures: exercises

    OpenAIRE

    Figueiredo, Toma?s; Fonseca, Feli?cia

    2009-01-01

    Exercises proposed under the topic of Soil Conservation Measures addresses to the design of structural measure, namely waterways in the context of a soil conservation plan. However, to get a better insight on the actual meaning of soil loss as a resource loss, a prior exercise is proposed to students. It concerns calculations of soil loss due to sheet (interrill) erosion and to gully erosion, and allows the perception through realistic number of the impact of these mechanism...

  14. A soil science renaissance

    OpenAIRE

    Hartemink, A. E.

    2008-01-01

    The renaissance was an intellectually-rich period following a period of stasis in the medieval period. Something analogous appears to be currently taking place in soil science where novel approaches to thought are combined with a revival of ideas from the past. Renewed interest in agriculture (food, feed, fuel) and numerous publications have brought soils back onto the global research agenda. The need for up-to-date and fine resolution soil information and the revival of soil research has bee...

  15. Restoration of contaminated soils

    International Nuclear Information System (INIS)

    A great variety of techniques are used for the restoration of contaminated soils. The contamination is present by both organic and inorganic pollutants. Environmental conditions and soil characteristics should take into account in order to implement a remedial technique. The bioremediation technologies are showed as help to remove a variety of soil contaminants. (author)

  16. Gravimetric Soil Moisture Protocols

    Science.gov (United States)

    The GLOBE Program, University Corporation for Atmospheric Research (UCAR)

    2003-08-01

    The purpose of this resource is to measure soil water content by mass. Students collect soil samples with a trowel or auger and weigh them, dry them, and then weigh them again. The soil water content is determined by calculating the difference between the wet sample mass and the dry sample mass.

  17. Soil health of grasslands

    Science.gov (United States)

    Soil properties change with time when exposed to perennial grass cover and when subsequently grazed by cattle, because of the large input of organic matter that typically occurs at the soil surface from senescent plant residues and animal manure. Accumulation of organic matter at the soil surface r...

  18. Tropical Soil Chemistry

    DEFF Research Database (Denmark)

    Borggaard, Ole K.

    2008-01-01

    A new book that is particularly relevant as tropical countries experience increased pressure on land resources to improve agricultural production. To ensure sustainable land use, the potentials and limitations of different kinds of tropical soils must be known in relation to crop production and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors that affect soil processes are the same in tropical soils as in temperate region soils, but because of high temperature year round and occurrence in very stable landscapes, some (but not all) tropical soils possess special composition and properties. These features are highlighted in the book, and general soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics, and mathematics at a level corresponding to introductory university courses. Knowledge of fundamental geology, geography, and soil science is also needed. The book can be purchased from the Department.

  19. SOIL WATER HYSTERESIS

    Science.gov (United States)

    Since at least the early work of Haines, it has been recognized that volumetric soil water content, W, and hydraulic conductivity, K, are not singular functions of soil water pressure head, h, but rather exhibit considerable variation depending on the wetting and drying history of the soil. The non-...

  20. Experimental unsaturated soil mechanics

    CERN Document Server

    Delage, Pierre

    2008-01-01

    In this general report, experimental systems and procedures of investigating the hydro-mechanical behaviour of unsaturated soils are presented. The water retention properties of unsaturated soils are commented and linked to various physical parameters and properties of the soils. Techniques of controlling suction are described together with their adaptation in various laboratory testing devices. Some typical features of the mechanical behaviour of unsaturated soils are presented within an elasto-plastic framework. An attempt to describe the numerous and significant recent advances in the investigation of the behaviour of unsaturated soils, including the contributions to this Conference, is proposed.

  1. Wildland Soil Carbon Management

    Science.gov (United States)

    Davis, R. L.; Swanston, C.

    2009-12-01

    In the era of climate change, traditional wildland management practices have come into question, especially with respect to their impact on soil carbon sequestration. Over half of the land area of the United States and Puerto Rico is either in forest or grassland ecosystems, i.e. 302 million hectares of forested lands and 247 million hectares of grasslands and pasture lands. Forested lands hold approximately 35.5 Pg of soil carbon to a depth of 100cm. Private grasslands hold approximately 21 Pg of soil carbon to a depth of 200cm. The difficulty of managing for carbon sequestration becomes more evident when one surveys the variety of complex ecosystems being managed. This presentation highlights implications for wildland management for promoting soil carbon sequestration for sustaining forest and grassland ecosystems in the United States. We will address key considerations, strategies, and opportunities to incorporate soil carbon management into wildland management. Examples of vegetation management influence on soil carbon will be discussed including fire, soil amendments and best management practices for maintaining and/or improving soil carbon sequestration. The USDA Forest Service has established a soil management policy that seeks to conserve soil quality and protect soil carbon on National Forest System lands. Aspects of this national policy will also be presented.

  2. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  3. From soil in art towards Soil Art

    Science.gov (United States)

    Feller, C.; Landa, E. R.; Toland, A.; Wessolek, G.

    2015-02-01

    The range of art forms and genres dealing with soil is wide and diverse, spanning many centuries and artistic traditions, from prehistoric painting and ceramics to early Renaissance works in Western literature, poetry, paintings, and sculpture, to recent developments in cinema, architecture and contemporary art. Case studies focused on painting, installation, and cinema are presented with the view of encouraging further exploration of art about, in, with, or featuring soil or soil conservation issues, created by artists, and occasionally scientists, educators or collaborative efforts thereof.

  4. How Can Soil Electrical Conductivity Measurements Control Soil Pollution?

    Directory of Open Access Journals (Sweden)

    Mohammad Reza

    2010-10-01

    Full Text Available Soil pollution results from the build up of contaminants, toxic compounds, radioactive materials, salts, chemicals and cancer-causing agents. The most common soil pollutants are hydrocarbons, heavy metals (cadmium, lead, chromium, copper, zinc, mercury and arsenic, herbicides, pesticides, oils, tars, PCBs and dioxins. Soil Electrical Conductivity (EC is one of the soil physical properties w hich have a good relationship with the other soil characteristics. As measuring soil electrical conductivity is easier, less expensive and faster than other soil properties measurements, using a detector that can do on the go soil EC measurements is a good tool for obtaining useful information about soil pollution condition.

  5. A whole soil stability index (WSSI) for evaluating soil aggregation

    Science.gov (United States)

    Soil aggregate stability is an indicator of soil quality. However, there is no standard methodology for measuring soil aggregation or aggregate stability, particularly for determining a whole soil stability index. A whole soil stability index (WSSI) was developed here which combined data from dry ...

  6. Soil erosion and landslides

    OpenAIRE

    Lilly, A.; Auton, Clive; Baggaley, N. J.; Bowes, J. P.; Foster, Claire; Haq, M.; Reeves, Helen

    2011-01-01

    The publication of this report is an action arising from the 2009 Scottish Soil Framework. It aims to contribute to the wider understanding that soils are a vital part of our economy, environment and heritage, to be safeguarded for existing and future generations. The State of Scotland’s Soil Report collates the most recent information available from a variety of sources and builds on previous reports by SEPA (2001) and Towers et al. (2006) and is part of wider environmental ...

  7. Soil life under stress

    OpenAIRE

    Tobor-kaplon, M. A.

    2006-01-01

    In this thesis I studied how long-term soil contamination affects microbial populations and processes, ecosystem properties and functional stability. I also investigated which parameters are suitable as indicators of soil quality in long-term contaminated soils. I found that contamination had a negative impact on many examined microbial parameters, e.g. biomasses, respiration and growth rate (Chapter 2). Some parameters like protozoan biomass and metabolic quotient did not show any effect of ...

  8. Multilingual soil database

    OpenAIRE

    La Rosa, Diego; Mayol Rodri?guez, Francisco; Moreno Arce, Juan A.; Grita, F.

    1995-01-01

    The FAO-ISRIC-CSIC Multilingual Soil Database (SDBm) is a multilingual (English/French/Spanish) system designed to store and manipulate morphological and analytical soil data. It is a collection of programs written in CLIPPER 5.2 and C languages which constitutes a user-friendly tool for an efficient and systematic organization of soil profile data. Data storage is greatly facilitated by the multilingual function which provides "assist menus" in the selected language. Decoding ...

  9. Towards soil geostatistics

    OpenAIRE

    Lark, R. M.

    2012-01-01

    In a brief survey of some issues in the application of geostatistics in soil science it is shown how the recasting of classical geostatistical methods in the linear mixed model (LMM) framework has allowed the more effective integration of soil knowledge (classifications, covariates) with statistical spatial prediction of soil properties. The LMM framework has also allowed the development of models in which the spatial covariance need not be assumed to be stationary. Such models are generall...

  10. Photocatalytic Soil Decontamination

    OpenAIRE

    Minero, Claudio; Pelizzetti, Ezio

    1992-01-01

    A photocatalytic treatment is evaluated for the decontamination of soils containing 2-chlorophenol, 2,7-dichlorodibenzodioxin and atrazine. In the laboratory the contaminated soils were mixed with a photocatalyst (TiO2) in a aqueous slurry (up to 60 g L-1 of solid mixture) and exposed to simulated solar radiation. The organic contaminants were destroyed in relatively short time. On this basis photocatalytic processes could be effective chemical detoxification methods for contaminated soils.

  11. Diffusion in aggregated soil.

    OpenAIRE

    Rappoldt, C.

    1992-01-01

    The structure of an aggregated soil is characterized by the distribution of the distance from an arbitrary point in the soil to the nearest macropore or crack. From this distribution an equivalent model system is derived to which a diffusion model can be more easily applied. The model system consists of spherical, or cylindrical or plane aggregates, which do not represent the individual aggregates of the soil, however. The radii of the spheres, cylinders or plane sheets represent different le...

  12. Earthworms and Soil Pollutants

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Tamae

    2011-11-01

    Full Text Available Although the toxicity of metal contaminated soils has been assessed with various bioassays, more information is needed about the biochemical responses, which may help to elucidate the mechanisms involved in metal toxicity. We previously reported that the earthworm, Eisenia fetida, accumulates cadmium in its seminal vesicles. The bio-accumulative ability of earthworms is well known, and thus the earthworm could be a useful living organism for the bio-monitoring of soil pollution. In this short review, we describe recent studies concerning the relationship between earthworms and soil pollutants, and discuss the possibility of using the earthworm as a bio-monitoring organism for soil pollution.

  13. The Living Soil

    Science.gov (United States)

    Soil is home to vast numbers of organisms, and even small sections of earth teem with a diverse array of life. This Topic in Depth takes a closer look at the world beneath our feet through the lens of soil biologists and ecologists. The first website (1) provides information about the activities of a Natural Environment Research Council-supported research program "on the biological diversity of soil biota and the functional roles played by soil organisms in key ecological processes." The second site (2) contains information about several research projects of the Ecology of Soil Organisms Theme Group at Wageningen University and Research Centre. The Theme Group studies "soil organisms at the population, community, and ecosystem level, to ultimately increase understanding of the role of soil organisms." The third site (3) contains a list of publications spanning the past fifteen years from members of the Soil Ecology Group at the University of Jyv'skyl". The site also provides basic information about group members, and concise descriptions of current research projects. From the USDA Natural Resources Conservation Service, the fourth website (4) contains an online version of the _Soil Biology Primer_, "an introduction to the living component of soil and how it contributes to agricultural productivity, and air and water quality. The Primer includes units describing the soil food web and its relationship to soil health, and units about bacteria, fungi, protozoa, nematodes, arthropods, and earthworms." The online version of the Primer contains the entire text of the original published version, but is missing some useful soil organism images. The fifth site (5) links to sixteen movies relating to different aspects of soil biology such as nematodes, mites, springtails, and protozoa. The movies were all produced by Dr. Thomas E. Loynachan, a Professor of Agronomy and Microbiology at Iowa State University. Finally, Soils Are Alive (6) was developed by Professor Lyn Abbot of the University of Western Australia and Jen Slater, a qualified secondary school science teacher. This website contains informative, concise sections addressing Soil Biology, Biological Processes, Living Components, and Ecosystem Management.

  14. Soil physics and agriculture

    International Nuclear Information System (INIS)

    The approach that integrates knowledge is very important in Agriculture, including farmers, extensionists, researchers and professors. The specialists, including the soil physicists, must have a global view of the crop production system. Therefore, their expertise can be useful for the society. The Essence of scientific knowledge is its practical application. The soil physics is a sub area of Agronomy. There are many examples of this specific subject related to Agriculture. This paper will focus, in general, the following cases: (i) erosion, environmental pollution and human health, (ii) plant population and distribution, soil fertility, evapo-transpiration and soil water flux density, and (iii) productivity, effective root depth, water deficit and yield

  15. Investigation of Wetland Soil Properties affecting Optimum Soil Cultivation

    OpenAIRE

    Babatunde, O. O.; Adeniran, K. A.

    2010-01-01

    An investigation was carried out on wetland (fadama) soil properties affecting optimum soil cultivation. A cone penetrometerand a shear vane apparatus (19 mm) were used to determine the cone index and the torque that cause the soil to shearat different moisture contents. The study shows that the cone index and shear vane of fadama soils increased with depth anddecreased with increase in moisture content. High moisture content reduced the soil cohesion. The internal frictional angleof the soil...

  16. How Can Soil Electrical Conductivity Measurements Control Soil Pollution?

    OpenAIRE

    Mohammad Reza; Sharifi, R. Alimardani And A.

    2010-01-01

    Soil pollution results from the build up of contaminants, toxic compounds, radioactive materials, salts, chemicals and cancer-causing agents. The most common soil pollutants are hydrocarbons, heavy metals (cadmium, lead, chromium, copper, zinc, mercury and arsenic), herbicides, pesticides, oils, tars, PCBs and dioxins. Soil Electrical Conductivity (EC) is one of the soil physical properties w hich have a good relationship with the other soil characteristics. As measuring soil electrical condu...

  17. Soil invertebrates as bioindicators of urban soil quality

    International Nuclear Information System (INIS)

    This study aimed at relating the abundance and diversity of invertebrate communities of urban soils to chemical and physical soil characteristics and to identify the taxa most sensitive or tolerant to soil stressors. The invertebrate community of five urban soils in Naples, Italy, was sampled. To assess soil quality invertebrate community indices (Shannon, Simpson, Menhinick and Pielou indices), Acarina/Collembola ratios, and the soil biological quality index (QBS) were calculated. The chemical and physical characteristics of the soils strongly differed. Abundance rather than taxa richness of invertebrates were more affected by soil characteristics. The community was more abundant and diverse in the soils with high organic matter and water content and low metal (Cu, Pb, Zn) concentrations. The taxa more resistant to the urban environment included Acarina, Enchytraeids, Collembola and Nematoda. Collembolans appeared particularly sensitive to changing soil properties. Among the investigated indices, QBS seems most appropriate for soil quality assessment. - Highlights: ? The abundance and diversity of invertebrate communities was related to properties and metal contents of urban soils. ? Several (biodiversity) indices were calculated and compared to evaluate soil quality. ? Metal contamination affected invertebrate density and diversity. ? The taxa more tolerant to metal contamination were Acarina, Enchytraeids, Collembola and Nematoda. ? The soil biological qumatoda. ? The soil biological quality index QBS index was most appropriate for soil quality assessment. - Soil metal contamination negatively affected soil invertebrate abundance and diversity.

  18. Soil Carbon Loss by Soil Respiration under Different Tillage Treatments

    OpenAIRE

    Darija Bilandžija; Željka Zgorelec; Ivica Kisi?

    2014-01-01

    Soil carbon stocks are highly vulnerable to human activities (such as tillage), which can decrease carbon stocks significantly. These activities break down soil’s organic matter and some carbon is converted to carbon dioxide (CO2). A part of CO2 (a greenhouse gas that is one of the main contributor to global warming) is lost from the soil by soil respiration (soil CO2 efflux). The aim of our study is to determine the soil carbon loss by soil CO2 efflux under different tillage treatments. Th...

  19. KBRA OPWP Soil Rooting Depth

    U.S. Geological Survey, Department of the Interior — This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  20. A computer model for predicting two-phase ground water transport in the soil surrounding a growing melt in the in situ vitrification process

    International Nuclear Information System (INIS)

    Two different computer models are tested for their usefulness in predicting the water balance and pressure field surrounding a growing hemispherical In Situ Vitrification (ISV) melt. The melt is centered under the flat surface of a hemisphere of soil contained by an impervious wall. The control volume method is employed for balancing heat, and mass in each model. The soil is considered a porous media; consequently, fluid velocity can be modeled by Darcy's equation. Both computer models employ grids which adapt to the transient boundary of the growing melt. Computational Grid I (CGI) adapts with the melt boundary by contracting in the radial direction only. In addition to adapting to the melt boundary, Computational Grid II (CGII) also adapts to the liquid-vapor interface which moves outward from the 1,700 C melt in response to the formation of Vapor. CGII has been devised in order to attempt to reduce, at a reasonable CPU cost, the numerical pressure oscillation which arises when the grid is too coarse. A very fine CGI is used as a benchmark to test CGII and a coarser version of CGI. Results from the two CGI and the one CGII cases are presented graphically to illustrate the mass flux of liquid and vapor water and the build-up in pressure as the melt boundary approaches the impermeable wall

  1. Soil data from Spain. Andalusia

    OpenAIRE

    Anaya Romero, Mari?a

    2013-01-01

    The EU - HYDI database of Andalusia region was obtained from the SEIS.net database (www.evenor - tech.com) which stores soil information from more than 1000 soil profiles. Soil data harmonization was previously stored and performed with the SDBm Plus (De la Rosa et al., 2002) , component of MicroLEIS DSS. This soil database is a multilingual soil profile database that stores and retrieves geo - referen ced soil attribute data collected in soi...

  2. SOIL WATER ENERGY CONCEPTS

    Science.gov (United States)

    The soil water hydraulic pressure head is composed of matric, overburden, and hydrostatic pressures. The soil solution will flow from higher hydraulic pressure heads to lower hydraulic pressure heads. Piezometers are used to measure the hydrostatic pressure head, and tensiometers are used to measu...

  3. Enzymes in Forest Soils.

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Štursová, Martina

    Heidelberg, Dordrecht, NY : Springer, 2011 - (Shukla, G.; Varma, A.), s. 61-73 ISBN 978-3-642-14225-3 R&D Projects: GA ?R GA526/08/0751; GA MŠk OC08050 Institutional research plan: CEZ:AV0Z50200510 Keywords : forest soils * soil ecology * enzymes Subject RIV: EE - Microbiology, Virology

  4. Soil and vegetation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  5. Creative Soil Conservation

    Science.gov (United States)

    Smith, Martha

    2010-01-01

    Take plant lessons outdoors with this engaging and inquiry-based activity in which third-grade students learn how to apply soil conservation methods to growing plants. They also collect data and draw conclusions about the effectiveness of their method of soil conservation. An added benefit to this activity is that the third-grade students played…

  6. Soil Classification Using GATree

    CERN Document Server

    Bhargavi, P

    2010-01-01

    This paper details the application of a genetic programming framework for classification of decision tree of Soil data to classify soil texture. The database contains measurements of soil profile data. We have applied GATree for generating classification decision tree. GATree is a decision tree builder that is based on Genetic Algorithms (GAs). The idea behind it is rather simple but powerful. Instead of using statistic metrics that are biased towards specific trees we use a more flexible, global metric of tree quality that try to optimize accuracy and size. GATree offers some unique features not to be found in any other tree inducers while at the same time it can produce better results for many difficult problems. Experimental results are presented which illustrate the performance of generating best decision tree for classifying soil texture for soil data set.

  7. Soil Treasure Hunt

    Science.gov (United States)

    Students will make predictions about what they think they will find in a sample of soil. They will investigate the sample and sort out the various items they find. Next they will spend time outside observing one or more sites to see what they find in the soil. After recording and sharing their observations they will create their own stories about the things they found in the soil. Uses commonly available or inexpensive materials (e.g., a soil sample from near the school, tweezers, toothpicks, eye droppers, magnifying glasses, rulers, pencils, markers, trowel or shovel). This is the 2nd of 3 sets of learning activities that are companion activities to the Elementary GLOBE children's book, The Scoop on Soils. Includes a teacher implementation guide. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program.

  8. BOREAS TE-01 SSA Soil Lab Data

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a set of soil properties for the SSA. The soil samples were collected at sets of soil pits. Major soil properties include soil...

  9. Soil bacteria for remediation of polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Springael, D.; Bastiaens, L.; Carpels, M.; Mergaey, M.; Diels, L.

    1996-09-18

    Soil bacteria, specifically adapted to contaminated soils, may be used for the remediation of polluted soils. The Flemish research institute VITO has established a collection of bacteria, which were isolated from contaminated areas. This collection includes microbacteria degrading mineral oils (Pseudomonas sp., Acinetobacter sp. and others), microbacteria degrading polycyclic aromatic hydrocarbons (genera Sphingomonas and Mycobacterium), microbacteria degrading polychlorobiphenyls (genus Ralstonia and strains related to beta-Proteobacteria), and metal resistant bacteria with plasmid borne resistances to Cd, Zn, Ni, Co, Cu, Hg, and Cr. Bench-scale reactors were developed to investigate the industrial feasibility of bioremediation. Batch Stirred Tank Reactors were used to evaluate the efficiency of oil degraders. Soils, contaminated with non-ferrous metals, were treated using a Bacterial Metal Slurry Reactor. It was found that the reduction of the Cd concentration may vary strongly from sample to sample: reduction factors vary from 95 to 50%. Is was shown that Cd contained in metallic sinter and biologically unavailable Cd could not be removed.

  10. Soil survey, soil databases and soil monitoring in Spain

    OpenAIRE

    Iba?n?ez Marti?n, Juan Jose?; Sa?nchez Di?az, Juan; La Rosa, Diego; Alba, S.

    1999-01-01

    Meetings of European Union Heads of Soil Survey Organisations were held in 1989 and 1994 respectively. Both were followed by publication of monographs describing the state-of-the-art in each of the member countries (Hodgson 1991; Le Bas & Jamagne 1996). Limited progress has been made in Spain since then, except for a proposal for an ambitious macroproject (PNCTA), the prospects for which now seem somewhat uncertain. Readers interested in historical aspects of Spanis...

  11. Soil quality demonstrations for building economically and environmentally sustainable soil

    Science.gov (United States)

    Soil quality, soil health, and soil sustainability are widely used terms but are difficult to define and illustrate, especially to a non-technical audience. A packet of a dozen demonstrations for the field and classroom was compiled and titled ‘Building a Sustainable Soil’. In this packet, new meth...

  12. Soil disturbance increases soil microbial enzymatic activity in arid ecoregion

    Science.gov (United States)

    Functional diversity of the soil microbial community is commonly used in the assessment of soil health as it relates to the activity of soil microflora involved in carbon cycling. Soil microbes in different microenvironments will have varying responses to different substrates, thus catabolic fingerp...

  13. Introductory Soil Science Exercises Using USDA Web Soil Survey

    Science.gov (United States)

    Post, Christopher J.; Mikhailova, Elena; McWhorter, Christopher M.

    2007-01-01

    The USDA, Natural Resource Conservation Service (NRCS) Web Soil Survey is a valuable teaching tool for soil science education. By incorporating the Web Soil Survey into an undergraduate-level course, students are able to use the most detailed digital soil survey information without the steep learning curve associated with geographic information…

  14. Parameterization of radiocaesium soil-plant transfer using soil characteristics

    International Nuclear Information System (INIS)

    A model of radionuclide soil-plant transfer is proposed to parameterize the transfer factor by soil and soil solution characteristics. The model is tested with experimental data on the aggregated transfer factor Tag and soil parameters for 8 forest sites in Baden-Wuerttemberg. It is shown that the integral soil-plant transfer factor can be parameterized through radiocaesium exchangeability, capacity of selective sorption sites and ion composition of the soil solution or the water extract. A modified technique of (FES) measurement for soils with interlayer collapse is proposed. (author)

  15. The Influence of Soil Particle on Soil Condensation Water

    Directory of Open Access Journals (Sweden)

    Hou Xinwei

    2013-06-01

    Full Text Available The experiment results showed that the indoor experiment formed from the volume of soil hygroscopic water increased gradually with decreasing size of soil particles. In the outdoor experiments, the results showed that the formed condensation water in medium sand was greater than it was in fine sand; the soil hot condensation water was mainly formed in the top layer of soil between 0-5 cm. We also found that covering the soil surface with stones can increase the volume of formed soil condensate water, reduce the evaporation and maintain relatively high moisture content in the top layer of soil.

  16. SOIL Geo-Wiki: A tool for improving soil information

    Science.gov (United States)

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael

    2014-05-01

    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The WorldSoilProfiles.org database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference soil classification system) and allow experts to upload and share scientifically rigorous soil data; and an application oriented towards the general public, which will be more focused on describing well observed, individual soil properties using simplified classification keys. The latter application will avoid the use of soil science related terminology and focus on the most useful soil parameters such as soil surface features, stone content, soil texture, soil plasticity, calcium carbonate presence, soil color, soil pH, soil repellency, and soil depth. Collection of soil and landscape pictures will also be supported in Soil Geo-Wiki to allow for comprehensive data collection while simultaneously allowing for quality checking by experts.

  17. Climate Strategic Soil Management

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2014-02-01

    Full Text Available The complex and strong link between soil degradation, climate change and food insecurity is a global challenge. Sustainable agricultural systems must be integral to any agenda to address climate change and variability, improve renewable fresh water supply and quality, restore degraded soils and ecosystems and advance food security. These challenges are being exacerbated by increasing population and decreasing per capita arable land area and renewable fresh water supply, the increasing frequency of extreme events, the decreasing resilience of agroecosystems, an increasing income and affluent lifestyle with growing preference towards meat-based diet and a decreasing soil quality and use efficiency of inputs. Reversing these downward spirals implies the implementation of proven technologies, such as conservation agriculture, integrated nutrient management, precision agriculture, agroforestry systems, etc. Restoration of degraded soil and desertified ecosystems and the creation of positive soil and ecosystem C budgets are important. Urban agriculture and green roofs can reduce the energy footprint of production chains for urban and non-urban areas and enhance the recycling of by-products. Researchable priorities include sustainable land use and soil/water management options, judicious soil governance and modus operandi towards payments to land managers for the provisioning of ecosystem services.

  18. [Trophic chains in soil].

    Science.gov (United States)

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems. PMID:25508107

  19. Iodine in soil

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Karl Johan [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    2000-12-01

    A literature study of the migration and the appearance of iodine isotopes in the bio-sphere particularly in soil is presented. Some important papers in the field of iodine appearance in soil and the appearance of {sup 129}I in the surroundings of reprocessing plants are discussed. The most important conclusions are: 1. Iodine binds to organic matter in the soil and also to some oxides of aluminium and iron. 2. If the iodine is not bound to the soil a large fraction of added {sup 129}I is volatilized after a rather short period. 3. The binding and also the volatilisation seems to be due to biological activity in the soil. It may take place within living microorganisms or by external enzymes excreted from microorganisms. 4. Due to variations in the composition of soil there may be a large variation in the distribution of {sup 129}I in the vertical profile of soil - usually most of the {sup 129}I in the upper layer - which also results in large variations in the {sup 129}I uptake to plants.

  20. Iodine in soil

    International Nuclear Information System (INIS)

    A literature study of the migration and the appearance of iodine isotopes in the bio-sphere particularly in soil is presented. Some important papers in the field of iodine appearance in soil and the appearance of 129I in the surroundings of reprocessing plants are discussed. The most important conclusions are: 1. Iodine binds to organic matter in the soil and also to some oxides of aluminium and iron. 2. If the iodine is not bound to the soil a large fraction of added 129I is volatilized after a rather short period. 3. The binding and also the volatilisation seems to be due to biological activity in the soil. It may take place within living microorganisms or by external enzymes excreted from microorganisms. 4. Due to variations in the composition of soil there may be a large variation in the distribution of 129I in the vertical profile of soil - usually most of the 129I in the upper layer - which also results in large variations in the 129I uptake to plants

  1. Calorimetry and soil

    International Nuclear Information System (INIS)

    This paper is a review about the application of calorimetry to study soil properties and its metabolism. Although this research has increased slowly but continuously during the last 30 years, it is true that it has received poor attention. One reason for that could be the complexity of the soil and the difficulties to investigate it from a thermodynamic point of view. In this paper we would like to demonstrate that calorimetry constitutes a very suitable method to face the main topics related to soil quality and activity. Very well known indicators used in soil research can be measured by different thermal and calorimetric methods such as differential scanning calorimetry (DSC), thermogravimetry (TG) and isothermal calorimetry (ITC). TG and DSC are both temperature scanning methods used for estimation of certain properties of the soil material such as organic matter, ignition temperature, humification index, quartz content, so on, whereas the study of the soil microbial metabolism is conducted under essentially isothermal conditions by ITC. In this review, the contributions of these techniques to different topics in soil research are described and their importance for the environmental concern is discussed in the light of this new era

  2. Soil washing treatability study

    International Nuclear Information System (INIS)

    Soil washing was identified as a viable treatment process option for remediating soil at the FEMP Environmental Management Project (FEMP). Little information relative to the specific application and potential effectiveness of the soil washing process exists that applies to the types of soil at the FEMP. To properly evaluate this process option in conjunction with the ongoing FEMP Remedial Investigation/Feasibility Study (RI/FS), a treatability testing program was necessary to provide a foundation for a detailed technical evaluation of the viability of the process. In August 1991, efforts were initiated to develop a work plan and experimental design for investigating the effectiveness of soil washing on FEMP soil. In August 1992, the final Treatability Study Work Plan for Operable Unit 5: Soil Washing (DOE 1992) was issued. This document shall be referenced throughout the remainder of this report as the Treatability Study Work Plan (TSWP). The purpose of this treatability study was to generate data to support initial screening and the detailed analysis of alternatives for the Operable Unit 5 FS

  3. Development of soil taxation and soil classification as furthered by the Austrian Soil Science Society

    Science.gov (United States)

    Baumgarten, Andreas

    2013-04-01

    Soil taxation and soil classification are important drivers of soil science in Austria. However, the tasks are quite different: whereas soil taxation aims at the evaluation of the productivity potential of the soil, soil classification focusses on the natural development and - especially nowadays - on functionality of the soil. Since the foundation of the Austrian Soil Science Society (ASSS), representatives both directions of the description of the soil have been involved in the common actions of the society. In the first years it was a main target to improve and standardize field descriptions of the soil. Although both systems differ in the general layout, the experts should comply with identical approaches. According to this work, a lot of effort has been put into the standardization of the soil classification system, thus ensuring a common basis. The development, state of the art and further development of both classification and taxation systems initiated and carried out by the ASSS will be shown.

  4. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    Science.gov (United States)

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S

    2013-05-01

    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization. PMID:23422041

  5. Soil Microbes and soil microbial proteins: interactions with clay minerals

    International Nuclear Information System (INIS)

    Bacterial enumeration in soil environments estimates that the population may reach approximately 1010 g-1 of soil and comprise up to 90% of the total soil microbial biomass. Bacteria are present in soils as single cells or multicell colonies and often strongly adsorb onto mineral surfaces such as sand and clay. The interactions of microbes and microbial biomolecules with these minerals have profound impacts on the physical, chemical and biological properties of soils. (Author)

  6. Soil fauna and soil functions: a jigsaw puzzle

    OpenAIRE

    Briones, Mariaj I.

    2014-01-01

    Terrestrial ecologists and soil modelers have traditionally portrayed the inhabitants of soil as a black box labeled as "soil fauna" or "decomposers or detritivores” assuming that they just merely recycle the deposited dead plant material. Soil is one of the most diverse habitats on Earth and contains one of the most diverse assemblages of living organisms; however, the opacity of this world has severely limited our understanding of their functional contributions to soil processes and to ec...

  7. SCALING METHODS IN SOIL PHYSICS

    Science.gov (United States)

    Soil physical properties are needed to understand and manage natural systems spanning an extremely wide range of scales. Much of soil data are obtained from small soil samples and cores, monoliths, or small field plots, yet the goal is to reconstruct soil physical properties across fields, watershed...

  8. HOW SOIL FORMING PROCESSES DETERMINE SOIL-BASED VITICULTURAL ZONING

    Scientific Electronic Library Online (English)

    J.M, Ubalde; X, Sort; R.M, Poch.

    Full Text Available The aim of this study was to elucidate the soil forming processes of representative vineyard soils, and to discuss the implications on a soil-based viticultural zoning at very detailed scale. The study area is located in Priorat, Penedes and Conca de Barbera viticultural areas (Catalonia, North-east [...] ern Spain). The studied soils belong to representative soil map units determined at 1:5,000 scale, according to Soil Taxonomy classification. The soil forming processes, identified through morphological and micromorphological analyses, have significant effects on some soil properties. For example, the different processes of clay accumulation in soils developed from granodiorites in Priorat or gravel deposits in Conca de Barbera, are primarily responsible for significant differences in clay content, available water capacity and cation exchange capacity. These soils properties, especially those related to soil moisture regime, have a direct influence on vineyard management and grape quality. However, soil forming processes are not always reflected on soil classification, especially in soils modified by man. We show that climate or geology alone cannot be used in viticultural zoning at very detailed scale, unless soil forming processes are taken into account.

  9. Soil degradation in Pakistan

    International Nuclear Information System (INIS)

    This paper diagnoses the issues involved behind the current state, usage, interactions and linkages in the soils in Pakistan. The condition of soils is deteriorating due to developmental and environmental factors such as soil degradation, water pollution, fauna degeneration etc. Issues, problems and constraints faced in the management and usage of soils are diagnosed at different levels in the ecosystems predominant in Pakistan. The research questions propose effective solutions, types of instruments, methods or processes to resolve the issues within the various areas or ecosystems in the most sustainable and effective manner [23]. Biological solutions and methods can be applied at the sub-system level by private individuals or communities at a lower cost, and at a more localized level than engineering methods. Engineering methods may be suited for interventions at a system level rather than at a sub-system level; but even at this level they will be complementary with biological methods. (author)

  10. Soils - Mean Permeability

    Kansas Data Access and Support Center — This digital spatial data set provides information on the magnitude and spatial pattern of depth-weighted, mean soil permeability throughout the State of Kansas....

  11. Thermal soil remediation

    International Nuclear Information System (INIS)

    The environmental properties and business aspects of thermal soil remediation are described. Thermal soil remediation is considered as being the best option in cleaning contaminated soil for reuse. The thermal desorption process can remove hydrocarbons such as gasoline, kerosene and crude oil, from contaminated soil. Nelson Environmental Remediation (NER) Ltd. uses a mobile thermal desorption unit (TDU) with high temperature capabilities. NER has successfully applied the technology to target heavy end hydrocarbon removal from Alberta's gumbo clay in all seasons. The TDU consist of a feed system, a counter flow rotary drum kiln, a baghouse particulate removal system, and a secondary combustion chamber known as an afterburner. The technology has proven to be cost effective and more efficient than bioremediation and landfarming

  12. Optional Soil Moisture Sensor Protocol

    Science.gov (United States)

    The GLOBE Program, University Corporation for Atmospheric Research (UCAR)

    2003-08-01

    The purpose of this resource is to measure the water content of soil based on the electrical resistance of soil moisture sensors. Students install soil moisture sensors in holes that are 10 cm, 30 cm, 60 cm, and 90 cm deep. They take daily readings of soil moisture data by connecting a meter to the sensors and using a calibration curve to determine the soil water content at each depth.

  13. Degradation and resilience of soils

    OpenAIRE

    Lal, R.

    1997-01-01

    Debate on global soil degradation, its extent and agronomic impact, can only be resolved through understanding of the processes and factors leading to establishment of the cause-effect relationships for major soils, ecoregions, and land uses. Systematic evaluation through long-term experimentation is needed for establishing quantitative criteria of (i) soil quality in relation to specific functions; (ii) soil degradation in relation to critical limits of key soil properties and processes; and...

  14. European Atlas of Soil Biodiversity

    DEFF Research Database (Denmark)

    2010-01-01

    Soil is one of the fundamental components for supporting life on Earth. Most ecosystem processes and global functions that occur within soil are driven by living organisms that, in turn, sustain life above ground. However, despite the fact that soils are home to a quarter of all living species on Earth, life within the soil is often hidden away and suffers by being 'out of sight and out of mind'. What kind of life is there in soil? What do we mean by soil biodiversity? What is special about soil biology? How do our activities affect soil ecosystems? What are the links between soil biota and climate change? The first ever European Atlas of Soil Biodiversity uses informative texts, stunning photographs and maps to answer these questions and other issues. The European Atlas of Soil Biodiversity functions as a comprehensive guide allowing non-specialists to access information about this unseen world. The first part of the book provides an overview of the below ground environment, soil biota in general, the ecosystem functions that soil organism perform, the important value it has for human activities and relevance for global biogeochemical cycles. The second part is an 'Encyclopedia of Soil Biodiversity'. Starting with the smallest organisms such as the bacteria, this segment works through a range of taxonomic groups such as fungi, nematodes, insects and macro-fauna to illustrate the astonishing levels of heterogeneity of life in soil. The European Atlas of Soil Biodiversity is more than just a normal atlas. Produced by leading soil scientists from Europe and other parts of the world under the auspice of the International Year of Biodiversity 2010, this unique document presents an interpretation of an often neglected biome that surrounds and affects us all. The European Atlas of Soil Biodiversity is an essential reference to the many and varied aspects of soil. The overall goal of this work is to convey the fundamental necessity to safeguard soil biodiversity in order to guarantee life on this planet.

  15. Iodine dynamics in soils

    Science.gov (United States)

    Shetaya, W. H.; Young, S. D.; Watts, M. J.; Ander, E. L.; Bailey, E. H.

    2012-01-01

    We investigated changes in iodine (129I) solubility and speciation in nine soils with contrasting properties (pH, Fe/Mn oxides, organic carbon and iodine contents), incubated for nine months at 10 and 20 °C. The rate of 129I sorption was greater in soils with large organic carbon contents (%SOC), low pH and at higher temperatures. Loss of iodide (I-) from solution was extremely rapid, apparently reaching completion over minutes-hours; iodate (IO3-) loss from solution was slower, typically occurring over hours-days. In all soils an apparently instantaneous sorption reaction was followed by a slower sorption process for IO3-. For iodide a faster overall reaction meant that discrimination between the two processes was less clear. Instantaneous sorption of IO3- was greater in soils with high Fe/Mn oxide content, low pH and low SOC content, whereas the rate of time-dependent sorption was greatest in soils with higher SOC contents. Phosphate extraction (0.15 M KH2PO4) of soils, ?100 h after 129I spike addition, indicated that concentrations of sorbed inorganic iodine (129I) were very low in all soils suggesting that inorganic iodine adsorption onto oxide phases has little impact on the rate of iodine assimilation into humus. Transformation of dissolved inorganic 129IO3- and 129I- to sorbed organic forms was modelled using a range of reaction- and diffusion-based approaches. Irreversible and reversible first order kinetic models, and a spherical diffusion model, adequately described the kinetics of both IO3- and I- loss from the soil solution but required inclusion of a distribution coefficient (kd) to allow for instantaneous adsorption. A spherical diffusion model was also collectively parameterised for all the soils studied by using pH, soil organic carbon concentration and combined Fe + Mn oxide content as determinants of the model parameters (kd and D/r2). The kinetic model parameters were not directly related to a single soil parameter; inclusion of pH, SOC, oxide content and temperature was necessary to describe the observed behaviour. From the temperature-dependence of the sorption data the activation energy (Ea) for 129IO3- transformation to organic forms was estimated to be ?43 kJ mol-1. The Ea value was independent of %SOC and was consistent with a reaction mechanism slower than pore diffusion or physical adsorption, but faster than most surface reactions.

  16. Earthworms and Soil Pollutants

    OpenAIRE

    Kazuyoshi Tamae; Takeshi Hirano

    2011-01-01

    Although the toxicity of metal contaminated soils has been assessed with various bioassays, more information is needed about the biochemical responses, which may help to elucidate the mechanisms involved in metal toxicity. We previously reported that the earthworm, Eisenia fetida, accumulates cadmium in its seminal vesicles. The bio-accumulative ability of earthworms is well known, and thus the earthworm could be a useful living organism for the bio-monitoring of soil pollution. In this short...

  17. The Scoop on Soils

    Science.gov (United States)

    This science-based storybook provides an introduction to soil description and sampling. Simon, Anita and Dennis follow their dog, Scoop, and find themselves in the middle of an adventure in soil. This is one of four storybooks under the title Elementary GLOBE; each book also has companion learning activities that complement the science covered in each story. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program.

  18. Climate Strategic Soil Management

    OpenAIRE

    Rattan Lal

    2014-01-01

    The complex and strong link between soil degradation, climate change and food insecurity is a global challenge. Sustainable agricultural systems must be integral to any agenda to address climate change and variability, improve renewable fresh water supply and quality, restore degraded soils and ecosystems and advance food security. These challenges are being exacerbated by increasing population and decreasing per capita arable land area and renewable fresh water supply, the increasing freque...

  19. Selenium in soil

    OpenAIRE

    ?uvardi? Maja S.

    2003-01-01

    Selenium (Se) is an essential microelement, necessary for normal functioning of human and animal organisms. Its deficiency in food and feed causes a number of diseases. In high concentrations, selenium is toxic for humans animals and plants. Soil provision with selenium affects its level in food and feed via nutrition chain. However, selenium reactivity and bioavailability depends not only on its total content in soil but also on its chemical forms. Distribution of the different forms of sele...

  20. Collapsible soils an overview

    OpenAIRE

    Rust, Eben; Heymann, Gerhard; Jones, Gary

    2010-01-01

    Collapse potential in unsaturated soil was first identified and quantified by researchers in South Africa. A landmark paper was published by Ken Schwartz in 1985 presenting the state of the art at that time. Since then, international researchers have expanded on the understanding of what collapsible soils might entail. These include saturated silts and sensitive clays. This article highlights some of the new developments and presents a theoretical yield model in an attempt to improve th...

  1. Metals in European roadside soils and soil solution – A review

    International Nuclear Information System (INIS)

    This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table. - Highlights: • Summary of studies analysing metals in soils and soil solution at European roadsides. • Metal concentrations in topsoil 5 m beside the road are influenced strongly by traffic. • Solute concentrations of metals are mostly independent from soil concentrations. • High percolation rates lead to high annual loadings directly beside the road. - Summarised data showed typical distance related metal patterns of European roadside soils; solute concentrations are mostly independent from soil matrix concentr

  2. Soil physics and the water management of spatially variable soils

    International Nuclear Information System (INIS)

    The physics of macroscopic soil-water behaviour in inert porous materials has been developed by considering water flow to take place in a continuum. This requires the flow region to consist of an assembly of representative elementary volumes, repeated throughout space and small compared with the scale of observations. Soil-water behaviour in swelling soils may also be considered as a continuum phenomenon so long as the soil is saturated and swells and shrinks in the normal range. Macroscale heterogeneity superimposed on the inherent microscale heterogeneity can take many forms and may pose difficulties in the definition and measurement of soil physical properties and also in the development and use of predictive theories of soil-water behaviour. Thus, measurement techniques appropriate for uniform soils are often inappropriate, and criteria for soil-water management, obtained from theoretical considerations of behaviour in equivalent uniform soils, are not applicable without modification when there is soil heterogeneity. The spatial variability of soil-water properties is shown in results from field experiments concerned with water flow measurements; these illustrate both stochastic and deterministic heterogeneity in soil-water properties. Problems of water management of spatially variable soils when there is stochastic heterogeneity appear to present an insuperable problem in the application of theory. However, for soils showing deterministic heterogeneity, soil-water theory has been used in the solution of soil-water management problems. Thus, scaling using similar media theory has been applied to the infiltration of water into soils that vary over a catchment area. Also, the drain spacing to control the water-table height in soils in which the hydraulic conductivity varies with depth has been calculated using groundwater seepage theory. (author)

  3. GLOBE Videos: Soil Characterization - Soil Moisture (18:23 min)

    Science.gov (United States)

    This video describes how to select a soil moisture study site and sampling strategy, and identifies what laboratory instruments will be needed to complete a soil moisture analysis. Students are shown collecting soil moisture data and asking questions about what soil moisture data might tell them about the environment. The resource includes a video and a written transcript, and is supported by the Soil Moisture Protocol in the GLOBE Teacher's Guide. This is one of five videos about soils in the 24-part instructional video series describing scientific protocols used by GLOBE (Global Learning and Observation to Benefit the Environment), a worldwide, hands-on, K-12 school-based science education program.

  4. The Influence of Soil Particle on Soil Condensation Water

    OpenAIRE

    Hou Xinwei; Chen Hao; Li Xiangquan; Cui Xiaomei; Liu Lingxia; Wang Zhenxing

    2013-01-01

    The experiment results showed that the indoor experiment formed from the volume of soil hygroscopic water increased gradually with decreasing size of soil particles. In the outdoor experiments, the results showed that the formed condensation water in medium sand was greater than it was in fine sand; the soil hot condensation water was mainly formed in the top layer of soil between 0-5 cm. We also found that covering the soil surface with stones can increase the volume of formed soil condensat...

  5. Seasonal variability of soil structure and soil hydraulic properties.

    Czech Academy of Sciences Publication Activity Database

    Jirk?, V.; Kodešová, R.; Mühlhanselová, M.; Žigová, Anna

    Brisbane : International Union of Soil Sciences.; Australian Society of Soil Science, 2010 - (Gilkes, R.; Pragongkep, N.), s. 145-148 ISBN 978-0-646-53783-2. [World Congress of Soil Science /19./. Brisbane (AU), 01.08.2010-06.08.2010] R&D Projects: GA ?R GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : soil structure * aggregate stability * soil hydraulic properties * micromorphological images * temporal variability Subject RIV: DF - Soil Science http://www.iuss.org/19th%20WCSS/symposium/pdf/0483.pdf

  6. Diagenetic variation in the Oregon Coast Range: Implications for rock strength, soil production, hillslope form, and landscape evolution

    Science.gov (United States)

    Marshall, Jill A.; Roering, Joshua J.

    2014-06-01

    The mechanisms by which lithology modulates geomorphic processes are poorly known. In the Oregon Coast Range (OCR), rhythmically bedded sandstones of the Eocene Tyee Formation underlie steep, soil-mantled hillslopes, with relatively uniform ridge-valley spacing. These characteristic landforms are perturbed where diagenetic variations manifest as resistant cliffs. Here we use petrology, rock mechanics, and lidar to characterize grain-scale variations in rock properties and their influence on rock strength, hillslope processes, and landscape morphology in two adjacent watersheds. Petrographic analyses suggest that a suite of diagenetic products in the "resistant" bedrock account for a 2.5 times increase in tensile strength relative to "typical" Tyee bedrock. Our reference catchment exhibits negligible resistant outcrops, and consistent hillslope gradients and longitudinal valley profiles. By contrast, the adjacent catchment teems with resistant, 1 to 10 m thick, noncontiguous sandstone beds that form hanging valleys with gentle upstream hillslopes and anomalously narrow valleys. Mechanical and topographic analyses suggest that the low fracture density characteristic of these resistant beds may render them relatively impervious to comminution by tree root activity, the dominant OCR soil production mechanism. Based on both hillslope gradient- and hilltop curvature-erosion models, we estimate that hillslopes perched above resistant beds erode at approximately half the pace of hillslopes unencumbered by downstream knickpoints. The diagenetic variations likely influence relief at the watershed scale. Depositional position and diagenetic processes appear to control the occurrence of resistant beds, providing a framework to quantify how seemingly subtle variations in rock properties can impose first-order controls on landscape form and evolution.

  7. Use of Landsat imagery to detect land cover changes for monitoring soil sealing; case study: Bologna province (Italy)

    Science.gov (United States)

    Casciere, Rossella; Franci, Francesca; Bitelli, Gabriele

    2014-08-01

    Landsat archives (made accessible by USGS at no charge since 2011) have made available to the scientific community a large amount of satellite multispectral images, providing new opportunities for environmental information, such as the analysis of land use/cover changes, which represent important tools for planning and sustainable land management. Processing a time series images, the creation of land cover maps has been improved in order to analyze phenomena such as the soil sealing. The main topic of this work is in fact the detection of roads and buildings construction or everything that involve soil removing. This subject is highly relevant, given the impact of the phenomenon on land use planning, environmental sustainability, agricultural policies and urban runoff. The analysis, still in progress, has been applied to Bologna Province (Emilia-Romagna Region, Italy) that covers 3703 Km2. This area is strongly urbanized: 8,9% of the total surface is sealed against a national value of 6,7%, with the soil sealing rate which has been defined from recent studies as the fourth Italian value in the 2001/2011 period. Other information available for this territory derive from CORINE Land Cover and Copernicus Projects. In the first one, the minimum mapping unit is 25 ha and the one for change is 5 ha; these values are too large for an accurate detection of the soil sealing dynamics. On the other hand, the Copernicus Project provides an imperviousness layer with a better resolution (20x20 m2), but its maps start from 2006. Therefore, the potential of multispectral remote sensing analysis over large areas and the multitemporal Landsat availability have been combined for a better knowledge about land cover changes. For this work, Landsat 5 and Landsat 8 images have been acquired between 1987 and 2013, according to basic requirements as low cloud cover and a common acquisition season (summer). A supervised pixel-based classification has been performed, with maximum likelihood algorithm. Due to landscape heterogeneity, classification has been improved with auxiliary data, such as NDVI. Therefore, the obtained maps have been compared with a post-classification change detection procedure in order to quantify land use changes, with particular attention to the soil sealing increase.

  8. Soil-atmosphere greenhouse-gas exchange in a bioretention system

    Science.gov (United States)

    Daly, E.; Chan, H.; Beringer, J.; Livesley, S. J.

    2011-12-01

    Bioretention systems are a popular green-technology for the management of urban stormwater runoff in many countries. They typically consist of a trench filled with a highly permeable soil medium that supports vegetation; runoff is diverted to bioretention systems and, by percolating through the filter medium, is subjected to a number of treatment processes. Nitrogen (N) is one of the key pollutants targeted by bioretention systems, which are able to reduce N concentrations considerably from inflow to outflow. To increase N removal, a saturated zone at the bottom of the filter medium is often artificially generated, to both enhance the denitrification process and increase the water available to the vegetation between inflow events. Although studies on the N-removal performance of bioretention systems are widely available in the literature, less is known about the exchange of greenhouse gases (GHG), especially nitrous oxide (N2O), between the bioretention systems and the atmosphere. Here, we present an experimental pilot study to measure N2O and CO2 soil emissions in a bioretention system installed on the Clayton Campus of Monash University in Melbourne, Australia. The bioretention system is divided into three cells, each 15 m2; the system as a whole receives water run-off from 4500 m2 of impervious car park. We monitored two cells with mostly sandy-loam vegetated with native sedges (mainly Carex Appressa and Lomandra Longifolia), one with and one without a saturated zone. Three manual flux chambers were installed in both cells. Gas flux samples were taken twice a week at about 11 am between the 2nd of March and the 18th of May 2011 (late summer and fall). Since October 2010, air-phase soil CO2 concentration profiles were measured continuously using solid-state infrared CO2 transmitters (GMT-221 model, Vaisala, Finland), along with soil moisture and soil temperature. Preliminary analysis of the chamber data (March only) showed that N2O fluxes were in general below 50 ?g N/ (m2 h) with occasional pulse emissions > 150 ?g N /(m2 h) after recent inflow events. Fluxes from the cell with the saturated zone were consistently higher than those from the cell without a saturated zone. CO2 fluxes were comparable between the two cells, and usually between 50 and 200 mg C/(m2 h) whilst temperatures ranged between 12 and 26 degrees Celsius through this late summer/autumn period. Results from the entire data-set (March-May) will be presented along with an investigation of the relationship between these fluxes and other environmental and soil variables, such as soil nitrate and ammonium content and soil redox potential. Seasonal fluctuations and the effect of random inflow pulses will be also assessed and discussed. The results from this pilot study are useful to provide direct quantification of the GHG emissions associated with urban bioretention systems, which are one of the most used green infrastructures to manage stormwater runoff.

  9. Soil functional types: surveying the biophysical dimensions of soil security

    Science.gov (United States)

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or climate) for a particular soil-provided ecosystem service (e.g. climate regulation)". One SFT can thus include several soil types having the same functionality for a particular soil-provided ES. Another consequence is that SFT maps for two different ES may not superimpose over the same area, since some soils may fall in the same SFT for a service and in different SFT for another one. Soil functional types could be assessed and monitored in space and time by a combination of soil functional traits that correspond to inherent and manageable properties of soils. Their metrology would involve either classic (pedological observations) or advanced (molecular ecology, spectrometry, geophysics) tools. SFT could be studied and mapped at all scales, depending on the purpose of the soil security assessment (e.g. global climate modeling, land planning and management, biodiversity conservation). Overall, research is needed to find a pathway from soil pedological maps to SFT maps which would yield important benefits towards the assessment and monitoring of soil security. Indeed, this methodology would allow (i) reducing the spatial uncertainty on the assessment of ES; (ii) identifying and mapping multifunctional soils, which may be the most important soil resource to preserve. References [1] McBratney et al., 2014. Geoderma 213:203-213. [2] Droogers P, Bouma J, 1997. SSSAJ 61:1704-1710.

  10. Engineering Significant of Swelling Soils

    Directory of Open Access Journals (Sweden)

    Behzad Kalantari

    2012-08-01

    Full Text Available This study describes some of the most important swelling characters of expansive soils when used as foundation materials to support various types of civil engineering structures. Expansive soils are considered among difficult foundation materials and expand upon wetting and shrink upon losing moisture. They are considered problematic soils for architectural and civil engineers. These types of soils may cause minor to major structural damages to pavements as well as buildings. It is therefore essential to detect swelling soils from non-problematic foundation soils before any civil engineering projects are constructed over or adjacent to them. The study begins with definition of expansive soils and shows its distributions in the world as well as the basic causes for swelling potential that these type of soils poses. It is also shown that, the most probable depth of expansion to check for possible swelling potential for swelling soils is soil’s active zone. This zone is the most upper depth of expansive soil and it may extend up to 20 ft. (6 m below ground level. The moisture content of soil through active zone varies during different seasons while in lower part of expansive soil the moisture content stays constant during hot and cold season. Among various methods to check for swelling potential, plastic index and liquid limits are two most crucial factors, as these factors tend to increase, the swelling potential increase as well.

  11. A soil-inventory of agricultural used soils of Germany

    Science.gov (United States)

    Siebner, Clemens; Gensior, Andreas; Evertsbusch, Sven; Freibauer, Annette; Flessa, Heiner

    2010-05-01

    In the framework of UNFCCC reports for greenhouse gas emissions of land use and land use change also soil organic carbon stocks and stock changes of have to be reported. Since 1990 a forest soil inventory exists for Germany, but similar data are still missing for agricultural land. Up till now, a very rough estimation of the soil organic carbon stocks based on the soil map of Germany at the scale of 1:1,000,000 and estimated soil organic carbon contents and bulk densities have been used for the national inventory reports. Now we are starting an extended agricultural soil inventory for Germany which is explicitly designed to detect soil organic carbon stocks and stock changes. We will use a grid of 8x8 km, like it was used for the forest soil inventory. In order to extrapolate from point data and perform regionalisations, not only soil type, soil parent material and basic climate parameters will be taken into account, but under agricultural land use different agricultural management practices will be considered. Management data, like crop rotation, depth and intensity of soil tillage and application of fertilizers, manure and composts are collected from farmers during the inventory via questionnaires. It was shown that those data are essential to estimate and extrapolate point data to report soil organic carbon stocks and stock changes on regional scale. The concept of this soil carbon inventory will be presented.

  12. Soil mechanics and analysis of soils overlying cavitose bedrock

    International Nuclear Information System (INIS)

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs

  13. Soils and the soil cover of the Valley of Geysers

    Science.gov (United States)

    Kostyuk, D. N.; Gennadiev, A. N.

    2014-06-01

    The results of field studies of the soil cover within the tourist part of the Valley of Geysers in Kamchatka performed in 2010 and 2011 are discussed. The morphology of soils, their genesis, and their dependence on the degree of hydrothermal impact are characterized; the soil cover patterns developing in the valley are analyzed. On the basis of the materials provided by the Kronotskii Biospheric Reserve and original field data, the soil map of the valley has been developed. The maps of vegetation conditions, soil temperature at the depth of 15 cm, and slopes of the surface have been used for this purpose together with satellite imagery and field descriptions of reference soil profiles. The legend to the soil map includes nine soil units and seven units of parent materials and their textures. Soil names are given according to the classification developed by I.L. Goldfarb (2005) for the soils of hydrothermal fields. The designation of soil horizons follows the new Classification and Diagnostic System of Russian Soils (2004). It is suggested that a new horizon—a thermometamorphic horizon TRM—can be introduced into this system by analogy with other metamorphic (transformed in situ) horizons distinguished in this system. This horizon is typical of the soils partly or completely transformed by hydrothermal impacts.

  14. Soil property effects on wind erosion of organic soils

    Science.gov (United States)

    Zobeck, Ted M.; Baddock, Matthew; Scott Van Pelt, R.; Tatarko, John; Acosta-Martinez, Veronica

    2013-09-01

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (OM > 20%) in half or more of the upper 80 cm. Forty two states have a total of 21 million ha of Histosols in the United States. These soils, when intensively cropped, are subject to wind erosion resulting in loss of crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service (NRCS) as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to understand how soil properties vary among organic soils and to calibrate and validate estimates of wind erosion of organic soils using WEPS. Soil properties and sediment flux were measured in six soils with high organic contents located in Michigan and Florida, USA. Soil properties observed included organic matter content, particle density, dry mechanical stability, dry clod stability, wind erodible material, and geometric mean diameter of the surface aggregate distribution. A field portable wind tunnel was used to generate suspended sediment and dust from agricultural surfaces for soils ranging from 17% to 67% organic matter. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was sampled using a Grimm optical particle size analyzer. Particle density of the saltation-sized material (>106 ?m) was inversely related to OM content and varied from 2.41 g cm-3 for the soil with the lowest OM content to 1.61 g cm-3 for the soil with highest OM content. Wind erodible material and the geometric mean diameter of the surface soil were inversely related to dry clod stability. The effect of soil properties on sediment flux varied among flux types. Saltation flux was adequately predicted with simple linear regression models. Dry mechanical stability was the best single soil property linearly related to saltation flux. Simple linear models with soil properties as independent variables were not well correlated with PM10E values (mass flux). A second order polynomial equation with OM as the independent variable was found to be most highly correlated with PM10E values. These results demonstrate that variations in sediment and dust emissions can be linked to soil properties using simple models based on one or more soil properties to estimate saltation mass flux and PM10E values from organic and organic-rich soils.

  15. University of Florida: Soil Texture

    Science.gov (United States)

    This University of Florida website educates the public about soil texture, which is the distribution of sizes of mineral particles found in soils. After learning the basics about soil separates, students and educators can learn about the USDA textural triangle and the characteristics of the twelve textural classes. Researchers can discover how to determine the correct soil texture in the field. The website addresses the important role soil textures play in the determination of proper land use activities and management practices. Visitors will also find a short discussion about other factors that affect the behavior and qualities of soils.

  16. Lasagna trademark soil remediation

    International Nuclear Information System (INIS)

    Lasagna trademark is an integrated, in situ remediation technology being developed which remediates soils and soil pore water contaminated with soluble organic compounds. Lasagna trademark is especially suited to sites with low permeability soils where electroosmosis can move water faster and more uniformly than hydraulic methods, with very low power consumption. The process uses electrokinetics to move contaminants in soil pore water into treatment zones where the contaminants can be captured and decomposed. Initial focus is on trichloroethylene (TCE), a major contaminant at many DOE and industrial sites. Both vertical and horizontal configurations have been conceptualized, but fieldwork to date is more advanced for the vertical configuration. Major features of the technology are electrodes energized by direct current, which causes water and soluble contaminants to move into or through the treatment layers and also heats the soil; treatment zones containing reagents that decompose the soluble organic contaminants or adsorb contaminants for immobilization or subsequent removal and disposal; and a water management system that recycles the water that accumulates at the cathode (high pH) back to the anode (low pH) for acid-base neutralization. Alternatively, electrode polarity can be reversed periodically to reverse electroosmotic flow and neutralize pH

  17. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    Science.gov (United States)

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  18. The effect of soil fauna on carbon sequestration in soil.

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Pižl, Václav; Kaneda, Satoshi; Šimek, Miloslav

    2008-01-01

    Ro?. 10, - (2008). ISSN 1029-7006. [EGU General Assembly 2008. 13.04.2008-18.04.2008, Vienna] Institutional research plan: CEZ:AV0Z60660521 Keywords : soil fauna * carbon sequestration * soil Subject RIV: EH - Ecology, Behaviour

  19. Soil Genesis and Development, Lesson 5 - Soil Classification and Geography

    Science.gov (United States)

    This lesson discusses the characteristics of the 12 soil orders defined by the USDA soil classification system, the major factors involved with their formation, and their geographic distribution across the USA and the world.

  20. Soil moisture distribution over time in a clay loam soil in Kosovo

    OpenAIRE

    Abdullah Nishori; Besnik Gjongecaj; Deme Abazi

    2013-01-01

    Studying the soil moisture distribution over time in a given soil profile is the object of the present study. The way the soil moisture gets distributed over soil profile depends particularly on the soil texture and on the soil suction gradients developed. However, it changes continuously over time for a given soil depth. The method of determining the soil moisture distribution over time is based on the measuring of soil moisture suctions developed and the soil moisture contents in various ti...

  1. Predicting Radiocaesium Sorption with Soil Chemical Properties in Japanese Soils

    International Nuclear Information System (INIS)

    The soil-to-plant transfer mechanism of radiocaesium (137Cs) in the Fukushima accident affected area is not fully understood. The sorption of 137Cs in soils holds a key to evaluating the variation of transfer of 137Cs to plant among different soil types. This study aims to investigate how differences in 137Cs adsorption in different soils can be explained by soil chemical and mineralogical properties. The Radiocaesium Interception Potential (RIP), a parameter for quantifying immediate 137Cs adsorption, and the soil texture were determined for 52 surface soils covering a wide range of texture classes collected from the area contaminated by the Fukushima accident. These soils include Andosols, Fluvisols, Gleysols, and Cambisols. In addition, we are currently performing analyses for other soil chemical properties (i.e. exchangeable cation, CEC, pH, organic matter content, etc) and for the properties affecting 137Cs sorption in soils (i.e. Frayed Edge Site capacity, K+ and NH4+ selectivity, effect of wet-dry cycles, etc). The average RIP varied from 80 to 4300 mmol kg-1 between soils. Contrary to what was found for temperate region soils by Absalom et al., the RIP (log(RIP)) and soil clay content were not significantly correlated (R2= 0.066). These initial results seem to indicate that the 137Cs sorption is affected by the clay mineralogy in soils. We postulate that by considering also the differences in clay K content, the relationship will improve since the frayed edges are formed at high K content in the clay. This knowledge could improve the prediction of RIP for different Japanese soil groups. Further analysis of the data will explore the relationship between RIP and other soil chemical properties. In our study, we will take specific note of Andosols (range of average RIP from 80 to 2400 mmol kg-1), typical soils in Japan originated from volcanic ash. It is expected that soil properties ruling the 137Cs sorption for Japanese Andosols will differ compared to other temperate mineral soils, for which most 137Cs transfer studies have been performed after the Chernobyl accident. We start by investigating the role of amorphous Al and Fe in 137Cs sorption. We believe that our findings could contribute to improved predictions of soil-to-plant transfer in Japanese soils and to the development of feasible countermeasures to reduce 137Cs transfer to plants for different soil-crop combinations in Japan. (authors)

  2. Predicting Radiocaesium Sorption with Soil Chemical Properties in Japanese Soils

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Shinichiro [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven (Belgium); Van Hees, May; Wannijn, Jean; Sweeck, Lieve; Vandenhove, Hildegarde [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Smolders, Erik [Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven (Belgium)

    2014-07-01

    The soil-to-plant transfer mechanism of radiocaesium ({sup 137}Cs) in the Fukushima accident affected area is not fully understood. The sorption of {sup 137}Cs in soils holds a key to evaluating the variation of transfer of {sup 137}Cs to plant among different soil types. This study aims to investigate how differences in {sup 137}Cs adsorption in different soils can be explained by soil chemical and mineralogical properties. The Radiocaesium Interception Potential (RIP), a parameter for quantifying immediate {sup 137}Cs adsorption, and the soil texture were determined for 52 surface soils covering a wide range of texture classes collected from the area contaminated by the Fukushima accident. These soils include Andosols, Fluvisols, Gleysols, and Cambisols. In addition, we are currently performing analyses for other soil chemical properties (i.e. exchangeable cation, CEC, pH, organic matter content, etc) and for the properties affecting {sup 137}Cs sorption in soils (i.e. Frayed Edge Site capacity, K{sup +} and NH{sub 4}{sup +} selectivity, effect of wet-dry cycles, etc). The average RIP varied from 80 to 4300 mmol kg{sup -1} between soils. Contrary to what was found for temperate region soils by Absalom et al., the RIP (log(RIP)) and soil clay content were not significantly correlated (R2= 0.066). These initial results seem to indicate that the {sup 137}Cs sorption is affected by the clay mineralogy in soils. We postulate that by considering also the differences in clay K content, the relationship will improve since the frayed edges are formed at high K content in the clay. This knowledge could improve the prediction of RIP for different Japanese soil groups. Further analysis of the data will explore the relationship between RIP and other soil chemical properties. In our study, we will take specific note of Andosols (range of average RIP from 80 to 2400 mmol kg{sup -1}), typical soils in Japan originated from volcanic ash. It is expected that soil properties ruling the {sup 137}Cs sorption for Japanese Andosols will differ compared to other temperate mineral soils, for which most {sup 137}Cs transfer studies have been performed after the Chernobyl accident. We start by investigating the role of amorphous Al and Fe in {sup 137}Cs sorption. We believe that our findings could contribute to improved predictions of soil-to-plant transfer in Japanese soils and to the development of feasible countermeasures to reduce {sup 137}Cs transfer to plants for different soil-crop combinations in Japan. (authors)

  3. Wood-soil interactions in soil bioengineering slope stabilization works

    OpenAIRE

    Mc, Moscatelli; Romagnoli M; Cenfi S; Lagomarsino A; Di Tizio A; Spina S; Grego S

    2009-01-01

    In this work we propose the use of soil quality indicators with the aim of assessing the environmental impact of soil bioengineering works. This study was carried out in central Italy where soil bioengineering slope stabilization works were established using chestnut wood. In particular the goal of this study was to determine the occurrence of a wood-effect, that is changes of soil properties due to the presence of decomposing logs in two sites characterized by different time span since works...

  4. Soil Sustainability Assessment. Proposed Soil Indicators for Sustainability

    OpenAIRE

    Eydís Mary Jónsdóttir 1981

    2011-01-01

    Soils provide an array of essential, life-supporting ecosystem services that underpin human civilisation. This thesis, presents the result of a first iteration of an indicator development process towards a complete set of soil indicators for the assessment of soil sustainability. A total of 360 potential indicators, relating to issues concerning the sustainability of soil were identified through an extensive literature review. Under the guidelines of the BellagioSTAMP and using a thematic app...

  5. Working with Soil - Soil science in the field

    Science.gov (United States)

    Hannam, Jacqueline; Lacelles, Bruce; Owen, Jason; Thompson, Dick; Jones, Bob; Towers, Willie

    2015-04-01

    Working with Soil is the Professional Competency Scheme developed by the British Society of Soil Science's Professional Practice Committee, formerly the Institute of Professional Soil Scientists. Ten competency documents cover the required qualifications, skills and knowledge for different aspects of applied soil science. The Society is currently engaged in a five year plan to translate the competency documents into a comprehensive set of training courses. Foundation skills in field-based science are covered by three separate training courses - Exposing and describing a soil profile (Course 1), Soil classification (Course 2), and Soil survey techniques (Course 3). Course 1 has run successfully twice a year since 2013. The other two courses are under development and are scheduled to start in 2015. The primary objective of Foundation Skills Course 1 is to develop confidence and familiarity with field soil investigation and description, understanding the soil underfoot and putting soils into a wider landscape context. Delegates excavate a soil profile pit, and describe and sample the exposed soil to standard protocols. Delegates work in teams of 4 or 5 so that an element of shared learning is part of the process. This has been a very positive aspect of the courses we have run to date. The course has attracted professionals from agricultural and environmental consultancies but is also very popular with research students and has formed a part of an Advanced Training Programme in Soil Science for postgraduates. As there is only one soil science degree course remaining in the UK, many students on their admission do not have a background in field-based pedology and lack an understanding of soil in the context of landscape scale soil functions. Feedback to date has been very positive.

  6. Soil Carbon Changes Influenced by Soil Management and Calculation Method

    OpenAIRE

    Mikha, Maysoon M.; Benjamin, Joseph G.; Halvorson, Ardell D.; Nielsen, David C.

    2013-01-01

    Throughout the years, many studies have evaluated changes in soil organic carbon (SOC) mass on a fixed-depth (FD) basis without considering changes in soil mass caused by changing bulk density (?b). This study evaluates the temporal changes in SOC caused by two factors: 1) changing SOC concentration; and 2) changing equivalent soil mass (ESM) in comparison with FD. In addition, this study evaluates calculating changes in SOC stock over time using a minimum equivalent soil mass (ESMmin) basi...

  7. Soil fungi as indicators of pesticide soil pollution

    OpenAIRE

    Mandi? Leka; ?uki? Dragutin; ?or?evi? Snežana

    2005-01-01

    Soil fungi, with their pronounced enzymic activity and high osmotic potential, represent a significant indicator of negative effects of different pesticides on the agroecosystem as a whole. In that respect, a trial was set up on the alluvium soil type with the aim to investigate the effect of different herbicides (Simazine, Napropamid, Paraquat), fungicides (Captan and Mancozeb) and insecticides (Fenitrothion and Dimethoate) on a number of soil fungi under apple trees. The number of soil fung...

  8. SOIL MICROBIAL COMMUNITIES AS INDICATORS OF SOIL HEALTH

    Science.gov (United States)

    The soil microbial community is more diverse than any other group of organisms, The functions of these diverse communities range from nutrient cycling and residue decomposition, to soil structural component, to plant growth effects. Soil crusts provide a source of added carbon and nutrients in arid...

  9. An alternative to soil taxonomy for describing key soil characteristics

    Science.gov (United States)

    Duniway, Michael C.; Miller, Mark E.; Brown, Joel R.; Toevs, Gordon

    2013-01-01

    We are pleased to see the letter by Schimel and Chadwick (Front Ecol Environ 2013; 11[8]: 405–06), highlighting the importance of soil characterization in ecological and biogeochemical research and explaining the value of soil taxonomy, and we agree with the authors that reporting soil

  10. Soil Genesis and Development, Lesson 5 - Soil Geography and Classification

    Science.gov (United States)

    The system of soil classification developed by the United States Department of Agriculture (USDA) is called Soil Taxonomy. Soil Taxonomy consists of a hierarchy of six levels which, from highest to lowest, are: Order, Suborder, Great Group, Subgroup, family, and series. This lesson will focus on bro...

  11. Soil property effects on wind erosion of organic soils

    Science.gov (United States)

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (>20%) in half or more of the upper 80 cm. Forty four states have a total of 21 million ha of histosols in the United States. These soils, when intensively cropped, are subject to wind erosion r...

  12. Soil mechanics experiment

    Science.gov (United States)

    Mitchell, J. K.; Bromwell, L. G.; Carrier, W. D., III; Costes, N. C.; Houston, W. N.; Scott, R. F.

    1972-01-01

    The Apollo 15 soil-mechanics experiment has offered greater opportunity for study of the mechanical properties of the lunar soil than previous missions, not only because of the extended lunar-surface stay time and enhanced mobility provided by the lunar roving vehicle (rover), but also because four new data sources were available for the first time. These sources were: (1) the self-recording penetrometer (SRP), (2) new, larger diameter, thin-walled core tubes, (3) the rover, and (4) the Apollo lunar-surface drill (ALSD). These data sources have provided the best bases for quantitative analyses thus far available in the Apollo Program.

  13. Soil and ground cover

    International Nuclear Information System (INIS)

    The monitoring programmes set up in accordance with the directives for the surveillance of effluents from nuclear installations oblige operators of such installations to take samples of vegetation (grass) and soil twice a year at the least favourable place in the industrial plant's environment, and at a reference site, for radioactivity monitoring by gamma spectroscopy. In addition, the samples are to be examined for their Sr-90 content. Data recorded over the years show that nuclear facilities do not significantly contribute to soil and vegetation contamination with Sr-90 or Cs-137. The directives require regular interlaboratory comparisons, which are coordinated by the directing centre at Kiel. (DG)

  14. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities as well as wastes from old waste burial ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. Because of the topic of this workshop, only the assay instrumentation applied specifically to soil monitoring will be discussed here. Four types of soil monitors are described

  15. Constructive Similarity of Soils.

    Czech Academy of Sciences Publication Activity Database

    Koudelka, Petr

    Singapore : Design, CRC a iTEK CMS Web solutions, 2012 - (Phoon, K.; Beer, M.; Quek, S.; Pang, S.), s. 206-211 ISBN 978-981-07-2218-0. [APS on Structural Reliability and Its Application – Sustainable Civil Infrastructures /5./. Singapore (SG), 23.05.2012-25.05.2012] Grant ostatní: GA ?R(CZ) GAP105/11/1160 Institutional support: RVO:68378297 Keywords : model similarity * database of soil properties * soil similarity characteristic * statistical analysis * ultimate limit states Subject RIV: JM - Building Engineering

  16. Soil texture; 1 : 500 000

    International Nuclear Information System (INIS)

    The characteristics of soil texture are based on an abundant database of the agricultural and forest soils. The character of the texture of the upper soil horizons is assessed. The colour scale represents the classes of texture, and the raster distinguishes the individual classes of stoniness (in mountain ranges) or graveliness in the river alluvia. Soils with at least 10 % of area representation of rock basement are classified as very rocky. Very rocky soils are mostly rankers to Lithosols in the mountain areas of Slovakia. Medium stony are Cambisols to rankers on the crystalline rocks and volcanic complexes. The relatively heaviest soils are to be found in the Vychodoslovenska nizina Lowland, the lightest soils occur in the Zahorska nizina Lowland with prevalence of soils on aeolian sands. (authors)

  17. About zonality of introzonality soils

    Directory of Open Access Journals (Sweden)

    Parakshin Yu.

    2013-01-01

    Full Text Available This article presents arguments to demonstrate that not only background soils (podzol, black earth, but also introzonal ones, which are irregularly deposited among the predominant soils, are subject to latitudinal zonality.

  18. Soil-Transmitted Helminth Infections

    Science.gov (United States)

    ... consultations 2014 Fact sheets Features Commentaries Multimedia Contacts Soil-transmitted helminth infections Fact sheet N°366 Updated May 2015 Key facts Soil-transmitted helminth infections are caused by different species ...

  19. Lunar Soil Particle Separator Project

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS can improve ISRU oxygen...

  20. Lunar Soil Particle Separator Project

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS improves ISRU oxygen...

  1. Soil! Get the Scoop - The Soil Science Society of America's International Year of Soils Campaign

    Science.gov (United States)

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan; van Es, Harold

    2015-04-01

    Soils are a finite natural resource and are nonrenewable on a human time scale. Soils are the foundation for food, animal feed, fuel and natural fiber production, the supply of clean water, nutrient cycling and a range of ecosystem functions. The area of fertile soils covering the world's surface is limited and increasingly subject to degradation, poor management and loss to urbanization. Increased awareness of the life-supporting functions of soil is called for if this trend is to be reversed and so enable the levels of food production necessary to meet the demands of population levels predicted for 2050. The Soil Science Society of America is coordinating with the Global Soil Partnership and other organizations around the world to celebrate the 2015 International Year of Soils and raise awareness and promote the sustainability of our limited soil resources. We all have a valuable role in communicating vital information on soils, a life sustaining natural resource. Therefore, we will provide resources to learn about soils and help us tell the story of soils. We will promote IYS on social media by sharing our posts from Facebook and Twitter. Additionally SSSA developed 12 monthly themes that reflect the diverse value of soils to our natural environment and society. Each month has information on the theme, a lesson plan, and other outreach activities. All information is available on a dedicated website www.soil.org/IYS. The site will be updated constantly throughout the year.

  2. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F. L.; Gubiani, P. I.; Calegari, A.; Reichert, J. M.; Dos Santos, D. R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  3. Mathematical simulation of soil cloddiness

    OpenAIRE

    Chertkov, V. Y.

    1995-01-01

    A theoretical model was developed to predict soil clod size distribution attained after tillage so that it can be taken as initial state of soil for following erosion processes. The model was developed previously for rocks. The model predicts soil fragmentation resulting from multiple crack formation due to statistically uniform stresses. Peculiarities inherent to soils in view of their plastic properties are discussed. Comparison between calculated results and published experimental data dem...

  4. Soil health in agricultural systems

    OpenAIRE

    Kibblewhite, M. G.; Ritz, K.; Swift, M.J.

    2007-01-01

    Soil health is presented as an integrative property that reflects the capacity of soil to respond to agricultural intervention, so that it continues to support both the agricultural production and the provision of other ecosystem services. The major challenge within sustainable soil management is to conserve ecosystem service delivery while optimizing agricultural yields. It is proposed that soil health is dependent on the maintenance of four major functions: carbon transformations; nutrient ...

  5. Monitoring and evaluating soil quality

    OpenAIRE

    Bloem, J; Schouten, A.J.; Sørensen, S.J.; Rutgers, M.; Werf, A.K., van der; Breure, A. M.

    2006-01-01

    This book provides a selection of microbiological methods that are already applied in regional or national soil quality monitoring programs. It is split into two parts: part one gives an overview of approaches to monitoring, evaluating and managing soil quality. Part two provides a selection of methods, which are described in sufficient detail to use the book as a practical handbook in the laboratory. The methods are described in chapters on soil microbial biomass and numbers, soil microbial ...

  6. Soil Bacterial and Viral Dynamics

    OpenAIRE

    Adams, Edward Stephen

    2006-01-01

    Viruses have been shown to be responsible for considerable bacterial mortality and nutrient cycling in aquatic systems. As yet no detailed studies have been published on the role of viruses in natural soil bacterial communities despite common knowledge that viruses exist in the soil. This thesis sought to address some key questions on the ecology of soil bacterial viruses and their hosts. Disturbance through soil desiccation, nutrient inputs, rhizosphere effects and protozoan predation pressu...

  7. Mercury emissions from contaminated soils

    OpenAIRE

    Llanos, W.; Lo?pez-berdonces, M. A.; Marti?nez, A.; Garci?a Noguero, E.; Esbri?, J. M.; Higueras, P.

    2009-01-01

    This study presents data of mercury emission rates from contaminated soils of the main mercury district worldwide, namely Almadén. Meteorological parameters and soil condition were the factors taken in consideration in relation with emission rates obtained with a dynamic flux chamber (DFC). Mercury emission from Almadén contaminated soils are in a similar range (27 – 671 ng·m-2·h-1) with respect to other mercury contaminated soils by mining or industrial activ...

  8. The soil reference shrinkage curve

    OpenAIRE

    Chertkov, V. Y.

    2014-01-01

    A recently proposed model showed how a clay shrinkage curve is transformed to the soil shrinkage curve at the soil clay content higher than a critical one. The objective of the present work was to generalize this model to the soil clay content lower a critical one. I investigated (i) the reference shrinkage curve, that is, one without cracks; (ii) the superficial layer of aggregates, with changed pore structure compared with the intraaggregate matrix; and (iii) soils with su...

  9. Soil carbon determination by thermogravimetrics

    OpenAIRE

    Robert Pallasser; Budiman Minasny; Mcbratney, Alex B.

    2013-01-01

    Determination of soil constituents and structure has a vital role in agriculture generally. Methods for the determination of soil carbon have in particular gained greater currency in recent times because of the potential that soils offer in providing offsets for greenhouse gas (CO2-equivalent) emissions. Ideally, soil carbon which can also be quite diverse in its makeup and origin, should be measureable by readily accessible, affordable and reliable means. Loss-on-ignition is still a widely u...

  10. Soil, a sponge for pollutants

    OpenAIRE

    Lichtfouse, Eric

    1997-01-01

    This preface of the special issue entitled "Soil Pollutants" (Analusis Magazine 25, M16-M72, 1997) highlights major basic and applied issues about the sources and fate of organic, mineral and radioactive pollutants in soils. Soils have long been considered as a closed and inert medium where wastes can be dumped without impact on living organisms. This is false and we know now that soils play a vital role in ecosystems. Pollution sources are diverse and numerous. Toxic compounds are either of ...

  11. Mathematical simulation of soil cloddiness

    Directory of Open Access Journals (Sweden)

    V.Y.Chertkov

    1995-09-01

    Full Text Available A theoretical model was developed to predict soil clod size distribution attained after tillage so that it can be taken as initial state of soil for following erosion processes. The model was developed previously for rocks. The model predicts soil fragmentation resulting from multiple crack formation due to statistically uniform stresses. Peculiarities inherent to soils in view of their plastic properties are discussed. Comparison between calculated results and published experimental data demonstrates a satisfactory agreement.

  12. The Science of Soil Textures

    Science.gov (United States)

    Bigham, Gary

    2010-01-01

    Off-road motorcycle racing and ATV riding. Gardening and fishing. What do these high-adrenaline and slower-paced pastimes have in common? Each requires soil, and the texture of that soil has an effect on all of them. In the inquiry-based lessons described here, students work both in the field or laboratory and in the classroom to collect soil…

  13. SOIL PHYSICS AND HYDROLOGY: CONDITIONERS

    Science.gov (United States)

    Soil conditioners have been used since ancient times, even before the chemical and physical basis of conditioner effectiveness was accurately understood. Soil conditioners have included both organic and mineral materials as well as natural and synthetic materials. Examples of natural organic soil ...

  14. SOIL SURVEY GEOGRAPHIC DATABASE (SSURGO)

    Science.gov (United States)

    This data set is a digital soil survey and is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a 7.5 minute quadrangle ...

  15. SoilInfo App: global soil information on your palm

    Science.gov (United States)

    Hengl, Tomislav; Mendes de Jesus, Jorge

    2015-04-01

    ISRIC ' World Soil Information has released in 2014 and app for mobile de- vices called 'SoilInfo' (http://soilinfo-app.org) and which aims at providing free access to the global soil data. SoilInfo App (available for Android v.4.0 Ice Cream Sandwhich or higher, and Apple v.6.x and v.7.x iOS) currently serves the Soil- Grids1km data ' a stack of soil property and class maps at six standard depths at a resolution of 1 km (30 arc second) predicted using automated geostatistical mapping and global soil data models. The list of served soil data includes: soil organic carbon (), soil pH, sand, silt and clay fractions (%), bulk density (kg/m3), cation exchange capacity of the fine earth fraction (cmol+/kg), coarse fragments (%), World Reference Base soil groups, and USDA Soil Taxonomy suborders (DOI: 10.1371/journal.pone.0105992). New soil properties and classes will be continuously added to the system. SoilGrids1km are available for download under a Creative Commons non-commercial license via http://soilgrids.org. They are also accessible via a Representational State Transfer API (http://rest.soilgrids.org) service. SoilInfo App mimics common weather apps, but is also largely inspired by the crowdsourcing systems such as the OpenStreetMap, Geo-wiki and similar. Two development aspects of the SoilInfo App and SoilGrids are constantly being worked on: Data quality in terms of accuracy of spatial predictions and derived information, and Data usability in terms of ease of access and ease of use (i.e. flexibility of the cyberinfrastructure / functionalities such as the REST SoilGrids API, SoilInfo App etc). The development focus in 2015 is on improving the thematic and spatial accuracy of SoilGrids predictions, primarily by using finer resolution covariates (250 m) and machine learning algorithms (such as random forests) to improve spatial predictions.

  16. Impact of Soil Texture on Soil Ciliate Communities

    Science.gov (United States)

    Chau, J. F.; Brown, S.; Habtom, E.; Brinson, F.; Epps, M.; Scott, R.

    2014-12-01

    Soil water content and connectivity strongly influence microbial activities in soil, controlling access to nutrients and electron acceptors, and mediating interactions between microbes within and between trophic levels. These interactions occur at or below the pore scale, and are influenced by soil texture and structure, which determine the microscale architecture of soil pores. Soil protozoa are relatively understudied, especially given the strong control they exert on bacterial communities through predation. Here, ciliate communities in soils of contrasting textures were investigated. Two ciliate-specific primer sets targeting the 18S rRNA gene were used to amplify DNA extracted from eight soil samples collected from Sumter National Forest in western South Carolina. Primer sets 121F-384F-1147R (semi-nested) and 315F-959R were used to amplify soil ciliate DNA via polymerase chain reaction (PCR), and the resulting PCR products were analyzed by gel electrophoresis to obtain quantity and band size. Approximately two hundred ciliate 18S rRNA sequences were obtained were obtained from each of two contrasting soils. Sequences were aligned against the NCBI GenBank database for identification, and the taxonomic classification of best-matched sequences was determined. The ultimate goal of the work is to quantify changes in the ciliate community under short-timescale changes in hydrologic conditions for varying soil textures, elucidating dynamic responses to desiccation stress in major soil ciliate taxa.

  17. Improved Biosensors for Soils

    Science.gov (United States)

    Silberg, J. J.; Masiello, C. A.; Cheng, H. Y.

    2014-12-01

    Microbes drive processes in the Earth system far exceeding their physical scale, affecting crop yields, water quality, the mobilization of toxic materials, and fundamental aspects of soil biogeochemistry. The tools of synthetic biology have the potential to significantly improve our understanding of microbial Earth system processes: for example, synthetic microbes can be be programmed to report on environmental conditions that stimulate greenhouse gas production, metal oxidation, biofilm formation, pollutant degradation, and microbe-plant symbioses. However, these tools are only rarely deployed in the lab. This research gap arises because synthetically programmed microbes typically report on their environment by producing molecules that are detected optically (e.g., fluorescent proteins). Fluorescent reporters are ideal for petri-dish applications and have fundamentally changed how we study human health, but their usefulness is quite limited in soils where detecting fluorescence is challenging. Here we describe the construction of gas-reporting biosensors, which release nonpolar gases that can be detected in the headspace of incubation experiments. These constructs can be used to probe microbial processes within soils in real-time noninvasive lab experiments. These biosensors can be combined with traditional omics-based approaches to reveal processes controlling soil microbial behavior and lead to improved environmental management decisions.

  18. Airbag Impressions in Soil

    Science.gov (United States)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbags left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.

  19. Soil and machinery decontamination

    International Nuclear Information System (INIS)

    For bonding radionuclide in soil upper layers was developed a decontaminating composition on the base of phospho-gypseous binder and natural ion-exchangers. For decontamination of automobile transport and parts of machinery were developed also efficient compositions. The conclusion is made that the developed decontaminating solutions have high decontaminating ability. 18 refs.; 2 tabs

  20. Soil and Sediment Erosion

    Science.gov (United States)

    This brief article discusses the effect of soil and sediment erosion and its significance in social and economic aspects. The methods of measuring erosion and knowledge of past erosion rates are also briefly discussed to use as a predictor of future erosion rates.

  1. Exploring Soil Ecosystems.

    Science.gov (United States)

    Finley, Deborah R.

    1991-01-01

    Describes a soil lab that can be performed with a minimum of equipment and time, utilizing a lawn, field, or woodlot. Students dig a 1-meter-deep pit and observe the litter and humus layers where most microbial and fungal decomposition occurs. Describes comparing different locations by pH level and concentration of potassium, phosphorous, and…

  2. Soil washing results for mixed waste pond soils at Hanford

    International Nuclear Information System (INIS)

    Soil washing technology was assessed as a means for remediating soil contaminated with mixed wastes primarily composed of heavy metals and radionuclides. The soils at the US Department of Energy's Hanford Site are considered suitable for soil washing because of their relatively low quantities of silt and clay. However, in a limited number of soil washing experiments using soils from different locations in the north pond of the 300 Area, the degree of decontamination achieved for the coarse fraction of the soil varied considerably. Part of this variation appears to be due to the presence of a discrete layer of contaminated sediment found in some of the samples. 7 refs., 2 figs., 4 tabs

  3. Soils, Pores, and NMR

    Science.gov (United States)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 samples (Haber-Pohlmeier et al. 2010). Third, relaxometric information forms the basis of understanding magnetic resonance imaging (MRI) results. The general difficulty of imaging in soils are the inherent fast T2 relaxation times due to i) the small pore sizes, ii) presence of paramagnetic ions in the solid matrix, and iii) diffusion in internal gradients. The last point is important, since echo times can not set shorter than about 1ms for imaging purposes. The way out is either the usage of low fields for imaging in soils or special ultra-short pulse sequences, which do not create echoes. In this presentation we will give examples on conventional imaging of macropore fluxes in soil cores (Haber-Pohlmeier et al. 2010), and the combination with relaxometric imaging, as well as the advantages and drawbacks of low-field and ultra-fast pulse imaging. Also first results on the imaging of soil columns measured by SIP in Project A3 are given. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Waterflow Monitored by Tracer Transport in Natural Porous Media Using MRI." Vadose Zone J.: submitted. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Relaxation in a Natural soil: Comparison of Relaxometric Imaging, T1 - T2 Correlation and Fast-Field Cycling NMR." The Open Magnetic Resonance Journal: in print. Pohlmeier, A., S. Haber-Pohlmeier, et al. (2009). "A Fast Field Cycling NMR Relaxometry Study of Natural Soils." Vadose Zone J. 8: 735-742. Stingaciu, L. R., A. Pohlmeier, et al. (2009). "Characterization of unsaturated porous media by high-field and low-field NMR relaxometry." Water Resources Research 45: W08412

  4. Biomarker in archaeological soils

    Science.gov (United States)

    Wiedner, Katja; Glaser, Bruno; Schneeweiß, Jens

    2015-04-01

    The use of biomarkers in an archaeological context allow deeper insights into the understanding of anthropogenic (dark) earth formation and from an archaeological point of view, a completely new perspective on cultivation practices in the historic past. During an archaeological excavation of a Slavic settlement (10th/11th C. A.D.) in Brünkendorf (Wendland region in Northern Germany), a thick black soil (Nordic Dark Earth) was discovered that resembled the famous terra preta phenomenon. For the humid tropics, terra preta could act as model for sustainable agricultural practices and as example for long-term CO2-sequestration into terrestrial ecosystems. The question was whether this Nordic Dark Earth had similar properties and genesis as the famous Amazonian Dark Earth in order to find a model for sustainable agricultural practices and long term CO2-sequestration in temperate zones. For this purpose, a multi-analytical approach was used to characterize the sandy-textured Nordic Dark Earth in comparison to less anthropogenically influenced soils in the adjacent area in respect of ecological conditions (e.g. amino sugar), input materials (faeces) and the presence of stable soil organic matter (black carbon). Amino sugar analyses showed that Nordic Dark Earth contained higher amounts of microbial residues being dominated by soil fungi. Faecal biomarkers such as stanols and bile acids indicated animal manure from omnivores and herbivores but also human excrements. Black carbon content of about 30 Mg ha-1 in the Nordic Dark Earth was about four times higher compared to the adjacent soil and in the same order of magnitude compared to terra preta. Our data strongly suggest parallels to anthropogenic soil formation in Amazonia and in Europe by input of organic wastes, faecal material and charred organic matter. An obvious difference was that in terra preta input of human-derived faecal material dominated while in NDE human-derived faecal material played only a minor role. The majority of the faecal residues in the NDE derived from pigs, cows and sheep. A precise statement about animal derived faecal in terra preta is not possible due to limited data of steroid composition of Amazonian animals. Nevertheless, the existence of this terra preta-like soil in the temperate zone in Europe is an excellent example for the existence of anthropogenic dark earth beyond the humid tropics with favorable properties.

  5. Bioavailability of radiocaesium in soil: parameterization using soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Syssoeva, A.A.; Konopleva, I.V. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation)

    2004-07-01

    It has been shown that radiocaesium availability to plants strongly influenced by soil properties. For the best evaluation of TFs it necessary to use mechanistic models that predict radionuclide uptake by plants based on consideration of sorption-desorption and fixation-remobilization of the radionuclide in the soil as well as root uptake processes controlled by the plant. The aim of the research was to characterise typical Russian soils on the basis of the radiocaesium availability. The parameter of the radiocaesium availability in soils (A) has been developed which consist on radiocaesium exchangeability; CF -concentration factor which is the ratio of the radiocaesium in plant to that in soil solution; K{sub Dex} - exchangeable solid-liquid distribution coefficient of radiocaesium. The approach was tested for a wide range of Russian soils using radiocaesium uptake data from a barley pot trial and parameters of the radiocaesium bioavailability. Soils were collected from the arable horizons in different soil climatic zones of Russia and artificially contaminated by {sup 137}Cs. The classification of soils in terms of the radiocaesium availability corresponds quite well to observed linear relationship between {sup 137}Cs TF for barley and A. K{sub Dex} is related to the soil radiocaesium interception potential (RIP), which was found to be positively and strongly related to clay and physical clay (<0,01 mm) content. The {sup 137}Cs exchangeability were found to be in close relation to the soil vermiculite content, which was estimated by the method of Cs{sup +} fixation. It's shown radiocaesium availability to plants in soils under study can be parameterized through mineralogical soil characteristics: % clay and the soil vermiculite content. (author)

  6. Soil Erosion and Agricultural Sustainability

    Science.gov (United States)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system capable of feeding a growing population safeguard both soil fertility and the soil itself? Although the experiences of past societies provide ample historical basis for concern about the long-term prospects for soil conservation, data compiled from recent studies indicate that no-till farming could reduce erosion to levels close to soil production rates. Consequently, agricultural production need not necessarily come at the expense of either soil fertility or the soil itself, even if recent proposals to rely on conventionally grown corn for biofuels exemplify how short-term social and economic trade-offs can de-prioritize soil conservation. Like the issues of climate change and loss of biodiversity, the ongoing global degradation and loss of soil presents a fundamental social challenge in which the slow pace of environmental change counter-intuitively makes solutions all the more difficult to adopt.

  7. Sensors for environmental soil monitoring

    International Nuclear Information System (INIS)

    A historical review of sensing devices for agricultural soils is followed by water content measurement in soils using time domain reflectometry (TDR) and dual probe heat pulse method (DPHP). Soil water content and electric conductivity are easily measured by TDR method independent of temperature or such impurities as nitrates and alcohols. Thermo TDR method combining dual probe heat pulse technique developed by the present author is explained and some obtained data on the effect of existing oil contents in unsaturated soils are presented. Finally with PIN photodiodes, a radioactivity sensor capable to use in soils is explained which counts radiations coming from various direction at different depths. (S. Ohno)

  8. Mine soil classification and mapping

    International Nuclear Information System (INIS)

    This presentation covers the history of surface coal mining and reclamation methods and equipment for the pre-Federal law, interim-Federal law, and post-Federal law periods. It discusses the difficulties with traditional mine soil mapping methods on five soils series in Illinois. These methods fail to recognize the effects of compaction and methods to ameliorate compaction. The current status of mine soil mapping methods on eight soil series in Illinois are presented. Areas where additional work is needed and future potential difficulties are identified for mine soil mapping efforts

  9. Nitrification in Dutch heathland soils.

    OpenAIRE

    De Boer, W.

    1989-01-01

    This thesis is the result of a study on the production of nitrate in Dutch heathland soils. Most of the heathlands are located on acid, sandy soils. Therefore , it has dealt mainly with the occurrence, nature and mechanisms of nitrification in acid soils. In the Netherlands, the production of nitrate in acid soils is a matter of great concern because it has become obvious that this process contributes to a continuous acidification of such soils that are exposed to high levels of deposition of...

  10. Acid Rain Experiments: Soil Buffering

    Science.gov (United States)

    This experiment will help students understand that soil sometimes contains substances, like limestone, that buffer acids or bases, and that some salts in soil may also act as buffers. They will collect soil samples from their lawn, garden, or school and look for buffering effects by observing the pH change of an acid mixture poured through the samples. If the water collected from the sample is less acidic than the original mixture, then the soil is buffering some of the acid. If it does not change, then the soil may not be capable of buffering acids.

  11. The role of biological soil crusts on soil moisture

    Science.gov (United States)

    Chamizo, S.; Cantón, Y.; Lázaro, R.; Rodriguez-Caballero, E.; Domingo, F.

    2012-04-01

    In water-limited ecosystems, water becomes the most important driver for plant productivity. In these systems, spatial distribution of water resources is not random but organized into a mosaic of water-depletion areas linked to water-accumulation areas. In other words, water is transferred from interplant patches that act as source areas to vegetation patches that act as sinks of this resource. Thus, structure and functioning of interplant patches have a decisive role in water redistribution and distribution patterns of vegetation. Soil surface in the interplant spaces of most arid and semiarid ecosystems is covered by biological soil crusts (BSCs). These organisms regulate water fluxes into and through soils and play major roles in local hydrological processes. In the last years, the role of these organisms in infiltration and runoff has gained increased importance and a better knowledge about their effects on these processes has been acquired. However, the role of BSCs in other important components of the water balance such as evaporation or soil moisture has been scarcely studied, so that their effects on these processes remain unknown. The objective of this work is to examine the influence of BSCs on soil moisture regimes in the top profile of the soil in two semiarid ecosystems of SE Spain with contrasting soil texture and where BSCs are well-represented. Soil moisture content at 0.03 and 0.10 m was monitored under two representative types of BSCs, a dark cyanobacteria-dominated BSC and a light-coloured lichen-dominated BSC, and in soils where these BSCs were removed by scraping, at both study sites. Our results show that, under high water conditions, removal of BSCs leads to a decrease in soil moisture compared to soils covered by BSCs. Decrease in soil moisture due to BSC removal namely affects moisture in the upper layer of the soil (0.03 m), but has little impact in deeper soil (0.10 m). Evaporation is also generally faster in soils with no BSCs than in soils covered by them. The type of BSC influences soil moisture in a different way depending on soil water conditions. Under high water content conditions, soil water loss is faster and soil moisture content lower under cyanobacterial than under lichen BSCs, due to higher infiltration promoted by lichens. On the contrary, under low water content conditions, lichen-crusted soils dry out faster and exhibit less moisture than cyanobacteria-crusted ones, attributed to the larger porosity and subsequent greater evaporative losses in lichen- than in cyanobacteria-crusted soils. We found higher moisture in coarse-textured soils than in fine-textured ones, despite the higher water retention capacity of the latter soils. More favourable conditions in the coarser soils, which had greater organic matter content, aggregate stability and were subject to less water stress due to its proximity to the coast, seems to contribute to this increased soil moisture content. BSCs therefore play an important role on the maintenance of water availability in the interplant spaces, thereby strongly affecting soil physical and biological processes, and the potential for emergence establishment and survival of plants in semiarid ecosystems.

  12. Delineation of colluvial soils in different soil regions

    Science.gov (United States)

    Zádorová, Tereza; Penížek, Vít; Vašát, Radim

    2015-04-01

    Colluvial soils are considered to be the direct result of accelerated soil erosion in agricultural landscape, resulting in accumulation of humus-rich soil material in terrain depressions and toe slopes. They represent an important soil cover element in landscapes influenced by soil erosion and form an important soil organic carbon (SOC) pool. Delineation of colluvial soils can identify areas with high sediment input and potential deep organic carbon storage and thus improve our knowledge on soil mass and SOC stock redistribution in dissected landscapes. Different prediction methods (ordinary kriging, multiple linear regression, supervised fuzzy classification, artificial neural network, support vector machines) for colluvial soils delineation have been tested in three different soil regions (Cambisol, Luvisol and Chernozem) at two scales (plot and watershed) in the Czech Republic. The approach is based on exploitation of relationship between soil and terrain units and assumes that colluvial soil can be defined by particular range of terrain attributes values. Terrain attributes derived from precise DEMs were used as predictors in applied models. The soil-terrain relationship was assessed using a large dataset of field investigations (300 cores at each plot and 100 cores at each watershed). Models were trained at plot scale (15-33 ha) and the best performing model was then calibrated and validated at watershed scale (25-55 km2). The study proved high potential of terrain variables as predictors in colluvial soil delineation. Support vector machines method was the best performing method for colluvial soil occurrence prediction at all the three sites. However, significant differences in performance have been identified among the studied plots. The best results were obtained in Luvisol region where both determination coefficient and prediction accuracy reached the highest values. The model performance was satisfactory also in Chernozem region. The model showed its limitations in the Cambisol region, where a high uncertainty and low prediction accuracy resulted from generally weak soil-terrain relationship given by low redistribution of the soil material. Different terrain attributes were applied as predictors in the models at each study region. In the Chernozem region, the colluvial area is defined by extreme values of slope and topographic position index. In Luvisol and Cambisol regions, colluvial soil area is related mostly to specific values of plan curvature and topographic wetness index. Role of colluvial soils given by theirs spatial extent differs in the studied sites. Colluvial soil in the Chernozem region represents an important soil cover part (13% from the total area). Moderate importance of colluvial soils was determined in the Luvisol region (8 %) and low in the Cambisol region (3%). Spatial extent of colluvial soils corresponds to the intensity of soil mass redistribution. At the three sites with similar environmental settings (terrain, land management, climate), it is mostly soil characteristics and profile development typical for each classification unit that resulted in different importance of colluvial soil in each study site. The study was supported by grant nr. 13-07516P of the Czech science foundation and by grant nr. QJ1230319 of the Ministry of Agriculture.

  13. Dynamical soil-structure interactions: influence of soil behaviour nonlinearities

    International Nuclear Information System (INIS)

    The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in the soil and the response of the soil-structure system. Through these parametric studies we show that depending on the soil properties, frequency content of the soil response could change significantly due to the soil nonlinearity. The peaks of the transfer function between free field and outcropping responses shift to lower frequencies and amplification happens at this frequency range. Amplification reduction for the high frequencies and even de-amplification may happen for high level input motions. These changes influence the structural response. We show that depending on the combination of the fundamental frequency of the structure and the the natural frequency of the soil, the effect of soil-structure interaction could be significant or negligible. However, the effect of structure weight and rocking of the superstructure could change the results. Finally, the basin of Nice is used as an example of wave propagation on a heterogeneous nonlinear media and dynamic soil-structure interaction. The basin response is strongly dependent on the combination of soil nonlinearity, topographic effects and impedance contrast between soil layers. For the selected structures and soil profiles of this work, the performed numerical simulations show that the shift of the fundamental frequency is not a good index to discriminate linear from nonlinear soil behavior. (author)

  14. Soil organic matter and soil biodiversity spots in urban and semi urban soils of southeast Mexico

    Science.gov (United States)

    Huerta, Esperanza

    2015-04-01

    We have observed how the constant use of compost or vermicompost has created spots of soil restoration in urban and semiurban soils of Chiapas (Huitepec and Teopisca), increasing soil organic matter amount, soil moisture and soil porosity, and enhancing then the presence of soil biodiversity; for example, in a Milpa with vermicompost (polyculture of Zea mays with Curcubita pepo, and Fasolius vulgaris) we have found a high density of an epigeic earthworm (640 ind.m2), Dichogaster bolahui, not present in the same type of soil just some meters of distance, in an Oak forest, where soil macroinvertebrates abundance decreased drastically. In another ecosystem within a Persea Americana culture, we found how above and below ground soil biodiversity is affected by the use of vermicompost, having clearly different microcosmos with and without vermicompost (30-50% more micro and macro invertebrates with vermicompost). So now in Campeche, within those soils that are classified by the mayas as tzequel, soils not use for agriculture, we have implemented home gardens and school gardens by the use of compost of vermicomposts in urban and semiurban soils. In school gardens (mainly primary schools) students have cultivated several plants with alimentary purposes; teachers have observed how the increase of soil biodiversity by the use of compost or vermicompost has enhanced the curiosity of children, even has promoted a more friendly behavior among students, they have learned how to do compost and how to apply it. Urban and semiurban soils can be modified by the use of compost and vermicompost, and soil biodiversity has extremely increased.

  15. Soil Carbon Sequestration in India

    International Nuclear Information System (INIS)

    With a large land area and diverse ecoregions, there is a considerable potential of terrestrial/soil carbon sequestration in India. Of the total land area of 329 million hectares (Mha), 297 Mha is the land area comprising 162 Mha of arable land, 69 Mha of forest and woodland, 11 Mha of permanent pasture, 8 Mha of permanent crops and 58 Mha is other land uses. The soil organic carbon (SOC) pool is estimated at 21 Pg (petagram = Pg = 1 x 1015 g billion ton) to 30-cm depth and 63 Pg to 150-cm depth. The soil inorganic carbon (SIC) pool is estimated at 196 Pg to 1-m depth. The SOC concentration in most cultivated soils is less than 5 g/kg compared with 15 to 20 g/kg in uncultivated soils. Low SOC concentration is attributed to plowing, removal of crop residue and other biosolids, and mining of soil fertility. Accelerated soil erosion by water leads to emission of 6 Tg C/y. Important strategies of soil C sequestration include restoration of degraded soils, and adoption of recommended management practices (RMPs) of agricultural and forestry soils. Potential of soil C sequestration in India is estimated at 7 to 10 Tg C/y for restoration of degraded soils and ecosystems, 5 to 7 Tg C/y for erosion control, 6 to 7 Tg C/y for adoption of RMPs on agricultural soils, and 22 to 26 Tg C/y for secondary carbonates. Thus, total potential of soil C sequestration is 39 to 49 (44± 5) Tg C/y

  16. Discovering the essence of soil

    Science.gov (United States)

    Frink, D.

    2012-04-01

    Science, and what it can learn, is constrained by its paradigms and premises. Similarly, teaching and what topics can be addressed are constrained by the paradigms and premises of the subject matter. Modern soil science is founded on the five-factor model of Dokuchaev and Jenny. Combined with Retallack's universal definition of soil as geologic detritus affected by weathering and/or biology, modern soil science emphasizes a descriptive rather than an interpretive approach. Modern soil science however, emerged from the study of plants and the need to improve crop yields in the face of chronic and wide spread famine in Europe. In order to teach that dirt is fascinating we must first see soils in their own right, understand their behavior and expand soil science towards an interpretive approach rather than limited as a descriptive one. Following the advice of James Hutton given over two centuries ago, I look at soils from a physiological perspective. Digestive processes are mechanical and chemical weathering, the resulting constituents reformed into new soil constituents (e.g. clay and humus), translocated to different regions of the soil body to serve other physiological processes (e.g. lamellae, argillic and stone-line horizons), or eliminated as wastes (e.g. leachates and evolved gasses). Respiration is described by the ongoing and diurnal exchange of gasses between the soil and its environment. Circulatory processes are evident in soil pore space, drainage capacity and capillary capability. Reproduction of soil is evident at two different scales: the growth of clay crystals (with their capacity for mutation) and repair of disturbed areas such as result from the various pedo-perturbations. The interactions between biotic and abiotic soil components provide examples of both neurological and endocrine systems in soil physiology. Through this change in perspective, both biotic and abiotic soil processes become evident, providing insight into the possible behavior of ancient prebiotic soils. Furthermore, the physiological approach sheds light on the emergence of new soil components (e.g. spodic horizons) as ancient prebiotic soils adapt to a plethora of biotic carbon compounds. Other emergent soil properties and behaviors can be linked to the kinds, frequencies, order and intensities of various ubiquitous pedo-perturbations.

  17. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. PMID:22959898

  18. Soil phosphorus landscape models for precision soil conservation.

    Science.gov (United States)

    Hong, Jinseok; Grunwald, Sabine; Vasques, Gustavo M

    2015-05-01

    Phosphorus (P) enrichment in soils has been documented in the Santa Fe River watershed (SFRW, 3585 km) in north-central Florida. Yet the environmental factors that control P distribution in soils across the landscape, with potential contribution to water quality impairment, are not well understood. The main goal of this study was to develop soil-landscape P models to support a "precision soil conservation" approach combining fine-scale (i.e., site-specific) and coarse-scale (i.e., watershed-extent) assessment of soil P. The specific objectives were to: (i) identify those environmental properties that impart the most control on the spatial distribution of soil Mehlich-1 extracted P (MP) in the SFRW; (ii) model the spatial patterns of soil MP using geostatistical methods; and (iii) assess model quality using independent validation samples. Soil MP data at 137 sites were fused with spatially explicit environmental covariates to develop soil MP prediction models using univariate (lognormal kriging, LNK) and multivariate methods (regression kriging, RK, and cokriging, CK). Incorporation of exhaustive environmental data into multivariate models (RK and CK) improved the prediction of soil MP in the SFRW compared with the univariate model (LNK), which relies solely on soil measurements. Among all tested environmental covariates, land use and vegetation related properties (topsoil) and geologic data (subsoil) showed the largest predictive power to build inferential models for soil MP. Findings from this study contribute to a better understanding of spatially explicit interactions between soil P and other environmental variables, facilitating improved land resource management while minimizing adverse risks to the environment. PMID:26024255

  19. Soil physical properties on Venezuelan steeplands: Applications to soil conservation planning

    International Nuclear Information System (INIS)

    This paper presents a framework to support decision making for soil conservation on Venezuelan steeplands. The general approach is based on the evaluation of two important land qualities: soil productivity and soil erosion risk, both closely related to soil physical properties. Soil productivity can be estimated from soil characteristics such as soil air-water relationships, soil impedances and soil fertility. On the other hand, soil erosion risk depends basically on soil hydrologic properties, rainfall aggressiveness and terrain slope. Two indexes are obtained from soil and land characteristics: soil productivity index (PI) and erosion risk index (ERI), each one evaluates the respective land quality. Subsequently, a matrix with these two qualities shows different land classes as well as soil conservation priorities, conservation requirements and proposed land uses. The paper shows also some applications of the soil productivity index as an approach to evaluate soil loss tolerance for soil conservation programs on tropical steeplands. (author)

  20. Soil quality assessment under emerging regulatory requirements.

    OpenAIRE

    Bone, James; Head, Martin; Barraclough, Declan; Archer, Michael; Scheib, Catherine; Flight, Dee; Voulvoulis, Nikolaos

    2010-01-01

    New and emerging policies that aim to set standards for protection and sustainable use of soil are likely to require identification of geographical risk/priority areas. Soil degradation can be seen as the change or disturbance in soil quality and it is therefore crucial that soil and soil quality are well understood to protect soils and to meet legislative requirements. To increase this understanding a review of the soil quality definition evaluated its development, with a formal scientific a...

  1. Radiocaesium in Estonian soils

    International Nuclear Information System (INIS)

    By means of low - background ? - spectroscopy analysis of over 120 soil profiles collected throughout Estonia the depth and areal distributions of radiocaesium were studied. The average mass relaxation lengths for 134Cs and 137Cs as well as the correlations between the depth distribution parameters and some properties of soil (water content, density) were determined. The areal distribution of the Chernobyl radiocaesium deposition is extremely uneven - in NE Estonia the highest deposition of 137Cs reached 40 kBq/m2 (in 1986), while the country - wide mean deposition was found to be 2.0 kBq/m2. Thus, the Chernobyl fallout approximately doubles the 137Cs mean deposition from the nuclear weapons tests (2.2 kBq/m2 in 1986) in Estonia. (authors)

  2. Bioventing petroleum contaminated soils

    International Nuclear Information System (INIS)

    Soil vapor extraction (SVE) is a cost effective method for removing volatile hydrocarbons from unsaturated soils. This process also provides oxygen to the subsurface which enhances the biodegradation of the volatile and non-volatile hydrocarbon contaminants. Bioventing technology combines the oxygen delivery capabilities of SVE with nutrient and moisture management to maximize the amount of hydrocarbon removal by biodegradation and minimize the amount of removal attributed to volatilization. There is a growing list of bioventing field demonstrations designed to remove a wide range of petroleum hydrocarbons from the vadose zone. In this paper bioventing field data will be presented from a pilot-scale study at Tyndal AFB FL, a full-scale cleanup effort at Hill AFB UT, and a feasibility study in cold weather environment

  3. Characterization of soil polysaccharides

    OpenAIRE

    Go?mez Alarco?n, Gonzalo; Sa?iz-jime?nez, Cesa?reo

    1987-01-01

    Fractionation of fulvic extracts from four Spanish soils using adsorption on insoluble polyvinyl pyrrolidone (polyclar AT) permitted the separation of polysaccharide fractions. No siqnificant differences between fractions were found with respect to elemental analysis, sugar composition, infrared and pyrolysis mass spectra. The most striking feature was the hiqh sulphur content, varying from 3.7 to 9.8%. In addition to monosaccharides (neutral sugars) the isolates consiste...

  4. Food, soil, and agriculture

    International Nuclear Information System (INIS)

    The growing pressures on the world's land resources will result in problems requiring a major research effort.The first group of problems relates to increased soil degradation. The research to alleviate this will have to incorporate not only physical and biological solutions, but also pay much more attention to the socio-economic context in which the conservation programmes need to succeed.The second major area for research on land resource is to make better use of low-capacity or problem soils.This could be by reducing the existing limitations, such as changing physical or chemical characteristics of the soil, or by developing plants and production techniques which reduce the detrimental effects of constraints. Example of these are acidity, salinity, and aluminium toxicity. Finally the broadest and more important area is that of research to enable more intensive use of better-quality land. Research topics here may relate to optimal plant nutrient management, soil moisture management, and developing cultivation techniques with minimum commercial energy requirements. Making plants more productive will involve research aimed at increasing photosynthetic efficiency, nitrogen fixation, disease and pest resistance, improved weed control, and bio-engineering to adjust plant types to maximize production potentials. Improved rotational systems for the achievement of many of the above goals will become increasingly important, as the potential problems or inappropriate cultivattential problems or inappropriate cultivation practices become evident. In conclusion, food supplies of the world could meet the rapidly rising demands that are made on them, if agriculture receives sufficient attention and resources. Even with most modern development, land remains the base for agriculture, and optimal use of the world's land resources is thus crucial for future agricultural production

  5. Intercomparison measurement - Orava soil

    International Nuclear Information System (INIS)

    In 1997 our laboratory organized intercomparison measurement in gamma spectrometry. The soil samples were delivered to 20 laboratories in 4 countries. The main aim was check the laboratory practice of member of the Slovak Radiation Monitoring Network. This summary contains the results of the intercomparison on the determination of radionuclides in soil by gamma spectrometry. The soil was collected in autumn 1996 near Namestovo (Orava region) from layer 0 -5 cm. Although data on 20 radionuclides were received, only data for 134Cs, 137Cs, 226Ra, 226Ra, 232Th and 40K were statistically evaluated. The received activities are (mean activity, [Bq/kg]; standard deviation, [Bq/kg]; range [Bq/kg]): for 134Cs: 1.05, 0.36, .0.31-1.85; for 137Cs: 59.7, 1.6, 57.5-62.7; for 226Ra: 24.0, 1.5, 21.8-26.9; for 232Th: 27.3, 2.8, 22.4-33.1; for 40K: 411, 39, 346-480. The used half-times and yields do not differ significantly. The differences between laboratories in reported results are due to mainly by sample treatment and spectra evaluation (used efficiency)

  6. Soil and terrestial indicators

    International Nuclear Information System (INIS)

    Long-lived radionuclides 90Sr, 137Cs and 239,240Pu in soil are analysed in the vicinity of nuclear power stations every four years. Both vertical disribution and the total amount of radionuclides per unit of area are determined from the samples. The results of surveys carried out at Loviisa in 1983 and at Olkiluoto in 1984 are presented here. The total deposition determined by soil samples had decreased slightly since the previous soil studies and was, on average, 630 Bq m-2 of 90Sr, 1800 Bq m-2137Cs and 30 Bq m-2239,240Pu. To follow up short-lived radionuclides in deposition, an indicator organism, hair moss, is analysed four times a year in the vicinity of nuclear power stations. Hair moss principally reflects the fall-out from nuclear weapon tests. Small amounts of 60Co released from power stations was also detectable. Both an indicator and a step in the food chain leading to man, pasture grass was analysed in the vicinity of nuclear power stations twice during the growing season. The concentrations of 137Cs were very low, and no 131I was detected. The results for hair moss and pasture grass at Loviisa from 1980-1985 and from 1981-1985 at Olkiluoto are given

  7. Soils and organic sediments

    International Nuclear Information System (INIS)

    The organic component of soils is basically made up of substances of an individual nature (fats, waxes, resins, proteins, tannic substances, and many others), and humic substances (Kononova, 1966). These are complex polymers formed from breakdown products of the chemical and biological degradation of plant and animal residues. They are dark coloured, acidic, predominantly aromatic compounds ranging in molecular weight from less than one thousand to tens of thousands (Schnitzer, 1977). They can be partitioned into three main fractions:(i) Humic acid, which is soluble in dilute alkaline solution, but can be precipitated by acidification of the alkaline extract.(ii) Fulvic acid, which is soluble in alkaline solution, but is also soluble on acidification.(iii) Humin that cannot be extracted from the soil or sediment by dilute acid or alkaline solutions. It has mostly been assumed that the humic and fulvic acid components of the soil are part of the mobile, or 'active' component, and the humin component is part of the 'passive' component. Other types of organic sediments are likely to contain chemical breakdown products of plant material, plant fragments and material brought in from outside sources. The outside material can be contemporaneous with sediment deposition, can be older material, or younger material incorporated into the sediment long after deposition. Recognition of 'foreign' material is essential for dating, but is not an easy task. Examples of separation techniques for humic and non humic components are evaluated for their efficiency

  8. Solos urbanos Urban soils

    Directory of Open Access Journals (Sweden)

    Fabrício de Araújo Pedron

    2004-10-01

    Full Text Available A forte pressão provocada pela expansão urbana desordenada sobre os recursos naturais, principalmente os solos, tem provocado danos, muitas vezes de difícil reparo. A grande concentração populacional em centros urbanos cada vez maiores tem dirigido a atenção de diferentes profissionais para o recurso solo, no sentido de entender sua dinâmica para minimizar sua degradação. No entanto, a falta de conhecimento sobre as propriedades, bem como sobre a aptidão dos solos sob uso urbano tem provocado o seu mau uso, resultando em processos como compactação, erosão, deslizamentos e inundações, assim como poluição com substâncias orgânicas, inorgânicas e patógenos, aumentando os custos do desenvolvimento afetando toda a sociedade. Neste sentido, este texto discute como o conhecimento pedológico pode diminuir os efeitos negativos provocados pelo processo de urbanização.The strong pressure caused by the disordered urban expansion over the natural resources, mainly the soils, has caused damages, many times difficult to repair. The great population concentration in urban centers getting larger and larger has been driving the attention of different professionals to soil resource, in the sense of understanding its dynamics to minimize its degradation. The lack of knowledge related to the soils properties and capability promote their inappropriate use, resultig in degrading processes as compaction, erosion, sliding, floods, and organic, inorganic and patogenic pollution, increasing the cost of development and affecting the whole society. This text discusses how pedologic knowledge can reduce the negative effects caused by the urbanization process.

  9. The Mystery Soil

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Click for larger view This high-resolution image from the panoramic camera on the Mars Exploration Rover Spirit shows the region containing the patch of soil scientists examined at Gusev Crater just after Spirit rolled off the Columbia Memorial Station. Scientists examined this patch on the 13th and 15th martian days, or sols, of Spirit's journey. Using nearly all the science instruments located on the rover's instrument deployment device or 'arm,' scientists yielded some puzzling results including the detection of a mineral called olivine and the appearance that the soil is stronger and more cohesive than they expected. Like detectives searching for clues, the science team will continue to peruse the landscape for explanations of their findings.Data taken from the camera's red, green and blue filters were combined to create this approximate true color picture, acquired on the 12th martian day, or sol, of Spirit's journey.The yellow box (see inset above) in this high-resolution image from the panoramic camera on the Mars Exploration Rover Spirit outlines the patch of soil scientists examined at Gusev Crater just after Spirit rolled off the Columbia Memorial Station.

  10. Soil mechanics characteristics and nuclide exchange properties of marshy soils

    International Nuclear Information System (INIS)

    The values of exchange cations and the cation exchange capacity (KAK or T-value according to Mehlich) were checked for marshy soils. The determination of the samples with and without lime was done by standard soil mechanics methods. The characteristics of the Cs and Sr exchange properties were carried out by quantity intensity relationships (Q/I curves) using the example of sea, brackish and river marsh soils. (DG)

  11. Copper activity in soil solutions of calcareous soils

    International Nuclear Information System (INIS)

    Copper partitioning was studied in seven calcareous soils at moisture content corresponding to 1.2 times the field moisture content (soil water potential 7.84 J kg-1). Copper retention was accompanied by the release in soil solution of Ca2+, Mg2+, Na+, and H+, and the total amount of these cations released was 0.8 to 1.09 times the amount of Cu sorbed (molc:molc). The relationships between Cu activity and pH, and the balance of cations in soils correspond with the surface precipitation of CuCO3 as the main mechanism of Cu retention. The values of ion activity product of surface precipitate were close for all studied soils with the average log(IAPCuCO3) = -15.51. The relationship between copper activity in soil solutions and soil properties is well fit by a regression relating pCu (-log copper ion activity) with soil ph, total Cu, and carbonate content. - Copper activity in contaminated calcareous soils is controlled by surface precipitated CuCO3 with log ion activity product of -15.51

  12. Soil Properties Database of Spanish Soils. Volume XV.- Aragon

    International Nuclear Information System (INIS)

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-137 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma of Aragon. (Author) 47 refs

  13. Soil Properties Database of Spanish Soils Volume III.- Extremadura

    International Nuclear Information System (INIS)

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-13 7 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalized and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma de Extremadura. (Author) 50 refs

  14. Soil Properties Database of Spanish Soils. Volume XIV.- Cataluna

    International Nuclear Information System (INIS)

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-137 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma of Cataluna. (Author) 57 refs

  15. ?HEMICAL EQUILIBRIUM OF SOIL SOLUTION IN STEPPE ZONE SOIL

    OpenAIRE

    Batukaev, A. A.; Endovitsky, A. P.; Minkina, T. M.; Kalinichenko, V. P.; Dikaev, Z. S.; Sushkova, S. N.

    2014-01-01

    Dynamics of material composition, migration and accumulation of salts is determined by chemical equilibrium in soil solution. Soil solution contains associated electrically neutral ion pairs ????30; CaSO40, MgCO30, MgSO40, charged ion pairs CaHCO3+, MgHCO3+, NaCO3-, NaSO4-, CaOH+, MgOH+. Calculation method is proposed for quantitative assessment of real ion forms in the soil solution of chestnut solonetz soil complex. Were proposed equations to calculate free and associated forms of ions. To ...

  16. Soil Properties Database of Spanish Soils. Volume V.- Madrid

    International Nuclear Information System (INIS)

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-137 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma de Madrid. (Author) 39 refs

  17. Soil Properties Database of Spanish Soils Volume I.-Galicia

    International Nuclear Information System (INIS)

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-13 7 and Sr-90. The Department de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim. a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary)' source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma de Galicia

  18. Investigation of Wetland Soil Properties affecting Optimum Soil Cultivation

    Directory of Open Access Journals (Sweden)

    O.O. Babatunde

    2010-01-01

    Full Text Available An investigation was carried out on wetland (fadama soil properties affecting optimum soil cultivation. A cone penetrometerand a shear vane apparatus (19 mm were used to determine the cone index and the torque that cause the soil to shearat different moisture contents. The study shows that the cone index and shear vane of fadama soils increased with depth anddecreased with increase in moisture content. High moisture content reduced the soil cohesion. The internal frictional angleof the soil was 37.90. The following values were obtained for soil cohesion 112 kN/m2, 62 kN/m2, 38 kN/m2, 30 kN/m2, and12 kN/m2 at moisture contents of 0%, 5%, 10%, 15% and 20% respectively. Moisture content between 10% -15% (dry basisappeared ideal for cultivation of the soil. For this soil the critical moisture content was found to be 23.72%. Moisture contentbeyond the critical level needs to be drained before cultivation is carried out.

  19. Soil vapor extraction of JP-4 jet fuel contaminated soils

    International Nuclear Information System (INIS)

    This paper presents findings and lessons learned from the investigation, pilot, design, and remedial action phases of a soil vapor extraction (SVE) project. Soil vapor extraction was performed on JP-4 jet fuel contaminated soils at two fire training pits at Luke AFB, Arizona. The site was used for fire training exercises on a quarterly basis from 1973 to as late as 1990. Petroleum wastes were originally used for fire training exercised but this practice was discontinued during 1973. Five soil borings were drilled and sampled in each of the two fire training pits during the investigations

  20. Elementary GLOBE: Getting to Know Soil

    Science.gov (United States)

    2008-12-01

    A learning activity for the Scoop on Soils book in the Elementary GLOBE Series. Each student will make predictions about the properties of various soil samples. Then they will examine several types of soils and record their observations. Next, they will learn about soil profiles and horizons by both examining a soil sample in a jar and by creating a soil profile flip chart. The purpose of the activity is to provide the opportunity for students to ask questions and make observations about soil and introduce students to the properties of soil and to the concept of soil profiles and horizons. After completing this activity, students will know about soil's different properties and about soil profiles. Students will know that soils have different properties including texture, color, and size. They will know that soil forms layers based on these properties.

  1. Part II. Radioactivity in soils

    International Nuclear Information System (INIS)

    The 90Sr and 137Cs levels in different places in Slovakia were studied with regard to the effect of the type of soils on radionuclide bonds, to the presence of some non-radioactive elements, penetration to deep soil layers, fertilization and ion exchange capacity of the soils. 90Sr was determined via exchangeability with calcium measured in soil extract. 137Cs was determined by its exchangeability with potassium. Also determined were concentrations of Ca, K, P, SiO2, 90Sr, and 137Cs in 0 to 5 cm and 5 to 15 cm layers of cultivated soil. For the period of 1962 to 1975, the cumulative content was determined for 90Sr in range of 94 to 332 pCi/kg and for 137Cs in a range of 122 to 415 pCi/kg. The highest levels of both radionuclides were found in forest soils. (J.P.)

  2. Stochastic Modeling of Soil Salinity

    CERN Document Server

    Suweis, S; Van der Zee, S E A T M; Daly, E; Maritan, A; Porporato, A; 10.1029/2010GL042495

    2012-01-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The long term probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equation to a single stochastic differential equation driven by multiplicative Poisson noise. The novel analytical solutions provide insight on the interplay of the main soil, plant and climate parameters responsible for long-term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in long-term soil salinization trend...

  3. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian

    2012-01-01

    Soil organic carbon (SOC) concentration is an essential factor in biomass production and soil functioning. SOC concentration values are often obtained by prediction but the prediction accuracy depends much on the method used. Currently, there is a lack of evidence in the soil science literature as to the advantages and shortcomings of the different commonly used prediction methods. Therefore, we compared and evaluated the merits of the median approach, analysis of covariance, mixed models and random forests in the context of prediction of SOC concentrations of mineral soils under arable management in the A-horizon. Three soil properties were used in all of the developed models: soil type, physical clay content (particle size <0.01 mm) and A-horizon thickness. We found that the mixed model predicted SOC concentrations with the smallest mean squared error (0.05%2), suggesting that a mixed-model approach is appropriate if the study design has a hierarchical structure as in our scenario. We used the Estonian National Soil Monitoring data on arable lands to predict SOC concentrations of mineral soils. Subsequently, the model with the best prediction accuracy was applied to the Estonian digital soil map for the case study area of Tartu County where the SOC predictions ranged from 0.6 to 4.8%. Our study indicates that predictions using legacy soil maps can be used in national inventories and for up-scaling estimates of carbon concentrations from county to country scales.

  4. Soil-solution speciation of Cd as affected by soil characteristics in unpolluted and polluted soils.

    Science.gov (United States)

    Meers, Erik; Unamuno, Virginia; Vandegehuchte, Michiel; Vanbroekhoven, Karolien; Geebelen, Wouter; Samson, Roeland; Vangronsveld, Jaco; Diels, Ludo; Ruttens, Ann; Du Laing, Gijs; Tack, Filip

    2005-03-01

    Total metal content by itself is insufficient as a measure to indicate actual environmental risk. Understanding the mobility of heavy metals in the soil and their speciation in the soil solution is of great importance for accurately assessing environmental risks posed by these metals. In a first explorative study, the effects of general soil characteristics on Cd mobility were evaluated and expressed in the form of empirical formulations. The most important factors influencing mobility of Cd proved to be pH and total soil content. This may indicate that current legislation expressing the requirement for soil sanitation in Flanders (Belgium) as a function of total soil content, organic matter, and clay does not successfully reflect actual risks. Current legal frameworks focusing on total content, therefore, should be amended with criteria that are indicative of metal mobility and availability and are based on physicochemical soil properties. In addition, soil-solution speciation was performed using two independent software packages (Visual Minteq 2.23 and Windermere Humic Aqueous model VI [WHAM VI]). Both programs largely were in agreement in concern to Cd speciation in all 29 soils under study. Depending on soil type, free ion and the organically complexed forms were the most abundant species. Additional inorganic soluble species were sulfates and chlorides. Minor species in solution were in the form of nitrates, hydroxides, and carbonates, the relative importance of which was deemed insignificant in comparison to the four major species. PMID:15779747

  5. SITE TECHNOLOGY CAPSULE: BIOGENESIS SOIL WASHING TECHNOLOGY

    Science.gov (United States)

    Soil washing technologies are designed to transfer contaminants from soil to a liquid phase. The BloGenesis? soil washing technology uses a proprietary surfactant solution to transfer organic contaminants from soil to wastewater. The surfactant used in the soil washing process wa...

  6. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Science.gov (United States)

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, J.; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (?? SD) soil respiration rate in the DNR forests was (9.0 ?? 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ?? 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ?? 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities. ?? 2006 Institute of Botany, Chinese Academy of Sciences.

  7. Análise espacial dos fatores da equação universal de perda de solo em área de nascentes / Spatial analysis of universal soil loss equation factors of a watershed area relief

    Scientific Electronic Library Online (English)

    Daniela Popim, Miqueloni; Célia Regina Paes, Bueno; Antonio Sergio, Ferraudo.

    1358-13-01

    Full Text Available O objetivo deste trabalho foi avaliar a perda de solo de área de nascentes da Microbacia do Córrego do Tijuco, SP. Foi utilizada a análise espacial dos fatores da equação universal da perda de solo (EUPS), em integração com análise de componentes principais e geoestatística. A perda de solo média, e [...] stimada para a área, foi de 118,5 Mg ha?1 por ano, considerada alta. Próximo à zona urbana, houve alta interação dos fatores erosividade da chuva e práticas conservacionistas, o que evidencia grande perda de solo, em razão da concentração da água proveniente da camada impermeabilizada urbana, com alta velocidade de escoamento. Nos divisores de águas, a atuação da erodibilidade foi proeminente, em contraste com o fator topográfico. Foram observadas áreas com atuação conjunta destes fatores, inclusive em locais de inclinação suave, porém com alto potencial natural de erosão. A interação das análises multivariadas e geoestatística permite a estratificação da área, identifica locais com propriedades específicas quanto à perda de solo, e espacializa os fatores do processo erosivo e suas interações ao longo do relevo. Abstract in english The objective of this work was to evaluate the soil loss of an area of springs in the Microbacia do Córrego do Tijuco, SP, Brazil. Spatial analysis of the universal soil loss equation (USLE) factors, in integrated with principal component analysis and geostatistics, was used. The average soil loss e [...] stimated for the area was 118.5 Mg ha?1 per year, which is considered high. Near the urban zone, there was a high interaction of rainfall erosivity and conservation practices, which shows a high?soil loss, due to the concentration of water from impervious urban layer with a high?flow velocity. In the water partings, the performance of erodibility was prominent, in contrast to the topographic factor. Areas were observed with joint action of these factors, including sites with gentle slope, but with a high, natural potential of erosion. The interaction of multivariate and geostatistic analyses allows the area stratification, identifies locations with specific properties as to soil loss, and spatialises the erosion factors and their interactions along the landscape.

  8. Soil Science and Global Issues

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Sustainable management of soil is integral to any rational approach to addressing global issues of the 21st century. A high quality soil is essential to: i) advancing food and nutritional security, ii) mitigating and adapting to climate change, iii) improving quality and renewability of water, iv) enriching biodiversity, v) producing biofuel feedstocks for reducing dependence on fossil fuel, and vi) providing cultural, aesthetical and recreational opportunities. Being the essence of all terrestrial life, soil functions and ecosystem services are essential to wellbeing of all species of plants and animals. Yet, soil resources are finite, unequally distributed geographically, and vulnerable to degradation by natural and anthropogenic perturbations. Nonetheless, soil has inherent resilience, and its ecosystem functions and services can be restored over time. However, soil resilience depends on several key soil properties including soil organic carbon (SOC) concentration and pool, plant-available water capacity (PWAC), nutrient reserves, effective rooting depth, texture and clay mineralogy, pH, cation exchange capacity (CEC) etc. There is a close inter-dependence among these properties. For example, SOC concentration strongly affects, PWAC, nutrient reserve, activity and species diversity of soil flora and fauna, CEC etc. Thus, judicious management of SOC concentration to maintain it above the threshold level (~1.5-2%) in the root zone is critical to sustaining essential functions and ecosystem services. Yet, soils of some agroecosystems (e.g., those managed by resources-poor farmers and small landholders in the tropics and sub-tropics) are severely depleted of their SOC reserves. Consequently. Agronomic productivity and wellbeing of people dependent on degraded soils is jeopardized. The ecosystem C pool of the terrestrial biosphere has been mined by extractive practices, the nature demands recarbonization of its biosphere for maintenance of its functions and resilience. Commemorating 2015 IYS is timely to create awareness among policy makers and general public that soil should never be taken for granted.

  9. Heavy metals in Estonian soils

    International Nuclear Information System (INIS)

    The article discusses the concentrations of Pb, U, Th and other elements in the humus horizon of Estonian soils. These concentrations are rather variable, first and foremost reflecting the concentrations of elements in the parent rock of the soils and are pretty near to the calculated average of the Earth's soils. The origin of the positive anomalies of these elements is mostly natural, although partly it is also technogenic. (author). 3 figs

  10. Soil classes and acceleration response

    International Nuclear Information System (INIS)

    It could not enough for determination of only geotechnical properties (soil classification, soil type, bearing capacity etc.) in order to define assessment of areas being settle in terms of suitability of settlement or how settled area is affected from natural disaster and to get necessary precautions. Damages on the engineering structure in the region posses an earthquake hazard are affected one or more site condition from source point to soil of engineering structure

  11. HUMUS SUBSTANCES AND SOIL FERTILITY

    OpenAIRE

    Neagu, Cecilia Violeta; Oprea, Georgeta

    2012-01-01

    The humus substances play an important role in obtaining high yields and stable over time. He is permanently double process: the humus improvement of organic material reaching the soil and the mineralization of components at different stages of humus improving, The results of this process is influenced by soil type, climate, irrigation, fertilization. The beneficial effect of humus substances on plant growth may be related to indirect effects (fertilization efficiency or reduce soil compacti...

  12. Indicators for Monitoring Soil Biodiversity

    DEFF Research Database (Denmark)

    Bispo, A.; Cluzeau, D.

    2009-01-01

    The European Union (EU) soil policy is described in general terms in the EU Soil Strategy (EC 2006a) and the legally binding elements of the policy are proposed in the draft Soil Framework Directive (SFD; EC 2006b). In these documents, eight main threats to soil were identified by the EU Commission. The EU FP6 project ENVASSO (Environmental Assessment of Soil for Monitoring) had the aim to design a single, integrated and operational set of EU-wide criteria and indicators to provide the basis for a harmonised comprehensive soil and land information system for monitoring in Europe. Here, a proposal is made for a set of suitable indicators for monitoring the decline in soil biodiversity (Bispo et al. 2007). These indicators were selected both from a literature review and an inventory of national monitoring programmes. Decline in soil biodiversity was defined as the reduction of forms of life living in soils (both in terms of quantity and variety) and of related functions, causing a deterioration of one or more soil functions or ecosystem services. Whereas literature review allows the identification of about 100 possible indicators, the inventory of existing monitoring networks shows that few indicators are actually measured.   For monitoring application it was considered in ENVASSO that only three key indicators per soil stress were practical. For indicating biodiversity decline it was difficult to arrive at a small set of indicators due to the complexity of soil biota and functions. Therefore, three stringent criteria were applied: an indicator should 1) have a standardized sampling and/or measuring methodology; 2) be complementary to other indicators; and 3) be easy to interpret at both scientific and policy levels.

  13. Soil Moisture Monitoring for Agriculture

    International Science & Technology Center (ISTC)

    Elaboration of a Modern Technology for Operational Agrometeorological Soil Moisture Monitoring Spring Wheat, Yield and Disease Damage Forecasting and Recommendations for Plant Protection on the Kazakhstan Territory

  14. Soil-gas surveying techniques

    Energy Technology Data Exchange (ETDEWEB)

    Marrin, D.L.; Kerfoot, H.B.

    1988-07-01

    Delineation and remediation of subsurface contamination have become a major focus of environmental science during the past five years. Conventional technologies available for subsurface investigations always will be required to confirm and monitor subsurface contamination; however, quicker and less expensive techniques are useful for preliminary site evaluations. Soil-gas surveying is a technique that is applicable to a wide range of volatile organic compounds (VOCs) under a variety of geologic and hydrologic settings. The most common uses of soil-gas data include planning monitoring well networks and defining plume boundaries for remedial action. Preliminary screening techniques are effective in selecting locations for detailed sampling and analysis. Site investigators can use results from a preliminary soil-gas survey to drill monitoring wells at locations within the boundaries of a VOC volume. Soil-gas investigations also can be used to identify sources of VOCs and to distinguish between soil and groundwater contamination. Chemical analysis of soil gases has recently been used to monitor solvent and fuel leaks from underground storage tanks. In order to effectively design soil-gas surveys and interpret their results, the subsurface transport and fate of VOCs must be understood. These phenomena can have a profound impact on the presence and concentrations of VOCs in the soil atmosphere. Physical, chemical, and microbiological processes can be important in determining VOC concentrations in soil gas.

  15. Soil maps of The Netherlands

    OpenAIRE

    Hartemink, A. E.; Sonneveld, M. P. W.

    2013-01-01

    The Netherlands has a long history of soil research. Over the past 150 years, seven national soil maps have been produced at scales ranging from 1:50,000 to 1:1,000,000. The maps were based on different conceptual models which reflected advances in soil science as well as societal demands. There are four phases in the development of soil mapping in The Netherlands. The first three are: (i) the geological phase (1837–1937), (ii) the physiographic phase (1937–1962) and (iii) the morphometri...

  16. Soil and terrestrial biology studies

    International Nuclear Information System (INIS)

    Soil and terrestrial biology studies focused on developing an understanding of the uptake of gaseous substances from the atmosphere by plants, biodegradation of oil, and the movement of Pu in the terrestrial ecosystems of the southeastern United States. Mathematical models were developed for SO2 and tritium uptake from the atmosphere by plants; the uptake of tritium by soil microorganisms was measured; and the relationships among the Pu content of soil, plants, and animals of the Savannah River Plant area were studied. Preliminary results are reported for studies on the biodegradation of waste oil on soil surfaces

  17. The Biotoxicity of Mars Soils

    Science.gov (United States)

    Kerney, Krystal

    2010-01-01

    Recent evidence from the Opportunity and Spirit rovers suggests that the soils on Mars might be very high in biotoxic materials induding sulfate salts, chlorides, and acidifying agents. Yet, very little is known about how the chemistries of Mars soils might affect the survival and growth of terrestrial microorganisms. The primary objectives of the proposed research will be to: (1) prepare and characterize Mars analog soils amended with potential biotoxic levels of sulfates, chlorides, and acidifying minerals; (2) use the stimulants to conduct a series of toxicology assays to determine if terrestrial microorganisms from spacecraft or extreme environments can survive direct exposure to the biotoxic soils, and (3) mix soils from extreme environments on Earth into Mars analog soils to determine if terrestrial microorganisms can grow and replicate under Martian conditions. The Mars analog soils will be thoroughly characterized by a wide diversity of soil chemistry assays to determine the exact nature of the soluble biotoxic components following hydration. The microbial experiments will be designed to test the effects of Mars stimulants on microbial survival, growth and replication during direct challenge experiments. Toxicology experiments will be designed to mimic terrestrial microbes coming into contact with biotoxic soils with and without liquid water. Results are expected to help" ... characterize the limits of life in ... planetary environments ... " and may help constrain the search for life on Mars.

  18. The importance of crop residue on soil aggregation and soil organic matter components

    Science.gov (United States)

    Above- and below-ground plant residues are the soil’s main sources of organic materials that bind soil particles together into aggregates and increase soil carbon storage. Serving to stabilize soil particles, soil organic matter assists in supplying plant available nutrients, increases water holding...

  19. Environmental Controls of Soil Organic Carbon in Soils Across Amazonia

    Science.gov (United States)

    Quesada, Carlos Alberto; Paz, Claudia; Phillips, Oliver; Nonato Araujo Filho, Raimundo; Lloyd, Jon

    2015-04-01

    Amazonian forests store and cycle a significant amount of carbon on its soils and vegetation. Yet, Amazonian forests are now subject to strong environmental pressure from both land use and climate change. Some of the more dramatic model projections for the future of the Amazon predict a major change in precipitation followed by savanization of most currently forested areas, resulting in major carbon losses to the atmosphere. However, how soil carbon stocks will respond to climatic and land use changes depend largely on how soil carbon is stabilized. Amazonian soils are highly diverse, being very variable in their weathering levels and chemical and physical properties, and thus it is important to consider how the different soils of the Basin stabilize and store soil organic carbon (SOC). The wide variation in soil weathering levels present in Amazonia, suggests that soil groups with contrasting pedogenetic development should differ in their predominant mechanism of SOC stabilization. In this study we investigated the edaphic, mineralogical and climatic controls of SOC concentration in 147 pristine forest soils across nine different countries in Amazonia, encompassing 14 different WRB soil groups. Soil samples were collected in 1 ha permanent plots used for forest dynamics studies as part of the RAINFOR project. Only 0-30 cm deep averages are reported here. Soil samples were analyzed for carbon and nitrogen and for their chemical (exchangeable bases, phosphorus, pH) and physical properties, (particle size, bulk density) and mineralogy through standard selective dissolution techniques (Fe and Al oxides) and by semi-quantitative X-Ray diffraction. In Addition, selected soils from each soil group had SOC fractionated by physical and chemical techniques. Our results indicate that different stabilization mechanisms are responsible for SOC stabilization in Amazonian soils with contrasting pedogenetic level. Ferralsols and Acrisols were found to have uniform mineralogy (kaolinitic) and thus the clay plus silt fraction was the best correlate for SOC but with crystalline iron oxides (dithionite-citrate minus ammonium oxalate - oxalic acid extractable iron) being also correlated to SOC in these soils (R2 = 0.74). Most of SOC in these soils was found on the clay+silt fraction and in stable, clay rich aggregates. However, SOC of high activity clays and other less weathered soils such as Alisols, Cambisols and Plinthosols showed no correlation with particle size or iron oxides, being mostly stabilized by aluminium complexes. We found SOC of these soils to be better explained by a three way interaction among soil pH, carbon quality and dithionite-citrate extractable Al (R2 = 0.85). Consistent with this observation, SOC in the less weathered soils was mostly found in the colloidal fraction (75%). SOC of Podzols and Arenosols on the other hand had only a small but significant influence from their clay plus silt fraction (R2 = 0.31), with particulate organic matter accounting for most of its SOC.

  20. Sensitivity analysis and calibration of a soil carbon model (SoilGen2) in two contrasting loess forest soils

    OpenAIRE

    Y. Y. Yu; P. A. Finke; Wu, H. B.; Guo, Z. T.

    2012-01-01

    To accurately estimate past terrestrial carbon pools is the key to understand the global carbon cycle and its relationship with the climate system. SoilGen2 is a useful tool to obtain aspects of soil properties (including carbon content) by simulating soil formation processes; thus it offers an opportunity for past soil carbon pool reconstruction. In order to apply it to various environmental conditions, parameters related to carbon cycle process in SoilGen2 are calibrated based on 6 soil ...

  1. From Soil Survey to Land Use Planning and National Soils Policies New Developments in Soil Science

    OpenAIRE

    Verheye, WH.

    1997-01-01

    The emphasis of soil studies has shifted over the past decades from descriptive inventories towards a more specifie, pragmatic and problem solving approach related to land use and soil conservation. Under conditions of growing population density, land may become a source of conflict between various users : settled farmers, miners, stock breeders, foresters, urban planners, ecologists, ... In such cases, a national soils policy becomes imperative, as it provides a useful planning framework for...

  2. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    BØrgesen, Christen Duus; Iversen, Bo VangsØ

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic conductivity parameters. A larger data set (1618 horizons) with a broader textural range was used in the development of PTFs to predict the van Genuchten parameters. The PTFs using either three or seven textural classes combined with soil organic mater and bulk density gave the most reliable predictions of the hydraulic properties of the studied soils. We found that introducing measured water content as a predictor generally gave lower errors for water retention predictions and higher errors for conductivity predictions. The best of the developed PTFs for predicting hydraulic conductivity was tested against PTFs from the literature using a subdata set of the data used in the calibration. The test showed that the developed PTFs gave better predictions (lower errors) than the PTFs from the literature. This is not surprising since the developed PTFs are based mainly on hydraulic conductivity data near saturation and sandier soils than the PTFs from the literature.

  3. New perspectives on the soil erosion-soil quality relationship

    International Nuclear Information System (INIS)

    The redistribution of soil has a profound impact on its quality (defined as its ability to function within its ecosystem and within adjacent ecosystems) and ultimately on its productivity for crop growth. The application of 137Cs-redistribution techniques to the study of erosion has yielded major new insights into the soil erosion-soil quality relationship. In highly mechanized agricultural systems, tillage erosion can be the dominant cause of soil redistribution; in other agroecosystems, wind and water erosion dominate. Each causal factor results in characteristic landscape-scale patterns of redistribution. In landscapes dominated by tillage redistribution, highest losses occur in shoulder positions (those with convex downslope curvatures); in water-erosion-dominated landscapes, highest losses occur where slope gradient and length are at a maximum. Major impacts occur through the loss of organically-enriched surface material and through the incorporation of possibly yield-limiting subsoils into the rooting zone of the soil column. The potential impact of surface soil losses and concomitant subsoil incorporation on productivity may be assessed by examining the pedological nature of the affected soils and their position in the landscape. The development of sound conservation policies requires that the soil erosion-quality relationship be rigorously examined in the full range of pedogenic environments, and future applications of the 137Cs technique hold considerable promise for providing this comprehensive global database. (author)

  4. Universal soil loss equation and revised universal soil loss equation

    Science.gov (United States)

    Soil erosion has long been recognized as a serious problem. Considerable efforts have been expended to address this problem. Thousands of plot years of data were summarized by ARS researchers in producing the Universal Soil Loss Equation (USLE). This technology has been used for conservation planni...

  5. ECOLOGICAL SOIL SCREENING LEVELS FOR SOIL INVERTEBRATES AND PLANTS

    Science.gov (United States)

    Ecological Soil Screening Levels (Eco-SSLs) are being developed for 24 inorganic and inorganic chemicals for soil invertebrates and plants using procedures developed by a Task Group of the USEPA Eco-SSL Work Group. The Eco-SSL Work Group is a collaboration among USEPA, DoD, DOE, ...

  6. Online Soil Science Lesson 3: Soil Forming Factors

    Science.gov (United States)

    This lesson explores the five major factors of soil formation, namely: 1) climate; 2) organisms; 3) time; 4) topography; and 5) parent material and their influence in forming soil. The distinction between active and passive factors, moisture and temperature regimes, organism and topographic influen...

  7. Desert soil collection at the JPL soil science laboratory

    Science.gov (United States)

    Blank, G. B.; Cameron, R. E.

    1969-01-01

    Collection contains desert soils and other geologic materials collected from sites in the United States and foreign countries. Soils are useful for test purposes in research related to extraterrestrial life detection, sampling, harsh environmental studies, and determining suitable areas for training astronauts for lunar exploration.

  8. PESTICIDES IN SOIL: BENEFITS AND LIMITATIONS TO SOIL HEALTH

    Science.gov (United States)

    Pesticides are important components of many agricultural management systems and their effects on soil and its ability to process them should be included when evaluating soil quality. Pesticides help maintain agricultural productivity by controlling pests, however, management thresholds must be esta...

  9. Soil carbon sequestration estimated with the soil conditioning index

    Science.gov (United States)

    Rapid and reliable assessments of the potential of different agricultural management systems to sequester soil organic carbon are needed to promote conservation and help mitigate greenhouse gas emissions. The soil conditioning index (SCI) is a relatively simple model to parameterize and is currentl...

  10. Rickets and soil strontium.

    OpenAIRE

    Ozgu?r, S.; Su?mer, H.; Koc?og?lu, G.

    1996-01-01

    The subjects of this study were children aged 6-60 months living in villages in the Ulas Health Region, Sivas. The villages were divided into two groups according to the amount of strontium in the soil: region 1, > 350 ppm, 650 children; region 2, < 350 ppm, 1596 children. Overall, the prevalence of one or more clinical signs of rickets was 22.9%. The prevalence in region 1 was 31.5% and that in region 2, 19.5%. These values were significantly different (p < 0.001). When other variables which...

  11. Soil organic matter studies

    International Nuclear Information System (INIS)

    A total of 77 papers were presented and discussed during this symposium, 40 are included in Volume I. A number of papers deal with the behaviour and functions of organic matter and make a contribution to increasing agricultural production by proposing improved management practices. Other papers discuss turnover of plant residues, release of plant nutrients through biodegradation of organic compounds, and nitrogen economy and the dynamics of transformation of organic forms of nitrogen. Separate entries have been prepared for those 8 papers which discuss the use of tracer techniques in soil studies

  12. SOIL QUALITY IN ORGANIC AGRICULTURAL SYSTEMS

    Science.gov (United States)

    Building and maintaining soil quality is the basis for successful organic farming. However, before developing a soil management plan focused on soil quality in organic systems, farmers should become knowledgeable regarding the overall philosophies, legalities, and marketing opportunities in organic ...

  13. SOILS - NRCS General Map.lyr

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of general soil association units. It wasdevelped by the National Cooperative Soil Survey and supersedesthe State Soil Geographic (STATSGO)...

  14. Soil management practices for sustainable crop production

    International Nuclear Information System (INIS)

    In a sustainable system, the soil is viewed as a fragile and living medium that must be protected and nurtured to ensure its long-term productivity and stability. However, due to high demand for food brought about by high population as well as the decline in agricultural lands, the soil is being exploited beyond its limit thus, leading to poor or sick soils. Sound soil management practices in the Philippines is being reviewed. The technologies, including the advantages and disadvantages are hereby presented. This includes proper cropping systems, fertilizer program, soil erosion control and correcting soil acidity. Sound soil management practices which conserve organic matter for long-term sustainability includes addition of compost, maintaining soil cover, increasing aggregates stability, soil tilt and diversity of soil microbial life. A healthy soil is a key component to sustainability as a health soil produce healthy crop plants and have optimum vigor or less susceptible to pests. (author)

  15. KBRA OPWP Soil Depth to Water

    U.S. Geological Survey, Department of the Interior — This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  16. Carbon Sequestration in Forest Soils

    Science.gov (United States)

    Lal, R.

    2006-05-01

    Carbon (C) sequestration in soils and forests is an important strategy of reducing the net increase in atmospheric CO2 concentration by fossil fuel combustion, deforestation, biomass burning, soil cultivation and accelerated erosion. Further, the so-called "missing or fugitive CO2" is also probably being absorbed in a terrestrial sink. Three of the 15 strategies proposed to stabilize atmospheric CO2 concentrations by 2054, with each one to sequester 1 Pg Cyr-1, include: (i) biofuel plantations for bioethanol production, (ii) reforestation, afforestation and establishment of new plantations, and (iii) conversion of plow tillage to no-till farming. Enhancing soil organic carbon (SOC) pool is an important component in each of these three options, but especially so in conversion of degraded/marginal agricultural soils to short rotation woody perennials, and establishment of plantations for biofuel, fiber and timber production. Depending upon the prior SOC loss because of the historic land used and management-induced soil degradation, the rate of soil C sequestration in forest soils may be 0 to 3 Mg C ha-1 yr-1. Tropical forest ecosystems cover 1.8 billion hectares and have a SOC sequestration potential of 200 to 500 Tg C yr-1 over 59 years. However, increasing production of forest biomass may not always increase the SOC pool. Factors limiting the rate of SOC sequestration include C: N ratio, soil availability of N and other essential nutrients, concentration of recalcitrant macro-molecules (e.g., lignin, suberin), soil properties (e.g., clay content and mineralogy, aggregation), soil drainage, and climate (mean annual precipitation and temperature). The SOC pool can be enhanced by adopting recommended methods of forest harvesting and site preparation to minimize the "Covington effect," improving soil drainage, alleviating soil compaction, growing species with a high NPP, and improving soil fertility including the availability of micro-nutrients. Soil fertility enhancement and water management in the root zone are critical to exploiting the CO2 fertilization effect on forest growth. Fire is also a useful tool which can be judiciously managed to maximize NPP and the SOC pool, and increase the recalcitrant black C. The importance of SOC sequestration in forest soils can not be over-emphasized.

  17. The interdisciplinary nature of SOIL

    Science.gov (United States)

    Brevik, E. C.; Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J. N.; Six, J.; Van Oost, K.

    2015-01-01

    The holistic study of soils requires an interdisciplinary approach involving biologists, chemists, geologists, and physicists, amongst others, something that has been true from the earliest days of the field. In more recent years this list has grown to include anthropologists, economists, engineers, medical professionals, military professionals, sociologists, and even artists. This approach has been strengthened and reinforced as current research continues to use experts trained in both soil science and related fields and by the wide array of issues impacting the world that require an in-depth understanding of soils. Of fundamental importance amongst these issues are biodiversity, biofuels/energy security, climate change, ecosystem services, food security, human health, land degradation, and water security, each representing a critical challenge for research. In order to establish a benchmark for the type of research that we seek to publish in each issue of SOIL, we have outlined the interdisciplinary nature of soil science research we are looking for. This includes a focus on the myriad ways soil science can be used to expand investigation into a more holistic and therefore richer approach to soil research. In addition, a selection of invited review papers are published in this first issue of SOIL that address the study of soils and the ways in which soil investigations are essential to other related fields. We hope that both this editorial and the papers in the first issue will serve as examples of the kinds of topics we would like to see published in SOIL and will stimulate excitement among our readers and authors to participate in this new venture.

  18. Soil sampling for environmental contaminants

    International Nuclear Information System (INIS)

    The Consultants Meeting on Sampling Strategies, Sampling and Storage of Soil for Environmental Monitoring of Contaminants was organized by the International Atomic Energy Agency to evaluate methods for soil sampling in radionuclide monitoring and heavy metal surveys for identification of punctual contamination (hot particles) in large area surveys and screening experiments. A group of experts was invited by the IAEA to discuss and recommend methods for representative soil sampling for different kinds of environmental issues. The ultimate sinks for all kinds of contaminants dispersed within the natural environment through human activities are sediment and soil. Soil is a particularly difficult matrix for environmental pollution studies as it is generally composed of a multitude of geological and biological materials resulting from weathering and degradation, including particles of different sizes with varying surface and chemical properties. There are so many different soil types categorized according to their content of biological matter, from sandy soils to loam and peat soils, which make analytical characterization even more complicated. Soil sampling for environmental monitoring of pollutants, therefore, is still a matter of debate in the community of soil, environmental and analytical sciences. The scope of the consultants meeting included evaluating existing techniques with regard to their practicability, reliability and applicability to different purposes, developing strategies of representative soil sampling for cases not yet considered by current techniques and recommending validated techniques applicable to laboratories in developing Member States. This TECDOC includes a critical survey of existing approaches and their feasibility to be applied in developing countries. The report is valuable for radioanalytical laboratories in Member States. It would assist them in quality control and accreditation process

  19. Continuous soil monitoring and inventory of soils as part of the soil information system

    International Nuclear Information System (INIS)

    The Bavarian Geological State office conducted a soil inventory and continuous soil monitoring programme. In order to make permanent monitoring feasible the Bavarian Geological State office developed a special concept. This concept of site selection, commissioning, sampling and analysis is described in this paper. The results of first studies of the three permanent soil monitoring areas in the Alpine region shows that only on the Gotzenalm in the national park in Berchtegaden there are significant accumulations of Cs-137 and of some other typically anthropogenic heavy metals in the top soil. Organic pollution is small in all three areas. (orig./EW)

  20. Soil washing of fluorine contaminated soil using various washing solutions.

    Science.gov (United States)

    Moon, Deok Hyun; Jo, Raehyun; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Park, Jeong-Hun

    2015-03-01

    Bench-scale soil washing experiments were conducted to remove fluoride from contaminated soils. Five washing solutions including hydrochloric acid (HCl), nitric acid (HNO3), sodium hydroxide (NaOH), sulfuric acid (H2SO4) and tartaric acid (C4H6O6) were tested. The concentration of the washing solutions used ranged from 0.1 to 3 M with a liquid to solid ratio of 10. The soil washing results showed that the most effective washing solution for the removal of fluoride from contaminated soils was HCl. The highest fluoride removal results of approximately 97 % from the contaminated soil were obtained using 3 M HCl. The fluoride removal efficiency of the washing solution increases in the following order: C4H6O6 < NaOH < H2SO4 < HNO3 < HCl. PMID:25552323

  1. Linking soil bacterial biodiversity and soil carbon stability.

    Science.gov (United States)

    Mau, Rebecca L; Liu, Cindy M; Aziz, Maliha; Schwartz, Egbert; Dijkstra, Paul; Marks, Jane C; Price, Lance B; Keim, Paul; Hungate, Bruce A

    2015-06-01

    Native soil carbon (C) can be lost in response to fresh C inputs, a phenomenon observed for decades yet still not understood. Using dual-stable isotope probing, we show that changes in the diversity and composition of two functional bacterial groups occur with this 'priming' effect. A single-substrate pulse suppressed native soil C loss and reduced bacterial diversity, whereas repeated substrate pulses stimulated native soil C loss and increased diversity. Increased diversity after repeated C amendments contrasts with resource competition theory, and may be explained by increased predation as evidenced by a decrease in bacterial 16S rRNA gene copies. Our results suggest that biodiversity and composition of the soil microbial community change in concert with its functioning, with consequences for native soil C stability. PMID:25350158

  2. Soil fungi as indicators of pesticide soil pollution

    Directory of Open Access Journals (Sweden)

    Mandi? Leka

    2005-01-01

    Full Text Available Soil fungi, with their pronounced enzymic activity and high osmotic potential, represent a significant indicator of negative effects of different pesticides on the agroecosystem as a whole. In that respect, a trial was set up on the alluvium soil type with the aim to investigate the effect of different herbicides (Simazine, Napropamid, Paraquat, fungicides (Captan and Mancozeb and insecticides (Fenitrothion and Dimethoate on a number of soil fungi under apple trees. The number of soil fungi was determined during four growing seasons by an indirect method of dilution addition on the Czapek agar. The study results indicate that the fungi belong to the group of microorganisms that, after an initial sensible response to the presence of pesticides in the soil, very rapidly establish normal metabolism enabling them even to increase their number. The fungicides and insecticides applied were found to be particularly effective in that respect.

  3. ICRAF-ISRIC Soil VNIR Spectral Library

    OpenAIRE

    World Agroforestry Centre (ICRAF); ISRIC

    2010-01-01

    The ICRAF-ISRIC Soil VNIR Spectral Library contains visible near infrared spectra of 4,438 soils selected from the Soil Information System (ISIS) of the International Soil Reference and Information Centre (ISRIC). The samples consist of all physically archived samples at ISRIC in 2004 for which soil attribute data was available. The spectra were measured at the World Agroforestry Center's (ICRAF) ... Soil and Plant Spectral Diagnostic Laboratory. The samples are from 58 countries spanning Afr...

  4. Statistical Characterization of Bare Soil Surface Microrelief

    OpenAIRE

    Vannier, Edwige; Taconet, Odile; Dusse?aux, Richard; Chimi Chiadjeu, Olivier

    2014-01-01

    Because the soil surface occurs at the boundary between the atmosphere and the pedosphere, it plays an important role for geomorphologic processes. Roughness of soil surface is a key parameter to understand soil properties and physical processes related to substrate movement, water infiltration or runoff, and soil erosion. It has been noted by many authors that most of the soil surface and water interaction processes have characteristic lengths in millimeter scales. Soil irregularities at sma...

  5. Salt Affected Soils Their Identification and Reclamation

    OpenAIRE

    Siyal, A. A.; Siyal, A. G.; Abro, Z. A.

    2002-01-01

    Salt affected soils are found throughout the world especially in arid and semi arid regions. Soil salinization is mainly due to the use of saline water for irrigation, seepage from the canals, an arid climate evaporation of salty soil waters from the soil surface over shallow water tables and poor drainage. Salt effected soils are grouped into saline, alkali and saline-alkali soils. Three different ways viz. scrapping, surface flushing and leaching are normally used for reclamation of these s...

  6. Soil classification and radionuclide migration in west Cumbrian soils

    International Nuclear Information System (INIS)

    Radionuclide migration through soil is controlled by the degree of retardation due to sorption of the radionuclide onto the soil, which is dependant upon the soil type and nuclide involved. It is therefore important to assess the soil variability of the geographical area under study. Radionuclide attenuation is usually quantified by a distribution coefficient (Kd) or distribution ratio (Rd) obtained from batch experiments. As part of this research Rd values were compared with column retardation factors (Rf values) in order to assess how closely Rd values relate to radionuclide migration in an undisturbed soil. Results of this research have shown that the method and conditions used to conduct batch experiments can greatly affect the Kd and Rd values obtained. Rd values for a range of west Cumbrian soils were generally of the order 137Cs>60Co>125Sb>85Sr. The use of the national soil map of England and Wales (Jarvis et al., 1984) was not recommended for prediction of radionuclide migration in west Cumbrian soils. It was suggested that an Rd values for each major soil type (sand, clay, loam and peat) was sufficient for use in assessment studies. Modifications made to the batch method in this project did not appear to reduce the discrepancy which is often reported between batch and column retardation parameters. In general, the majority of the batch and column Rd values obtained in this research differed by one order of magnitudeesearch differed by one order of magnitude. There did not appear to be any trend, with regard to nuclide or soil type, in determining the magnitude by which the batch and column Rd values differed. Using the measured Rd values as input parameters in an advection-diffusion model produced mixed results, but the predicted activity-depth profiles generally underestimated the depths to which the radionuclides migrated down the column. (author)

  7. A method to detect soil carbon degradation during soil erosion

    Directory of Open Access Journals (Sweden)

    C. Alewell

    2009-06-01

    Full Text Available Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs approach (quantification of erosion rates with stable carbon isotope signatures (process indicator of mixing versus degradation of carbon pools we were able to show that degradation of carbon occurs during soil erosion processes at the investigated mountain grasslands in the central Swiss Alps (Urseren Valley, Canton Uri. Transects from upland (erosion source to wetland soils (erosion sinks of sites affected by sheet and land slide erosion were sampled. Analysis of 137Cs yielded an input of 2 and 2.6 t ha?1 yr?1 of soil material into the wetlands sites. Assuming no degradation of soil organic carbon during detachment and transport, carbon isotope signature of soil organic carbon in the wetlands could only be explained with an assumed 800 and 400 years of erosion input into the wetlands. The latter is highly unlikely with alpine peat growth rates indicating that the upper horizons might have an age between 7 and 200 years. While we do not conclude from our data that eroded soil organic carbon is generally degraded during detachment and transport, we propose this method to gain more information on process dynamics during soil erosion from oxic upland to anoxic wetland soils, sediments or water bodies.

  8. A method to detect soil carbon degradation during soil erosion

    Directory of Open Access Journals (Sweden)

    F. Conen

    2009-11-01

    Full Text Available Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs approach (quantification of erosion rates with stable carbon isotope signatures (process indicator of mixing versus degradation of carbon pools we were able to show that degradation of carbon occurs during soil erosion processes at the investigated mountain grasslands in the central Swiss Alps (Urseren Valley, Canton Uri. Transects from upland (erosion source to wetland soils (erosion sinks of sites affected by sheet and land slide erosion were sampled. Analysis of 137Cs yielded an input of 2 and 4.6 tha?1 yr?1 of soil material into the wetlands sites. Assuming no degradation of soil organic carbon during detachment and transport, carbon isotope signature of soil organic carbon in the wetlands could only be explained with an assumed 500–600 and 350–400 years of erosion input into the wetlands Laui and Spissen, respectively. The latter is highly unlikely with alpine peat growth rates indicating that the upper horizons might have an age between 7 and 200 years. While we do not conclude from our data that eroded soil organic carbon is generally degraded during detachment and transport, we propose this method to gain more information on process dynamics during soil erosion from oxic upland to anoxic wetland soils, sediments or water bodies.

  9. Soil Radiological Characterisation Methodology

    International Nuclear Information System (INIS)

    This report presents the general methodology and best practice approaches which combine proven existing techniques for sampling and characterisation to assess the contamination of soils prior to remediation. It is based on feedback of projects conducted by main French nuclear stakeholders involved in the field of remediation and dismantling (EDF, CEA, AREVA and IRSN). The application of this methodology will enable the project managers to obtain the elements necessary for the drawing up of files associated with remediation operations, as required by the regulatory authorities. It is applicable to each of the steps necessary for the piloting of remediation work-sites, depending on the objectives targeted (release into the public domain, re-use, etc.). The main part describes the applied statistical methodology with the exploratory analysis and variogram data, identification of singular points and their location. The results obtained permit assessment of a mapping to identify the contaminated surface and subsurface areas. It stakes the way for radiological site characterisation since the initial investigations from historical and functional analysis to check that the remediation objectives have been met. It follows an example application from the feedback of the remediation of a contaminated site on the Fontenay aux Roses facility. It is supplemented by a glossary of main terms used in the field from different publications or international standards. This technical report is a support of the ISO Standard ISO ISO/TC 85/SC 5 N 18557 'Sampling and characterisation principles for soils, buildings and infrastructures contaminated by radionuclides for remediation purposes'. (authors)

  10. Innovative approaches to soil fumigation

    Science.gov (United States)

    An apparatus was developed for injecting soil fumigants beneath raised planting beds covered by plastic mulch without disturbing the integrity of the beds. A mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (Pic) (62:35) was combined with soil solarization, virtually impermeable films (VIF) ...

  11. Hydraulic Properties of Unsaturated Soils

    Science.gov (United States)

    Many agrophysical applications require knowledge of the hydraulic properties of unsaturated soils. These properties reflect the ability of a soil to retain or transmit water and its dissolved constituents. The objective of this work was to develop an entry for the Encyclopedia of Agrophysics that w...

  12. Brazilian Cerrado Soil Actinobacteria Ecology

    OpenAIRE

    Monique Suela Silva; Alenir Naves Sales; Karina Teixeira Magalhães-Guedes; Disney Ribeiro Dias; Rosane Freitas Schwan

    2013-01-01

    A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah) soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil). The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora) and 92 distinct species in both seasons studied (...

  13. Rock and Soil Anchor Systems

    Science.gov (United States)

    Williams Form Engineering manufactures one of the most diverse rock and soil anchoring product lines in the world, including mechanical anchors, resin anchors, multiple corrosion protection anchors, soil nails, sledge drive anchors and self drilling anchors. The site includes not only information on the company, but also explanation of the product and their role in the mining process.

  14. The impact of soil degradation on soil functioning in Europe

    Science.gov (United States)

    Montanarella, Luca

    2010-05-01

    The European Commission has presented in September 2006 its Thematic Strategy for Soil Protection.The Thematic Strategy for Soil Protection consists of a Communication from the Commission to the other European Institutions, a proposal for a framework Directive (a European law), and an Impact Assessment. The Communication (COM(2006) 231) sets the frame. It defines the relevant soil functions for Europe and identifies the major threats. It explains why further action is needed to ensure a high level of soil protection, sets the overall objective of the Strategy and explains what kind of measures must be taken. It establishes a ten-year work program for the European Commission. The proposal for a framework Directive (COM(2006) 232) sets out common principles for protecting soils across the EU. Within this common framework, the EU Member States will be in a position to decide how best to protect soil and how use it in a sustainable way on their own territory. The Impact Assessment (SEC (2006) 1165 and SEC(2006) 620) contains an analysis of the economic, social and environmental impacts of the different options that were considered in the preparatory phase of the strategy and of the measures finally retained by the Commission. Since 2006 a large amount of new evidence has allowed to further document the extensive negative impacts of soil degradation on soil functioning in Europe. Extensive soil erosion, combined with a constant loss of soil organic carbon, have raised attention to the important role soils are playing within the climate change related processes. Other important processes are related to the loss of soil biodiversity, extensive soil sealing by housing and infrastructure, local and diffuse contamination by agricultural and industrial sources, compaction due to unsustainable agricultural practices and salinization by unsustainable irrigation practices. The extended impact assessment by the European Commission has attempted to quantify in monetary terms the actual economic impact of soil degradation in Europe.The total costs of soil degradation that could be assessed for erosion, organic matter decline, salinisation, landslides and contamination on the basis of available data, would be up to €38 billion annually for EU25. These estimates are necessarily wide ranging due to the lack of sufficient quantitative and qualitative data. Future research activities will have to address, in multidisciplinary teams, the social and economic aspects of soil degradation in Europe, in order to come up with more reliable estimates of the economic impact of soil degradation. A more reliable and updated system of indicators needs to be developed in order to cover the full cycle of the Driving forces-Pressures-State-Impact-Response (DPSIR) framework. Recent developments towards a new soil monitoring system for Europe will be presented as well as some of the recent outputs of the European Soil Data Centre (ESDAC).

  15. Soil Phosphorus Stoichiometry Drives Carbon Turnover Along a Soil C Gradient Spanning Mineral and Organic Soils Under Rice Cultivation

    Science.gov (United States)

    Hartman, W.; Ye, R.; Horwath, W. R.; Tringe, S. G.

    2014-12-01

    Soil carbon (C) cycling is linked to the availability of nutrients like nitrogen (N) and phosphorus (P). However, the role of soil P in influencing soil C turnover and accumulation is poorly understood, with most models focusing on C:N ratios based on the assumption that terrestrial ecosystems are N limited. To determine the effects of N and P availability on soil C turnover, we compared soil respiration over the course of a growing season in four adjacent rice fields with 5%, 10%, 20% and 25% soil C. In each of these fields, plots were established to test the effect of N additions on plant growth, using control and N addition treatments (80 kg N/ha urea). Although soil P was not manipulated in parallel, prior work has shown soil P concentrations decline markedly with increasing soil C content. Soil CO2 flux was monitored using static chambers at biweekly intervals during the growing season, along with porewater dissolved organic C and ammonium. Soils were collected at the end of the growing season, and tested for total C, N, and P, extractable N and P, pH, base cations and trace metals. Soil DNA was also extracted for 16S rRNA sequencing to profile microbial communities. Soil N additions significantly increased CO2 flux and soil C turnover (seasonal CO2 flux per unit soil C) in 5% and 10% C fields, but not in 20% or 25% C fields. Soil C content was closely related to soil N:P stoichiometry, with N:P ratios of ca. 12, 16, 24, and 56 respectively in the 5, 10, 20 and 25% C fields. Seasonal CO2 fluxes (per m2) were highest in 10% C soils. However, soil C turnover was inversely related to soil C concentrations, with the greatest C turnover at the lowest values of soil C. Soil C turnover showed stronger relationships with soil chemical parameters than seasonal CO2 fluxes alone, and the best predictors of soil C turnover were soil total and extractable N:P ratios, along with extractable P alone. Our results show that soil P availability and stoichiometry influence the turnover of soil C, even where primary producers are clearly limited by N. Prior work has suggested these contrasting patterns in nutrient limitation may arise due to stoichiometric differences among plants and soil microbes. We hypothesize that differences in soil carbon turnover may in part reflect shifts in metabolism of microbial communities associated with stoichiometric variation in soils.

  16. How Soil Organic Matter Composition Controls Hexachlorobenzene-Soil-Interactions: Adsorption Isotherms and Quantum Chemical Modelling

    CERN Document Server

    Ahmed, Ashour; Kühn, Oliver

    2013-01-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soil < original soil < soil+3 HWE < soil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption behaviour combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HC...

  17. Evaluation of soil washing for radiologically contaminated soils

    International Nuclear Information System (INIS)

    Soil washing has been applied internationally to decontaminate soils due to the widespread increase in environmental awareness manifested in the United States by promulgation of the Comprehensive Environmental Response, Compensation and Liability Act, yet we continue to lack understanding on why the technique works in one application and not in another. A soil washing process typically integrates a variety of modules, each designed to decontaminate the matrix by destroying a particular phase or segregating a particle size fraction in which the contaminants are concentrated. The more known about how the contaminants are fixed, the more likely the process will succeed. Much can be learned from bioavailability studies on heavy metals in soils. Sequential extraction experiments designed to destroy one fixation mechanism at a time can be used to determine how contaminants are bound. This knowledge provides a technical basis for designing a processing strategy to efficiently decontaminate soil while creating a minimum of secondary wastes. In this study, a soil from the Idaho National Engineering Laboratory was physically and chemically characterized, then sequentially extracted to determine if soil washing could be effectively used to remove cesium, cobalt and chromium

  18. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty

    OpenAIRE

    Fallon, Pete; Jones, Chris D.; Ades, Melanie; Paul, Keryn

    2011-01-01

    The nature of the climate–carbon cycle feedback depends critically on the response of soil carbon to climate, including changes in moisture. However, soil moisture–carbon feedback responses have not been investigated thoroughly. Uncertainty in the response of soil carbon to soil moisture changes could arise from uncertainty in the relationship between soil moisture and heterotrophic respiration. We used twelve soil moisture–respiration functions (SMRFs) with a soil carbon model (RothC) ...

  19. Evaluation of soil structure in the framework of an overall soil quality rating

    DEFF Research Database (Denmark)

    Mueller, L; Shepherd, T G

    2013-01-01

    Soil structure is an important aspect of agricultural soil quality, and its preservation and improvement are key to sustaining soil functions. Methods of overall soil quality assessment which include visual soil structure information can be useful tools for monitoring and managing the global soil resource. The aim of the paper is: (i) to demonstrate the role of visual quantification of soil structure within the procedure of the overall soil quality assessment by the Muencheberg Soil Quality Rating (M-SQR), (ii) to quantify the magnitude and variability of soil structure and overall M-SQR on a number of agricultural research sites and (iii) to analyse the correlations of soil quality rating results with crop yields. We analysed visual soil structure and overall soil quality on a range of 20 experimental sites in seven countries. To assess visual soil structure we utilised the Visual Soil Assessment (VSA) and Visual Evaluation of Soil Structure (VESS) methods. Results showed the feasibility and reliability of both VSA and VESS methods and the overall soil quality M-SQR rating approach to give scores and classes which characterised the soil potential for cropping. The structure status of soil can be reliably assessed by these procedures. In soils with clay contents > 30% unfavourable soil structure could not be reliably recognised by measurements of the dry bulk density, but significantly by evaluation of visual soil structure. Structure scores were clearly associated with the drainage status of soil. More than 70% of the variability of crop yields at a given intensity of input may be explained by the overall M-SQR-score which includes information on soil texture, relief and climate in addition to soil structure. We conclude that methods of visual soil assessment are useful diagnostic tools for monitoring and controlling agricultural soil quality over different scales, ranging from within-fields to global. Controlling the drainage status of land and action of machinery at appropriate drainage states are pre-conditions for preserving a suitable soil structure.

  20. Soil-structure interaction on inclined soil layers

    International Nuclear Information System (INIS)

    The case history presented deals with a Category I building having two-thirds of its base founded on a wedge of hard material. This wedge is underlain by an inclined layer of softer material, which also directly supports the remaining one-third of the foundation. The inclined layer is underlain by a third material, possessing large stiffness and extending to great depth. This case is analyzed with the methodology described below: - Determination of the static soil compliances by discretizing the foundation area into a number of strips and taking the soil profile as horizontally layered under each strip. Lumped parameter soil compliances for the whole foundation are obtained by weighting the contributions to stiffness in proportion to the area of each strip. - Definition of the degree of coupling between modes. The soil compliances defined in the previous step include coupling between the vertical and rocking modes and the horizontal and torsional modes through the positioning of the corresponding soil springs. The degree of coupling is checked through a static finite element analysis. - Frequency correction of the static soil compliances taking into account the inhomogeneity of the foundation conditions. The correction is based on obtaining dynamic stiffness coefficients for extreme configurations of the soil profile. - Assessment of the sliding potential of the structure under earthquake loading, considering eccentricities of the dynamic forces and non-uniform fricti the dynamic forces and non-uniform friction resistance over the foundation area, accounting for the frictional capacity of the different bearing materials. It is concluded that the simplified technique can provide accurate soil compliances, coupling and frequency corrections for soil-structure interaction on sloping layers, and an appropriate assessment of the sliding potential. (orig./HP)

  1. ESTIMATING SOIL PARTICLE-SIZE DISTRIBUTION FOR SICILIAN SOILS

    Directory of Open Access Journals (Sweden)

    Giuseppe Giordano

    2009-09-01

    Full Text Available The soil particle-size distribution (PSD is commonly used for soil classification and for estimating soil behavior. An accurate mathematical representation of the PSD is required to estimate soil hydraulic properties and to compare texture measurements from different classification systems. The objective of this study was to evaluate the ability of the Haverkamp and Parlange (HP and Fredlund et al. (F PSD models to fit 243 measured PSDs from a wide range of 38 005_Bagarello(547_33 18-11-2009 11:55 Pagina 38 soil textures in Sicily and to test the effect of the number of measured particle diameters on the fitting of the theoretical PSD. For each soil textural class, the best fitting performance, established using three statistical indices (MXE, ME, RMSE, was obtained for the F model with three fitting parameters. In particular, this model performed better in the fine-textured soils than the coarse-textured ones but a good performance (i.e., RMSE < 0.03 was detected for the majority of the investigated soil textural classes, i.e. clay, silty-clay, silty-clay-loam, silt-loam, clay-loam, loamy-sand, and loam classes. Decreasing the number of measured data pairs from 14 to eight determined a worse fitting of the theoretical distribution to the measured one. It was concluded that the F model with three fitting parameters has a wide applicability for Sicilian soils and that the comparison of different PSD investigations can be affected by the number of measured data pairs.

  2. A Review of Fishpond Soil Management Principles in Nigeria

    OpenAIRE

    A.T. Ekubo; J. F.N. Abowei

    2011-01-01

    The suitability of sites for culture fisheries depends on the soil. There is therefore the need to have proper background on the nature and properties of soils. The pond oils, soil functions in fish pond, soil characterization, components and soil mineral constituents, oil profile soil classification, soil fertility, nutrients, primary and secondary nutrients, soil organic matter, common soil problems, field and laboratory methods in acid sulphate soil identification, management of acid sulph...

  3. Tracing soil erosion impacts on soil organisms using 137Cs and soil nematodes

    Science.gov (United States)

    Baxter, Craig; Rowan, John S.; McKenzie, Blair M.; Neilson, Roy

    2014-05-01

    The application of environmental radionuclides in soil tracing and erosion studies is now well established in geomorphology. Sediment and erosion-tracing studies are undertaken for a range of purposes in the earth sciences but until now few studies have used the technique to answer biological questions. An experiment was undertaken to measure patterns of soil loss and gain over 50 years, effectively calculating a field-scale sediment budget, to investigate soil erosion relationships between physical and biological soil components. Soil nematodes were identified as a model organism, a ubiquitous and abundant group sensitive to disturbance and thus useful indicator taxa of biological and physico-chemical changes. A field site was selected at the James Hutton Institute's experimental Balruddery Farm in NE Scotland. 10 metre-resolution topographical data was collected with differential GPS. Based on these data, a regular 30 m-resolution sampling grid was constructed in ArcGIS, and a field-sampling campaign undertaken. 104 soil cores (~50 cm-deep) were collected with a percussion corer. Radio-caesium (137Cs) activity concentrations were measured using high-purity germainum gamma-ray spectroscopy, and 137Cs areal activities derived from these values. Organic matter content by loss on ignition and grain-size distribution by laser granulometry were also measured. Additional samples were collected to characterise the soil nematode community, both for abundance and functional (trophic) composition using a combination of low-powered microscopy and molecular identification techniques (dTRFLP). Results were analysed with ArcGIS software using the Spatial Analyst package. Results show that spatial relationships between physical, chemical and biological parameters were complex and interrelated. Previous field management was found to influence these relationships. The results of this experiment highlight the role that soil erosion processes play in medium-term restructuring of the physico-chemical soil environment and the soil community.

  4. Afforestation effects on soil carbon

    DEFF Research Database (Denmark)

    Bárcena, Teresa G

    2013-01-01

    Understanding carbon (C) dynamics has become increasingly important due to the major role of C in global warming. Soils store the largest amount of organic C in the biosphere; therefore, changes in this compartment can have a large impact on the C storage of an ecosystem. Land-use change is a main driver of changes in soil organic carbon (SOC) pools worldwide. In Europe, afforestation (i.e. the establishment of new forest on non-forested land), is a major land-use change driven by economic and environmental interests due to its role as a C sequestration tool following the ratification of the Kyoto Protocol. Despite research efforts on the quantification of SOC stock change and soil C fluxes following this land-use change, knowledge is still scarce in regions where afforestation currently is and has been widespread, like Denmark and the rest of Northern Europe. This PhD thesis explored three main aspects of the impact of afforestation on soil C: i) changes in SOC stocks (in forest floors and mineral soils) on afforested cropland in Denmark and in afforested soils of Northern Europe; ii) changes in CH4 oxidation (uptake) potential of soils; iii) changes in soil CO2 efflux through heterotrophic respiration. In Denmark chronosequences (i.e. space-for-time substitution) of oak and Norway spruce stands at the Vestskoven site were the tool used to explore these changes. Soil OC dynamics predicted by the chronosequence approach have often been used, however they never been validated by resampling before. According to the chronosequence approach covering a time span of 40 years, topsoils (0-25 cm soil depth including forest floors) in Vestskoven are currently neither a sink nor a source for C. The more specific decadal trends at the stand level provided by repeated sampling revealed a change in source-sink C balance between soil compartments over time, with C accumulation in the mineral soil becoming increasingly important as the sink strength of forest floors decreased within 4 decades of afforestation. The chronosequence approach is an appropriate tool to assess SOC stock changes following afforestation given that assumptions of similar site conditions are met. However, repeated sampling can not only validate the chronosequence trajectories but also provide refined temporal trends. Changes in SOC in Northern Europe investigated by meta-analysis, revealed that following afforestation, significant C sequestration in soils from this region requires at least three decades or even longer time, when afforestation is performed on former agricultural soils. The faster C accretion in forest floors compensates the initial lag-phase found in mineral soils. The chronosequences also indicated that afforestation increases the CH4 sink potential of soils over time due to the gradual increase in SOC and decrease of bulk density favoring CH4-oxidation, as long as soils remain well drained. The CO2 efflux from soils may increase, due to heterotrophic respiration of a larger SOC pool and not due to higher reactivity of the SOC. However, these C sources are likely to be compensated by the C sink in the growing forest biomass.

  5. Bioventing in low permeability soils

    International Nuclear Information System (INIS)

    The use of soil venting to supply oxygen to the subsurface and to enhance the biodegradation of petroleum hydrocarbons is an effective and inexpensive method of remediation. To date, full-scale applications of the bioventing technology have been primarily limited to sandy, more permeable soils. Little data has been available to support the use of bioventing in low permeability silt and clay soils. Two bioventing pilot tests were recently completed by Engineering-Science, Inc. in silt and clay soils contaminated with diesel fuels. Ground water at these sites has been impacted by the diesel fuels and remediation of the unsaturated zone was required to prevent additional ground water contamination. Because diesel contains primarily C10 and heavier hydrocarbons, long-term biodegradation, not volatilization, must play a major role in remediating these sites. Remedial alternatives at both sites were limited by the significant depth of contamination and the fact that contamination extended below valuable surface structures. The objectives of pilot testing were to determine the air permeability of these soils, the potential oxygen influx resulting from a venting process, and the rate of fuel biodegradation stimulated by available oxygen. The results of these tests indicated that a low rate of soil ventilation will create an aerobic environment throughout these contaminated soils, even with clay contents as high as 80 percentt

  6. Decay characteristics of soil thermoluminescence

    International Nuclear Information System (INIS)

    Thermoluminescent decay of five different types of soils (soil no. 4FF, Yolo sandy loam, Hanford sandy loam, soil no. 9RDG, and Egbert muck) irradiated by 60Co photons and in the reactor was examined. Although the glow output and the glow curve shapes differed considerably among the soils, the shape of the thermoluminescent decay curves, in general, was quite similar, whether the soil was irradiated by 60Co photons or in the reactor. Regardless of the soil type, the most rapid decay occurred within the first 24 hr after irradiation. After the lapse of sufficient decay time, an apparent isothermal equilibrium state was approached. Curves were fitted to the decay data by the use of a computer program which obtains a weighted least squares fit of a function to the data by means of stepwise Gauss-Newton iterations on the parameters. The results indicated that the thermoluminescent decay curves of soils were hyperbolic [Y= ?(? + X)/sup gamma/ + delta] in form. (U.S.)

  7. The soil reference shrinkage curve

    CERN Document Server

    Chertkov, V Y

    2014-01-01

    A recently proposed model showed how a clay shrinkage curve is transformed to the soil shrinkage curve at the soil clay content higher than a critical one. The objective of the present work was to generalize this model to the soil clay content lower a critical one. I investigated (i) the reference shrinkage curve, that is, one without cracks; (ii) the superficial layer of aggregates, with changed pore structure compared with the intraaggregate matrix; and (iii) soils with sufficiently low clay content where there are large pores inside the intraaggregate clay (so-called lacunar pores). The methodology is based on detail accounting for different contributions to the soil volume and water content during shrinkage. The key point is the calculation of the lacunar pore volume variance at shrinkage. The reference shrinkage curve is determined by eight physical soil parameters: (1) oven-dried specific volume; (2) maximum swelling water content; (3) mean solid density; (4) soil clay content; (5) oven-dried structural...

  8. Soils - Part 1: The Origin and Development of Soil(How Soil Gets a Life and a Name)

    Science.gov (United States)

    In this lesson, you will gain an understanding of the five soil forming factors and will be able to describe how each influences soil development. You will learn to identify common parent materials, determine the age of a soil, identify the types of native vegetation associated with different soils in Nebraska and define soil horizons.[This lesson, as well as the other nine lessons in the Soils series, is taken from the "Soils Home Study Course," published in 1999 by the University of Nebraska Cooperative Extension.

  9. Soil carbon determination by thermogravimetrics

    Directory of Open Access Journals (Sweden)

    Robert Pallasser

    2013-02-01

    Full Text Available Determination of soil constituents and structure has a vital role in agriculture generally. Methods for the determination of soil carbon have in particular gained greater currency in recent times because of the potential that soils offer in providing offsets for greenhouse gas (CO2-equivalent emissions. Ideally, soil carbon which can also be quite diverse in its makeup and origin, should be measureable by readily accessible, affordable and reliable means. Loss-on-ignition is still a widely used method being suitably simple and available but may have limitations for soil C monitoring. How can these limitations be better defined and understood where such a method is required to detect relatively small changes during soil-C building? Thermogravimetric (TGA instrumentation to measure carbonaceous components has become more interesting because of its potential to separate carbon and other components using very precise and variable heating programs. TGA related studies were undertaken to assist our understanding in the quantification of soil carbon when using methods such as loss-on-ignition. Combining instrumentation so that mass changes can be monitored by mass spectrometer ion currents has elucidated otherwise hidden features of thermal methods enabling the interpretation and evaluation of mass-loss patterns. Soil thermogravimetric work has indicated that loss-on-ignition methods are best constrained to temperatures from 200 to 430 °C for reliable determination for soil organic carbon especially where clay content is higher. In the absence of C-specific detection where mass only changes are relied upon, exceeding this temperature incurs increasing contributions from inorganic sources adding to mass losses with diminishing contributions related to organic matter. The smaller amounts of probably more recalcitrant organic matter released at the higher temperatures may represent mineral associated material and/or simply more refractory forms.

  10. Soil Data Analysis Using Classification Techniques and Soil Attribute Prediction

    Directory of Open Access Journals (Sweden)

    Jay Gholap

    2012-05-01

    Full Text Available Agricultural research has been profited by technical advances such as automation, data mining. Today ,data mining is used in a vast areas and many off-the-shelf data mining system products and domain specific data mining application soft wares are available, but data mining in agricultural soil datasets is a relatively a young research field. The large amounts of data that are nowadays virtually harvested along with the crops have to be analyzed and should be used to their full extent. This research aims at analysis of soil dataset using data mining techniques. It focuses on classification of soil using various algorithms available. Another important purpose is to predict untested attributes using regression technique, and implementation of automated soil sample classification.

  11. Methods of soil organic carbon determination in Brazilian savannah soils

    Scientific Electronic Library Online (English)

    Juliana Hiromi, Sato; Cícero Célio de, Figueiredo; Robélio Leandro, Marchão; Beáta Emöke, Madari; Luiz Eduardo Celino, Benedito; Jader Galba, Busato; Diego Mendes de, Souza.

    2014-08-01

    Full Text Available Several methods exist for determining soil organic carbon, and each one has its own advantages and limitations. Consequently, a comparison of the experimental results obtained when these methods are employed is hampered, causing problems in the comparison of carbon stocks in soils. This study aimed [...] at evaluating the analytical procedures used in the determination of carbon and their relationships with soil mineralogy and texture. Wet combustion methods, including Walkley-Black, Mebius and Colorimetric determination as well as dry combustion methods, such as Elemental and Gravimetric Analysis were used. Quantitative textural and mineralogical (kaolinite, goethite and gibbsite) analyses were also carried out. The wet digestion methods underestimated the concentration of organic carbon, while the gravimetric method overestimated. Soil mineralogy interfered with the determination of carbon, with emphasis on the gravimetric method that was greatly influenced by gibbsite.

  12. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    Science.gov (United States)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and management of the EU territory by field observations of geo-referenced points. In 2009, a topsoil (0-30 cm) module was included to the survey and a subset of around 21,000 sites was sampled in 23 Member States. The second source is a soil survey monitoring pilot campaign carried in Veneto Region last year. The pilot campaign has been organized with the collaboration between JRC, University of Padova and ARPAV Veneto. The scope was to apply the LUCAS methodology to an experimental soil survey of 40 samples. The selection of the points to survey has been done on the basis of the LUCAS project related to Veneto Region, pedo-climatic and management unit conditions and the database on soils belonging to ARPAV Soil Unit, collected ante 2000. Data started to be investigated and permit to show changes in SOC content in a decade for different land use/cover and climatic areas. Through the bulk density data collected and the data already available from ARPAV library, it's possible to evaluate the Carbon stocks of Veneto region. Possible changes in Carbon can be related to land use changes and different strategies of management practices adopted over time.

  13. Soil test for some micronutrients and selenium in Egyptian soil

    International Nuclear Information System (INIS)

    Several factors have simulated the need for research on the development of soil tests for micronutrients. Increased crop yield have resulted in more attention being given to the need for these elements. One of the most effective means of determining whether a particular nutrient is limiting or not is the soil test. Many studies were established in our department in order to find out the best-fit method for the most reliable estimation of some micronutrients such as: Mn, Fe, Zn and Se. Tracer technique was used as a method for determining these elements in different soils of Egypt. A review of pertinent research concerning types of extractants, the need for considering other soil properties in interpretation, and critical levels are presented

  14. Radionuclides distribution coefficient of soil to soil-solution

    International Nuclear Information System (INIS)

    The present book addresses various issues related with the coefficient of radionuclides distribution between soil and soil solution. It consists of six sections and two appendices. The second section, following an introductory one, describes the definition of the coefficient and a procedures of its calculation. The third section deals with the application of the distribution coefficient to the prediction of movements of radionuclides through soil. Various methods for measuring the coefficient are described in the fourth section. The next section discusses a variety of factors (physical and chemical) that can affect the distribution coefficient. Measurements of the coefficient for different types of oils are listed in the sixth section. An appendix is attached to the book to show various models that can be helpful in applying the coefficient of distribution of radionuclides moving from soil into agricultural plants. (N.K.)

  15. Uranium soils integrated demonstration: Soil characterization project report

    International Nuclear Information System (INIS)

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP

  16. Applications of visual soil evaluation

    DEFF Research Database (Denmark)

    Ball, Bruce C; Munkholm, Lars Juhl

    2013-01-01

    Working Group F “Visual Soil Examination and Evaluation” (VSEE) was formed over 30 years ago within the International Soil & Tillage Research Organisation (ISTRO) on the initiative of Tom Batey. The objectives of the Working Group are to stimulate interest in field methods of visual-tactile soil assessment, to encourage their wider use and to foster international cooperation. The previous main meeting of the group in 2005 at Peronne, France, brought together, for the first time, a group of soil scientists who had each developed a method to evaluate soil structure directly in the field (Boizard et al., 2006). Ten visual and tactile methods were used to assess soil structure on the same soil. This stimulated significant ongoing cooperation between participants and several authors have since modified and developed their procedures (Mueller et al., 2009 and Shepherd, 2009). Cooperation also led to the re-development of the Peerlkamp numeric method of assessment of soil structure into the Visual Evaluation of SoilStructure (VESS) spade test (Ball et al., 2007 and Guimarães et al., 2011). The meeting also recommended further cooperation between members of the Working Group. The evaluation of subsoil structure was discussed at an intermediate meeting of the group in January 2009 at Edinburgh. A common theme from the two earlier meetings was to develop both topsoil and subsoil methods to allow identification of conditions where modification of structure was required, possibly by use of a harmonized scale. Other recommendations were to include coarse textured soils, to consider controlled traffic, to relate sampling location to vegetation and crop conditions and to relate the results of visual evaluation of soil to crop performance. This latter has already been achieved with the VSA test from New Zealand which has now been extended to the assessment of environmental conditions such as potential greenhouse gas emissions, nutrient loss into groundwater and waterways and carbon sequestration (Shepherd, 2009). The meeting was held on 16th–18th May 2011 at Aarhus University Flakkebjerg Research Centre, Denmark. Twenty-six delegates attended from 10 countries – France, Denmark, Ireland, UK, New Zealand, Australia, USA, Sweden, Germany and Norway. This Special Issue of Soil and Tillage Research includes papers presented at the meeting, together with one paper related to the activity of the Working Group since the meeting in Peronne.

  17. Cesium-137 in Montana soils.

    Science.gov (United States)

    Arnalds, O; Cutshall, N H; Nielsen, G A

    1989-12-01

    Fallout 137Cs levels in soil were measured at 11 diverse sites throughout Montana. Concentrations in near-surface samples ranged from 20-200 mBq g-1 (0.51-5.41 pCi g-1). Most of the 137Cs was in the top 10 cm of soil. Deeper occurrences were attributed to disturbances by animals and to interstitial flow of small sediment particles within saturated soils. The areal concentrations ranged from 130-748 mBq cm-2 (3.6-20.2 pCi cm-2) and were highly correlated with annual precipitation. PMID:2584030

  18. Soil Erosion Threatens Food Production

    OpenAIRE

    Michael Burgess; David Pimentel

    2013-01-01

    Since humans worldwide obtain more than 99.7% of their food (calories) from the land and less than 0.3% from the oceans and aquatic ecosystems, preserving cropland and maintaining soil fertility should be of the highest importance to human welfare. Soil erosion is one of the most serious threats facing world food production. Each year about 10 million ha of cropland are lost due to soil erosion, thus reducing the cropland available for world food production. The loss of cropland is a serious ...

  19. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    OpenAIRE

    Johnson, Mark S.; Couto, Eduardo Guimara?es; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed u...

  20. Occurrence of entomopathogenic fungi in arable soil

    OpenAIRE

    Ryszard Mi?tkiewski; Zofia Mi?tkiewska

    1993-01-01

    Samples of soil were taken from arable field and from balk. Larvae of Galleria mellonella and Ephestia kühniella were used as an "insect bait" for isolation of entomopathogenic fungi from soil. Metarhizium anisopliae and Paecilomyces fumosoroseus were isolated from both kind of soil. but Beauveria bassiana was present only in soil taken from balk.

  1. Fusarium Species Isolated from Forest Soil Samples

    OpenAIRE

    Azaman, R. S.; Z. Latiffah

    2011-01-01

    A total of 46 isolates of Fusarium were isolated from six forest soil samples in Muka Head, Teluk Bahang, Pulau Pinang. Two Fusarium species were identified from the soil samples namely, F. solani (93.5%) and F. oxysporum (6.5%). The present study showed that the diversity and occurrences of Fusarium species in forest soil was low compared to cultivated soils.

  2. Assessing soil quality in organic agriculture

    Science.gov (United States)

    Soil quality is directly linked to food production, food security, and environmental quality (i.e. water quality, global warming, and energy use in food production). Unfortunately, moderate to severe degeneration of soils (i.e., loss of soil biodiversity, poor soil tilth, and unbalanced elemental c...

  3. SITE-SPECIFIC SOIL QUALITY MANAGEMENT

    Science.gov (United States)

    Soil quality is a concept used to assess and monitor the ability of a soil to serve its various functions. This investigation covers four aspects of soil quality with a literature review, and provides complimentary research findings recently conducted on U.S. Midwest claypan soils. The four aspects ...

  4. Elementary GLOBE Unit: The Scoop on Soils

    Science.gov (United States)

    Becca Hatheway

    2006-01-01

    In this book and activities set, tThe GLOBE Kids are on the trail of Scoop, an eager dog who loves to dig holes in the soil. At each hole Scoop has dug, the kids make observations of the soil, learn about soil color, texture, structure, and about the “treasures” one can find in soil. *Activity 1: Getting to Know Soil* Students learn about soil profiles and the different properties of soil, including texture, color, and size. They will know that soil forms layers based on these properties. *Activity 2: Soil Treasure Hunt* Students learn about things found in soil, such as rocks, roots, critters, and organic material. They will understand that animals and microorganisms aid in the decomposition process that contributes organic materials to soil. *Activity 3: We All Need Soil!* Students will understand the importance of soil science and that soil is a limited resource on Earth. They will learn about soil’s function for plants and animals. The Elementary GLOBE unit was designed to introduce K-4 students to the study of Earth System Science. It includes five storybooks and 15 learning activities. The science content provided in the books serves as a springboard to GLOBE’s scientific protocols, and also provides student with an introduction to technology, a basic understanding of the methods of inquiry, and connections to math and literacy skills. Each book has associated hands-on learning activities to support learning exploration.

  5. Occurrence of entomopathogenic fungi in arable soil

    Directory of Open Access Journals (Sweden)

    Ryszard Mi?tkiewski

    1993-06-01

    Full Text Available Samples of soil were taken from arable field and from balk. Larvae of Galleria mellonella and Ephestia kühniella were used as an "insect bait" for isolation of entomopathogenic fungi from soil. Metarhizium anisopliae and Paecilomyces fumosoroseus were isolated from both kind of soil. but Beauveria bassiana was present only in soil taken from balk.

  6. Soils apart from equilibrium – consequences for soil carbon balance modelling

    Directory of Open Access Journals (Sweden)

    T. Wutzler

    2006-10-01

    Full Text Available Many projections of the soil carbon sink or source are based on kinetically defined carbon pool models. Parameters of these models are often determined in a way that the steady state of the model matches observed carbon stocks. The underlying simplifying assumption is that observed carbon stocks are near equilibrium. This assumption is challenged by observations of very old soils that do still accumulate carbon. In this modelling study we explored the consequences of the case where soils are apart from equilibrium. Calculation of equilibrium states of soils that are currently accumulating small amounts of carbon were performed using the Yasso model. It was found that already very small current accumulation rates cause big changes in theoretical equilibrium stocks, which can virtually approach infinity. We conclude that soils that have been disturbed several centuries ago are not in equilibrium but in a transient state because of the slowly ongoing accumulation of the slowest pool. A first consequence is that model calibrations to current carbon stocks that assume equilibrium state, overestimate the decay rate of the slowest pool. A second consequence is that spin-up runs (simulations until equilibrium overestimate stocks of recently disturbed sites. In order to account for these consequences, we propose a transient correction. This correction prescribes a lower decay rate of the slowest pool and accounts for disturbances in the past by decreasing the spin-up-run predicted stocks to match an independent estimate of current soil carbon stocks. Application of this transient correction at a Central European beech forest site with a typical disturbance history resulted in an additional carbon fixation of 5.7±1.5 tC/ha within 100 years. Carbon storage capacity of forest soils is potentially much higher than currently assumed. Simulations that do not adequately account for the transient state of soil carbon stocks neglect a substantial amount of current carbon accumulation.

  7. Soil survey - a basis for european soil protection

    International Nuclear Information System (INIS)

    The information available on soils varies greatly from country to country. In view of the fact that, together with water, soils represent the most important natural resource in the EC, it is recommended that steps should be taken to ensure a reasonable level of information for all countries and that emphasis be placed on assembling an adequate database. Such information is fundamental to future land use and environmental protection

  8. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    OpenAIRE

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; Heijden, Marcel G. A.

    2014-01-01

    Biological diversity is the foundation for the maintenance of ecosystems. Consequently it is thought that anthropogenic activities that reduce the diversity in ecosystems threaten ecosystem performance. A large proportion of the biodiversity within terrestrial ecosystems is hidden below ground in soils, and the impact of altering its diversity and composition on the performance of ecosystems is still poorly understood. Using a novel experimental system to alter levels of soil biodiversity and...

  9. Quantifying soil complexity using network models of soil porous structure

    OpenAIRE

    Samec, M.; Santiago, A.; Ca?rdenas, J. P.; Benito, R. M.; Tarquis, A. M.; Mooney, S. J.; Koros?ak, D.

    2013-01-01

    This paper describes an investigation into the properties of spatially embedded complex networks representing the porous architecture of soil systems. We suggest an approach to quantify the complexity of soil pore structure based on the node-node link correlation properties of the networks. We show that the complexity depends on the strength of spatial embedding of the network and that this is related to the transition from a non-compact to compact phase of the network.

  10. A method to detect soil carbon degradation during soil erosion

    OpenAIRE

    Conen, F.; M Schaub; Alewell, C.

    2009-01-01

    Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs) approach (quantification of erosion rates) with stable c...

  11. Detection of soil compaction using soil electrical conductivity

    OpenAIRE

    Krajco, Jozef

    2007-01-01

    Conventional methods for soil compaction mapping, such as penetrometers, although accurate, work as stop-and-go providing point measurements. This process is both time consuming and labour intensive. On-the-go electrical Conductivity (EC) measurements such as electromagnetic induction (e.g. EM38) are affected by key soil properties including texture, moisture content and compaction, so offer a possible rapid alternative for compaction detection. Therefore, the aim of this work is the detectio...

  12. Numerical analysis of soil bearing capacity by changing soil characteristics

    Directory of Open Access Journals (Sweden)

    Mehdi Khodashenas Pelko

    2009-10-01

    Full Text Available In this research work by changing different parameters of soil foundation like density, cohesion and foundation depth and width of square foundation at angle of friction of 0° to 50° with increment of 5°, numerically safe bearing capacity of soil foundation is calculated and it is attempted to assess economical dimension of foundation as well as understanding variation range of bearing capacity at different degree. It could help of civil engineering in design of foundations at any situation.

  13. Calibration of effective soil hydraulic parameters of heterogeneous soil profiles

    OpenAIRE

    Jhorar, R.K.; J. C. van Dam; W. G. M. Bastiaanssen; R. A. Feddes

    2004-01-01

    Distributed hydrological models are useful tools to analyse the performance of irrigation systems at different levels. For the successful application of these models, it is imperative that effective soil hydraulic parameters at the scale of model application are known. The majority of previous studies to define effective soil hydraulic parameters have considered only horizontal spatial variability of the parameters while neglecting textural layering at different spatial locations. In this pap...

  14. EuroSoil2012: Soil science for the benefit of mankind and environment

    Science.gov (United States)

    EuroSoil2012 was convened in Bari ITALY from 2-6 July 2012 as the 4th International Congress of the European Confederation of Soil Science Societies (ECSSS). The theme of EuroSoil2012 as “soil science for the benefit of mankind and environment” aimed to cover several broad aspects of soil science w...

  15. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    Science.gov (United States)

    Thiet, Rachel K.

    2014-01-01

    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  16. Stocks of organic carbon in Estonian soils

    OpenAIRE

    Ko?lli, Raimo; Ellerma?e, Olav; Ko?ster, Tiia; Lemetti, Illar; Asi, Endla; Kauer, Karin

    2009-01-01

    The soil organic carbon (SOC) stocks (Mg ha–1) ofautomorphic mineral (9 soil groups), hydromorphic mineral (7), and lowland organic soils (4) are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil) layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2), a total of 593.8 ...

  17. Soil quality assessment using fuzzy modeling

    Directory of Open Access Journals (Sweden)

    D. Kurtener

    2008-12-01

    Full Text Available Maintaining soil productivity is essential if agriculture production systems are to be sustainable, thus soil quality is an essential issue. However, there is a paucity of tools for measurement for the purpose of understanding changes in soil quality. Here the possibility of using fuzzy modeling theory as a means to address the problem of soil quality assessment is considered. For soil quality assessment, two general types of fuzzy soil quality indicators potentially could be defined. The theoretical consideration of this process is illustrated with an example. Results indicate that the fuzzy multi-attributive approach could be effectively utilized as a tool leading to better understanding soil quality.

  18. Microorganisms as Indicators of Soil Health

    DEFF Research Database (Denmark)

    Nielsen, M. N.; Winding, A.

    2002-01-01

    Microorganisms are an essential part of living soil and of outmost importance for soil health. As such they can be used as indicators of soil health. This report reviews the current and potential future use of microbial indicators of soil health and recommends specific microbial indicators for soil ecosystem parameters representing policy relevant end points. It is further recommended to identify a specific minimum data set for specific policy relevant end points, to carefully establish baseline values, to improve scientific knowledge on biodiversity and modelling of soil data, and to implement new indicators into soil monitoring programmes as they become applicable.

  19. Soil washing and biotreatment of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    Soil washing was evaluated in combination with biological treatment as a decontamination technology for petroleum-contaminated soils. The bench-scale soil washing system utilized to clean the soils also fractionated the bulk soil into sand, silt, and clay fractions. With tap water as the carrier, the petroleum removal efficiencies varied from 44% to 55% for three soils. The postwash hydrocarbon levels were in the range of 145--905 mg/kg for sands, 2,000--5,000 mg/kg for silts, and greater than 14,000 mg/kg for clays. Biological degradation was evaluated as a secondary treatment to reduce the contaminated levels on each fraction to desired levels. Simulated composting lowered hydrocarbon levels on sands to below 50 mg/kg. Slurry treatment of silt and clay fractions reduced hydrocarbon levels to near 100 mg/kg for silt and in the range of 500 to 1,000 mg/kg for clays. It was found that composting and slurry treatment effectively met the suggested target-treatment level of 100 mg/kg for the sand and silt fractions. For the clays, slow desorption of the hydrocarbons and long treatment periods made slurry treatment an uneconomical alternative

  20. Crusting susceptibility in some allic Colombian soils

    International Nuclear Information System (INIS)

    Many lab methods were used: dry and water soil aggregates stability, instability index and erosion index and their results were related with soil characteristics like texture, Fe and Al oxides and organic matter. Soil samples collected within 0-2.5 and 2.5-5 cm of the soil surface came from terrains with many kinds of both forest and savanna intervened systems. Those results were analyzed like a completely randomized designed. It was found that significative changes in oxides content could increase soil-crusting susceptibility unless soil humus was up to was up to 4%. In this sense, pastures or its rotation with rice and leguminous offer a best alternative for intervening these natural systems. Intensive land husbandry or monocultures with low stubble soil incorporation caused an increase in physical instability at the top of soil. Dry soil stability test and instability index were most adequate for these soils

  1. Phytoremediation of Soil Trace Elements

    Science.gov (United States)

    Phytoremediation includes several distinct approaches to using plants to achieve soil remediation goals. Phytoextraction uses rare hyperaccumulator plants to accumulate in their shoots enough metals per year to achieve decontamination goals. Phytomining uses hyperaccumulators and biomass burn to pro...

  2. Davis Soil Moisture and Temperature Station Protocol

    Science.gov (United States)

    The GLOBE Program, University Corporation for Atmospheric Research (UCAR)

    2003-08-01

    The purpose of this resource is to log soil data using a Davis soil moisture and temperature station. Soil moisture and temperature sensors are installed at multiple depths and a station is set up to measure and record measurements at 15 minute intervals. These measurements are transferred to your school.s computer and then submitted to GLOBE via email data entry. Gravimetric soil moisture measurements must be taken to develop calibration curves for the soil moisture sensors.

  3. Optimal Soil Management and Environmental Policy

    OpenAIRE

    Lafforgue, Gilles; Oueslati, Walid

    2005-01-01

    This paper studies the effects of environmental policy on the farmer?s soil optimal management. We consider a dynamic economic model of soil erosion where the intensity use of inputs allows the farmer to control soil losses. Therefore, inputs use induces a pollution which is accentuated by the soil fragility. We show, at the steady state, that the environmental tax induces a more conservative farmer behavior for soil, but in some cases it can exacerbate pollution. These effects can be modera...

  4. Tropical Volcanic Soils From Flores Island, Indonesia

    OpenAIRE

    Hikmatullah; Kesumo Nugroho

    2010-01-01

    Soils that are developed intropical region with volcanic parent materials have many unique properties, and high potential for agricultural use.The purpose of this study is to characterize the soils developed on volcanic materials from Flores Island, Indonesia,and to examine if the soils meet the requirements for andic soil properties. Selected five soils profiles developed fromandesitic volcanic materials from Flores Island were studied to determine their properties. They were compared inthei...

  5. Ecology and Evolution of Soil Nematode Chemotaxis

    OpenAIRE

    Rasmann, S.; Ali, J. G.; Helder, J.; Putten, W. H.

    2012-01-01

    Plants influence the behavior of and modify community composition of soil-dwelling organisms through the exudation of organic molecules. Given the chemical complexity of the soil matrix, soil-dwelling organisms have evolved the ability to detect and respond to these cues for successful foraging. A key question is how specific these responses are and how they may evolve. Here, we review and discuss the ecology and evolution of chemotaxis of soil nematodes. Soil nematodes are a group of diverse...

  6. Assessing soil wetness with airborne radiometric data

    OpenAIRE

    Beamish, D.

    2014-01-01

    A valid interpretation model for UK radiometric data requires a joint assessment of both soil and bedrock variations. Although the geological bedrock (the parent material) provides a specific radiogenic level with associated radiochemical attributes, attenuation of the signal level is controlled by soil wetness in conjunction with the density and porosity of the soil cover. Peat soils, in particular, produce readily identifiable attenuation zones. Other soil types are also predicted to attenu...

  7. Determination of Soil Temperature Regimes in Croatia

    OpenAIRE

    Stjepan Husnjak; Mario Mesari?; Milan Mesi?

    2014-01-01

    Determination of soil temperature regimes is important to establish the diagnostic horizons that are used for classification of soils. Temperature regimes are determined according to Soil Taxonomy, and soils are allocated into six regimes. From the agricultural aspect, Croatia is divided into three regions: Pannonian, Mountainous and Adriatic and into nine sub-regions. The present analysis shows the average annual cycle of soil temperatures in the period 1981 - 2010 at depths of 10 and 50 cm....

  8. Use of soil nailing in geotechnical constructions

    OpenAIRE

    Konjar, Gregor

    2013-01-01

    The diploma thesis describes the technology of soil nailing, soil nail testing and global stabilitiy analysis of slope, reinforced with soil nails. Soil nailing is an affordable alternative to prestressed ground anchoring and provides good results in stabilizing slopes and geotechnical constructions. It is important that installation, testing and analysis of the results of soil nail tests are done correctly. Thesis describes standard SIST EN 14490:2010 and some personal experience regarding i...

  9. Structure and composition of soils

    Directory of Open Access Journals (Sweden)

    Snežana Nenadovi?

    2010-12-01

    Full Text Available This paper presents a study of soils structure and composition using up to date technique, such as scanning electronic microscopy, atomic force microscopy, X-ray diffraction, X-ray fluorescence, as well as some other characterization methods. It was shown that soil particles have porous structure and dimensions in the range from several millimeters to several hundreds of nanometers and consist of different minerals such as kaolin, quartz and feldspate.

  10. Testing oils in antarctic soils

    International Nuclear Information System (INIS)

    The resident seals, whales and penguins in Antarctica's Ross Sea region have only environmentally friendly ways of getting around. In contrast, wherever humans go in the Antarctic and whatever they do, be it research, tourism or fishing, they need fuel for their planes, icebreaker ships, land vehicles and generators. Because of this, petroleum hydrocarbons are the most likely source of pollution in the Antarctic. Accidental oil spills often occur near scientific stations, where storage and refuelling of aircraft and vehicles can result in spills. Spills also occur as a consequence of drilling activities. Dr Jackie Aislabie, a microbiologist from the New Zealand government's research company Landcare Research, is leading a program aimed at understanding how oil spills impact on Antarctic soils. The properties of pristine soils were compared with oil-contaminated soil at three locations: Scott Base, Marble Point and in the Wright Valley at Bull Pass. Soils in the Scott Base area are impacted by the establishment and continuous habitation of the base over 40 years, and a hydrocarbon-contaminated site was sampled near a former storage area for drums of mixed oils. Soil sampled from Marble Point was taken from near the old Marble Point camp, which was inhabited from 1957 to about 1963. Oil stains were visible on the soil surface, and are assumed to have been there for more than 30 years. The samples selected for analysis from the Wright Valley came from a spill site near Bright Valley came from a spill site near Bull Pass that occurred during seismic bore-hole drilling activities in 1985. The contamination levels ranged from below detection to just over 29,000 ?g/g of soil. Descriptions and analyse results are included into a Geographic Information System and associated soils database

  11. HYDROCARBONS DIAGNOSTIC OF POLLUTED SOILS

    OpenAIRE

    Mohamed Arad; Abdelkader Anouzla; Mohamed Safi; Salah Souabi; Hicham Rhbal

    2010-01-01

    Petroleum hydrocarbons are known as carcinogenic and may contaminate the environment (water, air and soil). In this study, a diagnostic of polluted soils by petroleum hydrocarbons is carried out in order to know the effect of their accumulation as well as their behavior in time. The aging factor, a source of significant changing in hydrocarbon behavior, is integrated on two sites of an industrial refinery as experimental samples. The first site is recently polluted by hydrocarbons while the s...

  12. Review of soil contamination guidance

    International Nuclear Information System (INIS)

    A review of existing and proposed radioactive soil contamination standards and guidance was conducted for United Nuclear Corporation (UNC), Office of Surplus Facilities Management. The more applicable standards were reviewed, evaluated and summarized. Information pertaining to soil contamination for both facility operation and facility decommissioning was obtained from a variety of sources. Most of the information reviewed was consistent with the philosophy of maintaining exposures at levels as low as reasonably achievable

  13. Soil erosion and agricultural sustainability

    OpenAIRE

    Montgomery, David R.

    2007-01-01

    Data drawn from a global compilation of studies quantitatively confirm the long-articulated contention that erosion rates from conventionally plowed agricultural fields average 1–2 orders of magnitude greater than rates of soil production, erosion under native vegetation, and long-term geological erosion. The general equivalence of the latter indicates that, considered globally, hillslope soil production and erosion evolve to balance geologic and climate forcing, whereas conventional plow-b...

  14. Saline waters and soil quality

    OpenAIRE

    Carmelo Dazzi

    2006-01-01

    The processes of secondary salinization due to anthropic actions are considered one of the most important environmental emergencies owing to their level of dangerousness. The soils of the dry areas of the Mediterranean basin are particularly prone to these processes. In such environments, it is imperative to resort to irrigation that allow for the reduction of risks due to soil moisture deficit and for the stabilization of yields. Frequently, saline waters are used that cause a lowering of th...

  15. Soil biodiversity for agricultural sustainability

    OpenAIRE

    Brussaard, L.; Ruiter, P. C.; Brown, G. G.

    2007-01-01

    We critically highlight some evidence for the importance of soil biodiversity to sustaining (agro-)ecosystem functioning and explore directions for future research. We first deal with resistance and resilience against abiotic disturbance and stress. There is evidence that soil biodiversity does confer stability to stress and disturbance, but the mechanism is not yet fully understood. It appears to depend on the kind of stress and disturbance and on the combination of stress and disturbance ef...

  16. Soil Degradation and Soil Quality in Western Europe: Current Situation and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Iñigo Virto

    2014-12-01

    Full Text Available The extent and causes of chemical, physical and biological degradation of soil, and of soil loss, vary greatly in different countries in Western Europe. The objective of this review paper is to examine these issues and also strategies for soil protection and future perspectives for soil quality evaluation, in light of present legislation aimed at soil protection. Agriculture and forestry are the main causes of many of the above problems, especially physical degradation, erosion and organic matter loss. Land take and soil sealing have increased in recent decades, further enhancing the problems. In agricultural land, conservation farming, organic farming and other soil-friendly practices have been seen to have site-specific effects, depending on the soil characteristics and the particular types of land use and land users. No single soil management strategy is suitable for all regions, soil types and soil uses. Except for soil contamination, specific legislation for soil protection is lacking in Western Europe. The Thematic Strategy for Soil Protection in the European Union has produced valuable information and has encouraged the development of networks and databases. However, soil degradation is addressed only indirectly in environmental policies and through the Common Agricultural Policy of the European Union, which promotes farming practices that support soil conservation. Despite these efforts, there remains a need for soil monitoring networks and decision-support systems aimed at optimization of soil quality in the region. The pressure on European soils will continue in the future, and a clearly defined regulatory framework is needed.

  17. Bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    This paper reports on bioremediation, which offers a cost-competitive, effective remediation alternative for soil contaminated with petroleum products. These technologies involve using microorganisms to biologically degrade organic constituents in contaminated soil. All bioremediation applications must mitigate various environmental rate limiting factors so that the biodegradation rates for petroleum hydrocarbons are optimized in field-relevant situations. Traditional bioremediation applications include landfarming, bioreactors, and composting. A more recent bioremediation application that has proven successful involves excavation of contaminated soil. The process involves the placement of the soils into a powerscreen, where it is screened to remove rocks and larger debris. The screened soil is then conveyed to a ribbon blender, where it is mixed in batch with nutrient solution containing nitrogen, phosphorus, water, and surfactants. Each mixed soil batch is then placed in a curing pile, where it remains undisturbed for the remainder of the treatment process, during which time biodegradation by naturally occurring microorganisms, utilizing biochemical pathways mediated by enzymes, will occur

  18. Denitrification in suburban lawn soils.

    Science.gov (United States)

    Raciti, Steve M; Burgin, Amy J; Groffman, Peter M; Lewis, David N; Fahey, Timothy J

    2011-01-01

    There is great uncertainty about the fate of nitrogen (N) added to urban and suburban lawns. We used direct flux and in situ chamber methods to measure N and NO fluxes from lawns instrumented with soil O sensors. We hypothesized that soil O, moisture, and available NO were the most important controls on denitrification and that N and NO fluxes would be high following fertilizer addition and precipitation events. While our results support these hypotheses, the thresholds of soil O, moisture, and NO availability required to see significant N fluxes were greater than expected. Denitrification rates were high in saturated, fertilized soils, but low under all other conditions. Annual denitrification was calculated to be 14.0 ± 3.6 kg N ha yr, with 5% of the growing season accounting for >80% of the annual activity. Denitrification is thus an important means of removing reactive N in residential landscapes, but varies markedly in space, time, and with factors that affect soil saturation (texture, structure, compaction) and NO availability (fertilization). Rates of in situ NO flux were low; however, when recently fertilized soils saturated with water were incubated in the laboratory, we saw extraordinarily high rates of NO production for the first few hours of incubation, followed by rapid NO consumption later in the experiment. These findings indicate a lag time between accelerated NO production and counterbalancing increases in NO consumption; thus, we cannot yet conclude that lawns are an insignificant source of NO in our study area. PMID:22031577

  19. Early Soil Moisture Field Experiments

    Science.gov (United States)

    Schmugge, T.

    2008-12-01

    Before the large scale field experiments described in the call for papers, there were a number of experiments devoted to a single parameter, e.g. soil moisture. In the early 1970's, before the launch of the first microwave radiometer by NASA, there were a number of aircraft experiments to determine utility of these sensors for land observations. For soil moisture, these experiments were conducted in southwestern United States over irrigated agricultural areas which could provide a wide range of moisture conditions on a given day. The radiometers covered the wavelength range from 0.8 to 21 cm. These experiments demonstrated that it is possible to observe soil moisture variations remotely using a microwave radiometer with a sensitivity of about 3 K / unit of soil moisture. The results also showed that the longer wavelengths were better, with a radiometer at the 21 cm wavelength giving the best results. These positive results led to the development of Push Broom Microwave Radiometer (PBMR) and the Electrically Scanned Thinned Array Radiometer (ESTAR) instruments at the 21-cm wavelength. They have been used extensively in the large-scale experiments such as HAPEX-MOBILHY, FIFE, Monsoon90, SMEX, etc. The multi-beam nature of these instruments makes it possible to obtain more extensive coverage and thus to map spatial variations of surface soil moisture. Examples of the early results along with the more recent soil moisture maps will be presented.

  20. The role of soil macrofauna in soil formation and carbon storage in post-mining sites.

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan

    Boca Raton : Taylor & Francis CRC Press, 2013, s. 236-249. ISBN 978-1-4665-9931-4 Institutional support: RVO:60077344 Keywords : post- mining sites * soil macrofauna * soil formation * carbon storage Subject RIV: DF - Soil Science

  1. CATALYTIC POTENTIAL OF SOIL HYDROLASES IN NORTHEAST CHINA UNDER DIFFERENT SOIL MOISTURE CONDITIONS

    Scientific Electronic Library Online (English)

    Y.L, Zhang; Cc.X, Sun; L.J, Chen; Z.H, Duan.

    Full Text Available An incubation test with black soil (Phaeozem), Albic soil (Albic Luvisols), brown soil (Cambisols), and cinnamon soil (Chromic Luvisol) from Northeast China was conducted under the conditions of 10%, 20% and30 % field capacity, and the kinetic parameters of soil urease, phosphatase, and arylsulphata [...] se were determined, aimed to study the changes in the catalytic potential of these enzymes under different soil moisture conditions. All test enzymes exhibited typical Michaelis-Menten kinetic behaviors. The test enzymes exhibited the highest enzyme-substrate affinity (l/Km) at 20% or 30% field capacity. With increasing soil moisture content, the Fmax of test soil urease decreased, while that of soil phosphatase and arylsulphatase increased, with the maximum Vmax/Km of urease at 20% field capacity and that of phosphatases and arylsulphatase at 30% field capacity. To control soil moisture condition could be a feasible way in regulating the biochemical transformation processes of soil nutrients catalyzed by soil hydrolases.

  2. Pyrosequencing-based assessment of soil bacterial communities within soil aggregates: Linking structure to C storage

    Science.gov (United States)

    Alterations in soil structural properties created by agricultural management practices have a significant influence on soil aggregation, which manages the chemical and physical heterogeneity of soil properties, and, consequently, the distribution of microorganisms and their activity among aggregates...

  3. A soil mechanics approach to study soil compaction and traffic effect on the preconsolidation pressure of tropical soils

    International Nuclear Information System (INIS)

    Several researchers have already demonstrated the causes and the effects of soil compaction. These studies showed that the soil compaction is a limiting factor in the agricultural production. The attributes of the soil conventionally monitored has not been capable to quantify the load support capacity of the soil, not allowing to foresee the levels of pressures that can be applied to the soils at different moisture conditions without additional soil compaction (structure degradation) happens. The researches done in the soil compressive behaviour of some tropical soils indicate that the pre-compression stress may be used as an alternative measure of the load support capacity and as a quantitative indicator of the structure sustainability of the tropical soils

  4. Soil Carbon Changes Influenced by Soil Management and Calculation Method

    Directory of Open Access Journals (Sweden)

    Maysoon M. Mikha

    2013-05-01

    Full Text Available Throughout the years, many studies have evaluated changes in soil organic carbon (SOC mass on a fixed-depth (FD basis without considering changes in soil mass caused by changing bulk density (?b. This study evaluates the temporal changes in SOC caused by two factors: 1 changing SOC concentration; and 2 changing equivalent soil mass (ESM in comparison with FD. In addition, this study evaluates calculating changes in SOC stock over time using a minimum equivalent soil mass (ESMmin basis from a single sampling event compared with the FD scenario. A tillage [no-tillage (NT and chisel plow (CP]-crop rotation (multiple crop and continuous corn, and irrigation (full and delayed study was initiated in 2001 on Weld silt loam soil. After seven years, SOC concentration in the 0 - 30 cm depth was 19.7% greater in 2008 compared with 2001. Standardizing the soil mass of 2001 to the ESM of 2008 for each individual treatment showed an average gain in SOC of 5.8 Mg C·ha-1 in 2008 compared with 2001. However, the increase in SOC using ESM was twice the SOC gained with the FD calculation, where some treatments lost SOC after seven years of management. Estimating SOC levels using the ESMmin and, thereby, eliminating the confounding effect of soil ?b indicated that SOC stock was influenced by crop species and their interaction with irrigation, but not by tillage practices. Over all, the ESM calculation appears to be more effective in evaluating SOC stock than the FD calculation.

  5. Soil compaction and growth of woody plants

    International Nuclear Information System (INIS)

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compactedas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased supply of physiological growth requirements at meristematic sites. Many protocols have been developed, with variable success, to alleviate the adverse effects of soil compaction on the growth and development of woody plants. These include planting of compaction-tolerant species, controlling vehicular and animal traffic, amending soils by adding coarse materials and,or organic matter, replacing compacted soils with uncompacted soils, loosening soils with aerating equipment, installing drainage systems and judiciously applying fertilizers. Prevention of soil compaction before planting is usually much preferred over post-planting treatments because the latter are expensive and difficult to apply, may not be adequately effective and may injure plant roots

  6. Natural capital, ecosystem services, and soil change: why soil science must embrace an ecosystems approach

    OpenAIRE

    Robinson, D. A.; Hockley, N.; Dominati, E.; Lebron, I.; Scow, K. M.; Reynolds, B.; Emmett, B. A.; Keith, A. M.; Jonge, L. W.; Schjonning, P.; Moldrup, P.; Jones, S. B.; Tuller, M.

    2012-01-01

    Soil is part of the Earth's life support system, but how should we convey the value of this and of soil as a resource? Consideration of the ecosystem services and natural capital of soils offers a framework going beyond performance indicators of soil health and quality, and recognizes the broad value that soil contributes to human wellbeing. This approach provides links and synergies between soil science and other disciplines such as ecology, hydrology, and economics, recognizing the importan...

  7. Adsorption of methomyl by soils of southern Spain and soil components

    OpenAIRE

    Cox, L.; Hermosin, M. C.; Cornejo, J.

    1993-01-01

    The adsorption of methomyl (S-methyl N-(methylcarbamoyloxy) thioacetimidate) by 14 soil samples of Southern Spain with different characteristics has been investigated studying the correlation between adsorption and soil properties and the effect of methomyl concentration and soil/solution ratio on adsorption of methomyl by soils. Adsorption has been expressed as the soil-water distribution coefficient Kd. Kd values slightly decreased when soil/solution ratio and methomyl concentration increas...

  8. SoilGrids1km— global soil information based on automated mapping

    OpenAIRE

    Hengl, T.; Mendes Jesus, J. S.; Macmillan, R. A.; Batjes, N. H.; Heuvelink, G. B. M.; Carvalho Ribeiro, E. D.; Samuel Rosa, A.; Kempen, B.; Leenaars, J. G. B.; Walsh, M. G.; Ruiperez Gonzalez, M.

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (a...

  9. Impact of Environmental Factors and Biological Soil Crust Types on Soil Respiration in a Desert Ecosystem

    OpenAIRE

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93±0.43 µmol m?...

  10. Plant soil interactions alter carbon cycling in an upland grassland soil

    OpenAIRE

    BruceCThomson; NIckJOstle; AndrewSWhiteley

    2013-01-01

    Soil carbon (C) storage is dependent upon the complex dynamics of fresh and native organic matter cycling, which are regulated by plant and soil-microbial activities. A fundamental challenge exists to link microbial biodiversity with plant-soil C cycling processes to elucidate the underlying mechanisms regulating soil carbon. To address this, we contrasted vegetated grassland soils with bare soils, which had been plant-free for 3 years, using stable isotope (13C) labeled substrate assays and ...

  11. Influence of green manure fertilization on soil enzyme activities and other soil properties

    OpenAIRE

    Alina Dora SAMUEL; Monica SIPOS; Camelia DUSA

    2007-01-01

    Agricultural practices that improve agricultural sustainability are needed particularly for brown luvic soil. Soil enzyme activities can provide information on how soil management is affecting the processes in soil such as decomposition and nutrient cycling. Soil enzyme activities (actual and potential dehydrogenase, catalase, acid and alkaline phosphatase) were determined in the 0–10, 10–20, and 20–30 cm layers of a brown luvic soil submitted to a complex fertilization experiment with ...

  12. Efficiency comparison of conventional and digital soil mapping for updating soil maps

    OpenAIRE

    Kempen, B.; Brus, D. J.; Stoorvogel, J. J.; Heuvelink, G. B. M.; Vries, F.

    2012-01-01

    This study compared the efficiency of geostatistical digital soil mapping (DSM) with conventional soil mapping (CSM) for updating soil class and property maps of a cultivated peatland in the Netherlands. For digital soil class mapping, the generalized linear geostatistical model was used. Digital mapping of the soil organic matter (SOM) content and peat thickness was done by universal kriging. The conventional soil class map was created by free survey, while the property maps were created wit...

  13. Soil Degradation and Soil Value in Slovakia – Two Problems with Common Denominator

    OpenAIRE

    Radoslav Bujnovský; Jozef Vil?ek

    2011-01-01

    Soil use is oft en accompanied by its degradation. Immediate reason of soil degradation in agriculture is the non-respecting the principles of good agricultural practice. Giving long-term precedence to production function over remaining ecological ones as well as supporting the land consumption for economy development by governmental bodies are next reasons of soil degradation and mirror the societal values and priorities.Soil provides many services that in soil science are defined as soil fu...

  14. Priority areas in the Soil Framework Directive : the significance of soil biodiversity and ecosystem services

    OpenAIRE

    M. Rutgers; Jagers op Akkerhuis, G.A.J.M.; Bloem, J.

    2010-01-01

    Seven soil threats are distinguished in the draft text of the Soil Framework Directive of the European Commission. Soil organic matter decline and soil compaction are the most relevant for the Netherlands due to intensive agricultural land management. Loss of soil biodiversity should be considered when identifying priority areas requiring protection from organic matter decline and compaction. This report describes the first steps in clarifying the relationship between soil biodiversity and de...

  15. Spatial and temporal variability of soil electrical conductivity related to soil moisture

    Scientific Electronic Library Online (English)

    José Paulo, Molin; Gustavo Di Chiacchio, Faulin.

    2013-02-01

    Full Text Available Soil electrical conductivity (ECa) is a soil quality indicator associated to attributes interesting to site-specific soil management such as soil moisture and texture. Soil ECa provides information that helps guide soil management decisions, so we performed spatial evaluation of soil moisture in two [...] experimental fields in two consecutive years and modeled its influence on soil ECa. Soil ECa, moisture and clay content were evaluated by statistical, geostatistical and regression analyses. Semivariogram models, adjusted for soil moisture, had strong spatial dependence, but the relationship between soil moisture and soil ECa was obtained only in one of the experimental fields, where soil moisture and clay content range was higher. In this same field, coefficients of determinations between soil moisture and clay content were above 0.70. In the second field, the low soil moisture and clay content range explain the absence of a relationship between soil ECa and soil moisture. Data repetition over the years, suggested that ECa is a qualitative indicator in areas with high spatial variability in soil texture.

  16. Soil gas radon concentrations measurements in terms of great soil groups

    International Nuclear Information System (INIS)

    In this study, soil gas radon concentrations were investigated according to locations, horizontal soil layers and great soil groups around Tuzla Fault, Seferihisar-?zmir. Great soil groups are a category that described the horizontal soil layers under soil classification system and distributions of radon concentration in the great soil groups are firstly determined by the present study. According to the obtained results, it has been showed that the radon concentrations in the Koluvial soil group are higher than the other soil groups in the region. Also significant differences on location in same great soil group were determined. The radon concentrations in the Koluvial soil groups were measured with respect to soil layers structures (A, B, C1, and C2). It has been observed that the values increase with depth of soil (C2>C1>B>A). The main reason may be due to the meteorological factors that have limited effect on radon escape from deep layers. Although fault lines pass thought the study area radon concentrations were varied location to location, layer to layer and great group to great group. The study shows that a detailed location description should be performed before soil radon measurements for earthquake predictions. -- Highlights: • Soil gas radon measurements on different great soil groups using LR 115 Type 2 solid state nuclear detectors. • An evaluation of radon level in terms of great soil groups, measurement location and soil horizons. • Modified track counting on LR 115 detectors

  17. Continuous Mapping of Soil pH Using Digital Soil Mapping Approach in Europe

    OpenAIRE

    Gardi, Ciro; Yigini, Yusuf

    2012-01-01

    Soil pH is one of the most important chemical parameters of soil, playing an essential role on the agricultural production and on the distribution of plants and soil biota communities. It is the expression of soil genesis that in turns is a function of soil forming factors and influences all the chemical, physical and biological processes that occur in the soil. Thus it shapes the entire soil ecosystem. Due to any of the above reasons, mapping of soil pH becomes very important to provide harm...

  18. 4.3 Environmental media: soil

    International Nuclear Information System (INIS)

    An overview about the Austrian soil condition covering the period 2001-2003 is presented. It provides information on selected inorganic pollutants like copper, chromium, cadmium, cesium, lead, nickel, zinc and mercury as well as organic pollutants (polycyclic aromatic hydrocarbons, organic halogen compounds (pentachlorophenol, PCB) etc.). First Austria-wide evaluations were derived from the soil information system BORIS, which provides a survey of selected pollutant concentrations in Austrian top soils. This comprehensive data collection includes major soil surveys, such as the data from soil inventories of the Federal Provinces, the Austrian forest soil inventory, the Austria-wide radio-cesium survey, as well as data from more than 30 other local surveys regarding special soil issues and problems (conurbation, industrial sites, etc.). In general the condition of Austrian soils may be considered good, however still, there are some regions with polluted soils, particularly in the Austrian Alps. (nevyjel)

  19. Stocks of organic carbon in Estonian soils

    Directory of Open Access Journals (Sweden)

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  20. Soil compaction and growth of woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T.T. [Univ. of California, Berkeley (United States). Dept. of Environmental Science, Policy and Management

    1999-07-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased supply of physiological growth requirements at meristematic sites. Many protocols have been developed, with variable success, to alleviate the adverse effects of soil compaction on the growth and development of woody plants. These include planting of compaction-tolerant species, controlling vehicular and animal traffic, amending soils by adding coarse materials and,or organic matter, replacing compacted soils with uncompacted soils, loosening soils with aerating equipment, installing drainage systems and judiciously applying fertilizers. Prevention of soil compaction before planting is usually much preferred over post-planting treatments because the latter are expensive and difficult to apply, may not be adequately effective and may injure plant roots.

  1. 210Pb in Estonian Soil

    International Nuclear Information System (INIS)

    Full text: Activity concentrations of 210Pb as a function of depth have been studied in natural soil profiles in Estonia. Most of the samples were collected from northeastern part of Estonia, characterised by elevated activity concentrations of U/Ra in soil (up to 320 Bq/kg), by enhanced technogenic fly-ash radionuclide deposition and by radon exhalation. Collected soil samples were analysed for 210Pb by using low-background gamma spectrometer with a HPGe planar detector. For each sample in a sealed container, a self-attenuation correction basing on the direct 45 keV gamma-ray transmission measurements and the actual measurement geometry model was applied in the spectrum analysis. For a comparison, in the same samples both activity concentrations of 226Ra and radon emanation coefficients were measured by using coaxial HPGe gamma spectrometry. In all studied soil profiles maximum activity concentrations of 210Pb were found in the top surface layer. The surface maximum was followed by a considerable decrease in activity concentration with increasing depth. In surface soil the activity concentration ratio of 210Pb to 226Ra demonstrated a significant site-specific variation with values up to 5 or 6, while it was approximately equal to 1 in deep soil layers. Radon emanation coefficients in the range of 20-30% were determined for dry soil. A simple one-dimensional model describing depth distributions of the 210Pb activity was applied to derive the 210Pb deposition rates and migration parameters characteristic to the sampling sites. (author)

  2. Uranium speciation in Fernald soils

    International Nuclear Information System (INIS)

    This report details progress made from January 1 to May 31, 1992 in this analytical support task to determine the speciation of uranium in contaminated soil samples from the Fernald Environmental Management Project site under the auspices of the Uranium in Soils Integrated Demonstration funded through the US DOE's Office of Technology Development. The authors' efforts have focused on characterization of soil samples collected by S.Y. Lee (Oak Ridge National Laboratory) from five locales at the Fernald site. These were chosen to sample a broad range of uranium source terms. On the basis of x-ray absorption spectroscopy data, they have determined that the majority of uranium (> 80--90%) exists in the hexavalent oxidation state for all samples examined. This is a beneficial finding from the perspective of remediation, because U(VI) species are more soluble in general than uranium species in other oxidation states. Optical luminescence data from many of the samples show the characteristic structured yellow-green emission from the uranyl (UO22+) moiety. The luminescence data also suggest that much of the uranium in these soils is present as well-crystallized UO22+ species. Some clear spectroscopic distinctions have been noted for several samples that illustrate significant differences in the speciation (1) from site to site, (2) within different horizons at the same site, and (3) within different size fractions of the soils in the same horizon at the same site. This marked heterogeneity in uranyl speciation suggests that several soil washing strategies may be necessary to reduce the total uranium concentrations within these soils to regulatory limits

  3. Uranium speciation in Fernald soils

    International Nuclear Information System (INIS)

    This interim progress report describes new experimental data collected from October 1, 1992 through May 31, 1993 as part of the Characterization Task of the Uranium in Soils Integrated Demonstration of the Office of Technology Development, Office of Environmental Restoration and Waste Management of the United States Department of Energy. X-ray absorption and optical luminescence spectroscopies have been used to analyze the uranium remaining in contaminated soils from the Fernald site after these samples were treated by various decontamination technologies under development within this Integrated Demonstration. The treatment technologies included soil washes with carbonate, citrate, Tiron, and Tiron/dithionite mixtures. The effectiveness of these procedures is discussed in a separate report from the Decontamination Task group. The characterization results indicate that following the application of all of these treatment strategies the uranium remaining in the soil is still best characterized as being primarily in the hexavalent oxidation state. However, for the A-series soils from the Incinerator Area, the speciation of this remaining uranium is different than seen previously based on the x-ray absorption data. The luminescence data for these treated soils also demonstrate that there is a decrease in size and quantity of the particulate hexavalent uranium that gives rise to the structured green emission. Thus, all treatment technologies do seem to generate a more dispersed, finer-grained form of uranium. For several treated samples a characteristic luminescence signal was found indicative of a schoepite phase of uranium. New results are also reported for untreated Fernald soil samples and reference uranium mineral phases

  4. Bamboo as Soil Reinforcement: A Laboratory Trial

    OpenAIRE

    Mustapha, Alhaji Mohammed

    2008-01-01

    A lateritic soil classified as A-6 under AASHTO soil classification system was reinforced with 0, 1, 2 and 3 bamboo specimens at laboratory trial level to evaluate its unconfined compressive strength (UCS) and modulus of rigidity. The soil specimens were molded in cylindrical form of 38mm diameter and 76mm height while the bamboo specimens were trimmed in to circular plates of 34mm diameter and 3mm thickness. The trial soil specimens are: soil specimen without bamboo specimen (0 bamboo), soil...

  5. Soil science and the h index

    OpenAIRE

    Minasny, B.; Hartemink, A. E.; Mcbratney, A. B.

    2007-01-01

    Soil science is a relatively young and specialised field of science. This note discusses the use of the h index as a scientific output measure in soil science. We explore the governing factors of h index in soil science: the number of soil scientists, the number of papers published, the average number of citations, and the age of the scientist. We found the average relationship between h index and scientific age for soil science: h = 0.7 t. The h index for soil science is smaller than other m...

  6. Soils and public health: the vital nexus

    Science.gov (United States)

    Pachepsky, Yakov

    2015-04-01

    Soils sustain life. They affect human health via quantity, quality, and safety of available food and water, and via direct exposure of individuals to soils. Throughout the history of civilization, soil-health relationships have inspired spiritual movements, philosophical systems, cultural exchanges, and interdisciplinary interactions, and provided medicinal substances of paramount impact. Given the climate, resource, and population pressures, understanding and managing the soil-health interactions becomes a modern imperative. We are witnessing a paradigm shift from recognizing and yet disregarding the 'soil-health' nexus complexity to parameterizing this complexity and identifying reliable controls. This becomes possible with the advent of modern research tools as a source of 'big data' on multivariate nonlinear soil systems and the multiplicity of health metrics. The phenomenon of suppression of human pathogens in soils and plants presents a recent example of these developments. Evidence is growing about the dependence of pathogen suppression on the soil microbial community structure which, in turn, is affected by the soil-plant system management. Soil eutrophication appears to create favorable conditions for pathogen survival. Another example of promising information-rich research considers links and feedbacks between the soil microbial community structure and structure of soil physical pore space. The two structures are intertwined and involved in the intricate self-organization that controls soil services to public health. This, in particular, affects functioning of soils as a powerful water filter and the capacity of this filter with respect to emerging contaminants in both 'green' and 'blue' waters. To evaluate effects of soil services to public health, upscaling procedures are needed for relating the fine-scale mechanistic knowledge to available coarse-scale information on soil properties and management. More needs to be learned about health effects of soils in organic agriculture that are often used for soil quality comparison and benchmarking. The influence of soil degradation and rehabilitation on public health has to be assessed in quantitative terms. Some links between soils and public health regarding, for example, immune maturation, antibiotic resistance development, and mental well-being, have been long hypothesized but remain to be examined. The data on soil-health relationships are scarce and very much disjointed, and a concerted international effort appears to be needed to encompass various economic and geographical settings. Current definitions of healthy soil broadly include aspects that are conducive for human health, and functional evaluation of soil quality with a focus on public health will have useful applications in public policies and perception. The 'soil-health' connection is complex in character, global in manifestation, and applicable to every human being.

  7. Phytoremediation of carbofuran residues in soil

    Directory of Open Access Journals (Sweden)

    Mullika Teerakun

    2004-02-01

    Full Text Available In this study, the ability of plants to clean up carbofuran residues in rice field soil was examined. Plants were grown in 8 inches diameter plastic pots filled with soils containing 5 mg/kg carbofuran. Phytoremediated samples were analyzed for carbofuran concentration. The results showed that carbofuran was rapidly degraded under planted soil and non-planted soil with half-lives ranging from 2-7 days. These facts suggest that phytoremediation could accelerate the degradation of carbofuran residues in soil and carbofuran was not persistent in the soil environment.

  8. Innovative technologies for soil cleanup

    International Nuclear Information System (INIS)

    These notes provide a broad overview of current developments in innovative technologies for soil cleanup. In this context, soil cleanup technologies include site remediation methods that deal primarily with the vadose zone and with relatively shallow, near-surface contamination of soil or rock materials. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in soil cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the sits-specific technical challenges presented by each sold contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After cataloging a representative selection of these technologies, one of the new technologies, Dynamic Underground Stripping, is discussed in more detail to highlight a promising soil cleanup technology that is now being field tested

  9. The use of some soil aggregate indices to assess potential soil loss in soils of south-eastern nigeria

    Directory of Open Access Journals (Sweden)

    J.S.C. Mbagwu

    1995-06-01

    Full Text Available Six aggregate indices and some soil properties were evaluated to predict potential soil loss in soils of Southeastern Nigeria. Of the aggregate indices tested, dispersion ratio (DR, Wischmeier's erodibility index (K, clay dispersion index (CDI and clay floccula-tion index (CFI ranked higher than geometric mean diameter (GMD and mean-weight diameter (MWD in predicting potential soil loss. Some aggregate indices found to correlate well with soil loss are in order of decreasing predictability CFI>CDI>DR>GMDŁMWD while organic carbon, % clay content and Fe.O. are some soil characteristics that predict the potential of these soils to erode fairly accurately. Dispersion and flocculation are shown to be influenced by metal-organic complexes which often leads to increased potential soil loss.

  10. Spatial disaggregation of complex soil map units at regional scale based on soil-landscape relationships

    Science.gov (United States)

    Vincent, Sébastien; Lemercier, Blandine; Berthier, Lionel; Walter, Christian

    2015-04-01

    Accurate soil information over large extent is essential to manage agronomical and environmental issues. Where it exists, information on soil is often sparse or available at coarser resolution than required. Typically, the spatial distribution of soil at regional scale is represented as a set of polygons defining soil map units (SMU), each one describing several soil types not spatially delineated, and a semantic database describing these objects. Delineation of soil types within SMU, ie spatial disaggregation of SMU allows improved soil information's accuracy using legacy data. The aim of this study was to predict soil types by spatial disaggregation of SMU through a decision tree approach, considering expert knowledge on soil-landscape relationships embedded in soil databases. The DSMART (Disaggregation and Harmonization of Soil Map Units Through resampled Classification Trees) algorithm developed by Odgers et al. (2014) was used. It requires soil information, environmental covariates, and calibration samples, to build then extrapolate decision trees. To assign a soil type to a particular spatial position, a weighed random allocation approach is applied: each soil type in the SMU is weighted according to its assumed proportion of occurrence in the SMU. Thus soil-landscape relationships are not considered in the current version of DSMART. Expert rules on soil distribution considering the relief, parent material and wetlands location were proposed to drive the procedure of allocation of soil type to sampled positions, in order to integrate the soil-landscape relationships. Semantic information about spatial organization of soil types within SMU and exhaustive landscape descriptors were used. In the eastern part of Brittany (NW France), 171 soil types were described; their relative area in the SMU were estimated, geomorphological and geological contexts were recorded. The model predicted 144 soil types. An external validation was performed by comparing predicted with effectively observed soil types derived from available soil maps at scale of 1:25.000 or 1:50.000. Overall accuracies were 63.1% and 36.2%, respectively considering or not the adjacent pixels. The introduction of expert rules based on soil-landscape relationships to allocate soil types to calibration samples enhanced dramatically the results in comparison with a simple weighted random allocation procedure. It also enabled the production of a comprehensive soil map, retrieving expected spatial organization of soils. Estimation of soil properties for various depths is planned using disaggregated soil types, according to the GlobalSoilmap.net specifications. Odgers, N.P., Sun, W., McBratney, A.B., Minasny, B., Clifford, D., 2014. Disaggregating and harmonising soil map units through resampled classification trees. Geoderma 214, 91-100.

  11. Monitor Soil Degradation or Triage for Soil Security? An Australian Challenge

    Directory of Open Access Journals (Sweden)

    Andrea Koch

    2015-04-01

    Full Text Available The Australian National Soil Research, Development and Extension Strategy identifies soil security as a foundation for the current and future productivity and profitability of Australian agriculture. Current agricultural production is attenuated by soil degradation. Future production is highly dependent on the condition of Australian soils. Soil degradation in Australia is dominated in its areal extent by soil erosion. We reiterate the use of soil erosion as a reliable indicator of soil condition/quality and a practical measure of soil degradation. We describe three key phases of soil degradation since European settlement, and show a clear link between inappropriate agricultural practices and the resultant soil degradation. We demonstrate that modern agricultural practices have had a marked effect on reducing erosion. Current advances in agricultural soil management could lead to further stabilization and slowing of soil degradation in addition to improving productivity. However, policy complacency towards soil degradation, combined with future climate projections of increased rainfall intensity but decreased volumes, warmer temperatures and increased time in drought may once again accelerate soil degradation and susceptibility to erosion and thus limit the ability of agriculture to advance without further improving soil management practices. Monitoring soil degradation may indicate land degradation, but we contend that monitoring will not lead to soil security. We propose the adoption of a triaging approach to soil degradation using the soil security framework, to prioritise treatment plans that engage science and agriculture to develop practices that simultaneously increase productivity and improve soil condition. This will provide a public policy platform for efficient allocation of public and private resources to secure Australia’s soil resource.

  12. Evaluation of Desertification Intensity Using Soil Indices

    Directory of Open Access Journals (Sweden)

    A. Khanamani

    2013-06-01

    Full Text Available Soil characteristics are the most powerful factors in desertification phenomenon. The purpose of this study was investigating soil characteristics as indices for evaluating desertification intensity. The most important indicators of the soil that affect desertification were selected in the present study. Soil samples were taken from Segzi desert vicinity located in the east of Isfahan city with surface area of 112,167 ha. Soil indices such as Soil texture, soil gypsum percentage, the content of HCO3-1, electrical conductivity (EC, pH, the percentage of the organic matter, the content of the soil sodium, chloral and sodium absorption ratio (SAR were selected. All of these indices were calculated on the thirty four soil samples. After ensuring of the normality of the samples by Klomogrov-Smirnov test, the mentioned indices were imported into GIS for delineating soil characteristics maps. To delineate distribution maps of each soil indice, inverse distance weighting and ordinary and discrete Kriging methods were applied, and appropriate method was selected. Each layer was scored based on MEDALUS model, and the final characteristic maps were then generated using soil geometric mean indices. Results showed that the affected areas of the average, severe and very severe classes of desertification were calculated about 66000, 45650 and 517 ha, respectively. The results also revealed that the indices of the organic matter, soil gypsum percentage, electrical conductivity and SAR were the most influential indicators, which affected desertification in the study area.

  13. Impacts of soil structure on crop growth

    Directory of Open Access Journals (Sweden)

    Farkas C.S.

    1997-06-01

    Full Text Available Intensive agricultural utilisation of soils may change the structural status and through it the credibility and fertility of soils. Since soil structure has not been quantified explicitly, studying structure-related soil phenomena is still actual. The goal of the present study was to apply field measurements on structure related soil hydrophysical properties and to study their mutual effect on crop growth. Near hydraulic water conductivity, bulk density, water retention characteristics of soils were measured in a wheat and a maize field as well as the soil water content dynamics during the vegetation period. Simulation models (SOIL and SOILN were applied for studying different effects of soil structural status on winter wheat and maize crop's developments and on yields. Simulation results showed that water limitation in fields having normal and high bulk density topsoil developed gradually. In the low bulk density field case, water limitation on crop growth is noticeable almost from the beginning of crop growth. Though the combined effects of soil water stress and rooting due to soil structure resulted in marked differences in simulated yields, the effect of the saturated water conductivity and bulk density on the crop yield alone proved to be non significant. However, when a consequence was introduced regarding the plant root distribution, which differs in different soil physical conditions, a strong effect on the crop's growth was detected. This finding demonstrates the complex nature of the phenomenon called structural status of soil, and it definitely requires further research.

  14. Salt Affected Soils Their Identification and Reclamation

    Directory of Open Access Journals (Sweden)

    A.A. Siyal

    2002-01-01

    Full Text Available Salt affected soils are found throughout the world especially in arid and semi arid regions. Soil salinization is mainly due to the use of saline water for irrigation, seepage from the canals, an arid climate evaporation of salty soil waters from the soil surface over shallow water tables and poor drainage. Salt effected soils are grouped into saline, alkali and saline-alkali soils. Three different ways viz. scrapping, surface flushing and leaching are normally used for reclamation of these soils. Reclamation of salt affected soils by leaching is the best way of reclamation. Continuous and intermittent leaching are two techniques of water application during the leaching process. Continuous leaching is quicker but it consumes more water than intermittent leaching. Soil amendments (gypsum, sulphur or sulphuric acid are usually needed for the reclamation of soils with high sodium content. By planting trees in soils with high water table and no drainage, soil reclamation process can be accomplished. Soil salinization can be prevented by using good quality water and by managing water table below root zone by providing surface of subsurface drainage.

  15. Effect of the animals on the soil

    International Nuclear Information System (INIS)

    Soil is defined here in terms of opposite arbitrary frontiers more than its functions. The animals of the soil are defined in relation to their effect on the soil. The animals that live in the soil and intimately related to they are part of the soil. The animals that live on the soil make him contributions. Many animals are anphi-habitants, that is to say, they live in the soil and a one atmosphere outside of the soil. Animal exopedonics (outside of the soil) and endopedonics (inside the soil) they are considered with regard to twelve activities: blended, accumulation, formation of pores, obstruction of pores, formation and peds destruction, regulation of the erosion of the soil, regulation of the movement of air and the soil, regulation of the liter of plants, regulation of the animal liter, regulation of the cycle of nutritious, regulation of the biota and production of element special. The animals participate in numerous processes of formation of the soil and they affect the use of the same one

  16. Boreal forest soil erosion and soil-atmosphere carbon exchange

    Science.gov (United States)

    Billings, S. A.; Harden, J. W.; O'Donnell, J.; Sierra, C. A.

    2013-12-01

    Erosion may become an increasingly important agent of change in boreal systems with climate warming, due to enhanced ice wedge degradation and increases in the frequency and intensity of stand-replacing fires. Ice wedge degradation can induce ground surface subsidence and lateral movement of mineral soil downslope, and fire can result in the loss of O horizons and live roots, with associated increases in wind- and water-promoted erosion until vegetation re-establishment. It is well-established that soil erosion can induce significant atmospheric carbon (C) source and sink terms, with the strength of these terms dependent on the fate of eroded soil organic carbon (SOC) and the extent to which SOC oxidation and production characteristics change with erosion. In spite of the large SOC stocks in the boreal system and the high probability that boreal soil profiles will experience enhanced erosion in the coming decades, no one has estimated the influence of boreal erosion on the atmospheric C budget, a phenomenon that can serve as a positive or negative feedback to climate. We employed an interactive erosion model that permits the user to define 1) profile characteristics, 2) the erosion rate, and 3) the extent to which each soil layer at an eroding site retains its pre-erosion SOC oxidation and production rates (nox and nprod=0, respectively) vs. adopts the oxidation and production rates of previous, non-eroded soil layers (nox and nprod=1, respectively). We parameterized the model using soil profile characteristics observed at a recently burned site in interior Alaska (Hess Creek), defining SOC content and turnover times. We computed the degree to which post-burn erosion of mineral soil generates an atmospheric C sink or source while varying erosion rates and assigning multiple values of nox and nprod between 0 and 1, providing insight into the influence of erosion rate, SOC oxidation, and SOC production on C dynamics in this and similar profiles. Varying nox and nprod did not induce meaningful changes in model estimates of atmospheric C source or sink strength, likely due to the low turnover rate of SOC in this system. However, variation in mineral soil erosion rates induced large shifts in the source and sink strengths for atmospheric C; after 50 y of mineral soil erosion at 5 cm y-1, we observed a maximum C source of 35 kg C m-2 and negligible sink strength. Doubling the erosion rate approximately doubled the source strength. Scaling these estimates to the region requires estimates of the area undergoing mineral soil erosion in forests similar to those modeled. We suggest that erosion is an important but little studied feature of fire-driven boreal systems that will influence atmospheric CO2 budgets.

  17. Cu accumulation by Lumbricus rubellus as affected by total amount of Cu in soil, soil moisture and soil heterogeneity.

    OpenAIRE

    Marinussen, M. P. J. C.; Zee, S. E. A. T. M.

    1997-01-01

    To investigate the effect of soil heterogeneity on accumulation of pollutants in a contaminated soil by earthworms, we performed experiments under laboratory conditions with soil from a Cu-contaminated site, followed by experiments under field conditions. The first experiments were set up as a preliminary investigation for the latter experiments. Also the effect of soil moisture on uptake of Cu under laboratory conditions was investigated. In the laboratory experiments, earthworms (Lumbricus ...

  18. Effects of endogeic earthworms on the soil organic matter dynamics and the soil structure in urban and alluvial soil materials

    OpenAIRE

    Amosse?, Joe?l; Turberg, Pascal; Kohler-milleret, Roxane; Gobat, Jean-michel; Le Bayon, Rene?e-claire

    2015-01-01

    Earthworms are considered as key actors of soil processes at different spatial and temporal scales and provide essential ecosystem services linked to climate regulation or primary production. However, little is known about their basic functional roles (e.g. organic matter decomposition, soil structuring processes) in perturbed systems such as urban or alluvial soils. Alluvial soils are characterized by regular physical perturbation through flooding and associated erosion/sedimentation process...

  19. 24 CFR 3285.202 - Soil classifications and bearing capacity.

    Science.gov (United States)

    2010-04-01

    ...2010-04-01 false Soil classifications and bearing capacity. 3285.202 Section 3285.202... § 3285.202 Soil classifications and bearing capacity. The soil classification and bearing capacity of the soil must be determined...

  20. 29 CFR Appendix A to Subpart P of... - Soil Classification

    Science.gov (United States)

    2010-07-01

    ...sets forth requirements, and describes...classifying soils. (2) Application...soil. (iv) Soil that meets the...cementation requirements for Type A...wet. (c) Requirements —(1) Classification of soil and rock...

  1. Global Soil Moisture Data Bank

    Science.gov (United States)

    From the Department of Environmental Sciences at Rutgers, The State University of New Jersey, highlights of this site include data sets from soil moisture observation stations in Eurasia (including China, India, Mongolia, and the former Soviet Union) as well as the slightly less exotic locales of Iowa and Illinois. These data sets are available by clicking on a map of Eurasia and the two US states. Links to other data sets include those for Australia, Brazil, Europe, Russia and Ukraine, and the US. The site also offers abstracts and full-text papers on soil moisture research. Finally, additional sections lead to carefully selected links for model calculations, related projects, and soil moisture measurements.

  2. Biosurfactant-enhanced soil bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kosaric, N.; Lu, G.; Velikonja, J. [Univ. of Western Ontario, London, Ontario (Canada)

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  3. Magnetic separation for soil decontamination

    International Nuclear Information System (INIS)

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology

  4. The soil use in rural areas

    Directory of Open Access Journals (Sweden)

    Stojkov Borislav

    2006-01-01

    Full Text Available The soil is becoming one of the crucial problems for the Nature and its proper functioning due to many reasons of its misusing or abusing. The market forces in agriculture are rapidly deteriorating the soil wild biodiversity and its capacity. The importance of the soil and its wild biodiversity, related to the water system and other ecological functions are presented in short outlines. Understanding the soil quality means assessing and managing soil that it functions optimally now and is not degradated for the future use. Evaluation of the soil quality in a different manner serves for agriculture embitterment and for keeping water and habitat organisms quality. Further, the instrument for soil protection policies implementation are given such as regional development planning, incentives for regional integration, social impacts oriented actions, education etc. The further soil decay will generally jeopardize the whole idea of sustainable development. Therefore it asks for more efficient understanding from decision makers, producers, but from planners as well.

  5. Efficiency of phosphatic fertilizers in alluvial soils

    International Nuclear Information System (INIS)

    Six phosphatic fertilizers viz. single superphosphate, mono-ammonium phosphate, potassium metaphosphate, nitrophosphate, calcium meta phosphate, and tricalcium phosphate were tested in RICH OLD ALLUVIUM (Patna soil) and P-deficient Young alluvium (Kursela soil). The test crop taken was paddy (T.N.I.) The performance of fertilizer materials were evaluated by comparing the total P uptake, percentage P utilization and 'A'-value in the two soils. The relative efficiencies of fertilizers varied considerably and the overall performance of the fertilizers were much superior in the P - deficient soil of Kursela. In the P rich soil of Patna, the fertilizer differences were observed only at 40 days. At later stages the performance of all were similar. The effect of dose was more clearly seen in Kursela soil than in Patna soil. The behaviour of these fertilizer materials in the two soils has been discussed. (author)

  6. Lunar soil as shielding against space radiation

    International Nuclear Information System (INIS)

    We have measured the radiation transport and dose reduction properties of lunar soil with respect to selected heavy ion beams with charges and energies comparable to some components of the galactic cosmic radiation (GCR), using soil samples returned by the Apollo missions and several types of synthetic soil glasses and lunar soil simulants. The suitability for shielding studies of synthetic soil and soil simulants as surrogates for lunar soil was established, and the energy deposition as a function of depth for a particular heavy ion beam passing through a new type of lunar highland simulant was measured. A fragmentation and energy loss model was used to extend the results over a range of heavy ion charges and energies, including protons at solar particle event (SPE) energies. The measurements and model calculations indicate that a modest amount of lunar soil affords substantial protection against primary GCR nuclei and SPE, with only modest residual dose from surviving charged fragments of the heavy beams.

  7. Isotopic studies in soil and plant nutrition

    International Nuclear Information System (INIS)

    One of the most important peaceful applications of isotopes is in research for the enhancement of our understanding for increased crop production and better management of resources with higher economic efficiency and environmental safety. Nuclear techniques helped in generating useful information on such aspects as use-efficiency of fertilizer nutrients, quantifying their losses from soil and their biological transformations. Such information was, hitherto, obtained indirectly by conventional methods. Radio and stable isotopes have also been successfully employed for getting information in such diverse fields as soil erosion, turnover of soil organic matter, pesticide retention in soil ground water recharge etc. The property of 137Cs adhering tightly to certain exchange surface in soil and its chemically inert nature has made it a useful tool for soil erosion studies. In this paper, applications of isotopes in the research and other such studies as degradation, movement and retention of pesticides, movement of nitrate in soil, biological and ammoniacal nitrogen fixation in soil is discussed

  8. Distribution of radiocarbon in Japanese agricultural soils

    International Nuclear Information System (INIS)

    Distributions of C-14 in solid, liquid, and gas phases were determined by batch sorption tests using 142 Japanese agricultural soil samples. The agricultural soils used were classified into 'paddy' and 'upland' soils. Each of the soil samples was suspended in deionized water containing [1, 2-C-14] sodium acetate and shake-incubated for 7 days. After the incubation, the distributions of C-14 in solid, liquid and gas phases were approximately 35%, 5% and 60% of the spiked C-14, respectively. These results suggested that if the C-14 of acetate migrated from a TRU repository site to agricultural soils, most of the C-14 would be released into the air and the rest would be distributed in the soil solid phase. The distribution of C-14 in gas phase was lower for upland soils than for paddy soils. (author)

  9. DETERMINING SOIL MOISTURE REGIMES FOR VITICULTURAL ZONING PURPOSES

    OpenAIRE

    Rosa Maria Poch; Silvana Nacci; Xavier Sort; Josep Miquel Ubalde

    2013-01-01

    This paper aims to analyse the suitability of Soil Taxonomy to characterize the soil moisture regime for viticultural zoning studies, comparing the soil moisture parameters used in the Soil Taxonomy classification with soil moisture parameters relevant to the grapevine phenological stages. The results show that Soil Taxonomy does not adequately reflect the variability of soil moisture dynamics during vineyard growing. Then, a proposal for soil moisture regime classification is realised by mea...

  10. Relationship between Soil Health Assessment and the Growth of Lettuce

    OpenAIRE

    Merakati Handajaningsih; Riwandi

    2011-01-01

    Soil health is very important point for plant growth which is measured by several indicators. The purposes of the research were to assess and to classify soil health Padang Betuah area of Bengkulu, and to compare between soil health indicators and lettuce plant performance indicators. Soils, consist of mineral and peat soils, were sampled using a soil random sampling technique. Lettuce plants were grown in polybags using sample soils. Both lettuce performance and soil health were assessed ...

  11. Soil nitrogen gas emissions increase considerably in warmer forest soils

    Science.gov (United States)

    Kitzler, Barbara; Schindlbacher, Andreas; Jandl, Robert; Zechmeister-Boltenstern, Sophie

    2015-04-01

    Climate change will likely modify ecosystem properties and processes and therefore impact nitrogen (N) dynamics of forest soils. To elucidate the effect of warming and drought conditions on the nitrogen gas emissions we measured N2O and NO fluxes from the soil warming experiment Achenkirch, a spruce-fir-beech forest soil in the North Tyrolean limestone Alps in Austria. The uppermost layer of the soil was warmed (4°C) by heating cables during the snow-free seasons. Roofs were installed during 25 days in July/August 2008 and 2009 to simulate drought conditions. Gas sampling was conducted biweekly with static chambers (N2O). Gas concentrations were detected by GC. Nitric oxide fluxes were measured by an automatic dynamic chamber system on an hourly basis. In our study the emissions of N2O were increased by up to 73 % at warmed plots, and we observed a temporary increase following first rain. However N2O emissions of the drought affected plots remained depressed for more than two months after roof removal. Nitric oxide fluxes were increased considerably during dry periods and under warmer conditions.

  12. Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils

    Science.gov (United States)

    Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...

  13. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China

    International Nuclear Information System (INIS)

    The distribution of six priority phthalic acid esters (PAEs) in suburban farmland, vegetable, orchard and wasteland soils of Tianjin were obtained with gas chromatography-mass spectrometer analysis in 2009. Results showed that total PAEs varied from 0.05 to 10.4 ?g g?1, with the median value as 0.32 ?g g?1. Di-(2-ethylhexyl) phthalate and di-n-butyl phthalate are most abundant species. PAEs concentrations for the four types of soils exhibited decreasing order as vegetable soil > wasteland soil > farmland soil > orchard soil. PAEs exhibited elevated levels in more developed regions when compared with other studies. The agricultural plastic film could elevate the PAEs contents in soils. Principal component analysis indicated the emission from cosmetics and personal care products and plasticizers were important sources for PAEs in suburban soils in Tianjin. The higher PAEs contents in wasteland soils from suburban area should be paid more attention owing to large amounts of solid wastes appeared with the ongoing urbanization. - Highlights: ? PAEs levels in four types of soils in suburban area of Tianjin were studied. ? Vegetable soil and wasteland soil exhibited higher PAEs concentrations. ? PAEs in wasteland soils from suburban area of cities in China should be paid attention. - (1) Vegetable soil and wasteland soil exhibited higher PAEs concentrations; (2) PAEs in wasteland soils from suburban area of cities in China should be paid attes in China should be paid attention.

  14. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils.

    Science.gov (United States)

    Uematsu, Shinichiro; Smolders, Erik; Sweeck, Lieve; Wannijn, Jean; Van Hees, May; Vandenhove, Hildegarde

    2015-08-15

    The high variability of the soil-to-plant transfer factor of radiocaesium (RCs) compels a detailed analysis of the radiocaesium interception potential (RIP) of soil, which is one of the specific factors ruling the RCs transfer. The range of the RIP values for agricultural soils in the Fukushima accident affected area has not yet been fully surveyed. Here, the RIP and other major soil chemical properties were characterised for 51 representative topsoils collected in the vicinity of the Fukushima contaminated area. The RIP ranged a factor of 50 among the soils and RIP values were lower for Andosols compared to other soils, suggesting a role of soil mineralogy. Correlation analysis revealed that the RIP was most strongly and negatively correlated to soil organic matter content and oxalate extractable aluminium. The RIP correlated weakly but positively to soil clay content. The slope of the correlation between RIP and clay content showed that the RIP per unit clay was only 4.8mmolg(-1) clay, about threefold lower than that for clays of European soils, suggesting more amorphous minerals and less micaceous minerals in the clay fraction of Japanese soils. The negative correlation between RIP and soil organic matter may indicate that organic matter can mask highly selective sorption sites to RCs. Multiple regression analysis with soil organic matter and cation exchange capacity explained the soil RIP (R(2)=0.64), allowing us to map soil RIP based on existing soil map information. PMID:25897723

  15. CHANGES IN SOIL BIOLOGICAL ACTIVITIES UNDER REDUCED SOIL PH DURING THLASPI CAERULESCENS PHYTOEXTRACTION

    Science.gov (United States)

    Phytoextraction of soil Cd and Zn may require reduction in soil pH in order to achieve high metal uptake. Reducing the pH of high metal soil, however, could negatively affect soil ecosystem function and health. The objectives of this study are to characterize the quantitative causal relationship bet...

  16. Minimum property dataset and sampling requirement tool for soil change studies in soil survey

    Science.gov (United States)

    Dynamic soil properties (DSP) are those properties that change over human time scales. The new sampling guide “Soil and Resource Inventory Guide for Dynamic Soil Properties and Soil Change” includes a minimum DSP dataset and an interactive tool to determine sampling requirements. The minimum dataset...

  17. Evidence for shift from acidobacteria to proteobacteria dominance in soil profile of boreal acid sulphate soils.

    Czech Academy of Sciences Publication Activity Database

    Chro?áková, Alica; Bryndová, Michala; Otáhalová, Šárka; Yli-Halla, M.; Šimek, Miloslav

    Dijon : INRA, 2014. s. 276. [Global Soil Biodiversity Conference. Assessing soil biodiversity and its role for ecosystem services /1./. 02.12.2014-05.12.2014, Dijon] Institutional support: RVO:60077344 Keywords : boreal acid sulphate soils * soil profile * bacteria community structure * subsoil horizons Subject RIV: EH - Ecology, Behaviour

  18. EVALUATION OF THE ACCURACY OF A CENTRAL IOWA SOIL SURVEY AND IMPLICATIONS FOR PRECISION SOIL MANAGEMENT

    Science.gov (United States)

    The movement towards precision agriculture has led to calls for soil maps that are more detailed and accurate than those offered in standard NCSS soil surveys. Studies have shown that soil variability can be greater than depicted in soil surveys; in fact, delineations that contain at least 50% of t...

  19. Correlation between Soil Test Phosphorus of Kaolinitic and Smectitic Soils with Phosphorus Uptake of Lowland Rice

    Directory of Open Access Journals (Sweden)

    Mohammad Masjkur

    2009-09-01

    Full Text Available Correlation between soil test phosphorus (P and plant-available P parameters were affected by soil properties, such as soil pH, particle-size composition, and mineralogy. The objectives of this research were: (1 to determine P concentration extracted by several soil P test method in kaolinitic and smectitic soil, and (2 to determine correlation between soil P test and soil properties, P fractions, P sorption parameters, and P uptake of lowland rice. The soil P test in kaolinitic and smectitic soil used solutions of HCl 25%, Truog, Olsen, Bray1, Mehlich1, and Morgan Venema and were correlated with P uptake of lowland rice in field experiment. Concentration of Truog-P in kaolinitic soil was significantly higher than smectitic soil, while concentration of Morgan-P in kaolinitic soil was significantly lower than smectitic soil. Concentration differences of HCl 25%-P, Olsen-P, Bray1-P, and Mehlich1-P between kaolinitic and smectitic soil were not significant. In kaolinitic soil correlation between HCl 25%-P, Olsen-P, Bray1-P, and Mehlich1-P, and Morgan-P with P uptake of lowland rice were not significant. In smectitic soil HCl 25%-P, Olsen-P, Bray1-P, and Mehlich1-P correlated significantly with P uptake of lowland rice, while Morgan-P was not significant.

  20. Soil 4 Youth: Charting New Territory in Canadian High School Soil Science Education

    Science.gov (United States)

    Krzic, Maja; Wilson, Julie; Basiliko, Nathan; Bedard-Haughn, Angela; Humphreys, Elyn; Dyanatkar, Saeed; Hazlett, Paul; Strivelli, Rachel; Crowley, Chris; Dampier, Lesley

    2014-01-01

    As global issues continue to place increasing demands on soil resources, the need to provide soil science education to the next generation of soil scientists and the general public is becoming more imminent. In many countries around the world, including Canada, soil is either not included in the high school curriculum or it is not covered in…

  1. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum

    Science.gov (United States)

    Relationships among biological indicators of soil quality and soil organic matter characteristics in a claypan soil were evaluated across a continuum of long-term agricultural practices in Missouri, USA. In addition to chemical and physical soil quality indicators, dehydrogenase and phenol oxidase a...

  2. Fauna inhibit nitrogen mineralization in no-tilled soil, but not in tilled soil.

    Czech Academy of Sciences Publication Activity Database

    Toyota, Ayu; Frouz, Jan; Hynšt, Jaroslav

    ?eské Bud?jovice : Institute of Soil Biology, BC ASCR, 2011. s. 49. ISBN 978-80-86525-19-8. [Central European Workshop on Soil Zoology /11./. 11.04.2011-14.04.2011, ?eské Bud?jovice] Institutional research plan: CEZ:AV0Z60660521 Keywords : soil fauna * nitrogen mineralization * no-tilled soil Subject RIV: EH - Ecology, Behaviour

  3. EFFECT OF SALINITY, SODICITY AND SOIL TEXTURE ON AGGREGATE STABILITY OF SEMI-ARID SOILS

    Science.gov (United States)

    Breakdown of soil aggregates results in pore collapse which reduces infiltration rate, leads to runoff and erosion, and subsequently may cause soil degradation. Soil texture, exchangeable sodium percentage (ESP) and electrolyte concentration (EC) of the soil solution (water quality) play a significa...

  4. Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland.

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Jirk?, V.; Kodeš, V.; Mühlhanselová, M.; Nikodem, A.; Žigová, Anna

    2011-01-01

    Ro?. 111, ?. 2 (2011), s. 154-161. ISSN 0167-1987 R&D Projects: GA ?R GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : soil water retention curve * hydraulic conductivity, * soil micromorphology * conventional tillage, * grassland * soil structure amelioration Subject RIV: DF - Soil Science Impact factor: 2.425, year: 2011

  5. SERPENTINE SOILS, ADVERSE HABITAT FOR PLANTS

    OpenAIRE

    Mahsa Tashakor; Wan Zuhairi Wan Yaacob; Hamzah Mohamad

    2013-01-01

    The unpleasant effect of serpentine soil on plant life has been a topic of many studies for several decades. Infertility and flora selectivity nature of serpentine soils are the features, which made them of interest throughout the world. This research includes a geochemical study on two Malaysian serpentine massifs to introduce their harmful factors concerning vegetation. X-ray fluorescence results on 11 soil samples showed that serpentine soils comprise large values of iron and magnesium (up...

  6. Soils of Europe; 1 : 20 000 000

    International Nuclear Information System (INIS)

    The map is based on the physical atlas of the world at scale 1 : 10 000 000 (Acad. Sci. USSR, Moscow 1964) and the Soil geographical database of Europe at scale 1 : 1 000 000 (1998). Its construction reflects the latitudinal zonality of the European soils. Eight categories of types and subtypes and 6 combinations of soils were used. Glaciers and associations of mountain soils form an individual category. (authors)

  7. Human-induced Soil Degradation Activities

    OpenAIRE

    Oldeman L.R.; Van Baren J.H. V.

    1998-01-01

    Soil degradation is occurring over vast areas. The GLASOD and ASSOD projects reflect the present status of human-induced soil degradation and its impact on food productivity related to productivity changes observed in the recent past. However, there is a great need for well-documented, reliable soil information and other related data at national and regional levels to better understand and qualify the impact of changing soil conditions or biomass production.

  8. ON SOIL QUALITY AND ITS ASSESSING

    OpenAIRE

    Florea, N.

    2007-01-01

    The term of “soil quality” is utilized until present with different connotations; its meaning became nowadays more comprehensive. The most adequate definition of the “soil quality” is: “the capacity of a specific kind of soil to function, within natural or managed ecosystem boundaries, to sustain plant and animal productivity, maintain or enhance water and air quality and support human health and habitation” (Karlen et al, 1998) One distinguishes a native soil quality, in natural ...

  9. Resuspension of plutonium from contaminated soils

    International Nuclear Information System (INIS)

    A study was made to estimate resuspension factors for plutonium from humid beach soils in the vicinity of a low level liquid effluents discharge point from a Fuel Reprocessing Plant. The following comparative results are presented in tabular form: 1) Resuspension factors measured in the field and laboratory. 2) Resuspension factors for dry powdered soils. 3) Resuspension factors for soils covered with plant saplings (soil with 20% humidity). 4) Measurement of respirable resuspended activities. (U.K.)

  10. Community Structure in Soil Porous System

    OpenAIRE

    Santiago Andrés, Antonio; Cardenas Villalobos, Juan Pablo; Losada González, Juan Carlos; Benito Zafrilla, Rosa Maria; Tarquis Alfonso, Ana Maria; Borondo Rodríguez, Florentino

    2011-01-01

    Diffusion controls the gaseous transport process in soils when advective transport is almost null. Knowledge of the soil structure and pore connectivity are critical issues to understand and modelling soil aeration, sequestration or emission of greenhouse gasses, volatilization of volatile organic chemicals among other phenomena. In the last decades these issues increased our attention as scientist have realize that soil is one of the most complex materials on the earth, within which many bio...

  11. Bentazone adsorption and desorption on agricultural soils

    OpenAIRE

    Boivin, Arnaud; Cherrier, Richard; Schiavon, Michel

    2005-01-01

    Herbicide fate and transport in soils greatly depend upon adsorption-desorption processes. Batch adsorption and desorption experiments were performed with the herbicide bentazone using 13 contrasted agricultural soil samples. Bentazone was found to be weakly sorbed by the different soils, showing average Freundlich adsorption coefficients (Kf) value of 1.4 ± 2.3 mg1 - nf Lnf kg-1. Soil organic matter content did not have a significant effect on bentazone sorption (r2 = 0.12), whereas natural...

  12. General report of TC 106: Unsaturated soils:

    OpenAIRE

    Jommi, C.

    2013-01-01

    This general report summarises the contributions on unsaturated soil mechanics submitted to the Discussion Session of TC106 – Unsaturated soils –at the 18th International Conference on Soil Mechanics and Geotechnical Engineering held in Paris in September 2013. The thirty-five papers collected under the framework of unsaturated soil mechanics cover a broad spectrum of problems and procedures at varying scales. Much attention is devoted to issues related to experimental techniques and proc...

  13. Urban Tree Effects on Soil Organic Carbon

    OpenAIRE

    Edmondson, Jill L.; O Sullivan, Odhran S.; Inger, Richard; Potter, Jonathan; Mchugh, Nicola; Gaston, Kevin J.; Leake, Jonathan R.

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ?75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to ...

  14. Estimating soil suction from electrical resistivity

    OpenAIRE

    Piegari, E.; Di Maio, R.

    2013-01-01

    Soil suction and resistivity strongly depend on the degree of soil saturation and, therefore, both are used for estimating water content variations. The main difference between them is that soil suction is measured using tensiometers, which give point information, while resistivity is obtained by tomography surveys, which provide distributions of resistivity values in large volumes, although with less accuracy. In this paper, we have related soil suction to electrical resist...

  15. Role of Arthropods in Maintaining Soil Fertility

    OpenAIRE

    Culliney, Thomas W.

    2013-01-01

    In terms of species richness, arthropods may represent as much as 85% of the soil fauna. They comprise a large proportion of the meso- and macrofauna of the soil. Within the litter/soil system, five groups are chiefly represented: Isopoda, Myriapoda, Insecta, Acari, and Collembola, the latter two being by far the most abundant and diverse. Arthropods function on two of the three broad levels of organization of the soil food web: they are plant litter transformers or ecosystem engineers. Litte...

  16. Soil and radiocaesium contamination of winter fodders

    International Nuclear Information System (INIS)

    The level of 137Cs and soil contaminating three winter fodders was determined on organic and mineral soil and the effect of harvesting, fodder storage and weather conditions on the contamination level was assessed. The mean level of soil contamination in hay and silage was generally 137Cs content of all fodderand 137Cs content of all fodders were highly correlated indicating that, in this study, soil adhesion to plant surfaces is the main vector of 137Cs transfer

  17. Soil Moisture Monitorization Using GNSS Reflected Signals

    OpenAIRE

    Egido, Alejandro; Ruffini, Giulio; Caparrini, Marco; Martin, Cristina; Farres, Esteve; Banque, Xavier

    2008-01-01

    The use of GNSS signals as a source of opportunity for remote sensing applications, GNSS-R, has been a research area of interest for more than a decade. One of the possible applications of this technique is soil moisture monitoring. The retrieval of soil moisture with GNSS-R systems is based on the variability of the ground dielectric properties associated to soil moisture. Higher concentrations of water in the soil yield a higher dielectric constant and reflectivity, which ...

  18. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl4 is used in Pu recovery from aqueous streams.)

  19. Effect of surface conditions on runoff and soil loss for chernozem soil

    Directory of Open Access Journals (Sweden)

    Dębicki R.

    2001-03-01

    Full Text Available Rainfall simulation tests were conducted to determine the effect of the initial water content and surface micro-relief changes on runoff, and soil loss for chernozem soil. The studies showed that soil loss by wash was mostly affected by the surface micro-relief, whereas soil loss by splash by the initial water content. Runoff amount was less dependent than the soil loss upon the initial surface conditions and was mostly affected by the seal formation. The highest amount of splash and wash suggest that the time of seal formation at the soil surface was most susceptible to soil erosion.

  20. Progress of research and utilization of soil amendments in phytoremediation of radioactive contamination soil

    International Nuclear Information System (INIS)

    With the increasing of soil pollution and degradation, it becomes more important to research and apply soil amendments in agriculture. This paper reviewed different kinds of soil amendments and their impacts on phytostabilization and phytoextraction techniques, and summarized the application of soil amendments in the radio-contaminated soils as well as their effects on the phytoremediation. The main repair mechanisms of the soil amendments are involved in adsorption, ion exchange, chelation, and complexation. The potential applications in the phytoremediation on radio-contaminated soils, as well as the main repair mechanisms and the existing problems were discussed. (authors)