WorldWideScience

Sample records for image encryption algorithm

  1. Wavelet Image Encryption Algorithm Based on AES

    2002-01-01

    Traditional encryption techniques have some limits for multimedia information, especially image and video, which are considered only to be common data. In this paper, we propose a wavelet-based image encryption algorithm based on the Advanced Encryption Standard, which encrypts only those low frequency coefficients of image wavelet decomposition. The experimental results are satisfactory.

  2. Cryptanalysis of an Image Scrambling Encryption Algorithm

    Li, Chengqing; Lin, Dongdong

    2016-01-01

    Position scrambling (permutation) is widely used in multimedia encryption schemes and some international encryption standards, like DES and AES. This paper re-evaluated security of a typical image scrambling encryption algorithm (ISEA). Using the internal correlation remaining in the cipher-image, we can disclose some important visual information of the corresponding plain-image under the scenario of ciphertext-only attack. Furthermore, we found the real \\textit{scrambling domain}, position s...

  3. Image Encryption Using a Lightweight Stream Encryption Algorithm

    Saeed Bahrami

    2012-01-01

    Full Text Available Security of the multimedia data including image and video is one of the basic requirements for the telecommunications and computer networks. In this paper, we consider a simple and lightweight stream encryption algorithm for image encryption, and a series of tests are performed to confirm suitability of the described encryption algorithm. These tests include visual test, histogram analysis, information entropy, encryption quality, correlation analysis, differential analysis, and performance analysis. Based on this analysis, it can be concluded that the present algorithm in comparison to A5/1 and W7 stream ciphers has the same security level, is better in terms of the speed of performance, and is used for real-time applications.

  4. Image Encryption on Mobile Phone Using Super Encryption Algorithm

    Catur Iswahyudi

    2012-08-01

    Full Text Available This study aims to obtain the digital image encryption algorithm with a simple but secure process, fast and efficient computing resources. The algorithms developed in this study were super-encryption algorithm that combines two of cipher called Playfair cipher and the Vigenere cipher. To improve security, a keystream generator was used to randomize the order of the next key in Vigenere cipher. In order to evaluate performance, the proposed algorithm was measured through a series of tests. These tests were implemented with Matlab included visual test and histogram analysis, information entropy, encryption quality, correlation analysis, and also time analysis. The test results show that cipher  image looks visually random.The image histogram of the plain image and cipher image also seen a significant difference between the two of them. Testing was also performed on mobile phones with Symbian and BADA operating system based on Java Micro Edition Programming. Trial results show that the algorithm was require less computational resources; with average time for image encryption is 3.76 seconds, and the average time  for image decryption is 0.97 seconds. The new proposed image encryption scheme has satisfactory security which makes it a potential candidate for encryption of image data.   Keywords:  Image encryption, Vigenere cipher, Playfair cipher, Security test

  5. Stegano-Crypto Hiding Encrypted Data in Encrypted Image Using Advanced Encryption Standard and Lossy Algorithm

    Ari Shawakat Tahir

    2015-01-01

    The Steganography is an art and science of hiding information by embedding messages within other, seemingly harmless messages and lots of researches are working in it. Proposed system is using AES Algorithm and Lossy technique to overcome the limitation of previous work and increasing the process’s speed. The sender uses AES Algorithm to encrypt message and image, then using LSB technique to hide encrypted data in encrypted message. The receive get the original data using the keys that had be...

  6. ALGORITHM FOR IMAGE MIXING AND ENCRYPTION

    Ayman M. Abdalla

    2013-04-01

    Full Text Available This new algorithm mixes two or more images of different types and sizes by employing a shuffling procedure combined with S-box substitution to perform lossless image encryption. This combines stream cipher with block cipher, on the byte level, in mixing the images. When this algorithm was implemented, empirical analysis using test images of different types and sizes showed that it is effective and resistant to attacks.

  7. Stegano-Crypto Hiding Encrypted Data in Encrypted Image Using Advanced Encryption Standard and Lossy Algorithm

    Ari Shawakat Tahir

    2015-12-01

    Full Text Available The Steganography is an art and science of hiding information by embedding messages within other, seemingly harmless messages and lots of researches are working in it. Proposed system is using AES Algorithm and Lossy technique to overcome the limitation of previous work and increasing the process’s speed. The sender uses AES Algorithm to encrypt message and image, then using LSB technique to hide encrypted data in encrypted message. The receive get the original data using the keys that had been used in encryption process. The proposed system has been implemented in NetBeans 7.3 software uses image and data in different size to find the system’s speed.

  8. Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations

    Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run

    2016-07-01

    A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.

  9. Meteosat Images Encryption based on AES and RSA Algorithms

    Boukhatem Mohammed Belkaid

    2015-06-01

    Full Text Available Satellite image Security is playing a vital role in the field of communication system and Internet. This work is interested in securing transmission of Meteosat images on the Internet, in public or local networks. To enhance the security of Meteosat transmission in network communication, a hybrid encryption algorithm based on Advanced Encryption Standard (AES and Rivest Shamir Adleman (RSA algorithms is proposed. AES algorithm is used for data transmission because of its higher efficiency in block encryption and RSA algorithm is used for the encryption of the key of the AES because of its management advantages in key cipher. Our encryption system generates a unique password every new session of encryption. Cryptanalysis and various experiments have been carried out and the results were reported in this paper, which demonstrate the feasibility and flexibility of the proposed scheme.

  10. Digital Image Encryption Algorithm Design Based on Genetic Hyperchaos

    Wang, Jian

    2016-01-01

    In view of the present chaotic image encryption algorithm based on scrambling (diffusion is vulnerable to choosing plaintext (ciphertext) attack in the process of pixel position scrambling), we put forward a image encryption algorithm based on genetic super chaotic system. The algorithm, by introducing clear feedback to the process of scrambling, makes the scrambling effect related to the initial chaos sequence and the clear text itself; it has realized the image features and the organic fusi...

  11. Chaos-Based Image Encryption Algorithm Using Decomposition

    Xiuli Song

    2013-07-01

    Full Text Available The proposed chaos-based image encryption algorithm consists of four stages: decomposition, shuffle, diffusion and combination. Decomposition is that an original image is decomposed to components according to some rule. The purpose of the shuffle is to mask original organization of the pixels of the image, and the diffusion is to change their values. Combination is not necessary in the sender. To improve the efficiency, the parallel architecture is taken to process the shuffle and diffusion. To enhance the security of the algorithm, firstly, a permutation of the labels is designed. Secondly, two Logistic maps are used in diffusion stage to encrypt the components. One map encrypts the odd rows of the component and another map encrypts the even rows. Experiment results and security analysis demonstrate that the encryption algorithm not only is robust and flexible, but also can withstand common attacks such as statistical attacks and differential attacks.

  12. Image Encryption Algorithm Based on Chaotic Economic Model

    S. S. Askar

    2015-01-01

    Full Text Available In literature, chaotic economic systems have got much attention because of their complex dynamic behaviors such as bifurcation and chaos. Recently, a few researches on the usage of these systems in cryptographic algorithms have been conducted. In this paper, a new image encryption algorithm based on a chaotic economic map is proposed. An implementation of the proposed algorithm on a plain image based on the chaotic map is performed. The obtained results show that the proposed algorithm can successfully encrypt and decrypt the images with the same security keys. The security analysis is encouraging and shows that the encrypted images have good information entropy and very low correlation coefficients and the distribution of the gray values of the encrypted image has random-like behavior.

  13. Image encryption a communication perspective

    Abd El-Samie, Fathi E; Elashry, Ibrahim F; Shahieen, Mai H; Faragallah, Osama S; El-Rabaie, El-Sayed M; Alshebeili, Saleh A

    2013-01-01

    Presenting encryption algorithms with diverse characteristics, Image Encryption: A Communication Perspective examines image encryption algorithms for the purpose of secure wireless communication. It considers two directions for image encryption: permutation-based approaches encryption and substitution-based approaches.Covering the spectrum of image encryption principles and techniques, the book compares image encryption with permutation- and diffusion-based approaches. It explores number theory-based encryption algorithms such as the Data Encryption Standard, the Advanced Encryption Standard,

  14. A Novel Image Encryption Algorithm Based on DNA Subsequence Operation

    Zhang, Qiang; Xue, Xianglian; Wei, Xiaopeng

    2012-01-01

    We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack. PMID:23093912

  15. Design and Implementation of Image Encryption Algorithm Using Chaos

    Sandhya Rani M.H.

    2014-06-01

    Full Text Available Images are widely used in diverse areas such as medical, military, science, engineering, art, advertising, entertainment, education as well as training, increasing the use of digital techniques for transmitting and storing images. So maintaining the confidentiality and integrity of images has become a major concern. This makes encryption necessary. The pixel values of neighbouring pixels in a plain image are strongly correlated. The proposed algorithm breaks this correlation increasing the entropy. Correlation is reduced by changing the pixel position this which is called confusion. Histogram is equalized by changing the pixel value this which is called diffusion. The proposed method of encryption algorithm is based on chaos theory. The plain-image is divided into blocks and then performs three levels of shuffling using different chaotic maps. In the first level the pixels within the block are shuffled. In the second level the blocks are shuffled and in the third level all the pixels in an image are shuffled. Finally the shuffled image is diffused using a chaotic sequence generated using symmetric keys, to produce the ciphered image for transmission. The experimental result demonstrates that the proposed algorithm can be used successfully to encrypt/decrypt the images with the secret keys. The analysis of the algorithm also shows that the algorithm gives larger key space and a high key sensitivity. The encrypted image has good encryption effect, information entropy and low correlation coefficient.

  16. Digital Image Encryption Algorithm Design Based on Genetic Hyperchaos

    Jian Wang

    2016-01-01

    Full Text Available In view of the present chaotic image encryption algorithm based on scrambling (diffusion is vulnerable to choosing plaintext (ciphertext attack in the process of pixel position scrambling, we put forward a image encryption algorithm based on genetic super chaotic system. The algorithm, by introducing clear feedback to the process of scrambling, makes the scrambling effect related to the initial chaos sequence and the clear text itself; it has realized the image features and the organic fusion of encryption algorithm. By introduction in the process of diffusion to encrypt plaintext feedback mechanism, it improves sensitivity of plaintext, algorithm selection plaintext, and ciphertext attack resistance. At the same time, it also makes full use of the characteristics of image information. Finally, experimental simulation and theoretical analysis show that our proposed algorithm can not only effectively resist plaintext (ciphertext attack, statistical attack, and information entropy attack but also effectively improve the efficiency of image encryption, which is a relatively secure and effective way of image communication.

  17. The Research of Image Encryption Algorithm Based on Chaos Cellular Automata

    Shuiping Zhang; Huijune Luo

    2012-01-01

    The Research presents an image encryption algorithm which bases on chaotic cellular automata. This algorithm makes use of features that extreme sensitivity of chaotic system to initial conditions, the cellular automaton with a high degree of parallel processing. The encryption algorithm uses two-dimensional chaotic system to Encrypt image, Then establish a cellular automaton model on the initial encrypted image. Encryption key of this algorithm is made up of the initial value by the two-dimen...

  18. Image Encryption Algorithm Based on Chaotic Economic Model

    S. S. Askar; Karawia, A. A.; Ahmad Alshamrani

    2015-01-01

    In literature, chaotic economic systems have got much attention because of their complex dynamic behaviors such as bifurcation and chaos. Recently, a few researches on the usage of these systems in cryptographic algorithms have been conducted. In this paper, a new image encryption algorithm based on a chaotic economic map is proposed. An implementation of the proposed algorithm on a plain image based on the chaotic map is performed. The obtained results show that the proposed algorithm can su...

  19. An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves

    Sun, Yuanyuan; Chen, Lina; Xu, Rudan; Kong, Ruiqing

    2014-01-01

    Image encryption is an important and effective technique to protect image security. In this paper, a novel image encryption algorithm combining Julia sets and Hilbert curves is proposed. The algorithm utilizes Julia sets’ parameters to generate a random sequence as the initial keys and gets the final encryption keys by scrambling the initial keys through the Hilbert curve. The final cipher image is obtained by modulo arithmetic and diffuse operation. In this method, it needs only a few parameters for the key generation, which greatly reduces the storage space. Moreover, because of the Julia sets’ properties, such as infiniteness and chaotic characteristics, the keys have high sensitivity even to a tiny perturbation. The experimental results indicate that the algorithm has large key space, good statistical property, high sensitivity for the keys, and effective resistance to the chosen-plaintext attack. PMID:24404181

  20. Grayscale image encryption algorithm based on chaotic maps

    李昌刚; 韩正之

    2003-01-01

    A new image encryption/decryption algorithm has been designed using discrete chaotic systems as aSP (Substitution and Permutation) network architecture often used in cryptosystems. It is composed of two mainmodules: substitution module and permutation module. Both analyses and numerical results imply that the algo-rithm has the desirable security and efficiency.

  1. Chaotic Image Encryption Algorithm by Correlating Keys with Plaintext

    Zhu Congxu; Sun Kehui

    2012-01-01

    A novel image encryption scheme based on the modified skew tent map was proposed in this paper. In the key generating procedure, the algorithm generates a plaintext-dependent secret keys set. In the encryption process, the diffusion operation with cipher output feedback is introduced. Thus, cipher-irmge is sensitive to both initial keys and plaintext through only one round diffusion operation. The key space is large. As a resuk, the algorithm can effectively resist differential attacks, statistical attacks, brute-force attacks, known plaintext and chosen plaintext attacks. Perforrmnce test and security analysis demonstrates that this algorithm is eficient and reliable, with high potential to be adopted for secure comnmnications.

  2. Integral Imaging Based 3-D Image Encryption Algorithm Combined with Cellular Automata

    Li, X. W.; Kim, D. H.; Cho, S. J.; Kim, S. T.

    2013-01-01

    A novel optical encryption method is proposed in this paper to achieve 3-D image encryption. This proposed encryption algorithm combines the use of computational integral imaging (CII) and linear-complemented maximum- length cellular automata (LC-MLCA) to encrypt a 3D image. In the encryption process, the 2-D elemental image array (EIA) recorded by light rays of the 3-D image are mapped inversely through the lenslet array according the ray tracing theory. Next, the 2-D EIA is encrypted by LC-...

  3. Design and Implementation of Image Encryption Algorithm Using Chaos

    Sandhya Rani M.H.; K.L. Sudha

    2014-01-01

    Images are widely used in diverse areas such as medical, military, science, engineering, art, advertising, entertainment, education as well as training, increasing the use of digital techniques for transmitting and storing images. So maintaining the confidentiality and integrity of images has become a major concern. This makes encryption necessary. The pixel values of neighbouring pixels in a plain image are strongly correlated. The proposed algorithm breaks this correlation increasing the en...

  4. Chaos-Based Image Encryption Algorithm Using Decomposition

    Xiuli Song; Hongyao Deng

    2013-01-01

    The proposed chaos-based image encryption algorithm consists of four stages: decomposition, shuffle, diffusion and combination. Decomposition is that an original image is decomposed to components according to some rule. The purpose of the shuffle is to mask original organization of the pixels of the image, and the diffusion is to change their values. Combination is not necessary in the sender. To improve the efficiency, the parallel architecture is taken to process the shuffle and diffusion. ...

  5. An Uncompressed Image Encryption Algorithm Based on DNA Sequences

    Shima Ramesh Maniyath

    2011-07-01

    Full Text Available The rapid growth of the Internet and digitized content made image and video distribution simpler. Hence the need for image and video data protection is on the rise. In this paper, we propose a secure and computationally feasible image and video encryption/decryption algorithm based on DNA sequences. The main purpose of this algorithm is to reduce the big image encryption time. This algorithm is implemented by using the natural DNA sequences as main keys. The first part is the process of pixel scrambling. The original image is confused in the light of the scrambling sequence which is generated by the DNA sequence. The second part is the process of pixel replacement. The pixel gray values of the new image and the one of the three encryption templates generated by the other DNA sequence are XORed bit-by-bit in turn. The main scope of this paper is to propose an extension of this algorithm to videos and making it secure using modern Biological technology. A security analysis for the proposed system is performed and presented.

  6. A chaos-based image encryption algorithm using alternate structure

    ZHANG YiWei; WANG YuMin; SHEN XuBang

    2007-01-01

    Combined with two chaotic maps, a novel alternate structure is applied to image cryptosystem. In proposed algorithm, a general cat-map is used for permutation and diffusion, as well as the OCML (one-way coupled map lattice), which is applied for substitution. These two methods are operated alternately in every round of encryption process, where two subkeys employed in different chaotic maps are generated through the masterkey spreading. Decryption has the same structure with the encryption algorithm, but the masterkey in each round should be reversely ordered in decryption. The cryptanalysis shows that the proposed algorithm bears good immunities to many forms of attacks. Moreover, the algorithm features high execution speed and compact program, which is suitable for various software and hardware applications.

  7. An Improved Piecewise Linear Chaotic Map Based Image Encryption Algorithm

    Hu, Yuping; Wang, Zhijian

    2014-01-01

    An image encryption algorithm based on improved piecewise linear chaotic map (MPWLCM) model was proposed. The algorithm uses the MPWLCM to permute and diffuse plain image simultaneously. Due to the sensitivity to initial key values, system parameters, and ergodicity in chaotic system, two pseudorandom sequences are designed and used in the processes of permutation and diffusion. The order of processing pixels is not in accordance with the index of pixels, but it is from beginning or end alternately. The cipher feedback was introduced in diffusion process. Test results and security analysis show that not only the scheme can achieve good encryption results but also its key space is large enough to resist against brute attack. PMID:24592159

  8. Double color image encryption using iterative phase retrieval algorithm in quaternion gyrator domain

    Shao, Zhuhong; Shu, Huazhong; Wu, Jiasong; Dong, Zhifang; Coatrieux, Gouenou; Coatrieux, Jean-Louis

    2014-01-01

    International audience This paper describes a novel algorithm to encrypt double color images into a single undistinguishable image in quaternion gyrator domain. By using an iterative phase retrieval algorithm, the phase masks used for encryption are obtained. Subsequently, the encrypted image is generated via cascaded quaternion gyrator transforms with different rotation angles. The parameters in quaternion gyrator transforms and phases serve as encryption keys. By knowing these keys, the ...

  9. Integral Imaging Based 3-D Image Encryption Algorithm Combined with Cellular Automata

    X. W. Li

    2013-08-01

    Full Text Available A novel optical encryption method is proposed in this paper to achieve 3-D image encryption. This proposed encryption algorithm combines the use of computational integral imaging (CII and linear-complemented maximum- length cellular automata (LC-MLCA to encrypt a 3D image. In the encryption process, the 2-D elemental image array (EIA recorded by light rays of the 3-D image are mapped inversely through the lenslet array according the ray tracing theory. Next, the 2-D EIA is encrypted by LC-MLCA algorithm. When decrypting the encrypted image, the 2-D EIA is recovered by the LC-MLCA. Using the computational integral imaging reconstruction (CIIR technique and a 3-D object is subsequently reconstructed on the output plane from the 2-D recovered EIA. Because the 2-D EIA is composed of a number of elemental images having their own perspectives of a 3-D image, even if the encrypted image is seriously harmed, the 3-D image can be successfully reconstructed only with partial data. To verify the usefulness of the proposed algorithm, we perform computational experiments and present the experimental results for various attacks. The experiments demonstrate that the proposed encryption method is valid and exhibits strong robustness and security.

  10. Double color image encryption using iterative phase retrieval algorithm in quaternion gyrator domain.

    Shao, Zhuhong; Shu, Huazhong; Wu, Jiasong; Dong, Zhifang; Coatrieux, Gouenou; Coatrieux, Jean Louis

    2014-03-10

    This paper describes a novel algorithm to encrypt double color images into a single undistinguishable image in quaternion gyrator domain. By using an iterative phase retrieval algorithm, the phase masks used for encryption are obtained. Subsequently, the encrypted image is generated via cascaded quaternion gyrator transforms with different rotation angles. The parameters in quaternion gyrator transforms and phases serve as encryption keys. By knowing these keys, the original color images can be fully restituted. Numerical simulations have demonstrated the validity of the proposed encryption system as well as its robustness against loss of data and additive Gaussian noise. PMID:24663832

  11. An improved image encryption algorithm based on chaotic maps

    Xu Shu-Jiang; Wang Ji-Zhi; Yang Su-Xiang

    2008-01-01

    Recently,two chaotic image encryption schemes have been proposed,in which shuffling the positions and changing the grey values of image pixels are combined.This paper provides the chosen plaintext attack to recover the corresponding plaintext of a given ciphertext.Furthermore,it points out that the two schemes are not sufficiently sensitive to small changes of the plaintext.Based on the given analysis,it proposes an improved algorithm which includes two rounds of substitution and one round of permutation to strengthen the overall performance.

  12. A New Algorithm of Encryption and Decryption of Images Using Chaotic Mapping

    Musheer Ahmad

    2010-01-01

    Full Text Available The combination of chaotic theory and cryptography forms an important field of information security. In the past decade, chaos based image encryption is given much attention in the research of information security and a lot of image encryption algorithms based on chaotic maps have been proposed. Due to some inherent features of images like bulk data capacity and high data redundancy, the encryption of images is different from that of texts; therefore it is difficult to handle them by traditional encryption methods. In this communication, a new image encryption algorithm based on three different chaotic maps is proposed. In the proposed algorithm, the plain-image is first decomposed into 8x8 size blocks and then the block based shuffling of image is carried out using 2D Cat map. Further, the control parameters of shuffling are randomly generated by employing 2D coupled Logistic map. After that the shuffled image is encrypted using chaotic sequence generated by one-dimensional Logistic map. The experimental results show that the proposed algorithm can successfully encrypt/decrypt the images with same secret keys, and the algorithm has good encryption effect, large key space and high sensitivity to a small change in secret keys. Moreover, the simulation analysis also demonstrates that the encrypted images have good information entropy, very low correlation coefficients and the distribution of gray values of an encrypted image has random-like behavior.

  13. A Review and Comparative Study of Block based Symmetric Transformation Algorithm for Image Encryption

    Hiral Rathod; Mahendra Singh Sisodia, Sanjay Kumar Sharma

    2011-01-01

    The primary goal of this paper is to provide knowledge of safety of images which is traveling over internet. Moreover, an image-based data requires more effort during encryption and decryption. In this paper I present some advantages and disadvantages of existing algorithm for encryption and decryption of an image with the same objective. Moreover we are also doing analysis of entropy and correlation between pixels value of various image encryption algorithm. From the analysis we are observin...

  14. A fast image encryption algorithm based on chaotic map

    Liu, Wenhao; Sun, Kehui; Zhu, Congxu

    2016-09-01

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.

  15. Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence

    Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi

    2014-05-01

    The paper studies a recently developed evolutionary-based image encryption algorithm. A novel image encryption algorithm based on a hybrid model of deoxyribonucleic acid (DNA) masking, a genetic algorithm (GA) and a logistic map is proposed. This study uses DNA and logistic map functions to create the number of initial DNA masks and applies GA to determine the best mask for encryption. The significant advantage of this approach is improving the quality of DNA masks to obtain the best mask that is compatible with plain images. The experimental results and computer simulations both confirm that the proposed scheme not only demonstrates excellent encryption but also resists various typical attacks.

  16. A New Algorithm of Encryption and Decryption of Images Using Chaotic Mapping

    Musheer Ahmad; M. Shamsher Alam

    2010-01-01

    The combination of chaotic theory and cryptography forms an important field of information security. In the past decade, chaos based image encryption is given much attention in the research of information security and a lot of image encryption algorithms based on chaotic maps have been proposed. Due to some inherent features of images like bulk data capacity and high data redundancy, the encryption of images is different from that of texts; therefore it is difficult to handle them by traditio...

  17. A new image encryption algorithm based on logistic chaotic map with varying parameter.

    Liu, Lingfeng; Miao, Suoxia

    2016-01-01

    In this paper, we proposed a new image encryption algorithm based on parameter-varied logistic chaotic map and dynamical algorithm. The parameter-varied logistic map can cure the weaknesses of logistic map and resist the phase space reconstruction attack. We use the parameter-varied logistic map to shuffle the plain image, and then use a dynamical algorithm to encrypt the image. We carry out several experiments, including Histogram analysis, information entropy analysis, sensitivity analysis, key space analysis, correlation analysis and computational complexity to evaluate its performances. The experiment results show that this algorithm is with high security and can be competitive for image encryption. PMID:27066326

  18. The Research of Image Encryption Algorithm Based on Chaos Cellular Automata

    Shuiping Zhang

    2012-02-01

    Full Text Available The Research presents an image encryption algorithm which bases on chaotic cellular automata. This algorithm makes use of features that extreme sensitivity of chaotic system to initial conditions, the cellular automaton with a high degree of parallel processing. The encryption algorithm uses two-dimensional chaotic system to Encrypt image, Then establish a cellular automaton model on the initial encrypted image. Encryption key of this algorithm is made up of the initial value by the two-dimensional chaotic systems, parameters, two-dimensional cellular automata local evolution rules f and iterations n. Experimental results shows that the algorithm has features that high efficiency, better security, sensitivity to the key and so on.

  19. A chaos-based image encryption algorithm with variable control parameters

    In recent years, a number of image encryption algorithms based on the permutation-diffusion structure have been proposed. However, the control parameters used in the permutation stage are usually fixed in the whole encryption process, which favors attacks. In this paper, a chaos-based image encryption algorithm with variable control parameters is proposed. The control parameters used in the permutation stage and the keystream employed in the diffusion stage are generated from two chaotic maps related to the plain-image. As a result, the algorithm can effectively resist all known attacks against permutation-diffusion architectures. Theoretical analyses and computer simulations both confirm that the new algorithm possesses high security and fast encryption speed for practical image encryption.

  20. A self-adapting image encryption algorithm based on spatiotemporal chaos and ergodic matrix

    Luo Yu-Ling; Du Ming-Hui

    2013-01-01

    To ensure the security of a digital image,a new self-adapting encryption algorithm based on the spatiotemporal chaos and ergodic matrix is proposed in this paper.First,the plain-image is divided into different blocks of the same size,and each block is sorted in ascending order to obtain the corresponding standard ergodic matrix.Then each block is encrypted by the spatiotemporal chaotic system and shuffled according to the standard ergodic matrix.Finally,all modules are rearranged to acquire the final encrypted image.In particular,the plain-image information is used in the initial conditions of the spatiotemporal chaos and the ergodic matrices,so different plain-images will be encrypted to obtain different cipherimages.Theoretical analysis and simulation results indicate that the performance and security of the proposed encryption scheme can encrypt the image effectively and resist various typical attacks.

  1. A new image encryption algorithm based on logistic chaotic map with varying parameter

    Liu, Lingfeng; Miao, Suoxia

    2016-01-01

    In this paper, we proposed a new image encryption algorithm based on parameter-varied logistic chaotic map and dynamical algorithm. The parameter-varied logistic map can cure the weaknesses of logistic map and resist the phase space reconstruction attack. We use the parameter-varied logistic map to shuffle the plain image, and then use a dynamical algorithm to encrypt the image. We carry out several experiments, including Histogram analysis, information entropy analysis, sensitivity analysis,...

  2. An image joint compression-encryption algorithm based on adaptive arithmetic coding

    Through a series of studies on arithmetic coding and arithmetic encryption, a novel image joint compression-encryption algorithm based on adaptive arithmetic coding is proposed. The contexts produced in the process of image compression are modified by keys in order to achieve image joint compression encryption. Combined with the bit-plane coding technique, the discrete wavelet transform coefficients in different resolutions can be encrypted respectively with different keys, so that the resolution selective encryption is realized to meet different application needs. Zero-tree coding is improved, and adaptive arithmetic coding is introduced. Then, the proposed joint compression-encryption algorithm is simulated. The simulation results show that as long as the parameters are selected appropriately, the compression efficiency of proposed image joint compression-encryption algorithm is basically identical to that of the original image compression algorithm, and the security of the proposed algorithm is better than the joint encryption algorithm based on interval splitting. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system

    Wang Zhen; Huang Xia; Li Yu-Xia; Song Xiao-Na

    2013-01-01

    We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system.While in the process of generating a key stream,the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security.Such an algorithm is detailed in terms of security analyses,including correlation analysis,information entropy analysis,run statistic analysis,mean-variance gray value analysis,and key sensitivity analysis.The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.

  4. A novel hybrid color image encryption algorithm using two complex chaotic systems

    Wang, Leyuan; Song, Hongjun; Liu, Ping

    2016-02-01

    Based on complex Chen and complex Lorenz systems, a novel color image encryption algorithm is proposed. The larger chaotic ranges and more complex behaviors of complex chaotic systems, which compared with real chaotic systems could additionally enhance the security and enlarge key space of color image encryption. The encryption algorithm is comprised of three step processes. In the permutation process, the pixels of plain image are scrambled via two-dimensional and one-dimensional permutation processes among RGB channels individually. In the diffusion process, the exclusive-or (XOR for short) operation is employed to conceal pixels information. Finally, the mixing RGB channels are used to achieve a multilevel encryption. The security analysis and experimental simulations demonstrate that the proposed algorithm is large enough to resist the brute-force attack and has excellent encryption performance.

  5. A novel bit-level image encryption algorithm based on chaotic maps

    Xu, Lu; Li, Zhi; Li, Jian; Hua, Wei

    2016-03-01

    Recently, a number of chaos-based image encryption algorithms have been proposed at the pixel level, but little research at the bit level has been conducted. This paper presents a novel bit-level image encryption algorithm that is based on piecewise linear chaotic maps (PWLCM). First, the plain image is transformed into two binary sequences of the same size. Second, a new diffusion strategy is introduced to diffuse the two sequences mutually. Then, we swap the binary elements in the two sequences by the control of a chaotic map, which can permute the bits in one bitplane into any other bitplane. The proposed algorithm has excellent encryption performance with only one round. The simulation results and performance analysis show that the proposed algorithm is both secure and reliable for image encryption.

  6. Target Image Classification through Encryption Algorithm Based on the Biological Features

    Zhiwu Chen; Qing E. Wu; Weidong Yang

    2014-01-01

    In order to effectively make biological image classification and identification, this paper studies the biological owned characteristics, gives an encryption algorithm, and presents a biological classification algorithm based on the encryption process. Through studying the composition characteristics of palm, this paper uses the biological classification algorithm to carry out the classification or recognition of palm, improves the accuracy and efficiency of the existing biological classifica...

  7. A Novel Image Encryption using an Integration Technique of Blocks Rotation based on the Magic cube and the AES Algorithm

    Ahmed Bashir Abugharsa; Abd. Samad Bin Hasan Basari; Hamida Mohamed Almangush

    2012-01-01

    In recent years, several encryption algorithms have been proposed to protect digital images from cryptographic attacks. These encryption algorithms typically use a relatively small key space and therefore, provide safe, especially if they are of a dimension. In this paper proposes an encryption algorithm for a new image protection scheme based on the rotation of the faces of a Magic Cube. The original image is divided into six sub-images and these sub-images are divided amongst a number of bl...

  8. Hybrid LWT-SVD Watermarking Optimized Using Metaheuristic Algorithms along with Encryption for Medical Image Security

    Venugopal Reddy .CH

    2015-02-01

    Full Text Available Medical image security provides challenges and opportunities, watermarking and encryption of medical images provides the necessary control over the flow of medical information. In this paper a dual security approach is employed .A medical image is considered as watermark and is watermarked inside a natural image. This approach is to wean way the potential attacker by disguising the medical image as a natural image. To further enhance the security the watermarked image is encrypted using encryption algorithms. In this paper a multi–objective optimization approach optimized using different metaheuristic approaches like Genetic Algorithm (GA, Differential Evolution ( DE and Bacterial Foraging Optimization (BFOA is proposed. Such optimization helps in preserving the structural integrity of the medical images, which is of utmost importance. The water marking is proposed to be implemented using both Lifted Wavelet Transforms (LWT and Singular Value Decomposition (SVD technique. The encryption is done using RSA and AES encryption algorithms. A Graphical User Interface (GUI which enables the user to have ease of operation in loading the image, watermark it, encrypt it and also retrieve the original image whenever necessary is also designed and presented in this paper.

  9. A Novel Image Encryption using an Integration Technique of Blocks Rotation based on the Magic cube and the AES Algorithm

    Ahmed Bashir Abugharsa

    2012-07-01

    Full Text Available In recent years, several encryption algorithms have been proposed to protect digital images from cryptographic attacks. These encryption algorithms typically use a relatively small key space and therefore, provide safe, especially if they are of a dimension. In this paper proposes an encryption algorithm for a new image protection scheme based on the rotation of the faces of a Magic Cube. The original image is divided into six sub-images and these sub-images are divided amongst a number of blocks and attached to the faces of a Magic Cube. The faces are then scrambled using rotation of the Magic Cube. Then the rotated image is fed to the AES algorithm which is applied to the pixels of the image to encrypt the scrambled image. Finally, experimental results and security analysis show that the proposed image encryption scheme not only encrypts the picture to achieve perfect hiding, but the algorithm can also withstand exhaustive, statistical and differential attacks.

  10. Analysis and improvement of a chaos-based image encryption algorithm

    The security of digital image attracts much attention recently. In Guan et al. [Guan Z, Huang F, Guan W. Chaos-based image encryption algorithm. Phys Lett A 2005; 346: 153-7.], a chaos-based image encryption algorithm has been proposed. In this paper, the cause of potential flaws in the original algorithm is analyzed in detail, and then the corresponding enhancement measures are proposed. Both theoretical analysis and computer simulation indicate that the improved algorithm can overcome these flaws and maintain all the merits of the original one.

  11. Security analysis of image encryption based on two-dimensional chaotic maps and improved algorithm

    Feng HUANG; Yong FENG

    2009-01-01

    The article proposes a new algorithm to improve the security of image encryption based on two-dimensional chaotic maps.Chaotic maps are often used in encrypting images.However,the encryption has periodic-ity,no diffusion,and at the same time,the real keys space of encryption are fewer than the theoretical keys space,which consequently results in potential security problems.Thus,this article puts forward several ways to solve the problems including adding diffusion mechanism,changing the design of keys and developing a composite encryption system.It designs an algorithm for the version B of the discretized baker map,which is one of the most prevalent chaotic maps,based on which a new image encryption is proposed to avoid the above problems.The simulation results show that the new encryption algorithm is valid and the result can be applied to other two-dimensional chaotic maps,such as the cat map.

  12. Image encryption using fingerprint as key based on phase retrieval algorithm and public key cryptography

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2015-09-01

    In this paper, a novel image encryption system with fingerprint used as a secret key is proposed based on the phase retrieval algorithm and RSA public key algorithm. In the system, the encryption keys include the fingerprint and the public key of RSA algorithm, while the decryption keys are the fingerprint and the private key of RSA algorithm. If the users share the fingerprint, then the system will meet the basic agreement of asymmetric cryptography. The system is also applicable for the information authentication. The fingerprint as secret key is used in both the encryption and decryption processes so that the receiver can identify the authenticity of the ciphertext by using the fingerprint in decryption process. Finally, the simulation results show the validity of the encryption scheme and the high robustness against attacks based on the phase retrieval technique.

  13. A Novel Image Encryption Algorithm Based on DNA Encoding and Spatiotemporal Chaos

    Chunyan Song

    2015-10-01

    Full Text Available DNA computing based image encryption is a new, promising field. In this paper, we propose a novel image encryption scheme based on DNA encoding and spatiotemporal chaos. In particular, after the plain image is primarily diffused with the bitwise Exclusive-OR operation, the DNA mapping rule is introduced to encode the diffused image. In order to enhance the encryption, the spatiotemporal chaotic system is used to confuse the rows and columns of the DNA encoded image. The experiments demonstrate that the proposed encryption algorithm is of high key sensitivity and large key space, and it can resist brute-force attack, entropy attack, differential attack, chosen-plaintext attack, known-plaintext attack and statistical attack.

  14. Image encryption in the wavelet domain

    Bao, Long; Zhou, Yicong; Chen, C. L. Philip

    2013-05-01

    Most existing image encryption algorithms often transfer the original image into a noise-like image which is an apparent visual sign indicating the presence of an encrypted image. Motivated by the data hiding technologies, this paper proposes a novel concept of image encryption, namely transforming an encrypted original image into another meaningful image which is the final resulting encrypted image and visually the same as the cover image, overcoming the mentioned problem. Using this concept, we introduce a new image encryption algorithm based on the wavelet decomposition. Simulations and security analysis are given to show the excellent performance of the proposed concept and algorithm.

  15. Simultaneous image compression, fusion and encryption algorithm based on compressive sensing and chaos

    Liu, Xingbin; Mei, Wenbo; Du, Huiqian

    2016-05-01

    In this paper, a novel approach based on compressive sensing and chaos is proposed for simultaneously compressing, fusing and encrypting multi-modal images. The sparsely represented source images are firstly measured with the key-controlled pseudo-random measurement matrix constructed using logistic map, which reduces the data to be processed and realizes the initial encryption. Then the obtained measurements are fused by the proposed adaptive weighted fusion rule. The fused measurement is further encrypted into the ciphertext through an iterative procedure including improved random pixel exchanging technique and fractional Fourier transform. The fused image can be reconstructed by decrypting the ciphertext and using a recovery algorithm. The proposed algorithm not only reduces data volume but also simplifies keys, which improves the efficiency of transmitting data and distributing keys. Numerical results demonstrate the feasibility and security of the proposed scheme.

  16. Asymmetric optical image encryption based on an improved amplitude-phase retrieval algorithm

    Wang, Y.; Quan, C.; Tay, C. J.

    2016-03-01

    We propose a new asymmetric optical image encryption scheme based on an improved amplitude-phase retrieval algorithm. Using two random phase masks that serve as public encryption keys, an iterative amplitude and phase retrieval process is employed to encode a primary image into a real-valued ciphertext. The private keys generated in the encryption process are used to perform one-way phase modulations. The decryption process is implemented optically using conventional double random phase encoding architecture. Numerical simulations are presented to demonstrate the feasibility and robustness of the proposed system. The results illustrate that the computing efficiency of the proposed method is improved and the number of iterations required is much less than that of the cryptosystem based on the Yang-Gu algorithm.

  17. Fully phase color image encryption based on joint fractional Fourier transform correlator and phase retrieval algorithm

    Ding Lu; Weimin Jin

    2011-01-01

    A novel fully phase color image encryption/decryption scheme based on joint fractional Fourier transform correlator (JFRTC) and phase retrieval algorithm (PRA) is proposed. The security of the system is enhanced by the fractional order as a new added key. This method takes full advantage of the parallel processing features of the optical system and could optically realize single-channel color image encryption.The system and operation procedures are simplified. The simulation results of a color image indicate that the new method provides efficient solutions with a strong sense of security.%@@ A novel fully phase color image encryption/decryption scheme based on joint fractional Fourier transform correlator (JFRTC) and phase retrieval algorithm (PRA) is proposed. The security of the system is enhanced by the fractional order as a new added key. This method takes full advantage of the parallel processing features of the optical system and could optically realize single-channel color image encryption. The system and operation procedures are simplified. The simulation results of a color image indicate that the new method provides efficient solutions with a strong sense of security.

  18. Simultaneous optical image compression and encryption using error-reduction phase retrieval algorithm

    Liu, Wei; Liu, Zhengjun; Liu, Shutian

    2015-12-01

    We report a simultaneous image compression and encryption scheme based on solving a typical optical inverse problem. The secret images to be processed are multiplexed as the input intensities of a cascaded diffractive optical system. At the output plane, a compressed complex-valued data with a lot fewer measurements can be obtained by utilizing error-reduction phase retrieval algorithm. The magnitude of the output image can serve as the final ciphertext while its phase serves as the decryption key. Therefore the compression and encryption are simultaneously completed without additional encoding and filtering operations. The proposed strategy can be straightforwardly applied to the existing optical security systems that involve diffraction and interference. Numerical simulations are performed to demonstrate the validity and security of the proposal.

  19. A novel algorithm for image encryption based on mixture of chaotic maps

    Behnia, S. [Department of Physics, IAU, Urmia (Iran, Islamic Republic of)], E-mail: s.behnia@iaurmia.ac.ir; Akhshani, A.; Mahmodi, H. [Department of Physics, IAU, Urmia (Iran, Islamic Republic of); Akhavan, A. [Department of Engineering, IAU, Urmia (Iran, Islamic Republic of)

    2008-01-15

    Chaos-based encryption appeared recently in the early 1990s as an original application of nonlinear dynamics in the chaotic regime. In this paper, an implementation of digital image encryption scheme based on the mixture of chaotic systems is reported. The chaotic cryptography technique used in this paper is a symmetric key cryptography. In this algorithm, a typical coupled map was mixed with a one-dimensional chaotic map and used for high degree security image encryption while its speed is acceptable. The proposed algorithm is described in detail, along with its security analysis and implementation. The experimental results based on mixture of chaotic maps approves the effectiveness of the proposed method and the implementation of the algorithm. This mixture application of chaotic maps shows advantages of large key space and high-level security. The ciphertext generated by this method is the same size as the plaintext and is suitable for practical use in the secure transmission of confidential information over the Internet.

  20. Optical image encryption using password key based on phase retrieval algorithm

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-04-01

    A novel optical image encryption system is proposed using password key based on phase retrieval algorithm (PRA). In the encryption process, a shared image is taken as a symmetric key and the plaintext is encoded into the phase-only mask based on the iterative PRA. The linear relationship between the plaintext and ciphertext is broken using the password key, which can resist the known plaintext attack. The symmetric key and the retrieved phase are imported into the input plane and Fourier plane of 4f system during the decryption, respectively, so as to obtain the plaintext on the CCD. Finally, we analyse the key space of the password key, and the results show that the proposed scheme can resist a brute force attack due to the flexibility of the password key.

  1. Hybrid LWT-SVD Watermarking Optimized Using Metaheuristic Algorithms along with Encryption for Medical Image Security

    Venugopal Reddy .CH; Siddaiah.P

    2015-01-01

    Medical image security provides challenges and opportunities, watermarking and encryption of medical images provides the necessary control over the flow of medical information. In this paper a dual security approach is employed .A medical image is considered as watermark and is watermarked inside a natural image. This approach is to wean way the potential attacker by disguising the medical image as a natural image. To further enhance the security the watermarked image is encrypted using encry...

  2. Hierarchical multiple binary image encryption based on a chaos and phase retrieval algorithm in the Fresnel domain

    Wang, Zhipeng; Lv, Xiaodong; Wang, Hongjuan; Hou, Chenxia; Gong, Qiong; Qin, Yi

    2016-03-01

    Based on the chaos and phase retrieval algorithm, a hierarchical multiple binary image encryption is proposed. In the encryption process, each plaintext is encrypted into a diffraction intensity pattern by two chaos-generated random phase masks (RPMs). Thereafter, the captured diffraction intensity patterns are partially selected by different binary masks and then combined together to form a single intensity pattern. The combined intensity pattern is saved as ciphertext. For decryption, an iterative phase retrieval algorithm is performed, in which a support constraint in the output plane and a median filtering operation are utilized to achieve a rapid convergence rate without a stagnation problem. The proposed scheme has a simple optical setup and large encryption capacity. In particular, it is well suited for constructing a hierarchical security system. The security and robustness of the proposal are also investigated.

  3. Cryptanalysis on an image block encryption algorithm based on spatiotemporal chaos

    Wang Xing-Yuan; He Guo-Xiang

    2012-01-01

    An image block encryption scheme based on spatiotemporal chaos has been proposed recently.In this paper,we analyse the security weakness of the proposal.The main problem of the original scheme is that the generated keystream remains unchanged for encrypting every image.Based on the flaws,we demonstrate a chosen plaintext attack for revealing the equivalent keys with only 6 pairs of plaintext/ciphertext used.Finally,experimental results show the validity of our attack.

  4. Security Analysis of Image Encryption Based on Gyrator Transform by Searching the Rotation Angle with Improved PSO Algorithm.

    Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong

    2015-01-01

    Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms. PMID:26251910

  5. Security Analysis of Image Encryption Based on Gyrator Transform by Searching the Rotation Angle with Improved PSO Algorithm

    Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong

    2015-01-01

    Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms. PMID:26251910

  6. An Image Encryption and Decryption Algorithm Based on Chaos Sequence%基于混沌序列的图像加密解密算法

    陈永红; 黄席樾

    2003-01-01

    In this paper, an image encryption and decryption algorithm based on chaos sequence is proposed. This algorithm provides low computational complexity, high security and no distortion. Finally, experimental results are satisfactory.

  7. Stream Deniable-Encryption Algorithms

    N.A. Moldovyan

    2016-04-01

    Full Text Available A method for stream deniable encryption of secret message is proposed, which is computationally indistinguishable from the probabilistic encryption of some fake message. The method uses generation of two key streams with some secure block cipher. One of the key streams is generated depending on the secret key and the other one is generated depending on the fake key. The key streams are mixed with the secret and fake data streams so that the output ciphertext looks like the ciphertext produced by some probabilistic encryption algorithm applied to the fake message, while using the fake key. When the receiver or/and sender of the ciphertext are coerced to open the encryption key and the source message, they open the fake key and the fake message. To disclose their lie the coercer should demonstrate possibility of the alternative decryption of the ciphertext, however this is a computationally hard problem.

  8. 3D Chaotic Functions for Image Encryption

    Pawan N. Khade

    2012-05-01

    Full Text Available This paper proposes the chaotic encryption algorithm based on 3D logistic map, 3D Chebyshev map, and 3D, 2D Arnolds cat map for color image encryption. Here the 2D Arnolds cat map is used for image pixel scrambling and 3D Arnolds cat map is used for R, G, and B component substitution. 3D Chebyshev map is used for key generation and 3D logistic map is used for image scrambling. The use of 3D chaotic functions in the encryption algorithm provide more security by using the, shuffling and substitution to the encrypted image. The Chebyshev map is used for public key encryption and distribution of generated private keys.

  9. Multilevel Image Encryption

    S Rakesh; Kaller, Ajitkumar A; Shadakshari, B. C.; Annappa, B.

    2012-01-01

    With the fast evolution of digital data exchange and increased usage of multi media images, it is essential to protect the confidential image data from unauthorized access. In natural images the values and position of the neighbouring pixels are strongly correlated. The method proposed in this paper, breaks this correlation increasing entropy of the position and entropy of pixel values using block shuffling and encryption by chaotic sequence respectively. The plain-image is initially row wise...

  10. Performance study of selective encryption in comparison to full encryption for still visual images

    Osama A.KHASHAN; Abdullah M.ZIN; Elankovan A.SUNDARARAJAN

    2014-01-01

    Securing digital images is becoming an important concern in today’s information security due to the extensive use of secure images that are either transmitted over a network or stored on disks. Image encryption is the most effective way to fulfil confidentiality and protect the privacy of images. Nevertheless, owing to the large size and complex structure of digital images, the computational overhead and processing time needed to carry out full image encryption prove to be limiting factors that inhibit it of being used more heavily in real time. To solve this problem, many recent studies use the selective encryption approach to encrypt significant parts of images with a hope to reduce the encryption overhead. However, it is necessary to realistically evaluate its performance compared to full encryption. In this paper, we study the performance and efficiency of image segmentation methods used in the selective encryption approach, such as edges and face detection methods, in determining the most important parts of visual images. Experiments were performed to analyse the computational results obtained by selective image encryption compared to full image encryption using symmetric encryption algorithms. Experiment results have proven that the selective encryption approach based on edge and face detection can significantly reduce the time of encrypting still visual images as compared to full encryption. Thus, this approach can be considered a good alternative in the implementation of real-time applications that require adequate security levels.

  11. Advanced Steganography Algorithm using Encrypted secret message

    Joyshree Nath

    2011-03-01

    Full Text Available In the present work the authors have introduced a new method for hiding any encrypted secret message inside a cover file. For encrypting secret message the authors have used new algorithm proposed by Nath et al(1. For hiding secret message we have used a method proposed by Nath et al(2. In MSA(1 method we have modified the idea of Play fair method into a new platform where we can encrypt or decrypt any file. We have introduced a new randomization method for generating the randomized key matrix to encrypt plain text file and to decrypt cipher text file. We have also introduced a new algorithm for encrypting the plain text multiple times. Our method is totally dependent on the random text_key which is to be supplied by the user. The maximum length of the text_key can be of 16 characters long and it may contain any character(ASCII code 0 to 255. We have developed an algorithm to calculate the randomization number and the encryption number from the given text_key. The size of the encryption key matrix is 16x16 and the total number of matrices can be formed from 16 x 16 is 256! which is quite large and hence if someone applies the brute force method then he/she has to give trail for 256! times which is quite absurd. Moreover the multiple encryption method makes the system further secured. For hiding secret message in the cover file we have inserted the 8 bits of each character of encrypted message file in 8 consecutive bytes of the cover file. We have introduced password for hiding data in the cover file. We propose that our new method could be most appropriate for hiding any file in any standard cover file such as image, audio, video files. Because the hidden message is encrypted hence it will be almost impossible for the intruder to unhide the actual secret message from the embedded cover file. This method may be the most secured method in digital water marking.

  12. Spatial chaos-based image encryption design

    2009-01-01

    In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, permutation and sub- stitution methods are incorporated to present a stronger image encryption algorithm. Spatial chaotic maps are used to realize the position permutation, and to confuse the relationship between the ci- pher-image and the plain-image. The experimental results demonstrate that the suggested encryption scheme of image has the advantages of large key space and high security; moreover, the distribution of grey values of the encrypted image has a random-like behavior.

  13. Spatial chaos-based image encryption design

    LIU ShuTang; SUN FuYan

    2009-01-01

    In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, permutation and sub-stitution methods are incorporated to present a stronger image encryption algorithm. Spatial chaotic maps are used to realize the position permutation, and to confuse the relationship between the ci-pher-image and the plain-image. The experimental results demonstrate that the suggested encryption scheme of image has the advantages of large key space and high security; moreover, the distribution of grey values of the encrypted image has a random-like behavior.

  14. Security enhancement of a phase-truncation based image encryption algorithm.

    Wang, Xiaogang; Zhao, Daomu

    2011-12-20

    The asymmetric cryptosystem, which is based on phase-truncated Fourier transforms (PTFTs), can break the linearity of conventional systems. However, it has been proven to be vulnerable to a specific attack based on iterative Fourier transforms when the two random phase masks are used as public keys to encrypt different plaintexts. An improvement from the asymmetric cryptosystem may be taken by relocating the amplitude values in the output plane. In this paper, two different methods are adopted to realize the amplitude modulation of the output image. The first one is to extend the PTFT-based asymmetrical cryptosystem into the anamorphic fractional Fourier transform domain directly, and the second is to add an amplitude mask in the Fourier plane of the encryption scheme. Some numerical simulations are presented to prove the good performance of the proposed cryptosystems. PMID:22193194

  15. Image encryption using the fractional wavelet transform

    In this paper a technique for the coding of digital images is developed using Fractional Wavelet Transform (FWT) and random phase masks (RPMs). The digital image to encrypt is transformed with the FWT, after the coefficients resulting from the FWT (Approximation, Details: Horizontal, vertical and diagonal) are multiplied each one by different RPMs (statistically independent) and these latest results is applied an Inverse Wavelet Transform (IWT), obtaining the encrypted digital image. The decryption technique is the same encryption technique in reverse sense. This technique provides immediate advantages security compared to conventional techniques, in this technique the mother wavelet family and fractional orders associated with the FWT are additional keys that make access difficult to information to an unauthorized person (besides the RPMs used), thereby the level of encryption security is extraordinarily increased. In this work the mathematical support for the use of the FWT in the computational algorithm for the encryption is also developed.

  16. Image encryption using the fractional wavelet transform

    Vilardy, Juan M; Useche, J; Torres, C O; Mattos, L, E-mail: vilardy.juan@unicesar.edu.co [Laboratorio de Optica e Informatica, Universidad Popular del Cesar, Sede balneario Hurtado, Valledupar, Cesar (Colombia)

    2011-01-01

    In this paper a technique for the coding of digital images is developed using Fractional Wavelet Transform (FWT) and random phase masks (RPMs). The digital image to encrypt is transformed with the FWT, after the coefficients resulting from the FWT (Approximation, Details: Horizontal, vertical and diagonal) are multiplied each one by different RPMs (statistically independent) and these latest results is applied an Inverse Wavelet Transform (IWT), obtaining the encrypted digital image. The decryption technique is the same encryption technique in reverse sense. This technique provides immediate advantages security compared to conventional techniques, in this technique the mother wavelet family and fractional orders associated with the FWT are additional keys that make access difficult to information to an unauthorized person (besides the RPMs used), thereby the level of encryption security is extraordinarily increased. In this work the mathematical support for the use of the FWT in the computational algorithm for the encryption is also developed.

  17. Parallel bidirectional image encryption algorithm based on self-adaptive chaos%自适应混沌的并行双向图像加密方案

    刘祝华

    2014-01-01

    In order to improve the running speed of image encryption algorithm and consider the security of the algorithm, a parallel bidirectional image encryption algorithm based on self-adaptive chaos is proposed. The grouping and parallel encryp-tion for images is executed by this algorithm. Two one-dimensional chaotic maping parameters and original value are disturbed by elements in image groups. The encryption sequence is generated through two chaotic sequences’XOR operation. The bidirec-tional encryption is adopted in the algorithm. Diffusion between groups is implemented by using the last element of every group after forward encryption. The change of the last element is spread to the whole group through reverse encryption. The experimen-tal results show that the algorithm encrypts fast,and has high safety.%为了提高图像加密算法的运行速度,同时兼顾算法的安全性,提出了一种自适应混沌的并行双向图像加密算法。算法对图像进行分组并行加密,用分组内的元素对两个一维混沌映射的参数及初始值进行扰动,并将生成的两个混沌序列相异或得到加密序列。采用正反双向加密,在正向加密后使用分组最后一个元素实现分组间扩散,最后通过反向加密将最后一个元素的变化扩散至整个分组。实验结果表明,算法执行速度快,且安全性高。

  18. 基于混沌序列的数字彩色图像加密算法%Encryption Algorithm for Digital Color Image Based on Chaotic Sequences

    何松林

    2011-01-01

    The new encryption algorithm for digital color image is proposed. The image can be encrypted through encryption matrixes generated with Logistic chaotic sequences to exclusive OR(XOR) color matrixes many times. The R, G and B components of the color image can be treated randomly and encrypted image becomes more uniform. Because the chaotic sequences are extremely sensitive to the parameters and the initial values, even ifthe encryption algorithm is open. Without the right key, the useful information can not be got. The encryption key length is effectively enlarged by using multiple sets of parameter of the branch and initial value as the encryption key. The experiments confirm its validity.%提出用Logistic混沌序列产生多个加密矩阵与基色矩阵进行多次异或的方法,对彩色图像的RGB分量进行随机化处理,使加密后的图像均匀.由于混沌序列对参数和初始值的极端敏感性,即使加密算法被公开,没有正确的密钥也无法得到有用信息.因此采用多组分支参数和初始值作为密钥,使密钥长度有效增加.实验结果证明了该算法是有效的.

  19. Selective image encryption using a spatiotemporal chaotic system.

    Xiang, Tao; Wong, Kwok-wo; Liao, Xiaofeng

    2007-06-01

    A universal selective image encryption algorithm, in which the spatiotemporal chaotic system is utilized, is proposed to encrypt gray-level images. In order to resolve the tradeoff between security and performance, the effectiveness of selective encryption is discussed based on simulation results. The scheme is then extended to encrypt RGB color images. Security analyses for both scenarios show that the proposed schemes achieve high security and efficiency. PMID:17614669

  20. A block image encryption algorithm on coupled map lattice%基于耦合映像格子的分组图像加密算法

    杨杨; 张雪锋; 张雁冰

    2012-01-01

    针对传统的基于混沌的数字图像加密算法存在的抗差分攻击性能较弱、对受损密文图像恢复效果较差的问题,设计出一种基于分组密码和交替迭代结构的数字图像加密算法。在每一轮加密中,采用不同的耦合映像格子来构造S盒,使得算法具有更好的安全性能。实验结果表明,该算法不仅具有较好的加密效果,而且对受损密文图像也能得到较好的恢复效果。%Aimed at the problems that traditional digital image encryption algorithm based on chaos performs weak in anti-differential cryptanalysis and has poor effect on recovery of impaired encryption image,a digital image encryption algorithm based on block cipher and alternating iteration structure is designed,which adopts different CML to form S-box during each round of encryption,bringing better security performance to the algorithm.Experiment results show that the algorithm not only possesses well encryption effect,but also very useful for the recovery of impaired encryption image.

  1. Image encryption using P-Fibonacci transform and decomposition

    Zhou, Yicong; Panetta, Karen; Agaian, Sos; Chen, C. L. Philip

    2012-03-01

    Image encryption is an effective method to protect images or videos by transferring them into unrecognizable formats for different security purposes. To improve the security level of bit-plane decomposition based encryption approaches, this paper introduces a new image encryption algorithm by using a combination of parametric bit-plane decomposition along with bit-plane shuffling and resizing, pixel scrambling and data mapping. The algorithm utilizes the Fibonacci P-code for image bit-plane decomposition and the 2D P-Fibonacci transform for image encryption because they are parameter dependent. Any new or existing method can be used for shuffling the order of the bit-planes. Simulation analysis and comparisons are provided to demonstrate the algorithm's performance for image encryption. Security analysis shows the algorithm's ability against several common attacks. The algorithm can be used to encrypt images, biometrics and videos.

  2. Integration of chaotic sequences uniformly distributedin a new image encryption algorithm

    Nassiba Wafa Abderrahim

    2012-03-01

    Full Text Available In this paper we propose a new chaotic secret key cryptosystem, adapted for image encryption in continuous mode, which is based on the use of tow one-dimensional discrete chaotic systems: Bernoulli map and Tent map. The pseudorandom sequences generated by the two maps are characterized by independence of their states, uniformly distributed, so hear integration provides excellent properties of confusion and diffusion, and an important space for the secret key, because it consists of parameters and initial states of the chaotic maps. The security tests results of our cryptosystem are very satisfactory.

  3. 基于自适应排列的快速图像加密算法%Fast Image Encryption Algorithm Based on Self-adaptive Permutation

    刘梅

    2009-01-01

    现有自适应图像加密算法可以抵抗已知明文攻击,其单轮加密速度很快,但安全性和整体加密速度较低.基于自适应排列提出一种新的快速图像加密算法,在确保加密操作简单高效的前提下,改变加密前后图像的像素分布.实验结果表明,该算法性能优于其他同类算法.%Existing self-adaptive image encryption algorithm is resistant to known plaintext attacks and with high speed of single round eneryption, but its security and speed of whole round encryption is low. This paper proposes a new fast image encryption algorithm based on self-adaptive permutation. This algorithm insures the simpleness and high efficiency of encryption operation, and changes the pixel distribution of encrypted image compared with that of original image. Experimental results show that this algorithm has better performance than other kindred algorithms.

  4. 一种高效的彩色图像加密和解密算法%Efficient Encryption and Decryption Algorithm for Color Image

    彭静玉

    2013-01-01

    分析了基于Arnold变换的加密方案在加密效果及加密效率方面的不足。提出了一种新的彩色图像加密及解密算法。加密过程将像素的物理位置置乱并映射到不同的色彩空间;解密过程提出了一种针对彩色图像的逆变换算法,使解密的时间仅依赖加密的密钥而不依赖变换周期。仿真分析比较了该算法在加密效果及加密效率方面的优势。实验数据表明,该加密算法的加密效果理想,且加密效率较高,是一种简单、可行的彩色图像加密方法。%The deficiencies of encryption scheme based on Arnold transformation is analyzed, and a new encryption/decryption algorithm for color image proposed. The physical locations of pixels are scrambled and mapped to different color spaces in the encryption process. An inverse conversion method for color im-age is suggested in decryption process, thus making the decryption time dependent only on the encryption key instead of on the conversion cycle. Simulation and comparison of the advantages of proposed algorithm in encryption effect and encryption efficiency indicates that the proposed algorithm could improve encryp-tion effect while raising the decryption efficiency, and thus a simple and feasible color image encryption method.

  5. 基于RSA的数字图像加密算法%An Encryption Algorithm for Digital Image Based on RSA System

    杨昔阳; 李志伟

    2009-01-01

    It proposes a novel encryption method for digital image based on an Arnold scrambling transform, a chaos encryption algorithm and RSA encryption system. The parameters of the Arnold transform and chaos encryption algorithm are encrypted by RSA system and stored in LSB of an image to ensure the security in transmission. The example in this paper shows that the proposed method is an efficient way to encrypt a digital image.%提出一种基于RSA公钥、Arnold置乱变换和混沌加密算法相结合的公开密钥数字图像加密体制,利用客户的公钥对Arnold置乱变换和混沌序列初值进行RSA加密,确保了只有合法用户才能获取置乱参数信息并将图像复原.RSA对参数的加密信息隐藏于图像LSB中,无需另外传递密文,运算简单,具有良好的加密与隐藏效果.

  6. Optical image encryption based on multifractional Fourier transforms.

    Zhu, B; Liu, S; Ran, Q

    2000-08-15

    We propose a new image encryption algorithm based on a generalized fractional Fourier transform, to which we refer as a multifractional Fourier transform. We encrypt the input image simply by performing the multifractional Fourier transform with two keys. Numerical simulation results are given to verify the algorithm, and an optical implementation setup is also suggested. PMID:18066153

  7. Image encryption using high-dimension chaotic system

    Sun Fu-Yan; Liu Shu-Tang; Lü Zong-Wang

    2007-01-01

    In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a highdimensional chaotic map. The new scheme employs the Cat map to shuffle the positions, then to confuse the relationship between the cipher-image and the plain-image using the high-dimensional Lorenz chaotic map preprocessed. The results of experimental, statistical analysis and key space analysis show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.

  8. Experimental optical encryption system based on a single-lens imaging architecture combined with a phase retrieval algorithm

    We propose, and experimentally demonstrate, a single-lens imaging system as a compact encoding architecture by using a hybrid protocol for data processing. The encryption process consists of coherent light illuminating a random phase mask attached to an input image (the data), then the outgoing complex field propagates until reaching a second random phase mask next to a lens: encrypted data is obtained at some output plane after the lens. We demonstrate the feasibility of this proposal, and highlight the advantages of using tridimensional speckle as a secure random carrier instead of a standard ciphertext recording—holographic-based encryption techniques. Moreover, we expose the compact system benefits compared to conventional encrypting architectures in terms of energy loss and tolerance against classical attacks applicable to any linear cryptosystem. Experimental results validate our approach. (paper)

  9. A lossless encryption method for medical images using edge maps.

    Zhou, Yicong; Panetta, Karen; Agaian, Sos

    2009-01-01

    Image encryption is an effective approach for providing security and privacy protection for medical images. This paper introduces a new lossless approach, called EdgeCrypt, to encrypt medical images using the information contained within an edge map. The algorithm can fully protect the selected objects/regions within medical images or the entire medical images. It can also encrypt other types of images such as grayscale images or color images. The algorithm can be used for privacy protection in the real-time medical applications such as wireless medical networking and mobile medical services. PMID:19965008

  10. Securing Images Using Chaotic-based Image Encryption Cryptosystem

    Abdalwhab A. Alkher

    2016-03-01

    Full Text Available Given the rapid evolution in imaging and communication techniques, images become very important data transmitted over public networks type. Therefore, a fast and secure encryption system for high-resolution images is a tremendous demand. In this paper, a novel encryption system is proposed to secure images on the basis of Arnold Catmap. In the First, Arnold cat map system is used to scramble the positions of image pixels. Then, chaotic map is used to generate pseudorandom image for substitution. The statistical analysis was performed on the proposed encryption algorithm demonstrating superior confusion and deployment of its properties, which strongly resist statistical attacks. Coefficients of correlation between adjacent pixels showed that correlation between pixels of the encrypted image has significantly decreased. It is noted that the number of pixels of the image encoded drops significantly which indicates that the proposed system can thwart correlation attacks.

  11. Degradative encryption: An efficient way to protect SPIHT compressed images

    Xiang, Tao; Qu, Jinyu; Yu, Chenyun; Fu, Xinwen

    2012-11-01

    Degradative encryption, a new selective image encryption paradigm, is proposed to encrypt only a small part of image data to make the detail blurred but keep the skeleton discernible. The efficiency is further optimized by combining compression and encryption. A format-compliant degradative encryption algorithm based on set partitioning in hierarchical trees (SPIHT) is then proposed, and the scheme is designed to work in progressive mode for gaining a tradeoff between efficiency and security. Extensive experiments are conducted to evaluate the strength and efficiency of the scheme, and it is found that less than 10% data need to be encrypted for a secure degradation. In security analysis, the scheme is verified to be immune to cryptographic attacks as well as those adversaries utilizing image processing techniques. The scheme can find its wide applications in online try-and-buy service on mobile devices, searchable multimedia encryption in cloud computing, etc.

  12. The Image Encryption Algorithms Research Based on the Improved CCS-PRBG%基于改进CCS-PRBG的图像加密算法研究

    顾理琴; 季秀兰

    2014-01-01

    随着信息技术的高速发展,现有的图像加密算法已经无法满足图像数据加密的需求。本文基于图像加密现状和混沌序列密码技术,在双混沌系统伪随机比特发生器技术基础上,提出了一种基于改进CCS-PRBG的图像加密算法,首先对比特位平面进行分解,再对每个比特位平面进行置乱,然后对每个比特位平面进行流密码加密最后合并加密后的比特位平面得到加密图像。实验结果表明,本文提出的基于改进CCS-PRBG的图像加密算法安全性能良好,值得推广使用。%With the rapid development of modern information technology, the existing image encryption algorithm has been unable to meet the needs of the image data encryption.Based on the current situation of image encryption and chaotic sequence code technology, and on the technology of bit generator of double chaos system pseudo random, this paper puts forward a kind of image encryption algorithm based on improved CCS- PRBG, first it decomposes the bit plane, then scrambles for each bit plane, then it carries out the stream cipher encryption for each bit plane and finally merges them, thus we can get encryption image from the encrypted bit plane.The experimental results show that the proposed image encryption algorithm based on improved CCS-PRBG is good in safety performance, and it is worthy to be popularized.

  13. Double-image encryption based on Yang-Gu mixture amplitude-phase retrieval algorithm and high dimension chaotic system in gyrator domain

    Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli

    2015-11-01

    A double-image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and high dimension chaotic system in gyrator transform domain, in which three chaotic random sequences are generated by using Chen system. First, an enlarged image constituted with two plaintext images is scrambled by using the first two sequences, and then separated into two new interim images. Second, one interim image is converted to the private phase key with the help of the third sequence, which is modulated by a random phase key generated based on logistic map. Based on this private phase key, another interim image is converted to the ciphertext with white noise distribution in the Yang-Gu amplitude-phase retrieval process. In the process of encryption and decryption, the images both in spatial domain and gyrator domain are nonlinear and disorder by using high dimension chaotic system. Moreover, the ciphertext image is only a real-valued function which is more convenient for storing and transmitting, and the security of the proposed encryption scheme is enhanced greatly because of high sensitivity of initial values of Chen system and rotation angle of gyrator transform. Extensive cryptanalysis and simulation results have demonstrated the security, validity and feasibility of the propose encryption scheme.

  14. 基于细胞自动机的安全图像加密算法%Secure Image Encryption Algorithm Based on Cellular Automata

    熊永红; 廖晓峰; 周庆

    2011-01-01

    In order to solve the problems that the cipher image encrypted by encryption algorithm based on the merit of the state attractors of Elementary Cellular Automata(ECA) can still discern part outline of the original image, and the plaintext sensitivity is poor, this paper proposes a secure image encryption algorithm. It employs the method which encrypts every bit plane with period two 2D Cellular Automata(CA), and then uses state attractors to encrypt the image, to achieve the effect that I bit change in the plaintext can be spreaded to the whole cipher image. Simulation results show that the improved algorithm is more sensitive, has larger key space, and easy to implement.%利用初等细胞自动机状态环性质进行加密后的密文图像仍可看出原图像的部分轮廓,且明文敏感性差.由此提出一种安全的图像加密算法,采用周期为2的二维细胞自动机对图像进行位平面加密,再通过状态环加密的方法使明文改变1 bit即可影响整个密文图像.仿真结果表明,改进算法敏感性更高,密钥空间更大,且加密速度较快.

  15. 一种多混沌的彩色图像认证加密算法%A Color Image Authentication Encryption Algorithm Based Multi-chaos

    蒲昌玖

    2013-01-01

    In order to protect color image effectively,a color image encryption scheme based on multiple chaotic maps and authentication is presented.The algorithm generated 128-bit Hash keys by the mathematical operation in the RGB components of the color image,and the Hash key is used as part of the image encryption keys.Then,pixels shuffling and pixels substitution are simultaneous implemented to encrypt the color image using Logistic chaotic system,unified chaotic system and Hash keys.Finally,theoretical analyses and simulated experiment show that the color image encryption algorithm shows advantages of larger key space,higher security,a random distribution characteristics of the pixel value of the encrypted image and the zero correlation of adjacent pixels.%为了实现对彩色图像的有效保护,提出一种基于多混沌系统和图像认证功能的彩色图像加密算法.该算法通过对彩色图像RGB分量的运算生成128位Hash值,并把该Hash值作为部分图像加密的密钥.然后通过Logistic混沌系统、统一混沌系统和Hash值对彩色图像进行像素置乱和替代操作以实现图像加密.最后,理论分析和仿真实验结果表明,该加密算法具有密钥空间大,保密性好,加密图像像素值具有类随机均匀分布特性和相邻像素值的零相关特性.

  16. Improved Cryptanalysis of CMC Chaotic Image Encryption Scheme

    Jiansheng Guo

    2010-12-01

    Full Text Available Recently, chaos has attracted much attention in the field of cryptography. To study the security with a known image of a symmetric image encryption scheme, the attack algorithm of equivalent key is given. We give the known image attacks under different other conditions to obtain the equivalent key. The concrete step and complexity of the attack algorithm is given. So the symmetric image encryption scheme based on 3D chaotic cat maps is not secure.

  17. Image Encryption Algorithm Based on Extended Two-dimensional Cellular Automata%基于扩展型二维CA的图像加密算法

    罗小刚; 李轩; 彭承琳; 侯长军; 霍丹群

    2009-01-01

    根据数字图像的存储特点,提出一种基于扩展型二维元胞自动机的图像加密算法,将二维元胞自动机与图像加密技术结合,利用元胞自动机生成数值范围在0~255区间的二维伪随机数矩阵,截取与图像大小相等的伪随机数矩阵作为密码对图像像素进行加密,解密为加密的逆过程.实验结果表明,该算法能快速产生密码,加密形式简单,具有较好的抗攻击能力,适合对数据量大的数字图像进行加密.%According to the storage characteristics of digital image, an image encryption algorithm based on extended two-dimensional Cellular Automata(CA) is proposed in this paper. It combines the two-dimensional CA with the technology of image encryption, which uses CA to generate a two-dimensional matrix pseudo-random number ranged from 0 to 255 automatically and takes a part of this matrix as the code to enerypt image pixels, and the size of this matrix is the same as the image. The decryption is the converse process of encryption. Experimental results demonstrate this algorithm can generate cryptogram rapidly and has a simple encrypt form as well as a better performance against attacks. It is suitable for encrypting digital images with huge data.

  18. Algoritmi selektivnog šifrovanja - pregled sa ocenom performansi / Selective encryption algorithms: Overview with performance evaluation

    Boriša Ž. Jovanović

    2010-10-01

    Full Text Available Digitalni multimedijalni sadržaj postaje zastupljeniji i sve više se razmenjuje putem računarskih mreža i javnih kanala (satelitske komunikacije, bežične mreže, internet, itd. koji predstavljaju nebezbedne medijume za prenos informacija osetljive sadržine. Sve više na značaju dobijaju mehanizmi kriptološke zaštite slika i video sadržaja. Tradicionalni sistemi kriptografske obrade u sistemima za prenos ovih vrsta informacija garantuju visok stepen sigurnosti, ali i imaju svoje nedostatke - visoku cenu implementacije i znatno kašnjenje u prenosu podataka. Pomenuti nedostaci se prevazilaze primenom algoritama selektivnog šifrovanja. / Digital multimedia content is becoming widely used and increasingly exchanged over computer network and public channels (satelite, wireless networks, Internet, etc. which is unsecured transmission media for ex changing that kind of information. Mechanisms made to encrypt image and video data are becoming more and more significant. Traditional cryptographic techniques can guarantee a high level of security but at the cost of expensive implementation and important transmission delays. These shortcomings can be exceeded using selective encryption algorithms. Introduction In traditional image and video content protection schemes, called fully layered, the whole content is first compressed. Then, the compressed bitstream is entirely encrypted using a standard cipher (DES - Data Encryption Algorithm, IDEA - International Data Encryption Algorithm, AES - Advanced Encryption Algorithm etc.. The specific characteristics of this kind of data, high-transmission rate with limited bandwidth, make standard encryption algorithms inadequate. Another limitation of traditional systems consists of altering the whole bitstream syntax which may disable some codec functionalities on the delivery site coder and decoder on the receiving site. Selective encryption is a new trend in image and video content protection. As its

  19. Performance Study on Image Encryption Schemes

    Shah, Jolly

    2011-01-01

    Image applications have been increasing in recent years.Encryption is used to provide the security needed for image applications. In this paper, we classify various image encryption schemes and analyze them with respect to various parameters like tunability, visual degradation, compression friendliness,format compliance, encryption ratio, speed, and cryptographic security.

  20. Performance Study on Image Encryption Schemes

    Jolly Shah; Vikas Saxena

    2011-01-01

    Image applications have been increasing in recent years. Encryption is used to provide the security needed for image applications. In this paper, we classify various image encryption schemes and analyze them with respect to various parameters like tunability, visual degradation, compression friendliness, format compliance, encryption ratio, speed, and cryptographic security.

  1. Cryptanalysis of an ergodic chaotic encryption algorithm

    In this paper, we present the results for the security and the possible attacks on a new symmetric key encryption algorithm based on the ergodicity property of a logistic map. After analysis, we use mathematical induction to prove that the algorithm can be attacked by a chosen plaintext attack successfully and give an example to show how to attack it. According to the cryptanalysis of the original algorithm, we improve the original algorithm, and make a brief cryptanalysis. Compared with the original algorithm, the improved algorithm is able to resist a chosen plaintext attack and retain a considerable number of advantages of the original algorithm such as encryption speed, sensitive dependence on the key, strong anti-attack capability, and so on. (general)

  2. Digital image encryption with chaotic map lattices

    Sun Fu-Yan; Lü Zong-Wang

    2011-01-01

    This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices.In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image.The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.

  3. A novel image encryption scheme based on spatial chaos map

    Sun Fuyan [College of Control Science and Engineering, Shandong University, Jinan 250061 (China)], E-mail: fuyan.sun@gmail.com; Liu Shutang [College of Control Science and Engineering, Shandong University, Jinan 250061 (China); Li Zhongqin [HeiLongJiang Institute of Science and Technology, Harbin 150027 (China); Lue Zongwang [Information and Communication College, Guilin University of Electronic and Technology, Guilin 541004 (China); Corporate Engineering Department, Johnson Electric Co. Ltd., Shenzhen 518125 (China)

    2008-11-15

    In recent years, the chaos-based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, spatial chaos system are used for high degree security image encryption while its speed is acceptable. The proposed algorithm is described in detail. The basic idea is to encrypt the image in space with spatial chaos map pixel by pixel, and then the pixels are confused in multiple directions of space. Using this method one cycle, the image becomes indistinguishable in space due to inherent properties of spatial chaotic systems. Several experimental results, key sensitivity tests, key space analysis, and statistical analysis show that the approach for image cryptosystems provides an efficient and secure way for real time image encryption and transmission from the cryptographic viewpoint.

  4. A novel image encryption scheme based on spatial chaos map

    In recent years, the chaos-based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, spatial chaos system are used for high degree security image encryption while its speed is acceptable. The proposed algorithm is described in detail. The basic idea is to encrypt the image in space with spatial chaos map pixel by pixel, and then the pixels are confused in multiple directions of space. Using this method one cycle, the image becomes indistinguishable in space due to inherent properties of spatial chaotic systems. Several experimental results, key sensitivity tests, key space analysis, and statistical analysis show that the approach for image cryptosystems provides an efficient and secure way for real time image encryption and transmission from the cryptographic viewpoint

  5. X-ray Digital Image Encryption Algorithm Based on Chaos Theory and Arnold Transformation%基于混沌理论和Arnold变换的X射线数字图像加密算法

    陶亮; 张运楚; 同玉洁

    2015-01-01

    After a single chaotic algorithm encryption, the image also left the outline of the original image, but there is a problem of insufficient strength of the encryption. This paper presents the algorithm of combining two-dimensional Arnold matrix transformation and Chaos Theory for the encryption of X-ray image, uses the features of Arnold disturbing the image position, combines with the theory of chaos encryption to effectively solve the problem of insufficient strength of the single chaotic image encryption algorithm, and finally shows the effectiveness of the algorithm through experiment. Experimental results show that the encryption of this algorithm is very safe.%图像经单一的混沌算法加密后,还留有原图像轮廓,存在加密强度不足的问题。文章提出应用二维Arnold矩阵变换和混沌理论混合加密X射线图像的算法,利用Arnold扰乱图像位置的特点,结合混沌加密理论,有效地解决了单一混沌加密算法对图像加密强度不够的问题。最后,通过实验验证了该算法的有效性。实验结果表明,该算法的加密安全性很高。

  6. Self Contained Encrypted Image Folding

    Rebollo-Neira, Laura; Constantinides, Anthony; Plastino, Angel

    2012-01-01

    The recently introduced approach for Encrypted Image Folding is generalized to make it Self Contained. The goal is achieved by enlarging the folded image so as to embed all the necessary information for the image recovery. The need for extra size is somewhat compensated by considering a transformation with higher folding capacity. Numerical examples show that the size of the resulting cipher image may be significantly smaller than the plain text one. The implementation of the approach is further extended to deal also with color images.

  7. Chaotic trigonometric Haar wavelet with focus on image encryption

    Ahadpour, Sodeif; Sadra, Yaser

    2014-01-01

    In this paper, after reviewing the main points of Haar wavelet transform and chaotic trigonometric maps, we introduce a new perspective of Haar wavelet transform. The essential idea of the paper is given linearity properties of the scaling function of the Haar wavelet. With regard to applications of Haar wavelet transform in image processing, we introduce chaotic trigonometric Haar wavelet transform to encrypt the plain images. In addition, the encrypted images based on a proposed algorithm w...

  8. Color image encryption by using Yang-Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional Sine logistic modulation map

    Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli

    2015-12-01

    A color image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and two-coupled logistic map in gyrator transform domain. First, the color plaintext image is decomposed into red, green and blue components, which are scrambled individually by three random sequences generated by using the two-dimensional Sine logistic modulation map. Second, each scrambled component is encrypted into a real-valued function with stationary white noise distribution in the iterative amplitude-phase retrieval process in the gyrator transform domain, and then three obtained functions are considered as red, green and blue channels to form the color ciphertext image. Obviously, the ciphertext image is real-valued function and more convenient for storing and transmitting. In the encryption and decryption processes, the chaotic random phase mask generated based on logistic map is employed as the phase key, which means that only the initial values are used as private key and the cryptosystem has high convenience on key management. Meanwhile, the security of the cryptosystem is enhanced greatly because of high sensitivity of the private keys. Simulation results are presented to prove the security and robustness of the proposed scheme.

  9. Study on Digital Image Scrambling Algorithm

    Wu Xue

    2013-01-01

    Encryption algorithm of traditional cryptology has strong safety, but the effect of encrypting images is not good. Digital image scrambling means that a digital image is transformed into a chaotic image which has no evident significance, but the operator can reconstruct the chaotic image into the original image by using the specific algorithm. Image scrambling encryption technology based on chaos theory makes use of chaotic signal to encrypt image data flow, which has the advantages of high s...

  10. Research on medical image encryption in telemedicine systems.

    Dai, Yin; Wang, Huanzhen; Zhou, Zixia; Jin, Ziyi

    2016-04-29

    Recently, advances in computers and high-speed communication tools have led to enhancements in remote medical consultation research. Laws in some localities require hospitals to encrypt patient information (including images of the patient) before transferring the data over a network. Therefore, developing suitable encryption algorithms is quite important for modern medicine. This paper demonstrates a digital image encryption algorithm based on chaotic mapping, which uses the no-period and no-convergence properties of a chaotic sequence to create image chaos and pixel averaging. Then, the chaotic sequence is used to encrypt the image, thereby improving data security. With this method, the security of data and images can be improved. PMID:27163302

  11. Color image encryption based on Coupled Nonlinear Chaotic Map

    Mazloom, Sahar [Faculty of Electrical, Computer and IT Engineering, Qazvin Islamic Azad University, Qazvin (Iran, Islamic Republic of)], E-mail: sahar.mazloom@gmail.com; Eftekhari-Moghadam, Amir Masud [Faculty of Electrical, Computer and IT Engineering, Qazvin Islamic Azad University, Qazvin (Iran, Islamic Republic of)], E-mail: eftekhari@qazviniau.ac.ir

    2009-11-15

    Image encryption is somehow different from text encryption due to some inherent features of image such as bulk data capacity and high correlation among pixels, which are generally difficult to handle by conventional methods. The desirable cryptographic properties of the chaotic maps such as sensitivity to initial conditions and random-like behavior have attracted the attention of cryptographers to develop new encryption algorithms. Therefore, recent researches of image encryption algorithms have been increasingly based on chaotic systems, though the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. This paper proposes a Coupled Nonlinear Chaotic Map, called CNCM, and a novel chaos-based image encryption algorithm to encrypt color images by using CNCM. The chaotic cryptography technique which used in this paper is a symmetric key cryptography with a stream cipher structure. In order to increase the security of the proposed algorithm, 240 bit-long secret key is used to generate the initial conditions and parameters of the chaotic map by making some algebraic transformations to the key. These transformations as well as the nonlinearity and coupling structure of the CNCM have enhanced the cryptosystem security. For getting higher security and higher complexity, the current paper employs the image size and color components to cryptosystem, thereby significantly increasing the resistance to known/chosen-plaintext attacks. The results of several experimental, statistical analysis and key sensitivity tests show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.

  12. A fractal-based image encryption system

    Abd-El-Hafiz, S. K.

    2014-12-01

    This study introduces a novel image encryption system based on diffusion and confusion processes in which the image information is hidden inside the complex details of fractal images. A simplified encryption technique is, first, presented using a single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved through several parameters: feedback delay, multiplexing and independent horizontal or vertical shifts. The effect of each parameter is studied separately and, then, they are combined to illustrate their influence on the encryption quality. The encryption quality is evaluated using different analysis techniques such as correlation coefficients, differential attack measures, histogram distributions, key sensitivity analysis and the National Institute of Standards and Technology (NIST) statistical test suite. The obtained results show great potential compared to other techniques.

  13. 基于遗传算法的图像加密技术及实现%Image encryption technology based on genetic algorithm and its implementation

    周华; 黄廷磊

    2015-01-01

    为实现数字图像的安全存储和传输,提出一种基于遗传算法的图像加密技术。由该技术生成的密钥序列更具随机性和复杂性,可将一幅图像转化为另一幅图像,从而实现对原图像的加密。Matlab实验结果表明,该算法有效、可行。%In order to achieve secure storage and transmission of digital images,an image encryption technology based on the genetic algorithm is proposed.Secret key sequence generated is more random and complex by this technique.An image can be transformed into another image,so as to achieve the original image encryption.The Matlab experimental results show that the algorithm is effective and feasible.

  14. Image Encryption Based on Diffusion and Multiple Chaotic Maps

    Sathishkumar, G A; Sriraam, Dr N; 10.5121/ijnsa.2011.3214

    2011-01-01

    In the recent world, security is a prime important issue, and encryption is one of the best alternative way to ensure security. More over, there are many image encryption schemes have been proposed, each one of them has its own strength and weakness. This paper presents a new algorithm for the image encryption/decryption scheme. This paper is devoted to provide a secured image encryption technique using multiple chaotic based circular mapping. In this paper, first, a pair of sub keys is given by using chaotic logistic maps. Second, the image is encrypted using logistic map sub key and in its transformation leads to diffusion process. Third, sub keys are generated by four different chaotic maps. Based on the initial conditions, each map may produce various random numbers from various orbits of the maps. Among those random numbers, a particular number and from a particular orbit are selected as a key for the encryption algorithm. Based on the key, a binary sequence is generated to control the encryption algorit...

  15. PERFORMANCE ANALYSIS OF IMAGE SECURITY BASED ON ENCRYPTED HYBRID COMPRESSION

    D. Ramkumar

    2014-01-01

    Full Text Available In this research, we propose an image security scheme using hybrid compression techniques. In this scheme, the data is being provided two-fold security by both encryption stage and hiding stage. The data/message which has to be secured undergoes encryption technique at the initial stage. In this stage, the permutation algorithm is employed which requires a pair of numbers as a key to permute the original message. Following the encryption stage, the deformed message is then embedded onto a JPEG image by considering the low and high quantization tables. The main motivation behind this research work is to provide image security through compression. The final result is an encrypted and compressed JPEG image with a different image quality. The receiver has to perform the reverse process to extract the original data/information. The performance analysis is performed in terms of PSNR for different quantization tables.

  16. Optical encryption for large-sized images

    Sanpei, Takuho; Shimobaba, Tomoyoshi; Kakue, Takashi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Oikawa, Minoru; Sugie, Takashige; Ito, Tomoyoshi

    2016-02-01

    We propose an optical encryption framework that can encrypt and decrypt large-sized images beyond the size of the encrypted image using our two methods: random phase-free method and scaled diffraction. In order to record the entire image information on the encrypted image, the large-sized images require the random phase to widely diffuse the object light over the encrypted image; however, the random phase gives rise to the speckle noise on the decrypted images, and it may be difficult to recognize the decrypted images. In order to reduce the speckle noise, we apply our random phase-free method to the framework. In addition, we employ scaled diffraction that calculates light propagation between planes with different sizes by changing the sampling rates.

  17. Dual-Layer Video Encryption using RSA Algorithm

    Chadha, Aman; Mallik, Sushmit; Chadha, Ankit; Johar, Ravdeep; Mani Roja, M.

    2015-04-01

    This paper proposes a video encryption algorithm using RSA and Pseudo Noise (PN) sequence, aimed at applications requiring sensitive video information transfers. The system is primarily designed to work with files encoded using the Audio Video Interleaved (AVI) codec, although it can be easily ported for use with Moving Picture Experts Group (MPEG) encoded files. The audio and video components of the source separately undergo two layers of encryption to ensure a reasonable level of security. Encryption of the video component involves applying the RSA algorithm followed by the PN-based encryption. Similarly, the audio component is first encrypted using PN and further subjected to encryption using the Discrete Cosine Transform. Combining these techniques, an efficient system, invulnerable to security breaches and attacks with favorable values of parameters such as encryption/decryption speed, encryption/decryption ratio and visual degradation; has been put forth. For applications requiring encryption of sensitive data wherein stringent security requirements are of prime concern, the system is found to yield negligible similarities in visual perception between the original and the encrypted video sequence. For applications wherein visual similarity is not of major concern, we limit the encryption task to a single level of encryption which is accomplished by using RSA, thereby quickening the encryption process. Although some similarity between the original and encrypted video is observed in this case, it is not enough to comprehend the happenings in the video.

  18. Hardware Realization of Chaos Based Symmetric Image Encryption

    Barakat, Mohamed L.

    2012-06-01

    This thesis presents a novel work on hardware realization of symmetric image encryption utilizing chaos based continuous systems as pseudo random number generators. Digital implementation of chaotic systems results in serious degradations in the dynamics of the system. Such defects are illuminated through a new technique of generalized post proceeding with very low hardware cost. The thesis further discusses two encryption algorithms designed and implemented as a block cipher and a stream cipher. The security of both systems is thoroughly analyzed and the performance is compared with other reported systems showing a superior results. Both systems are realized on Xilinx Vetrix-4 FPGA with a hardware and throughput performance surpassing known encryption systems.

  19. Perceptual security of encrypted images based on wavelet scaling analysis

    Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.

    2016-08-01

    The scaling behavior of the pixel fluctuations of encrypted images is evaluated by using the detrended fluctuation analysis based on wavelets, a modern technique that has been successfully used recently for a wide range of natural phenomena and technological processes. As encryption algorithms, we use the Advanced Encryption System (AES) in RBT mode and two versions of a cryptosystem based on cellular automata, with the encryption process applied both fully and partially by selecting different bitplanes. In all cases, the results show that the encrypted images in which no understandable information can be visually appreciated and whose pixels look totally random present a persistent scaling behavior with the scaling exponent α close to 0.5, implying no correlation between pixels when the DFA with wavelets is applied. This suggests that the scaling exponents of the encrypted images can be used as a perceptual security criterion in the sense that when their values are close to 0.5 (the white noise value) the encrypted images are more secure also from the perceptual point of view.

  20. How Good Is The DES Algorithm In Image Ciphering?

    Said F. El-Zoghdy

    2011-03-01

    Full Text Available Digital Images and video encryption plays an important role in today’s multimedia world. Many encryption schemes have been proposed to provide security for digital images. Usually the symmetric key ciphering algorithms are used in encrypting digital images because it is fast and use the techniques for block and stream ciphers. Data Encryption Standard is symmetric key encryption algorithm. In spite of the successful cracking of the data encryption standard by massive brute force attacks, data encryption standard algorithm is an entrenched technology and still useful for many purposes. In this paper, we use some of the image quality encryption measuring factors to study the effect of data encryption standard algorithm in image ciphering. The results show that the data encryption standard algorithm is fast and it achieves a good encryption rate for image ciphering using different modes of operation.

  1. Techniques for a selective encryption of uncompressed and compressed images

    Van Droogenbroeck, Marc; Benedett, Raphaël

    2002-01-01

    This paper describes several techniques to encrypt uncompressed and compressed images. We first present the aims of image encryption. In the usual ways to encryption, all the information is encrypted. But this is not mandatory. In this paper we follow the principles of a technique initially proposed by MAPLES et al. [1] and encrypt only a part of the image content in order to be able to visualize the encrypted images, although not with full precision. This concept leads to techniques that can...

  2. A Novel Image Encryption Algorithm Based on the Two-Dimensional Logistic Map and the Latin Square Image Cipher

    Machkour, M.; Saaidi, A.; Benmaati, M. L.

    2015-12-01

    In this paper, we introduce a new hybrid system consisting of a permutation-substitution network based on two different encryption techniques: chaotic systems and the Latin square. This homogeneity between the two systems allows us to provide the good properties of confusion and diffusion, robustness to the integration of noise in decryption. The security analysis shows that the system is secure enough to resist brute-force attack, differential attack, chosen-plaintext attack, known-plaintext attack and statistical attack. Therefore, this robustness is proven and justified.

  3. A Research paper: An ASCII value based data encryption algorithm and its comparison with other symmetric data encryption algorithms

    Akanksha Mathur

    2012-09-01

    Full Text Available Encryption is the process of transforming plaintext into the ciphertext where plaintext is the input to the encryption process and ciphertext is the output of the encryption process. Decryption isthe process of transforming ciphertext into the plaintext where ciphertext is the input to the decryption process and plaintext is the output of the decryption process. There are various encryption algorithms exist classified as symmetric and asymmetric encryption algorithms. Here, I present an algorithm for data encryption and decryption which is based on ASCII values of characters in the plaintext. This algorithm is used to encrypt data by using ASCII values of the data to be encrypted. The secret used will be modifying o another string and that string is used as a key to encrypt or decrypt the data. So, it can be said that it is a kind of symmetric encryption algorithm because it uses same key for encryption anddecryption but by slightly modifying it. This algorithm operates when the length of input and the length of key are same.

  4. The Application Research of MD5 Encryption Algorithm in DCT Digital Watermarking

    Xijin, Wang; Linxiu, Fan

    This article did the preliminary study of the application of algorithm for MD5 in the digital watermark. It proposed that copyright information will be encrypted using an algorithm MD5, and made rules for the second value image watermarks, through DCT algorithm that embeds an image by the carrier. The extraction algorithms can pick up the watermark and restore MD5 code.

  5. A New Color Image Encryption Scheme Using CML and a Fractional-Order Chaotic System

    Wu, Xiangjun; Li, Yang; Kurths, Jürgen

    2015-01-01

    The chaos-based image cryptosystems have been widely investigated in recent years to provide real-time encryption and transmission. In this paper, a novel color image encryption algorithm by using coupled-map lattices (CML) and a fractional-order chaotic system is proposed to enhance the security and robustness of the encryption algorithms with a permutation-diffusion structure. To make the encryption procedure more confusing and complex, an image division-shuffling process is put forward, where the plain-image is first divided into four sub-images, and then the position of the pixels in the whole image is shuffled. In order to generate initial conditions and parameters of two chaotic systems, a 280-bit long external secret key is employed. The key space analysis, various statistical analysis, information entropy analysis, differential analysis and key sensitivity analysis are introduced to test the security of the new image encryption algorithm. The cryptosystem speed is analyzed and tested as well. Experimental results confirm that, in comparison to other image encryption schemes, the new algorithm has higher security and is fast for practical image encryption. Moreover, an extensive tolerance analysis of some common image processing operations such as noise adding, cropping, JPEG compression, rotation, brightening and darkening, has been performed on the proposed image encryption technique. Corresponding results reveal that the proposed image encryption method has good robustness against some image processing operations and geometric attacks. PMID:25826602

  6. ecure Reversible Data Hiding in Encrypted Images by Allocating Memory before Encryption via Security keys

    Priya Jambhulkar

    2014-06-01

    Full Text Available Digital image and information embedding system have number of important multimedia applications. Recently, attention is paid to reversible data hiding (RDH in encrypted images is more, since it maintains the excellent property that the original cover can be lossless recovered after embedded data is extracted while protecting the image content’s confidentiality. RDH is a technique used to hide data inside image for high security in such a way that original data is not visible. All previous methods embed data by reversibly vacating room from the encrypted images, which may be subject to some errors on data extraction and/or image restoration. In this paper, we propose another method in which we simply encrypt an image without its header by using our own algorithm. And thus it is easy for the data hider to reversibly embed data in the encrypted image. The proposed method can achieve real reversibility, that is, data extraction and image recovery are free of any error.

  7. Secure Reversible Data Hiding in Encrypted Images by Allocating Memory before Encryption via Security keys

    Priya Jambhulkar

    2015-11-01

    Full Text Available Digital image and information embedding system have number of important multimedia applications. Recently, attention is paid to reversible data hiding (RDH in encrypted images is more, since it maintains the excellent property that the original cover can be lossless recovered after embedded data is extracted while protecting the image content’s confidentiality. RDH is a technique used to hide data inside image for high security in such a way that original data is not visible. All previous methods embed data by reversibly vacating room from the encrypted images, which may be subject to some errors on data extraction and/or image restoration. In this paper, we propose another method in which we simply encrypt an image without its header by using our own algorithm. And thus it is easy for the data hider to reversibly embed data in the encrypted image. The proposed method can achieve real reversibility, that is, data extraction and image recovery are free of any error.

  8. Multiple-image encryption with bit-plane decomposition and chaotic maps

    Tang, Zhenjun; Song, Juan; Zhang, Xianquan; Sun, Ronghai

    2016-05-01

    Image encryption is an efficient technique of image content protection. In this work, we propose a useful image encryption algorithm for multiple grayscale images. The proposed algorithm decomposes input images into bit-planes, randomly swaps bit-blocks among different bit-planes, and conducts XOR operation between the scrambled images and secret matrix controlled by chaotic map. Finally, an encrypted PNG image is obtained by viewing four scrambled grayscale images as its red, green, blue and alpha components. Many simulations are done to illustrate efficiency of our algorithm.

  9. OCML-based colour image encryption

    The chaos-based cryptographic algorithms have suggested some new ways to develop efficient image-encryption schemes. While most of these schemes are based on low-dimensional chaotic maps, it has been proposed recently to use high-dimensional chaos namely spatiotemporal chaos, which is modelled by one-way coupled-map lattices (OCML). Owing to their hyperchaotic behaviour, such systems are assumed to enhance the cryptosystem security. In this paper, we propose an OCML-based colour image encryption scheme with a stream cipher structure. We use a 192-bit-long external key to generate the initial conditions and the parameters of the OCML. We have made several tests to check the security of the proposed cryptosystem namely, statistical tests including histogram analysis, calculus of the correlation coefficients of adjacent pixels, security test against differential attack including calculus of the number of pixel change rate (NPCR) and unified average changing intensity (UACI), and entropy calculus. The cryptosystem speed is analyzed and tested as well.

  10. OCML-based colour image encryption

    Rhouma, Rhouma [6' tel, Ecole Superieure de Telecommunications (Sup' com), BP Numero 50, 6014 Mtorech, Gabes (Tunisia)], E-mail: rhoouma@yahoo.fr; Meherzi, Soumaya [6' tel, Ecole Superieure de Telecommunications (Sup' com), BP Numero 50, 6014 Mtorech, Gabes (Tunisia); LSS/SUPELEC/CNRS, Plateau de Moulon, 91192 Gif-sur-Yvette, Cedex (France)], E-mail: mehrzi@lss.supelec.fr; Belghith, Safya [6' tel, Ecole Superieure de Telecommunications (Sup' com), BP Numero 50, 6014 Mtorech, Gabes (Tunisia)], E-mail: safya.belghith@enit.rnu.tn

    2009-04-15

    The chaos-based cryptographic algorithms have suggested some new ways to develop efficient image-encryption schemes. While most of these schemes are based on low-dimensional chaotic maps, it has been proposed recently to use high-dimensional chaos namely spatiotemporal chaos, which is modelled by one-way coupled-map lattices (OCML). Owing to their hyperchaotic behaviour, such systems are assumed to enhance the cryptosystem security. In this paper, we propose an OCML-based colour image encryption scheme with a stream cipher structure. We use a 192-bit-long external key to generate the initial conditions and the parameters of the OCML. We have made several tests to check the security of the proposed cryptosystem namely, statistical tests including histogram analysis, calculus of the correlation coefficients of adjacent pixels, security test against differential attack including calculus of the number of pixel change rate (NPCR) and unified average changing intensity (UACI), and entropy calculus. The cryptosystem speed is analyzed and tested as well.

  11. Single Core Hardware Module to Implement Partial Encryption of Compressed Image

    Mamun B.I. Reaz; M. S. Amin; Fazida H. Hashim; K Asaduzzaman

    2011-01-01

    Problem statement: Real-time secure image and video communication is challenging due to the processing time and computational requirement for encryption and decryption. In order to cope with these concerns, innovative image compression and encryption techniques are required. Approach: In this research, we have introduced partial encryption technique on compressed images and implemented the algorithm on Altera FLEX10K FPGA device that allows for efficient hardware implementation. The compressi...

  12. Image Encryption Based On Diffusion And Multiple Chaotic Maps

    G.A.Sathishkumar

    2011-03-01

    Full Text Available In the recent world, security is a prime important issue, and encryption is one of the best alternative wayto ensure security. More over, there are many image encryption schemes have been proposed, each one ofthem has its own strength and weakness. This paper presents a new algorithm for the imageencryption/decryption scheme. This paper is devoted to provide a secured image encryption techniqueusing multiple chaotic based circular mapping. In this paper, first, a pair of sub keys is given by usingchaotic logistic maps. Second, the image is encrypted using logistic map sub key and in its transformationleads to diffusion process. Third, sub keys are generated by four different chaotic maps. Based on theinitial conditions, each map may produce various random numbers from various orbits of the maps.Among those random numbers, a particular number and from a particular orbit are selected as a key forthe encryption algorithm. Based on the key, a binary sequence is generated to control the encryptionalgorithm. The input image of 2-D is transformed into a 1- D array by using two different scanningpattern (raster and Zigzag and then divided into various sub blocks. Then the position permutation andvalue permutation is applied to each binary matrix based on multiple chaos maps. Finally the receiveruses the same sub keys to decrypt the encrypted images. The salient features of the proposed imageencryption method are loss-less, good peak signal –to noise ratio (PSNR, Symmetric key encryption, lesscross correlation, very large number of secret keys, and key-dependent pixel value replacement.

  13. Watermarking patient data in encrypted medical images

    A Lavanya; V Natarajan

    2012-12-01

    In this paper, we propose a method for watermarking medical images for data integrity which consists of image encryption, data embedding and image-recovery phases. Data embedding can be completely recovered from the watermarked image after the watermark has been extracted. In the proposed method, we utilize standard stream cipher for image encryption and selecting non-region of interest tile to embed patient data. We show that the lower bound of the PSNR (peak-signal-to-noise-ratio) values for medical images is about 48 dB. Experimental results demonstrate that the proposed scheme can embed a large amount of data while keeping high visual quality of test images.

  14. Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing

    Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong

    2016-08-01

    Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.

  15. A novel color image encryption scheme using alternate chaotic mapping structure

    Wang, Xingyuan; Zhao, Yuanyuan; Zhang, Huili; Guo, Kang

    2016-07-01

    This paper proposes an color image encryption algorithm using alternate chaotic mapping structure. Initially, we use the R, G and B components to form a matrix. Then one-dimension logistic and two-dimension logistic mapping is used to generate a chaotic matrix, then iterate two chaotic mappings alternately to permute the matrix. For every iteration, XOR operation is adopted to encrypt plain-image matrix, then make further transformation to diffuse the matrix. At last, the encrypted color image is obtained from the confused matrix. Theoretical analysis and experimental results has proved the cryptosystem is secure and practical, and it is suitable for encrypting color images.

  16. Multiple Encryption-based Algorithm of Agricultural Product Trace Code

    2012-01-01

    To establish a sound traceability system of agricultural products and guarantee security of agricultural products,an algorithm is proposed to encrypt trace code of agricultural products.Original trace code consists of 34 digits indicating such information as place of origin,name of product,date of production and authentication.Area code is used to indicate enterprise information,the encrypted algorithm is designed because of the increasing code length,such coding algorithms as system conversion and section division are applied for the encrypted conversion of code of origin place and production date code,moreover,section identification code and authentication code are permutated and combined to produce check code.Through the multiple encryption and code length compression,34 digits are compressed to 20 on the basis of ensuring complete coding information,shorter code length and better encryption enable the public to know information about agricultural products without consulting professional database.

  17. A NUMERICAL METHOD BASED ENCRYPTION ALGORITHM WITH STEGANOGRAPHY

    Amartya Ghosh

    2013-02-01

    Full Text Available Now-a-days many encryption algorithms have been proposed for network security. In this paper, a new cryptographic algorithm for network security is proposed to assist the effectiveness of network security. Here symmetric key concept instead of public key is considered to develop the encryption – decryption algorithm. Also, to give more security in the algorithm, the idea of one way function alongwith Newton’s method is applied as a secret key to the proposed work as well as Digital Signature Standard (DSS technology is used to send the key. Moreover, steganography is used to hide the cipher within a picture in encryption algorithm. In brief, a numerical method based secret key encryption – decryption algorithm is developed using steganography to enhance the network security.

  18. Developing and Evaluation of New Hybrid Encryption Algorithms

    DiaaSalama AbdElminaam

    2014-03-01

    Full Text Available Wireless Sensor networks consist of hundreds or thousands of low cost, low power and self-organizing nodes which are highly distributed. As wireless sensor networks continue to grow, so does the need for effective security mechanisms because sensor networks may interact with sensitive data. Encryption algorithms play good roles in information security systems (ISS. Those algorithms consume a significant amount of computing resources such as battery power. Wireless Sensor networks are powered by a battery which is a very limited resource. At present, various types of cryptographic algorithms provide high security to information on networks, but there are also has some drawbacks.  The present asymmetric encryption methods and symmetric encryption methods can offer the security levels but with many limitations. For instance key maintenance is a great problem faced in symmetric encryption methods and less security level is the problem of asymmetric encryption methods even though key maintenance is easy. To improve the strength of these algorithms, we propose a new hybrid cryptographic algorithm in this paper. The algorithm is designed using combination of two symmetric cryptographic techniques and two Asymmetric cryptographic techniques. This protocol provides three cryptographic primitives, integrity, confidentiality and authentication. It is a hybrid encryption method where elliptical curve cryptography (ECC and advanced encryption (AES are combined to provide node encryption. RSA algorithm and Blowfish are combined to provide authentication and (MD5 for integrity. The results show that the proposed hybrid cryptographic algorithm gives better performance in terms of computation time and the size of cipher text.This paper tries to present a fair comparison between the new protocols with four existing different hybrid protocols according to power consumption. A comparison has been conducted for those protocols at different settings for each

  19. Study on Digital Image Scrambling Algorithm

    Wu Xue

    2013-07-01

    Full Text Available Encryption algorithm of traditional cryptology has strong safety, but the effect of encrypting images is not good. Digital image scrambling means that a digital image is transformed into a chaotic image which has no evident significance, but the operator can reconstruct the chaotic image into the original image by using the specific algorithm. Image scrambling encryption technology based on chaos theory makes use of chaotic signal to encrypt image data flow, which has the advantages of high safety, rapid encryption speed, large key space and good scrambling effect. The paper studies invalid-key and quasi invalid-key existed in chaotic sequence which is generated by Logistic map, and proposes image scrambling encryption algorithm based on mixed and chaotic sequence. The algorithm has a good robustness for the JPEG compression with the fixed coefficient, and a good fragileness for the illegal manipulation.

  20. IMAGE ENCRYPTION USING PERMUTATION AND ROTATIONAL XOR TECHNIQUE

    Avi Dixit

    2012-07-01

    Full Text Available Encryption is used to securely transmit data in open networks. Each type of data has its own features, therefore different techniques should be used to protect confidential image data from unauthorized access. Most of the available encryption algorithms are mainly used for textual data and may not be suitable for multimedia data such as images. In this paper, we introduce an algorithm. The binary code of the pixel values of a colour image is extracted and permuted according to the entered 8 bit key which is followed by the permutation of every 8 consecutive pixels [4]. The image is further divided into blocks which are shifted accordingly. The above mentioned technique has a few drawbacks, like the small key size. To further enforce the encryption another method is appended to it which requires a 43 digit key. The encryption takes a total of 10 rounds in which two keys are use, both of which are derived from the 43 digit entered key. The results showed that the correlation between image elements was significantly decreased by using the proposed technique.

  1. Secured Reversible Data Hiding In Encrypted Images Using Hyper Chaos

    T.M. Amarunnishad

    2014-11-01

    Full Text Available Recently, more and more attention is paid to reversible data hiding (RDH in encrypted images, since it maintains the excellent property that the original cover can be losslessly recovered after embedded data is extracted while protecting the image content’s confidentiality. All previous methods embed data by reversibly vacating room from the encrypted images, which may be subject to some errors on data extraction and/or image restoration. Here a novel method is proposed by reserving room before encryption with a traditional RDH algorithm, and thus it is easy for the data hider to reversibly embed data in the encrypted image. Moreover data to be embedded is shuffled using a hyper chaotic function which is difficult to be extracted from the stego image without original key. A digital water mark is also embedded which ensures integrity of the data. The proposed method has been validated against three other available RDH schemes and it is observed that the proposed scheme outperforms these RDH schemes both in visual quality and payload. The proposed method can achieve real reversibility, that is, data extraction and image recovery are free of any error.

  2. Fresnel domain double-phase encoding encryption of color image via ptychography

    Qiao, Liang; Wang, Yali; Li, Tuo; Shi, Yishi

    2015-10-01

    In this paper, color image encryption combined with ptychography has been investigated. Ptychographic imaging possesses a remarkable advantage of simple optics architecture and complex amplitude of object can be reconstructed just by a series of diffraction intensity patterns via aperture movement. Traditional technique of three primary color synthesis is applied for encrypting color image. In order to reduce physical limitations, the encryption's algorithm is based on Fresnel transformation domain. It is illustrated that the proposed optical encryption scheme has well ability to recover the encrypted color plaintext and advances in security enhancement thanks to introducing ptychography, since light probe as key factor enlarges the key space. Finally, the encryption's immunity to noise and reconstruction impact from lateral offset of probe has been investigated.

  3. Several types of the chaotic mapping image encryption algorithm%几类混沌映射图像加密算法的比较

    薛香莲

    2015-01-01

    对图像信息安全技术进行了研究,报告了现阶段图像加密的相关现状,分析了基于混沌理论的图像加密的主要方法,提出分别用一维混沌映射Logistic、二维混沌映射2DLogistic以及Chen超混沌映射对图像进行位置和值置乱来实现图像加密,并从实验仿真结果、密钥空间、密钥灵敏性、灰度直方图、置乱程度以及加密时间等方面来比较以上三种混沌理论作用于图像加密中的各自优缺点。%Studied the image information security technology,the report related to the status quo of the current image encryption,analyzed the main method of image encryption based on chaos theory,put forward respectively in one-dimensional chaotic map Logistic,2 dlogistic two-dimensional chaos mapping and hyperchaos mapping for the position and value of Chen to behave in such a way to realize image encryption, and from the experimental simulation results,the key space,key sensitivity,gray histogram,scrambling degree and the encryption time and so on to compare the above three kinds of chaos theory applied to image encryption in the respective advantages and disadvantages.

  4. Selective image encryption for Medical and Satellite Images

    NaveenKumar S K; Panduranga H T

    2013-01-01

    Information security plays a very important role in fast growing information and communication technology. Few applications like medical image security and satellite image security needs to secure only selected portion of the image. This paper describes a concept of selective image encryption in two ways. First method divides the image in to sub blocks, then selected blocks are applied to encryption process. Second method automatically detects the positions of objects, and then selected objec...

  5. Selective image encryption for Medical and Satellite Images

    NaveenKumar S K

    2013-02-01

    Full Text Available Information security plays a very important role in fast growing information and communication technology. Few applications like medical image security and satellite image security needs to secure only selected portion of the image. This paper describes a concept of selective image encryption in two ways. First method divides the image in to sub blocks, then selected blocks are applied to encryption process. Second method automatically detects the positions of objects, and then selected objects are applied to encryption process. Morphological techniques are used to detect the positions of the objects in given images. These two approaches are specifically developed to encrypt the portion of an image in medical images and satellite image.

  6. 基于五维混沌系统的图像加密研究%Five-dimensional chaotic system based image encryption algorithm

    高亮; 朱博; 孙鸣; 朱建良

    2011-01-01

    随着计算机技术、信息技术和通讯技术等高科技技术在近年来的迅猛发展,信息加密越来越受到人们的重视,提出了基于五维混沌系统用来实现图像加密的方法,并利用迭代次数和方式作为密码,实现了图像加密和解密,为信息加密提供了一种新方法.%With computer technology, information technology and communications technology, high technology, rapid development in recent years, more and more people pay close attention to information encryption. This paper, based on five-dimensional chaotic system realizes image encryption method, and means of using the number of iterations as the password, to realize the image encryption and decryption,the information provides a new method of encryption.

  7. Classification of Novel Selected Region of Interest for Color Image Encryption

    Lahieb Mohammed Jawad

    2015-04-01

    Full Text Available Securing digital image in exchanging huge multimedia data over internet with limited bandwidth is a significant and sensitive issue. Selective image encryption being an effective method for reducing the amount of encrypted data can achieve adequate security enhancement. Determining and selecting the region of interest in digital color images is challenging for selective image encryption due to their complex structure and distinct regions of varying importance. We propose a new feature in acquiring and selecting Region of Interest (ROI for the color images to develop a selective encryption scheme. The hybrid domain is used to encrypt regions based on chaotic map approach which automatically generates secret key. This new attribute is a vitality facet representing the noteworthy part of the color image. The security performance of selective image encryption is found to enhance considerably based on the rates of encrypted area selection. Computation is performed using MATLAB R2008a codes on eight images (Lena, Pepper, Splash, Airplane, House, Tiffany, Baboon and Sailboat each of size 512*512 pixels obtained from standard USC-SIPI Image Database. A block size of 128*128 pixels with threshold levels 0.0017 and 0.48 are employed. Results are analyzed and compared with edge detection method using the same algorithm. Encrypted area, entropy and correlation coefficients performances reveal that the proposed scheme achieves good alternative in the confined region of interest, fulfills the desired confidentiality and protects image privacy.

  8. A Parallel Encryption Algorithm Based on Piecewise Linear Chaotic Map

    Xizhong Wang

    2013-01-01

    Full Text Available We introduce a parallel chaos-based encryption algorithm for taking advantage of multicore processors. The chaotic cryptosystem is generated by the piecewise linear chaotic map (PWLCM. The parallel algorithm is designed with a master/slave communication model with the Message Passing Interface (MPI. The algorithm is suitable not only for multicore processors but also for the single-processor architecture. The experimental results show that the chaos-based cryptosystem possesses good statistical properties. The parallel algorithm provides much better performance than the serial ones and would be useful to apply in encryption/decryption file with large size or multimedia.

  9. Encryption of Messages and Images Using Compressed Sensing

    Daňková, M.

    2015-01-01

    The article deals with compressed sensing used to encrypt data. It allows performing signal capturing, its compression and encryption at the same time. The measurement matrix is generated using a secret key and is exploited for encryption. The article shows an example of its utilization at text and image message, moreover the Arnold transform is used in colour images for increasing security.

  10. Single Core Hardware Module to Implement Partial Encryption of Compressed Image

    Mamun B.I. Reaz

    2011-01-01

    Full Text Available Problem statement: Real-time secure image and video communication is challenging due to the processing time and computational requirement for encryption and decryption. In order to cope with these concerns, innovative image compression and encryption techniques are required. Approach: In this research, we have introduced partial encryption technique on compressed images and implemented the algorithm on Altera FLEX10K FPGA device that allows for efficient hardware implementation. The compression algorithm decomposes images into several different parts. We have used a secured encryption algorithm to encrypt only the crucial parts, which are considerably smaller than the original image, which result in significant reduction in processing time and computational requirement for encryption and decryption. The breadth-first traversal linear lossless quadtree decomposition method is used for the partial compression and RSA is used for the encryption. Results: Functional simulations were commenced to verify the functionality of the individual modules and the system on four different images. We have validated the advantage of the proposed approach through comparison, verification and analysis. The design has utilized 2928 units of LC with a system frequency of 13.42MHz. Conclusion: In this research, the FPGA prototyping of a partial encryption of compressed images using lossless quadtree compression and RSA encryption has been successfully implemented with minimum logic cells. It is found that the compression process is faster than the decompression process in linear quadtree approach. Moreover, the RSA simulations show that the encryption process is faster than the decryption process for all four images tested.

  11. The research on image encryption method based on parasitic audio watermark

    Gao, Pei-pei; Zhu, Yao-ting; Zhang, Shi-tao

    2010-11-01

    In order to improve image encryption strength, an image encryption method based on parasitic audio watermark was proposed in this paper, which relies on double messages such as image domain and speech domain to do image encryption protection. The method utilizes unique Chinese phonetics synthesis algorithm to complete audio synthesis with embedded text, then separate this sentence information into prosodic phrase, obtains complete element set of initial consonant and compound vowel that reflects audio feature of statement. By sampling and scrambling the initial consonant and compound vowel element, synthesizing them with image watermark, and embedding the compound into the image to be encrypted in frequency domain, the processed image contains image watermark information and parasitizes audio feature information. After watermark extraction, using the same phonetics synthesis algorithm the audio information is synthesized and compared with the original. Experiments show that any decryption method in image domain or speech domain could not break encryption protection and image gains higher encryption strength and security level by double encryption.

  12. Overview on Selective Encryption of Image and Video: Challenges and Perspectives

    2009-03-01

    Full Text Available In traditional image and video content protection schemes, called fully layered, the whole content is first compressed. Then, the compressed bitstream is entirely encrypted using a standard cipher (DES, AES, IDEA, etc.. The specific characteristics of this kind of data (high-transmission rate with limited bandwidth make standard encryption algorithms inadequate. Another limitation of fully layered systems consists of altering the whole bitstream syntax which may disable some codec functionalities. Selective encryption is a new trend in image and video content protection. It consists of encrypting only a subset of the data. The aim of selective encryption is to reduce the amount of data to encrypt while preserving a sufficient level of security. This computation saving is very desirable especially in constrained communications (real-time networking, high-definition delivery, and mobile communications with limited computational power devices. In addition, selective encryption allows preserving some codec functionalities such as scalability. This tutorial is intended to give an overview on selective encryption algorithms. The theoretical background of selective encryption, potential applications, challenges, and perspectives is presented.

  13. Overview on Selective Encryption of Image and Video: Challenges and Perspectives

    Massoudi A

    2008-01-01

    Full Text Available In traditional image and video content protection schemes, called fully layered, the whole content is first compressed. Then, the compressed bitstream is entirely encrypted using a standard cipher (DES, AES, IDEA, etc.. The specific characteristics of this kind of data (high-transmission rate with limited bandwidth make standard encryption algorithms inadequate. Another limitation of fully layered systems consists of altering the whole bitstream syntax which may disable some codec functionalities. Selective encryption is a new trend in image and video content protection. It consists of encrypting only a subset of the data. The aim of selective encryption is to reduce the amount of data to encrypt while preserving a sufficient level of security. This computation saving is very desirable especially in constrained communications (real-time networking, high-definition delivery, and mobile communications with limited computational power devices. In addition, selective encryption allows preserving some codec functionalities such as scalability. This tutorial is intended to give an overview on selective encryption algorithms. The theoretical background of selective encryption, potential applications, challenges, and perspectives is presented.

  14. Multiple-image encryption based on computational ghost imaging

    Wu, Jingjing; Xie, Zhenwei; Liu, Zhengjun; Liu, Wei; Zhang, Yan; Liu, Shutian

    2016-01-01

    We propose an optical multiple-image encryption scheme based on computational ghost imaging with the position multiplexing. In the encryption process, each plain image is encrypted into an intensity vector by using the computational ghost imaging with a different diffraction distance. The final ciphertext is generated by superposing all the intensity vectors together. Different from common multiple-image cryptosystems, the ciphertext in the proposed scheme is simply an intensity vector instead of a complex amplitude. Simulation results are presented to demonstrate the validity and security of the proposed multiple-image encryption method. The multiplexing capacity of the proposed method is also investigated. Optical experiment is presented to verify the validity of the proposed scheme in practical application.

  15. Image Encryption Using Fibonacci-Lucas Transformation

    Mishra, Minati; Mishra, Priyadarsini; Adhikary, M. C.; Kumar, Sunit

    2012-01-01

    Secret communication techniques are of great demand since last 3000 years due to the need of information security and confidentiality at various levels of communication such as while communicating confidential personal data, medical data of patients, defence and intelligence information of countries, data related to examinations etc. With advancements in image processing research, Image encryption and Steganographic techniques have gained popularity over other forms of hidden communication te...

  16. ON IMAGE ENCRYPTION ALGORITHM BASED ON DISCRETE FOURIER TRANSFORMATION INTEGRATING WITH DOUBLING CHAOTIC MAP%基于离散傅里叶变换融合双混沌映射的图像加密算法研究

    芮坤坤

    2014-01-01

    频域加密非常适用于大多数数字和光学图像处理体系,而空间域加密则适用于图像通信。为了充分利用在图像频率域和空间域加密的优势,进一步提高图像加密系统的安全性,提出基于离散的傅里叶变换和双混沌映射的图像加密算法,同时对图像的频率域和空间域进行加密。首先,利用二维离散的傅里叶变换将图像从空间域转换成频率域,并用改进的分段Tent映射分别对幅值和位相进行置乱处理;其次,将置乱后图像频率域进行傅里叶逆变换,转换成空间域,获得置乱加密图像;最后,利用改进的Ber-noulli移位映射对置乱加密图像进行扩散处理。在MATLAB仿真平台上,实验结果表明:该算法高度安全,密钥空间大,有较强的密钥敏感性能,有效地提高了抵御选择明文攻击的能力。%Frequency domain encryption very fits most of digital and optical image processing systems,while spatial domain encryption is applicable for image communications.In order to make full use of image encryption advantages in both frequency domain and spatial domain and further improve the security of image encryption system,we propose an image encryption algorithm which is based on discrete Fourier transformation and doubling chaotic map to encrypt frequency and spatial domains of image simultaneously.Firstly,the two-dimensional discrete Fourier transformation is committed to convert the image from the spatial domain to frequency domain,and the improved subsection Tent map is used to scramble the amplitude and phase of the frequency domain respectively;Secondly,the frequency domain of scrambled image is transformed into spatial domain with Fourier inverse transformation to get scrambling encryption image;Finally,the improved Bernoulli displacement map is applied to the scrambling encryption image for diffusion processing.The proposed algorithm is tested on MATLAB simulation platform

  17. Symmetric encryption algorithms using chaotic and non-chaotic generators: A review.

    Radwan, Ahmed G; AbdElHaleem, Sherif H; Abd-El-Hafiz, Salwa K

    2016-03-01

    This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold's cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper. PMID:26966561

  18. Symmetric encryption algorithms using chaotic and non-chaotic generators: A review

    Radwan, Ahmed G.; AbdElHaleem, Sherif H.; Abd-El-Hafiz, Salwa K.

    2015-01-01

    This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold’s cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper. PMID:26966561

  19. Encryption-Decryption RGB Color Image Using Matrix Multiplication

    Mohamad M.AL-Laham

    2015-01-01

    An enhanced technique of color image encryption based on random matrix key encoding is proposed. To encrypt the color image a separation into Red Green and Blue (R, G, B) channels will applied. Each channel is encrypted using a technique called double random matrix key encoding then three new coding image matrices are constructed. To obtain the reconstructed image that is the same as the original image in the receipted side; simple extracted and decryption operations can be mainta...

  20. AN ENCRYPTION ALGORITHM FOR IMPROVING DATABASE SECURITY USING ROT & REA

    M. Sujitha

    2015-06-01

    Full Text Available Database is an organized collection of data, many user wants to store their personal and confidential data’s in such database. Unauthorized persons may try to get the data’s from database and misuse them without the owner’s knowledge. To overcome such problem the advanced control mechanism, known as Database security was introduced. Encryption algorithm is one of the way to give protection to the database from various threat or hackers who target to get confidential information. This paper discuss about the proposed encryption algorithm to give security to such database.

  1. Radial Hilbert Transform in terms of the Fourier Transform applied to Image Encryption

    In the present investigation, a mathematical algorithm under Matlab platform using Radial Hilbert Transform and Random Phase Mask for encrypting digital images is implemented. The algorithm is based on the use of the conventional Fourier transform and two random phase masks, which provide security and robustness to the system implemented. Random phase masks used during encryption and decryption are the keys to improve security and make the system immune to attacks by program generation phase masks

  2. Digital Image Encryption Based On Multiple Chaotic Maps

    Amir Houshang Arab Avval

    2016-01-01

    Full Text Available A novel and robust chaos-based digital image encryption is proposed. The present paper presents a cipher block image encryption using multiple chaotic maps to lead increased security. An image block is encrypted by the block-based permutation process and cipher block encryption process. In the proposed scheme, secret key includes nineteen control and initial conditions parameter of the four chaotic maps and the calculated key space is 2883. The effectiveness and security of the proposed encryption scheme has been performed using the histograms, correlation coefficients, information entropy, differential analysis, key space analysis, etc. It can be concluded that the proposed image encryption technique is a suitable choice for practical applications.

  3. Selective Encryption of Human Skin in JPEG Images

    Rodrigues, José; Puech, William; Bors, Adrian,

    2006-01-01

    International audience In this study we propose a new approach for selective encryption in the Huffman coding of the Discrete Cosine Transform (DCT) coefficients using the Advanced Encryption Standard (AES). The objective is to partially encrypt the human face in an image or video sequence. This approach is based on the AES stream ciphering using Variable Length Coding (VLC) of the Huffman's vector. The proposed scheme allows the decryption of a specific region of the image and results in ...

  4. Analysis of cipher text size produced by various Encryption Algorithms

    MANI ARORA

    2011-07-01

    Full Text Available In the digital world, it is the need of the hour to secure the data communication from unauthorized access. Over the time a number of techniques and algorithms have came into operation for its security. This research paper is done qualitatively to emphasize the need for securing the data as well as the fast transmission of the encryptedtext. It concerns the analysis of selected symmetric cipher block encryption algorithms from cipher text size point of view.

  5. Overview on Selective Encryption of Image and Video: Challenges and Perspectives

    Massoudi A; Lefebvre F; De Vleeschouwer C; Macq B; Quisquater J-J

    2008-01-01

    In traditional image and video content protection schemes, called fully layered, the whole content is first compressed. Then, the compressed bitstream is entirely encrypted using a standard cipher (DES, AES, IDEA, etc.). The specific characteristics of this kind of data (high-transmission rate with limited bandwidth) make standard encryption algorithms inadequate. Another limitation of fully layered systems consists of altering the whole bitstream syntax which may disable some codec function...

  6. Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption

    Alfalou, Ayman; Brosseau, C.

    2010-01-01

    International audience We report on a new algorithm to compress and encrypt simultaneously multiple images (target images). This method, which is based upon a specific spectral multiplexing (fusion without overlapping) of the multiple images, aims to achieve a single encrypted image, at the output plane of our system, that contains all information needed to reconstruct the target images. For that purpose, we divide the Fourier plane of the image to transmit into two types of area, i.e., sp...

  7. A joint encryption/watermarking system for verifying the reliability of medical images.

    Bouslimi, Dalel; Coatrieux, Gouenou; Cozic, Michel; Roux, Christian

    2012-09-01

    In this paper, we propose a joint encryption/water-marking system for the purpose of protecting medical images. This system is based on an approach which combines a substitutive watermarking algorithm, the quantization index modulation, with an encryption algorithm: a stream cipher algorithm (e.g., the RC4) or a block cipher algorithm (e.g., the AES in cipher block chaining (CBC) mode of operation). Our objective is to give access to the outcomes of the image integrity and of its origin even though the image is stored encrypted. If watermarking and encryption are conducted jointly at the protection stage, watermark extraction and decryption can be applied independently. The security analysis of our scheme and experimental results achieved on 8-bit depth ultrasound images as well as on 16-bit encoded positron emission tomography images demonstrate the capability of our system to securely make available security attributes in both spatial and encrypted domains while minimizing image distortion. Furthermore, by making use of the AES block cipher in CBC mode, the proposed system is compliant with or transparent to the DICOM standard. PMID:22801525

  8. Application of Cosine Zone Plates to Image Encryption

    GE Fan; CHEN Lin-Fei; ZHAO Dao-Mu

    2008-01-01

    @@ We analyse the diffraction result of optical field after Cosine zone plate, and theoretically deduce its transform matrix. Under some conditions, its diffraction distribution is a mixture of fractional Fourier spectra. Then we use Cosine zone plate and its diffraction result to image encryption. Possible optical image encryption and decryption implementations are proposed, and some numerical simulation results are also provided.

  9. A Secure Network Communication Protocol Based on Text to Barcode Encryption Algorithm

    Abusukhon Ahmad

    2015-12-01

    Full Text Available Nowadays, after the significant development in the Internet, communication and information exchange around the world has become easier and faster than before. One may send an e-mail or perform money transaction (using a credit card while being at home. The Internet users can also share resources (storage, memory, etc. or invoke a method on a remote machine. All these activities require securing data while the data are sent through the global network. There are various methods for securing data on the internet and ensuring its privacy; one of these methods is data encryption. This technique is used to protect the data from hackers by scrambling these data into a non-readable form. In this paper, we propose a novel method for data encryption based on the transformation of a text message into a barcode image. In this paper, the proposed Bar Code Encryption Algorithm (BCEA is tested and analyzed.

  10. A fast chaotic block cipher for image encryption

    Armand Eyebe Fouda, J. S.; Yves Effa, J.; Sabat, Samrat L.; Ali, Maaruf

    2014-03-01

    Image encryption schemes based on chaos usually involve real number arithmetic operations to generate the chaotic orbits from the chaotic system. These operations are time-consuming and are normally performed with high-end processors. To overcome this drawback, this paper proposes a one round encryption scheme for the fast generation of large permutation and diffusion keys based on the sorting of the solutions of the Linear Diophantine Equation (LDE) whose coefficients are integers and dynamically generated from any type of chaotic systems. The high security and low computational complexity are achieved not only by using large permutation based on the sorting of the solutions of LDE but also by generating only one permutation from the sorting of the solutions of the LDE, then by dynamically updating d number of integers (d>2) in the permutation. The performance of the proposed scheme is evaluated using various types of analysis such as entropy analysis, difference analysis, statistical analysis, key sensitivity analysis, key space analysis and speed analysis. The experimental results indicate that the proposed algorithm is secure and fast as compared to the two round encryption scheme.

  11. Multiple-image encryption based on compressive holography using a multiple-beam interferometer

    Wan, Yuhong; Wu, Fan; Yang, Jinghuan; Man, Tianlong

    2015-05-01

    Multiple-image encryption techniques not only improve the encryption capacity but also facilitate the transmission and storage of the ciphertext. We present a new method of multiple-image encryption based on compressive holography with enhanced data security using a multiple-beam interferometer. By modifying the Mach-Zehnder interferometer, the interference of multiple object beams and unique reference beam is implemented for encrypting multiple images simultaneously into one hologram. The original images modulated with the random phase masks are put in different positions with different distance away from the CCD camera. Each image plays the role of secret key for other images to realize the mutual encryption. Four-step phase shifting technique is combined with the holographic recording. The holographic recording is treated as a compressive sensing process, thus the decryption process is inverted as a minimization problem and the two-step iterative shrinkage/thresholding algorithm (TwIST) is employed to solve this optimization problem. The simulated results about multiple binary and grayscale images encryption are demonstrated to verify the validity and robustness of our proposed method.

  12. Encrypting three-dimensional information system based on integral imaging and multiple chaotic maps

    Xing, Yan; Wang, Qiong-Hua; Xiong, Zhao-Long; Deng, Huan

    2016-02-01

    An encrypting three-dimensional (3-D) information system based on integral imaging (II) and multiple chaotic maps is proposed. In the encrypting process, the elemental image array (EIA) which represents spatial and angular information of the real 3-D scene is picked up by a microlens array. Subsequently, R, G, and B color components decomposed by the EIA are encrypted using multiple chaotic maps. Finally, these three encrypted components are interwoven to obtain the cipher information. The decryption process implements the reverse operation of the encryption process for retrieving the high-quality 3-D images. Since the encrypted EIA has the data redundancy property due to II, and all parameters of the pickup part are the secret keys of the encrypting system, the system sensitivity on the changes of the plaintext and secret keys can be significantly improved. Moreover, the algorithm based on multiple chaotic maps can effectively enhance the security. A preliminary experiment is carried out, and the experimental results verify the effectiveness, robustness, and security of the proposed system.

  13. A one-time one-key encryption algorithm based on the ergodicity of chaos

    In this paper, we propose a new one-time one-key encryption algorithm based on the ergodicity of a skew tent chaotic map. We divide the chaotic trajectory into sub-intervals and map them to integers, and use this scheme to encrypt plaintext and obtain ciphertext. In this algorithm, the plaintext information in the key is used, so different plaintexts or different total numbers of plaintext letters will encrypt different ciphertexts. Simulation results show that the performance and the security of the proposed encryption algorithm can encrypt plaintext effectively and resist various typical attacks. (general)

  14. Bi-serial DNA Encryption Algorithm(BDEA)

    Prabhu, D

    2011-01-01

    The vast parallelism, exceptional energy efficiency and extraordinary information inherent in DNA molecules are being explored for computing, data storage and cryptography. DNA cryptography is a emerging field of cryptography. In this paper a novel encryption algorithm is devised based on number conversion, DNA digital coding, PCR amplification, which can effectively prevent attack. Data treatment is used to transform the plain text into cipher text which provides excellent security

  15. Efficient Hardware Implementation of the Lightweight Block Encryption Algorithm LEA

    Donggeon Lee; Dong-Chan Kim; Daesung Kwon; Howon Kim

    2014-01-01

    Recently, due to the advent of resource-constrained trends, such as smartphones and smart devices, the computing environment is changing. Because our daily life is deeply intertwined with ubiquitous networks, the importance of security is growing. A lightweight encryption algorithm is essential for secure communication between these kinds of resource-constrained devices, and many researchers have been investigating this field. Recently, a lightweight block cipher called LEA was proposed. LEA ...

  16. Micro-lens array based 3-D color image encryption using the combination of gravity model and Arnold transform

    You, Suping; Lu, Yucheng; Zhang, Wei; Yang, Bo; Peng, Runling; Zhuang, Songlin

    2015-11-01

    This paper proposes a 3-D image encryption scheme based on micro-lens array. The 3-D image can be reconstructed by applying the digital refocusing algorithm to the picked-up light field. To improve the security of the cryptosystem, the Arnold transform and the Gravity Model based image encryption method are employed. Experiment results demonstrate the high security in key space of the proposed encryption scheme. The results also indicate that the employment of light field imaging significant strengthens the robustness of the cipher image against some conventional image processing attacks.

  17. A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm

    Thirer, Nonel

    2013-05-01

    With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.

  18. Quantum image encryption based on generalized affine transform and logistic map

    Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run

    2016-03-01

    Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.

  19. Quantum image encryption based on generalized affine transform and logistic map

    Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run

    2016-07-01

    Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.

  20. Optical color-image encryption in the diffractive-imaging scheme

    Qin, Yi; Wang, Zhipeng; Pan, Qunna; Gong, Qiong

    2016-02-01

    By introducing the theta modulation technique into the diffractive-imaging-based optical scheme, we propose a novel approach for color image encryption. For encryption, a color image is divided into three channels, i.e., red, green and blue, and thereafter these components are appended by redundant data before being sent to the encryption scheme. The carefully designed optical setup, which comprises of three 4f optical architectures and a diffractive-imaging-based optical scheme, could encode the three plaintexts into a single noise-like intensity pattern. For the decryption, an iterative phase retrieval algorithm, together with a filter operation, is applied to extract the primary color images from the diffraction intensity map. Compared with previous methods, our proposal has successfully encrypted a color rather than grayscale image into a single intensity pattern, as a result of which the capacity and practicability have been remarkably enhanced. In addition, the performance and the security of it are also investigated. The validity as well as feasibility of the proposed method is supported by numerical simulations.

  1. Novel Image Encryption Scheme Based on Chebyshev Polynomial and Duffing Map

    2014-01-01

    We present a novel image encryption algorithm using Chebyshev polynomial based on permutation and substitution and Duffing map based on substitution. Comprehensive security analysis has been performed on the designed scheme using key space analysis, visual testing, histogram analysis, information entropy calculation, correlation coefficient analysis, differential analysis, key sensitivity test, and speed test. The study demonstrates that the proposed image encryption algorithm shows advantages of more than 10113 key space and desirable level of security based on the good statistical results and theoretical arguments. PMID:25143970

  2. Color Satellite Image Encryption Algorithm Based on Improved Generalized Cat Mapping%基于改进广义cat映射的彩色卫星图像加密算法

    2015-01-01

    In order to improve encryption effect of color satellite image,in this paper,a color satellite image encryption algorithm based on improved generalized cat map is proposed; the idea of constructing the generalized cat mapping is used in this algorithm. The transformation of the corresponding first transform expression of discrete generalized cat mapping of the nonlinear transform into second, three color components of color images were three scrambled by using the improved generalized cat mapping; then the diffusion for scrambled image is carried out by using compound chaos mapping. Theoretical analysis and simulation results show that the algorithm can improve encryption effect of the image;it has a large space with a secret key,anti-statistical attack,good performance and strong sensitivity of the secret key and can achieve the appropriate level of safety.%为了提高彩色卫星图像的加密效果,提出了一种基于改进广义cat映射的彩色卫星图像加密算法。该算法利用广义cat映射的构造思想,将离散广义cat映射的第一个变换表达式所对应的变换结果非线性的融入第二个变换表达式,利用改进广义cat映射对彩色卫星图像的三个色彩分量分别进行三轮置乱,然后利用复合混沌映射对置乱后的图像进行扩散。经过理论分析和仿真实验检测,该算法可以更好的改善图像的加密效果,具有密钥空间大、抗统计攻击能力强、密钥敏感性强等良好的性能,能够达到相应的安全水平。

  3. Security Improvement of an Image Encryption Based on mPixel-Chaotic-Shuffle and Pixel-Chaotic-Diffusion

    Ahmad, Musheer; Alsharari, Hamed D.; Nizam, Munazza

    2014-01-01

    In this paper, we propose to improve the security performance of a recently proposed color image encryption algorithm which is based on multi-chaotic systems. The existing cryptosystem employed a pixel-chaotic-shuffle mechanism to encrypt images, in which the generation of shuffling sequences are independent to the plain-image/cipher-image. As a result, it fails to the chosen-plaintext and known-plaintext attacks. Moreover, the statistical features of the cryptosystem are not up to the standa...

  4. Plaintext Related Image Encryption Scheme Using Chaotic Map

    Yong Zhang

    2013-07-01

    Full Text Available A plaintext related image blocking encryption algorithm is proposed in this paper, which includes two kinds of operations on inner-block confusion and inter-block diffusion. Firstly, a float-point lookup table need to be generated by iterating chaotic system; Secondly, choose one of the entries in the look-up table as initial value of chaotic system, and iterate it to produce one secret code sequence for inner-block confusion; Thirdly, by using one pixel value of the former block to locate another entry in the look-up table, iterate it to yield another secret code sequence for inter-block diffusion; Finally, through two rounds of the block-by-block processes, the plain-image will be transformed into the cipher-image. The simulation results show that the proposed method has many good characters.

  5. Encryption-Decryption RGB Color Image Using Matrix Multiplication

    Mohamad M.AL-Laham

    2015-10-01

    Full Text Available An enhanced technique of color image encryption based on random matrix key encoding is proposed. To encrypt the color image a separation into Red Green and Blue (R, G, B channels will applied. Each channel is encrypted using a technique called double random matrix key encoding then three new coding image matrices are constructed. To obtain the reconstructed image that is the same as the original image in the receipted side; simple extracted and decryption operations can be maintained. The results shown that the proposed technique is powerful for color image encryption and decryption and a MATLAB and simulations were used to get the results. The proposed technique has high security features because each color component is separately treated using its own double random matrix key which is generated randomly and make the process of hacking the three keys very difficult

  6. SYMMETRIC ENCRYPTION ALGORITHM IN SPEECH CODING FOR DEFENCE COMMUNICATIONS

    Akella Amarendra Babu

    2012-01-01

    Full Text Available In battlefield, messages must be encrypted to provide protection from enemy interception. Several speech coding algorithms have been developed to provide secure communications. FS1015 LPC in 1984, FS1016 CELP in 1991and FS MELP in 1997 became official federal standards. In 2002, the US DoD adopted enhanced MELP (MELPe. Later on in 2007, US Naval Research Laboratories have designed Variable Data Rate (VDR voice processor. Although certain degree of inherent security is ensured in all the above coding algorithms by way of compression techniques, strength of security in these algorithms is weak as the codecs using the above algorithms are vulnerable to interception. Explicit encryption gadgets need to be provided as accessory to provide strong secure communications. In this paper, we have described an algorithm which provides robust and secure communications. This Robust Secure Coder (RSC is backward compatible with the existing codec’s and operates at marginally higher bit rates when switched to secure mode.

  7. Devil’s Vortex Phase Structure as Frequency Plane Mask for Image Encryption Using the Fractional Mellin Transform

    Sunanda Vashisth

    2014-01-01

    Full Text Available A frequency plane phase mask based on Devil’s vortex structure has been used for image encryption using the fractional Mellin transform. The phase key for decryption is obtained by an iterative phase retrieval algorithm. The proposed scheme has been validated for grayscale secret target images, by numerical simulation. The efficacy of the scheme has been evaluated by computing mean-squared-error between the secret target image and the decrypted image. Sensitivity analysis of the decryption process to variations in various encryption parameters has been carried out. The proposed encryption scheme has been seen to exhibit reasonable robustness against occlusion attack.

  8. A Technique for Image Encryption with Combination of Pixel Rearrangement Scheme Based On Sorting Group-Wise Of RGB Values and Explosive Inter-Pixel Displacement

    Amnesh Goel

    2012-03-01

    Full Text Available Encryption is used to prevent data from unauthorized access and with the appalling headway in network technology seen in the past decade; it has become the need of time to encrypt the images before sending over open network. Though researchers has proposed contrastive methods to encrypt images but correlation between pixels RGB value play a imperative part to guess for original image. So, here we introduce a new image encryption method which first rearranges the pixels within image on basis of RGB values and then forward intervening image for encryption. Experimentally it has shown that pixel rearrangement is enough from image encryption point of view but to send image over open network; inter-pixel displacement algorithm is applied to dispense more armament to image before transmission.

  9. NEW SYMMETRIC ENCRYPTION SYSTEM BASED ON EVOLUTIONARY ALGORITHM

    A. Mouloudi

    2015-12-01

    Full Text Available In this article, we present a new symmetric encryption system which is a combination of our ciphering evolutionary system SEC [1] and a new ciphering method called “fragmentation”. This latter allows the alteration of the appearance frequencies of characters from a given text. Our system has at its disposed two keys, the first one is generated by the evolutionary algorithm, the second one is generated after “fragmentation” part. Both of them are symmetric, session keys and strengthening the security of our system.

  10. A recoverable stress testing algorithm for compression and encryption cards

    Bao-jun ZHANG; Xue-zeng PAN; Jie-bing WANG; Ling-di PING

    2008-01-01

    This study proposes a recoverable stress testing algorithm (RSTA) for such special devices as compression/decom-pression card and encryption/decryption card. It uses a chaos function to generate a random sequence, and then, according to the random sequence, generates an effective command sequence. The dispatch of command obeys a special schedule strategy we designed for such devices, I.e., the commands are sent according to the command sequence, and the complete commands are put in a buffer for further result check. RSTA is used to test the HIFN compression acceleration card SAICHI- 1000. Test results show that RSTA can make the card work continuously and adequately.

  11. Content-based image retrieval in homomorphic encryption domain.

    Bellafqira, Reda; Coatrieux, Gouenou; Bouslimi, Dalel; Quellec, Gwenole

    2015-08-01

    In this paper, we propose a secure implementation of a content-based image retrieval (CBIR) method that makes possible diagnosis aid systems to work in externalized environment and with outsourced data as in cloud computing. This one works with homomorphic encrypted images from which it extracts wavelet based image features next used for subsequent image comparison. By doing so, our system allows a physician to retrieve the most similar images to a query image in an outsourced database while preserving data confidentiality. Our Secure CBIR is the first one that proposes to work with global image features extracted from encrypted images and does not induce extra communications in-between the client and the server. Experimental results show it achieves retrieval performance as good as if images were processed non-encrypted. PMID:26736909

  12. Secure Reversible Data Hiding in Encrypted Images by Allocating Memory before Encryption via Security keys

    Priya Jambhulkar; Pardhi, P R

    2015-01-01

    Digital image and information embedding system have number of important multimedia applications. Recently, attention is paid to reversible data hiding (RDH) in encrypted images is more, since it maintains the excellent property that the original cover can be lossless recovered after embedded data is extracted while protecting the image content’s confidentiality. RDH is a technique used to hide data inside image for high security in such a way that original data is not visible. All previous me...

  13. ecure Reversible Data Hiding in Encrypted Images by Allocating Memory before Encryption via Security keys

    Priya Jambhulkar; Pardhi, P R

    2014-01-01

    Digital image and information embedding system have number of important multimedia applications. Recently, attention is paid to reversible data hiding (RDH) in encrypted images is more, since it maintains the excellent property that the original cover can be lossless recovered after embedded data is extracted while protecting the image content’s confidentiality. RDH is a technique used to hide data inside image for high security in such a way that original data is not visible....

  14. Application of the Chaotic Ergodicity of Standard Map in Image Encryption and Watermarking

    Ruisong Ye; Huiqing Huang

    2010-01-01

    Thanks to the exceptionally good properties in chaotic systems, such as sensitivity to initial conditions and control parameters, pseudo-randomness and ergodicity, chaos-based image encryption algorithms have been widely studied and developed in recent years. Standard map is chaotic so that it can be employed to shuffle the positions of image pixels to get a totally visual difference from the original images. This paper proposes two novel schemes to shuffle digital images. Different from the ...

  15. Advanced Steganography Algorithm Using Randomized Intermediate QR Host Embedded With Any Encrypted Secret Message: ASA_QR Algorithm

    Somdip Dey

    2012-06-01

    Full Text Available Due to tremendous growth in communication technology, now it is a real problem / challenge to send some confidential data / information through communication network. For this reason, Nath et al. developed several information security systems, combining cryptography and steganography together, and the present method, ASA_QR, is also one of them. In the present paper, the authors present a new steganography algorithm to hide any small encrypted secret message inside QR CodeTM , which is then randomized and then, finally embed that randomized QR Code inside some common image. Quick Response Codes (or QR Codes are a type of two-dimensional matrix barcodes used for encoding information. It has become very popular recently for its high storage capacity. The present method is ASA_QR is a combination of strong encryption algorithm and data hiding in two stages to make the entire process extremely hard to break. Here, the secret message is encrypted first and hide it in a QR CodeTM and then again that QR CodeTM is embed in a cover file (picture file in random manner, using the standard method of steganography. In this way the data, which is secured, is almost impossible to be retrieved without knowing the cryptography key, steganography password and the exact unhide method. For encrypting data The authors used a method developed by Nath et al i.e. TTJSA, which is based on generalized modified Vernam Cipher, MSA and NJJSA method; and from the cryptanalysis it is seen that TTJSA is free from any standard cryptographic attacks, like differential attack, plain-text attack or any brute force attack. After encrypting the data using TTJSA,the authors have used standard steganographic method To hide data inside some host file. The present method may be used for sharing secret key, password, digital signature etc.

  16. Chaotic Image Encryption Based on Running-Key Related to Plaintext

    Cao Guanghui

    2014-01-01

    Full Text Available In the field of chaotic image encryption, the algorithm based on correlating key with plaintext has become a new developing direction. However, for this kind of algorithm, some shortcomings in resistance to reconstruction attack, efficient utilization of chaotic resource, and reducing dynamical degradation of digital chaos are found. In order to solve these problems and further enhance the security of encryption algorithm, based on disturbance and feedback mechanism, we present a new image encryption scheme. In the running-key generation stage, by successively disturbing chaotic stream with cipher-text, the relation of running-key to plaintext is established, reconstruction attack is avoided, effective use of chaotic resource is guaranteed, and dynamical degradation of digital chaos is minimized. In the image encryption stage, by introducing random-feedback mechanism, the difficulty of breaking this scheme is increased. Comparing with the-state-of-the-art algorithms, our scheme exhibits good properties such as large key space, long key period, and extreme sensitivity to the initial key and plaintext. Therefore, it can resist brute-force, reconstruction attack, and differential attack.

  17. Chaotic Image Encryption Based on Running-Key Related to Plaintext

    Guanghui, Cao; Kai, Hu; Yizhi, Zhang; Jun, Zhou; Xing, Zhang

    2014-01-01

    In the field of chaotic image encryption, the algorithm based on correlating key with plaintext has become a new developing direction. However, for this kind of algorithm, some shortcomings in resistance to reconstruction attack, efficient utilization of chaotic resource, and reducing dynamical degradation of digital chaos are found. In order to solve these problems and further enhance the security of encryption algorithm, based on disturbance and feedback mechanism, we present a new image encryption scheme. In the running-key generation stage, by successively disturbing chaotic stream with cipher-text, the relation of running-key to plaintext is established, reconstruction attack is avoided, effective use of chaotic resource is guaranteed, and dynamical degradation of digital chaos is minimized. In the image encryption stage, by introducing random-feedback mechanism, the difficulty of breaking this scheme is increased. Comparing with the-state-of-the-art algorithms, our scheme exhibits good properties such as large key space, long key period, and extreme sensitivity to the initial key and plaintext. Therefore, it can resist brute-force, reconstruction attack, and differential attack. PMID:24711727

  18. High security and robust optical image encryption approach based on computer-generated integral imaging pickup and iterative back-projection techniques

    Li, Xiao Wei; Cho, Sung Jin; Kim, Seok Tae

    2014-04-01

    In this paper, a novel optical image encryption algorithm by combining the use of computer-generated integral imaging (CGII) pickup technique and iterative back-projection (IBP) technique is proposed. In this scheme, a color image to be encrypted which is firstly segregated into three channels: red, green, and blue. Each of these three channels is independently captured by using a virtual pinhole array and be computationally transformed as a sub-image array. Then, each of these three sub-image arrays are scrambled by the Fibonacci transformation (FT) algorithm, respectively. These three scrambled sub-image arrays are encrypted by the hybrid cellular automata (HCA), respectively. Ultimately, these three encrypted images are combined to produce the colored encrypted image. In the reconstruction process, because the computational integral imaging reconstruction (CIIR) is a pixel-overlapping reconstruction technique, the interference of the adjacent pixels will decrease the quality of the reconstructed image. To address this problem, we introduce an image super-resolution reconstruction technique, the image can be computationally reconstructed by the IBP technique. Some numerical simulations are made to test the validity and the capability of the proposed image encryption algorithm.

  19. Fractional Hartley transform applied to optical image encryption

    Jimenez, C [Grupo GIFES. Universidad de La Guajira. Riohacha (Colombia); Torres, C; Mattos, L, E-mail: carlosj114@gmail.com [Grupo LOI. Universidad Popular del Cesar. Valledupar (Colombia)

    2011-01-01

    A new method for image encryption is introduced on the basis of two-dimensional (2-D) generalization of 1-D fractional Hartley transform that has been redefined recently in search of its inverse transform We encrypt the image by two fractional orders and random phase codes. It has an advantage over Hartley transform, for its fractional orders can also be used as addictional keys, and that, of course, strengthens image security. Only when all of these keys are correct, can the image be well decrypted. Computer simulations are also perfomed to confirm the possibility of proposed method.

  20. Improving Security of Parallel Algorithm Using Key Encryption Technique

    R. Swarna Raja

    2013-01-01

    Full Text Available In the recent cloud era, computing moves to a new plane of running large scale scientific applications. Many parallel algorithms have been created to support a large dataset. MapReduce is one such parallel data processing framework adopted widely for scientific research, machine learning and high end computing. The most prevalent implementation of MapReduce is the open source project Hadoop. To protect the integrity and confidentiality of data uploaded, MapReduce introduced a Kerberos-based model with tokens for datablocks and processing nodes. The tokens are symmetrically encrypted and distributed across the nodes. Such a technique is vulnerable to man-in-the-middle attacks like data loss, data modification and stealing of keys. In this study, a novel technique is proposed based on public key encryption on top of the Kerberos model to enhance Security. The various attack scenarios on the current Hadoop implementation model has been analyzed and a secure environment has been proposed. The study shows that the proposed framework provides an improved level of security when using RSA (Rivest Shamir Adleman with 65,537 keysize consumed 23 milli seconds, while using 257 bits keysize which consumed 21 milli seconds.

  1. Exploring an Effective Digital Image Encryption Algorithm Based on Stream Cipher and Genetic Algorithm (GA)%一种基于流密码和遗传算法的高效数字图像加密算法探索

    牛振喜

    2011-01-01

    Aim. The introduction of the full paper reviews some relevant matters and then proposes the exploration mentioned in the title, whose result we believe is effective and appears to have a promising future in the encryption field and is fully explained in sections 1 and 2. Their core consists of; "We propose a color digital image encryption algorithm based on the advantages of stream cipher and GA. Firstly, the algorithm divides the image into blocks; then it uses XOR operation to alter the pixel value in each block; next, it exerts different three - dimensional Arnold transforms, which are based on different times of iterations and transformation matrixes, on the different color components; finally, it encrypts the image by applying XOR operation to the image data and the key stream (generated by GA). " Section 2 is entitled "Analysis of Security of Algorithm". Subsection 2. 1 deals with the theoretical analysis of the security of algorithm. Subsection 2. 2 deals with experimental results, presented in Figs. 3 through 12 and Tables 1 and 2, and their analysis. Theoretical analysis and numerical experiments show preliminarily that the algorithm is excellent with large key space, high key sensibility, satisfactory encryption, and being able to resist common attacks effectively.%本文结合流密码和遗传算法的优点,提出了一种彩色数字图像加密算法.该算法首先将图像分块,各块内象素相互异或,再对不同颜色分量执行迭代次数和变换矩阵均不同的三维Arnold变换,最后将遗传算法产生的密钥流与图像数据相异或来对图像进行加密.经过理论分析和实验验证,该算法具有密钥空间大、密钥敏感性高,加密效果好、并能有效抵御常见攻击等优点.

  2. Digital Image Encryption: A Survey%数字图像加密综述

    文昌辞; 王沁; 苗晓宁; 刘向宏; 彭阳翔

    2012-01-01

    According to the feature of digital image, the reason why traditional cipher algorithms are not applicable was analyzed,and the development of digital image encryption was surveyed. Some techniques, such as pixel permutation in space domain,encryption based on chaos, encryption in transform domain, image secret segmentation and sharing, encryption based on neutral network and cellular automata,encryption based on blind source separation, were illustrated, and the corresponding characteristics were analyzed and compared. At last, a large number of typical encryption algorithms were analyzed in detail to expose their weakness,and the future research direction was discussed.%针对数字图像的特点,分析了传统加密算法不适用的原因,陈述了数字图像加密的现状,对基于空间域的像素置乱、基于混沌的加密、基于变换域的加密、基于秘密分割与秘密共享的加密、基于神经网络和元胞自动机的加密以及基于盲源分离的加密进行了详细描述,并对它们的特点进行了分析比较.最后,举例分析了大量典型的加密算法,指出了它们的不足,并探讨了进一步的研究方向.

  3. Chaotic Image Scrambling Algorithm Based on S-DES

    Yu, X Y [College of Measurement-Control Tech and Communications Engineering, Harbin University of Science and Technology, Harbin, 150080 (China); Zhang, J [College of Measurement-Control Tech and Communications Engineering, Harbin University of Science and Technology, Harbin, 150080 (China); Ren, H E [Information and Computer Engineering College, Northeast Forestry University, Harbin, 150000 (China); Xu, G S [College of Measurement-Control Tech and Communications Engineering, Harbin University of Science and Technology, Harbin, 150080 (China); Luo, X Y [College of Measurement-Control Tech and Communications Engineering, Harbin University of Science and Technology, Harbin, 150080 (China)

    2006-10-15

    With the security requirement improvement of the image on the network, some typical image encryption methods can't meet the demands of encryption, such as Arnold cat map and Hilbert transformation. S-DES system can encrypt the input binary flow of image, but the fixed system structure and few keys will still bring some risks. However, the sensitivity of initial value that Logistic chaotic map can be well applied to the system of S-DES, which makes S-DES have larger random and key quantities. A dual image encryption algorithm based on S-DES and Logistic map is proposed. Through Matlab simulation experiments, the key quantities will attain 10{sup 17} and the encryption speed of one image doesn't exceed one second. Compared to traditional methods, it has some merits such as easy to understand, rapid encryption speed, large keys and sensitivity to initial value.

  4. A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption Standard algorithm

    Garg, Poonam

    2010-01-01

    Genetic algorithms are a population-based Meta heuristics. They have been successfully applied to many optimization problems. However, premature convergence is an inherent characteristic of such classical genetic algorithms that makes them incapable of searching numerous solutions of the problem domain. A memetic algorithm is an extension of the traditional genetic algorithm. It uses a local search technique to reduce the likelihood of the premature convergence. The cryptanalysis of simplified data encryption standard can be formulated as NP-Hard combinatorial problem. In this paper, a comparison between memetic algorithm and genetic algorithm were made in order to investigate the performance for the cryptanalysis on simplified data encryption standard problems(SDES). The methods were tested and various experimental results show that memetic algorithm performs better than the genetic algorithms for such type of NP-Hard combinatorial problem. This paper represents our first effort toward efficient memetic algo...

  5. Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems

    DU Mao-Kang; HE Bo; WANG Yong

    2011-01-01

    Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14(2009)574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential Saws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks and to keep all the merits of the original cryptosystem.

  6. Optical Image Encryption with Simplified Fractional Hartley Transform

    LI Xin-Xin; ZHAO Dao-Mu

    2008-01-01

    We present a new method for image encryption on the basis of simplified fractional Hartley transform (SFRHT). SFRHT is a real transform as Hartley transform (HT) and furthermore, superior to HT in virtue of the advantage that it can also append fractional orders as additional keys for the purpose of improving the system security to some extent. With this method, one can encrypt an image with an intensity-only medium such as a photographic film or a CCD camera by spatially incoherent or coherent illumination. The optical realization is then proposed and computer simulations are also performed to verify the feasibility of this method.

  7. Multiple-image encryption using spectral cropping and spatial multiplexing

    Deng, Pingke; Diao, Ming; Shan, Mingguang; Zhong, Zhi; Zhang, Yabin

    2016-01-01

    A multiple-image encryption scheme is proposed using spectral cropping and space multiplexing based on discrete multiple-parameter fractional Fourier transform (DMPFRFT). Spectrum of each original image is firstly cropped by a low-pass filter, and the image is then recovered with the same size of the filter. The recovered images are spatially shifted and multiplexed into a complex signal with the same size of original image. The complex signal is multiplied by a pixel scrambling operation and random phase mask, and then encrypted into one image by DMPFRFT. The multiplexing images can be retrieved with correct keys, and the original images can be then obtained by enlarging the demultiplexing images. Numerical simulations have been done to demonstrate the validity and the security of the proposed method.

  8. Double-image encryption based on joint transform correlation and phase-shifting interferometry

    Lina Shen; Jun Li; Hongsen Chang

    2007-01-01

    An image encryption method combining the joint transform correlator (JTC) architecture with phaseshifting interferometry to realize double random-phase encoding is proposed. The encrypted field and the decrypting key are registered as holograms by phase-shifting interferometry. This method can encrypt two images simultaneously to improve the encryption efficiency of the methods based on JTC architecture, and eliminate the system alignment constraint of the methods based on Mach-Zehnder interferometer (MZI)architecture. Its feasibility and validity are verified by computer simulations. Moreover, image encryption and decryption can be achieved at high speed optically or digitally. The encrypted data are suitable for Internet transmission.

  9. Chaos Encryption Algorithm to Deal with Security Threat to Internet of Things RFID

    Tian Xiaoyong

    2013-05-01

    Full Text Available Internet of Things RFID system is mainly studied problem in current communication area, where the safety of code message become rather important. Chaos encryption algorithm can disperse not only the time area but the scale, which is suitable for computer to deal with and overcome the limitation of block encryption in DES and AES. Using Sequence of the digital to deal with initial value and combining the one dimensional Logistic chaos and three dimensional Lorenz algorithm realize common encryption algorithm of these two chaos methods to calculate the long-term random sequence under the limitation of precision and improve the security.

  10. Optical encryption for large-sized images using random phase-free method

    Shimobaba, Tomoyoshi; Kakue, Takashi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Sugie, Takashige; Ito, Tomoyoshi

    2015-01-01

    We propose an optical encryption framework that can encrypt and decrypt large-sized images beyond the size of the encrypted image using our two methods: random phase-free method and scaled diffraction. In order to record the entire image information on the encrypted image, the large-sized images require the random phase to widely diffuse the object light over the encrypted image; however, the random phase gives rise to the speckle noise on the decrypted images, and it may be difficult to reco...

  11. Efficient image or video encryption based on spatiotemporal chaos system

    In this paper, an efficient image/video encryption scheme is constructed based on spatiotemporal chaos system. The chaotic lattices are used to generate pseudorandom sequences and then encrypt image blocks one by one. By iterating chaotic maps for certain times, the generated pseudorandom sequences obtain high initial-value sensitivity and good randomness. The pseudorandom-bits in each lattice are used to encrypt the Direct Current coefficient (DC) and the signs of the Alternating Current coefficients (ACs). Theoretical analysis and experimental results show that the scheme has good cryptographic security and perceptual security, and it does not affect the compression efficiency apparently. These properties make the scheme a suitable choice for practical applications.

  12. Image encryption using random sequence generated from generalized information domain

    Xia-Yan, Zhang; Guo-Ji, Zhang; Xuan, Li; Ya-Zhou, Ren; Jie-Hua, Wu

    2016-05-01

    A novel image encryption method based on the random sequence generated from the generalized information domain and permutation–diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security.

  13. DATA SECURITY IN LOCAL AREA NETWORK BASED ON FAST ENCRYPTION ALGORITHM

    G. Ramesh

    2010-06-01

    Full Text Available Hacking is one of the greatest problems in the wireless local area networks. Many algorithms have been used to prevent the outside attacks to eavesdrop or prevent the data to be transferred to the end-user safely and correctly. In this paper, a new symmetrical encryption algorithm is proposed that prevents the outside attacks. The new algorithm avoids key exchange between users and reduces the time taken for the encryption and decryption. It operates at high data rate in comparison with The Data Encryption Standard (DES, Triple DES (TDES, Advanced Encryption Standard (AES-256, and RC6 algorithms. The new algorithm is applied successfully on both text file and voice message.

  14. A technique for image encryption using digital signature

    Sinha, Aloka; Singh, Kehar

    2003-04-01

    We propose a new technique to encrypt an image for secure image transmission. The digital signature of the original image is added to the encoded version of the original image. The encoding of the image is done using an appropriate error control code, such as a Bose-Chaudhuri Hochquenghem (BCH) code. At the receiver end, after the decryption of the image, the digital signature can be used to verify the authenticity of the image. Detailed simulations have been carried out to test the encryption technique. An optical correlator, in either the JTC or the VanderLugt geometry, or a digital correlation technique, can be used to verify the authenticity of the decrypted image.

  15. Optical asymmetric image encryption using gyrator wavelet transform

    Mehra, Isha; Nishchal, Naveen K.

    2015-11-01

    In this paper, we propose a new optical information processing tool termed as gyrator wavelet transform to secure a fully phase image, based on amplitude- and phase-truncation approach. The gyrator wavelet transform constitutes four basic parameters; gyrator transform order, type and level of mother wavelet, and position of different frequency bands. These parameters are used as encryption keys in addition to the random phase codes to the optical cryptosystem. This tool has also been applied for simultaneous compression and encryption of an image. The system's performance and its sensitivity to the encryption parameters, such as, gyrator transform order, and robustness has also been analyzed. It is expected that this tool will not only update current optical security systems, but may also shed some light on future developments. The computer simulation results demonstrate the abilities of the gyrator wavelet transform as an effective tool, which can be used in various optical information processing applications, including image encryption, and image compression. Also this tool can be applied for securing the color image, multispectral, and three-dimensional images.

  16. Color image single-channel encryption based on tricolor grating theory

    YUAN Qi-ping; YANG Xiao-ping; GAO Li-juan; ZHAI Hong-chen

    2009-01-01

    A method of color image single-channel encryption is proposed. The proposed method uses tricolor grating to encode a color image into a gray level image, then the gray level image is encrypted by double random phase encryption, so a color image is encrypted in a single-channel and its security is ensured. Computer simulations and the chromatic aberration analysis are given to prove the possibility of the proposed idea.The optical system is simpler and is easy to be applied into practice. The simulation results show that this method is efficiency to encrypt a color image, and it is robust.

  17. Hybrid approach for Image Encryption Using SCAN Patterns and Carrier Images

    T, Panduranga H

    2010-01-01

    We propose a hybrid technique for image encryption which employs the concept of carrier image and SCAN patterns generated by SCAN methodology. Although it involves existing method like SCAN methodology, the novelty of the work lies in hybridizing and carrier image creation for encryption. Here the carrier image is created with the help of alphanumeric keyword. Each alphanumeric key will be having a unique 8bit value generated by 4 out of 8-code. This newly generated carrier image is added with original image to obtain encrypted image. The scan methodology is applied to either original image or carrier image, after the addition of original image and carrier image to obtain highly distorted encrypted image. The resulting image is found to be more distorted in hybrid technique. By applying the reverse process we get the decrypted image.

  18. Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption.

    Alfalou, A; Brosseau, C

    2010-06-01

    We report on an algorithm to compress and encrypt simultaneously multiple images (target images). This method, which is based upon a specific spectral multiplexing (fusion without overlapping) of the multiple images, aims to achieve a single encrypted image, at the output plane of our system, that contains all information needed to reconstruct the target images. For that purpose, we divide the Fourier plane of the image to transmit into two types of area, i.e., specific and common areas to each target image. A segmentation criterion taking into account the rms duration of each target image spectrum is proposed. This approach, which consists of merging the input target images together (in the Fourier plane) allows us to reduce the information to be stored and/or transmitted (compression) and induce noise on the output image (encryption). To achieve a good encryption level, a first key image (containing biometric information and providing the intellectual property of the target images) is used. A second encryption key is inserted in the Fourier plane to ensure a relevant phase distribution of the different merged spectra. We also discuss how the encoding information can be optimized by minimizing the number of bits required to encode each pixel. PMID:20517460

  19. Efficient Hardware Implementation of the Lightweight Block Encryption Algorithm LEA

    Donggeon Lee

    2014-01-01

    Full Text Available Recently, due to the advent of resource-constrained trends, such as smartphones and smart devices, the computing environment is changing. Because our daily life is deeply intertwined with ubiquitous networks, the importance of security is growing. A lightweight encryption algorithm is essential for secure communication between these kinds of resource-constrained devices, and many researchers have been investigating this field. Recently, a lightweight block cipher called LEA was proposed. LEA was originally targeted for efficient implementation on microprocessors, as it is fast when implemented in software and furthermore, it has a small memory footprint. To reflect on recent technology, all required calculations utilize 32-bit wide operations. In addition, the algorithm is comprised of not complex S-Box-like structures but simple Addition, Rotation, and XOR operations. To the best of our knowledge, this paper is the first report on a comprehensive hardware implementation of LEA. We present various hardware structures and their implementation results according to key sizes. Even though LEA was originally targeted at software efficiency, it also shows high efficiency when implemented as hardware.

  20. Efficient hardware implementation of the lightweight block encryption algorithm LEA.

    Lee, Donggeon; Kim, Dong-Chan; Kwon, Daesung; Kim, Howon

    2014-01-01

    Recently, due to the advent of resource-constrained trends, such as smartphones and smart devices, the computing environment is changing. Because our daily life is deeply intertwined with ubiquitous networks, the importance of security is growing. A lightweight encryption algorithm is essential for secure communication between these kinds of resource-constrained devices, and many researchers have been investigating this field. Recently, a lightweight block cipher called LEA was proposed. LEA was originally targeted for efficient implementation on microprocessors, as it is fast when implemented in software and furthermore, it has a small memory footprint. To reflect on recent technology, all required calculations utilize 32-bit wide operations. In addition, the algorithm is comprised of not complex S-Box-like structures but simple Addition, Rotation, and XOR operations. To the best of our knowledge, this paper is the first report on a comprehensive hardware implementation of LEA. We present various hardware structures and their implementation results according to key sizes. Even though LEA was originally targeted at software efficiency, it also shows high efficiency when implemented as hardware. PMID:24406859

  1. A Color image encryption scheme based on Generalized Synchronization Theorem

    Han shuangshuang

    2013-07-01

    Full Text Available Base on a generalized synchronization theorem (GCS for discrete chaotic system, this paper introduces a new 6-dimensional generalized chaos synchronization system based on 3D-Lorenz map. Numerical simulation showed that two pair variables of the synchronization system achieve generalized synchronization via a transform H.Combining with the 2-Dimension non equilateral Arnold transformation, a color image encryption scheme was designed. Analyzing the key sensitivity, key space, histogram, information entropy and correlation of adjacent pixels, it showed that the scheme have sound encryption and decryption effects. Numerical simulations reveal that the scheme is effective in commercial network communication for its strong anti-interference ability.

  2. Role of Statistical tests in Estimation of the Security of a New Encryption Algorithm

    Krishna, Addepalli V N

    2010-01-01

    Encryption study basically deals with three levels of algorithms. The first algorithm deals with encryption mechanism, second deals with decryption Mechanism and the third discusses about the generation of keys and sub keys used in the encryption study. In the given study, a new algorithm is discussed. The algorithm executes a series of steps and generates a sequence. This sequence is being used as sub key to be mapped to plain text to generate cipher text. The strength of the encryption & Decryption process depends on the strength of sequence generated against crypto analysis.. In this part of work some statistical tests like Uniformity tests, Universal tests & Repetition tests are tried on the sequence generated to test the strength of it.

  3. IMAGE ENCRYPTION TECHNIQUES USING CHAOTIC SCHEMES: A REVIEW

    Monisha Sharma

    2010-06-01

    Full Text Available Cryptography is about communication in the presence of an adversary. It encompasses many problems like encryption, authentication, and key distribution to name a few. The field of modern cryptography providesa theoretical foundation based on which one can understand what exactly these problems are, how to evaluate protocols that purport to solve them and how to build protocols in whose security one can haveconfidence. Advanced digital technologies have made multimedia data widely available. Recently, multimedia applications become common in practice and thus security of multimedia data has become main concern.The basic issues pertaining to the problem of encryption has been discussed and also a survey on image encryption techniques based on chaotic schemes has been dealt in the present communication.The chaotic image encryption can be developed by using properties of chaos including deterministic dynamics, unpredictable behavior and non-linear transform. This concept leads to techniques that can simultaneously provide security functions and an overall visualcheck, which might be suitable in some applications. Digital images are widely used in various applications, that include military, legal and medical systems and these applications need to control access toimages and provide the means to verify integrity of images.

  4. Quantum secret key encryption algorithm based on quantum discrete logarithm problem

    Chen, Chien-Yuan; Hsueh, Chih-Cheng

    2004-01-01

    In this paper, we first define the quantum discrete logarithm problem (QDLP)which is similar to classical discrete logarithm problem. But, this problem cannot be solved by Shor's quantum algorithm. Based on quantum discrete logarithm problem, we present a novel quantum secret key encryption algorithm. The receiver constructs his quantum channel using their secret key. Then, the sender can use the receiver's quantum channel to encrypt the message. Finally, the receiver dencrypts the ciphertext...

  5. Chaos Encryption Algorithm to Deal with Security Threat to Internet of Things RFID

    Tian Xiaoyong

    2013-01-01

    Internet of Things RFID system is mainly studied problem in current communication area, where the safety of code message become rather important. Chaos encryption algorithm can disperse not only the time area but the scale, which is suitable for computer to deal with and overcome the limitation of block encryption in DES and AES. Using Sequence of the digital to deal with initial value and combining the one dimensional Logistic chaos and three dimensional Lorenz algorithm realize common encry...

  6. An Investigation into Encrypted Message Hiding Through Images Using LSB

    FAHIM IRFAN ALAM; FATEHA KHANAM BAPPEE,; FARID UDDIN AHMED KHONDKER

    2011-01-01

    Data security has become a cause of concern because of the electronic spying especially in the military, government and many sectors of communication fields. This paper investigates a representation forembedding secure data within an image based on substitution method which gives the scope of large amount of secret message hiding within digital images. Specifically we used least significant bit (LSB)substitution method to encrypt the message in image file. For improving the performance of LSB...

  7. Dynamic encryption method

    2013-01-01

    Disclosed is a method of transmitting a data set using encryption, wherein the method comprises the steps of: selecting a first encryption technique, wherein said first encryption technique comprises a first encryption algorithm for encrypting plain data into cipher data, and a first decryption...... algorithm for on provision of a specific key, decrypting cipher data and reproduce plain data; encrypting the first data package comprising plain data, using a first encryption program implementing the first encryption algorithm of said first encryption technique, creating a first encrypted data package...

  8. Vector Quantization Techniques For Partial Encryption of Wavelet-based Compressed Digital Images

    H. A. Younis; T. Y. Abdalla; A.Y. Abdalla

    2009-01-01

    The use of image communication has increased in recent years. In this paper, newpartial encryption schemes are used to encrypt only part of the compressed data. Only6.25-25% of the original data is encrypted for four different images, resulting in asignificant reduction in encryption and decryption time. In the compression step, anadvanced clustering analysis technique (Fuzzy C-means (FCM)) is used. In the encryptionstep, the permutation cipher is used. The effect of number of different clust...

  9. Optical image encryption via photon-counting imaging and compressive sensing based ptychography

    Rawat, Nitin; Hwang, In-Chul; Shi, Yishi; Lee, Byung-Geun

    2015-06-01

    In this study, we investigate the integration of compressive sensing (CS) and photon-counting imaging (PCI) techniques with a ptychography-based optical image encryption system. Primarily, the plaintext real-valued image is optically encrypted and recorded via a classical ptychography technique. Further, the sparse-based representations of the original encrypted complex data can be produced by combining CS and PCI techniques with the primary encrypted image. Such a combination takes an advantage of reduced encrypted samples (i.e., linearly projected random compressive complex samples and photon-counted complex samples) that can be exploited to realize optical decryption, which inherently serves as a secret key (i.e., independent to encryption phase keys) and makes an intruder attack futile. In addition to this, recording fewer encrypted samples provides a substantial bandwidth reduction in online transmission. We demonstrate that the fewer sparse-based complex samples have adequate information to realize decryption. To the best of our knowledge, this is the first report on integrating CS and PCI with conventional ptychography-based optical image encryption.

  10. Application of the Chaotic Ergodicity of Standard Map in Image Encryption and Watermarking

    Ruisong Ye

    2010-11-01

    Full Text Available Thanks to the exceptionally good properties in chaotic systems, such as sensitivity to initial conditions and control parameters, pseudo-randomness and ergodicity, chaos-based image encryption algorithms have been widely studied and developed in recent years. Standard map is chaotic so that it can be employed to shuffle the positions of image pixels to get a totally visual difference from the original images. This paper proposes two novel schemes to shuffle digital images. Different from the conventional schemes based on Standard map, we disorder the pixel positions according to the orbits of the Standard map. The proposed shuffling schemes don’t need to discretize the Standard map and own more cipher leys compared with the conventional shuffling scheme based on the discretized Standard map. The shuffling schemes are applied to encrypt image and disorder the host image in watermarking scheme to enhance the robustness against attacks. Experimental results show that the proposed encryption scheme yields good secure effects. The watermarked images are robust against attacks as well.

  11. An efficient diffusion approach for chaos-based image encryption

    One of the existing chaos-based image cryptosystems is composed of alternative substitution and diffusion stages. A multi-dimensional chaotic map is usually employed in the substitution stage for image pixel permutation while a one-dimensional (1D) chaotic map is used for diffusion purpose. As the latter usually involves real number arithmetic operations, the overall encryption speed is limited by the diffusion stage. In this paper, we propose a more efficient diffusion mechanism using simple table lookup and swapping techniques as a light-weight replacement of the 1D chaotic map iteration. Simulation results show that at a similar security level, the proposed cryptosystem needs about one-third the encryption time of a similar cryptosystem. The effective acceleration of chaos-based image cryptosystems is thus achieved.

  12. Partial Encryption of Co mpressed Image Using Threshold Quantization and AES Cipher

    H. A. Younis; A.Y. Abdalla; Y. Abdalla

    2012-01-01

    Cryptography is one of the technological means to provide security to data beingtransmitted on information and communication systems.When it is necessary to securelytransmit data in limited bandwidth, both compression and encryption must be performed.Researchers have combined compression and encryption together to reduce the overallprocessing time.In this paper, new partial encryption schemes are proposed to encrypt only part of thecompressed image.Soft and hard threshold compression methods ...

  13. A Light-weight Symmetric Encryption Algorithm Based on Feistel Cryptosystem Structure

    Jingli Zheng

    2014-12-01

    Full Text Available WSNs is usually deployed in opening wireless environment, its data is easy to be intercepted by attackers. It is necessary to adopt some encryption measurements to protect data of WSNs. But the battery capacity, CPU performance and RAM capacity of WSNs sensors are all limited, the complex encryption algorithm is not fitted for them. The paper proposed a light-level symmetrical encryption algorithm: LWSEA, which adopt minor encryption rounds, shorter data packet and simplified scrambling function. So the calculation cost of LWSEA is very low. We also adopt longer-bit Key and circular interpolation method to produce Child-Key, which raised the security of LWSEA. The experiments demonstrate that the LWSEA possess better "avalanche effect" and data confusion degree, furthermore, its calculation speed is far faster than DES, but its resource cost is very low. Those excellent performances make LWSEA is much suited for resource-restrained WSNs.

  14. A Secure Symmetric Image Encryption Based on Bit-wise Operation

    Prabir Kr. Naskar

    2014-01-01

    Full Text Available This paper shows a symmetric image encryption based on bit-wise operation (XORing and Shifting. The basic idea is block ciphering (size of each block is 4 bytes technique to cipher the secret bytes, after that ciphered bytes are again shuffled among N positions (N is the size of secret file. The scheme is combination of substitution as well as transposition techniques which provides additional protection of the secret data. The substitution and transposition are done using dynamic substitution box (SBOX and transposition box (TBOX which are generated using the secret key and made to vary for each block during ciphering. The size of encrypted data is same as the size of secret data and the proposed scheme has been tested using different images. We have also presented the security analysis such as key sensitivity analysis, statistical analysis, and differential analysis to prove the strength of our algorithm against crypto analysis.

  15. Vector Quantization Techniques For Partial Encryption of Wavelet-based Compressed Digital Images

    H. A. Younis

    2009-01-01

    Full Text Available The use of image communication has increased in recent years. In this paper, newpartial encryption schemes are used to encrypt only part of the compressed data. Only6.25-25% of the original data is encrypted for four different images, resulting in asignificant reduction in encryption and decryption time. In the compression step, anadvanced clustering analysis technique (Fuzzy C-means (FCM is used. In the encryptionstep, the permutation cipher is used. The effect of number of different clusters is studied.The proposed partial encryption schemes are fast and secure, and do not reduce thecompression performance of the underlying selected compression methods as shown inexperimental results and conclusion.

  16. Classification of Novel Selected Region of Interest for Color Image Encryption

    Lahieb Mohammed Jawad; Ghazali Sulong

    2015-01-01

    Securing digital image in exchanging huge multimedia data over internet with limited bandwidth is a significant and sensitive issue. Selective image encryption being an effective method for reducing the amount of encrypted data can achieve adequate security enhancement. Determining and selecting the region of interest in digital color images is challenging for selective image encryption due to their complex structure and distinct regions of varying importance. We propose a new feature in acqu...

  17. Hardware realization of chaos based block cipher for image encryption

    Barakat, Mohamed L.

    2011-12-01

    Unlike stream ciphers, block ciphers are very essential for parallel processing applications. In this paper, the first hardware realization of chaotic-based block cipher is proposed for image encryption applications. The proposed system is tested for known cryptanalysis attacks and for different block sizes. When implemented on Virtex-IV, system performance showed high throughput and utilized small area. Passing successfully in all tests, our system proved to be secure with all block sizes. © 2011 IEEE.

  18. A Color image encryption scheme based on Generalized Synchronization Theorem

    Han shuangshuang

    2013-01-01

    Base on a generalized synchronization theorem (GCS) for discrete chaotic system, this paper introduces a new 6-dimensional generalized chaos synchronization system based on 3D-Lorenz map. Numerical simulation showed that two pair variables of the synchronization system achieve generalized synchronization via a transform H.Combining with the 2-Dimension non equilateral Arnold transformation, a color image encryption scheme was designed. Analyzing the key sensitivity, key space, histogram, info...

  19. Reversible Integer Wavelet Transform for the Joint of Image Encryption and Watermarking

    Bin Wang

    2015-01-01

    Full Text Available In recent years, signal processing in the encrypted domain has attracted considerable research interest, especially embedding watermarking in encrypted image. In this work, a novel joint of image encryption and watermarking based on reversible integer wavelet transform is proposed. Firstly, the plain-image is encrypted by chaotic maps and reversible integer wavelet transform. Then the lossless watermarking is embedded in the encrypted image by reversible integer wavelet transform and histogram modification. Finally an encrypted image containing watermarking is obtained by the inverse integer wavelet transform. What is more, the original image and watermarking can be completely recovered by inverse process. Numerical experimental results and comparing with previous works show that the proposed scheme possesses higher security and embedding capacity than previous works. It is suitable for protecting the image information.

  20. Composite encryption algorithm based on combing chaos control with choosing rule%基于混沌控制的选择复合加密算法

    王阳; 吴成茂; 梁睿

    2012-01-01

    为了提高图像信息的安全性,提出一种混沌技术和像素扩散加密相结合的图像加密新算法。利用Runge-Kutta方法求解四维混沌系统并经非线性处理产生混沌序列,用以控制图像扩散加密方式并获得多种扩散加密方法相融合的复合加密算法。对图像加密结果的相邻像素相关性、密钥敏感性、抗差分攻击等性能所进行的分析研究以及相关实验结果均表明,所提新算法具有可行性,且安全性能较高。%In order to enhance the security of image information, a New Image Encryption Algorithm based on combination of chaos control with pixel diffusion encryption is proposed. Firstly, Runge-Kutta method is used to solve fourth-dimension chaotic systems, and obtains a chaotic integer sequence by means of non-linear processing. Secondly, image diffusion encryption is controlled by combining the chaotic integer sequence with choosing rule, and obtained the composite encryption algorithm which includes a variety of diffusion encryption methods. In the end, anayze the correlations between pixels, the sensitivity of keys, against differential cryptanalysis of the image encryption results. Experimental results show that, the image encryption algorithm proposed in the paper is feasible and has high safety performance.

  1. Design a New Image Encryption using Fuzzy Integral Permutation with Coupled Chaotic Maps

    Yasaman Hashemi

    2013-01-01

    Full Text Available This article introduces a novel image encryption algorithm based on DNA addition combining and coupled two-dimensional piecewise nonlinear chaotic map. This algorithm consists of two parts. In the first part of the algorithm, a DNA sequence matrix is obtained by encoding each color component, and is divided into some equal blocks and then the generated sequence of Sugeno integral fuzzy and the DNA sequence addition operation is used to add these blocks. Next, the DNA sequence matrix from the previous step is decoded and the complement operation to the result of the added matrix is performed by using Sugeno fuzzy integral. In the second part of the algorithm, the three modified color components are encrypted in a coupling fashion in such a way to strengthen the cryptosystem security. It is observed that the histogram, the correlation and avalanche criterion, can satisfy security and performance requirements (Avalanche criterion > 0.49916283. The experimental results obtained for the CVG-UGR image databases reveal the fact that the proposed algorithm is suitable for practical use to protect the security of digital image information over the Internet.

  2. Security enhancement of double-random phase encryption by iterative algorithm

    We propose an approach to enhance the security of optical encryption based on double-random phase encryption in a 4f system. The phase key in the input plane of the 4f system is generated by the Yang–Gu algorithm to control the phase of the encrypted information in the output plane of the 4f system, until the phase in the output plane converges to a predesigned distribution. Only the amplitude of the encrypted information must be recorded as a ciphertext. The information, which needs to be transmitted, is greatly reduced. We can decrypt the ciphertext with the aid of the predesigned phase distribution and the phase key in the Fourier plane. Our approach can resist various attacks. (paper)

  3. Hiding a Covert Digital Image by Assembling the RSA Encryption Method and the Binary Encoding Method

    Kuang Tsan Lin; Sheng Lih Yeh

    2014-01-01

    The Rivest-Shamir-Adleman (RSA) encryption method and the binary encoding method are assembled to form a hybrid hiding method to hide a covert digital image into a dot-matrix holographic image. First, the RSA encryption method is used to transform the covert image to form a RSA encryption data string. Then, all the elements of the RSA encryption data string are transferred into binary data. Finally, the binary data are encoded into the dot-matrix holographic image. The pixels of the dot-matri...

  4. Performance Analysis of Most Common Encryption Algorithms on Different Web Browsers

    R. Umarani

    2012-11-01

    Full Text Available The hacking is the greatest problem in the wireless local area network (WLAN. Many algorithms like DES, 3DES, AES,UMARAM, RC6 and UR5 have been used to prevent the outside attacks to eavesdrop or prevent the data to be transferred to the end-user correctly. We have proposed a Web programming language to be analyzed with five Web browsers in term of their performances to process the encryption of the programming language’s script with the Web browsers. This is followed by conducting tests simulation in order to obtain the best encryption algorithm versus Web browser. The results of the experimental analysis are presented in the form of graphs. We finally conclude on the findings that different algorithms perform differently to different Web browsers like Internet Explorer, Mozilla Firefox, Opera and Netscape Navigator. Hence, we now determine which algorithm works best and most compatible with which Web browser.A comparison has been conducted for those encryption algorithms at different settings for each algorithm such as encryption/decryption speed in the different web Browsers. Experimental results are given to demonstrate the effectiveness of each algorithm.

  5. CRYPTANALYSIS OF AN IMAGE ENCRYPTION SCHEME WITH A PSEUDORANDOM PERMUTATION AND ITS IMPROVED VERSION

    Wang Jing; Jiang Guoping; Lin Bing

    2012-01-01

    Under Kerckhoff principle,this paper discusses the security property of an image encryption scheme with a pseudorandom permutation.Some findings on the security problems of the algorithm are reported in the following:(1) If each row or column of the plain-image matrix is the same,the receiver cannot decrypt correctly.(2) Each plain-text word is correlated with single cipher-text word,but independent of other cipher-text word,which cannot meet the principles of algorithm designdiffusion and confusion.(3) If the cycle numbers β are relatively small,statistics attack can be used to reveal some visual information of any other plain-images encrypted with the same secret key.Considering the above problems,we propose an improved algorithm and then analyze its performance.Theoretical analysis and simulation results show that the improved algorithm can obtain better cryptographic properties,such as statistical characteristics,difference characteristics,and so on.

  6. Chaos-based encryption for fractal image coding

    Yuen Ching-Hung; Wong Kwok-Wo

    2012-01-01

    A chaos-based cryptosystem for fractal image coding is proposed.The Rényi chaotic map is employed to determine the order of processing the range blocks and to generate the keystream for masking the encoded sequence.Compared with the standard approach of fractal image coding followed by the Advanced Encryption Standard,our scheme offers a higher sensitivity to both plaintext and ciphertext at a comparable operating efficiency.The keystream generated by the Rényi chaotic map passes the randomness tests set by the United States National Institute of Standards and Technology,and so the proposed scheme is sensitive to the key.

  7. An image encryption approach based on chaotic maps

    It is well-known that images are different from texts in many aspects, such as highly redundancy and correlation, the local structure and the characteristics of amplitude-frequency. As a result, the methods of conventional encryption cannot be applicable to images. In this paper, we improve the properties of confusion and diffusion in terms of discrete exponential chaotic maps, and design a key scheme for the resistance to statistic attack, differential attack and grey code attack. Experimental and theoretical results also show that our scheme is efficient and very secure

  8. Design and Analysis of a Novel Digital Image Encryption Scheme

    Pareek, Narendra K

    2012-01-01

    In this paper, a new image encryption scheme using a secret key of 144-bits is proposed. In the substitution process of the scheme, image is divided into blocks and subsequently into color components. Each color component is modified by performing bitwise operation which depends on secret key as well as a few most significant bits of its previous and next color component. Three rounds are taken to complete substitution process. To make cipher more robust, a feedback mechanism is also applied by modifying used secret key after encrypting each block. Further, resultant image is partitioned into several key based dynamic sub-images. Each sub-image passes through the scrambling process where pixels of sub-image are reshuffled within itself by using a generated magic square matrix. Five rounds are taken for scrambling process. The propose scheme is simple, fast and sensitive to the secret key. Due to high order of substitution and permutation, common attacks like linear and differential cryptanalysis are infeasibl...

  9. Study of Encryption and Decryption of Wave File in Image Formats

    Rahul R Upadhyay

    2013-01-01

    This paper describes a novel method of encrypting wave files in popular image formats like JPEG, TIF and PNG along with retrieving them from these image files. MATLAB software is used to perform matrix manipulation to encrypt and decrypt sound files into and from image files. This method is not only a stenographic means but also a data compression technique.

  10. Study of Encryption and Decryption of Wave File in Image Formats

    Rahul R Upadhyay

    2013-07-01

    Full Text Available This paper describes a novel method of encrypting wave files in popular image formats like JPEG, TIF and PNG along with retrieving them from these image files. MATLAB software is used to perform matrix manipulation to encrypt and decrypt sound files into and from image files. This method is not only a stenographic means but also a data compression technique.