WorldWideScience
1

Protein functional links in Trypanosoma brucei, identified by gene fusion analysis  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.

Trimpalis Philip

2011-07-01

2

IDENTIFYING GENES CONTROLLING FERULATE CROSS-LINKING FORMATION IN GRASS CELL WALLS  

Energy Technology Data Exchange (ETDEWEB)

DESCRIPTION/ABSTRACT This proposal focuses on cell wall feruloylation and our long term goal is to identify and isolate novel genes controlling feruloylation and to characterize the phenotype of mutants in this pathway, with a spotlight on cell wall properties. Currently, the genes underlying AX feruloylation have not been identified and the isolation of such genes could be of great importance in manipulating ferulates accretion to the wall. Mutation of the feruloyl transferase gene(s) should lead to less ferulates secreted to the cell wall and reduced ferulate cross-linking. Our current research is based on the hypothesis that controlling the level of total feruloylation will have a direct impact on the level of cross-linking and in turn impact biomass utility for forage and biofuel production. Our results/accomplishments for this project so far include: 1. Mutagenised Brachypodium population. We have developed EMS mutagenized populations of model grass species Brachypodium distachyon. EMS populations have been developed from over 28,000 mutagenized seeds generating 5,184 M2 families. A total of 20,793 plants have been screened and 1,233 were originally selected. 2. Selected Brachypodium mutants: Potential mutants on their levels of cell wall ferulates and cell wall AX ? have been selected from 708 M2 families. A total of 303 back-crosses to no-mutagenized parental stock have been done, followed by selfing selected genotypes in order to confirm heritability of traits and to remove extraneous mutations generated by EMS mutagenesis. We are currently growing 12 F5 and F6 populations in order to assess CW composition. If low level of ferulates are confirmed in the candidate lines selected the mutation could be altered in different in one or several kinds of genes such as genes encoding an AX feruloyl transferase; genes encoding the arabinosyl transferase; genes encoding the synthesis of the xylan backbone; genes encoding enzymes of the monolignol pathway affecting FA formation or genes encoding transcription factors that control feruloylation. So it will require further investigations to confirm if we have a mutation on the ferulloyltransferase gene(s). We have also identified severe phenotypes which showed a significant change in the level of cell wall ferulates and sugars and have not survived. As this genotype did not reach flowering stage there was no seed production and so further analysis could not be done. 3. Candidate Gene Approach: Because of the likely long time expected to generate and identify candidate with mutation(s) on the feruloyltransferase gene, from our screening, we have in addition taken a bioinformatics approach in order to try to identify candidates gene(s) involved in feruloylation. Homologues of the rice feruloyl transferase genes belonging to Pfam PF02458 family were identified in Brachypodium distachyon by blasting EST sequences of putative rice arabinoxylan feruloyl transferase genes against Brachypodium and homologous sequences identified were tested for their expression level in Brachypodium. Sequences of the two Brachypodium genes, which showed highest expression and similarity to rice sequences, were used to design primers for construction of RNAi and over-expression vectors. These were transformed into Brachypodium using Agrobacterium transformation and plants generated have been analyzed for levels of cell wall ferulates and diferulates over generations T0 to T2 or T3. Our data shows a significant reduction if ferulates monomers and dimers from plants generated from RNAi::BdAT2 over 2-3 generations indicating that this gene might be a positive candidate for feruloylation in Brachypodium. However when BdAT2 was up regulated there was not much increase in the level of ferulates as would be expected. This lack of effect on the level of cell wall ferulates could be due to the CaMV::35S promoter used to drive the expression of the putative BdAT2 gene. We have shown previously that Aspergillus FAEA expression in tall fescue under CaMV::35S resulted in 1.9 fold decrease in activity compared to ac

de O Buanafina, Marcia Maria

2013-10-16

3

Link-based quantitative methods to identify differentially coexpressed genes and gene Pairs  

OpenAIRE

Abstract Background Differential coexpression analysis (DCEA) is increasingly used for investigating the global transcriptional mechanisms underlying phenotypic changes. Current DCEA methods mostly adopt a gene connectivity-based strategy to estimate differential coexpression, which is characterized by comparing the numbers of gene neighbors in different coexpression networks. Although it simplifies the calculation, this strategy mixes up the identities of different coexpression neighbors of ...

Ye Zhi-Qiang; Liu Bao-Hong; Yu Hui; Li Chun; Li Yi-Xue; Li Yuan-Yuan

2011-01-01

4

Gene expression profiling after carbon ion irradiation in experimental murine tumors for identifying genes linked to its effectiveness using microarray analysis  

International Nuclear Information System (INIS)

To identify molecular mechanism of effectiveness induced by carbon-ion radiotherapy, we investigated expression profiles of murine tumors, which have various radiosensitivity for gamma irradiation, using microarrays consisting of 55k genes. Six murine tumors (squamous cell carcinoma: NR-S1, SCCVII, Fibrosarcoma: NFSa, no.8520, and Mammary carcinoma: MCano.4, MMCa) were transplanted in hind legs of C3H/Henirs mice and solid tumors were irradiated with either carbon-ion beam or gamma-ray. Growth rate of tumor, diminishing rate of tumor, recurrence rate, and cure rate were investigated as phenotype of radiosensitivity. Principal compornent analysis (PCA) was used to investigate similarity among expression profiles. Analysis of variance (ANOVA) was applied to the intensity of each tumor to evaluate significant differences. Pairwise comparisons were made by Wilcoxon test. All recurred tumors showed different profiles from non-irradiation control tumors and expression change of several hundreds genes were identified to be specific to recurred tumors. We detected several tens of genes, whose expressions were significantly up-regulated after carbon-irradiation for squamous cell carcinomas. Comparison of those expression intensity between radiosensitive (SCC-VII) and radioresistant (NR-S1) tumors revealed that carbon-irradiation caused differentially expressed genes, which were related with cell cycle arrest, Redox, or tumor necrosis factor (TNF) family, between radiosensitiveactor (TNF) family, between radiosensitive tumors and radioresistant tumors. (author)

5

Co-regulation analysis of closely linked genes identifies a highly recurrent gain on chromosome 17q25.3 in prostate cancer  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Transcriptional profiling of prostate cancer (PC has unveiled new markers of neoplasia and allowed insights into mechanisms underlying this disease. Genomewide analyses have also identified new chromosomal abnormalities associated with PC. The combination of both classes of data for the same sample cohort might provide better criteria for identifying relevant factors involved in neoplasia. Here we describe transcriptional signatures identifying distinct normal and tumoral prostate tissue compartments, and the inference and demonstration of a new, highly recurrent copy number gain on chromosome 17q25.3. Methods We have applied transcriptional profiling to tumoral and non-tumoral prostate samples with relatively homogeneous epithelial representations as well as pure stromal tissue from peripheral prostate and cultured cell lines, followed by quantitative RT-PCR validations and immunohistochemical analysis. In addition, we have performed in silico colocalization analysis of co-regulated genes and validation by fluorescent in situ hybridization (FISH. Results The transcriptomic analysis has allowed us to identify signatures corresponding to non-tumoral luminal and tumoral epithelium, basal epithelial cells, and prostate stromal tissue. In addition, in silico analysis of co-regulated expression of physically linked genes has allowed us to predict the occurrence of a copy number gain at chromosomal region 17q25.3. This computational inference was validated by fluorescent in situ hybridization, which showed gains in this region in over 65% of primary and metastatic tumoral samples. Conclusion Our approach permits to directly link gene copy number variations with transcript co-regulation in association with neoplastic states. Therefore, transcriptomic studies of carefully selected samples can unveil new diagnostic markers and transcriptional signatures highly specific of PC, and lead to the discovery of novel genomic abnormalities that may provide additional insights into the causes and mechanisms of prostate cancer.

Martínez-A Carlos

2008-10-01

6

NIH Researchers Identify OCD Risk Gene  

Science.gov (United States)

... News From NIH NIH Researchers Identify OCD Risk Gene Past Issues / Summer 2006 Table of Contents For ... and Alcoholism (NIAAA) have identified a previously unknown gene variant that doubles an individual's risk for obsessive- ...

7

Gene expression profiling: can we identify the right target genes?  

Directory of Open Access Journals (Sweden)

Full Text Available Gene expression profiling allows the simultaneous monitoring of the transcriptional behaviour of thousands of genes, which may potentially be involved in disease development. Several studies have been performed in idiopathic pulmonary fibrosis (IPF, which aim to define genetic links to the disease in an attempt to improve the current understanding of the underlying pathogenesis of the disease and target pathways for intervention. Expression profiling has shown a clear difference in gene expression between IPF and normal lung tissue, and has identified a wide range of candidate genes, including those known to encode for proteins involved in extracellular matrix formation and degradation, growth factors and chemokines. Recently, familial pulmonary fibrosis cohorts have been examined in an attempt to detect specific genetic mutations associated with IPF. To date, these studies have identified families in which IPF is associated with mutations in the gene encoding surfactant protein C, or with mutations in genes encoding components of telomerase. Although rare and clearly not responsible for the disease in all individuals, the nature of these mutations highlight the importance of the alveolar epithelium in disease pathogenesis and demonstrate the potential for gene expression profiling in helping to advance the current understanding of idiopathic pulmonary fibrosis.

J. E. Loyd

2008-12-01

8

Identifying potential cancer driver genes by genomic data integration  

OpenAIRE

Cancer is a genomic disease associated with a plethora of gene mutations resulting in a loss of control over vital cellular functions. Among these mutated genes, driver genes are defined as being causally linked to oncogenesis, while passenger genes are thought to be irrelevant for cancer development. With increasing numbers of large-scale genomic datasets available, integrating these genomic data to identify driver genes from aberration regions of cancer genomes becomes an important goal of ...

Yong Chen; Jingjing Hao; Wei Jiang; Tong He; Xuegong Zhang; Tao Jiang; Rui Jiang

2013-01-01

9

The construction of a high-density linkage map for identifying SNP markers that are tightly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D. Don  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background High-density linkage maps facilitate the mapping of target genes and the construction of partial linkage maps around target loci to develop markers for marker-assisted selection (MAS. MAS is quite challenging in conifers because of their large, complex, and poorly-characterized genomes. Our goal was to construct a high-density linkage map to facilitate the identification of markers that are tightly linked to a major recessive male-sterile gene (ms1 for MAS in C. japonica, a species that is important in Japanese afforestation but which causes serious social pollinosis problems. Results We constructed a high-density saturated genetic linkage map for C. japonica using expressed sequence-derived co-dominant single nucleotide polymorphism (SNP markers, most of which were genotyped using the GoldenGate genotyping assay. A total of 1261 markers were assigned to 11 linkage groups with an observed map length of 1405.2 cM and a mean distance between two adjacent markers of 1.1 cM; the number of linkage groups matched the basic chromosome number in C. japonica. Using this map, we located ms1 on the 9th linkage group and constructed a partial linkage map around the ms1 locus. This enabled us to identify a marker (hrmSNP970_sf that is closely linked to the ms1 gene, being separated from it by only 0.5 cM. Conclusions Using the high-density map, we located the ms1 gene on the 9th linkage group and constructed a partial linkage map around the ms1 locus. The map distance between the ms1 gene and the tightly linked marker was only 0.5 cM. The identification of markers that are tightly linked to the ms1 gene will facilitate the early selection of male-sterile trees, which should expedite C. japonica breeding programs aimed at alleviating pollinosis problems without harming productivity.

Moriguchi Yoshinari

2012-03-01

10

Gene expression profiling: can we identify the right target genes?  

OpenAIRE

Gene expression profiling allows the simultaneous monitoring of the transcriptional behaviour of thousands of genes, which may potentially be involved in disease development. Several studies have been performed in idiopathic pulmonary fibrosis (IPF), which aim to define genetic links to the disease in an attempt to improve the current understanding of the underlying pathogenesis of the disease and target pathways for intervention. Expression profiling has shown a clear difference in gene expr...

Loyd, J. E.

2008-01-01

11

Scientists Spot Gene Linked to Tanning 'Addiction'  

Science.gov (United States)

... enable JavaScript. Scientists Spot Gene Linked to Tanning 'Addiction' Understanding biology behind dependence important because of rising ... variant may be more likely to develop an "addiction" to tanning, a preliminary study suggests. The idea ...

12

Mayo Clinic researchers identify enzyme linked to prostate cancer  

Science.gov (United States)

Researchers at Mayo Clinic's campus in Florida have identified an enzyme specifically linked to aggressive prostate cancer, and have also developed a compound that inhibits the ability of this molecule to promote the metastatic spread of the cancer.

13

A forest-based approach to identifying gene and gene–gene interactions  

OpenAIRE

Multiple genes, gene-by-gene interactions, and gene-by-environment interactions are believed to underlie most complex diseases. However, such interactions are difficult to identify. Although there have been recent successes in identifying genetic variants for complex diseases, it still remains difficult to identify gene–gene and gene–environment interactions. To overcome this difficulty, we propose a forest-based approach and a concept of variable importance. The proposed approach is demo...

Chen, Xiang; Liu, Ching-ti; Zhang, Meizhuo; Zhang, Heping

2007-01-01

14

Sex chromosome-linked genes in plants.  

Science.gov (United States)

Recent studies of plant sex chromosome-linked genes have revealed many interesting characteristics, although there are limited reports about heteromorphic sex chromosomes in flowering plants. Sex chromosome-linked genes in angiosperms have been characterized mainly in the dioecious plant Silene latifolia. Although all such genes were isolated from transcripts of male flower buds of S. latifolia, most seem to be housekeeping genes except for the petal- and stamen-specific MADS box gene on the Y chromosome (SlAP3Y) and the male reproductive organ-specific gene on the X chromosome (MROS3X). Recent evolutionary studies have revealed at least three evolutionary strata on the X chromosome that are related to stepwise loss of recombination between the sex chromosomes. Moreover, genetic maps showed conservation of gene organization on the X chromosome in the genus Silene and substantial pericentric inversion between the X and Y chromosomes of S. latifolia during evolution. A comparison between paralogs on the sex chromosomes revealed that introns of the Y-linked genes are longer than those of X-linked paralogs. Although analyses of sex chromosome-linked genes suggest that degeneration of the Y chromosome has occurred, the Y chromosome in flowering plants remains the largest in the male genome, unlike that of mammals. Accumulation of repetitive sequences and the entire chloroplast genome on the Y chromosome appear to have contributed to this large size. However, more detailed studies will be required to help explain the basis for the fact that heteromorphic sex chromosomes in angiosperms are large. PMID:17038793

Matsunaga, Sachihiro

2006-08-01

15

Identifying Gene Regulatory Networks in Schizophrenia  

OpenAIRE

The imaging genetics approach to studying the genetic basis of disease leverages the individual strengths of both neuroimaging and genetic studies by visualizing and quantifying the brain activation patterns in the context of genetic background. Brain imaging as an intermediate phenotype can help clarify the functional link among genes, the molecular networks in which they participate, and brain circuitry and function. Integrating genetic data from a genome-wide association study (GWAS) with ...

Potkin, Steven G.; Macciardi, Fabio; Guffanti, Guia; Wang, Qi; Turner, Jessica A.; Lakatos, Anita; Miles, Michael F.; Lander, Arthur; Vawter, Marquis P.; Xie, Xiaohui

2010-01-01

16

TTY2: A Multicopy Y-Linked Gene Family  

OpenAIRE

Genes involved in human male sex determination and spermatogenesis are likely to be located on the Y chromosome. In an effort to identify Y-linked, testis-expressed genes, a cDNA selection library was generated by selecting testis cDNA with Y-cosmid clones. Resultant clones containing repetitive or vector material were eliminated, and 79 of the remaining clones were sequenced. Nineteen cDNAs showed homology with the TTY2 gene, and indicated that TTY2 is part of a large gene family. Screening ...

Makrinou, Eleni; Fox, Margaret; Lovett, Michael; Haworth, Kim; Cameron, Jessie M.; Taylor, Kay; Edwards, Yvonne H.

2001-01-01

17

Identifying disease associated genes by network propagation  

DEFF Research Database (Denmark)

BACKGROUND:Genome-wide association studies have identified many individual genes associated with complex traits. However, pathway and network information have not been fully exploited in searches for genetic determinants, and including this information may increase our understanding of the underlying biology of common diseases.RESULTS:In this study, we propose a framework to address this problem in a principled way, with the underlying hypothesis that complex disease operates through multiple connected genes. Associations inferred from GWAS are translated into prior scores for vertices in a protein-protein interaction network, and these scores are propagated through the network. Permutation is used to select genes that are guilty-by-association and thus consistently obtain high scores after network propagation. We apply the approach to data of Crohn's disease and call candidate genes that have been reported by other independent GWAS, but not in the analysed data set. A prediction model based on these candidate genes show good predictive power as measured by Area Under the Receiver Operating Curve (AUC) in 10 fold cross-validations.CONCLUSIONS:Our network propagation method applied to a genome-wide association study increases association findings over other approaches.

Qian, Yu; Besenbacher, Soren

2014-01-01

18

Gene expression analysis identifies global gene dosage sensitivity in cancer  

DEFF Research Database (Denmark)

Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gene expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles for these components, we observed that the residual expression levels (in 'functional genomic mRNA' profiling) correlated strongly with copy number. DNA copy number correlated positively with expression levels for 99% of all abundantly expressed human genes, indicating global gene dosage sensitivity. By applying this method to 16,172 patient-derived tumor samples, we replicated many loci with aberrant copy numbers and identified recurrently disrupted genes in genomically unstable cancers.

Fehrmann, Rudolf S. N.; Karjalainen, Juha M.

2015-01-01

19

MHC-linked and un-linked class I genes in the wallaby  

Science.gov (United States)

Background MHC class I antigens are encoded by a rapidly evolving gene family comprising classical and non-classical genes that are found in all vertebrates and involved in diverse immune functions. However, there is a fundamental difference between the organization of class I genes in mammals and non-mammals. Non-mammals have a single classical gene responsible for antigen presentation, which is linked to the antigen processing genes, including TAP. This organization allows co-evolution of advantageous class Ia/TAP haplotypes. In contrast, mammals have multiple classical genes within the MHC, which are separated from the antigen processing genes by class III genes. It has been hypothesized that separation of classical class I genes from antigen processing genes in mammals allowed them to duplicate. We investigated this hypothesis by characterizing the class I genes of the tammar wallaby, a model marsupial that has a novel MHC organization, with class I genes located within the MHC and 10 other chromosomal locations. Results Sequence analysis of 14 BACs containing 15 class I genes revealed that nine class I genes, including one to three classical class I, are not linked to the MHC but are scattered throughout the genome. Kangaroo Endogenous Retroviruses (KERVs) were identified flanking the MHC un-linked class I. The wallaby MHC contains four non-classical class I, interspersed with antigen processing genes. Clear orthologs of non-classical class I are conserved in distant marsupial lineages. Conclusion We demonstrate that classical class I genes are not linked to antigen processing genes in the wallaby and provide evidence that retroviral elements were involved in their movement. The presence of retroviral elements most likely facilitated the formation of recombination hotspots and subsequent diversification of class I genes. The classical class I have moved away from antigen processing genes in eutherian mammals and the wallaby independently, but both lineages appear to have benefited from this loss of linkage by increasing the number of classical genes, perhaps enabling response to a wider range of pathogens. The discovery of non-classical orthologs between distantly related marsupial species is unusual for the rapidly evolving class I genes and may indicate an important marsupial specific function. PMID:19602235

Siddle, Hannah V; Deakin, Janine E; Coggill, Penny; Hart, Elizabeth; Cheng, Yuanyuan; Wong, Emily SW; Harrow, Jennifer; Beck, Stephan; Belov, Katherine

2009-01-01

20

Cystic fibrosis carrier detection using a linked gene probe.  

OpenAIRE

Cloned DNA markers which are closely linked to the gene defect causing cystic fibrosis have recently been described. These markers are sufficiently informative for carrier detection in 80% of families where there is a living cystic fibrosis child and unaffected sibs. The tightly linked DNA marker pJ3.11 was used in this study to identify carriers in six families and exclude carrier status in two subjects. Risk calculations for recessive diseases using linked DNA probes may be complex, but use...

Farrall, M.; Scambler, P.; Klinger, K. W.; Davies, K.; Worrall, C.; Williamson, R.; Wainwright, B.

1986-01-01

21

A Glucose-to-Gene Link  

Science.gov (United States)

Access to the article is free, however registration and sign-in are required. Eukaryotic cell growth demands an increase in glucose uptake and metabolism to support energetic and biosynthetic needs, accompanied by changes in gene expression that control cell lineage or fate. These gene expression patterns are determined by lineage-specific or differentiation stageâ??specific transcription factors, as well as by modifications of chromatin (the complex of nucleic acids and proteins that constitute chromosomes) that regulate access of transcription factors to specific DNA loci. On page 1076 of this issue, Wellen et al. propose a new mechanism to link glucose metabolism to chromatin modification and global transcriptional control via the enzyme ATP-citrate lyase and production of acetylâ??coenzyme A (acetyl-CoA) (1).

Jeffrey C. Rathmell (Duke University Medical Center; )

2009-05-22

22

A 6-gene signature identifies four molecular subgroups of neuroblastoma  

LENUS (Irish Health Repository)

Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and\\/or dead of disease, p < 0.05, Fisher\\'s exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group\\'s specific characteristics.

Abel, Frida

2011-04-14

23

Expression profiling identifies genes involved in emphysema severity  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

Bowman Rayleen V

2009-09-01

24

Genes to diseases (G2D) computational method to identify asthma candidate genes.  

Science.gov (United States)

Asthma is a complex trait for which different strategies have been used to identify its environmental and genetic predisposing factors. Here, we describe a novel methodological approach to select candidate genes for asthma genetic association studies. In this regard, the Genes to Diseases (G2D) computational tool has been used in combination with a genome-wide scan performed in a sub-sample of the Saguenay-Lac-St-Jean (SLSJ) asthmatic familial collection (n = 609) to identify candidate genes located in two suggestive loci shown to be linked with asthma (6q26) and atopy (10q26.3), and presenting differential parent-of-origin effects. This approach combined gene selection based on the G2D data mining analysis of the bibliographic and protein public databases, or according to the genes already known to be associated with the same or a similar phenotype. Ten genes (LPA, NOX3, SNX9, VIL2, VIP, ADAM8, DOCK1, FANK1, GPR123 and PTPRE) were selected for a subsequent association study performed in a large SLSJ sample (n = 1167) of individuals tested for asthma and atopy related phenotypes. Single nucleotide polymorphisms (n = 91) within the candidate genes were genotyped and analysed using a family-based association test. The results suggest a protective association to allergic asthma for PTPRE rs7081735 in the SLSJ sample (p = 0.000463; corrected p = 0.0478). This association has not been replicated in the Childhood Asthma Management Program (CAMP) cohort. Sequencing of the regions around rs7081735 revealed additional polymorphisms, but additional genotyping did not yield new associations. These results demonstrate that the G2D tool can be useful in the selection of candidate genes located in chromosomal regions linked to a complex trait. PMID:18682798

Tremblay, Karine; Lemire, Mathieu; Potvin, Camille; Tremblay, Alexandre; Hunninghake, Gary M; Raby, Benjamin A; Hudson, Thomas J; Perez-Iratxeta, Carolina; Andrade-Navarro, Miguel A; Laprise, Catherine

2008-01-01

25

The discoidin I gene family of Dictyostelium discoideum is linked to genes regulating its expression.  

Science.gov (United States)

The discoidin I protein has been studied extensively as a marker of early development in the cellular slime mold Dictyostelium discoideum. However, like most other developmentally regulated proteins in this system, no reliable information was available on the linkage of the discoidin genes to other known genes. Analysis of the linkage of the discoidin I genes by use of restriction fragment length polymorphisms revealed that all three discoidin I genes as well as a pseudogene are located on linkage group II. This evidence is consistent with the discoidin I genes forming a gene cluster that may be under the control of a single regulatory element. The discoidin I genes are linked to three genetic loci (disA, motA, daxA) that affect the expression of the discoidin I protein. Linkage of the gene family members to regulatory loci may be important in the coordinate maintenance of the gene family and regulatory loci. A duplication affecting the entire discoidin gene family is also linked to group II; this appears to be a small tandem duplication. This duplication was mapped using a DNA polymorphism generated by insertion of the Tdd-3 mobile genetic element into a Tdd-2 element flanking the gamma gene. A probe for Tdd-2 identified a restriction fragment length polymorphism in strain AX3K that was consistent with generation by a previously proposed Tdd-3 insertion event. A putative duplication or rearrangement of a second Tdd-2 element on linkage group IV of strain AX3K was also identified. This is the first linkage information available for mobile genetic elements in D. discoideum. PMID:3402731

Welker, D L

1988-07-01

26

Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica  

Energy Technology Data Exchange (ETDEWEB)

Chromium pollution is a serious environmental problem with few cost-effective remediation strategies available. Crambe abyssinica (a member of Brassicaseae), a non-food, fast growing high biomass crop, is an ideal candidate for phytoremediation of heavy metals contaminated soils. The present study used a PCR-Select Suppression Subtraction Hybridization approach in C. abyssinica to isolate differentially expressed genes in response to Cr exposure. A total of 72 differentially expressed subtracted cDNAs were sequenced and found to represent 43 genes. The subtracted cDNAs suggest that Cr stress significantly affects pathways related to stress/defense, ion transporters, sulfur assimilation, cell signaling, protein degradation, photosynthesis and cell metabolism. The regulation of these genes in response to Cr exposure was further confirmed by semi-quantitative RT-PCR. Characterization of these differentially expressed genes may enable the engineering of non-food, high-biomass plants, including C. abyssinica, for phytoremediation of Cr-contaminated soils and sediments. - Highlights: > Molecular mechanism of Cr uptake and detoxification in plants is not well known. > We identified differentially regulated genes upon Cr exposure in Crambe abyssinica. > 72 Cr-induced subtracted cDNAs were sequenced and found to represent 43 genes. > Pathways linked to stress, ion transport, and sulfur assimilation were affected. > This is the first Cr transcriptome study in a crop with phytoremediation potential. - This study describes the identification and isolation of differentially expressed genes involved in chromium metabolism and detoxification in a non-food industrial oil crop Crambe abyssinica.

Zulfiqar, Asma, E-mail: asmazulfiqar08@yahoo.com [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Paulose, Bibin, E-mail: bpaulose@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Chhikara, Sudesh, E-mail: sudesh@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Dhankher, Om Parkash, E-mail: parkash@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States)

2011-10-15

27

Identifying Genes for Establishing a Multigenic Test for HCC Surveillance in HCV+ Cirrhotic Patients  

OpenAIRE

In this study, we used the Affymetrix HG-U133A version 2.0 GeneChips for identifying genes capabable of distinguishing cirrhotic liver tissues with and without hepatocellular carcinoma (HCC) by modeling the high-dimensional dataset using an L1 penalized logistic regression model, with error estimated using N-fold cross-validation. Genes identified by gene expression microarray included those that have important links to cancer development and progression, including VAMP2, DPP4, CALR, CACNA1C,...

Archer, Kellie J.; Mas, Valeria R.; David, Krystle; Maluf, Daniel G.; Bornstein, Karen; Fisher, Robert A.

2009-01-01

28

REPTREE CLASSIFIER FOR IDENTIFYING LINK SPAM IN WEB SEARCH ENGINES  

Directory of Open Access Journals (Sweden)

Full Text Available Search Engines are used for retrieving the information from the web. Most of the times, the importance is laid on top 10 results sometimes it may shrink as top 5, because of the time constraint and reliability on the search engines. Users believe that top 10 or 5 of total results are more relevant. Here comes the problem of spamdexing. It is a method to deceive the search result quality. Falsified metrics such as inserting enormous amount of keywords or links in website may take that website to the top 10 or 5 positions. This paper proposes a classifier based on the Reptree (Regression tree representative. As an initial step Link-based features such as neighbors, pagerank, truncated pagerank, trustrank and assortativity related attributes are inferred. Based on this features, tree is constructed. The tree uses the feature inference to differentiate spam sites from legitimate sites. WEBSPAM-UK-2007 dataset is taken as a base. It is preprocessed and converted into five datasets FEATA, FEATB, FEATC, FEATD and FEATE. Only link based features are taken for experiments. This paper focus on link spam alone. Finally a representative tree is created which will more precisely classify the web spam entries. Results are given. Regression tree classification seems to perform well as shown through experiments.

S.K. Jayanthi

2013-01-01

29

Comparative Genomics and Gene Expression Analysis Identifies BBS9, a New Bardet-Biedl Syndrome Gene  

OpenAIRE

Bardet-Biedl syndrome (BBS) is an autosomal recessive, genetically heterogeneous, pleiotropic human disorder characterized by obesity, retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Eight BBS genes representing all known mapped loci have been identified. Mutation analysis of the known BBS genes in BBS patients indicate that additional BBS genes exist and/or that unidentified mutations exist in the known genes. To identify new BBS genes, w...

Nishimura, Darryl Y.; Swiderski, Ruth E.; Searby, Charles C.; Berg, Erik M.; Ferguson, Amanda L.; Hennekam, Raoul; Merin, Saul; Weleber, Richard G.; Biesecker, Leslie G.; Stone, Edwin M.; Sheffield, Val C.

2005-01-01

30

Gene variant linked to lung cancer risk  

Science.gov (United States)

A variation of the gene NFKB1, called rs4648127, is associated with an estimated 44 percent reduction in lung cancer risk. When this information, derived from samples obtained as part of a large NCI-sponsored prevention clinical trial, was compared with data on a different sample collection from NCI’s genome-wide association studies (GWAS), lung cancer risk was still estimated to be lower, but only by 21 percent.

31

Mutations in the RS1 gene in a Chinese family with X-linked juvenile retinoschisis  

OpenAIRE

The purpose of our study was to identify the mutations in the retinoschisis 1 (RS1) gene, which was associated with X-linked retinoschisis (XLRS) in a four-generation Chinese family, and to provide the theoretical basis for gene diagnosis and gene therapy. Genomic DNA was extracted from peripheral leukocytes. All six exons and flanking intronic regions were amplified by polymerase chain reaction (PCR), followed by direct sequencing. Through our genetic analysis, one frameshift 573delG mutatio...

Hou, Qiaofang; Chu, Yan; Guo, Qiannan; Wu, Dong; Liao, Shixiu

2012-01-01

32

A loss of function screen identifies nine new radiation susceptibility genes  

International Nuclear Information System (INIS)

Genomic instability is considered a hallmark of carcinogenesis, and dysfunction of DNA repair and cell cycle regulation in response to DNA damage caused by ionizing radiation are thought to be important factors in the early stages of genomic instability. We performed cell-based functional screening using an RNA interference library targeting 200 genes in human cells. We identified three known and nine new radiation susceptibility genes, eight of which are linked directly or potentially with cell cycle progression. Cell cycle analysis on four of the genes not previously linked to cell cycle progression demonstrated that one, ZDHHC8, was associated with the G2/M checkpoint in response to DNA damage. Further study of the 12 radiation susceptibility genes identified in this screen may help to elucidate the molecular mechanisms of cell cycle progression, DNA repair, cell death, cell growth and genomic instability, and to develop new radiation sensitizing agents for radiotherapy

33

DCEG Scientists Identify New Gene Mutation Related to Familial Melanoma  

Science.gov (United States)

Scientists have identified a rare inherited mutation in a gene that can increase the risk of familial melanoma, according to a study that appeared online in Nature Genetics on March 30, 2014. Although the finding does not offer immediate benefit to patients, variation in the Protection of Telomeres-1 (POT1) gene provides additional clues as to the origins of melanoma and may open new avenues in prevention and treatment research. Read the full NCI Benchmarks blog post about this study.

34

Gene-based Association Approach Identify Genes Across Stress Traits in Fruit Flies  

DEFF Research Database (Denmark)

Identification of genes explaining variation in quantitative traits or genetic risk factors of human diseases requires both good phenotypic- and genotypic data, but also efficient statistical methods. Genome-wide association studies may reveal association between phenotypic variation and variation at nucleotide level, thus potentially identify genetic variants. However, testing million of polymorphic nucleotide positions requires conservative correction for multiple testing which lowers the probability of finding genes with small to moderate effects. To alleviate this, we apply a gene based association approach grouping variants accordingly to gene position, thus lowering the number of statistical tests performed and increasing the probability of identifying genes with small to moderate effects. Using this approach we identify numerous genes associated with different types of stresses in Drosophila melanogaster, but also identify common genes that affects the stress traits.

Rohde, Palle Duun; Edwards, Stefan McKinnon

35

Identifying gene regulatory modules of heat shock response in yeast  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background A gene regulatory module (GRM is a set of genes that is regulated by the same set of transcription factors (TFs. By organizing the genome into GRMs, a living cell can coordinate the activities of many genes in response to various internal and external stimuli. Therefore, identifying GRMs is helpful for understanding gene regulation. Results Integrating transcription factor binding site (TFBS, mutant, ChIP-chip, and heat shock time series gene expression data, we develop a method, called Heat-Inducible Module Identification Algorithm (HIMIA, for reconstructing GRMs of yeast heat shock response. Unlike previous module inference tools which are static statistics-based methods, HIMIA is a dynamic system model-based method that utilizes the dynamic nature of time series gene expression data. HIMIA identifies 29 GRMs, which in total contain 182 heat-inducible genes regulated by 12 heat-responsive TFs. Using various types of published data, we validate the biological relevance of the identified GRMs. Our analysis suggests that different combinations of a fairly small number of heat-responsive TFs regulate a large number of genes involved in heat shock response and that there may exist crosstalk between heat shock response and other cellular processes. Using HIMIA, we identify 68 uncharacterized genes that may be involved in heat shock response and we also identify their plausible heat-responsive regulators. Furthermore, HIMIA is capable of assigning the regulatory roles of the TFs that regulate GRMs and Cst6, Hsf1, Msn2, Msn4, and Yap1 are found to be activators of several GRMs. In addition, HIMIA refines two clusters of genes involved in heat shock response and provides a better understanding of how the complex expression program of heat shock response is regulated. Finally, we show that HIMIA outperforms four current module inference tools (GRAM, MOFA, ReMoDisvovery, and SAMBA, and we conduct two randomization tests to show that the output of HIMIA is statistically meaningful. Conclusion HIMIA is effective for reconstructing GRMs of yeast heat shock response. Indeed, many of the reconstructed GRMs are in agreement with previous studies. Further, HIMIA predicts several interesting new modules and novel TF combinations. Our study shows that integrating multiple types of data is a powerful approach to studying complex biological systems.

Li Wen-Hsiung

2008-09-01

36

Speciation through evolution of sex-linked genes.  

Science.gov (United States)

Identification of genes involved in reproductive isolation opens novel ways to investigate links between stages of the speciation process. Are the genes coding for ecological adaptations and sexual isolation the same that eventually lead to hybrid sterility and inviability? We review the role of sex-linked genes at different stages of speciation based on four main differences between sex chromosomes and autosomes; (1) relative speed of evolution, (2) non-random accumulation of genes, (3) exposure of incompatible recessive genes in hybrids and (4) recombination rate. At early stages of population divergence ecological differences appear mainly determined by autosomal genes, but fast-evolving sex-linked genes are likely to play an important role for the evolution of sexual isolation by coding for traits with sex-specific fitness effects (for example, primary and secondary sexual traits). Empirical evidence supports this expectation but mainly in female-heterogametic taxa. By contrast, there is clear evidence for both strong X- and Z-linkage of hybrid sterility and inviability at later stages of speciation. Hence genes coding for sexual isolation traits are more likely to eventually cause hybrid sterility when they are sex-linked. We conclude that the link between sexual isolation and evolution of hybrid sterility is more intuitive in male-heterogametic taxa because recessive sexually antagonistic genes are expected to quickly accumulate on the X-chromosome. However, the broader range of sexual traits that are expected to accumulate on the Z-chromosome may facilitate adaptive speciation in female-heterogametic species by allowing male signals and female preferences to remain in linkage disequilibrium despite periods of gene flow. PMID:18781167

Qvarnström, A; Bailey, R I

2009-01-01

37

Plant genes link forests and streams  

Science.gov (United States)

Recent terrestrial research demonstrates the importance of genetic variation within tree species such as oaks, aspen and cottonwoods in affecting the function of forest ecosystems. We show similarly that genetic variation within cottonwoods can affect stream ecosystem function through litterfall. The genetic makeup of cottonwood leaf litter directly affects in-stream leaf decomposition rates, aquatic fungal accumulation and macroinvertebrate assemblages. This genetic variation is especially important in the western United States because cottonwoods are a dominant riparian tree and are currently in dramatic decline. In western rivers, cottonwood genetic diversity may be elevated due to naturally-occurring hybridization zones. We collected litter from five genotypes of each of four cottonwood cross types from common garden trees and measured decomposition rates using litterbag techniques in the Weber River (UT). Among the cottonwood genotypes decomposition rates ranged on average from 0.0077 ± 0.0003 day-1 for backcross to P. angustifolia hybrids to 0.0105 ± 0.0003 day-1 for P. fremontii. Similar and substantial differences among F1 and backcross hybrids provide evidence for genetic control over in-stream decomposition rates. Prior studies have shown that species diversity influences litter quality and stream function. This study extends this by linking genetic diversity to stream ecosystem function.

Leroy, C. J.; Whitham, T. G.; Keim, P.; Marks, J. C.

2005-05-01

38

Gene identified that sensitizes cancer cells to chemotherapy drugs  

Science.gov (United States)

NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell response to classes of DNA damaging agents, widely used as chemotherapy treatments for many cancers.

39

Genes to Diseases (G2D) Computational Method to Identify Asthma Candidate Genes  

OpenAIRE

Asthma is a complex trait for which different strategies have been used to identify its environmental and genetic predisposing factors. Here, we describe a novel methodological approach to select candidate genes for asthma genetic association studies. In this regard, the Genes to Diseases (G2D) computational tool has been used in combination with a genome-wide scan performed in a sub-sample of the Saguenay-Lac-St-Jean (SLSJ) asthmatic familial collection (n = 609) to identify candidate genes ...

Tremblay, K.; Lemire, M.; Potvin, C.; Tremblay, A.; Hunninghake, G. M.; Raby, B. A.; Hudson, T. J.; Perez-iratxeta, C.; Andrade-navarro, M. A.; Laprise, C.

2008-01-01

40

Gene-Based Association Analysis Identified Novel Genes Associated with Bone Mineral Density  

Science.gov (United States)

Genetic factors contribute to the variation of bone mineral density (BMD), which is a major risk factor of osteoporosis. The aim of this study was to identify more “novel” genes for BMD. Based on the publicly available SNP-based P values, we performed an initial gene-based analysis in a total of 32,961 individuals. Furthermore, we performed differential expression, pathway and protein-protein interaction analyses to find supplementary evidence to support the significance of the identified genes. About 21,695 genes for femoral neck (FN)-BMD and 21,683 genes for lumbar spine (LS)-BMD were analyzed using gene-based association analysis. A total of 35 FN-BMD associated genes and 53 LS-BMD associated genes were identified (P BMD and 19 genes with LS-BMD. Especially, WNT3 and WNT9B in the Wnt signaling pathway for FN-BMD were further supported by pathway analysis and protein-protein interaction analysis. The present study took the advantage of gene-based association method to perform a supplementary analysis of the GWAS dataset and found some BMD-associated genes. The evidence taken together supported the importance of Wnt signaling pathway genes in determining osteoporosis. Our findings provided more insights into the genetic basis of osteoporosis. PMID:25811989

Mo, Xing-Bo; Lu, Xin; Zhang, Yong-Hong; Zhang, Zeng-Li; Deng, Fei-Yan; Lei, Shu-Feng

2015-01-01

41

A penalized robust method for identifying gene-environment interactions.  

Science.gov (United States)

In high-throughput studies, an important objective is to identify gene-environment interactions associated with disease outcomes and phenotypes. Many commonly adopted methods assume specific parametric or semiparametric models, which may be subject to model misspecification. In addition, they usually use significance level as the criterion for selecting important interactions. In this study, we adopt the rank-based estimation, which is much less sensitive to model specification than some of the existing methods and includes several commonly encountered data and models as special cases. Penalization is adopted for the identification of gene-environment interactions. It achieves simultaneous estimation and identification and does not rely on significance level. For computation feasibility, a smoothed rank estimation is further proposed. Simulation shows that under certain scenarios, for example, with contaminated or heavy-tailed data, the proposed method can significantly outperform the existing alternatives with more accurate identification. We analyze a lung cancer prognosis study with gene expression measurements under the AFT (accelerated failure time) model. The proposed method identifies interactions different from those using the alternatives. Some of the identified genes have important implications. PMID:24616063

Shi, Xingjie; Liu, Jin; Huang, Jian; Zhou, Yong; Xie, Yang; Ma, Shuangge

2014-04-01

42

Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis.  

Science.gov (United States)

Breast cancer cells exhibit complex karyotypic alterations causing deregulation of numerous genes. Some of these genes are probably causal for cancer formation and local growth whereas others are causal for the various steps of metastasis. In a fraction of tumors deregulation of the same genes might be caused by epigenetic modulations, point mutations or the influence of other genes. We have investigated the relation of gene expression and chromosomal position, using eight datasets including more than 1200 breast tumors, to identify chromosomal regions and candidate genes possibly causal for breast cancer metastasis. By use of "Gene Set Enrichment Analysis" we have ranked chromosomal regions according to their relation to metastasis. Overrepresentation analysis identified regions with increased expression for chromosome 1q41-42, 8q24, 12q14, 16q22, 16q24, 17q12-21.2, 17q21-23, 17q25, 20q11, and 20q13 among metastasizing tumors and reduced gene expression at 1p31-21, 8p22-21, and 14q24. By analysis of genes with extremely imbalanced expression in these regions we identified DIRAS3 at 1p31, PSD3, LPL, EPHX2 at 8p21-22, and FOS at 14q24 as candidate metastasis suppressor genes. Potential metastasis promoting genes includes RECQL4 at 8q24, PRMT7 at 16q22, GINS2 at 16q24, and AURKA at 20q13. PMID:18293085

Thomassen, Mads; Tan, Qihua; Kruse, Torben A

2009-01-01

43

Animal models of GWAS-identified type 2 diabetes genes.  

Science.gov (United States)

More than 65 loci, encoding up to 500 different genes, have been implicated by genome-wide association studies (GWAS) as conferring an increased risk of developing type 2 diabetes (T2D). Whilst mouse models have in the past been central to understanding the mechanisms through which more penetrant risk genes for T2D, for example, those responsible for neonatal or maturity-onset diabetes of the young, only a few of those identified by GWAS, notably TCF7L2 and ZnT8/SLC30A8, have to date been examined in mouse models. We discuss here the animal models available for the latter genes and provide perspectives for future, higher throughput approaches towards efficiently mining the information provided by human genetics. PMID:23710470

da Silva Xavier, Gabriela; Bellomo, Elisa A; McGinty, James A; French, Paul M; Rutter, Guy A

2013-01-01

44

Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes  

OpenAIRE

Bacterial pathogens evolve during the infection of their human hosts1-8, but separating adaptive and neutral mutations remains challenging9-11. Here, we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple patients. We conducted a retrospective study of a Burkholderia dolosa outbreak among people with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over...

Lieberman, Tami D.; Michel, Jean-baptiste; Aingaran, Mythili; Potter-bynoe, Gail; Roux, Damien; Davis, Michael R.; Skurnik, David; Leiby, Nicholas; Lipuma, John J.; Goldberg, Joanna B.; Mcadam, Alexander J.; Priebe, Gregory P.; Kishony, Roy

2011-01-01

45

Using Drosophila melanogaster to identify chemotherapy toxicity genes.  

Science.gov (United States)

The severity of the toxic side effects of chemotherapy shows a great deal of interindividual variability, and much of this variation is likely genetically based. Simple DNA tests predictive of toxic side effects could revolutionize the way chemotherapy is carried out. Due to the challenges in identifying polymorphisms that affect toxicity in humans, we use Drosophila fecundity following oral exposure to carboplatin, gemcitabine and mitomycin C as a model system to identify naturally occurring DNA variants predictive of toxicity. We use the Drosophila Synthetic Population Resource (DSPR), a panel of recombinant inbred lines derived from a multiparent advanced intercross, to map quantitative trait loci affecting chemotoxicity. We identify two QTL each for carboplatin and gemcitabine toxicity and none for mitomycin. One QTL is associated with fly orthologs of a priori human carboplatin candidate genes ABCC2 and MSH2, and a second QTL is associated with fly orthologs of human gemcitabine candidate genes RRM2 and RRM2B. The third, a carboplatin QTL, is associated with a posteriori human orthologs from solute carrier family 7A, INPP4A&B, and NALCN. The fourth, a gemcitabine QTL that also affects methotrexate toxicity, is associated with human ortholog GPx4. Mapped QTL each explain a significant fraction of variation in toxicity, yet individual SNPs and transposable elements in the candidate gene regions fail to singly explain QTL peaks. Furthermore, estimates of founder haplotype effects are consistent with genes harboring several segregating functional alleles. We find little evidence for nonsynonymous SNPs explaining mapped QTL; thus it seems likely that standing variation in toxicity is due to regulatory alleles. PMID:25236447

King, Elizabeth G; Kislukhin, Galina; Walters, Kelli N; Long, Anthony D

2014-09-01

46

In vivo cross-linking followed by polyA enrichment to identify yeast mRNA binding proteins.  

Science.gov (United States)

mRNA binding proteins regulate gene expression by controlling the processing, localization, decay, and translation of messenger RNAs (mRNAs). To fully understand this process, it is necessary to identify the complete set of mRNA binding proteins. This work describes a method for the systematic identification of yeast mRNA binding proteins. This method applies in vivo UV cross-linking, affinity pull-down of polyA(+) mRNAs, and analysis by mass spectrometry to identify proteins that directly bind to mRNAs. PMID:25579578

Mitchell, Sarah F; Parker, Roy

2015-01-01

47

Strategies to identify long noncoding RNAs involved in gene regulation  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Long noncoding RNAs (lncRNAs have been detected in nearly every cell type and found to be fundamentally involved in many biological processes. The characterization of lncRNAs has immense potential to advance our comprehensive understanding of cellular processes and gene regulation, along with implications for the treatment of human disease. The recent ENCODE (Encyclopedia of DNA Elements study reported 9,640 lncRNA loci in the human genome, which corresponds to around half the number of protein-coding genes. Because of this sheer number and their functional diversity, it is crucial to identify a pool of potentially relevant lncRNAs early on in a given study. In this review, we evaluate the methods for isolating lncRNAs by immunoprecipitation and review the advantages, disadvantages, and applications of three widely used approaches – microarray, tiling array, and RNA-seq – for identifying lncRNAs involved in gene regulation. We also look at ways in which data from publicly available databases such as ENCODE can support the study of lncRNAs.

Lee Catherine

2012-11-01

48

Identification of DNA markers linked to a blast resistance gene in rice  

International Nuclear Information System (INIS)

Identification of DNA markers closely linked to a blast (Pyricularia oryzae Cav.) resistance gene and establishment of an indirect selection method for the blast resistance gene based on linked DNA markers are reported. A pair of near isogenic lines, K80R and K79S, were developed using a local Chinese indica rice cultivar, Hong-jiao-zhan, as the resistant donor and IR24 as the recurrent parent. Ten putatitvely positive markers were identified by screening 177 mapped DNA markers. Using 143 plants composed of the F2 population of K80R/K79S, three restriction fragment length polymorphism (RFLP) markers (RG81, RG869 and RZ397) on chromosome 12 of rice were verified to be closely linked to the blast resistance gene. The resistance genotypes of each F2 resistant individual were determined by inoculation of the F3 lines. RG869 was found to be most closely linked to the resistance gene, with a genetic distance of 5.1 cM. To fine map this gene with more DNA markers, the bulk segregation analysis procedure was employed to identify the random amplified polymorphic DNA (RAPD) markers linked to the resistance gene. Six of 199 arbitrary primers were able to produce positive RAPD bands. Tight linkage between the resistance gene and the three RAPD bands, each from a different primer, was confirmed after amplification of the DNA of all the F2 individuals. The linked DNA fragments were cloned and sequenced. The results of specific amplificatienced. The results of specific amplification were in agreement with those of RAPD analysis. The half-seed RAPD analysis procedure for blast resistance detection was established. The amplified DNA patterns on the extract from the endosperm half of the mature seeds were identical to those of the total DNA from the leaves. (author). 13 refs, 3 figs

49

An Integrative Genetics Approach to Identify Candidate Genes Regulating BMD: Combining Linkage, Gene Expression, and Association  

OpenAIRE

Numerous quantitative trait loci (QTLs) affecting bone traits have been identified in the mouse; however, few of the underlying genes have been discovered. To improve the process of transitioning from QTL to gene, we describe an integrative genetics approach, which combines linkage analysis, expression QTL (eQTL) mapping, causality modeling, and genetic association in outbred mice. In C57BL/6J × C3H/HeJ (BXH) F2 mice, nine QTLs regulating femoral BMD were identified. To select candidate gene...

Farber, Charles R.; Nas, Atila; Ghazalpour, Anatole; Aten, Jason E.; Doss, Sudheer; Sos, Brandon; Schadt, Eric E.; Ingram-drake, Leslie; Davis, Richard C.; Horvath, Steve; Smith, Desmond J.; Drake, Thomas A.; Lusis, Aldons J.

2008-01-01

50

Crossref an update on article level linking and digital object identifiers  

CERN Multimedia

Description of the CrossRef initiative, "an independent non-profit membership organization that was established by the publishing community to permit article linking based on digital object identifiers (DOIs)" (1 page).

2002-01-01

51

Zebrafish promoter microarrays identify actively transcribed embryonic genes.  

Science.gov (United States)

We have designed a zebrafish genomic microarray to identify DNA-protein interactions in the proximal promoter regions of over 11,000 zebrafish genes. Using these microarrays, together with chromatin immunoprecipitation with an antibody directed against tri-methylated lysine 4 of Histone H3, we demonstrate the feasibility of this method in zebrafish. This approach will allow investigators to determine the genomic binding locations of DNA interacting proteins during development and expedite the assembly of the genetic networks that regulate embryogenesis. PMID:16889661

Wardle, Fiona C; Odom, Duncan T; Bell, George W; Yuan, Bingbing; Danford, Timothy W; Wiellette, Elizabeth L; Herbolsheimer, Elizabeth; Sive, Hazel L; Young, Richard A; Smith, James C

2006-01-01

52

Gene that controls aggressiveness in breast cancer cells identified  

Science.gov (United States)

In a discovery that sheds new light on the aggressiveness of certain breast cancers, Whitehead Institute and MIT researchers have identified a transcription factor, known as ZEB1, that is capable of converting non-aggressive basal-type cancer cells into highly malignant, tumor-forming cancer stem cells (CSCs). Intriguingly, luminal breast cancer cells, which are associated with a much better clinical prognosis, carry this gene in a state in which it seems to be permanently shut down. MIT is home to the David H. Koch Institute for Integrative Cancer Research.

53

Identification of gene ontologies linked to prefrontal-hippocampal functional coupling in the human brain  

DEFF Research Database (Denmark)

Functional interactions between the dorsolateral prefrontal cortex and hippocampus during working memory have been studied extensively as an intermediate phenotype for schizophrenia. Coupling abnormalities have been found in patients, their unaffected siblings, and carriers of common genetic variants associated with schizophrenia, but the global genetic architecture of this imaging phenotype is unclear. To achieve genome-wide hypothesis-free identification of genes and pathways associated with prefrontal-hippocampal interactions, we combined gene set enrichment analysis with whole-genome genotyping and functional magnetic resonance imaging data from 269 healthy German volunteers. We found significant enrichment of the synapse organization and biogenesis gene set. This gene set included known schizophrenia risk genes, such as neural cell adhesion molecule (NRCAM) and calcium channel, voltage-dependent, beta 2 subunit (CACNB2), as well as genes with well-defined roles in neurodevelopmental and plasticity processes that are dysfunctional in schizophrenia and have mechanistic links to prefrontal-hippocampal functional interactions. Our results demonstrate a readily generalizable approach that can be used to identify the neurogenetic basis of systems-level phenotypes. Moreover, our findings identify gene sets in which genetic variation may contribute to disease risk through altered prefrontal-hippocampal functional interactions and suggest a link to both ongoing and developmental synaptic plasticity.

Dixson, Luanna; Walter, Henrik

2014-01-01

54

Overview of skin diseases linked to connexin gene mutations.  

Science.gov (United States)

Mutations in skin-expressed connexin genes, such as connexins 26, 30, 30.3, 31, and 43, have been linked to several human hereditary diseases with multiple organ involvement. Mutations in connexin 26 are linked to diseases including Vohwinkel syndrome, keratitis-ichthyosis deafness, and hystrix-like ichthyosis deafness syndromes, palmoplantar keratoderma with deafness, deafness with Clouston-like phenotype, and Bart-Pumphrey syndrome. Mutations in connexin 30 are correlated with Clouston syndrome. Connexin 30.3 and 31 mutations lead to erythrokeratoderma variabilis, and mutations in connexin 43 are correlated with oculodentodigital dysplasia. Provided is a review of these mutations and related skin disorders. PMID:23675785

Avshalumova, Lyubov; Fabrikant, Jordan; Koriakos, Angie

2014-02-01

55

Identifying sexual differentiation genes that affect Drosophila life span  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Sexual differentiation often has significant effects on life span and aging phenotypes. For example, males and females of several species have different life spans, and genetic and environmental manipulations that affect life span often have different magnitude of effect in males versus females. Moreover, the presence of a differentiated germ-line has been shown to affect life span in several species, including Drosophila and C. elegans. Methods Experiments were conducted to determine how alterations in sexual differentiation gene activity might affect the life span of Drosophila melanogaster. Drosophila females heterozygous for the tudor[1] mutation produce normal offspring, while their homozygous sisters produce offspring that lack a germ line. To identify additional sexual differentiation genes that might affect life span, the conditional transgenic system Geneswitch was employed, whereby feeding adult flies or developing larvae the drug RU486 causes the over-expression of selected UAS-transgenes. Results In this study germ-line ablation caused by the maternal tudor[1] mutation was examined in a long-lived genetic background, and was found to increase life span in males but not in females, consistent with previous reports. Fitting the data to a Gompertz-Makeham model indicated that the maternal tudor[1] mutation increases the life span of male progeny by decreasing age-independent mortality. The Geneswitch system was used to screen through several UAS-type and EP-type P element mutations in genes that regulate sexual differentiation, to determine if additional sex-specific effects on life span would be obtained. Conditional over-expression of transformer female isoform (traF during development produced male adults with inhibited sexual differentiation, however this caused no significant change in life span. Over-expression of doublesex female isoform (dsxF during development was lethal to males, and produced a limited number of female escapers, whereas over-expression of dsxF specifically in adults greatly reduced both male and female life span. Similarly, over-expression of fruitless male isoform A (fru-MA during development was lethal to both males and females, whereas over-expression of fru-MA in adults greatly reduced both male and female life span. Conclusion Manipulation of sexual differentiation gene expression specifically in the adult, after morphological sexual differentiation is complete, was still able to affect life span. In addition, by manipulating gene expression during development, it was possible to significantly alter morphological sexual differentiation without a significant effect on adult life span. The data demonstrate that manipulation of sexual differentiation pathway genes either during development or in adults can affect adult life span.

Tower John

2009-12-01

56

Transcriptome profiling to identify genes involved in peroxisome assembly and function  

OpenAIRE

Yeast cells were induced to proliferate peroxisomes, and microarray transcriptional profiling was used to identify PEX genes encoding peroxins involved in peroxisome assembly and genes involved in peroxisome function. Clustering algorithms identified 224 genes with expression profiles similar to those of genes encoding peroxisomal proteins and genes involved in peroxisome biogenesis. Several previously uncharacterized genes were identified, two of which, YPL112c and YOR084w, encode proteins o...

Smith, Jennifer J.; Marelli, Marcello; Christmas, Rowan H.; Vizeacoumar, Franco J.; Dilworth, David J.; Ideker, Trey; Galitski, Timothy; Dimitrov, Krassen; Rachubinski, Richard A.; Aitchison, John D.

2002-01-01

57

A gene for X-linked optic atrophy is closely linked to the Xp11.4-Xp11.2 region of the X chromosome.  

OpenAIRE

The aim of this study was to identify the chromosomal location of the disease-causing gene in a family apparently segregating X-linked optic atrophy. A large family of 45 individuals with a four-generation history of X-linked optic atrophy was reexamined in a full ophthalmic as well as electrophysiological examination. A DNA linkage analysis of the family was undertaken in order to identify the chromosomal location of the disease-causing gene. Linkage analysis was performed with 26 markers th...

Assink, J. J.; Tijmes, N. T.; Ten Brink, J. B.; Oostra, R. J.; Riemslag, F. C.; Jong, P. T.; Bergen, A. A.

1997-01-01

58

PhenoLink - a web-tool for linking phenotype to ~omics data for bacteria: application to gene-trait matching for Lactobacillus plantarum strains  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Linking phenotypes to high-throughput molecular biology information generated by ~omics technologies allows revealing cellular mechanisms underlying an organism's phenotype. ~Omics datasets are often very large and noisy with many features (e.g., genes, metabolite abundances. Thus, associating phenotypes to ~omics data requires an approach that is robust to noise and can handle large and diverse data sets. Results We developed a web-tool PhenoLink (http://bamics2.cmbi.ru.nl/websoftware/phenolink/ that links phenotype to ~omics data sets using well-established as well new techniques. PhenoLink imputes missing values and preprocesses input data (i to decrease inherent noise in the data and (ii to counterbalance pitfalls of the Random Forest algorithm, on which feature (e.g., gene selection is based. Preprocessed data is used in feature (e.g., gene selection to identify relations to phenotypes. We applied PhenoLink to identify gene-phenotype relations based on the presence/absence of 2847 genes in 42 Lactobacillus plantarum strains and phenotypic measurements of these strains in several experimental conditions, including growth on sugars and nitrogen-dioxide production. Genes were ranked based on their importance (predictive value to correctly predict the phenotype of a given strain. In addition to known gene to phenotype relations we also found novel relations. Conclusions PhenoLink is an easily accessible web-tool to facilitate identifying relations from large and often noisy phenotype and ~omics datasets. Visualization of links to phenotypes offered in PhenoLink allows prioritizing links, finding relations between features, finding relations between phenotypes, and identifying outliers in phenotype data. PhenoLink can be used to uncover phenotype links to a multitude of ~omics data, e.g., gene presence/absence (determined by e.g.: CGH or next-generation sequencing, gene expression (determined by e.g.: microarrays or RNA-seq, or metabolite abundance (determined by e.g.: GC-MS.

Bayjanov Jumamurat R

2012-05-01

59

The Vf gene for scrab resistance in apple is linked to sub-lethal genes  

OpenAIRE

V f is the most widely used resistance gene in the breeding for scab resistant apple cultivars. Distorted segregation ratios for V f -resistance have frequently been reported. Here we revealed that sub-lethal genes caused the distorted segregation. The inheritance of V f was examined in six progenies by testing linked molecular markers. Three progenies showed distorted segregations that could be explained by three sub-lethal genes (sl1, sl2 and sl3), of which sl1, sl2 were closely linked to V...

Gao, Z. S.; Weg, W. E.

2006-01-01

60

A toxicogenomic approach revealed hepatic gene expression changes mechanistically linked to drug-induced hemolytic anemia.  

Science.gov (United States)

A variety of pharmaceutical compounds causes hemolytic anemia as a significant adverse effect and this toxicity restricts the clinical utility of these drugs. In this study, we applied microarray technology to investigate hepatic gene expression changes associated with drug-induced hemolytic anemia and to identify potential biomarker genes for this hematotoxicity. We treated female Sprague-Dawley rats with two hemolytic anemia-inducing compounds: phenylhydrazine and phenacetin. Hepatic gene expression profiles were obtained using a whole-genome oligonucleotide microarray with pooled RNA samples from individual rats within each dose group and analyzed in comparison with hepatic histopathology, hematology, and blood chemistry data. We identified a small subset of genes that were commonly deregulated in all the severe hemolytic conditions, some of which were considered to be involved in hepatic events characteristic of hemolytic anemia, such as hemoglobin biosynthesis, heme metabolism, and phagocytosis. Among them, we selected six upregulated genes as putative biomarkers, and their expression changes from microarray measurements were confirmed by quantitative real-time PCR using RNAs from individual animals. They were Alas2, beta-glo, Eraf, Hmox1, Lgals3, and Rhced. Expression patterns of all these genes showed high negative and positive correlation against erythrocyte counts and total bilirubin levels in circulation, respectively, suggesting that these genes may be the potential biomarkers for hemolytic anemia. These findings indicate that drug-induced hemolytic anemia may be detected based on hepatic changes in the expression of a subset of genes that are mechanistically linked to the hematotoxicity. PMID:17082564

Rokushima, Masatomo; Omi, Kazuo; Araki, Akiko; Kyokawa, Yoshimasa; Furukawa, Naoko; Itoh, Fumio; Imura, Kae; Takeuchi, Kumiko; Okada, Manabu; Kato, Ikuo; Ishizaki, Jun

2007-02-01

61

R4 regulators of G protein signaling (RGS) identify an ancient MHC-linked synteny group  

OpenAIRE

Regulators of G Protein Signaling (RGS) are key regulators of G protein signaling. RGS proteins of the R4 RGS group are composed of a mere RGS domain and are mainly involved in immune response modulation. In both human and mouse, most genes encoding the R4 RGS proteins are located in the same region of chromosome 1. We show here that the RGS1/RGS16 neighborhood constitutes a synteny group well conserved across tetrapods, and closely linked to the MHC paralogon of chromosome 1. Genes located i...

Suurva?li, Jaanus; Robert, Jacques; Boudinot, Pierre; Boudinot, Sirje Ru?u?tel

2012-01-01

62

Gene variations linked to lung cancer susceptibility in Asian women  

Science.gov (United States)

An international group of scientists has identified three genes that predispose Asian women who have never smoked to lung cancer. The discovery of specific genetic variations, which have not previously been associated with lung cancer risk in other populations, provides further evidence that risk of lung cancer among never-smokers, especially Asian women, may be associated with certain unique genetic characteristics that distinguishes it from lung cancer in smokers.

63

Differential gene expression and translational approaches to identify biomarkers of interferon beta activity in multiple sclerosis.  

Science.gov (United States)

More than 16 years ago human interferon-?-1b (IFN-?-1?) was shown to be effective in the treatment of the relapsing-remitting form of multiple sclerosis (MS). Over time, IFN-? has been demonstrated to be both a safe and effective treatment. However, the mechanism of action of IFN-? in MS remains unknown. To better understand the mechanism of action of IFN-?, considerable effort has been made in transcriptional profiling of peripheral blood mononuclear cells collected from MS patients. IFN-? is known to induce a large number of genes that play an important role in regulating responses to viral infection, immune modulation, and cell proliferation. Identifying differentially induced genes that are linked to the beneficial effects observed during treatment is under active investigation. IFN biomarkers in MS patients have been proposed but have not been clearly confirmed in independent studies or consistently correlated with clinical measures of disease progression. Organizing single genes or gene signatures grouped according to molecular mechanisms meaningful in MS may help to link IFN activity measurements to clinical outcomes. In this review, IFN activity measurements will be discussed with a specific emphasis on what is known about differential gene expression and treatment effects in MS. PMID:20874251

Croze, Ed

2010-10-01

64

Cross-species global and subset gene expression profiling identifies genes involved in prostate cancer response to selenium  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Gene expression technologies have the ability to generate vast amounts of data, yet there often resides only limited resources for subsequent validation studies. This necessitates the ability to perform sorting and prioritization of the output data. Previously described methodologies have used functional pathways or transcriptional regulatory grouping to sort genes for further study. In this paper we demonstrate a comparative genomics based method to leverage data from animal models to prioritize genes for validation. This approach allows one to develop a disease-based focus for the prioritization of gene data, a process that is essential for systems that lack significant functional pathway data yet have defined animal models. This method is made possible through the use of highly controlled spotted cDNA slide production and the use of comparative bioinformatics databases without the use of cross-species slide hybridizations. Results Using gene expression profiling we have demonstrated a similar whole transcriptome gene expression patterns in prostate cancer cells from human and rat prostate cancer cell lines both at baseline expression levels and after treatment with physiologic concentrations of the proposed chemopreventive agent Selenium. Using both the human PC3 and rat PAII prostate cancer cell lines have gone on to identify a subset of one hundred and fifty-four genes that demonstrate a similar level of differential expression to Selenium treatment in both species. Further analysis and data mining for two genes, the Insulin like Growth Factor Binding protein 3, and Retinoic X Receptor alpha, demonstrates an association with prostate cancer, functional pathway links, and protein-protein interactions that make these genes prime candidates for explaining the mechanism of Selenium's chemopreventive effect in prostate cancer. These genes are subsequently validated by western blots showing Selenium based induction and using tissue microarrays to demonstrate a significant association between downregulated protein expression and tumorigenesis, a process that is the reverse of what is seen in the presence of Selenium. Conclusions Thus the outlined process demonstrates similar baseline and selenium induced gene expression profiles between rat and human prostate cancers, and provides a method for identifying testable functional pathways for the action of Selenium's chemopreventive properties in prostate cancer.

Dhir Rajiv

2004-08-01

65

Gene expression profiles analysis identifies key genes for acute lung injury in patients with sepsis.  

Science.gov (United States)

BackgroundTo identify critical genes and biological pathways in acute lung injury (ALI), a comparative analysis of gene expression profiles of patients with ALI¿+¿sepsis compared with patients with sepsis alone were performed with bioinformatic tools.MethodsGSE10474 was downloaded from Gene Expression Omnibus, including a collective of 13 whole blood samples with ALI¿+¿sepsis and 21 whole blood samples with sepsis alone. After pre-treatment with robust multichip averaging (RMA) method, differential analysis was conducted using simpleaffy package based upon t-test and fold change. Hierarchical clustering was also performed using function hclust from package stats. Beisides, functional enrichment analysis was conducted using iGepros. Moreover, the gene regulatory network was constructed with information from Kyoto Encyclopedia of Genes and Genomes (KEGG) and then visualized by Cytoscape.ResultsA total of 128 differentially expressed genes (DEGs) were identified, including 47 up- and 81 down-regulated genes. The significantly enriched functions included negative regulation of cell proliferation, regulation of response to stimulus and cellular component morphogenesis. A total of 27 DEGs were significantly enriched in 16 KEGG pathways, such as protein digestion and absorption, fatty acid metabolism, amoebiasis, etc. Furthermore, the regulatory network of these 27 DEGs was constructed, which involved several key genes, including protein tyrosine kinase 2 (PTK2), v-src avian sarcoma (SRC) and Caveolin 2 (CAV2).ConclusionPTK2, SRC and CAV2 may be potential markers for diagnosis and treatment of ALI.Virtual SlidesThe virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_176. PMID:25257390

Guo, Zhiqiang; Zhao, Chuncheng; Wang, Zheng

2014-09-26

66

Screening of the Bruton Tyrosine Kinase (BTK) Gene Mutations in 13 Iranian Patients with Presumed X-Linked Agammaglobulinemia  

OpenAIRE

X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the Bruton tyrosine kinase (Btk) gene. In order to identify the mutations in Btk gene in Iranian patients with antibody deficiency, 13 male patients with an XLA phenotype from 11 unrelated families were enrolled as the subjects of investigation for Btk mutation analysis using PCR-SSCP followed by sequencing. Five different mutations were identified in 5 patients from 5 unrelated families. Three mutations had been ...

Mohammad Gharagozlou; Masoud Movahedi; Zahra Pourpak; Abolhassan Farhoudi; Ali Akbar Amirzargar; Mostafa Moin; Hirokazu Kanegana; Nima Parvaneh; Asghar Aghamohammadi; Nima Rezaei; Takeshi Futatani; Toshio Miyawaki

2004-01-01

67

Mapping and identifying genes for asthma and psoriasis  

OpenAIRE

Susceptibility genes for complex diseases are characterized by reduced penetrance, caused by the influence of other genes, the environment or stochastic events. Recently, positional cloning efforts have yielded several candidate susceptibility genes in different complex disorders such as Crohn's disease and asthma. Within a genetic locus, however, the identification of the effector gene may pose further challenges and require functional studies. I review two examples of such challenges: the c...

Kere, Juha

2005-01-01

68

Identifying Genes Preferentially Expressed in Undifferentiated Embryonic Stem Cells  

OpenAIRE

Abstract Background The mechanism involved in the maintenance and differentiation of embryonic stem (ES) cells is incompletely understood. Results To address this issue, we have developed a retroviral gene trap vector that can target genes expressed in undifferentiated ES cells. This gene trap vector harbors both GFP and Neo reporter genes. G-418 drug resistance was used to select ES clones in which the vector was integrated into transcriptionally active loci. This was then followed by GFP FA...

Leder Philip; Li Xiajun

2007-01-01

69

Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Retinal degeneration is a main cause of blindness in humans. Neuroprotective therapies may be used to rescue retinal cells and preserve vision. Hypoxic preconditioning stabilizes the transcription factor HIF-1? in the retina and strongly protects photoreceptors in an animal model of light-induced retinal degeneration. To address the molecular mechanisms of the protection, we analyzed the transcriptome of the hypoxic retina using microarrays and real-time PCR. Results Hypoxic exposure induced a marked alteration in the retinal transcriptome with significantly different expression levels of 431 genes immediately after hypoxic exposure. The normal expression profile was restored within 16 hours of reoxygenation. Among the differentially regulated genes, several candidates for neuroprotection were identified like metallothionein-1 and -2, the HIF-1 target gene adrenomedullin and the gene encoding the antioxidative and cytoprotective enzyme paraoxonase 1 which was previously not known to be a hypoxia responsive gene in the retina. The strongly upregulated cyclin dependent kinase inhibitor p21 was excluded from being essential for neuroprotection. Conclusion Our data suggest that neuroprotection after hypoxic preconditioning is the result of the differential expression of a multitude of genes which may act in concert to protect visual cells against a toxic insult.

Wenzel Andreas

2008-02-01

70

Sex-dimorphic gene expression and ineffective dosage compensation of Z-linked genes in gastrulating chicken embryos  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Considerable progress has been made in our understanding of sex determination and dosage compensation mechanisms in model organisms such as C. elegans, Drosophila and M. musculus. Strikingly, the mechanism involved in sex determination and dosage compensation are very different among these three model organisms. Birds present yet another situation where the heterogametic sex is the female. Sex determination is still poorly understood in birds and few key determinants have so far been identified. In contrast to most other species, dosage compensation of bird sex chromosomal genes appears rather ineffective. Results By comparing microarrays from microdissected primitive streak from single chicken embryos, we identified a large number of genes differentially expressed between male and female embryos at a very early stage (Hamburger and Hamilton stage 4, long before any sexual differentiation occurs. Most of these genes are located on the Z chromosome, which indicates that dosage compensation is ineffective in early chicken embryos. Gene ontology analyses, using an enhanced annotation tool for Affymetrix probesets of the chicken genome developed in our laboratory (called Manteia, show that among these male-biased genes found on the Z chromosome, more than 20 genes play a role in sex differentiation. Conclusions These results corroborate previous studies demonstrating the rather inefficient dosage compensation for Z chromosome in birds and show that this sexual dimorphism in gene regulation is observed long before the onset of sexual differentiation. These data also suggest a potential role of non-compensated Z-linked genes in somatic sex differentiation in birds.

Mathur Sachin

2010-01-01

71

Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control  

OpenAIRE

A periodic luciferase reporter system from cell cycle–regulated promoters in synchronous U2OS cells measures periodic, cell cycle–regulated gene expression in live cells. This assay is used to identify Forkhead transcription factors that control periodic gene expression, and it identifies FOXK1 as an activator of key cell cycle genes.

Grant, Gavin D.; Gamsby, Joshua; Martyanov, Viktor; Brooks, Lionel; George, Lacy K.; Mahoney, J. Matthew; Loros, Jennifer J.; Dunlap, Jay C.; Whitfield, Michael L.

2012-01-01

72

Autism-Linked Genes May Be Tied to Slightly Higher IQ  

Science.gov (United States)

... sharing features on this page, please enable JavaScript. Autism-Linked Genes May Be Tied to Slightly Higher ... Preidt Thursday, March 12, 2015 Related MedlinePlus Pages Autism Spectrum Disorder Genes and Gene Therapy THURSDAY, March ...

73

Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development.  

Science.gov (United States)

Control of cellular proliferation in plant meristems is important for maintaining the correct number and position of developing organs. One of the genes identified in the control of floral and apical meristem size and floral organ number in Arabidopsis thaliana is WIGGUM. In wiggum mutants, one of the most striking phenotypes is an increase in floral organ number, particularly in the sepals and petals, correlating with an increase in the width of young floral meristems. Additional phenotypes include reduced and delayed germination, delayed flowering, maturation, and senescence, decreased internode elongation, shortened roots, aberrant phyllotaxy of flowers, aberrant sepal development, floral buds that open precociously, and occasional apical meristem fasciation. As a first step in determining a molecular function for WIGGUM, we used positional cloning to identify the gene. DNA sequencing revealed that WIGGUM is identical to ERA1 (enhanced response to abscisic acid), a previously identified farnesyltransferase beta-subunit gene of Arabidopsis. This finding provides a link between protein modification by farnesylation and the control of meristem size. Using in situ hybridization, we examined the expression of ERA1 throughout development and found it to be nearly ubiquitous. This extensive expression domain is consistent with the pleiotropic nature of wiggum mutants and highlights a broad utility for farnesylation in plant growth and development. PMID:10840062

Ziegelhoffer, E C; Medrano, L J; Meyerowitz, E M

2000-06-20

74

Development of Query Strategies to Identify a Histologic Lymphoma Subtype in a Large Linked Database System  

Directory of Open Access Journals (Sweden)

Full Text Available Background: Large linked databases (LLDB represent a novel resource for cancer outcomes research. However, accurate means of identifying a patient population of interest within these LLDBs can be challenging. Our research group developed a fully integrated platform that provides a means of combining independent legacy databases into a single cancer-focused LLDB system. We compared the sensitivity and specifi city of several SQL-based query strategies for identifying a histologic lymphoma subtype in this LLDB to determine the most accurate legacy data source for identifying a specifi c cancer patient population.Methods: Query strategies were developed to identify patients with follicular lymphoma from a LLDB of cancer registry data, electronic medical records (EMR, laboratory, administrative, pharmacy, and other clinical data. Queries were performed using common diagnostic codes (ICD-9, cancer registry histology codes (ICD-O, and text searches of EMRs. We reviewed medical records and pathology reports to confirm each diagnosis and calculated the sensitivity and specificity for each query strategy.Results: Together the queries identified 1538 potential cases of follicular lymphoma. Review of pathology and other medical reports confirmed 415 cases of follicular lymphoma, 300 pathology-verifi ed and 115 verified from other medical reports. The query using ICD-O codes was highly specific (96%. Queries using text strings varied in sensitivity (range 7–92% and specifi city (range 86–99%. Queries using ICD-9 codes were both less sensitive (34–44% and specific (35–87%.Conclusions: Queries of linked-cancer databases that include cancer registry data should utilize ICD-O codes or employ structured free-text searches to identify patient populations with a precise histologic diagnosis.Abbreviations: LLDB: Large Linked Database; SEER: Surveillance Epidemiology and End Results; EMR: Electronic Medical Record; ICD-9: International Classifi cation of Diseases (9th revision; ICD-O: International Classifi cation of Diseases for Oncology; AP: Anatomical Pathology; WHO: World Health Organization.

Christopher R. Flowers

2007-01-01

75

Identifying novel genes in C. elegans using SAGE tags  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Despite extensive efforts devoted to predicting protein-coding genes in genome sequences, many bona fide genes have not been found and many existing gene models are not accurate in all sequenced eukaryote genomes. This situation is partly explained by the fact that gene prediction programs have been developed based on our incomplete understanding of gene feature information such as splicing and promoter characteristics. Additionally, full-length cDNAs of many genes and their isoforms are hard to obtain due to their low level or rare expression. In order to obtain full-length sequences of all protein-coding genes, alternative approaches are required. Results In this project, we have developed a method of reconstructing full-length cDNA sequences based on short expressed sequence tags which is called sequence tag-based amplification of cDNA ends (STACE. Expressed tags are used as anchors for retrieving full-length transcripts in two rounds of PCR amplification. We have demonstrated the application of STACE in reconstructing full-length cDNA sequences using expressed tags mined in an array of serial analysis of gene expression (SAGE of C. elegans cDNA libraries. We have successfully applied STACE to recover sequence information for 12 genes, for two of which we found isoforms. STACE was used to successfully recover full-length cDNA sequences for seven of these genes. Conclusions The STACE method can be used to effectively reconstruct full-length cDNA sequences of genes that are under-represented in cDNA sequencing projects and have been missed by existing gene prediction methods, but their existence has been suggested by short sequence tags such as SAGE tags.

Chen Nansheng

2010-12-01

76

Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling.  

Science.gov (United States)

The chronic effects of cocaine abuse on brain structure and function are blamed for the inability of most addicts to remain abstinent. Part of the difficulty in preventing relapse is the persisting memory of the intense euphoria or cocaine "rush". Most abused drugs and alcohol induce neuroplastic changes in brain pathways subserving emotion and cognition. Such changes may account for the consolidation and structural reconfiguration of synaptic connections with exposure to cocaine. Adaptive hippocampal plasticity could be related to specific patterns of gene expression with chronic cocaine abuse. Here, we compare gene expression profiles in the human hippocampus from cocaine addicts and age-matched drug-free control subjects. Cocaine abusers had 151 gene transcripts upregulated, while 91 gene transcripts were downregulated. Topping the list of cocaine-regulated transcripts was RECK in the human hippocampus (FC = 2.0; pLAMB1, ITGB6, CTGF and EphB4). The observed microarray phenotype in the human hippocampus identified RECK and other region-specific genes that may promote long-lasting structural changes with repeated cocaine abuse. Extracellular matrix remodeling in the hippocampus may be a persisting effect of chronic abuse that contributes to the compulsive and relapsing nature of cocaine addiction. PMID:18000554

Mash, Deborah C; ffrench-Mullen, Jarlath; Adi, Nikhil; Qin, Yujing; Buck, Andrew; Pablo, John

2007-01-01

77

Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria  

DEFF Research Database (Denmark)

Antigenic variation of the Plasmodium falciparum multicopy var gene family enables parasite evasion of immune destruction by host antibodies. Expression of a particular var subgroup, termed upsA, is linked to the obstruction of blood vessels in the brain and to the pathogenesis of human cerebral malaria. The mechanism determining upsA activation remains unknown. Here we show that an entirely new type of gene silencing mechanism involving an exonuclease-mediated degradation of nascent RNA controls the silencing of genes linked to severe malaria. We identify a novel chromatin-associated exoribonuclease, termed PfRNase II, that controls the silencing of upsA var genes by marking their transcription start site and intron-promoter regions leading to short-lived cryptic RNA. Parasites carrying a deficient PfRNase II gene produce full-length upsA var transcripts and intron-derived antisense long non-coding RNA. The presence of stable upsA var transcripts overcomes monoallelic expression, resulting in the simultaneous expression of both upsA and upsC type PfEMP1 proteins on the surface of individual infected red blood cells. In addition, we observe an inverse relationship between transcript levels of PfRNase II and upsA-type var genes in parasites from severe malaria patients, implying a crucial role of PfRNase II in severe malaria. Our results uncover a previously unknown type of post-transcriptional gene silencing mechanism in malaria parasites with repercussions for other organisms. Additionally, the identification of RNase II as a parasite protein controlling the expression of virulence genes involved in pathogenesis in patients with severe malaria may provide new strategies for reducing malaria mortality.

Zhang, Qingfeng; Siegel, T Nicolai

2014-01-01

78

Similar interstitial deletions of the KAL-1 gene in two Brazilian families with X-linked Kallmann Syndrome  

OpenAIRE

Mutations in the KAL-1 gene localized at Xp22.3 have been shown to be responsible for the X-linked Kallmann syndrome (KS), a disorder characterized by the association of hypogonadotropic hypogonadism and anosmia. In this paper, we describe the investigation of two families with X-linked KS, in which similar interstitial deletions ning exons 5 to 10 of the KAL-1 gene were identified. The presence of interspersed repetitive DNA sequences within the KAL-1 gene might have predisposed to this type...

Ericka Barbosa Trarbach; Isabella Lopes Monlleo; Carlos Guilherme Gaelzer Porciuncula; Marshall Italo Barros Fontes; Maria Teresa Mathias Baptista; Christine Hackel

2004-01-01

79

Similar interstitial deletions of the KAL-1 gene in two Brazilian families with X-linked Kallmann Syndrome  

Directory of Open Access Journals (Sweden)

Full Text Available Mutations in the KAL-1 gene localized at Xp22.3 have been shown to be responsible for the X-linked Kallmann syndrome (KS, a disorder characterized by the association of hypogonadotropic hypogonadism and anosmia. In this paper, we describe the investigation of two families with X-linked KS, in which similar interstitial deletions ning exons 5 to 10 of the KAL-1 gene were identified. The presence of interspersed repetitive DNA sequences within the KAL-1 gene might have predisposed to this type of mutation.

Ericka Barbosa Trarbach

2004-01-01

80

Similar interstitial deletions of the KAL-1 gene in two Brazilian families with X-linked Kallmann Syndrome  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in english Mutations in the KAL-1 gene localized at Xp22.3 have been shown to be responsible for the X-linked Kallmann syndrome (KS), a disorder characterized by the association of hypogonadotropic hypogonadism and anosmia. In this paper, we describe the investigation of two families with X-linked KS, in which [...] similar interstitial deletions ning exons 5 to 10 of the KAL-1 gene were identified. The presence of interspersed repetitive DNA sequences within the KAL-1 gene might have predisposed to this type of mutation.

Ericka Barbosa, Trarbach; Isabella Lopes, Monlleo; Carlos Guilherme Gaelzer, Porciuncula; Marshall Italo Barros, Fontes; Maria Teresa Mathias, Baptista; Christine, Hackel.

81

Gene expression profiling identifies molecular pathways associated with collagen VI deficiency and provides novel therapeutic targets.  

Science.gov (United States)

Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered. PMID:24223098

Paco, Sonia; Kalko, Susana G; Jou, Cristina; Rodríguez, María A; Corbera, Joan; Muntoni, Francesco; Feng, Lucy; Rivas, Eloy; Torner, Ferran; Gualandi, Francesca; Gomez-Foix, Anna M; Ferrer, Anna; Ortez, Carlos; Nascimento, Andrés; Colomer, Jaume; Jimenez-Mallebrera, Cecilia

2013-01-01

82

GeneFriends: An online co-expression analysis tool to identify novel gene targets for aging and complex diseases  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Although many diseases have been well characterized at the molecular level, the underlying mechanisms are often unknown. Nearly half of all human genes remain poorly studied, yet these genes may contribute to a number of disease processes. Genes involved in common biological processes and diseases are often co-expressed. Using known disease-associated genes in a co-expression analysis may help identify and prioritize novel candidate genes for further study. Results We have created an online tool, called GeneFriends, which identifies co-expressed genes in over 1,000 mouse microarray datasets. GeneFriends can be used to assign putative functions to poorly studied genes. Using a seed list of disease-associated genes and a guilt-by-association method, GeneFriends allows users to quickly identify novel genes and transcription factors associated with a disease or process. We tested GeneFriends using seed lists for aging, cancer, and mitochondrial complex I disease. We identified several candidate genes that have previously been predicted as relevant targets. Some of the genes identified are already being tested in clinical trials, indicating the effectiveness of this approach. Co-expressed transcription factors were investigated, identifying C/ebp genes as candidate regulators of aging. Furthermore, several novel candidate genes, that may be suitable for experimental or clinical follow-up, were identified. Two of the novel candidates of unknown function that were co-expressed with cancer-associated genes were selected for experimental validation. Knock-down of their human homologs (C1ORF112 and C12ORF48 in HeLa cells slowed growth, indicating that these genes of unknown function, identified by GeneFriends, may be involved in cancer. Conclusions GeneFriends is a resource for biologists to identify and prioritize novel candidate genes involved in biological processes and complex diseases. It is an intuitive online resource that will help drive experimentation. GeneFriends is available online at: http://genefriends.org/.

van Dam Sipko

2012-10-01

83

Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background We generalized penalized canonical correlation analysis for analyzing microarray gene-expression measurements for checking completeness of known metabolic pathways and identifying candidate genes for incorporation in the pathway. We used Wold's method for calculation of the canonical variates, and we applied ridge penalization to the regression of pathway genes on canonical variates of the non-pathway genes, and the elastic net to the regression of non-pathway genes on the canonical variates of the pathway genes. Results We performed a small simulation to illustrate the model's capability to identify new candidate genes to incorporate in the pathway: in our simulations it appeared that a gene was correctly identified if the correlation with the pathway genes was 0.3 or more. We applied the methods to a gene-expression microarray data set of 12, 209 genes measured in 45 patients with glioblastoma, and we considered genes to incorporate in the glioma-pathway: we identified more than 25 genes that correlated > 0.9 with canonical variates of the pathway genes. Conclusion We concluded that penalized canonical correlation analysis is a powerful tool to identify candidate genes in pathway analysis.

Zwinderman Aeilko H

2009-09-01

84

GeneFriends: An online co-expression analysis tool to identify novel gene targets for aging and complex diseases  

OpenAIRE

Abstract Background Although many diseases have been well characterized at the molecular level, the underlying mechanisms are often unknown. Nearly half of all human genes remain poorly studied, yet these genes may contribute to a number of disease processes. Genes involved in common biological processes and diseases are often co-expressed. Using known disease-associated genes in a co-expression analysis may help identify and prioritize novel candidate genes for further study. Results We have...

van Dam Sipko; Cordeiro Rui; Craig Thomas; van Dam Jesse; Wood Shona H; de Magalhães João

2012-01-01

85

Identifying paediatric nursing-sensitive outcomes in linked administrative health data  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background There is increasing interest in the contribution of the quality of nursing care to patient outcomes. Due to different casemix and risk profiles, algorithms for administrative health data that identify nursing-sensitive outcomes in adult hospitalised patients may not be applicable to paediatric patients. The study purpose was to test adult algorithms in a paediatric hospital population and make amendments to increase the accuracy of identification of hospital acquired events. The study also aimed to determine whether the use of linked hospital records improved the likelihood of correctly identifying patient outcomes as nursing sensitive rather than being related to their pre-morbid conditions. Methods Using algorithms developed by Needleman et al. (2001, proportions and rates of records that identified nursing-sensitive outcomes for pressure ulcers, pneumonia and surgical wound infections were determined from administrative hospitalisation data for all paediatric patients discharged from a tertiary paediatric hospital in Western Australia between July 1999 and June 2009. The effects of changes to inclusion and exclusion criteria for each algorithm on the calculated proportion or rate in the paediatric population were explored. Linked records were used to identify comorbid conditions that increased nursing-sensitive outcome risk. Rates were calculated using algorithms revised for paediatric patients. Results Linked records of 129,719 hospital separations for 79,016 children were analysed. Identification of comorbid conditions was enhanced through access to prior and/or subsequent hospitalisation records (43% of children with pressure ulcers had a form of paralysis recorded only on a previous admission. Readmissions with a surgical wound infection were identified for 103 (4.8/1,000 surgical separations using linked data. After amendment of each algorithm for paediatric patients, rates of pressure ulcers and pneumonia reduced by 53% and 15% (from 1.3 to 0.6 and from 9.1 to 7.7 per 10,000 patient days respectively, and an 84% increase in the proportion of surgical wound infection (from 5.7 to 10.4 per 1,000 separations. Conclusions Algorithms for nursing-sensitive outcomes used in adult populations have to be amended before application to paediatric populations. Using unlinked individual hospitalisation records to estimate rates of nursing-sensitive outcomes is likely to result in inaccurate rates.

Wilson Sally

2012-07-01

86

Noncoding RNA genes identified in AT-rich hyperthermophiles  

OpenAIRE

Noncoding RNA (ncRNA) genes that produce functional RNAs instead of encoding proteins seem to be somewhat more prevalent than previously thought. However, estimating their number and importance is difficult because systematic identification of ncRNA genes remains challenging. Here, we exploit a strong, surprising DNA composition bias in genomes of some hyperthermophilic organisms: simply screening for GC-rich regions in the AT-rich Methanococcus jannaschii and Pyrococcus furiosus genomes effi...

Klein, Robert J.; Misulovin, Ziva; Eddy, Sean R.

2002-01-01

87

Identifying a species tree subject to random lateral gene transfer  

OpenAIRE

A major problem for inferring species trees from gene trees is that evolutionary processes can sometimes favour gene tree topologies that conflict with an underlying species tree. In the case of incomplete lineage sorting, this phenomenon has recently been well-studied, and some elegant solutions for species tree reconstruction have been proposed. One particularly simple and statistically consistent estimator of the species tree under incomplete lineage sorting is to combine...

Steel, Mike; Linz, Simone; Huson, Daniel H.; Sanderson, Michael J.

2012-01-01

88

N-acetylated ?-linked acidic dipeptidase is identified as an antigen of Histoplasma capsulatum.  

Science.gov (United States)

Histoplasmosis, one of the most important mycoses, needs to be diagnosed rapidly and accurately. The main method used to diagnose histoplasmosis is serological detection of antibodies to the Histoplasma capsulatum H and M antigens. Several other protein antigens have been reported in H. capsulatum; however, they have not been used for diagnosis. In this study, we explored novel antigens that were detected during H. capsulatum infection. We obtained a protein mixture from H. capsulatum yeast cells after vigorous mixing in a 0.1% Triton X-100 solution. From the resultant pool, we detected nine spots that reacted with sera from patients with histoplasmosis and identified eight seroactive proteins with mass spectrometry. The seroactive proteins were purified, and their antigenicities were tested with an enzyme-linked immunosorbent assay (ELISA). ELISA revealed that the titer of the patients' sera to N-acetylated ?-linked acidic dipeptidase was significantly higher than those of healthy volunteers (P histoplasmosis. PMID:25680469

Toyotome, Takahito; Watanabe, Akira; Ochiai, Eri; Kamei, Katsuhiko

2015-03-13

89

A Multistep Screening Method to Identify Genes Using Evolutionary Transcriptome of Plants  

OpenAIRE

We introduced a multistep screening method to identify the genes in plants using microarrays and ribonucleic acid (RNA)-seq transcriptome data. Our method describes the process for identifying genes using the salt-tolerance response pathways of the potato (Solanum tuberosum) plant. Gene expression was analyzed using microarrays and RNA-seq experiments that examined three potato lines (high, intermediate, and low salt tolerance) under conditions of salt stress. We screened the orthologous gene...

Chang-Kug Kim; Hye-Min Lim; Jong-Kuk Na; Ji-Weon Choi; Seong-Han Sohn; Soo-Chul Park; Young-Hwan Kim; Yong-Kab Kim; Dool-Yi Kim

2014-01-01

90

Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets  

International Nuclear Information System (INIS)

Highlights: ? In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. ? We identified three novel PHEX gene mutations in four unrelated families with XLH. ? We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. ? We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

91

Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets  

Energy Technology Data Exchange (ETDEWEB)

Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

Kang, Qing-lin [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Xu, Jia [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Zhang, Zeng [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); He, Jin-wei [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Lu, Lian-song [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Fu, Wen-zhen [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Zhang, Zhen-lin, E-mail: zzl2002@medmail.com.cn [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China)

2012-07-13

92

Gene sequencing project identifies abnormal gene that launches rare childhood leukemia  

Science.gov (United States)

Research led by the St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project has identified a fusion gene responsible for almost 30 percent of a rare subtype of childhood leukemia with an extremely poor prognosis. The finding offers the first evidence of a mistake that gives rise to a significant percentage of acute megakaryoblastic leukemia (AMKL) cases in children. AMKL accounts for about 10 percent of pediatric acute myeloid leukemia (AML). The discovery paves the way for desperately needed treatment advances.

93

Horizontal gene transfer in eukaryotes: The weak-link model  

OpenAIRE

The significance of horizontal gene transfer (HGT) in eukaryotic evolution remains controversial. Although many eukaryotic genes are of bacterial origin, they are often interpreted as being derived from mitochondria or plastids. Because of their fixed gene pool and gene loss, however, mitochondria and plastids alone cannot adequately explain the presence of all, or even the majority, of bacterial genes in eukaryotes. Available data indicate that no insurmountable barrier to HGT exists, even i...

Huang, Jinling

2013-01-01

94

Cross-linked polyethylenimine–tripolyphosphate nanoparticles for gene delivery  

Directory of Open Access Journals (Sweden)

Full Text Available Xianzhang Huang,1 Sujing Shen,2 Zhanfeng Zhang,1 Junhua Zhuang1 1Department of Laboratory Science, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 2Department of Laboratory Science, Guangdong Second Provincial Traditional Chinese Medicine Hospital, Guangzhou, People’s Republic of China Abstract: The high transfection efficiency of polyethylenimine (PEI makes it an attractive potential nonviral genetic vector for gene delivery and therapy. However, the highly positive charge of PEI leads to cytotoxicity and limits its application. To reduce the cytotoxicity of PEI, we prepared anion-enriched nanoparticles that combined PEI with tripolyphosphate (TPP. We then characterized the PEI-TPP nanoparticles in terms of size, zeta potential, and Fourier-transform infrared (FTIR spectra, and assessed their transfection efficiency, cytotoxicity, and ability to resist deoxyribonuclease (DNase I digestion. The cellular uptake of PEI-TPP with phosphorylated internal ribosome entry site–enhanced green fluorescent protein C1 or FAM (fluorouracil, Adriamycin [doxorubicin] and mitomycin-labeled small interfering ribonucleic acids (siRNAs was monitored by fluorescence microscopy and confocal laser microscopy. The efficiency of transfected delivery of plasmid deoxyribonucleic acid (DNA and siRNA in vitro was 1.11- to 4.20-fold higher with the PEI-TPP particles (7.6% cross-linked than with the PEI, at all N:P ratios (nitrogen in PEI to phosphorus in DNA tested. The cell viability of different cell lines was more than 90% at the chosen N:P ratios of PEI-TPP/DNA complexes. Moreover, PEI-TPP nanoparticles resisted digestion by DNase I for more than 2 hours. The time-dependent absorption experiment showed that 7.6% of cross-linked PEI-TPP particles were internalized by 293T cells within 1 hour. In summary, PEI-TPP nanoparticles effectively transfected cells while conferring little or no toxicity, and thus have potential application in gene delivery. Keywords: polyethylenimine (PEI, tripolyphosphate (TPP, nanoparticles (NPs, transfection

Huang XZ

2014-10-01

95

Identifying essential genes in bacterial metabolic networks with machine learning methods  

OpenAIRE

Abstract Background Identifying essential genes in bacteria supports to identify potential drug targets and an understanding of minimal requirements for a synthetic cell. However, experimentally assaying the essentiality of their coding genes is resource intensive and not feasible for all bacterial organisms, in particular if they are infective. Results We developed a machine learning technique to identify essential genes using the experimental data of genome-wide knock-out screens from one b...

Eils Roland; Plaimas Kitiporn; König Rainer

2010-01-01

96

Identifying and Prioritizing Genes involved in Bovine Mastitis  

DEFF Research Database (Denmark)

In the "omics" era, identification of biological entities underlying complex traits or common diseases is characterized by the integration of high-throughput experiments and knowledge that have benn published or refined in biomedical repositories. Studies in this thesis generate, collect and integrate different layers of biological data, attempting to make a systematic inference of underlying genes to bovine mastitis. Robust and flexible methods have been implemented in data summarization and integration for gene prioritization, which can be applied to study various complex traits in different species

Jiang, Li

2010-01-01

97

A transcription map of the 6p22.3 reading disability locus identifying candidate genes  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Reading disability (RD is a common syndrome with a large genetic component. Chromosome 6 has been identified in several linkage studies as playing a significant role. A more recent study identified a peak of transmission disequilibrium to marker JA04 (G72384 on chromosome 6p22.3, suggesting that a gene is located near this marker. Results In silico cloning was used to identify possible candidate genes located near the JA04 marker. The 2 million base pairs of sequence surrounding JA04 was downloaded and searched against the dbEST database to identify ESTs. In total, 623 ESTs from 80 different tissues were identified and assembled into 153 putative coding regions from 19 genes and 2 pseudogenes encoded near JA04. The identified genes were tested for their tissue specific expression by RT-PCR. Conclusions In total, five possible candidate genes for RD and other diseases mapping to this region were identified.

Gruen Jeffrey R

2003-06-01

98

Moffitt Cancer Center researchers identify unique immune gene signature  

Science.gov (United States)

Researchers at Moffitt Cancer Center have discovered a unique immune gene signature that can predict the presence of microscopic lymph node-like structures in metastatic melanoma. The presence of these immune structures, the researchers said, appears to be associated with better survival and may indicate the possibility of selecting patients for immunotherapy based solely on the immune-related makeup of their tumors.

99

Identifying a species tree subject to random lateral gene transfer.  

Science.gov (United States)

A major problem for inferring species trees from gene trees is that evolutionary processes can sometimes favor gene tree topologies that conflict with an underlying species tree. In the case of incomplete lineage sorting, this phenomenon has recently been well-studied, and some elegant solutions for species tree reconstruction have been proposed. One particularly simple and statistically consistent estimator of the species tree under incomplete lineage sorting is to combine three-taxon analyses, which are phylogenetically robust to incomplete lineage sorting. In this paper, we consider whether such an approach will also work under lateral gene transfer (LGT). By providing an exact analysis of some cases of this model, we show that there is a zone of inconsistency when majority-rule three-taxon gene trees are used to reconstruct species trees under LGT. However, a triplet-based approach will consistently reconstruct a species tree under models of LGT, provided that the expected number of LGT transfers is not too high. Our analysis involves a novel connection between the LGT problem and random walks on cyclic graphs. We have implemented a procedure for reconstructing trees subject to LGT or lineage sorting in settings where taxon coverage may be patchy and illustrate its use on two sample data sets. PMID:23340439

Steel, Mike; Linz, Simone; Huson, Daniel H; Sanderson, Michael J

2013-04-01

100

Identifying reference genes with stable expression from high throughput sequence data  

Directory of Open Access Journals (Sweden)

Full Text Available Genes that are constitutively expressed across multiple environmental stimuli are crucial to quantifying differentially expressed genes, particularly when employing quantitative reverse transcriptase polymerase chain reaction (RT-qPCR assays. However, the identification of these potential reference genes in non-model organisms is challenging and is often guided by expression patterns in distantly related organisms. Here, transcriptome datasets from the diatom Thalassiosira pseudonana grown under replete, phosphorus-limited, iron-limited, and phosphorus and iron co-limited nutrient regimes were analyzed through literature-based searches for homologous reference genes, k-means clustering, and Analysis of Sequence Counts (ASC to identify putative reference genes. A total of 9759 genes were identified and screened for stable expression. Literature-based searches surveyed 18 generally accepted reference genes, revealing 101 homologs in T. pseudonana with variable expression and a wide range of mean tags per million. K-means analysis parsed the whole transcriptome into 15 clusters. The two most stable clusters contained 709 genes but still had distinct patterns in expression. ASC analyses identified 179 genes that were stably expressed (p < 0.1 for 1.25 fold change. Genes known to have a stable expression pattern across the test treatments, like actin, were identified in this pool of 179 candidate genes. ASC can be employed on data without biological replicates and was more robust than the k-means approach in isolating genes with stable expression. The intersection of the genes identified through ASC with commonly used reference genes from the literature suggests that actin and ubiquitin ligase may be useful reference genes for T. pseudonana and potentially other diatoms. With the wealth of transcriptome sequence data becoming available, ASC can be easily applied to transcriptome datasets from other phytoplankton to identify reference genes.

SonyaTDyhrman

2012-11-01

101

Identifying Sarcomere Gene Mutations in HCM: A Personal History  

OpenAIRE

This article provides an historical and personal perspective on the discovery of genetic causes for hypertrophic cardiomyopathy (HCM). Extraordinary insights of physicians who initially detailed remarkable and varied manifestations of the disorder, collaboration among multidisciplinary teams with skills in clinical diagnostics and molecular genetics, and hard work by scores of trainees, solved the etiologic riddle of HCM, and unexpectedly demonstrated mutations in sarcomere protein genes as t...

Seidman, Christine E.; Seidman, J. G.

2011-01-01

102

Gene Expression Study on Peripheral Blood Identifies Progranulin Mutations  

OpenAIRE

Peripheral blood is a readily available tissue source allowing relatively noninvasive screening for a host of medical conditions. We screened total-blood progranulin (PGRN) levels in 107 patients with neurodegenerative dementias and related conditions, and 36 control subjects, and report the following findings: (1) confirmation of high progranulin expression levels in peripheral blood; (2) two subjects with reduced progranulin levels and mutations in the PGRN gene confirmed by direct sequenci...

Coppola, Giovanni; Karydas, Anna; Rademakers, Rosa; Wang, Qing; Baker, Matt; Hutton, Mike; Miller, Bruce L.; Geschwind, Daniel H.

2008-01-01

103

Identification of AFLP molecular linked to row- type gene in barley  

International Nuclear Information System (INIS)

Formation of the two-and six-rowed types in barley is predominantly controlled by alleles at a single locus (vrzl) which is located in long armn of chromosome 2H. This gene is a key character on the study of barley domestication and yield. Near-isogenic lines of barley were produced from crosses between Kanto Nakate Gold (tow-rowed) and Azumamugi (six-rowed). The selected lines were used for screening of AFLP polymorphic bands which are linked to vrs1 locus. After screening of a total of 1792 primer combination, five polymorphic bands were identified. A construction of high resolution map around the vrs1 locus was made using recombinant inbred lines. These markers can be used for a map-based cloning of the genes at the vrsl locus

104

Identification of AFLP Molecular Markers Linked to Row-Type Gene in Barley  

Directory of Open Access Journals (Sweden)

Full Text Available Formation of the two- and six-rowed types in barley is predominantly controlled by alleles at a single locus (vrs1 which is located in long arm of chromosome 2H. This gene is a key character on the study of barley domestication and yield. Near-isogenic lines (NILs of barley were produced from crosses between Kanto Nakate Gold (tow-rowed and Azumamugi (six-rowed. The selected lines were used for screening of AFLP polymorphic bands which are linked to vrs1 locus. After screening of a total of 1792 primer combination, five polymorphic bands were identified. A construction of high resolution map around the vrs1 locus was made using recombinant inbred lines. These markers can be used for a map-based cloning of the genes at the vrs1 locus.

B. E. Sayed-Tabatabaei

2005-01-01

105

Allele characterization of genes required for rpg4-mediated wheat stem rust resistance identifies Rpg5 as the R gene.  

Science.gov (United States)

A highly virulent form of the wheat stem rust pathogen Puccinia graminis f. sp. tritici race TTKSK is virulent on both wheat and barley, presenting a major threat to world food security. The recessive and temperature-sensitive rpg4 gene is the only effective source of resistance identified in barley (Hordeum vulgare) against P. graminis f. sp. tritici race TTKSK. Efforts to position clone rpg4 localized resistance to a small interval on barley chromosome 5HL, tightly linked to the rye stem rust (P. graminis f. sp. secalis) resistance (R) gene Rpg5. High-resolution genetic analysis and post-transcriptional gene silencing of the genes at the rpg4/Rpg5 locus determined that three tightly linked genes (Rpg5, HvRga1, and HvAdf3) are required together for rpg4-mediated wheat stem rust resistance. Alleles of the three genes were analyzed from a diverse set of 14 domesticated barley lines (H. vulgare) and 8 wild barley accessions (H. vulgare subsp. spontaneum) to characterize diversity that may determine incompatibility (resistance). The analysis determined that HvAdf3 and HvRga1 code for predicted functional proteins that do not appear to contain polymorphisms determining the compatible (susceptible) interactions with the wheat stem rust pathogen and were expressed at the transcriptional level from both resistant and susceptible barley lines. The HvAdf3 alleles shared 100% amino acid identity among all 22 genotypes examined. The P. graminis f. sp. tritici race QCCJ-susceptible barley lines with HvRga1 alleles containing the limited amino acid substitutions unique to the susceptible varieties also contained predicted nonfunctional rpg5 alleles. Thus, susceptibility in these lines is likely due to the nonfunctional RPG5 proteins. The Rpg5 allele analysis determined that 9 of the 13 P. graminis f. sp. tritici race QCCJ-susceptible barley lines contain alleles that either code for predicted truncated proteins as the result of a single nucleotide substitution, resulting in a stop codon at amino acid 161, a single cytosine indel causing a frame shift, and a stop codon at amino acid 217, or an indel that deleted the entire STPK domain. The three P. graminis f. sp. tritici race QCCJ-susceptible lines (Swiss landraces Hv489, Hv492, and Hv611) and the wild barley accession WBDC160 contain rpg5 alleles predicted to encode full-length proteins containing a nonsynonomous nucleotide substitution that results in the amino acid substitution E1287A. This amino acid substitution present in the uncharacterized C-terminal domain is not found in any resistant line and may be important to elicit the resistance reaction. These data suggest that rpg4-mediated resistance against many wheat stem rust pathogen races, including P. graminis f. sp. tritici race TTKSK, rely on the Rpg5 R gene; thus, rpg4- and Rpg5-mediated resistance rely on a common R gene and should not be considered completely distinct. The data also determined that Rpg5 gene-specific molecular markers could be used to detect rpg4-mediated wheat stem rust resistance for marker-assisted selection. PMID:23841622

Arora, D; Gross, T; Brueggeman, R

2013-11-01

106

Transcriptome network-based method to identify genes associated with unruptured intracranial aneurysms.  

Science.gov (United States)

Intracranial aneurysm is a balloon or sac-like dilatation of blood vessels inside the brain. Despite their importance, the biological mechanisms of intracranial aneurysms are not totally understood. We used public genome-wide gene expression profile data to identify potential genes that are involved in intracranial aneurysm in order to construct a regulation network. Some of the transcription factors and target genes that we identified in this network had been identified as related to intracranial aneurysm in previous studies. We found additional transcription factors and target genes that are apparently related to intracranial aneurysm with this method. The confirmation of previously identified genes and transcription factors supports the usefulness of this transcriptome network analysis for the identification of candidate genes involved in intracranial aneurysm. PMID:24065667

Wei, L; Gao, Y J; Wei, S P; Zhang, Y F; Zhang, W F; Jiang, J X; Sun, Z Y; Xu, W

2013-01-01

107

New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism  

Science.gov (United States)

Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood1. Previous genome-wide association studies identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes, and a second variant, near CCNL1, with no obvious link to adult traits2. In an expanded genome-wide association meta-analysis and follow-up study (up to 69,308 individuals of European descent from 43 studies), we have now extended the number of genome-wide significant loci to seven, accounting for a similar proportion of variance to maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes; ADRB1 with adult blood pressure; and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism. PMID:23202124

Horikoshi, Momoko; Yaghootkar, Hanieh; Mook-Kanamori, Dennis O.; Sovio, Ulla; Taal, H. Rob; Hennig, Branwen J.; Bradfield, Jonathan P.; St. Pourcain, Beate; Evans, David M.; Charoen, Pimphen; Kaakinen, Marika; Cousminer, Diana L.; Lehtimäki, Terho; Kreiner-Møller, Eskil; Warrington, Nicole M.; Bustamante, Mariona; Feenstra, Bjarke; Berry, Diane J.; Thiering, Elisabeth; Pfab, Thiemo; Barton, Sheila J.; Shields, Beverley M.; Kerkhof, Marjan; van Leeuwen, Elisabeth M.; Fulford, Anthony J.; Kutalik, Zoltán; Zhao, Jing Hua; den Hoed, Marcel; Mahajan, Anubha; Lindi, Virpi; Goh, Liang-Kee; Hottenga, Jouke-Jan; Wu, Ying; Raitakari, Olli T.; Harder, Marie N.; Meirhaeghe, Aline; Ntalla, Ioanna; Salem, Rany M.; Jameson, Karen A.; Zhou, Kaixin; Monies, Dorota M.; Lagou, Vasiliki; Kirin, Mirna; Heikkinen, Jani; Adair, Linda S.; Alkuraya, Fowzan S.; Al-Odaib, Ali; Amouyel, Philippe; Andersson, Ehm Astrid; Bennett, Amanda J.; Blakemore, Alexandra I.F.; Buxton, Jessica L.; Dallongeville, Jean; Das, Shikta; de Geus, Eco J. C.; Estivill, Xavier; Flexeder, Claudia; Froguel, Philippe; Geller, Frank; Godfrey, Keith M.; Gottrand, Frédéric; Groves, Christopher J.; Hansen, Torben; Hirschhorn, Joel N.; Hofman, Albert; Hollegaard, Mads V.; Hougaard, David M.; Hyppönen, Elina; Inskip, Hazel M.; Isaacs, Aaron; Jørgensen, Torben; Kanaka-Gantenbein, Christina; Kemp, John P.; Kiess, Wieland; Kilpeläinen, Tuomas O.; Klopp, Norman; Knight, Bridget A.; Kuzawa, Christopher W.; McMahon, George; Newnham, John P.; Niinikoski, Harri; Oostra, Ben A.; Pedersen, Louise; Postma, Dirkje S.; Ring, Susan M.; Rivadeneira, Fernando; Robertson, Neil R.; Sebert, Sylvain; Simell, Olli; Slowinski, Torsten; Tiesler, Carla M.T.; Tönjes, Anke; Vaag, Allan; Viikari, Jorma S.; Vink, Jacqueline M.; Vissing, Nadja Hawwa; Wareham, Nicholas J.; Willemsen, Gonneke; Witte, Daniel R.; Zhang, Haitao; Zhao, Jianhua; Wilson, James F.; Stumvoll, Michael; Prentice, Andrew M.; Meyer, Brian F.; Pearson, Ewan R.; Boreham, Colin A.G.; Cooper, Cyrus; Gillman, Matthew W.; Dedoussis, George V.; Moreno, Luis A; Pedersen, Oluf; Saarinen, Maiju; Mohlke, Karen L.; Boomsma, Dorret I.; Saw, Seang-Mei; Lakka, Timo A.; Körner, Antje; Loos, Ruth J.F.; Ong, Ken K.; Vollenweider, Peter; van Duijn, Cornelia M.; Koppelman, Gerard H.; Hattersley, Andrew T.; Holloway, John W.; Hocher, Berthold; Heinrich, Joachim; Power, Chris; Melbye, Mads; Guxens, Mònica; Pennell, Craig E.; Bønnelykke, Klaus; Bisgaard, Hans; Eriksson, Johan G.; Widén, Elisabeth; Hakonarson, Hakon; Uitterlinden, André G.; Pouta, Anneli; Lawlor, Debbie A.; Smith, George Davey; Frayling, Timothy M.; McCarthy, Mark I.; Grant, Struan F.A.; Jaddoe, Vincent W.V.; Jarvelin, Marjo-Riitta; Timpson, Nicholas J.; Prokopenko, Inga; Freathy, Rachel M.

2012-01-01

108

New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism  

DEFF Research Database (Denmark)

Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.

Horikoshi, Momoko; Yaghootkar, Hanieh

2013-01-01

109

Topoisomerases facilitate transcription of long genes linked to autism  

Science.gov (United States)

Topoisomerases are expressed throughout the developing and adult brain and are mutated in some individuals with autism spectrum disorder (ASD). However, how topoisomerases are mechanistically connected to ASD is unknown. Here we found that topotecan, a Topoisomerase 1 (TOP1) inhibitor, dose-dependently reduced the expression of extremely long genes in mouse and human neurons, including nearly all genes >200 kb. Expression of long genes was also reduced following knockdown of Top1 or Top2b in neurons, highlighting that each enzyme was required for full expression of long genes. By mapping RNA polymerase II density genome-wide in neurons, we found that this length-dependent effect on gene expression was due to impaired transcription elongation. Interestingly, many high confidence ASD candidate genes are exceptionally long and were reduced in expression following TOP1 inhibition. Our findings suggest that chemicals and genetic mutations that impair topoisomerases could commonly contribute to ASD and other neurodevelopmental disorders. PMID:23995680

King, Ian F.; Yandava, Chandri N.; Mabb, Angela M.; Hsiao, Jack S.; Huang, Hsien-Sung; Pearson, Brandon L.; Calabrese, J. Mauro; Starmer, Joshua; Parker, Joel S.; Magnuson, Terry; Chamberlain, Stormy J.; Philpot, Benjamin D.; Zylka, Mark J.

2013-01-01

110

Molecular triangulation: Bridging linkage and molecular-network information for identifying candidate genes in Alzheimer's disease  

OpenAIRE

A major challenge in human genetics is identifying the molecular basis of common heritable disorders. In contrast to rare single-gene diseases, multifactorial disorders are thought to arise from the combined effect of multiple gene variants, such that any single variant may have only a modest effect on disease susceptibility. We present a method to identify genes that may harbor a significant proportion of the genetic variation that predisposes individuals to a given multifactorial disorder. ...

Krauthammer, Michael; Kaufmann, Charles A.; Gilliam, T. Conrad; Rzhetsky, Andrey

2004-01-01

111

Identifying essential Streptococcus sanguinis genes using genome-wide deletion mutation.  

Science.gov (United States)

Essential genes in pathogens are important for the development of antibacterial drugs. In this report, we described a protocol to identify essential genes in the Streptococcus sanguinis SK36 strain using genome-wide deletion mutation. A fusion PCR-based method is used to construct gene deletion fragments, which contain kanamycin resistance cassettes with two flanking arms of DNA upstream and downstream of the target gene. The linear fused PCR amplicons were transformed into S. sanguinis SK36 cells. No kanamycin-resistant transformants suggested the gene essentiality because the deletion of the essential gene renders a lethal phenotype of the transformants. The putative essential genes were further confirmed by independent transformations up to five attempts. The false nonessential genes were also identified by removing double-band mutants. PMID:25636610

Chen, Lei; Ge, Xiuchun; Xu, Ping

2015-01-01

112

Generalist Genes: Genetic Links Between Brain, Mind, and Education  

OpenAIRE

Genetics contributes importantly to learning abilities and disabilities—not just to reading, the target of most genetic research, but also to mathematics and other academic areas as well. One of the most important recent findings from quantitative genetic research such as twin studies is that the same set of genes is largely responsible for genetic influence across these domains. We call these “generalist genes” to highlight their pervasive influence. In other words, most genes found to...

Plomin, Robert; Kovas, Yulia; Haworth, Claire M. A.

2007-01-01

113

Topoisomerases facilitate transcription of long genes linked to autism  

OpenAIRE

Topoisomerases are expressed throughout the developing and adult brain and are mutated in some individuals with autism spectrum disorder (ASD). However, how topoisomerases are mechanistically connected to ASD is unknown. Here we found that topotecan, a Topoisomerase 1 (TOP1) inhibitor, dose-dependently reduced the expression of extremely long genes in mouse and human neurons, including nearly all genes >200 kb. Expression of long genes was also reduced following knockdown of Top1 or Top2b in ...

King, Ian F.; Yandava, Chandri N.; Mabb, Angela M.; Hsiao, Jack S.; Huang, Hsien-sung; Pearson, Brandon L.; Calabrese, J. Mauro; Starmer, Joshua; Parker, Joel S.; Magnuson, Terry; Chamberlain, Stormy J.; Philpot, Benjamin D.; Zylka, Mark J.

2013-01-01

114

The Complete Spectrum of Yeast Chromosome Instability Genes Identifies Candidate CIN Cancer Genes and Functional Roles for ASTRA Complex Components  

OpenAIRE

Chromosome instability (CIN) is observed in most solid tumors and is linked to somatic mutations in genome integrity maintenance genes. The spectrum of mutations that cause CIN is only partly known and it is not possible to predict a priori all pathways whose disruption might lead to CIN. To address this issue, we generated a catalogue of CIN genes and pathways by screening ?2,000 reduction-of-function alleles for 90% of essential genes in Saccharomyces cerevisiae. Integrating this with pub...

Stirling, Peter C.; Bloom, Michelle S.; Solanki-patil, Tejomayee; Smith, Stephanie; Sipahimalani, Payal; Li, Zhijian; Kofoed, Megan; Ben-aroya, Shay; Myung, Kyungjae; Hieter, Philip

2011-01-01

115

Identifying set-wise differential co-expression in gene expression microarray data  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Previous differential coexpression analyses focused on identification of differentially coexpressed gene pairs, revealing many insightful biological hypotheses. However, this method could not detect coexpression relationships between pairs of gene sets. Considering the success of many set-wise analysis methods for microarray data, a coexpression analysis based on gene sets may elucidate underlying biological processes provoked by the conditional changes. Here, we propose a differentially coexpressed gene sets (dCoxS algorithm that identifies the differentially coexpressed gene set pairs between conditions. Results dCoxS is a two-step analysis method. In each condition, dCoxS measures the interaction score (IS, which represents the expression similarity between two gene sets using Renyi relative entropy. When estimating the relative entropy, multivariate kernel density estimation was used to model gene-gene correlation structure. Statistical tests for the conditional difference between the ISs determined the significance of differential coexpression of the gene set pair. Simulation studies supported that the IS is a representative measure of similarity between gene expression matrices. Single gene coexpression analysis of two publicly available microarray datasets detected no significant results. However, the dCoxS analysis of the datasets revealed differentially coexpressed gene set pairs related to the biological conditions of the datasets. Conclusion dCoxS identified differentially coexpressed gene set pairs not found by single gene analysis. The results indicate that set-wise differential coexpression analysis is useful for understanding biological processes induced by conditional changes.

Kim Jihun

2009-04-01

116

Genomic convergence to identify candidate genes for Alzheimer disease on chromosome 10  

OpenAIRE

A broad region of chromosome 10 (chr10) has engendered continued interest in the etiology of late-onset Alzheimer Disease (LOAD) from both linkage and candidate gene studies. However, there is a very extensive heterogeneity on chr10. We converged linkage analysis and gene expression data using the concept of genomic convergence that suggests that genes showing positive results across multiple different data types are more likely to be involved in AD. We identified and examined 28 genes on chr...

Liang, Xueying; Slifer, Michael; Martin, Eden R.; Schnetz-boutaud, Nathalie; Bartlett, Jackie; Anderson, Brent; Zu?chner, Stephan; Gwirtsman, Harry; Gilbert, John R.; Pericak-vance, Margaret A.; Haines, Jonathan L.

2009-01-01

117

Computationally Identifying Novel NF-?B-Regulated Immune Genes in the Human Genome  

OpenAIRE

Identifying novel NF-?B-regulated immune genes in the human genome is important to our understanding of immune mechanisms and immune diseases. We fit logistic regression models to the promoters of 62 known NF-?B-regulated immune genes, to find patterns of transcription factor binding in the promoters of genes with known immune function. Using these patterns, we scanned the promoters of additional genes to find matches to the patterns, selected those with NF-?B binding sites conserved in th...

Liu, Rongxiang; Mceachin, Richard C.; States, David J.

2003-01-01

118

RNA interference screen to identify genes required for Drosophila embryonic nervous system development  

OpenAIRE

RNA interference (RNAi) has been shown to be a powerful method to study the function of genes in vivo by silencing endogenous mRNA with double-stranded (ds) RNA. Previously, we performed in vivo RNAi screening and identified 43 Drosophila genes, including 18 novel genes required for the development of the embryonic nervous system. In the present study, 22 additional genes affecting embryonic nervous system development were found. Novel RNAi-induced phenotypes affecting nervous system developm...

Koizumi, Keita; Higashida, Haruhiro; Yoo, Siuk; Islam, Mohamad Saharul; Ivanov, Andrej I.; Guo, Vicky; Pozzi, Paola; Yu, Shu-hua; Rovescalli, Alessandra C.; Tang, Derek; Nirenberg, Marshall

2007-01-01

119

TM4SF10 gene sequencing in XLMR patients identifies common polymorphisms but no disease-associated mutation  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background The TM4SF10 gene encodes a putative four-transmembrane domains protein of unknown function termed Brain Cell Membrane Protein 1 (BCMP1, and is abundantly expressed in the brain. This gene is located on the short arm of human chromosome X at p21.1. The hypothesis that mutations in the TM4SF10 gene are associated with impaired brain function was investigated by sequencing the gene in individuals with hereditary X-linked mental retardation (XLMR. Methods The coding region (543 bp of TM4SF10, including intronic junctions, and the long 3' untranslated region (3 233 bp, that has been conserved during evolution, were sequenced in 16 male XLMR patients from 14 unrelated families with definite, or suggestive, linkage to the TM4SF10 gene locus, and in 5 normal males. Results Five sequence changes were identified but none was found to be associated with the disease. Two of these changes correspond to previously known SNPs, while three other were novel SNPs in the TM4SF10 gene. Conclusion We have investigated the majority of the known MRX families linked to the TM4SF10 gene region. In the absence of mutations detected, our study indicates that alterations of TM4SF10 are not a frequent cause of XLMR.

Holinski-Feder Elke

2004-09-01

120

Identifying Genes Responsible for Tamoxifen Resistance in Breast Cancer  

OpenAIRE

Breast cancer is one of the leading causes of death of women in western countries. It affects one out of eight females in the USA (1) and one out of nine females in The Netherlands (www.kankerregistratie.nl) during their lifetime. Many risk factors for breast cancer have been identified including gender, familial susceptibility, age, and exposure to hormones i.e. use of exogenous hormones, young age at menarge, and high age at menopause and first pregnancy (2). Familial breast ...

Meijer, D.

2008-01-01

121

Similar gene expression profiles of sporadic, PGL2-, and SDHD-linked paragangliomas suggest a common pathway to tumorigenesis  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Paragangliomas of the head and neck are highly vascular and usually clinically benign tumors arising in the paraganglia of the autonomic nervous system. A significant number of cases (10–50% are proven to be familial. Multiple genes encoding subunits of the mitochondrial succinate-dehydrogenase (SDH complex are associated with hereditary paraganglioma: SDHB, SDHC and SDHD. Furthermore, a hereditary paraganglioma family has been identified with linkage to the PGL2 locus on 11q13. No SDH genes are known to be located in the 11q13 region, and the exact gene defect has not yet been identified in this family. Methods We have performed a RNA expression microarray study in sporadic, SDHD- and PGL2-linked head and neck paragangliomas in order to identify potential differences in gene expression leading to tumorigenesis in these genetically defined paraganglioma subgroups. We have focused our analysis on pathways and functional gene-groups that are known to be associated with SDH function and paraganglioma tumorigenesis, i.e. metabolism, hypoxia, and angiogenesis related pathways. We also evaluated gene clusters of interest on chromosome 11 (i.e. the PGL2 locus on 11q13 and the imprinted region 11p15. Results We found remarkable similarity in overall gene expression profiles of SDHD -linked, PGL2-linked and sporadic paraganglioma. The supervised analysis on pathways implicated in PGL tumor formation also did not reveal significant differences in gene expression between these paraganglioma subgroups. Moreover, we were not able to detect differences in gene-expression of chromosome 11 regions of interest (i.e. 11q23, 11q13, 11p15. Conclusion The similarity in gene-expression profiles suggests that PGL2, like SDHD, is involved in the functionality of the SDH complex, and that tumor formation in these subgroups involves the same pathways as in SDH linked paragangliomas. We were not able to clarify the exact identity of PGL2 on 11q13. The lack of differential gene-expression of chromosome 11 genes might indicate that chromosome 11 loss, as demonstrated in SDHD-linked paragangliomas, is an important feature in the formation of paragangliomas regardless of their genetic background.

Hogendoorn Pancras CW

2009-05-01

122

Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs are in some aspects suitable as a translational model for human breast tumors in order to identify prognostic molecular signatures and potential therapeutic targets.

Hummel Michael

2010-11-01

123

A novel minicollagen gene links cnidarians and myxozoans  

OpenAIRE

Myxozoans are enigmatic endoparasitic organisms sharing morphological features with bilateria, protists and cnidarians. This, coupled with their highly divergent gene sequences, has greatly obscured their phylogenetic affinities. Here we report the sequencing and characterization of a minicollagen homologue (designated Tb-Ncol-1) in the myxozoan Tetracapsuloides bryosalmonae. Minicollagens are phylum-specific genes encoding cnidarian nematocyst proteins. Sequence analysis revealed a cysteine-...

Holland, Jason W.; Okamura, Beth; Hartikainen, Hanna; Secombes, Chris J.

2010-01-01

124

A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Noncoding RNA species play a diverse set of roles in the eukaryotic cell. While much recent attention has focused on smaller RNA species, larger noncoding transcripts are also thought to be highly abundant in mammalian cells. To search for large noncoding RNAs that might control gene expression or mRNA metabolism, we used Affymetrix expression arrays to identify polyadenylated RNA transcripts displaying nuclear enrichment. Results This screen identified no more than three transcripts; XIST, and two unique noncoding nuclear enriched abundant transcripts (NEAT RNAs strikingly located less than 70 kb apart on human chromosome 11: NEAT1, a noncoding RNA from the locus encoding for TncRNA, and NEAT2 (also known as MALAT-1. While the two NEAT transcripts share no significant homology with each other, each is conserved within the mammalian lineage, suggesting significant function for these noncoding RNAs. NEAT2 is extraordinarily well conserved for a noncoding RNA, more so than even XIST. Bioinformatic analyses of publicly available mouse transcriptome data support our findings from human cells as they confirm that the murine homologs of these noncoding RNAs are also nuclear enriched. RNA FISH analyses suggest that these noncoding RNAs function in mRNA metabolism as they demonstrate an intimate association of these RNA species with SC35 nuclear speckles in both human and mouse cells. These studies show that one of these transcripts, NEAT1 localizes to the periphery of such domains, whereas the neighboring transcript, NEAT2, is part of the long-sought polyadenylated component of nuclear speckles. Conclusion Our genome-wide screens in two mammalian species reveal no more than three abundant large non-coding polyadenylated RNAs in the nucleus; the canonical large noncoding RNA XIST and NEAT1 and NEAT2. The function of these noncoding RNAs in mRNA metabolism is suggested by their high levels of conservation and their intimate association with SC35 splicing domains in multiple mammalian species.

Lynch Christopher R

2007-02-01

125

Identification of RAPD Markers Linked to the Male Sterility Gene in Sugar Beet (Beta vulgaris L.  

Directory of Open Access Journals (Sweden)

Full Text Available Genetic male sterility is controlled by one pair of ressesive allele (aa in sugar beet. This trait is used in most breeding programes. The exsistance of the character in a line or population facilitates transfer of important trait to the breeding material (for example resistance to plant disease. Also, it is possible to increase genetic diversity of monogerm populations by using genetic male sterility. The time and cost of transferring of this gene will be decreased, if the character is tagged with a molecular marker. Bulked segregant analysis using 302 RAPD primers in two F2 populations (231 and 261 population was performed for the the identification of RAPD markers linked to the genetic male sterility gene. DNA preparation from 8 male fertile and male sterile plants were separately mixed. At first, the primers were tested on bulks. The primers with polymorphic bands were tested on individual plants of the bulks. Only if the polymorphism of the primers was confirmed, they were tested on the other individual plants. Finally, 10 and 6 markers were identified in 231 and 261 populations, respectively, which their distances to male sterility gene were lower than 50 cM. AB-8-18-600r marker was the nearest marker to male sterility gene. This marker showed only 3 and 1 recombination in 231 and 261 populations, respectively. The distance of this marker and genetic male sterility locus was estimated as 5.3 cM in combined F2 populations.

A. Mirzaei asl

2007-04-01

126

Functional epigenomics approach to identify methylated candidate tumour suppressor genes in renal cell carcinoma  

OpenAIRE

Promoter region hypermethylation and transcriptional silencing is a frequent cause of tumour suppressor gene (TSG) inactivation in many human cancers. Previously, to identify candidate epigenetically inactivated TSGs in renal cell carcinoma (RCC), we monitored changes in gene expression in four RCC cell lines after treatment with the demethylating agent 5-azacytidine. This enabled us to identify HAI-2/SPINT2 as a novel epigenetically inactivated candidate RCC TSG. To identify further candidat...

Morris, M. R.; Gentle, D.; Abdulrahman, M.; Clarke, N.; Brown, M.; Kishida, T.; Yao, M.; Teh, B. T.; Latif, F.; Maher, E. R.

2008-01-01

127

Exome Sequencing Identifies Three Novel Candidate Genes Implicated in Intellectual Disability  

OpenAIRE

Intellectual disability (ID) is a major health problem mostly with an unknown etiology. Recently exome sequencing of individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were identified: lysine (K)-specif...

Agha, Zehra; Iqbal, Zafar; Azam, Maleeha; Ayub, Humaira; Vissers, Lisenka E. L. M.; Gilissen, Christian; Ali, Syeda Hafiza Benish; Riaz, Moeen; Veltman, Joris A.; Pfundt, Rolph; Bokhoven, Hans; Qamar, Raheel

2014-01-01

128

Gene expression profiles of breast biopsies from healthy women identify a group with claudin-low features  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Increased understanding of the variability in normal breast biology will enable us to identify mechanisms of breast cancer initiation and the origin of different subtypes, and to better predict breast cancer risk. Methods Gene expression patterns in breast biopsies from 79 healthy women referred to breast diagnostic centers in Norway were explored by unsupervised hierarchical clustering and supervised analyses, such as gene set enrichment analysis and gene ontology analysis and comparison with previously published genelists and independent datasets. Results Unsupervised hierarchical clustering identified two separate clusters of normal breast tissue based on gene-expression profiling, regardless of clustering algorithm and gene filtering used. Comparison of the expression profile of the two clusters with several published gene lists describing breast cells revealed that the samples in cluster 1 share characteristics with stromal cells and stem cells, and to a certain degree with mesenchymal cells and myoepithelial cells. The samples in cluster 1 also share many features with the newly identified claudin-low breast cancer intrinsic subtype, which also shows characteristics of stromal and stem cells. More women belonging to cluster 1 have a family history of breast cancer and there is a slight overrepresentation of nulliparous women in cluster 1. Similar findings were seen in a separate dataset consisting of histologically normal tissue from both breasts harboring breast cancer and from mammoplasty reductions. Conclusion This is the first study to explore the variability of gene expression patterns in whole biopsies from normal breasts and identified distinct subtypes of normal breast tissue. Further studies are needed to determine the specific cell contribution to the variation in the biology of normal breasts, how the clusters identified relate to breast cancer risk and their possible link to the origin of the different molecular subtypes of breast cancer.

Navjord Dina

2011-11-01

129

RNA-Seq identifies novel myocardial gene expression signatures of heart failure.  

Science.gov (United States)

Heart failure is a complex clinical syndrome and has become the most common reason for adult hospitalization in developed countries. Two subtypes of heart failure, ischemic heart disease (ISCH) and dilated cardiomyopathy (DCM), have been studied using microarray platforms. However, microarray has limited resolution. Here we applied RNA sequencing (RNA-Seq) to identify gene signatures for heart failure from six individuals, including three controls, one ISCH and two DCM patients. Using genes identified from this small RNA-Seq dataset, we were able to accurately classify heart failure status in a much larger set of 313 individuals. The identified genes significantly overlapped with genes identified via genome-wide association studies for cardiometabolic traits and the promoters of those genes were enriched for binding sites for transcriptions factors. Our results indicate that it is possible to use RNA-Seq to classify disease status for complex diseases such as heart failure using an extremely small training dataset. PMID:25528681

Liu, Yichuan; Morley, Michael; Brandimarto, Jeffrey; Hannenhalli, Sridhar; Hu, Yu; Ashley, Euan A; Tang, W H Wilson; Moravec, Christine S; Margulies, Kenneth B; Cappola, Thomas P; Li, Mingyao

2015-02-01

130

A candidate gene for X-linked Ocular Albinism (OA1)  

Energy Technology Data Exchange (ETDEWEB)

Ocular Albinism of the Nettleship-Fall type 1 (OA1) is the most common form of ocular albinism. It is transmitted as an X-linked recessive trait with affected males showing severe reduction of visual acuity, nystagmus, strabismus, photophobia. Ophthalmologic examination reveals foveal hypoplasia, hypopigmentation of the retina and iris translucency. Microscopic examination of melanocytes suggests that the underlying defect in OA1 is an abnormality in melanosome formation. Recently we assembled a 350 kb cosmid contig spanning the entire critical region on Xp22.3, which measures approximately 110 kb. A minimum set of cosmids was used to identify transcribed sequences using both cDNA selection and exon amplification. Two putative exons recovered by exon amplification strategy were found to be highly conserved throughout evolution and, therefore, they were used as probes for the screening of fetal and adult retina cDNA libraries. This led to the isolation of clones spanning a full-length cDNA which measures 7.6 kb. Sequence analysis revealed that the predicted protein product shows homology with syntrophines and a Xenopus laevis apical protein. The gene covers approximately 170 kb of DNA and spans the entire critical region for OA1, being deleted in two patients with contiguous gene deletion including OA1 and in one patient with isolated OA1. Therefore, this new gene represents a very strong candidate for involvement in OA1 (an alternative, but unlikely possibility to be considered is that the true OA1 gene lies within an intron of the former). Northern analysis revealed very high level of expression in retina and melanoma. Unlike most Xp22.3 genes, this gene is conserved in the mouse. We are currently performing SSCP analysis and direct sequencing of exons on DNAs from approximately 60 unrelated patients with OA1 for mutation detection.

Bassi, M.T.; Schiaffino, V.; Rugarli, E. [Baylor College of Medicine, Houston, TX (United States)

1994-09-01

131

Birth and death of genes linked to chromosomal inversion  

OpenAIRE

The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome seque...

Furuta, Yoshikazu; Kawai, Mikihiko; Yahara, Koji; Takahashi, Noriko; Handa, Naofumi; Tsuru, Takeshi; Oshima, Kenshiro; Yoshida, Masaru; Azuma, Takeshi; Hattori, Masahira; Uchiyama, Ikuo; Kobayashi, Ichizo

2011-01-01

132

Topoisomerases facilitate transcription of long genes linked to autism.  

Science.gov (United States)

Topoisomerases are expressed throughout the developing and adult brain and are mutated in some individuals with autism spectrum disorder (ASD). However, how topoisomerases are mechanistically connected to ASD is unknown. Here we find that topotecan, a topoisomerase 1 (TOP1) inhibitor, dose-dependently reduces the expression of extremely long genes in mouse and human neurons, including nearly all genes that are longer than 200?kilobases. Expression of long genes is also reduced after knockdown of Top1 or Top2b in neurons, highlighting that both enzymes are required for full expression of long genes. By mapping RNA polymerase II density genome-wide in neurons, we found that this length-dependent effect on gene expression was due to impaired transcription elongation. Interestingly, many high-confidence ASD candidate genes are exceptionally long and were reduced in expression after TOP1 inhibition. Our findings suggest that chemicals and genetic mutations that impair topoisomerases could commonly contribute to ASD and other neurodevelopmental disorders. PMID:23995680

King, Ian F; Yandava, Chandri N; Mabb, Angela M; Hsiao, Jack S; Huang, Hsien-Sung; Pearson, Brandon L; Calabrese, J Mauro; Starmer, Joshua; Parker, Joel S; Magnuson, Terry; Chamberlain, Stormy J; Philpot, Benjamin D; Zylka, Mark J

2013-09-01

133

Gene expression: The missing link in evolutionary computation  

Energy Technology Data Exchange (ETDEWEB)

This paper points out that the traditional perspective of evolutionary computation may not provide the complete picture of evolutionary search. This paper focuses on gene expression-- transformations of representation (DNA->RNA->Protein) from a the perspective of relation construction. It decomposes the complex process of gene expression into several steps, namely (1) expression control of DNA base pairs, (2) alphabet transformations during transcription and translation, and (3) folding of the proteins from sequence representation to Euclidean space. Each of these steps is investigated on grounds of relation construction and search efficiency. At the end these pieces of the puzzle are put together to develope a possibly crude and cartoon computational description of gene expression.

Kargupta, H.

1997-09-01

134

Adipose Co-expression networks across Finns and Mexicans identify novel triglyceride-associated genes  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background High serum triglyceride (TG levels is an established risk factor for coronary heart disease (CHD. Fat is stored in the form of TGs in human adipose tissue. We hypothesized that gene co-expression networks in human adipose tissue may be correlated with serum TG levels and help reveal novel genes involved in TG regulation. Methods Gene co-expression networks were constructed from two Finnish and one Mexican study sample using the blockwiseModules R function in Weighted Gene Co-expression Network Analysis (WGCNA. Overlap between TG-associated networks from each of the three study samples were calculated using a Fisher’s Exact test. Gene ontology was used to determine known pathways enriched in each TG-associated network. Results We measured gene expression in adipose samples from two Finnish and one Mexican study sample. In each study sample, we observed a gene co-expression network that was significantly associated with serum TG levels. The TG modules observed in Finns and Mexicans significantly overlapped and shared 34 genes. Seven of the 34 genes (ARHGAP30, CCR1, CXCL16, FERMT3, HCST, RNASET2, SELPG were identified as the key hub genes of all three TG modules. Furthermore, two of the 34 genes (ARHGAP9, LST1 reside in previous TG GWAS regions, suggesting them as the regional candidates underlying the GWAS signals. Conclusions This study presents a novel adipose gene co-expression network with 34 genes significantly correlated with serum TG across populations.

Haas Blake E

2012-12-01

135

Genome-wide association study of metabolic traits reveals novel gene-metabolite-disease links.  

Science.gov (United States)

Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome- and genome-wide association study on (1)H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P<5×10(-8)) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P?=?6.9×10(-44)) and lysine (rs8101881, P?=?1.2×10(-33)), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohn's disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers. PMID:24586186

Rueedi, Rico; Ledda, Mirko; Nicholls, Andrew W; Salek, Reza M; Marques-Vidal, Pedro; Morya, Edgard; Sameshima, Koichi; Montoliu, Ivan; Da Silva, Laeticia; Collino, Sebastiano; Martin, François-Pierre; Rezzi, Serge; Steinbeck, Christoph; Waterworth, Dawn M; Waeber, Gérard; Vollenweider, Peter; Beckmann, Jacques S; Le Coutre, Johannes; Mooser, Vincent; Bergmann, Sven; Genick, Ulrich K; Kutalik, Zoltán

2014-02-01

136

Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

Cohn Zachary A

2007-06-01

137

U3 snoRNA genes are multi-copy and frequently linked to U5 snRNA genes in Euglena gracilis§  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background U3 snoRNA is a box C/D small nucleolar RNA (snoRNA involved in the processing events that liberate 18S rRNA from the ribosomal RNA precursor (pre-rRNA. Although U3 snoRNA is present in all eukaryotic organisms, most investigations of it have focused on fungi (particularly yeasts, animals and plants. Relatively little is known about U3 snoRNA and its gene(s in the phylogenetically broad assemblage of protists (mostly unicellular eukaryotes. In the euglenozoon Euglena gracilis, a distant relative of the kinetoplastid protozoa, Southern analysis had previously revealed at least 13 bands hybridizing with U3 snoRNA, suggesting the existence of multiple copies of U3 snoRNA genes. Results Through screening of a ? genomic library and PCR amplification, we recovered 14 U3 snoRNA gene variants, defined by sequence heterogeneities that are mostly located in the U3 3'-stem-loop domain. We identified three different genomic arrangements of Euglena U3 snoRNA genes: i stand-alone, ii linked to tRNAArg genes, and iii linked to a U5 snRNA gene. In arrangement ii, the U3 snoRNA gene is positioned upstream of two identical tRNAArg genes that are convergently transcribed relative to the U3 gene. This scenario is reminiscent of a U3 snoRNA-tRNA gene linkage previously described in trypanosomatids. We document here twelve different U3 snoRNA-U5 snRNA gene arrangements in Euglena; in each case, the U3 gene is linked to a downstream and convergently oriented U5 gene, with the intergenic region differing in length and sequence among the variants. Conclusion The multiple U3 snoRNA-U5 snRNA gene linkages, which cluster into distinct families based on sequence similarities within the intergenic spacer, presumably arose by genome, chromosome, and/or locus duplications. We discuss possible reasons for the existence of the unusually large number of U3 snoRNA genes in the Euglena genome. Variability in the signal intensities of the multiple Southern hybridization bands raises the possibility that Euglena contains a naturally aneuploid chromosome complement.

Charette J Michael

2009-11-01

138

Molecular genetics of X-linked retinitis pigmentosa: Progress towards cloning the RP3 gene  

Energy Technology Data Exchange (ETDEWEB)

Our goal is to identify the X-linked retinitis pigmentosa (XLRP) gene RP3. The location of RP3 is genetically delimited to a region of 1 Mb, distal to DXS140, CYBB and tctex-1-like gene and proximal to the gene OTC. It is currently thought that RP3 is within 40 kb of the proximal deletion breakpoint of a patient BB. However, a more proximal location of the gene, closer to OTC, is not ruled out. We initiated the isolation of the genomic region between DXS140 to OTC in YACs. One of the clones from DXS140 region (55B) is 460 kb and spans about 200 kb at each side of BB patient`s proximal breakpoint. It contains CYBB, tctex-1-like genes and two additional CpG islands. The 55B clone has been covered by cosmid and phage subclones. Another YAC clone from the OTC region (OTCC) spans about 1 Mb and contains at least 5 CpG islands. In situ hybridization performed with OTCC showed its location in Xp21; however, several derivative cosmids map to chromosome 7, indicating that it is a chimeric YAC. No overlap is evident between 55B and OTCC. We have isolated the YAC end-sequences and isolation of clones to close the gap is in progress. Cosmids are being used for screening eye tissue cDNA libraries, mainly from retina. Screening is done by hybridization to replica filters or by cDNA enrichment methods. Several cDNA clones have been isolated and are being characterized. Exon-amplification is also being used with the cosmids and phages. Genetic analysis is being performed to determine RP3 patients from clinically indistinguishable RP2, located in Xp11.23-p11.4, and to reduce the genetic distance of current flanking markers. For this we are analyzing a number of XLRP families with established markers in the region and with new microsatellites.

Fujita, R.; Yan, D.; McHenry, C. [Univ. of Michigan, Ann Arbor, MI (United States)] [and others

1994-09-01

139

NIH Researchers Identify New Gene Mutation Associated with ALS and Dementia  

Science.gov (United States)

... identify new gene mutation associated with ALS and dementia April 7, 2014 A rare mutation in a ... several people had been diagnosed with ALS and dementia, the investigators used exome sequencing—a technique in ...

140

Newly identified fusion genes in lung and colorectal cancer may guide treatment with 'targeted' drugs  

Science.gov (United States)

Novel gene abnormalities discovered in a subpopulation of lung and colorectal tumors could potentially identify patients with a good chance of responding to highly specific "targeted" drugs already in use for treating other cancers, scientists report.

141

A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. Results We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1 subclone genes of interest into BAC linking vectors, (2 insert desired reporter genes into respective genes and (3 link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. Conclusion The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

Gong Shiaochin

2009-03-01

142

Microarray analysis identifies distinct gene expression profiles associated with histological subtype in human osteosarcoma  

OpenAIRE

Osteosarcoma is the most common primary malignant bone tumour. Currently osteosarcoma classification is based on histological appearance. It was the aim of this study to use a more systematic approach to osteosarcoma classification based on gene expression analysis and to identify subtype specific differentially expressed genes. We analysed the global gene expression profiles of ten osteosarcoma samples using Affymetrix U133A arrays (five osteoblastic and five non-osteoblastic osteosarcoma pa...

Kubista, Bernd; Klinglmueller, Florian; Bilban, Martin; Pfeiffer, Martin; Lass, Richard; Giurea, Alexander; Funovics, Phillipp T.; Toma, Cyril; Dominkus, Martin; Kotz, Rainer; Thalhammer, Theresia; Trieb, Klemens; Zettl, Teresa; Singer, Christian F.

2010-01-01

143

A Genome-wide Approach to Identify the Genes Involved in Biofilm Formation in E. coli  

OpenAIRE

Biofilm forming cells are distinctive from the well-investigated planktonic cells and exhibit a different type of gene expression. Several new Escherichia coli genes related to biofilm formation have recently been identified through genomic approaches such as DNA microarray analysis. However, many others involved in this process might have escaped detection due to poor expression, regulatory mechanism, or genetic backgrounds. Here, we screened a collection of single-gene deletion mutants of E...

Niba, Emma Tabe Eko; Naka, Yoshiaki; Nagase, Megumi; Mori, Hirotada; Kitakawa, Madoka

2007-01-01

144

Generalist Genes: Genetic Links between Brain, Mind, and Education  

Science.gov (United States)

Genetics contributes importantly to learning abilities and disabilities--not just to reading, the target of most genetic research, but also to mathematics and other academic areas as well. One of the most important recent findings from quantitative genetic research such as twin studies is that the same set of genes is largely responsible for…

Plomin, Robert; Kovas, Yulia; Haworth, Claire M. A.

2007-01-01

145

Microarray analysis identified Puccinia striiformis f. sp. tritici genes involved in infection and sporulation.  

Science.gov (United States)

Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, one of the most important diseases of wheat worldwide. To identify Pst genes involved in infection and sporulation, a custom oligonucleotide Genechip was made using sequences of 442 genes selected from Pst cDNA libraries. Microarray analy...

146

IDENTIFYING DISEASE RESISTANCE GENES AND PATHWAYS THROUGH HOST-PATHOGEN PROTEIN INTERACTIONS  

Science.gov (United States)

A major objective of both animal and plant genomics research is to identify disease resistance genes and pathways. Popular approaches to achieve this goal include candidate gene testing, genome-wide QTL screens, and DNA microarrays. We argue that the two-hybrid assay, which detects protein-protein...

147

Mayo Clinic identifies gene critical to development and spread of lung cancer  

Science.gov (United States)

A single gene that promotes initial development of the most common form of lung cancer and its lethal metastases has been identified by researchers at Mayo Clinic in Florida. Their study suggests other forms of cancer may also be driven by this gene, matrix metalloproteinase-10 (MMP-10).

148

Identifying informative subsets of the Gene Ontology with information bottleneck methods  

OpenAIRE

Motivation: The Gene Ontology (GO) is a controlled vocabulary designed to represent the biological concepts pertaining to gene products. This study investigates the methods for identifying informative subsets of GO terms in an automatic and objective fashion. This task in turn requires addressing the following issues: how to represent the semantic context of GO terms, what metrics are suitable for measuring the semantic differences between terms, how to identify an informative subset that ret...

Jin, Bo; Lu, Xinghua

2010-01-01

149

Integrated analysis of recurrent properties of cancer genes to identify novel drivers  

OpenAIRE

The heterogeneity of cancer genomes in terms of acquired mutations complicates the identification of genes whose modification may exert a driver role in tumorigenesis. In this study, we present a novel method that integrates expression profiles, mutation effects, and systemic properties of mutated genes to identify novel cancer drivers. We applied our method to ovarian cancer samples and were able to identify putative drivers in the majority of carcinomas without mutations in known cancer gen...

D Antonio, Matteo; Ciccarelli, Francesca D.

2013-01-01

150

A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes  

OpenAIRE

Imprinted genes are critical for normal human growth and neurodevelopment. They are characterized by differentially methylated regions (DMRs) of DNA that confer parent of origin-specific transcription. We developed a new strategy to identify imprinted gene-associated DMRs. Using genome-wide methylation profiling of sodium bisulfite modified DNA from normal human tissues of biparental origin, candidate DMRs were identified by selecting CpGs with methylation levels consistent with putative alle...

Choufani, Sanaa; Shapiro, Jonathan S.; Susiarjo, Martha; Butcher, Darci T.; Grafodatskaya, Daria; Lou, Youliang; Ferreira, Jose C.; Pinto, Dalila; Scherer, Stephen W.; Shaffer, Lisa G.; Coullin, Philippe; Caniggia, Isabella; Beyene, Joseph; Slim, Rima; Bartolomei, Marisa S.

2011-01-01

151

Identifying the Common Target Genes for miR-21 Using Functional Enrichment Analysis  

OpenAIRE

miR-21 is a well-studied microRNA which hasbeen implicated in many cancers. However, it is still noconsensus pertaining to its target genes. This study employed afunctional enrichment analysis to identify the common targetgenes for miR-21. Genomic data were compared using threedifferent algorithms to identify the common target genes formiR-21. Our results enhance the understanding of the targetgenes and the relevant cellular pathways for the miR-21-relateddiseases.

Sim-Hui Tee

2013-01-01

152

Heterozygous Screen in Saccharomyces cerevisiae Identifies Dosage-Sensitive Genes That Affect Chromosome Stability  

OpenAIRE

Current techniques for identifying mutations that convey a small increased cancer risk or those that modify cancer risk in carriers of highly penetrant mutations are limited by the statistical power of epidemiologic studies, which require screening of large populations and candidate genes. To identify dosage-sensitive genes that mediate genomic stability, we performed a genomewide screen in Saccharomyces cerevisiae for heterozygous mutations that increase chromosome instability in a checkpoin...

Strome, Erin D.; Wu, Xiaowei; Kimmel, Marek; Plon, Sharon E.

2008-01-01

153

O-linked glycosylation of retroviral envelope gene products  

Energy Technology Data Exchange (ETDEWEB)

Treatment of ({sup 3}H)glucosamine-labeled Friend mink cell focus-forming virus (FrMCF) gp70 with excess peptide:N-glycanase F (PNGase F) resulted in removal of the expected seven N-linked oligosaccharide chains; however, approximately 10% of the glucosamine label was retained in the resulting 49,000-M{sub r} (49K) product. For ({sup 3}H)mannose-labeled gp70, similar treatment led to removal of all the carbohydrate label from the protein. Prior digestion of the PNGase F-treated gp70 with neuraminidase resulted in an addition size shift, and treatment with O-glycanase led to the removal of almost all of the PNGase F-resistant sugars. These results indicate that gp70 possesses sialic acid-containing O-linked oligosaccharides. Analysis of intracellular env precursors demonstrated that O-linked sugars were present in gPr90{sup env}, the polyprotein intermediate which contains complex sugars, but not in the primary translation product, gPr80{sup env}, and proteolytic digestion studies allowed localization of the O-linked carbohydrates to a 10K region near the center of the gp70 molecule. similar substituents were detected on the gp70s of ecotropic and xenotropic murine leukemia viruses and two subgroups of feline leukemia virus, indicting that O-linked glycosylation is a conserved feature of retroviral env proteins.

Pinter, A.; Honnen, W.J. (Public Health Research Institute of the City of New York Inc., NY (USA))

1988-03-01

154

O-linked glycosylation of retroviral envelope gene products  

International Nuclear Information System (INIS)

Treatment of [3H]glucosamine-labeled Friend mink cell focus-forming virus (FrMCF) gp70 with excess peptide:N-glycanase F (PNGase F) resulted in removal of the expected seven N-linked oligosaccharide chains; however, approximately 10% of the glucosamine label was retained in the resulting 49,000-Mr (49K) product. For [3H]mannose-labeled gp70, similar treatment led to removal of all the carbohydrate label from the protein. Prior digestion of the PNGase F-treated gp70 with neuraminidase resulted in an addition size shift, and treatment with O-glycanase led to the removal of almost all of the PNGase F-resistant sugars. These results indicate that gp70 possesses sialic acid-containing O-linked oligosaccharides. Analysis of intracellular env precursors demonstrated that O-linked sugars were present in gPr90env, the polyprotein intermediate which contains complex sugars, but not in the primary translation product, gPr80env, and proteolytic digestion studies allowed localization of the O-linked carbohydrates to a 10K region near the center of the gp70 molecule. similar substituents were detected on the gp70s of ecotropic and xenotropic murine leukemia viruses and two subgroups of feline leukemia virus, indicting that O-linked glycosylation is a conserved feature of retroviral env proteins

155

Gene-Based Rare Allele Analysis Identified a Risk Gene of Alzheimer’s Disease  

OpenAIRE

Alzheimer’s disease (AD) has a strong propensity to run in families. However, the known risk genes excluding APOE are not clinically useful. In various complex diseases, gene studies have targeted rare alleles for unsolved heritability. Our study aims to elucidate previously unknown risk genes for AD by targeting rare alleles. We used data from five publicly available genetic studies from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the database of Genotypes and Phenotypes (...

Kim, Jong Hun; Song, Pamela; Lim, Hyunsun; Lee, Jae-hyung; Lee, Jun Hong; Park, Sun Ah

2014-01-01

156

Epigenetic gene regulation: linking early developmental environment to adult disease.  

Science.gov (United States)

Traditional studies on the combined effects of genetics and the environment on individual variation in disease susceptibility primarily focus on single nucleotide polymorphisms that influence toxicant uptake and metabolism. A growing body of evidence, however, suggests that epigenetic mechanisms of gene regulation, such as DNA methylation and chromatin modification, are also influenced by the environment, and play an important role in the fetal basis of adult disease susceptibility. Studying the influence of early environmental exposures on metastable epialleles and imprinted genes offers insight into the mechanisms affecting the fetal epigenome and subsequent adult disease susceptibility. In this review, we introduce the reader to the field of environmental epigenomics, provide information on the important epigenetic control mechanisms and epigenetic phenomena in mammals, and summarize the current body of literature on nutritional and environmental influences affecting the epigenome. PMID:17046196

Dolinoy, Dana C; Weidman, Jennifer R; Jirtle, Randy L

2007-01-01

157

Cross-linked polyethylenimine–tripolyphosphate nanoparticles for gene delivery  

OpenAIRE

The high transfection efficiency of polyethylenimine (PEI) makes it an attractive potential nonviral genetic vector for gene delivery and therapy. However, the highly positive charge of PEI leads to cytotoxicity and limits its application. To reduce the cytotoxicity of PEI, we prepared anion-enriched nanoparticles that combined PEI with tripolyphosphate (TPP). We then characterized the PEI-TPP nanoparticles in terms of size, zeta potential, and Fourier-transform infrared (FTIR) spectra, and a...

Huang, Xianzhang; Shen, Sujing; Zhang, Zhanfeng; Zhuang, Junhua

2014-01-01

158

GTI: A Novel Algorithm for Identifying Outlier Gene Expression Profiles from Integrated Microarray Datasets  

Science.gov (United States)

Background Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type (‘outlier genes’), a hallmark of potential oncogenes. Methodology A new statistical method (the gene tissue index, GTI) was developed by modifying and adapting algorithms originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas. According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples. Immunohistochemical data were available for 65% (19 of 29) of these genes, and 17 of these 19 genes (90%) showed a typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier gene candidate as a potential therapeutic target. Conclusions/Significance Taken together, these results support the GTI as a novel approach to identify potential oncogene outliers and drug targets. The algorithm is implemented in an R package (Text S1). PMID:21365010

Mpindi, John Patrick; Sara, Henri; Haapa-Paananen, Saija; Kilpinen, Sami; Pisto, Tommi; Bucher, Elmar; Ojala, Kalle; Iljin, Kristiina; Vainio, Paula; Björkman, Mari; Gupta, Santosh; Kohonen, Pekka; Nees, Matthias; Kallioniemi, Olli

2011-01-01

159

A Genetic Analysis of the Drosophila Closely Linked Interacting Genes Bulge, Argos and Soba  

OpenAIRE

The Drosophila gene argos encodes a diffusible protein that acts as a negative regulator of cell fate decisions. To define interacting gene products, we performed a genetic analysis of argos, which suggests the presence of several partially redundant gene functions in its immediate vicinity at the chromosomal position 73A. Dose titration experiments have identified two of these loci. One of them corresponds to the gene bulge. Loss of function bulge alleles suppress the rough eye phenotype ass...

Wemmer, T.; Klambt, C.

1995-01-01

160

Oligonucleotide Microarray Identifies Genes Differentially Expressed during Tumorigenesis of DMBA-Induced Pancreatic Cancer in Rats  

Science.gov (United States)

The extremely dismal prognosis of pancreatic cancer (PC) is attributed, at least in part, to lack of early diagnosis. Therefore, identifying differentially expressed genes in multiple steps of tumorigenesis of PC is of great interest. In the present study, a 7,12-dimethylbenzanthraene (DMBA)-induced PC model was established in male Sprague-Dawley rats. The gene expression profile was screened using an oligonucleotide microarray, followed by real-time quantitative polymerase chain reaction (qRT-PCR) and immunohistochemical staining validation. A total of 661 differentially expressed genes were identified in stages of pancreatic carcinogenesis. According to GO classification, these genes were involved in multiple molecular pathways. Using two-way hierarchical clustering analysis, normal pancreas, acute and chronic pancreatitis, PanIN, early and advanced pancreatic cancer were completely discriminated. Furthermore, 11 upregulated and 142 downregulated genes (probes) were found by Mann-Kendall trend Monotone test, indicating homologous genes of rat and human. The qRT-PCR and immunohistochemistry analysis of CXCR7 and UBe2c, two of the identified genes, confirmed the microarray results. In human PC cell lines, knockdown of CXCR7 resulted in decreased migration and invasion. Collectively, our data identified several promising markers and therapeutic targets of PC based on a comprehensive screening and systemic validation. PMID:24376604

Zhou, Li; Zhang, Tai-Ping; Zhao, Yu-Pei

2013-01-01

161

Heterozygous Screen in Saccharomyces cerevisiae Identifies Dosage-Sensitive Genes That Affect Chromosome Stability  

Science.gov (United States)

Current techniques for identifying mutations that convey a small increased cancer risk or those that modify cancer risk in carriers of highly penetrant mutations are limited by the statistical power of epidemiologic studies, which require screening of large populations and candidate genes. To identify dosage-sensitive genes that mediate genomic stability, we performed a genomewide screen in Saccharomyces cerevisiae for heterozygous mutations that increase chromosome instability in a checkpoint-deficient diploid strain. We used two genome stability assays sensitive enough to detect the impact of heterozygous mutations and identified 172 heterozygous gene disruptions that affected chromosome fragment (CF) loss, 45% of which also conferred modest but statistically significant instability of endogenous chromosomes. Analysis of heterozygous deletion of 65 of these genes demonstrated that the majority increased genomic instability in both checkpoint-deficient and wild-type backgrounds. Strains heterozygous for COMA kinetochore complex genes were particularly unstable. Over 50% of the genes identified in this screen have putative human homologs, including CHEK2, ERCC4, and TOPBP1, which are already associated with inherited cancer susceptibility. These findings encourage the incorporation of this orthologous gene list into cancer epidemiology studies and suggest further analysis of heterozygous phenotypes in yeast as models of human disease resulting from haplo-insufficiency. PMID:18245329

Strome, Erin D.; Wu, Xiaowei; Kimmel, Marek; Plon, Sharon E.

2008-01-01

162

A Generally Applicable Translational Strategy Identifies S100A4 as a Candidate Gene in Allergy  

DEFF Research Database (Denmark)

The identification of diagnostic markers and therapeutic candidate genes in common diseases is complicated by the involvement of thousands of genes. We hypothesized that genes co-regulated with a key gene in allergy, IL13, would form a module that could help to identify candidate genes. We identified a T helper 2 (TH2) cell module by small interfering RNA–mediated knockdown of 25 putative IL13-regulating transcription factors followed by expression profiling. The module contained candidate genes whose diagnostic potential was supported by clinical studies. Functional studies of human TH2 cells as well as mouse models of allergy showed that deletion of one of the genes, S100A4, resulted in decreased signs of allergy including TH2 cell activation, humoral immunity, and infiltration of effector cells. Specifically, dendritic cells required S100A4 for activating T cells. Treatment with an anti-S100A4 antibody resulted in decreased signs of allergy in the mouse model as well as in allergen-challenged T cells from allergic patients. This strategy, which may be generally applicable to complex diseases, identified and validated an important diagnostic and therapeutic candidate gene in allergy.

Bruhn, Sören; Fang, Yu

2014-01-01

163

A generally applicable translational strategy identifies S100A4 as a candidate gene in allergy  

DEFF Research Database (Denmark)

The identification of diagnostic markers and therapeutic candidate genes in common diseases is complicated by the involvement of thousands of genes. We hypothesized that genes co-regulated with a key gene in allergy, IL13, would form a module that could help to identify candidate genes. We identified a T helper 2 (TH2) cell module by small interfering RNA-mediated knockdown of 25 putative IL13-regulating transcription factors followed by expression profiling. The module contained candidate genes whose diagnostic potential was supported by clinical studies. Functional studies of human TH2 cells as well as mouse models of allergy showed that deletion of one of the genes, S100A4, resulted in decreased signs of allergy including TH2 cell activation, humoral immunity, and infiltration of effector cells. Specifically, dendritic cells required S100A4 for activating T cells. Treatment with an anti-S100A4 antibody resulted in decreased signs of allergy in the mouse model as well as in allergen-challenged T cells from allergic patients. This strategy, which may be generally applicable to complex diseases, identified and validated an important diagnostic and therapeutic candidate gene in allergy.

Bruhn, Sören; Fang, Yu

2014-01-01

164

A Genome-wide screen identifies frequently methylated genes in haematological and epithelial cancers  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Genetic as well as epigenetic alterations are a hallmark of both epithelial and haematological malignancies. High throughput screens are required to identify epigenetic markers that can be useful for diagnostic and prognostic purposes across malignancies. Results Here we report for the first time the use of the MIRA assay (methylated CpG island recovery assay in combination with genome-wide CpG island arrays to identify epigenetic molecular markers in childhood acute lymphoblastic leukemia (ALL on a genome-wide scale. We identified 30 genes demonstrating methylation frequencies of ?25% in childhood ALL, nine genes showed significantly different methylation frequencies in B vs T-ALL. For majority of the genes expression could be restored in methylated leukemia lines after treatment with 5-azaDC. Forty-four percent of the genes represent targets of the polycomb complex. In chronic myeloid leukemia (CML two of the genes, (TFAP2A and EBF2, demonstrated increased methylation in blast crisis compared to chronic phase (P ATG16L2 was associated with poorer prognosis in terms of molecular response to Imatinib treatment. Lastly we demonstrated that ten of these genes were also frequently methylated in common epithelial cancers. Conclusion In summary we have identified a large number of genes showing frequent methylation in childhood ALL, methylation status of two of these genes is associated with advanced disease in CML and methylation status of another gene is associated with prognosis. In addition a subset of these genes may act as epigenetic markers across hematological malignancies as well as common epithelial cancers.

Maher Eamonn R

2010-02-01

165

GeneLink: a database to facilitate genetic studies of complex traits  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background In contrast to gene-mapping studies of simple Mendelian disorders, genetic analyses of complex traits are far more challenging, and high quality data management systems are often critical to the success of these projects. To minimize the difficulties inherent in complex trait studies, we have developed GeneLink, a Web-accessible, password-protected Sybase database. Results GeneLink is a powerful tool for complex trait mapping, enabling genotypic data to be easily merged with pedigree and extensive phenotypic data. Specifically designed to facilitate large-scale (multi-center genetic linkage or association studies, GeneLink securely and efficiently handles large amounts of data and provides additional features to facilitate data analysis by existing software packages and quality control. These include the ability to download chromosome-specific data files containing marker data in map order in various formats appropriate for downstream analyses (e.g., GAS and LINKAGE. Furthermore, an unlimited number of phenotypes (either qualitative or quantitative can be stored and analyzed. Finally, GeneLink generates several quality assurance reports, including genotyping success rates of specified DNA samples or success and heterozygosity rates for specified markers. Conclusions GeneLink has already proven an invaluable tool for complex trait mapping studies and is discussed primarily in the context of our large, multi-center study of hereditary prostate cancer (HPC. GeneLink is freely available at http://research.nhgri.nih.gov/genelink.

Wolfsberg Tyra G

2004-10-01

166

Identifying the Source of Unknown Microcystin Genes and Predicting Microcystin Variants by Comparing Genes within Uncultured Cyanobacterial Cells?  

OpenAIRE

While multiple phylogenetic markers have been used in the culture-independent study of microcystin-producing cyanobacteria, in only a few instances have multiple markers been studied within individual cells, and in all cases these studies have been conducted with cultured isolates. Here, we isolate and evaluate large DNA fragments (>6 kb) encompassing two genes involved in microcystin biosynthesis (mcyA2 and mcyB1) and use them to identify the source of gene fragments found in water samples. ...

Allender, Christopher J.; Lecleir, Gary R.; Rinta-kanto, Johanna M.; Small, Randall L.; Satchwell, Michael F.; Boyer, Gregory L.; Wilhelm, Steven W.

2009-01-01

167

Gene Expression Analysis of Human Prostate Carcinoma during Hormonal Therapy Identifies Androgen-Responsive Genes and Mechanisms of Therapy Resistance  

OpenAIRE

The androgen-signaling pathway is critical to the development and progression of prostate cancer and androgen ablation is a mainstay of therapy for this disease. We performed a genome-wide expression analysis of human prostate cancer during androgen ablation therapy to identify genes regulated by androgen and genes differentially expressed after the development of resistance. Six hundred and fifty-four of 63,175 probe sets detected significant expression changes after 3 months of treatment wi...

Holzbeierlein, Jeff; Lal, Priti; Latulippe, Eva; Smith, Alex; Satagopan, Jaya; Zhang, Liying; Ryan, Charles; Smith, Steve; Scher, Howard; Scardino, Peter; Reuter, Victor; Gerald, William L.

2004-01-01

168

Development of two sequence-specific PCR markers linked to the le gene that reduces pod shattering in narrow-leafed Lupin (Lupinus angustifolius L.)  

OpenAIRE

Wild types of narrow-leaf lupin (Lupinus angustifolius L.) have seed pods that shatter upon maturity, leading to the loss of their seeds before or during the harvest process. Two recessive genes have been incorporated into domesticated cultivars of this species to maximize harvest-ability of the produce. One of these genes is called lentus (le). Two microsatellite - anchored fragment length polymorphism (MFLP) candidate markers were identified as closely linked to the le gene in a recombinant...

Boersma, Jeffrey G.; Buirchell, Bevan J.; Krishnapillai Sivasithamparam; Huaan Yang

2007-01-01

169

Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background In the clinical context, samples assayed by microarray are often classified by cell line or tumour type and it is of interest to discover a set of genes that can be used as class predictors. The leukemia dataset of Golub et al. 1 and the NCI60 dataset of Ross et al. 2 present multiclass classification problems where three tumour types and nine cell lines respectively must be identified. We apply an evolutionary algorithm to identify the near-optimal set of predictive genes that classify the data. We also examine the initial gene selection step whereby the most informative genes are selected from the genes assayed. Results In the absence of feature selection, classification accuracy on the training data is typically good, but not replicated on the testing data. Gene selection using the RankGene software 3 is shown to significantly improve performance on the testing data. Further, we show that the choice of feature selection criteria can have a significant effect on accuracy. The evolutionary algorithm is shown to perform stably across the space of possible parameter settings – indicating the robustness of the approach. We assess performance using a low variance estimation technique, and present an analysis of the genes most often selected as predictors. Conclusion The computational methods we have developed perform robustly and accurately, and yield results in accord with clinical knowledge: A Z-score analysis of the genes most frequently selected identifies genes known to discriminate AML and Pre-T ALL leukemia. This study also confirms that significantly different sets of genes are found to be most discriminatory as the sample classes are refined.

Aitken Stuart

2005-06-01

170

A combined analysis of microarray gene expression studies of the human prefrontal cortex identifies genes implicated in schizophrenia.  

Science.gov (United States)

Small cohort sizes and modest levels of gene expression changes in brain tissue have plagued the statistical approaches employed in microarray studies investigating the mechanism of schizophrenia. To combat these problems a combined analysis of six prior microarray studies was performed to facilitate the robust statistical analysis of gene expression data from the dorsolateral prefrontal cortex of 107 patients with schizophrenia and 118 healthy subjects. Multivariate permutation tests identified 144 genes that were differentially expressed between schizophrenia and control groups. Seventy of these genes were identified as differentially expressed in at least one component microarray study but none of these individual studies had the power to identify the remaining 74 genes, demonstrating the utility of a combined approach. Gene ontology terms and biological pathways that were significantly enriched for differentially expressed genes were related to neuronal cell-cell signaling, mesenchymal induction, and mitogen-activated protein kinase signaling, which have all previously been associated with the etiopathogenesis of schizophrenia. The differential expression of BAG3, C4B, EGR1, MT1X, NEUROD6, SST and S100A8 was confirmed by real-time quantitative PCR in an independent cohort using postmortem human prefrontal cortex samples. Comparison of gene expression between schizophrenic subjects with and without detectable levels of antipsychotics in their blood suggests that the modulation of MT1X and S100A8 may be the result of drug exposure. In conclusion, this combined analysis has resulted in a statistically robust identification of genes whose dysregulation may contribute to the mechanism of schizophrenia. PMID:22954356

Pérez-Santiago, Josué; Diez-Alarcia, Rebeca; Callado, Luis F; Zhang, Jin X; Chana, Gursharan; White, Cory H; Glatt, Stephen J; Tsuang, Ming T; Everall, Ian P; Meana, J Javier; Woelk, Christopher H

2012-11-01

171

Mutations in the gene for X-linked adrenoleukodystrophy in patients with different clinical phenotypes.  

Science.gov (United States)

Recently, the gene for the most common peroxisomal disorder, X-linked adrenoleukodystrophy (X-ALD), has been described encoding a peroxisomal membrane transporter protein. We analyzed the entire protein-coding sequence of this gene by reverse-transcription PCR, SSCP, and DNA sequencing in five patients with different clinical expression of X-ALD and in their female relatives; these clinical expressions were cerebral childhood ALD, adrenomyeloneuropathy (AMN), and "Addison disease only" (ADO) phenotype. In the three patients exhibiting the classical picture of severe childhood ALD we identified in the 5' portion of the X-ALD gene a 38-bp deletion that causes a frameshift mutation, a 3-bp deletion leading to a deletion of an amino acid in the ATP-binding domain of the ALD protein, and a missense mutation. In the patient with the clinical phenotype of AMN, a nonsense mutation in codon 212, along with a second site mutation at codon 178, was observed. Analysis of the patient with the ADO phenotype revealed a further missense mutation at a highly conserved position in the ALDP/PMP70 comparison. The disruptive nature of two mutations (i.e., the frameshift and the nonsense mutation) in patients with biochemically proved childhood ALD and AMN further strongly supports the hypothesis that alterations in this gene play a crucial role in the pathogenesis of X-ALD. Since the current biochemical techniques for X-ALD carrier detection in affected families lack sufficient reliability, our procedure described for systematic mutation scanning is also capable of improving genetic counseling and prenatal diagnosis. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7717396

Braun, A; Ambach, H; Kammerer, S; Rolinski, B; Stöckler, S; Rabl, W; Gärtner, J; Zierz, S; Roscher, A A

1995-01-01

172

Mutations in the gene for X-linked adrenoleukodystrophy in patients with different clinical phenotypes  

Energy Technology Data Exchange (ETDEWEB)

Recently, the gene for the most common peroxisomal disorder, X-linked adrenoleukodystrophy (X-ALD), has been described encoding a peroxisomal membrane transporter protein. We analyzed the entire protein-coding sequence of this gene by reverse-transcription PCR, SSCP, and DNA sequencing in five patients with different clinical expressions were cerebral childhood ALD, adrenomyecloneuropathy (AMN), and {open_quotes}Addison disease only{close_quotes} (AD) phenotype. In the three patients exhibiting the classical picture of severe childhood ALD we identified in the 5{prime} portion of the X-ALD gene a 38-bp deletion that causes a frameshift mutation, a 3-bp deletion leading to a deletion of an amino acid in the ATP-binding domain of the ALD protein, and a missense mutation. In the patient with the clinical phenotype of AMN, a nonsense mutation in codon 212, along with a second site mutation at codon 178, was observed. Analysis of the patient with the ADO phenotype revealed a further missense mutation at a highly conserved position in the ALDP/PMP70 comparison. The disruptive nature of two mutations (i.e., the frameshift and the nonsense mutation) in patients with biochemically proved childhood ALD and AMN further strongly supports the hypothesis that alterations in this gene play a crucial role in the pathogenesis of X-ALD. Since the current biochemical techniques for X-ALD carrier detection in affected families lack sufficient reliability, our procedure described for systematic mutation scanning is also capable of improving genetic counseling and prenatal diagnosis. 19 refs., 6 figs., 3 tabs.

Braun, A.; Ambach, H.; Kammerer, S.; Rolinski, B.; Roscher, A.; Rabl, W. [Univ. of Munich (Germany); Stoeckler, S. [Univ. of Graz (Germany); Gaertner, J. [Univ. of Duesseldorf (Germany); Zierz, S. [Univ. of Bonn (Germany)

1995-04-01

173

Candidate Gene Approach Identifies Multiple Genes and Signaling Pathways Downstream of Tbx4 in the Developing Allantois  

OpenAIRE

Loss of Tbx4 results in absence of chorio-allantoic fusion and failure of formation of the primary vascular plexus of the allantois leading to embryonic death at E10.5. We reviewed the literature for genes implicated in chorio-allantoic fusion, cavitation and vascular plexus formation, processes affected in Tbx4 mutant allantoises. Using this candidate gene approach, we identified a number of genes downstream of Tbx4 in the allantois including extracellular matrix molecules Vcan, Has2, and It...

Arora, Ripla; Del Alcazar, Chelsea M.; Morrisey, Edward E.; Naiche, L. A.; Papaioannou, Virginia E.

2012-01-01

174

Functional genomics identifies novel genes essential for clear cell renal cell carcinoma tumor cell proliferation and migration.  

Science.gov (United States)

Currently there is a lack of targeted therapies that lead to long-term attenuation or regression of disease in patients with advanced clear cell renal cell carcinoma (ccRCC). Our group has implemented a high-throughput genetic analysis coupled with a high-throughput proliferative screen in order to investigate the genetic contributions of a large cohort of overexpressed genes at the functional level in an effort to better understand factors involved in tumor initiation and progression. Patient gene array analysis identified transcripts that are consistently elevated in patient ccRCC as compared to matched normal renal tissues. This was followed by a high-throughput lentivirus screen, independently targeting 195 overexpressed transcripts identified in the gene array in four ccRCC cell lines. This revealed 31 'hits' that contribute to ccRCC cell proliferation. Many of the hits identified are not only presented in the context of ccRCC for the first time, but several have not been previously linked to cancer. We further characterize the function of a group of hits in tumor cell invasion. Taken together these findings reveal pathways that may be critical in ccRCC tumorigenicity, and identifies novel candidate factors that could serve as targets for therapeutic intervention or diagnostic/prognostic biomarkers for patients with advanced ccRCC. PMID:24979721

Von Roemeling, Christina A; Marlow, Laura A; Radisky, Derek C; Rohl, Austin; Larsen, Hege Ekeberg; Wei, Johnny; Sasinowska, Heather; Zhu, Heng; Drake, Richard; Sasinowski, Maciek; Tun, Han W; Copland, John A

2014-07-30

175

Application of network properties and signal strength to identify face-to-face links in an electronic dataset  

CERN Document Server

Understanding how people interact and socialize is important in many contexts, from disease control to urban planning. Datasets that capture this specific aspect of human life have increased in size and availability over the last few years. We have yet to understand, however, to what extent such electronic datasets may serve as a valid proxy for real life face-to-face interactions. For an observational dataset, gathered by mobile phones, we attack the problem of identifying transient and non-important links, as well as how to highlight important interactions. Using the Bluetooth signal strength parameter to distinguish between observations, we demonstrate that weak links, compared to strong links, have a lower probability of being observed at later times, while such links--on average--also have lower link-weights and a lower probability of sharing an online friendship. Further, the role of link-strength is investigated in relation to social network properties.

Sekara, Vedran

2014-01-01

176

Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Serum Response Factor (SRF is a transcription factor that is required for the expression of many genes including immediate early genes, cytoskeletal genes, and muscle-specific genes. SRF is activated in response to extra-cellular signals by its association with a diverse set of co-activators in different cell types. In the case of the ubiquitously expressed immediate early genes, the two sets of SRF binding proteins that regulate its activity are the TCF family of proteins that include Elk1, SAP1 and SAP2 and the myocardin-related MKL family of proteins that include MKL1 and MKL2 (also known as MAL, MRTF-A and -B and BSAC. In response to serum or growth factors these two classes of co-activators are activated by different upstream signal transduction pathways. However, it is not clear how they differentially activate SRF target genes. Results In order to identify the serum-inducible SRF target genes that are specifically dependent on the MKL pathway, we have performed microarray experiments using a cell line that expresses dominant negative MKL1. This approach was used to identify SRF target genes whose activation is MKL-dependent. Twenty-eight of 150 serum-inducible genes were found to be MKL-dependent. The promoters of the serum-inducible genes were analyzed for SRF binding sites and other common regulatory elements. Putative SRF binding sites were found at a higher rate than in a mouse promoter database but were only identified in 12% of the serum-inducible promoters analyzed. Additional partial matches to the consensus SRF binding site were found at a higher than expected rate in the MKL-dependent gene promoters. The analysis for other common regulatory elements is discussed. Conclusions These results suggest that a subset of immediate early and SRF target genes are activated by the Rho-MKL pathway. MKL may also contribute to the induction of other SRF target genes however its role is not essential, possibly due to other activation mechanisms such as MAPK phosphorylation of TCFs.

Prywes Ron

2004-08-01

177

Involvment of MHC-linked hemopoietic-histocompatibility genes in allogeneic bone marrow transplantation in mice  

International Nuclear Information System (INIS)

Genes controlling resistance of irradiated mice to allogeneic hemopoietic cells were mapped within, or closely linked to the D region of MHC and were designated Hemopoietic-histocompatibility genes (Hhsub(a)). Hhsub(p) genes responsible for resistance to parental hemopoietic cells had also previously been detected on the D-end of MHC. Hh genes are regarded as determinants of cell surface antigens (Hh antigens) phenotypically expressed, in contrast to Histocompatibility antigens (H antigens), only on blood-forming and leukemic cells. The inheritance of Hh genes is not codominant, unlike that of H genes, suggesting that the Hh genes and H genes are independent entities. Hh antigens also seem to exist on rat and dog cells and it is plausible that these antigens also exist in man, and could influence the outcome of clinical bone marrow transplantation. (auth.)

178

O-linked glycosylation of retroviral envelope gene products.  

OpenAIRE

Treatment of [3H]glucosamine-labeled Friend mink cell focus-forming virus (FrMCF) gp70 with excess peptide:N-glycanase F (PNGase F) resulted in removal of the expected seven N-linked oligosaccharide chains; however, approximately 10% of the glucosamine label was retained in the resulting 49,000-Mr (49K) product. For [3H]mannose-labeled gp70, similar treatment led to removal of all the carbohydrate label from the protein. Prior digestion of the PNGase F-treated gp70 with neuraminidase resulted...

Pinter, A.; Honnen, W. J.

1988-01-01

179

Integrative genomics identifies RAB23 as an invasion mediator gene in diffuse-type gastric cancer.  

Science.gov (United States)

Recurrent genomic amplifications and deletions are frequently observed in primary gastric cancers (GC). However, identifying specific oncogenes and tumor suppressor genes within these regions can be challenging, as they often cover tens to hundreds of genes. Here, we combined high-resolution array-based comparative genomic hybridization (aCGH) with gene expression profiling to target genes within focal high-level amplifications in GC cell lines, and identified RAB23 as an amplified and overexpressed Chr 6p11p12 gene in Hs746T cells. High RAB23 protein expression was also observed in some lines lacking RAB23 amplification, suggesting additional mechanisms for up-regulating RAB23 besides gene amplification. siRNA silencing of RAB23 significantly reduced cellular invasion and migration in Hs746T cells, whereas overexpression of RAB23 enhanced cellular invasion in AGS cells. RAB23 amplifications in primary gastric tumors were confirmed by both fluorescence in situ hybridization and genomic qPCR, and in two independent patient cohorts from Hong Kong and the United Kingdom RAB23 expression was significantly associated with diffuse-type GC (dGC) compared with intestinal-type GC (iGC). These results provide further evidence that dGC and iGC likely represent two molecularly distinct tumor types, and show that investigating focal chromosomal amplifications by combining high-resolution aCGH with expression profiling is a powerful strategy for identifying novel cancer genes in regions of recurrent chromosomal aberration. PMID:18559507

Hou, Qingsong; Wu, Yong Hui; Grabsch, Heike; Zhu, Yansong; Leong, Siew Hong; Ganesan, Kumaresan; Cross, Debra; Tan, Lay Keng; Tao, Jiong; Gopalakrishnan, Veena; Tang, Bor Luen; Kon, Oi Lian; Tan, Patrick

2008-06-15

180

Using the Phenogen website for 'in silico' analysis of morphine-induced analgesia: identifying candidate genes.  

Science.gov (United States)

The identification of genes that contribute to polygenic (complex) behavioral phenotypes is a key goal of current genetic research. One approach to this goal is to combine gene expression information with genetic information, i.e. to map chromosomal regions that regulate gene expression levels. This approach has been termed 'genetical genomics', and, when used in conjunction with the identification of genomic regions (QTLs) that regulate the complex physiological trait under investigation, provides a strong basis for candidate gene discovery. In this paper, we describe the implementation of the genetical genomic/phenotypic approach to identify candidate genes for sensitivity to the analgesic effect of morphine in BXD recombinant inbred mice. Our analysis was performed 'in silico', using an online interactive resource called PhenoGen (http://phenogen.ucdenver.edu). We describe in detail the use of this resource, which identified a set of candidate genes, some of whose products regulate the cellular localization and activity of the mu opiate receptor. The results demonstrate how PhenoGen can be used to identify a novel set of genes that can be further investigated for their potential role in pain, morphine analgesia and/or morphine tolerance. PMID:21054686

Hoffman, Paula L; Bennett, Beth; Saba, Laura M; Bhave, Sanjiv V; Carosone-Link, Phyllis J; Hornbaker, Cheryl K; Kechris, Katerina J; Williams, Robert W; Tabakoff, Boris

2011-07-01

181

Functional epigenomics approach to identify methylated candidate tumour suppressor genes in renal cell carcinoma.  

Science.gov (United States)

Promoter region hypermethylation and transcriptional silencing is a frequent cause of tumour suppressor gene (TSG) inactivation in many human cancers. Previously, to identify candidate epigenetically inactivated TSGs in renal cell carcinoma (RCC), we monitored changes in gene expression in four RCC cell lines after treatment with the demethylating agent 5-azacytidine. This enabled us to identify HAI-2/SPINT2 as a novel epigenetically inactivated candidate RCC TSG. To identify further candidate TSGs, we undertook bioinformatic and molecular genetic evaluation of a further 60 genes differentially expressed after demethylation. In addition to HAI-2/SPINT2, four genes (PLAU, CDH1, IGFB3 and MT1G) had previously been shown to undergo promoter methylation in RCC. After bioinformatic prioritisation, expression and/or methylation analysis of RCC cell lines+/-primary tumours was performed for 34 genes. KRT19 and CXCL16 were methylated in RCC cell lines and primary RCC; however, 22 genes were differentially expressed after demethylation but did not show primary tumour-specific methylation (methylated in normal tissue (n=1); methylated only in RCC cell lines (n=9) and not methylated in RCC cell lines (n=12)). Re-expression of CXCL16 reduced growth of an RCC cell line in vitro. In a summary, a functional epigenomic analysis of four RCC cell lines using microarrays representing 11 000 human genes yielded both known and novel candidate TSGs epigenetically inactivated in RCC, suggesting that this is valid strategy for the identification of novel TSGs and biomarkers. PMID:18195710

Morris, M R; Gentle, D; Abdulrahman, M; Clarke, N; Brown, M; Kishida, T; Yao, M; Teh, B T; Latif, F; Maher, E R

2008-01-29

182

Analysis of promoter regions of co-expressed genes identified by microarray analysis  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background The use of global gene expression profiling to identify sets of genes with similar expression patterns is rapidly becoming a widespread approach for understanding biological processes. A logical and systematic approach to study co-expressed genes is to analyze their promoter sequences to identify transcription factors that may be involved in establishing specific profiles and that may be experimentally investigated. Results We introduce promoter clustering i.e. grouping of promoters with respect to their high scoring motif content, and show that this approach greatly enhances the identification of common and significant transcription factor binding sites (TFBS in co-expressed genes. We apply this method to two different dataset, one consisting of micro array data from 108 leukemias (AMLs and a second from a time series experiment, and show that biologically relevant promoter patterns may be obtained using phylogenetic foot-printing methodology. In addition, we also found that 15% of the analyzed promoter regions contained transcription factors start sites for additional genes transcribed in the opposite direction. Conclusion Promoter clustering based on global promoter features greatly improve the identification of shared TFBS in co-expressed genes. We believe that the outlined approach may be a useful first step to identify transcription factors that contribute to specific features of gene expression profiles.

Höglund Mattias

2006-08-01

183

Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background In flowering plants, the anther is the site of male gametophyte development. Two major events in the development of the male germline are meiosis and the asymmetric division in the male gametophyte that gives rise to the vegetative and generative cells, and the following mitotic division in the generative cell that produces two sperm cells. Anther transcriptomes have been analyzed in many plant species at progressive stages of development by using microarray and sequence-by synthesis-technologies to identify genes that regulate anther development. Here we report a comprehensive analysis of rice anther transcriptomes at four distinct stages, focusing on identifying regulatory components that contribute to male meiosis and germline development. Further, these transcriptomes have been compared with the transcriptomes of 10 stages of rice vegetative and seed development to identify genes that express specifically during anther development. Results Transcriptome profiling of four stages of anther development in rice including pre-meiotic (PMA, meiotic (MA, anthers at single-celled (SCP and tri-nucleate pollen (TPA revealed about 22,000 genes expressing in at least one of the anther developmental stages, with the highest number in MA (18,090 and the lowest (15,465 in TPA. Comparison of these transcriptome profiles to an in-house generated microarray-based transcriptomics database comprising of 10 stages/tissues of vegetative as well as reproductive development in rice resulted in the identification of 1,000 genes specifically expressed in anther stages. From this sub-set, 453 genes were specific to TPA, while 78 and 184 genes were expressed specifically in MA and SCP, respectively. The expression pattern of selected genes has been validated using real time PCR and in situ hybridizations. Gene ontology and pathway analysis of stage-specific genes revealed that those encoding transcription factors and components of protein folding, sorting and degradation pathway genes dominated in MA, whereas in TPA, those coding for cell structure and signal transduction components were in abundance. Interestingly, about 50% of the genes with anther-specific expression have not been annotated so far. Conclusions Not only have we provided the transcriptome constituents of four landmark stages of anther development in rice but we have also identified genes that express exclusively in these stages. It is likely that many of these candidates may therefore contribute to specific aspects of anther and/or male gametophyte development in rice. In addition, the gene sets that have been produced will assist the plant reproductive community in building a deeper understanding of underlying regulatory networks and in selecting gene candidates for functional validation.

Sharma Rita

2011-05-01

184

A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model.  

Science.gov (United States)

Elevations of circulating Fibroblast growth factor 23 (FGF23) are associated with adverse cardiovascular outcomes and progression of renal failure in chronic kidney disease (CKD). Efforts to identify gene products whose transcription is directly regulated by FGF23 stimulation of fibroblast growth factor receptors (FGFR)/?-Klotho complexes in the kidney is confounded by both systemic alterations in calcium, phosphorus and vitamin D metabolism and intrinsic alterations caused by the underlying renal pathology in CKD. To identify FGF23 responsive genes in the kidney that might explain the association between FGF23 and adverse outcomes in CKD, we performed comparative genome wide analysis of gene expression profiles in the kidney of the Collagen 4 alpha 3 null mice (Col4a3(-/-)) model of progressive kidney disease with kidney expression profiles of Hypophosphatemic (Hyp) and FGF23 transgenic mouse models of elevated FGF23. The different complement of potentially confounding factors in these models allowed us to identify genes that are directly targeted by FGF23. This analysis found that ?-Klotho, an anti-aging hormone and FGF23 co-receptor, was decreased by FGF23. We also identified additional FGF23-responsive transcripts and activation of networks associated with renal damage and chronic inflammation, including lipocalin 2 (Lcn2), transforming growth factor beta (TGF-?) and tumor necrosis factor-alpha (TNF-?) signaling pathways. Finally, we found that FGF23 suppresses angiotensin-converting enzyme 2 (ACE2) expression in the kidney, thereby providing a pathway for FGF23 regulation of the renin-angiotensin system. These gene products provide a possible mechanistic links between elevated FGF23 and pathways responsible for renal failure progression and cardiovascular diseases. PMID:22970174

Dai, Bing; David, Valentin; Martin, Aline; Huang, Jinsong; Li, Hua; Jiao, Yan; Gu, Weikuan; Quarles, L Darryl

2012-01-01

185

miRConnect:Identifying effector genes of miRNAs and miRNA families in cancer cells  

DEFF Research Database (Denmark)

micro(mi)RNAs are small non-coding RNAs that negatively regulate expression of most mRNAs. They are powerful regulators of various differentiation stages, and the expression of genes that either negatively or positively correlate with expressed miRNAs is expected to hold information on the biological state of the cell and, hence, of the function of the expressed miRNAs. We have compared the large amount of available gene array data on the steady state system of the NCI60 cell lines to two different data sets containing information on the expression of 583 individual miRNAs. In addition, we have generated custom data sets containing expression information of 54 miRNA families sharing the same seed match. We have developed a novel strategy for correlating miRNAs with individual genes based on a summed Pearson Correlation Coefficient (sPCC) that mimics an in silico titration experiment. By focusing on the genes that correlate with the expression of miRNAs without necessarily being direct targets of miRNAs, we have clustered miRNAs into different functional groups. This has resulted in the identification of three novel miRNAs that are linked to the epithelial-to-mesenchymal transition (EMT) in addition to the known EMT regulators of the miR-200 miRNA family. In addition, an analysis of gene signatures associated with EMT, c-MYC activity, and ribosomal protein gene expression allowed us to assign different activities to each of the functional clusters of miRNAs. All correlation data are available via a web interface that allows investigators to identify genes whose expression correlates with the expression of single miRNAs or entire miRNA families. miRConnect.org will aid in identifying pathways regulated by miRNAs without requiring specific knowledge of miRNA targets.

Hua, Youjia; Duan, Shiwei

2011-01-01

186

miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells  

DEFF Research Database (Denmark)

micro(mi)RNAs are small non-coding RNAs that negatively regulate expression of most mRNAs. They are powerful regulators of various differentiation stages, and the expression of genes that either negatively or positively correlate with expressed miRNAs is expected to hold information on the biological state of the cell and, hence, of the function of the expressed miRNAs. We have compared the large amount of available gene array data on the steady state system of the NCI60 cell lines to two different data sets containing information on the expression of 583 individual miRNAs. In addition, we have generated custom data sets containing expression information of 54 miRNA families sharing the same seed match. We have developed a novel strategy for correlating miRNAs with individual genes based on a summed Pearson Correlation Coefficient (sPCC) that mimics an in silico titration experiment. By focusing on the genes that correlate with the expression of miRNAs without necessarily being direct targets of miRNAs, we have clustered miRNAs into different functional groups. This has resulted in the identification of three novel miRNAs that are linked to the epithelial-to-mesenchymal transition (EMT) in addition to the known EMT regulators of the miR-200 miRNA family. In addition, an analysis of gene signatures associated with EMT, c-MYC activity, and ribosomal protein gene expression allowed us to assign different activities to each of the functional clusters of miRNAs. All correlation data are available via a web interface that allows investigators to identify genes whose expression correlates with the expression of single miRNAs or entire miRNA families. miRConnect.org will aid in identifying pathways regulated by miRNAs without requiring specific knowledge of miRNA targets.

Hua, Youjia; Duan, Shiwei

2011-01-01

187

Gene therapy improves immune function in preadolescents with X-linked severe combined immunodeficiency  

OpenAIRE

Retroviral gene therapy can restore immunity to infants with X-linked severe combined immunodeficiency (XSCID) caused by mutations in the IL2RG gene encoding the common gamma chain (?c) of receptors for interleukins 2 (IL-2), ?4, ?7, ?9, ?15, and ?21. We investigated the safety and efficacy of gene therapy as salvage treatment for older XSCID children with inadequate immune reconstitution despite prior bone marrow transplant from a parent. Subjects received retrovirus-transduced au...

Chinen, Javier; Davis, Joie; Ravin, Suk See; Hay, Beverly N.; Hsu, Amy P.; Linton, Gilda F.; Naumann, Nora; Nomicos, Effie Y. H.; Silvin, Christopher; Ulrick, Jean; Whiting-theobald, Narda L.; Malech, Harry L.; Puck, Jennifer M.

2007-01-01

188

Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus  

OpenAIRE

Permanent neonatal diabetes mellitus (PNDM) is a rare disorder usually presenting within 6 months of birth. Although several genes have been linked to this disorder, in almost half the cases documented in Italy, the genetic cause remains unknown. Because the Akita mouse bearing a mutation in the Ins2 gene exhibits PNDM associated with pancreatic ? cell apoptosis, we sequenced the human insulin gene in PNDM subjects with unidentified mutations. We discovered 7 heterozygous mutations in 10 unr...

Colombo, Carlo; Porzio, Ottavia; Liu, Ming; Massa, Ornella; Vasta, Mario; Salardi, Silvana; Beccaria, Luciano; Monciotti, Carla; Toni, Sonia; Pedersen, Oluf; Hansen, Torben; Federici, Luca; Pesavento, Roberta; Cadario, Francesco; Federici, Giorgio

2008-01-01

189

Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background With over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation. Together with matching races of its co-mimic Heliconius melpomene, H. erato also represents a textbook case of Müllerian mimicry, a phenomenon where common warning signals are shared amongst noxious organisms. It is of great interest to identify the specific genes that control the mimetic wing patterns of H. erato and H. melpomene. To this end we have undertaken comparative mapping and targeted genomic sequencing in both species. This paper reports on a comparative analysis of genomic sequences linked to color pattern mimicry genes in Heliconius. Results Scoring AFLP polymorphisms in H. erato broods allowed us to survey loci at approximately 362 kb intervals across the genome. With this strategy we were able to identify markers tightly linked to two color pattern genes: D and Cr, which were then used to screen H. erato BAC libraries in order to identify clones for sequencing. Gene density across 600 kb of BAC sequences appeared relatively low, although the number of predicted open reading frames was typical for an insect. We focused analyses on the D- and Cr-linked H. erato BAC sequences and on the Yb-linked H. melpomene BAC sequence. A comparative analysis between homologous regions of H. erato (Cr-linked BAC and H. melpomene (Yb-linked BAC revealed high levels of sequence conservation and microsynteny between the two species. We found that repeated elements constitute 26% and 20% of BAC sequences from H. erato and H. melpomene respectively. The majority of these repetitive sequences appear to be novel, as they showed no significant similarity to any other available insect sequences. We also observed signs of fine scale conservation of gene order between Heliconius and the moth Bombyx mori, suggesting that lepidopteran genome architecture may be conserved over very long evolutionary time scales. Conclusion Here we have demonstrated the tractability of progressing from a genetic linkage map to genomic sequence data in Heliconius butterflies. We have also shown that fine-scale gene order is highly conserved between distantly related Heliconius species, and also between Heliconius and B. mori. Together, these findings suggest that genome structure in macrolepidoptera might be very conserved, and show that mapping and positional cloning efforts in different lepidopteran species can be reciprocally informative.

Halder Georg

2008-07-01

190

The Discoidin I Gene Family of Dictyostelium Discoideum Is Linked to Genes Regulating Its Expression  

OpenAIRE

The discoidin I protein has been studied extensively as a marker of early development in the cellular slime mold Dictyostelium discoideum. However, like most other developmentally regulated proteins in this system, no reliable information was available on the linkage of the discoidin genes to other known genes. Analysis of the linkage of the discoidin I genes by use of restriction fragment length polymorphisms revealed that all three discoidin I genes as well as a pseudogene are located on li...

Welker, D. L.

1988-01-01

191

A medical record-linked biorepository to identify novel biomarkers for atherosclerotic cardiovascular disease  

Directory of Open Access Journals (Sweden)

Full Text Available Background: Atherosclerotic vascular disease (AVD, a leading cause of morbidity and mortality, is increasing in prevalence in the developing world. We describe an approach to establish a biorepository linked to medical records with the eventual goal of facilitating discovery of biomarkers for AVD.

Zi Ye

2012-03-01

192

Functional Genomics of Bone Metabolism : Novel Candidate Genes Identified by Studies in Chicken Models  

OpenAIRE

Osteoporosis is a disease that leads to decreased bone mineral density (BMD), an altered bone micro-architecture and fragile bones. The disease is highly heritable and numerous genes are thought to be involved, making it difficult to identify the causative genetic elements. Animal models, mainly intercrosses between laboratory strains of mice, have been succesfully used to map genes affecting these traits, but may not mirror the multifactorial genetic etiology of highly complex traits such as...

Rubin, Carl-johan

2008-01-01

193

Gene co-expression networks in human brain identify epigenetic modifications in alcohol dependence  

OpenAIRE

Alcohol abuse causes widespread changes in gene expression in human brain, some of which contribute to alcohol dependence. Previous microarray studies identified individual genes as candidates for alcohol phenotypes, but efforts to generate an integrated view of molecular and cellular changes underlying alcohol addiction are lacking. Here, we applied a novel systems approach to transcriptome profiling in postmortem human brains and generated a systemic view of brain alterations associated wit...

Ponomarev, Igor; Wang, Shi; Zhang, Lingling; Harris, R. Adron; Mayfield, R. Dayne

2012-01-01

194

Insect Innate Immunity Database (IIID): An Annotation Tool for Identifying Immune Genes in Insect Genomes  

OpenAIRE

The innate immune system is an ancient component of host defense. Since innate immunity pathways are well conserved throughout many eukaryotes, immune genes in model animals can be used to putatively identify homologous genes in newly sequenced genomes of non-model organisms. With the initiation of the “i5k” project, which aims to sequence 5,000 insect genomes by 2016, many novel insect genomes will soon become publicly available, yet few annotation resources are currently available for i...

Brucker, Robert M.; Funkhouser, Lisa J.; Setia, Shefali; Pauly, Rini; Bordenstein, Seth R.

2012-01-01

195

Identifying functional relationships among human genes by systematic analysis of biological literature  

OpenAIRE

Abstract Background The availability of biomedical literature in electronic format has made it possible to implement automatic text processing methods to expose implicit relationships among different documents, and more importantly, the functional relationships among the molecules and processes that these documents describe. Results A computational strategy that identifies functionally related human genes by detecting the implicit relationships among the publications cited under each gene in ...

Leibel Rudolph L; Tao Yong-Chuan

2002-01-01

196

Conditional Survival as a Selection Strategy To Identify Plant-Inducible Genes of Pseudomonas syringae  

OpenAIRE

A novel strategy termed habitat-inducible rescue of survival (HIRS) was developed to identify genes of Pseudomonas syringae that are induced during growth on bean leaves. This strategy is based on the complementation of metXW, two cotranscribed genes that are necessary for methionine biosynthesis and required for survival of P. syringae on bean leaves exposed to conditions of low humidity. We constructed a promoter trap vector, pTrap, containing a promoterless version of the wild-type P. syri...

Marco, Maria L.; Legac, Jennifer; Lindow, Steven E.

2003-01-01

197

Genome-wide Expression and Copy Number Analysis Identifies Driver Genes in Gingivobuccal Cancers  

OpenAIRE

The molecular mechanisms contributing to the development and progression of gingivobuccal complex (GBC) cancers–a sub-site of oral cancer, comprising the buccal mucosa, the gingivobuccal sulcus, the lower gingival region and the retromolar trigone-remain poorly understood. Identifying the GBC cancer-related gene expression signature and the driver genes residing on the altered chromosomal regions is critical for understanding the molecular basis of its pathogenesis. Genome-wide expression p...

Ambatipudi, Srikant; Gerstung, Moritz; Pandey, Manishkumar; Samant, Tanuja; Patil, Asawari; Kane, Shubhada; Desai, Rajiv S.; Scha?ffer, Alejandro A.; Beerenwinkel, Niko; Mahimkar, Manoj B.

2011-01-01

198

Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes  

OpenAIRE

The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa ...

Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Ku?ck, Ulrich

2012-01-01

199

Identifying retinal disease genes: how far have we come, how far do we have to go?  

OpenAIRE

One of the great success stories in retinal disease (RD) research in the past decade has been identification of many of the genes and mutations causing inherited retinal degeneration. To date, more than 133 RD genes have been identified, encompassing many disorders such as retinitis pigmentosa, Leber congenital amaurosis, Usher syndrome and macular dystrophy. The most striking outcome of these findings is the exceptional heterogeneity involved: dozens of disease-causing mutations have been de...

Daiger, Stephen P.

2004-01-01

200

Insights into the evolutionary history of the X-linked sex reversal mutation in mus minutoides: clues from sequence analyses of the Y-linked Sry gene.  

Science.gov (United States)

The African pygmy mouse, Mus minutoides, is one of the very few mammal species that deviates from the classical mammalian XX/XY sex chromosome system by presenting a high proportion of fully fertile sex-reversed females. Since the still unknown sex reversal mutation is X-linked (X*), they are designated as X*Y females. Until now, X*Y females had only been identified in Southern Africa, but data were lacking for the rest of the vast sub-Saharan distribution range of this species. In this study, the PCR genotyping of the Y-linked Sry gene on 72 females from Western Africa (Guinea, Ivory Coast and Ghana) uncovered 10 sex-reversed females distributed in the 3 countries. This expands our understanding of the geographical distribution and temporal origin (dated at 0.9 mya) of the sex reversal mutation. In addition, we sequenced and analyzed a fragment of the Sry gene (including the complete high-mobility group, i.e. HMG box, and the partial C-terminal region). The results demonstrate the presence of multiple polymorphic copies of the gene as reported in other rodent species and reveal, more unexpectedly, an extremely high proportion of amino acid replacement within the HMG box. In effect, the predicted HMG box protein sequence similarity between some populations of M. minutoides is as low as 94.9%, and at the interspecific level (within genus), it drops to only 91.1% between M. minutoides and M. musculus. PMID:23817242

Veyrunes, F; Perez, J; Paintsil, S N C; Fichet-Calvet, E; Britton-Davidian, J

2013-01-01

201

Three endochitinase-encoding genes identified in the biocontrol fungus Clonostachys rosea are differentially expressed.  

Science.gov (United States)

Three endochitinase-encoding genes, cr-ech58, cr-ech42 and cr-ech37 were identified and characterised from the mycoparasitic C. rosea strain IK726. The endochitinase activity was specifically induced in media containing chitin or Fusarium culmorum cell walls as sole carbon sources. RT-PCR analysis showed that the three genes were differentially expressed. The expression of the cr-ech42 and cr-ech37 genes was triggered by F. culmorum cell walls and chitin whereas glucose repressed their expression. In contrast, the expression of cr-ech58 was not triggered by F. culmorum cell walls and chitin, suggesting a different role for this endochitinase. Phylogenetically, the cr-ech42 and cr-ech37 genes showed to be orthologous to endochitinase 42 and 37 kDa encoding genes from other mycoparasitic fungi, while no orthologous gene for the cr-ech58 gene was found. Three genetically modified mutants of C. rosea were made by disruption of the endochitinase genes via Agrobacterium-mediated transformation and their biocontrol activity was evaluated. While in planta bioassays showed no significant difference in biocontrol efficacy between the disruptants and the wildtype, the real time RT-PCR analysis showed that disruption of each endochitinase gene affected the activity of C. rosea during interaction with F. culmorum in liquid cultures. PMID:18574585

Mamarabadi, Mojtaba; Jensen, Birgit; Lübeck, Mette

2008-08-01

202

Flux variability scanning based on enforced objective flux for identifying gene amplification targets  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background In order to reduce time and efforts to develop microbial strains with better capability of producing desired bioproducts, genome-scale metabolic simulations have proven useful in identifying gene knockout and amplification targets. Constraints-based flux analysis has successfully been employed for such simulation, but is limited in its ability to properly describe the complex nature of biological systems. Gene knockout simulations are relatively straightforward to implement, simply by constraining the flux values of the target reaction to zero, but the identification of reliable gene amplification targets is rather difficult. Here, we report a new algorithm which incorporates physiological data into a model to improve the model’s prediction capabilities and to capitalize on the relationships between genes and metabolic fluxes. Results We developed an algorithm, flux variability scanning based on enforced objective flux (FVSEOF with grouping reaction (GR constraints, in an effort to identify gene amplification targets by considering reactions that co-carry flux values based on physiological omics data via “GR constraints”. This method scans changes in the variabilities of metabolic fluxes in response to an artificially enforced objective flux of product formation. The gene amplification targets predicted using this method were validated by comparing the predicted effects with the previous experimental results obtained for the production of shikimic acid and putrescine in Escherichia coli. Moreover, new gene amplification targets for further enhancing putrescine production were validated through experiments involving the overexpression of each identified targeted gene under condition-controlled batch cultivation. Conclusions FVSEOF with GR constraints allows identification of gene amplification targets for metabolic engineering of microbial strains in order to enhance the production of desired bioproducts. The algorithm was validated through the experiments on the enhanced production of putrescine in E. coli, in addition to the comparison with the previously reported experimental data. The FVSEOF strategy with GR constraints will be generally useful for developing industrially important microbial strains having enhanced capabilities of producing chemicals of interest.

Park Jong

2012-08-01

203

H4K20me1 contributes to downregulation of X-linked genes for C. elegans dosage compensation.  

Science.gov (United States)

The Caenorhabditis elegans dosage compensation complex (DCC) equalizes X-chromosome gene dosage between XO males and XX hermaphrodites by two-fold repression of X-linked gene expression in hermaphrodites. The DCC localizes to the X chromosomes in hermaphrodites but not in males, and some subunits form a complex homologous to condensin. The mechanism by which the DCC downregulates gene expression remains unclear. Here we show that the DCC controls the methylation state of lysine 20 of histone H4, leading to higher H4K20me1 and lower H4K20me3 levels on the X chromosomes of XX hermaphrodites relative to autosomes. We identify the PR-SET7 ortholog SET-1 and the Suv4-20 ortholog SET-4 as the major histone methyltransferases for monomethylation and di/trimethylation of H4K20, respectively, and provide evidence that X-chromosome enrichment of H4K20me1 involves inhibition of SET-4 activity on the X. RNAi knockdown of set-1 results in synthetic lethality with dosage compensation mutants and upregulation of X-linked gene expression, supporting a model whereby H4K20me1 functions with the condensin-like C. elegans DCC to repress transcription of X-linked genes. H4K20me1 is important for mitotic chromosome condensation in mammals, suggesting that increased H4K20me1 on the X may restrict access of the transcription machinery to X-linked genes via chromatin compaction. PMID:23028348

Vielle, Anne; Lang, Jackie; Dong, Yan; Ercan, Sevinc; Kotwaliwale, Chitra; Rechtsteiner, Andreas; Appert, Alex; Chen, Q Brent; Dose, Andrea; Egelhofer, Thea; Kimura, Hiroshi; Stempor, Przemyslaw; Dernburg, Abby; Lieb, Jason D; Strome, Susan; Ahringer, Julie

2012-09-01

204

VCP gene analyses in Japanese patients with sporadic amyotrophic lateral sclerosis identify a new mutation.  

Science.gov (United States)

Accumulating evidence has proven that mutations in the VCP gene encoding valosin-containing protein (VCP) cause inclusion body myopathy with Paget disease of the bone and frontotemporal dementia. This gene was later found to be causative for amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, occurring typically in elderly persons. We thus sequenced the VCP gene in 75 Japanese patients with sporadic ALS negative for mutations in other genes causative for ALS and found a novel mutation, p.Arg487His, in 1 patient. The newly identified mutant as well as known mutants rendered neuronal cells susceptible to oxidative stress. The presence of the mutation in the Japanese population extends the geographic region for involvement of the VCP gene in sporadic ALS to East Asia. PMID:25457024

Hirano, Makito; Nakamura, Yusaku; Saigoh, Kazumasa; Sakamoto, Hikaru; Ueno, Shuichi; Isono, Chiharu; Mitsui, Yoshiyuki; Kusunoki, Susumu

2015-03-01

205

Functional characterization of two newly identified Human Endogenous Retrovirus coding envelope genes  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract A recent in silico search for coding sequences of retroviral origin present in the human genome has unraveled two new envelope genes that add to the 16 genes previously identified. A systematic search among the latter for a fusogenic activity had led to the identification of two bona fide genes, named syncytin-1 and syncytin-2, most probably co-opted by primate genomes for a placental function related to the formation of the syncytiotrophoblast by cell-cell fusion. Here, we show that one of the newly identified envelope gene, named envP(b, is fusogenic in an ex vivo assay, but that its expression – as quantified by real-time RT-PCR on a large panel of human tissues – is ubiquitous, albeit with a rather low value in most tissues. Conversely, the second envelope gene, named envV, discloses a placenta-specific expression, but is not fusogenic in any of the cells tested. Altogether, these results suggest that at least one of these env genes may play a role in placentation, but most probably through a process different from that of the two previously identified syncytins.

Heidmann Thierry

2005-03-01

206

Identifying differentially methylated genes using mixed effect and generalized least square models  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background DNA methylation plays an important role in the process of tumorigenesis. Identifying differentially methylated genes or CpG islands (CGIs associated with genes between two tumor subtypes is thus an important biological question. The methylation status of all CGIs in the whole genome can be assayed with differential methylation hybridization (DMH microarrays. However, patient samples or cell lines are heterogeneous, so their methylation pattern may be very different. In addition, neighboring probes at each CGI are correlated. How these factors affect the analysis of DMH data is unknown. Results We propose a new method for identifying differentially methylated (DM genes by identifying the associated DM CGI(s. At each CGI, we implement four different mixed effect and generalized least square models to identify DM genes between two groups. We compare four models with a simple least square regression model to study the impact of incorporating random effects and correlations. Conclusions We demonstrate that the inclusion (or exclusion of random effects and the choice of correlation structures can significantly affect the results of the data analysis. We also assess the false discovery rate of different models using CGIs associated with housekeeping genes.

Yan Pearlly S

2009-12-01

207

Analysis of the chromosome X exome in patients with autism spectrum disorders identified novel candidate genes, including TMLHE.  

Science.gov (United States)

The striking excess of affected males in autism spectrum disorders (ASD) suggests that genes located on chromosome X contribute to the etiology of these disorders. To identify new X-linked genes associated with ASD, we analyzed the entire chromosome X exome by next-generation sequencing in 12 unrelated families with two affected males. Thirty-six possibly deleterious variants in 33 candidate genes were found, including PHF8 and HUWE1, previously implicated in intellectual disability (ID). A nonsense mutation in TMLHE, which encodes the ?-N-trimethyllysine hydroxylase catalyzing the first step of carnitine biosynthesis, was identified in two brothers with autism and ID. By screening the TMLHE coding sequence in 501 male patients with ASD, we identified two additional missense substitutions not found in controls and not reported in databases. Functional analyses confirmed that the mutations were associated with a loss-of-function and led to an increase in trimethyllysine, the precursor of carnitine biosynthesis, in the plasma of patients. This study supports the hypothesis that rare variants on the X chromosome are involved in the etiology of ASD and contribute to the sex-ratio disequilibrium. PMID:23092983

Nava, C; Lamari, F; Héron, D; Mignot, C; Rastetter, A; Keren, B; Cohen, D; Faudet, A; Bouteiller, D; Gilleron, M; Jacquette, A; Whalen, S; Afenjar, A; Périsse, D; Laurent, C; Dupuits, C; Gautier, C; Gérard, M; Huguet, G; Caillet, S; Leheup, B; Leboyer, M; Gillberg, C; Delorme, R; Bourgeron, T; Brice, A; Depienne, C

2012-01-01

208

An electronic medical record-linked biorepository to identify novel biomarkers for atherosclerotic cardiovascular disease  

OpenAIRE

Background: Atherosclerotic vascular disease (AVD), a leading cause of morbidity and mortality, is increasing in prevalence in the developing world. We describe an approach to establish a biorepository linked to medical records with the eventual goal of facilitating discovery of biomarkers for AVD. Methods: The Vascular Disease Biorepository at Mayo Clinic was established to archive DNA, plasma, and serum from patients with suspected AVD. AVD phenotypes, relevant risk factors and comorbid con...

Ye, Zi; Kalloo, Fara S.; Dalenberg, Angela K.; Kullo, Iftikhar J.

2013-01-01

209

New insights and unresolved issues regarding insertional mutagenesis in X-linked SCID gene therapy.  

Science.gov (United States)

The oncogenic potential of retrovirus-mediated gene therapy has been re-emphasized because four patients developed T-cell acute lymphoblastic leukemia (T-ALL)-like disease from an otherwise successful gene therapy trial for X-linked severe combined immunodeficiency (X-linked SCID). X-linked SCID, a disease caused by inactivating mutations in the IL2Rgamma gene, is part of a heterogeneous group of SCIDs characterized by the lack of T cells in conjunction with the absence of B and/or natural killer (NK) cells. Gene therapy approaches are being developed for this group of diseases. In this review we discuss the various forms of SCID in relation to normal T-cell development. In addition, we consider the possible role of LMO2 and other T-ALL oncogenes in the development of adverse effects as seen in the X-linked SCID gene therapy trial. Furthermore, we debate whether the integration near the LMO2 locus is sufficient to result in T-ALL-like proliferations or whether the gamma-retroviral viral expression of the therapeutic IL2RG gene contributes to leukemogenesis. Finally, we review some newly developed murine models that may have added value for gene therapy safety studies. PMID:17726455

Pike-Overzet, Karin; van der Burg, Mirjam; Wagemaker, Gerard; van Dongen, Jacques J M; Staal, Frank J T

2007-11-01

210

Four additional mouse crosses improve the lipid QTL landscape and identify Lipg as a QTL gene[S  

OpenAIRE

To identify genes controlling plasma HDL and triglyceride levels, quantitative trait locus (QTL) analysis was performed in one backcross, (NZO/H1Lt × NON/LtJ) × NON/LtJ, and three intercrosses, C57BL/6J × DBA/2J, C57BL/6J × C3H/HeJ, and NZB/B1NJ × NZW/LacJ. HDL concentrations were affected by 25 QTL distributed on most chromosomes (Chrs); those on Chrs 1, 8, 12, and 16 were newly identified, and the remainder were replications of previously identified QTL. Triglyceride concentrations wer...

Su, Zhiguang; Ishimori, Naoki; Chen, Yaoyu; Leiter, Edward H.; Churchill, Gary A.; Paigen, Beverly; Stylianou, Ioannis M.

2009-01-01

211

Identifying essential proteins from active PPI networks constructed with dynamic gene expression.  

Science.gov (United States)

Essential proteins are vitally important for cellular survival and development, and identifying essential proteins is very meaningful research work in the post-genome era. Rapid increase of available protein-protein interaction (PPI) data has made it possible to detect protein essentiality at the network level. A series of centrality measures have been proposed to discover essential proteins based on the PPI networks. However, the PPI data obtained from large scale, high-throughput experiments generally contain false positives. It is insufficient to use original PPI data to identify essential proteins. How to improve the accuracy, has become the focus of identifying essential proteins. In this paper, we proposed a framework for identifying essential proteins from active PPI networks constructed with dynamic gene expression. Firstly, we process the dynamic gene expression profiles by using time-dependent model and time-independent model. Secondly, we construct an active PPI network based on co-expressed genes. Lastly, we apply six classical centrality measures in the active PPI network. For the purpose of comparison, other prediction methods are also performed to identify essential proteins based on the active PPI network. The experimental results on yeast network show that identifying essential proteins based on the active PPI network can improve the performance of centrality measures considerably in terms of the number of identified essential proteins and identification accuracy. At the same time, the results also indicate that most of essential proteins are active. PMID:25707432

Xiao, Qianghua; Wang, Jianxin; Peng, Xiaoqing; Wu, Fang-Xiang; Pan, Yi

2015-01-01

212

Helping Students Identify Base Words in Indonesian--Linking Learning Objects in an ICLL Framework  

Science.gov (United States)

For students of Indonesian, learning to identify base words is very important, but can often be quite tricky. This article describes how one of the authors used interactive digital content from The Le@rning Federation (TLF) together with an extensive range of offline activities within an intercultural language learning (ICLL) framework. It helps…

Colman, Ingrid; Davison, Janine

2008-01-01

213

Biological Validation of Differentially Expressed Genes in Chronic Lymphocytic Leukemia Identified by Applying Multiple Statistical Methods to Oligonucleotide Microarrays  

OpenAIRE

Oligonucleotide microarrays are a powerful tool for profiling the expression levels of thousands of genes. Different statistical methods for identifying differentially expressed genes can yield different results. To our knowledge, no experimental test has been performed to decide which method best identifies genes that are truly differentially expressed. We applied three statistical methods (dChip, t-test on log-transformed data, and Wilcoxon test) to identify differentially expressed genes i...

Abruzzo, Lynne V.; Wang, Jing; Kapoor, Mini; Medeiros, L. Jeffrey; Keating, Michael J.; Highsmith, W. Edward; Barron, Lynn L.; Cromwell, Candy C.; Coombes, Kevin R.

2005-01-01

214

Efficient Gene Delivery of Primary Human Cells Using Peptide Linked Polyethylenimine Polymer Hybrid  

OpenAIRE

Polyethylenimine (PEI) based polymers are efficient agents for cell transfection. However, their use has been hampered due to high cell death associated with transfection thereby resulting in low efficiency of gene delivery within the cells. To circumvent the problem of cellular toxicity, metal binding peptides were linked to PEI. Eight peptide-PEI derivatives were synthesized to improve cell survival and transfection efficiency. TAT linked PEI was used as a control polymer. Peptides linked w...

Dey, Devaveena; Inayathullah, Mohammed; Lee, Andrew S.; Limiuex, Melbes; Zhang, Xuexiang; Wu, Yi; Nag, Divya; Almeida, Patricia Eliza; Han, Leng; Rajadas, Jayakumar; Wu, Joseph C.

2011-01-01

215

The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A  

OpenAIRE

The wild apple (Malus sieversii) is a large-fruited species from Central Asia, which is used as a source of scab resistance in cultivar breeding. Phytopathological tests with races of Venturia inaequalis were performed to differentiate scab-resistance genes in Malus as well as an avirulence gene in the pathogen. A novel gene-for-gene interaction between V. inaequalis and Malus was identified. The locus of the scab-resistance gene Vh8 is linked with, or possibly allelic to, that of the Vh2 g...

Bus, V. G. M.; Laurens, F. N. D.; Weg, W. E.; Rusholme, R. L.; Gardiner, S. E.; Bassett, H. C. M.

2005-01-01

216

B.E.A.R. GeneInfo: A tool for identifying gene-related biomedical publications through user modifiable queries  

OpenAIRE

Abstract Background Once specific genes are identified through high throughput genomics technologies there is a need to sort the final gene list to a manageable size for validation studies. The triaging and sorting of genes often relies on the use of supplemental information related to gene structure, metabolic pathways, and chromosomal location. Yet in disease states where the genes may not have identifiable structural elements, poorly defined metabolic pathways, or limited chromosomal data,...

Zhou Guohui; Wen Xinyu; Liu Hang; Schlicht Michael J; Hessner Martin J; Tonellato Peter J; Datta Milton W

2004-01-01

217

Transcriptome analysis identifies genes with enriched expression in the mouse central extended amygdala.  

Science.gov (United States)

The central extended amygdala (EAc) is an ensemble of highly interconnected limbic structures of the anterior brain, and forms a cellular continuum including the bed nucleus of the stria terminalis (BNST), the central nucleus of the amygdala (CeA) and the nucleus accumbens shell (AcbSh). This neural network is a key site for interactions between brain reward and stress systems, and has been implicated in several aspects of drug abuse. In order to increase our understanding of EAc function at the molecular level, we undertook a genome-wide screen (Affymetrix) to identify genes whose expression is enriched in the mouse EAc. We focused on the less-well known BNST-CeA areas of the EAc, and identified 121 genes that exhibit more than twofold higher expression level in the EAc compared with whole brain. Among these, 43 genes have never been described to be expressed in the EAc. We mapped these genes throughout the brain, using non-radioactive in situ hybridization, and identified eight genes with a unique and distinct rostro-caudal expression pattern along AcbSh, BNST and CeA. Q-PCR analysis performed in brain and peripheral organ tissues indicated that, with the exception of one (Spata13), all these genes are predominantly expressed in brain. These genes encode signaling proteins (Adora2, GPR88, Arpp21 and Rem2), a transcription factor (Limh6) or proteins of unknown function (Rik130, Spata13 and Wfs1). The identification of genes with enriched expression expands our knowledge of EAc at a molecular level, and provides useful information to toward genetic manipulations within the EAc. PMID:18786617

Becker, J A J; Befort, K; Blad, C; Filliol, D; Ghate, A; Dembele, D; Thibault, C; Koch, M; Muller, J; Lardenois, A; Poch, O; Kieffer, B L

2008-10-28

218

Yeast-based assay identifies novel Shh/Gli target genes in vertebrate development  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background The increasing number of developmental events and molecular mechanisms associated with the Hedgehog (Hh pathway from Drosophila to vertebrates, suggest that gene regulation is crucial for diverse cellular responses, including target genes not yet described. Although several high-throughput, genome-wide approaches have yielded information at the genomic, transcriptional and proteomic levels, the specificity of Gli binding sites related to direct target gene activation still remain elusive. This study aims to identify novel putative targets of Gli transcription factors through a protein-DNA binding assay using yeast, and validating a subset of targets both in-vitro and in-vivo. Testing in different Hh/Gli gain- and loss-of-function scenarios we here identified known (e.g., ptc1 and novel Hh-regulated genes in zebrafish embryos. Results The combined yeast-based screening and MEME/MAST analysis were able to predict Gli transcription factor binding sites, and position mapping of these sequences upstream or in the first intron of promoters served to identify new putative target genes of Gli regulation. These candidates were validated by qPCR in combination with either the pharmacological Hh/Gli antagonist cyc or the agonist pur in Hh-responsive C3H10T1/2 cells. We also used small-hairpin RNAs against Gli proteins to evaluate targets and confirm specific Gli regulation their expression. Taking advantage of mutants that have been identified affecting different components of the Hh/Gli signaling system in the zebrafish model, we further analyzed specific novel candidates. Studying Hh function with pharmacological inhibition or activation complemented these genetic loss-of-function approaches. We provide evidence that in zebrafish embryos, Hh signaling regulates sfrp2, neo1, and c-myc expression in-vivo. Conclusion A recently described yeast-based screening allowed us to identify new Hh/Gli target genes, functionally important in different contexts of vertebrate embryonic development.

Milla Luis A

2012-01-01

219

Cloning of the esterase D gene: a polymorphic gene probe closely linked to the retinoblastoma locus on chromosome 13.  

OpenAIRE

The study of recessive oncogenes such as those responsible for retinoblastoma and Wilms tumor is difficult because the gene products involved are unknown and because the diseases are not associated with unique cellular or molecular phenotypes suitable for genetic manipulation. Since the gene for esterase D (ESD) is known to be tightly linked to the retinoblastoma locus (RB1) in the q14.1 band of chromosome 13, we have cloned the ESD gene from a human cDNA library by using oligonucleotides spe...

Squire, J.; Dryja, T. P.; Dunn, J.; Goddard, A.; Hofmann, T.; Musarella, M.; Willard, H. F.; Becker, A. J.; Gallie, B. L.; Phillips, R. A.

1986-01-01

220

Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background The landscape of biological and biomedical research is being changed rapidly with the invention of microarrays which enables simultaneous view on the transcription levels of a huge number of genes across different experimental conditions or time points. Using microarray data sets, clustering algorithms have been actively utilized in order to identify groups of co-expressed genes. This article poses the problem of fuzzy clustering in microarray data as a multiobjective optimization problem which simultaneously optimizes two internal fuzzy cluster validity indices to yield a set of Pareto-optimal clustering solutions. Each of these clustering solutions possesses some amount of information regarding the clustering structure of the input data. Motivated by this fact, a novel fuzzy majority voting approach is proposed to combine the clustering information from all the solutions in the resultant Pareto-optimal set. This approach first identifies the genes which are assigned to some particular cluster with high membership degree by most of the Pareto-optimal solutions. Using this set of genes as the training set, the remaining genes are classified by a supervised learning algorithm. In this work, we have used a Support Vector Machine (SVM classifier for this purpose. Results The performance of the proposed clustering technique has been demonstrated on five publicly available benchmark microarray data sets, viz., Yeast Sporulation, Yeast Cell Cycle, Arabidopsis Thaliana, Human Fibroblasts Serum and Rat Central Nervous System. Comparative studies of the use of different SVM kernels and several widely used microarray clustering techniques are reported. Moreover, statistical significance tests have been carried out to establish the statistical superiority of the proposed clustering approach. Finally, biological significance tests have been carried out using a web based gene annotation tool to show that the proposed method is able to produce biologically relevant clusters of co-expressed genes. Conclusion The proposed clustering method has been shown to perform better than other well-known clustering algorithms in finding clusters of co-expressed genes efficiently. The clusters of genes produced by the proposed technique are also found to be biologically significant, i.e., consist of genes which belong to the same functional groups. This indicates that the proposed clustering method can be used efficiently to identify co-expressed genes in microarray gene expression data. Supplementary Website The pre-processed and normalized data sets, the matlab code and other related materials are available at http://anirbanmukhopadhyay.50webs.com/mogasvm.html.

Bandyopadhyay Sanghamitra

2009-01-01

221

Massively parallel sequencing identifies the gene Megf8 with ENU-induced mutation causing heterotaxy  

OpenAIRE

Forward genetic screens with ENU (N-ethyl-N-nitrosourea) mutagenesis can facilitate gene discovery, but mutation identification is often difficult. We present the first study in which an ENU- induced mutation was identified by massively parallel DNA sequencing. This mutation causes heterotaxy and complex congenital heart defects and was mapped to a 2.2-Mb interval on mouse chromosome 7. Massively parallel sequencing of the entire 2.2-Mb interval identified 2 single-base substitutions, one in ...

Zhang, Zhen; Alpert, Deanne; Francis, Richard; Chatterjee, Bishwanath; Yu, Qing; Tansey, Terry; Sabol, Steven L.; Cui, Cheng; Bai, Yongli; Koriabine, Maxim; Yoshinaga, Yuko; Cheng, Jan-fang; Chen, Feng; Martin, Joel; Schackwitz, Wendy

2009-01-01

222

Molecular patterns of X chromosome-linked color vision genes among 134 menof European ancestry  

International Nuclear Information System (INIS)

The authors used Southern blot hybridization to study X chromosome-linked color vision genes encoding the apoproteins of red and green visual pigments in 134 unselected Caucasian men. One hundred and thirteen individuals (84.3%) had a normal arrangement of their color vision pigment genes. All had one red pigment gene; the number of green pigment genes ranged from one to five with a mode of two. The frequency of molecular genotypes indicative of normal color vision (84.3%) was significantly lower than had been observed in previous studies of color vision phenotypes. Color vision defects can be due to deletions of red or green pigment genes or due to formation of hybrid genes comprising portions of both red and green pigment genes. Characteristic anomalous patterns were seen in 15 (11.2%) individuals: 7 (5.2%) had patterns characteristic of deuteranomaly, 2 (1.5%) had patterns characteristic of deuteranopia, and 6 (4.5%) had protan patterns. Previously undescribed hybrid gene patterns consisting of both green and red pigment gene fragments in addition to normal red and green genes were observed in another 6 individuals (4.5%). Thus, DNA testing detected anomalous color vision pigment genes at a higher frequency than expected from phenotypic color vision tests

223

Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background The hierarchical clustering tree (HCT with a dendrogram 1 and the singular value decomposition (SVD with a dimension-reduced representative map 2 are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures. Results This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose seriation by Chen 3 as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends. Conclusion We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP.

Lee Yun-Shien

2008-03-01

224

Use of RFLPs to identify genes for aluminium tolerance in maize  

International Nuclear Information System (INIS)

The objective of this study was to identify restriction fragment length polymorphism (RFLP) markers linked to quantitative trait loci that control Al tolerance in maize. The strategy used was bulked segregant analysis, which is based on selecting for bulk bred true F2 individuals. The genetic material used consisted of an F2 population derived from a cross between Al susceptible (L53) and Al tolerant (L1327) maize inbred lines. Both lines were developed in the maize breeding programme of the Centro Nacional de Pesquisa de Milho e Sorgo. The relative seminal root length (RSRL) index was used as the phenotypic measure of tolerance. The frequency distribution of RSRL showed continuous distribution, which is typical of a quantitatively inherited character, with a tendency towards Al susceptible individuals. The estimated heritability [(?2F2 - ?2E)/?2F2] was found to be 60%. This moderately high heritability value suggests that, although the character has a quantitative nature, it may be controlled by a small number of genes. Those seedlings of the F2 population that scored the highest and lowest values for RSRL were subsequently selfed to obtain the F3 families. These families were evaluated in nutrient solution to identify those that were not segregating. On the basis of the results, five individuals were chosen for each bulk. Sixty-five probes were selected abulk. Sixty-five probes were selected at an average interval of 30 cM, covering all ten maize chromosomes. For the hybridization work, a non-radioactive labelling system, using dig-dUTP and alkaline phosphatase, proved to be quite efficient and reliable, resulting in Southern blots with good resolution and allowing the membranes to be stripped and reprobed at least three times. Twenty-three markers showed a co-drominant effect, identifying 40 RFLP loci that could distinguish the parental inbred lines. These 23 probes are now being hybridized with DNA from the two contrasting bulks. Also, a search for other informative markers is being carried out to increase genome coverage. (author). 29 refs, 2 figs, 1 tab

225

A New Resource for Characterizing X-Linked Genes in Drosophila melanogaster: Systematic Coverage and Subdivision of the X Chromosome With Nested, Y-Linked Duplications  

OpenAIRE

Interchromosomal duplications are especially important for the study of X-linked genes. Males inheriting a mutation in a vital X-linked gene cannot survive unless there is a wild-type copy of the gene duplicated elsewhere in the genome. Rescuing the lethality of an X-linked mutation with a duplication allows the mutation to be used experimentally in complementation tests and other genetic crosses and it maps the mutated gene to a defined chromosomal region. Duplications can also be used to sc...

Cook, R. Kimberley; Deal, Megan E.; Deal, Jennifer A.; Garton, Russell D.; Brown, C. Adam; Ward, Megan E.; Andrade, Rachel S.; Spana, Eric P.; Kaufman, Thomas C.; Cook, Kevin R.

2010-01-01

226

Gene-expression profiling to identify genes related to spontaneous tumor regression in a canine cancer model.  

Science.gov (United States)

Microarray transcriptome study in cancer has been commonly used to investigate tumorigenic mechanisms. The unique growth pattern of spontaneous regression (SR) after progressive (P) growth in canine transmissible venereal tumor (CTVT) provides a valuable cancer model to study the genome-wide differences in samples between the two stages of growth. In this study, Affymetrix analysis was performed based on the canine genome to compare the gene expression profiles of CTVT P- and SR-phase tumors. A total of 459 (278 up-regulated and 181 down-regulated) genes were identified as being differentially-expressed during the SR phase by the 2-fold method. Further analysis of these genes revealed that the expression of three genes associated with IL-6 production -TIMD-4, GPNMB and PLTP - was significantly higher in SR-phase tumors than in P-phase tumors; these results were also confirmed by real time RT-PCR in tumor tissues of beagles. In addition, we found that Th17-related genes were over-expressed in the SR phase, suggesting autoimmune responses involvement in tumor regression. Although the interaction between CTVT and host immunity were partially investigated in previous studies, our results enable us to gain new insight into the genes and possible mechanisms involved in tumor regression and reveal potentially useful targets for cancer therapy. PMID:23237908

Chiang, Hsin-Chien; Liao, Albert Tai-Ching; Jan, Tong-Rong; Wang, Yu-Shan; Lei, Han-Jung; Tsai, Mong-Hsun; Chen, Mo-Fen; Lee, Chien-Yueh; Lin, Yi-Chen; Chu, Rea-Min; Lin, Chen-Si

2013-02-15

227

Genetic screens to identify pathogenic gene variants in the common cancer predisposition Lynch syndrome  

DEFF Research Database (Denmark)

In many individuals suspected of the common cancer predisposition Lynch syndrome, variants of unclear significance (VUS), rather than an obviously pathogenic mutations, are identified in one of the DNA mismatch repair (MMR) genes. The uncertainty of whether such VUS inactivate MMR, and therefore are pathogenic, precludes targeted healthcare for both carriers and their relatives. To facilitate the identification of pathogenic VUS, we have developed an in cellulo genetic screen-based procedure for the large-scale mutagenization, identification, and cataloging of residues of MMR genes critical for MMR gene function. When a residue identified as mutated in an individual suspected of Lynch syndrome is listed as critical in such a reverse diagnosis catalog, there is a high probability that the corresponding human VUS is pathogenic. To investigate the applicability of this approach, we have generated and validated a prototypic reverse diagnosis catalog for the MMR gene MutS Homolog 2 (Msh2) by mutagenizing, identifying, and cataloging 26 deleterious mutations in 23 amino acids. Extensive in vivo and in vitro analysis of mutants listed in the catalog revealed both recessive and dominant-negative phenotypes. Nearly half of these critical residues match with VUS previously identified in individuals suspected of Lynch syndrome. This aids in the assignment of pathogenicity to these human VUS and validates the approach described here as a diagnostic tool. In a wider perspective, this work provides a model for the translation of personalized genomics into targeted healthcare.

Lützen, Anne; Drost, Mark

2013-01-01

228

DArT markers tightly linked with the Rfc1 gene controlling restoration of male fertility in the CMS-C system in cultivated rye (Secale cereale L.)  

OpenAIRE

The Rfc1 gene controls restoration of male fertility in rye (Secale cereale L.) with sterility-inducing cytoplasm CMS-C. Two populations of recombinant inbred lines (RIL) were used in this study to identify DArT markers located on the 4RL chromosome, in the close vicinity of the Rfc1 gene. In the population developed from the 541×2020LM intercross, numerous markers tightly linked with the restorer gene were identified. This group contained 91 DArT markers and three SCARs additionally analyze...

Stoja?owski, Stefan Andrzej; Milczarski, Pawe?; Hanek, Monika; Bolibok-bra?goszewska, Hanna; Mys?ko?w, Beata; Kilian, Andrzej; Rakoczy-trojanowska, Monika

2011-01-01

229

Efficient Gene Transfection into Mammalian Cells Mediated by Cross-linked Polyethylenimine  

Directory of Open Access Journals (Sweden)

Full Text Available 25 kDa branched polyethylenimine (PEI has successfully been used for in vitroand in vivo gene delivery approaches, but it is cytotoxic. Smaller PEIs are usually non-cytotoxic but less efficient. In order to enhance the gene delivery efficiency and minimizecytotoxicity of PEI, we explored to synthesize cross-linked PEIs with degradable bonds byreacting amines of small branched 2000 Da PEI with small diacrylate (1,4-butanedioldiacrylate or ethyleneglycol dimethacrylate for 2-6 hours. The efficiency of the cross-linkedPEIs during in vitro delivering plasmid containing enhanced green fluorescent protein(EGFP gene reporter and their cytotoxicity were assessed in melanoma B16F10 cell andother cell lines. In vivo gene delivery efficiency was evaluated by direct injection delivery ofthe EGFP plasmid/ cross-linked PEI complexes into mice and by estimating the EGFPexpression in animal muscles. Compared to commercially available 25-kDa branched PEI,the cross-linked PEIs reported here could mediate more efficient expression of reporter genethan the 25-kDa PEI control, 19-fold more efficiently in B16F10 cells, 17-fold in 293T cells, 2.3-fold in 3T3 cells, and they exhibited essentially nontoxic at their optimized condition for gene delivery. Furthermore the transfection activity of polyplexs was preserved in the presence of serum proteins. The muscle transfected with the cross-linked PEI prepared here exhibited normal morphology and excellent gene expression. The cross-linked PEIs reported here were evidently more efficient than the commercial 25-kD PEI control and had less cytotoxicity in gene delivery in vitro and in vivo.

Zichun Hua

2007-02-01

230

A phase synchronization clustering algorithm for identifying interesting groups of genes from cell cycle expression data  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background The previous studies of genome-wide expression patterns show that a certain percentage of genes are cell cycle regulated. The expression data has been analyzed in a number of different ways to identify cell cycle dependent genes. In this study, we pose the hypothesis that cell cycle dependent genes are considered as oscillating systems with a rhythm, i.e. systems producing response signals with period and frequency. Therefore, we are motivated to apply the theory of multivariate phase synchronization for clustering cell cycle specific genome-wide expression data. Results We propose the strategy to find groups of genes according to the specific biological process by analyzing cell cycle specific gene expression data. To evaluate the propose method, we use the modified Kuramoto model, which is a phase governing equation that provides the long-term dynamics of globally coupled oscillators. With this equation, we simulate two groups of expression signals, and the simulated signals from each group shares their own common rhythm. Then, the simulated expression data are mixed with randomly generated expression data to be used as input data set to the algorithm. Using these simulated expression data, it is shown that the algorithm is able to identify expression signals that are involved in the same oscillating process. We also evaluate the method with yeast cell cycle expression data. It is shown that the output clusters by the proposed algorithm include genes, which are closely associated with each other by sharing significant Gene Ontology terms of biological process and/or having relatively many known biological interactions. Therefore, the evaluation analysis indicates that the method is able to identify expression signals according to the specific biological process. Our evaluation analysis also indicates that some portion of output by the proposed algorithm is not obtainable by the traditional clustering algorithm with Euclidean distance or linear correlation. Conclusion Based on the evaluation experiments, we draw the conclusion as follows: 1 Based on the theory of multivariate phase synchronization, it is feasible to find groups of genes, which have relevant biological interactions and/or significantly shared GO slim terms of biological process, using cell cycle specific gene expression signals. 2 Among all the output clusters by the proposed algorithm, the cluster with relatively large size has a tendency to include more known interactions than the one with relatively small size. 3 It is feasible to understand the cell cycle specific gene expression patterns as the phenomenon of collective synchronization. 4 The proposed algorithm is able to find prominent groups of genes, which are not obtainable by traditional clustering algorithm.

Tcha Hong

2008-01-01

231

Exome sequencing identifies three novel candidate genes implicated in intellectual disability.  

Science.gov (United States)

Intellectual disability (ID) is a major health problem mostly with an unknown etiology. Recently exome sequencing of individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were identified: lysine (K)-specific methyltransferase 2B (KMT2B), zinc finger protein 589 (ZNF589), as well as hedgehog acyltransferase (HHAT) with a de novo mutation with autosomal dominant mode of inheritance. The KMT2B recessive variant is the first report of recessive Kleefstra syndrome-like phenotype. Identification of plausible causative mutations for two recessive and a dominant type of ID, in genes not previously implicated in disease, underscores the large genetic heterogeneity of ID. These results also support the viewpoint that large number of ID genes converge on limited number of common networks i.e. ZNF589 belongs to KRAB-domain zinc-finger proteins previously implicated in ID, HHAT is predicted to affect sonic hedgehog, which is involved in several disorders with ID, KMT2B associated with syndromic ID fits the epigenetic module underlying the Kleefstra syndromic spectrum. The association of these novel genes in three different Pakistani ID families highlights the importance of screening these genes in more families with similar phenotypes from different populations to confirm the involvement of these genes in pathogenesis of ID. PMID:25405613

Agha, Zehra; Iqbal, Zafar; Azam, Maleeha; Ayub, Humaira; Vissers, Lisenka E L M; Gilissen, Christian; Ali, Syeda Hafiza Benish; Riaz, Moeen; Veltman, Joris A; Pfundt, Rolph; van Bokhoven, Hans; Qamar, Raheel

2014-01-01

232

Gene trapping identifies a putative tumor suppressor and a new inducer of cell migration  

International Nuclear Information System (INIS)

Tumor necrosis factor alpha (TNF?) is a pleiotropic cytokine involved in apoptotic cell death, cellular proliferation, differentiation, inflammation, and tumorigenesis. In tumors it is secreted by tumor associated macrophages and can have both pro- and anti-tumorigenic effects. To identify genes regulated by TNF?, we performed a gene trap screen in the mammary carcinoma cell line MCF-7 and recovered 64 unique, TNF?-induced gene trap integration sites. Among these were the genes coding for the zinc finger protein ZC3H10 and for the transcription factor grainyhead-like 3 (GRHL3). In line with the dual effects of TNF? on tumorigenesis, we found that ZC3H10 inhibits anchorage independent growth in soft agar suggesting a tumor suppressor function, whereas GRHL3 strongly stimulated the migration of endothelial cells which is consistent with an angiogenic, pro-tumorigenic function

233

Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Obesity is reaching epidemic proportions and represents a significant risk factor for cardiovascular disease, diabetes, and cancer. Methods To explore the relationship between increased body mass and gene expression in blood, we conducted whole-genome expression profiling of whole blood from seventeen obese and seventeen well matched lean subjects. Gene expression data was analyzed at the individual gene and pathway level and a preliminary assessment of the predictive value of blood gene expression profiles in obesity was carried out. Results Principal components analysis of whole-blood gene expression data from obese and lean subjects led to efficient separation of the two cohorts. Pathway analysis by gene-set enrichment demonstrated increased transcript levels for genes belonging to the "ribosome", "apoptosis" and "oxidative phosphorylation" pathways in the obese cohort, consistent with an altered metabolic state including increased protein synthesis, enhanced cell death from proinflammatory or lipotoxic stimuli, and increased energy demands. A subset of pathway-specific genes acted as efficient predictors of obese or lean class membership when used in Naive Bayes or logistic regression based classifiers. Conclusion This study provides a comprehensive characterization of the whole blood transcriptome in obesity and demonstrates that the investigation of gene expression profiles from whole blood can inform and illustrate the biological processes related to regulation of body mass. Additionally, the ability of pathway-related gene expression to predict class membership suggests the feasibility of a similar approach for identifying clinically useful blood-based predictors of weight loss success following dietary or surgical interventions.

Gorman Shelby A

2010-12-01

234

Incorporating significant amino acid pairs to identify O-linked glycosylation sites on transmembrane proteins and non-transmembrane proteins  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background While occurring enzymatically in biological systems, O-linked glycosylation affects protein folding, localization and trafficking, protein solubility, antigenicity, biological activity, as well as cell-cell interactions on membrane proteins. Catalytic enzymes involve glycotransferases, sugar-transferring enzymes and glycosidases which trim specific monosaccharides from precursors to form intermediate structures. Due to the difficulty of experimental identification, several works have used computational methods to identify glycosylation sites. Results By investigating glycosylated sites that contain various motifs between Transmembrane (TM and non-Transmembrane (non-TM proteins, this work presents a novel method, GlycoRBF, that implements radial basis function (RBF networks with significant amino acid pairs (SAAPs for identifying O-linked glycosylated serine and threonine on TM proteins and non-TM proteins. Additionally, a membrane topology is considered for reducing the false positives on glycosylated TM proteins. Based on an evaluation using five-fold cross-validation, the consideration of a membrane topology can reduce 31.4% of the false positives when identifying O-linked glycosylation sites on TM proteins. Via an independent test, GlycoRBF outperforms previous O-linked glycosylation site prediction schemes. Conclusion A case study of Cyclic AMP-dependent transcription factor ATF-6 alpha was presented to demonstrate the effectiveness of GlycoRBF. Web-based GlycoRBF, which can be accessed at http://GlycoRBF.bioinfo.tw, can identify O-linked glycosylated serine and threonine effectively and efficiently. Moreover, the structural topology of Transmembrane (TM proteins with glycosylation sites is provided to users. The stand-alone version of GlycoRBF is also available for high throughput data analysis.

Lee Tzong-Yi

2010-10-01

235

Drosophila RNAi screen identifies host genes important for influenza virus replication  

Science.gov (United States)

All viruses rely on host cell proteins and their associated mechanisms to complete the viral life cycle. Identifying the host molecules that participate in each step of virus replication could provide valuable new targets for antiviral therapy, but this goal may take several decades to achieve with conventional forward genetic screening methods and mammalian cell cultures. Here we describe a novel genome-wide RNA interference (RNAi) screen in Drosophila1 that can be used to identify host genes important for influenza virus replication. After modifying influenza virus to allow infection of Drosophila cells and detection of influenza virus gene expression, we tested an RNAi library against 13,071 genes (90% of the Drosophila genome), identifying over 100 whose suppression in Drosophila cells significantly inhibited or stimulated reporter gene (Renilla luciferase) expression from an influenza virus-derived vector. The relevance of these findings to influenza virus infection of mammalian cells is illustrated for a subset of the Drosophila genes identified above. That is, the human homologues of ATP6V0D1, COX6A1 and NXF1 are shown to have key functions in the replication of H5N1 and H1N1 influenza A viruses, but not vesicular stomatitis virus or vaccinia virus, in HEK 293 cells. Thus, we have demonstrated the feasibility of using genome-wide RNAi screens in Drosophila to identify previously unrecognized host proteins that are required for influenza virus replication. This could accelerate the development of new classes of antiviral drugs for chemoprophylaxis and treatment, which are urgently needed given the obstacles to rapid development of an effective vaccine against pandemic influenza and the likely emergence of strains resistant to available drugs. PMID:18615016

Hao, Linhui; Sakurai, Akira; Watanabe, Tokiko; Sorensen, Ericka; Nidom, Chairul A.; Newton, Michael A.; Ahlquist, Paul; Kawaoka, Yoshihiro

2008-01-01

236

X chromosome-linked Kallmann syndrome: stop mutations validate the candidate gene.  

OpenAIRE

Kallmann syndrome represents the association of hypogonadotropic hypogonadism with anosmia. This syndrome is from a defect in the embryonic migratory pathway of gonadotropin-releasing hormone synthesizing neurons and olfactory axons. A candidate gene for the X chromosome-linked form of the syndrome was recently isolated by using a positional cloning strategy based on deletion mapping in the Xp22.3 region. With the PCR, two exons of this candidate gene were amplified on the genomic DNAs from 1...

Hardelin, J. P.; Levilliers, J.; Del Castillo, I.; Cohen-salmon, M.; Legouis, R.; Blanchard, S.; Compain, S.; Bouloux, P.; Kirk, J.; Moraine, C.

1992-01-01

237

Limiting genotype frequencies of Y-linked genes through bisexual branching processes with blind choice  

OpenAIRE

Abstract Abstract The limiting genotype growth rates and the limiting genotype frequencies of Y-linked genes are studied in a two-sex monogamous population. To this end, the evolution of the numbers of females, males, and mating units of each genotype is modeled by a multitype bisexual branching process in which it assumed that the gene has no influence on the mating process. It is deduced from this model that the average numbers of female and male descendants per mating...

Alsmeyer, G.; Gutie?rrez, C.; Marti?nez, R.

2011-01-01

238

Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Time-course microarray experiments are being increasingly used to characterize dynamic biological processes. In these experiments, the goal is to identify genes differentially expressed in time-course data, measured between different biological conditions. These differentially expressed genes can reveal the changes in biological process due to the change in condition which is essential to understand differences in dynamics. Results In this paper, we propose a novel method for finding differentially expressed genes in time-course data and across biological conditions (say C1 and C2. We model the expression at C1 using Principal Component Analysis and represent the expression profile of each gene as a linear combination of the dominant Principal Components (PCs. Then the expression data from C2 is projected on the developed PCA model and scores are extracted. The difference between the scores is evaluated using a hypothesis test to quantify the significance of differential expression. We evaluate the proposed method to understand differences in two case studies (1 the heat shock response of wild-type and HSF1 knockout mice, and (2 cell-cycle between wild-type and Fkh1/Fkh2 knockout Yeast strains. Conclusion In both cases, the proposed method identified biologically significant genes.

Srinivasan Rajagopalan

2008-06-01

239

Exome sequencing identifies SLC24A5 as a candidate gene for nonsyndromic oculocutaneous albinism.  

Science.gov (United States)

Oculocutaneous albinism (OCA) is a heterogeneous and autosomal recessive disorder with hypopigmentation in the eye, hair, and skin color. Four genes, TYR, OCA2, TYRP1, and SLC45A2, have been identified as causative genes for nonsyndromic OCA1-4, respectively. The genetic identity of OCA5 locus on 4q24 is unknown. Additional unknown OCA genes may exist as at least 5% of OCA patients have not been characterized during mutational screening in several populations. We used exome sequencing with a family-based recessive mutation model to determine that SLC24A5 is a previously unreported candidate gene for nonsyndromic OCA, which we designate as OCA6. Two deleterious mutations in this patient, c.591G>A and c.1361insT, were identified. We found apparent increase of immature melanosomes and less mature melanosomes in the patient's skin melanocytes. However, no defects in the platelet dense granules were observed, excluding typical Hermansky-Pudlak syndrome (HPS), a well-known syndromic OCA. Moreover, the SLC24A5 protein was reduced in steady-state levels in mouse HPS mutants with deficiencies in BLOC-1 and BLOC-2. Our results suggest that SLC24A5 is a previously unreported nonsyndromic OCA candidate gene and that the SLC24A5 transporter is transported into mature melanosomes by HPS protein complexes. PMID:23364476

Wei, Ai-Hua; Zang, Dong-Jie; Zhang, Zhe; Liu, Xuan-Zhu; He, Xin; Yang, Lin; Wang, Yi; Zhou, Zhi-Yong; Zhang, Ming-Rong; Dai, Lan-Lan; Yang, Xiu-Min; Li, Wei

2013-07-01

240

Refining analyses of copy number variation identifies specific genes associated with developmental delay.  

Science.gov (United States)

Copy number variants (CNVs) are associated with many neurocognitive disorders; however, these events are typically large, and the underlying causative genes are unclear. We created an expanded CNV morbidity map from 29,085 children with developmental delay in comparison to 19,584 healthy controls, identifying 70 significant CNVs. We resequenced 26 candidate genes in 4,716 additional cases with developmental delay or autism and 2,193 controls. An integrated analysis of CNV and single-nucleotide variant (SNV) data pinpointed 10 genes enriched for putative loss of function. Follow-up of a subset of affected individuals identified new clinical subtypes of pediatric disease and the genes responsible for disease-associated CNVs. These genetic changes include haploinsufficiency of SETBP1 associated with intellectual disability and loss of expressive language and truncations of ZMYND11 in individuals with autism, aggression and complex neuropsychiatric features. This combined CNV and SNV approach facilitates the rapid discovery of new syndromes and genes involved in neuropsychiatric disease despite extensive genetic heterogeneity. PMID:25217958

Coe, Bradley P; Witherspoon, Kali; Rosenfeld, Jill A; van Bon, Bregje W M; Vulto-van Silfhout, Anneke T; Bosco, Paolo; Friend, Kathryn L; Baker, Carl; Buono, Serafino; Vissers, Lisenka E L M; Schuurs-Hoeijmakers, Janneke H; Hoischen, Alex; Pfundt, Rolph; Krumm, Nik; Carvill, Gemma L; Li, Deana; Amaral, David; Brown, Natasha; Lockhart, Paul J; Scheffer, Ingrid E; Alberti, Antonino; Shaw, Marie; Pettinato, Rosa; Tervo, Raymond; de Leeuw, Nicole; Reijnders, Margot R F; Torchia, Beth S; Peeters, Hilde; O'Roak, Brian J; Fichera, Marco; Hehir-Kwa, Jayne Y; Shendure, Jay; Mefford, Heather C; Haan, Eric; Gécz, Jozef; de Vries, Bert B A; Romano, Corrado; Eichler, Evan E

2014-10-01

241

Functional screening in Drosophila identifies Alzheimer's disease susceptibility genes and implicates Tau-mediated mechanisms.  

Science.gov (United States)

Using a Drosophila model of Alzheimer's disease (AD), we systematically evaluated 67 candidate genes based on AD-associated genomic loci (P Genetic manipulation of 87 homologous fly genes was tested for modulation of neurotoxicity caused by human Tau, which forms neurofibrillary tangle pathology in AD. RNA interference (RNAi) targeting 9 genes enhanced Tau neurotoxicity, and in most cases reciprocal activation of gene expression suppressed Tau toxicity. Our screen implicates cindr, the fly ortholog of the human CD2AP AD susceptibility gene, as a modulator of Tau-mediated disease mechanisms. Importantly, we also identify the fly orthologs of FERMT2 and CELF1 as Tau modifiers, and these loci have been independently validated as AD susceptibility loci in the latest GWAS meta-analysis. Both CD2AP and FERMT2 have been previously implicated with roles in cell adhesion, and our screen additionally identifies a fly homolog of the human integrin adhesion receptors, ITGAM and ITGA9, as a modifier of Tau neurotoxicity. Our results highlight cell adhesion pathways as important in Tau toxicity and AD susceptibility and demonstrate the power of model organism genetic screens for the functional follow-up of human GWAS. PMID:24067533

Shulman, Joshua M; Imboywa, Selina; Giagtzoglou, Nikolaos; Powers, Martin P; Hu, Yanhui; Devenport, Danelle; Chipendo, Portia; Chibnik, Lori B; Diamond, Allison; Perrimon, Norbert; Brown, Nicholas H; De Jager, Philip L; Feany, Mel B

2014-02-15

242

In vivo RNAi screen identifies candidate signaling genes required for collective cell migration in Drosophila ovary.  

Science.gov (United States)

Collective migration of loosely or closely associated cell groups is prevalent in animal development, physiological events, and cancer metastasis. However, our understanding of the mechanisms of collective cell migration is incomplete. Drosophila border cells provide a powerful in vivo genetic model to study collective migration and identify essential genes for this process. Using border cell-specific RNAi-silencing in Drosophila, we knocked down 360 conserved signaling transduction genes in adult flies to identify essential pathways and genes for border cell migration. We uncovered a plethora of signaling genes, a large proportion of which had not been reported for border cells, including Rack1 (Receptor of activated C kinase) and brk (brinker), mad (mother against dpp), and sax (saxophone), which encode three components of TGF-? signaling. The RNAi knock down phenotype was validated by clonal analysis of Rack1 mutants. Our data suggest that inhibition of Src activity by Rack1 may be important for border cell migration and cluster cohesion maintenance. Lastly, results from our screen not only would shed light on signaling pathways involved in collective migration during embryogenesis and organogenesis in general, but also could help our understanding for the functions of conserved human genes involved in cancer metastasis. PMID:25528253

Luo, Jun; Zuo, JunTao; Wu, Jing; Wan, Ping; Kang, Di; Xiang, Cong; Zhu, Hong; Chen, Jiong

2015-04-01

243

Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity genes  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background The basidiomycete fungus Microbotryum violaceum is responsible for the anther-smut disease in many plants of the Caryophyllaceae family and is a model in genetics and evolutionary biology. Infection is initiated by dikaryotic hyphae produced after the conjugation of two haploid sporidia of opposite mating type. This study describes M. violaceum ESTs corresponding to nuclear genes expressed during conjugation and early hyphal production. Results A normalized cDNA library generated 24,128 sequences, which were assembled into 7,765 unique genes; 25.2% of them displayed significant similarity to annotated proteins from other organisms, 74.3% a weak similarity to the same set of known proteins, and 0.5% were orphans. We identified putative pheromone receptors and genes that in other fungi are involved in the mating process. We also identified many sequences similar to genes known to be involved in pathogenicity in other fungi. The M. violaceum EST database, MICROBASE, is available on the Web and provides access to the sequences, assembled contigs, annotations and programs to compare similarities against MICROBASE. Conclusion This study provides a basis for cloning the mating type locus, for further investigation of pathogenicity genes in the anther smut fungi, and for comparative genomics.

Devier Benjamin

2007-08-01

244

NMD inhibition fails to identify tumour suppressor genes in microsatellite stable gastric cancer cell lines  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Gastric cancers frequently show chromosomal alterations which can cause activation of oncogenes, and/or inactivation of tumour suppressor genes. In gastric cancer several chromosomal regions are described to be frequently lost, but for most of the regions, no tumour suppressor genes have been identified yet. The present study aimed to identify tumour suppressor genes inactivated by nonsense mutation and deletion in gastric cancer by means of GINI (gene identification by nonsense mediated decay inhibition and whole genome copy number analysis. Methods Two non-commercial gastric cancer cell lines, GP202 and IPA220, were transfected with siRNA directed against UPF1, to specifically inhibit the nonsense mediated decay (NMD pathway, and with siRNA directed against non-specific siRNA duplexes (CVII as a control. Microarray expression experiments were performed in triplicate on 4 × 44 K Agilent arrays by hybridizing RNA from UPF1-transfected cells against non-specific CVII-transfected cells. In addition, array CGH of the two cell lines was performed on 4 × 44K agilent arrays to obtain the DNA copy number profiles. Mutation analysis of GINI candidates was performed by sequencing. Results UPF1 expression was reduced for >70% and >80% in the GP202 and IPA220 gastric cancer cell lines, respectively. Integration of array CGH and microarray expression data provided a list of 134 and 50 candidate genes inactivated by nonsense mutation and deletion for GP202 and IPA220, respectively. We selected 12 candidate genes for mutation analysis. Of these, sequence analysis was performed on 11 genes. One gene, PLA2G4A, showed a silent mutation, and in two genes, CTSA and PTPRJ, missense mutations were detected. No nonsense mutations were detected in any of the 11 genes tested. Conclusion Although UPF1 was substantially repressed, thus resulting in the inhibition of the NMD system, we did not find genes inactivated by nonsense mutations. Our results show that the GINI strategy leads to a high number of false positives.

Ylstra Bauke

2009-06-01

245

Methylation-sensitive linking libraries enhance gene-enriched sequencing of complex genomes and map DNA methylation domains  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Many plant genomes are resistant to whole-genome assembly due to an abundance of repetitive sequence, leading to the development of gene-rich sequencing techniques. Two such techniques are hypomethylated partial restriction (HMPR and methylation spanning linker libraries (MSLL. These libraries differ from other gene-rich datasets in having larger insert sizes, and the MSLL clones are designed to provide reads localized to "epigenetic boundaries" where methylation begins or ends. Results A large-scale study in maize generated 40,299 HMPR sequences and 80,723 MSLL sequences, including MSLL clones exceeding 100 kb. The paired end reads of MSLL and HMPR clones were shown to be effective in linking existing gene-rich sequences into scaffolds. In addition, it was shown that the MSLL clones can be used for anchoring these scaffolds to a BAC-based physical map. The MSLL end reads effectively identified epigenetic boundaries, as indicated by their preferential alignment to regions upstream and downstream from annotated genes. The ability to precisely map long stretches of fully methylated DNA sequence is a unique outcome of MSLL analysis, and was also shown to provide evidence for errors in gene identification. MSLL clones were observed to be significantly more repeat-rich in their interiors than in their end reads, confirming the correlation between methylation and retroelement content. Both MSLL and HMPR reads were found to be substantially gene-enriched, with the SalI MSLL libraries being the most highly enriched (31% align to an EST contig, while the HMPR clones exhibited exceptional depletion of repetitive DNA (to ~11%. These two techniques were compared with other gene-enrichment methods, and shown to be complementary. Conclusion MSLL technology provides an unparalleled approach for mapping the epigenetic status of repetitive blocks and for identifying sequences mis-identified as genes. Although the types and natures of epigenetic boundaries are barely understood at this time, MSLL technology flags both approximate boundaries and methylated genes that deserve additional investigation. MSLL and HMPR sequences provide a valuable resource for maize genome annotation, and are a uniquely valuable complement to any plant genome sequencing project. In order to make these results fully accessible to the community, a web display was developed that shows the alignment of MSLL, HMPR, and other gene-rich sequences to the BACs; this display is continually updated with the latest ESTs and BAC sequences.

Bharti Arvind K

2008-12-01

246

A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes.  

Science.gov (United States)

Imprinted genes are critical for normal human growth and neurodevelopment. They are characterized by differentially methylated regions (DMRs) of DNA that confer parent of origin-specific transcription. We developed a new strategy to identify imprinted gene-associated DMRs. Using genome-wide methylation profiling of sodium bisulfite modified DNA from normal human tissues of biparental origin, candidate DMRs were identified by selecting CpGs with methylation levels consistent with putative allelic differential methylation. In parallel, the methylation profiles of tissues of uniparental origin, i.e., paternally-derived androgenetic complete hydatidiform moles (AnCHMs), and maternally-derived mature cystic ovarian teratoma (MCT), were examined and then used to identify CpGs with parent of origin-specific DNA methylation. With this approach, we found known DMRs associated with imprinted genomic regions as well as new DMRs for known imprinted genes, NAP1L5 and ZNF597, and novel candidate imprinted genes. The paternally methylated DMR for one candidate, AXL, a receptor tyrosine kinase, was also validated in experiments with mouse embryos that demonstrated Axl was expressed preferentially from the maternal allele in a DNA methylation-dependent manner. PMID:21324877

Choufani, Sanaa; Shapiro, Jonathan S; Susiarjo, Martha; Butcher, Darci T; Grafodatskaya, Daria; Lou, Youliang; Ferreira, Jose C; Pinto, Dalila; Scherer, Stephen W; Shaffer, Lisa G; Coullin, Philippe; Caniggia, Isabella; Beyene, Joseph; Slim, Rima; Bartolomei, Marisa S; Weksberg, Rosanna

2011-03-01

247

UV cross-linking identifies four polypeptides that require the TATA box to bind to the Drosophila hsp70 promoter  

International Nuclear Information System (INIS)

A protein fraction that requires the TATA sequence to bind to the hsp70 promoter has been partially purified from nuclear extracts of Drosophila embryos. This TATA factor produces a large DNase I footprint that extends from -44 to +35 on the promoter. A mutation that changes TATA to TATG interferes both with the binding of this complex and with the transcription of the hsp70 promoter in vitro, indicating that this interaction is important for transcriptional activity. Using a highly specific protein-DNA cross-linking assay, we have identified four polypeptides that require the TATA sequence to bind to the hsp70 promoter. Polypeptides of 26 and 42 kilodaltons are in intimate contact with the TATA sequence. Polypeptides of 150 and 60 kilodaltons interact within the region from +24 to +47 in a TATA-dependent manner. Both the extended footprint and the polypeptides identified by UV cross-linking indicate that the Drosophila TATA factor is a multicomponent complex

248

Detection of large gene rearrangements in X-linked genes by dosage analysis: identification of novel ?-galactosidase A (GLA) deletions causing Fabry disease.  

Science.gov (United States)

For most Mendelian disorders, targeted genome sequencing is an effective method to detect causative mutations. However, sequencing PCR-amplified exonic regions and their intronic boundaries can miss large deletions or duplications and mutations that lead to PCR failures in autosomal dominant disorders and in heterozygote detection for X-linked diseases. Here, a method is described for detecting large (>50?bp) deletions/duplications in the X-linked ?-galactosidase A (GLA) gene, which cause Fabry disease. Briefly, multiplex PCR mixtures were designed to amplify each GLA exon and an unrelated internal control exon to normalize GLA exonic amplicon peak heights. For each normalized GLA amplicon, the normal control female to male peak-height ratios were 1.8 to 2.2 (expected 2.0), whereas the expected ratios for deletions or duplications would be ?1.0 or 3.0, respectively. Using this method, three novel deletions, c.369+3_547+954del4096insT, c.194+2049_369+773del2619insCG, and c.207_369+651del814ins231, were detected in unrelated women with signs and/or symptoms suggestive of Fabry disease, but no "sequencing-detectable" mutations. The deletions were confirmed by sequencing their respective GLA RT-PCR products. This method can identify gene rearrangements that may be cryptic to genomic DNA sequencing and can be readily adapted to other X-linked or autosomal dominant genes. PMID:21305660

Dobrovolny, Robert; Nazarenko, Irina; Kim, Jungmin; Doheny, Dana; Desnick, Robert J

2011-06-01

249

Diagnostic exome sequencing identifies two novel IQSEC2 mutations associated with X-linked intellectual disability with seizures: implications for genetic counseling and clinical diagnosis.  

Science.gov (United States)

Intellectual disability is a heterogeneous disorder with a wide phenotypic spectrum. Over 1,700 OMIM genes have been associated with this condition, many of which reside on the X-chromosome. The IQSEC2 gene is located on chromosome Xp11.22 and is known to play a significant role in the maintenance and homeostasis of the brain. Mutations in IQSEC2 have been historically associated with nonsyndromic X-linked intellectual disability. Case reports of affected probands show phenotypic overlap with conditions associated with pathogenic MECP2, FOXG1, CDKL5, and MEF2C gene mutations. Affected individuals, however, have also been identified as presenting with additional clinical features including seizures, autistic-behavior, psychiatric problems, and delayed language skills. To our knowledge, only 5 deleterious mutations and 2 intragenic duplications have been previously reported in IQSEC2. Here we report two novel IQSEC2 de novo truncating mutations identified through diagnostic exome sequencing in two severely affected unrelated male probands manifesting developmental delay, seizures, hypotonia, plagiocephaly, and abnormal MRI findings. Overall, diagnostic exome sequencing established a molecular diagnosis for two patients in whom traditional testing methods were uninformative while expanding on the mutational and phenotypic spectrum. In addition, our data suggests that IQSEC2 may be more common than previously appreciated, accounting for approximately 9 % (2/22) of positive findings among patients with seizures referred for diagnostic exome sequencing. Further, these data supports recently published data suggesting that IQSEC2 plays a more significant role in the development of X-linked intellectual disability with seizures than previously anticipated. PMID:24306141

Gandomi, Stephanie K; Farwell Gonzalez, K D; Parra, M; Shahmirzadi, L; Mancuso, J; Pichurin, P; Temme, R; Dugan, S; Zeng, W; Tang, Sha

2014-06-01

250

A catalogue of genes in the cardiovascular system as identified by expressed sequence tags.  

OpenAIRE

The heart, which is composed of all the cellular components of the circulatory system, is a representative organ for obtaining genes expressed in the cardiovascular system in normal and disease states. We used partial sequences of cDNA clones, or expressed sequence tags, to identify and tag genes expressed in this organ. More than 3500 partial sequences representing > 3000 cDNA clones have been obtained from either the 5' or 3' end of inserts derived from human heart cDNA libraries. Of 3132 c...

Liew, C. C.; Hwang, D. M.; Fung, Y. W.; Laurenssen, C.; Cukerman, E.; Tsui, S.; Lee, C. Y.

1994-01-01

251

Mayo Clinic study identifies optimal gene targets for new colon cancer test  

Science.gov (United States)

A study presented today by Mayo Clinic researchers at the American Association for Cancer Research(AACR) Annual Meeting 2012 in Chicago identified two genes that are optimal targets to be analyzed in a new noninvasive test for colorectal cancer developed by Mayo Clinic, in collaboration with Exact Sciences Corporation. The test uses a small sample of a patient's stool to check for specific DNA changes, known as gene methylation, that occur as cancer develops. The test can quickly detect both early stage cancer and precancerous polyps.

252

Large-Scale Evaluation of Candidate Genes Identifies Associations between VEGF Polymorphisms and Bladder Cancer Risk  

OpenAIRE

Common genetic variation could alter the risk for developing bladder cancer. We conducted a large-scale evaluation of single nucleotide polymorphisms (SNPs) in candidate genes for cancer to identify common variants that influence bladder cancer risk. An Illumina GoldenGate assay was used to genotype 1,433 SNPs within or near 386 genes in 1,086 cases and 1,033 controls in Spain. The most significant finding was in the 5? UTR of VEGF (rs25648, p for likelihood ratio test, 2 degrees of freedom...

Garci?a-closas, Montserrat; Malats, Nu?ria; Real, Francisco X.; Yeager, Meredith; Welch, Robert; Silverman, Debra; Kogevinas, Manolis; Dosemeci, Mustafa; Figueroa, Jonine; Chatterjee, Nilanjan; Tardo?n, Adonina; Serra, Consol; Carrato, Alfredo; Garci?a-closas, Reina; Murta-nascimento, Cristiane

2007-01-01

253

Gene content differences across strains of Streptococcus uberis identified using oligonucleotide microarray comparative genomic hybridization.  

Science.gov (United States)

Streptococcus uberis is one of the principal causative agents of bovine mastitis. The organism is typically considered an environmental pathogen. In this study, two multilocus sequence typing (MLST) schemes and whole genome DNA microarrays were used to evaluate the degree and nature of genome flexibility between S. uberis strains. The 21 isolates examined in this study arise from a collection of 232 international isolates for which previous epidemiological and preliminary genotyping data existed. The microarray analysis resulted in an estimate of the core genome for S. uberis, consisting of 1530 ORFs, among 1855 tested, representing 82.5% of the S. uberis 0140J genome. The remaining ORFs were variable in gene content across the 21 tested strains. A total of 26 regions of difference (RDs), consisting of three or more contiguous ORFs, were identified among the variable genes. Core genes mainly encoded housekeeping functions, while the variable genes primarily fell within categories such as protection responses, degradation of small molecules, laterally acquired elements, and two component systems. Recombination detection procedures involving the MLST loci suggested S. uberis is a highly recombinant species, precluding accurate phylogenetic reconstructions involving these data. On the other hand, the microarray data did provide limited support for an association of gene content with strains found in multiple cows and/or multiple herds, suggesting the possibility of genes related to bovine transmissibility or host-adaptation. PMID:19056519

Lang, Ping; Lefébure, Tristan; Wang, Wei; Zadoks, Ruth N; Schukken, Ynte; Stanhope, Michael J

2009-03-01

254

Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L. Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

Reusch Thorsten BH

2011-01-01

255

GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region.  

Science.gov (United States)

In a genome-wide association study (GWAS) of individuals of European ancestry afflicted with systemic lupus erythematosus (SLE) the extensive utilization of imputation, step-wise multiple regression, lasso regularization and increasing study power by utilizing false discovery rate instead of a Bonferroni multiple test correction enabled us to identify 13 novel non-human leukocyte antigen (HLA) genes and confirmed the association of four genes previously reported to be associated. Novel genes associated with SLE susceptibility included two transcription factors (EHF and MED1), two components of the NF-?B pathway (RASSF2 and RNF114), one gene involved in adhesion and endothelial migration (CNTN6) and two genes involved in antigen presentation (BIN1 and SEC61G). In addition, the strongly significant association of multiple single-nucleotide polymorphisms (SNPs) in the HLA region was assigned to HLA alleles and serotypes and deconvoluted into four primary signals. The novel SLE-associated genes point to new directions for both the diagnosis and treatment of this debilitating autoimmune disease. PMID:24871463

Armstrong, D L; Zidovetzki, R; Alarcón-Riquelme, M E; Tsao, B P; Criswell, L A; Kimberly, R P; Harley, J B; Sivils, K L; Vyse, T J; Gaffney, P M; Langefeld, C D; Jacob, C O

2014-09-01

256

Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing.  

Science.gov (United States)

Endosperm is a filial structure resulting from a second fertilization event in angiosperms. As an absorptive storage organ, endosperm plays an essential role in support of embryo development and seedling germination. The accumulation of carbohydrate and protein storage products in cereal endosperm provides humanity with a major portion of its food, feed, and renewable resources. Little is known regarding the regulatory gene networks controlling endosperm proliferation and differentiation. As a first step toward understanding these networks, we profiled all mRNAs in the maize kernel and endosperm at eight successive stages during the first 12 d after pollination. Analysis of these gene sets identified temporal programs of gene expression, including hundreds of transcription-factor genes. We found a close correlation of the sequentially expressed gene sets with distinct cellular and metabolic programs in distinct compartments of the developing endosperm. The results constitute a preliminary atlas of spatiotemporal patterns of endosperm gene expression in support of future efforts for understanding the underlying mechanisms that control seed yield and quality. PMID:24821765

Li, Guosheng; Wang, Dongfang; Yang, Ruolin; Logan, Kyle; Chen, Hao; Zhang, Shanshan; Skaggs, Megan I; Lloyd, Alan; Burnett, William J; Laurie, John D; Hunter, Brenda G; Dannenhoffer, Joanne M; Larkins, Brian A; Drews, Gary N; Wang, Xiangfeng; Yadegari, Ramin

2014-05-27

257

Meta-analysis of clinical data using human meiotic genes identifies a novel cohort of highly restricted cancer-specific marker genes  

OpenAIRE

Identifying cancer-specific biomarkers represents an ongoing challenge to the development of novel cancer diagnostic, prognostic and therapeutic strategies. Cancer/testis (CT) genes are an important gene family with expression tightly restricted to the testis in normal individuals but which can also be activated in cancers. Here we develop a pipeline to identify new CT genes. We analysed and validated expression profiles of human meiotic genes in normal and cancerous tissue followed by meta-a...

Feichtinger, Julia; Aldeailej, Ibrahim; Anderson, Rebecca; Almutairi, Mikhlid; Almatrafi, Ahmed; Alsiwiehri, Naif; Griffiths, Keith; Stuart, Nicholas; Wakeman, Jane A.; Larcombe, Lee; Mcfarlane, Ramsay J.

2012-01-01

258

Progress in the identification of DNA markers linked to the Yd2 gene in barley  

International Nuclear Information System (INIS)

Barley yellow dwarf (BYD) is the most damaging virus disease in wheat and other cereal crops worldwide and the yield loss inflicted by the virus (BYDV) and be quite severe. While some protection against the disease can be realized by crop management practices, resistant varieties clearly offer the greatest opportunity for reducing yield losses. Possible sources of BYD resistance have been found in wheat, barely, rye and wheatgrass species. Among them, the Yd2 gene from chromosome 3H of barley currently shows the best genetic resistance in any cereal species and it has been widely deployed in many leading barley varieties. We have developed 94 F2 derived families from the cross between Betzes, a susceptible barley variety that does not carry Yd2, and Atlas 68, a resistant variety that has Yd2. These families were evaluated in two and three replicate tests for BYD symptom expression in field nurseries at Davis, California, and at Aberdeen, Idaho, respectively. To minimize the mapping effort at this early stage, we used 18 and 23 homozygous resistant and susceptible F2 derived families, respectively, and have identified RFLP markers that are closely linked to Yd2. We are now moving to the next phase of this work, which is to extend the RFLP mapping population size to include all the F2 derived families and to saturate the region carrying Yd2 with marker loci available to us from genome mapping programmes in barley, wheat and other relatedgrammes in barley, wheat and other related species

259

Identifying genes related to choriogenesis in insect panoistic ovaries by Suppression Subtractive Hybridization  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Insect ovarioles are classified into two categories: panoistic and meroistic, the later having apparently evolved from an ancestral panoistic type. Molecular data on oogenesis is practically restricted to meroistic ovaries. If we aim at studying the evolutionary transition from panoistic to meroistic, data on panoistic ovaries should be gathered. To this end, we planned the construction of a Suppression Subtractive Hybridization (SSH library to identify genes involved in panoistic choriogenesis, using the cockroach Blattella germanica as model. Results We constructed a post-vitellogenic ovary library by SSH to isolate genes involved in choriogenesis in B. germanica. The tester library was prepared with an ovary pool from 6- to 7-day-old females, whereas the driver library was prepared with an ovary pool from 3- to 4-day-old females. From the SSH library, we obtained 258 high quality sequences which clustered into 34 unique sequences grouped in 19 contigs and 15 singlets. The sequences were compared against non-redundant NCBI databases using BLAST. We found that 44% of the unique sequences had homologous sequences in known genes of other organisms, whereas 56% had no significant similarity to any of the databases entries. A Gene Ontology analysis was carried out, classifying the 34 sequences into different functional categories. Seven of these gene sequences, representative of different categories and processes, were chosen to perform expression studies during the first gonadotrophic cycle by real-time PCR. Results showed that they were mainly expressed during post-vitellogenesis, which validates the SSH technique. In two of them corresponding to novel genes, we demonstrated that they are specifically expressed in the cytoplasm of follicular cells in basal oocytes at the time of choriogenesis. Conclusion The SSH approach has proven to be useful in identifying ovarian genes expressed after vitellogenesis in B. germanica. For most of the genes, functions related to choriogenesis are postulated. The relatively high percentage of novel genes obtained and the practical absence of chorion genes typical of meroistic ovaries suggest that mechanisms regulating chorion formation in panoistic ovaries are significantly different from those of meroistic ones.

Bellés Xavier

2009-04-01

260

Development of molecular markers linked to a gene controlling fruit acidity in citrus.  

Science.gov (United States)

Fruit juice pH, titratable acidity, or citric acid content was measured in 6 populations derived from an acidless pummelo (pummelo 2240) (Citrus maxima (Burm.) Merrill). The acidless trait in pummelo 2240 is controlled by a single recessive gene called acitric. Using bulked segregant analysis, three RAPD markers were identified as linked to acitric. RAPD marker OpZ20410, which mapped 1.2 cM from acitric, was cloned and sequenced, and a sequence characterized amplified region (SCAR) marker (SCZ20) was developed. The SCZ20-410 marker allele that is linked to the acitric allele occurs only in pummelo 2240 and other pummelos, and therefore, this SCAR marker should be useful as a dominant or codominant marker for introgressing acitric into mandarins and other citrus species. Using the cloned OpZ20410 band as a hybridization probe revealed a codominant RFLP marker called RFZ20 that mapped 1.2 cM from acitric. Progeny homozygous (acac) for the acitric allele had citric acid content below 10 ?M, the minimum level detectable by high pressure liquid chromatography. The citric acid content of fruit juice from progeny predicted to be heterozygous (Acac) for acitric by the above markers was about 30% lower than that of juice from individuals predicted to be homozygous (AcAc) for the normal acid allele. Markers OpZ20410, SCZ20, and RFZ20 were highly polymorphic among 59 citrus accessions, and using one or more of these markers would allow citrus breeders to select seedling progeny heterozygous for acitric in nearly all crosses between pummelo 2240 or its offspring and other citrus genotypes. PMID:18464869

Fang, D Q; Federici, C T; Roose, M L

1997-12-01

261

An insight into the phylogenetic history of HOX linked gene families in vertebrates  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background The human chromosomes 2q, 7, 12q and 17q show extensive intra-genomic homology, containing duplicate, triplicate and quadruplicate paralogous regions centered on the HOX gene clusters. The fact that two or more representatives of different gene families are linked with HOX clusters is taken as evidence that these paralogous gene sets might have arisen from a single chromosomal segment through block or whole chromosome duplication events. This would imply that the constituent genes including the HOX clusters reflect the architecture of a single ancestral block (before vertebrate origin where all of these genes were linked in a single copy. Results In the present study we have employed the currently available set of protein data for a wide variety of vertebrate and invertebrate genomes to analyze the phylogenetic history of 11 multigene families with three or more of their representatives linked to human HOX clusters. A topology comparison approach revealed four discrete co-duplicated groups: group 1 involves the genes from GLI, HH, INHB, IGFBP (cluster-1, and SLC4A families; group 2 involves ERBB, ZNFN1A, and IGFBP (cluster-2 gene families; group 3 involves the HOX clusters and the SP gene family; group 4 involves the integrin beta chain and myosine light chain families. The distinct genes within each co-duplicated group share the same evolutionary history and are duplicated in concert with each other, while the constituent genes of two different co-duplicated groups may not share their evolutionary history and may not have duplicated simultaneously. Conclusion We conclude that co-duplicated groups may themselves be remnants of ancient small-scale duplications (involving chromosomal segments or gene-clusters which occurred at different time points during chordate evolution. Whereas the recent combination of genes from distinct co-duplicated groups on different chromosomal regions (human chromosomes 2q, 7, 12q, and 17q is probably the outcome of subsequent rearrangement of genomic segments, including syntenic groups of genes.

Grzeschik Karl-Heinz

2007-11-01

262

Identification of microsatellite markers (SSR linked to a new bacterial blight resistance gene xa33(t in rice cultivar ‘Ba7’  

Directory of Open Access Journals (Sweden)

Full Text Available This study attempts to identify a new source of bacterial blight (BB resistance gene and microsatellite makers (SSR linked to it. A total number of 139 F2 progenies generated from a cross between the resistant donor ‘Ba7’and ‘Pin Kaset’ were developed and used for this study. A Thai Xoo isolate, TXO16, collected from Phitsanulok province, was used to evaluate the resistance reaction in the F2 population. The segregation ratio of resistance (R and susceptibility (S was statistically fitted to 1R:3S model indicating single recessive gene segregation. Twenty F2 individuals consisting of 10 resistant and 10 susceptible plants were chosen for DNA analysis. Sixty-two polymorphic markers covering all rice chromosomes were used to identify the location and linked markers of the resistance gene. Four SSR markers, viz. RM30, RM7243, RM5509 and RM400, located on the long arm of rice chromosome 6, could clearly discriminate between resistant and susceptible phenotypes, and 161 BC2F2:3 individuals carrying BB resistance gene were developed through MAS using these SSR markers. This population was inoculated with TXO16 to validate and confirm the location of the gene and linked markers. The segregation ratio was statistically fitted to 1R:3S model confirming a recessive nature of the gene action in this germplasm. Phenotypic-genotypic association including five additional markers suggested that RM20590 was tightly linked to this resistance gene (R2=59.12 %. The BB phenotype was controlled by a recessive gene with incomplete dominance of susceptible allele providing intermediate resistance to Xoo pathogen in heterozygotes. The location of the gene was in the vicinity of a dominant gene, Xa7, which was previously reported. However, the resistance gene identified here was different from Xa7 because of the different nature of gene action. Consequently, this gene was tentatively designated as xa33(t. The resistance gene from rice cultivar ‘Ba7’ and the closely linked markers found in this study will be useful for rice breeders as a source to improve BB resistance through MAS in rice breeding programs.

Theerayut Toojinda

2009-05-01

263

Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue  

DEFF Research Database (Denmark)

In order to identify biological processes relevant for cell death and survival in the brain following stroke, the postischemic brain transcriptome was studied by a large-scale cDNA array analysis of three peri-infarct brain regions at eight time points during the first 24 h of reperfusion following middle cerebral artery occlusion in the rat. K-means cluster analysis revealed two distinct biphasic gene expression patterns that contained 44 genes (including 18 immediate early genes), involved in cell signaling and plasticity (i.e. MAP2K7, Sprouty2, Irs-2, Homer1, GPRC5B, Grasp). The first gene induction phase occurred at 0-3 h of reperfusion, and the second at 9-15 h, and was validated by in situ hybridization. Four gene clusters displayed a progressive increase in expression over time and included 50 genes linked to cell motility, lipid synthesis and trafficking (i.e. ApoD, NPC1, G3P-dehydrogenase1, and Choline kinase) or cell death-regulating genes such as mitochondrial CLIC. We conclude that a biphasic transcriptional up-regulation of the brain-derived neurotrophic factor (BDNF)-G-protein coupled receptor (GPCR)-mitogen-activated protein (MAP) kinase signaling pathways occurs in surviving tissue, concomitant with a progressive and persistent activation of cell proliferation signifying tissue regeneration, which provide the means for cell survival and postischemic brain plasticity.

Rickhag, Karl Mattias; Wieloch, Tadeusz

2006-01-01

264

Identifying the Viral Genes Encoding Envelope Glycoproteins for Differentiation of Cyprinid herpesvirus 3 Isolates  

Directory of Open Access Journals (Sweden)

Full Text Available Cyprinid herpes virus 3 (CyHV-3 diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio. Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116 of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116. In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies.

Se Chang Park

2013-01-01

265

Vital Genes That Flank Sex-Lethal, an X-Linked Sex-Determining Gene of DROSOPHILA MELANOGASTER  

OpenAIRE

The X-chromosome:autosome balance in D. melanogaster appears to control both sex determination and dosage compensation through effects on a maternally influenced sex-linked gene called Sex-lethal (Sxl; 1-19.2). To facilitate molecular and genetic analysis of Sxl, we attempted to determine the locations of all ethyl methanesulfonate (EMS)-mutable genes vital to both sexes in the region between 6E1 and 7B1. This area includes approximately 1 cM of the genetic map on each side of Sxl and was re...

Nicklas, Janice A.; Cline, Thomas W.

1983-01-01

266

Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background DNA barcoding of life using a standardized COI sequence was proposed as a species identification system, and as a method for detecting putative new species. Previous tests in birds showed that individuals can be correctly assigned to species in ~94% of the cases and suggested a threshold of 10× mean intraspecific difference to detect potential new species. However, these tests were criticized because they were based on a single maternally inherited gene rather than multiple nuclear genes, did not compare phylogenetically identified sister species, and thus likely overestimated the efficacy of DNA barcodes in identifying species. Results To test the efficacy of DNA barcodes we compared ~650 bp of COI in 60 sister-species pairs identified in multigene phylogenies from 10 orders of birds. In all pairs, individuals of each species were monophyletic in a neighbor-joining (NJ tree, and each species possessed fixed mutational differences distinguishing them from their sister species. Consequently, individuals were correctly assigned to species using a statistical coalescent framework. A coalescent test of taxonomic distinctiveness based on chance occurrence of reciprocal monophyly in two lineages was verified in known sister species, and used to identify recently separated lineages that represent putative species. This approach avoids the use of a universal distance cutoff which is invalidated by variation in times to common ancestry of sister species and in rates of evolution. Conclusion Closely related sister species of birds can be identified reliably by barcodes of fixed diagnostic substitutions in COI sequences, verifying coalescent-based statistical tests of reciprocal monophyly for taxonomic distinctiveness. Contrary to recent criticisms, a single DNA barcode is a rapid way to discover monophyletic lineages within a metapopulation that might represent undiscovered cryptic species, as envisaged in the unified species concept. This identifies a smaller set of lineages that can also be tested independently for species status with multiple nuclear gene approaches and other phenotypic characters.

Baker Allan J

2008-03-01

267

A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder.  

Science.gov (United States)

Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data. PMID:21996756

Casey, Jillian P; Magalhaes, Tiago; Conroy, Judith M; Regan, Regina; Shah, Naisha; Anney, Richard; Shields, Denis C; Abrahams, Brett S; Almeida, Joana; Bacchelli, Elena; Bailey, Anthony J; Baird, Gillian; Battaglia, Agatino; Berney, Tom; Bolshakova, Nadia; Bolton, Patrick F; Bourgeron, Thomas; Brennan, Sean; Cali, Phil; Correia, Catarina; Corsello, Christina; Coutanche, Marc; Dawson, Geraldine; de Jonge, Maretha; Delorme, Richard; Duketis, Eftichia; Duque, Frederico; Estes, Annette; Farrar, Penny; Fernandez, Bridget A; Folstein, Susan E; Foley, Suzanne; Fombonne, Eric; Freitag, Christine M; Gilbert, John; Gillberg, Christopher; Glessner, Joseph T; Green, Jonathan; Guter, Stephen J; Hakonarson, Hakon; Holt, Richard; Hughes, Gillian; Hus, Vanessa; Igliozzi, Roberta; Kim, Cecilia; Klauck, Sabine M; Kolevzon, Alexander; Lamb, Janine A; Leboyer, Marion; Le Couteur, Ann; Leventhal, Bennett L; Lord, Catherine; Lund, Sabata C; Maestrini, Elena; Mantoulan, Carine; Marshall, Christian R; McConachie, Helen; McDougle, Christopher J; McGrath, Jane; McMahon, William M; Merikangas, Alison; Miller, Judith; Minopoli, Fiorella; Mirza, Ghazala K; Munson, Jeff; Nelson, Stanley F; Nygren, Gudrun; Oliveira, Guiomar; Pagnamenta, Alistair T; Papanikolaou, Katerina; Parr, Jeremy R; Parrini, Barbara; Pickles, Andrew; Pinto, Dalila; Piven, Joseph; Posey, David J; Poustka, Annemarie; Poustka, Fritz; Ragoussis, Jiannis; Roge, Bernadette; Rutter, Michael L; Sequeira, Ana F; Soorya, Latha; Sousa, Inês; Sykes, Nuala; Stoppioni, Vera; Tancredi, Raffaella; Tauber, Maïté; Thompson, Ann P; Thomson, Susanne; Tsiantis, John; Van Engeland, Herman; Vincent, John B; Volkmar, Fred; Vorstman, Jacob A S; Wallace, Simon; Wang, Kai; Wassink, Thomas H; White, Kathy; Wing, Kirsty; Wittemeyer, Kerstin; Yaspan, Brian L; Zwaigenbaum, Lonnie; Betancur, Catalina; Buxbaum, Joseph D; Cantor, Rita M; Cook, Edwin H; Coon, Hilary; Cuccaro, Michael L; Geschwind, Daniel H; Haines, Jonathan L; Hallmayer, Joachim; Monaco, Anthony P; Nurnberger, John I; Pericak-Vance, Margaret A; Schellenberg, Gerard D; Scherer, Stephen W; Sutcliffe, James S; Szatmari, Peter; Vieland, Veronica J; Wijsman, Ellen M; Green, Andrew; Gill, Michael; Gallagher, Louise; Vicente, Astrid; Ennis, Sean

2012-04-01

268

Large-Scale Gene-Centric Meta-analysis across 32 Studies Identifies Multiple Lipid Loci  

Science.gov (United States)

Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TGs), can be identified by a dense gene-centric approach. Our meta-analysis of 32 studies in 66,240 individuals of European ancestry was based on the custom ?50,000 SNP genotyping array (the ITMAT-Broad-CARe array) covering ?2,000 candidate genes. SNP-lipid associations were replicated either in a cohort comprising an additional 24,736 samples or within the Global Lipid Genetic Consortium. We identified four, six, ten, and four unreported SNPs in established lipid genes for HDL-C, LDL-C, TC, and TGs, respectively. We also identified several lipid-related SNPs in previously unreported genes: DGAT2, HCAR2, GPIHBP1, PPARG, and FTO for HDL-C; SOCS3, APOH, SPTY2D1, BRCA2, and VLDLR for LDL-C; SOCS3, UGT1A1, BRCA2, UBE3B, FCGR2A, CHUK, and INSIG2 for TC; and SERPINF2, C4B, GCK, GATA4, INSR, and LPAL2 for TGs. The proportion of explained phenotypic variance in the subset of studies providing individual-level data was 9.9% for HDL-C, 9.5% for LDL-C, 10.3% for TC, and 8.0% for TGs. This large meta-analysis of lipid phenotypes with the use of a dense gene-centric approach identified multiple SNPs not previously described in established lipid genes and several previously unknown loci. The explained phenotypic variance from this approach was comparable to that from a meta-analysis of GWAS data, suggesting that a focused genotyping approach can further increase the understanding of heritability of plasma lipids. PMID:23063622

Asselbergs, Folkert W.; Guo, Yiran; van Iperen, Erik P.A.; Sivapalaratnam, Suthesh; Tragante, Vinicius; Lanktree, Matthew B.; Lange, Leslie A.; Almoguera, Berta; Appelman, Yolande E.; Barnard, John; Baumert, Jens; Beitelshees, Amber L.; Bhangale, Tushar R.; Chen, Yii-Der Ida; Gaunt, Tom R.; Gong, Yan; Hopewell, Jemma C.; Johnson, Toby; Kleber, Marcus E.; Langaee, Taimour Y.; Li, Mingyao; Li, Yun R.; Liu, Kiang; McDonough, Caitrin W.; Meijs, Matthijs F.L.; Middelberg, Rita P.S.; Musunuru, Kiran; Nelson, Christopher P.; O’Connell, Jeffery R.; Padmanabhan, Sandosh; Pankow, James S.; Pankratz, Nathan; Rafelt, Suzanne; Rajagopalan, Ramakrishnan; Romaine, Simon P.R.; Schork, Nicholas J.; Shaffer, Jonathan; Shen, Haiqing; Smith, Erin N.; Tischfield, Sam E.; van der Most, Peter J.; van Vliet-Ostaptchouk, Jana V.; Verweij, Niek; Volcik, Kelly A.; Zhang, Li; Bailey, Kent R.; Bailey, Kristian M.; Bauer, Florianne; Boer, Jolanda M.A.; Braund, Peter S.; Burt, Amber; Burton, Paul R.; Buxbaum, Sarah G.; Chen, Wei; Cooper-DeHoff, Rhonda M.; Cupples, L. Adrienne; deJong, Jonas S.; Delles, Christian; Duggan, David; Fornage, Myriam; Furlong, Clement E.; Glazer, Nicole; Gums, John G.; Hastie, Claire; Holmes, Michael V.; Illig, Thomas; Kirkland, Susan A.; Kivimaki, Mika; Klein, Ronald; Klein, Barbara E.; Kooperberg, Charles; Kottke-Marchant, Kandice; Kumari, Meena; LaCroix, Andrea Z.; Mallela, Laya; Murugesan, Gurunathan; Ordovas, Jose; Ouwehand, Willem H.; Post, Wendy S.; Saxena, Richa; Scharnagl, Hubert; Schreiner, Pamela J.; Shah, Tina; Shields, Denis C.; Shimbo, Daichi; Srinivasan, Sathanur R.; Stolk, Ronald P.; Swerdlow, Daniel I.; Taylor, Herman A.; Topol, Eric J.; Toskala, Elina; van Pelt, Joost L.; van Setten, Jessica; Yusuf, Salim; Whittaker, John C.; Zwinderman, A.H.; Anand, Sonia S.; Balmforth, Anthony J.; Berenson, Gerald S.; Bezzina, Connie R.; Boehm, Bernhard O.; Boerwinkle, Eric; Casas, Juan P.; Caulfield, Mark J.; Clarke, Robert; Connell, John M.; Cruickshanks, Karen J.; Davidson, Karina W.; Day, Ian N.M.; de Bakker, Paul I.W.; Doevendans, Pieter A.; Dominiczak, Anna F.; Hall, Alistair S.; Hartman, Catharina A.; Hengstenberg, Christian; Hillege, Hans L.; Hofker, Marten H.; Humphries, Steve E.; Jarvik, Gail P.; Johnson, Julie A.; Kaess, Bernhard M.; Kathiresan, Sekar; Koenig, Wolfgang; Lawlor, Debbie A.; März, Winfried; Melander, Olle; Mitchell, Braxton D.; Montgomery, Grant W.; Munroe, Patricia B.; Murray, Sarah S.; Newhouse, Stephen J.; Onland-Moret, N. Charlotte; Poulter, Neil; Psaty, Bruce; Redline, Susan; Rich, Stephen S.; Rotter, Jerome I.; Schunkert, Heribert; Sever, Peter; Shuldiner, Alan R.; Silverstein, Roy L.; Stanton, Alice; Thorand, Barbara; Trip, Mieke D.; Tsai, Michael Y.; van der Harst, Pim; van der Schoot, Ellen; van der Schouw, Yvonne T.; Verschuren, W.M. Monique; Watkins, Hugh; Wilde, Arthur A.M.; Wolffenbuttel, Bruce H.R.; Whitfield, John B.; Hovingh, G. Kees; Ballantyne, Christie M.; Wijmenga, Cisca; Reilly, Muredach P.; Martin, Nicholas G.; Wilson, James G.; Rader, Daniel J.; Samani, Nilesh J.; Reiner, Alex P.; Hegele, Robert A.; Kastelein, John J.P.; Hingorani, Aroon D.; Talmud, Philippa J.; Hakonarson, Hakon; Elbers, Clara C.; Keating, Brendan J.; Drenos, Fotios

2012-01-01

269

Genome-Wide association study identifies candidate genes for Parkinson's disease in an Ashkenazi Jewish population  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background To date, nine Parkinson disease (PD genome-wide association studies in North American, European and Asian populations have been published. The majority of studies have confirmed the association of the previously identified genetic risk factors, SNCA and MAPT, and two studies have identified three new PD susceptibility loci/genes (PARK16, BST1 and HLA-DRB5. In a recent meta-analysis of datasets from five of the published PD GWAS an additional 6 novel candidate genes (SYT11, ACMSD, STK39, MCCC1/LAMP3, GAK and CCDC62/HIP1R were identified. Collectively the associations identified in these GWAS account for only a small proportion of the estimated total heritability of PD suggesting that an 'unknown' component of the genetic architecture of PD remains to be identified. Methods We applied a GWAS approach to a relatively homogeneous Ashkenazi Jewish (AJ population from New York to search for both 'rare' and 'common' genetic variants that confer risk of PD by examining any SNPs with allele frequencies exceeding 2%. We have focused on a genetic isolate, the AJ population, as a discovery dataset since this cohort has a higher sharing of genetic background and historically experienced a significant bottleneck. We also conducted a replication study using two publicly available datasets from dbGaP. The joint analysis dataset had a combined sample size of 2,050 cases and 1,836 controls. Results We identified the top 57 SNPs showing the strongest evidence of association in the AJ dataset (p -5. Six SNPs located within gene regions had positive signals in at least one other independent dbGaP dataset: LOC100505836 (Chr3p24, LOC153328/SLC25A48 (Chr5q31.1, UNC13B (9p13.3, SLCO3A1(15q26.1, WNT3(17q21.3 and NSF (17q21.3. We also replicated published associations for the gene regions SNCA (Chr4q21; rs3775442, p = 0.037, PARK16 (Chr1q32.1; rs823114 (NUCKS1, p = 6.12 × 10-4, BST1 (Chr4p15; rs12502586, p = 0.027, STK39 (Chr2q24.3; rs3754775, p = 0.005, and LAMP3 (Chr3; rs12493050, p = 0.005 in addition to the two most common PD susceptibility genes in the AJ population LRRK2 (Chr12q12; rs34637584, p = 1.56 × 10-4 and GBA (Chr1q21; rs2990245, p = 0.015. Conclusions We have demonstrated the utility of the AJ dataset in PD candidate gene and SNP discovery both by replication in dbGaP datasets with a larger sample size and by replicating association of previously identified PD susceptibility genes. Our GWAS study has identified candidate gene regions for PD that are implicated in neuronal signalling and the dopamine pathway.

Liu Xinmin

2011-08-01

270

A computational bioinformatics analysis of gene expression identifies candidate agents for prostate cancer.  

Science.gov (United States)

Prostate cancer is the second most frequently diagnosed cancer and the sixth leading cause of cancer death in males worldwide. Although great progress has been made, the molecular mechanisms of prostate cancer are far from being fully understood and treatment of this disease remains palliative. In this study, we sought to explore the molecular mechanism of prostate cancer and then identify biologically active small molecules capable of targeting prostate cancer using a computational bioinformatics analysis of gene expression. A total of 3068 genes, involved in cell communication, development, localisation and cell proliferation, were differentially expressed in prostate cancer samples compared with normal controls. Pathways associated with signal transduction, immune response and tumorigenesis were dysfunctional. Further, we identified a group of small molecules capable of reversing prostate cancer. These candidate agents may provide the groundwork for a combination therapy approach for prostate cancer. However, further evaluation for their potential use in the treatment of prostate cancer is still needed. PMID:23790256

Wen, D Y; Geng, J; Li, W; Guo, C C; Zheng, J H

2014-08-01

271

Novel ?-catenin target genes identified in thalamic neurons encode modulators of neuronal excitability  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background LEF1/TCF transcription factors and their activator ?-catenin are effectors of the canonical Wnt pathway. Although Wnt/?-catenin signaling has been implicated in neurodegenerative and psychiatric disorders, its possible role in the adult brain remains enigmatic. To address this issue, we sought to identify the genetic program activated by ?-catenin in neurons. We recently showed that ?-catenin accumulates specifically in thalamic neurons where it activates Cacna1g gene expression. In the present study, we combined bioinformatics and experimental approaches to find new ?-catenin targets in the adult thalamus. Results We first selected the genes with at least two conserved LEF/TCF motifs within the regulatory elements. The resulting list of 428 putative LEF1/TCF targets was significantly enriched in known Wnt targets, validating our approach. Functional annotation of the presumed targets also revealed a group of 41 genes, heretofore not associated with Wnt pathway activity, that encode proteins involved in neuronal signal transmission. Using custom polymerase chain reaction arrays, we profiled the expression of these genes in the rat forebrain. We found that nine of the analyzed genes were highly expressed in the thalamus compared with the cortex and hippocampus. Removal of nuclear ?-catenin from thalamic neurons in vitro by introducing its negative regulator Axin2 reduced the expression of six of the nine genes. Immunoprecipitation of chromatin from the brain tissues confirmed the interaction between ?-catenin and some of the predicted LEF1/TCF motifs. The results of these experiments validated four genes as authentic and direct targets of ?-catenin: Gabra3 for the receptor of GABA neurotransmitter, Calb2 for the Ca2+-binding protein calretinin, and the Cacna1g and Kcna6 genes for voltage-gated ion channels. Two other genes from the latter cluster, Cacna2d2 and Kcnh8, appeared to be regulated by ?-catenin, although the binding of ?-catenin to the regulatory sequences of these genes could not be confirmed. Conclusions In the thalamus, ?-catenin regulates the expression of a novel group of genes that encode proteins involved in neuronal excitation. This implies that the transcriptional activity of ?-catenin is necessary for the proper excitability of thalamic neurons, may influence activity in the thalamocortical circuit, and may contribute to thalamic pathologies.

Wisniewska Marta B

2012-11-01

272

Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.  

Energy Technology Data Exchange (ETDEWEB)

OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.

Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.

2003-06-01

273

Photoinduced cross-linking of star vector for improvement of gene transfer efficiency.  

Science.gov (United States)

This study aimed to investigate the effect of cross-linking of a cationic nonviral gene carrier on gene expression. As a precursor for photo-cross-linking, a star-shaped, six-branched cationic polymer of poly(N,N-dimethylaminopropylacrylamide) (six-branched star vector, SV), which was previously designed as a gene carrier, was synthesized by iniferter-based living radical polymerization. Upon UV irradiation, the number-average molecular weight (Mn) of the SV increased from ca. 28 kDa to ca. 32 kDa (irradiation time, 180 min) and ca. 46 kDa (240 min) with broadness of the polydispersity due to the coupling reaction between the polymer radicals generated at the terminal ends of each branch of the SVs, resulting in the preparation of cross-linked SVs (CSVs) without the use of any chemical cross-linking agents. Irrespective of cross-linking, all the SVs were able to interact with and condense luciferase-encoding plasmid DNA to yield relatively stable polymer/DNA complexes (polyplexes) of approximate diameter 150 nm with zeta-potential of ca. 20 mV. However, a transfection study using several types of cell lines, HeLa, Hep G2, 293, and COS-1, showed that by cross-linking of SVs the luciferase activity increased drastically. The activity with CSV (Mn=ca. 46 kDa) was increased by at least 1 order of magnitude in the original SV (Mn=ca. 28 kDa), which was several-fold that in the SV with the same molecular weight in all cells. In all SVs, no significant cellular cytotoxicity was observed even at a high charge ratio of 45. The SV-based gene transfection was significantly enhanced by the cross-linking of the SVs. PMID:19007107

Nemoto, Yasushi; Zhou, Yue-Min; Tatsumi, Eisuke; Nakayama, Yasuhide

2008-12-01

274

Linear normalised hash function for clustering gene sequences and identifying reference sequences from multiple sequence alignments  

OpenAIRE

Abstract Background Comparative genomics has put additional demands on the assessment of similarity between sequences and their clustering as means for classification. However, defining the optimal number of clusters, cluster density and boundaries for sets of potentially related sequences of genes with variable degrees of polymorphism remains a significant challenge. The aim of this study was to develop a method that would identify the cluster centroids and the optimal number of clusters for...

Helal Manal; Kong Fanrong; Ca, Chen Sharon; Zhou Fei; Dwyer Dominic E; Potter John; Sintchenko Vitali

2012-01-01

275

Gene expression profiling of dengue infected human primary cells identifies secreted mediators in vivo  

OpenAIRE

We used gene expression profiling of human primary cells infected in vitro with dengue virus (DENV) as a tool to identify secreted mediators induced in response to the acute infection. Affymetrix Genechip analysis of human primary monocytes, B cells and dendritic cells infected with DENV in vitro revealed a strong induction of monocyte chemotactic protein 2 (MCP-2/CCL8), interferon gamma-induced protein 10 (IP-10/CXCL10) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/TNFSF...

Becerra, Aniuska; Warke, Rajas V.; Martin, Katherine; Xhaja, Kris; Bosch, Norma; Rothman, Alan L.; Bosch, Irene

2009-01-01

276

Vanderbilt-led team identifies new breast cancer gene expression pattern  

Science.gov (United States)

A study led by Vanderbilt-Ingram Cancer Center investigators has identified a gene expression pattern that may explain why chemotherapy prior to surgery isn’t effective against some tumors and suggests new therapy options for patients with specific subtypes of breast cancer. Other investigators in the study include researchers from the Royal Marsden Hospital in London, UK; the MD Anderson Cancer Center in Houston, Texas; and the Instituto Nacional de Enfermedades Neoplásicas (INEN) in Lima, Perú.

277

Loci influencing blood pressure identified using a cardiovascular gene-centric array  

OpenAIRE

Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped ?50 000 single-nucleotide polymorphisms (SNPs) that capture variation in ?2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347...

Ganesh, Sk; Tragante, V.; Guo, W.; Guo, Y.; Lanktree, Mb; Smith, En; Johnson, T.; Castillo, Ba; Barnard, J.; Baumert, J.; Chang, Yc; Elbers, Cc; Farrall, M.; Fischer, Me; Gaunt, Nf

2013-01-01

278

Novel Genes Identified in a High Density Genome Wide Association Study for Nicotine Dependence  

OpenAIRE

Tobacco use is a leading contributor to disability and death worldwide, and genetic factors contribute in part to the development of nicotine dependence. To identify novel genes for which natural variation contributes to the development of nicotine dependence, we performed a comprehensive genome wide association study using nicotine dependent smokers as cases and non-dependent smokers as controls. To allow the efficient, rapid, and cost effective screen of the genome, the study was carried ou...

Bierut, Laura Jean; Madden, Pamela A. F.; Breslau, Naomi; Johnson, Eric O.; Hatsukami, Dorothy; Pomerleau, Ovide F.; Swan, Gary E.; Rutter, Joni; Bertelsen, Sarah; Fox, Louis; Fugman, Douglas; Goate, Alison M.; Hinrichs, Anthony L.; Konvicka, Karel; Martin, Nicholas G.

2006-01-01

279

A systems approach to identifying correlated gene targets for the loss of colour pigmentation in plants  

OpenAIRE

Abstract Background The numerous diverse metabolic pathways by which plant compounds can be produced make it difficult to predict how colour pigmentation is lost for different tissues and plants. This study employs mathematical and in silico methods to identify correlated gene targets for the loss of colour pigmentation in plants from a whole cell perspective based on the full metabolic network of Arabidopsis. This involves extracting a self-contained flavonoid subnetwork from the AraCyc data...

Verwoerd Wynand S; Clark Sangaalofa T

2011-01-01

280

A cellular genetics approach identifies gene-drug interactions and pinpoints drug toxicity pathway nodes  

OpenAIRE

New approaches to toxicity testing have incorporated high-throughput screening across a broad-range of in vitro assays to identify potential key events in response to chemical or drug treatment. To date, these approaches have primarily utilized repurposed drug discovery assays. In this study, we describe an approach that combines in vitro screening with genetic approaches for the experimental identification of genes and pathways involved in chemical or drug toxicity. Primary embryonic fibrobl...

Suzuki, Oscar T.; Frick, Amber; Parks, Bethany B.; Trask, O. Joseph; Butz, Natasha; Steffy, Brian; Chan, Emmanuel; Scoville, David K.; Healy, Eric; Benton, Cristina; Mcquaid, Patricia E.; Thomas, Russell S.; Wiltshire, Tim

2014-01-01

281

Transcriptome Analysis of Synaptoneurosomes Identifies Neuroplasticity Genes Overexpressed in Incipient Alzheimer's Disease  

OpenAIRE

In Alzheimer's disease (AD), early deficits in learning and memory are a consequence of synaptic modification induced by toxic beta-amyloid oligomers (oA?). To identify immediate molecular targets downstream of oA? binding, we prepared synaptoneurosomes from prefrontal cortex of control and incipient AD (IAD) patients, and isolated mRNAs for comparison of gene expression. This novel approach concentrates synaptic mRNA, thereby increasing the ratio of synaptic to somal mRNA and allowing disc...

Williams, Celia; Mehrian Shai, Ruty; Wu, Yongchun; Hsu, Ya-hsuan; Sitzer, Traci; Spann, Bryan; Mccleary, Carol; Mo, Yi; Miller, Carol A.

2009-01-01

282

Penn study finds cancer suppressor gene links metabolism with cellular aging  

Science.gov (United States)

It is perhaps impossible to overstate the importance of the tumor suppressor gene p53. It is the single most frequently mutated gene in human tumors. p53 keeps pre-cancerous cells in check by causing cells, among other things, to become senescent – aging at the cellular level. Loss of p53 causes cells to ignore the cellular signals that would normally make mutant or damaged cells die or stop growing. Now, a team of researchers from the Perelman School of Medicine, University of Pennsylvania (home of the Abramson Cancer Center), has identified a class of p53 target genes and regulatory molecules that represent more promising therapeutic candidates.

283

Graphical technique for identifying a monotonic variance stabilizing transformation for absolute gene intensity signals  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background The usefulness of log2 transformation for cDNA microarray data has led to its widespread application to Affymetrix data. For Affymetrix data, where absolute intensities are indicative of number of transcripts, there is a systematic relationship between variance and magnitude of measurements. Application of the log2 transformation expands the scale of genes with low intensities while compressing the scale of genes with higher intensities thus reversing the mean by variance relationship. The usefulness of these transformations needs to be examined. Results Using an Affymetrix GeneChip® dataset, problems associated with applying the log2 transformation to absolute intensity data are demonstrated. Use of the spread-versus-level plot to identify an appropriate variance stabilizing transformation is presented. For the data presented, the spread-versus-level plot identified a power transformation that successfully stabilized the variance of probe set summaries. Conclusion The spread-versus-level plot is helpful to identify transformations for variance stabilization. This is robust against outliers and avoids assumption of models and maximizations.

Dumur Catherine I

2004-05-01

284

Differential display identifies overexpression of the USP36 gene, encoding a deubiquitinating enzyme, in ovarian cancer  

Directory of Open Access Journals (Sweden)

Full Text Available Objectives. To find potential diagnostic markers or therapeutic targets, we used differential display technique to identify genes that are over or under expressed in human ovarian cancer. Methods. Genes were initially identified by differential display between two human ovarian surface epithelium cultures and two ovarian cancer cell lines, A2780 and Caov-3. Genes were validated by relative quantitative RT-PCR and RNA in situ hybridization. Results. Twenty-eight non-redundant sequences were expressed differentially in the normal ovarian epithelium and ovarian cancer cell lines. Seven of the 28 sequences showed differential expression between normal ovary and ovarian cancer tissue by RT-PCR. USP36 was over-expressed in ovarian cancer cell lines and tissues by RT-PCR and RNA in situ hybridization. Northern blot analysis and RT-PCR revealed two transcripts for USP36 in ovarian tissue. The major transcript was more specific for ovarian cancer and was detected by RT-PCR in 9/9 ovarian cancer tissues, 3/3 cancerous ascites, 5/14 (36% sera from patients with ovarian cancer, and 0/7 sera from women without ovarian cancer. Conclusion. USP36 is overexpressed in ovarian cancer compared to normal ovary and its transcripts were identified in ascites and serum of ovarian cancer patients.

Jianduan Li, Lisa M. Olson, Zhengyan Zhang, Lina Li, Miri Bidder, Loan Nguyen, John Pfeifer, Janet S. Rader

2008-01-01

285

New behavioral mutant rat exhibiting circling behavior (clx) controlled by a sex-linked recessive gene.  

Science.gov (United States)

A male rat showing intermittent circling behavior was discovered among the Jcl:Wistar rats in our laboratories, and among its backcross offspring individuals showing the same behavior were found. The abnormalities in these animals were characterized by intermittent circling behavior (walking and/or running in circles) and head tossing with the neck twisted. No abnormalities were observed in fertility, delivery or pup mortality. The results of mating experiments indicated that the circling behavior phenotype is controlled by a single sex-linked recessive gene, and the mutant was named "circling behavior linked to X-chromosome (gene symbol: clx)." This circling behavior mutant is considered to be different from the previously reported mutants, the behavior in all of which has been found to be autosomally inherited. Sib-mating is continuing to produce an inbred strain with this newly discovered circling behavior mutant gene. PMID:12502898

Fuji, Jun-Ichiro; Fukuda, Ryo; Imoto, Fumiyo; Ooshima, Yojiro

2002-09-01

286

Expression of X-linked genes in deceased neonates and surviving cloned female piglets.  

Science.gov (United States)

Animal cloning through somatic cell nuclear transfer (NT) is very inefficient, probably due to insufficient reprogramming of the donor nuclei, which in turn would cause the dysregulation of gene expression. X-Chromosome inactivation (XCI) is a multi-step epigenetic process utilized by mammals to achieve dosage compensation in females. Our aim was to determine if any dysregulation of X-linked genes, which would be indicative of unfaithful reprogramming of donor nuclei, was present in cloned pigs. Real time reverse transcription polymerase chain reaction (RT-PCR) was performed to quantify the transcript levels of five X-linked genes, X inactivation-specific transcript (XIST), TSIX (the reverse spelling of XIST), hypoxanthine guanine phosphoribosyltransferase 1 (HPRT1), glucose-6-phosphate dehydrogenase (G6PD), V-raf murine sarcoma 3,611 viral oncogene homolog 1 (ARAF1), and one autosomal gene, alpha-1 type IV collagen (COL4A1) in major organs of neonatal deceased and surviving female cloned pigs as well as their age-matched control pigs from conventional breeding. Aberrant expression level of these genes was prevalent in the neonatal deceased clones, while it was only moderate in cloned pigs that survived after birth. These results suggest a correlation between the viability of the clones and the normality of their gene expression and provide a possible explanation for the death of a large portion of cloned animals around birth. PMID:17474099

Jiang, Le; Lai, Liangxue; Samuel, Melissa; Prather, Randall S; Yang, Xiangzhong; Tian, X Cindy

2008-02-01

287

Gene networks associated with conditional fear in mice identified using a systems genetics approach  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Our understanding of the genetic basis of learning and memory remains shrouded in mystery. To explore the genetic networks governing the biology of conditional fear, we used a systems genetics approach to analyze a hybrid mouse diversity panel (HMDP with high mapping resolution. Results A total of 27 behavioral quantitative trait loci were mapped with a false discovery rate of 5%. By integrating fear phenotypes, transcript profiling data from hippocampus and striatum and also genotype information, two gene co-expression networks correlated with context-dependent immobility were identified. We prioritized the key markers and genes in these pathways using intramodular connectivity measures and structural equation modeling. Highly connected genes in the context fear modules included Psmd6, Ube2a and Usp33, suggesting an important role for ubiquitination in learning and memory. In addition, we surveyed the architecture of brain transcript regulation and demonstrated preservation of gene co-expression modules in hippocampus and striatum, while also highlighting important differences. Rps15a, Kif3a, Stard7, 6330503K22RIK, and Plvap were among the individual genes whose transcript abundance were strongly associated with fear phenotypes. Conclusion Application of our multi-faceted mapping strategy permits an increasingly detailed characterization of the genetic networks underlying behavior.

Eskin Eleazar

2011-03-01

288

A novel homozygous mutation in SUCLA2 gene identified by exome sequencing.  

Science.gov (United States)

Mitochondrial disorders with multiple mitochondrial respiratory chain (MRC) enzyme deficiency and depletion of mitochondrial DNA (mtDNA) are autosomal recessive conditions due to mutations in several nuclear genes necessary for proper mtDNA maintenance. In this report, we describe two Italian siblings presenting with encephalomyopathy and mtDNA depletion in muscle. By whole exome-sequencing and prioritization of candidate genes, we identified a novel homozygous missense mutation in the SUCLA2 gene in a highly conserved aminoacid residue. Although a recurrent mutation in the SUCLA2 gene is relatively frequent in the Faroe Islands, mutations in other populations are extremely rare. In contrast with what has been reported in other patients, methyl-malonic aciduria, a biomarker for this genetic defect, was absent in our proband and very mildly elevated in her affected sister. This report demonstrates that next-generation technologies, particularly exome-sequencing, are user friendly, powerful means for the identification of disease genes in genetically and clinically heterogeneous inherited conditions, such as mitochondrial disorders. PMID:23010432

Lamperti, Costanza; Fang, Mingyan; Invernizzi, Federica; Liu, Xuanzhu; Wang, Hairong; Zhang, Qing; Carrara, Franco; Moroni, Isabella; Zeviani, Massimo; Zhang, Jianguo; Ghezzi, Daniele

2012-11-01

289

Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia, 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy, and 16wk (market age from two genetic lines: a randombred control line (RBC2 maintained without selection pressure, and a line (F selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of their protein products.

Velleman Sandra G

2011-03-01

290

Exome sequencing identifies FANCM as a susceptibility gene for triple-negative breast cancer.  

Science.gov (United States)

Inherited predisposition to breast cancer is known to be caused by loss-of-function mutations in BRCA1, BRCA2, PALB2, CHEK2, and other genes involved in DNA repair. However, most families severely affected by breast cancer do not harbor mutations in any of these genes. In Finland, founder mutations have been observed in each of these genes, suggesting that the Finnish population may be an excellent resource for the identification of other such genes. To this end, we carried out exome sequencing of constitutional genomic DNA from 24 breast cancer patients from 11 Finnish breast cancer families. From all rare damaging variants, 22 variants in 21 DNA repair genes were genotyped in 3,166 breast cancer patients, 569 ovarian cancer patients, and 2,090 controls, all from the Helsinki or Tampere regions of Finland. In Fanconi anemia complementation gene M (FANCM), nonsense mutation c.5101C>T (p.Q1701X) was significantly more frequent among breast cancer patients than among controls [odds ratio (OR) = 1.86, 95% CI = 1.26-2.75; P = 0.0018], with particular enrichment among patients with triple-negative breast cancer (TNBC; OR = 3.56, 95% CI = 1.81-6.98, P = 0.0002). In the Helsinki and Tampere regions, respectively, carrier frequencies of FANCM p.Q1701X were 2.9% and 4.0% of breast cancer patients, 5.6% and 6.6% of TNBC patients, 2.2% of ovarian cancer patients (from Helsinki), and 1.4% and 2.5% of controls. These findings identify FANCM as a breast cancer susceptibility gene, mutations in which confer a particularly strong predisposition for TNBC. PMID:25288723

Kiiski, Johanna I; Pelttari, Liisa M; Khan, Sofia; Freysteinsdottir, Edda S; Reynisdottir, Inga; Hart, Steven N; Shimelis, Hermela; Vilske, Sara; Kallioniemi, Anne; Schleutker, Johanna; Leminen, Arto; Bützow, Ralf; Blomqvist, Carl; Barkardottir, Rosa B; Couch, Fergus J; Aittomäki, Kristiina; Nevanlinna, Heli

2014-10-21

291

Contig Maps and Genomic Sequencing Identify Candidate Genes in the Usher 1C?Locus  

Science.gov (United States)

Usher syndrome 1C (USH1C) is a congenital condition manifesting profound hearing loss, the absence of vestibular function, and eventual retinal degeneration. The USH1C locus has been mapped genetically to a 2- to 3-cM interval in 11p14–15.1 between D11S899 and D11S861. In an effort to identify the USH1C disease gene we have isolated the region between these markers in yeast artificial chromosomes (YACs) using a combination of STS content mapping and Alu–PCR hybridization. The YAC contig is ?3.5 Mb and has located several other loci within this interval, resulting in the order CEN-LDHA-SAA1-TPH-D11S1310-(D11S1888/KCNC1)-MYOD1-D11S902D11S921-D11S1890-TEL. Subsequent haplotyping and homozygosity analysis refined the location of the disease gene to a 400-kb interval between D11S902 and D11S1890 with all affected individuals being homozygous for the internal marker D11S921. To facilitate gene identification, the critical region has been converted into P1 artificial chromosome (PAC) clones using sequence-tagged sites (STSs) mapped to the YAC contig, Alu–PCR products generated from the YACs, and PAC end probes. A contig of >50 PAC clones has been assembled between D11S1310 and D11S1890, confirming the order of markers used in haplotyping. Three PAC clones representing nearly two-thirds of the USH1C critical region have been sequenced. PowerBLAST analysis identified six clusters of expressed sequence tags (ESTs), two known genes (BIR,SUR1) mapped previously to this region, and a previously characterized but unmapped gene NEFA (DNA binding/EF hand/acidic amino-acid-rich). GRAIL analysis identified 11 CpG islands and 73 exons of excellent quality. These data allowed the construction of a transcription map for the USH1C critical region, consisting of three known genes and six or more novel transcripts. Based on their map location, these loci represent candidate disease loci for USH1C. The NEFA gene was assessed as the USH1C locus by the sequencing of an amplified NEFA cDNA from an USH1C patient; however, no mutations were detected. [The sequence data described in this paper have been submitted to GenBank under accession numbers AC000406–AC000407.] PMID:9445488

Higgins, Michael J.; Day, Colleen D.; Smilinich, Nancy J.; Ni, L.; Cooper, Paul R.; Nowak, Norma J.; Davies, Chris; de Jong, Pieter J.; Hejtmancik, Fielding; Evans, Glen A.; Smith, Richard J.H.; Shows, Thomas B.

1998-01-01

292

Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Hepatitis C virus (HCV RNA synthesis and protein expression affect cell homeostasis by modulation of gene expression. The impact of HCV replication on global cell transcription has not been fully evaluated. Thus, we analysed the expression profiles of different clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system. Results First, we compared the expression profile of HCV replicon clone 21-5 with both the Huh-7 parental cells and the 21-5 cured (21-5c cells. In these latter, the HCV RNA has been eliminated by IFN-? treatment. To confirm data, we also analyzed microarray results from both the 21-5 and two other HCV replicon clones, 22-6 and 21-7, compared to the Huh-7 cells. The study was carried out by using the Applied Biosystems (AB Human Genome Survey Microarray v1.0 which provides 31,700 probes that correspond to 27,868 human genes. Microarray analysis revealed a specific transcriptional program induced by HCV in replicon cells respect to both IFN-?-cured and Huh-7 cells. From the original datasets of differentially expressed genes, we selected by Venn diagrams a final list of 38 genes modulated by HCV in all clones. Most of the 38 genes have never been described before and showed high fold-change associated with significant p-value, strongly supporting data reliability. Classification of the 38 genes by Panther System identified functional categories that were significantly enriched in this gene set, such as histones and ribosomal proteins as well as extracellular matrix and intracellular protein traffic. The dataset also included new genes involved in lipid metabolism, extracellular matrix and cytoskeletal network, which may be critical for HCV replication and pathogenesis. Conclusion Our data provide a comprehensive analysis of alterations in gene expression induced by HCV replication and reveal modulation of new genes potentially useful for selection of antiviral targets.

Gerosolimo Germano

2008-06-01

293

Return to the fetal gene program: A suggested metabolic link to gene expression in the heart  

OpenAIRE

A hallmark of cardiac metabolism before birth is the predominance of carbohydrate use for energy provision. After birth, energy substrate metabolism rapidly switches to the oxidation of fatty acids. This switch accompanies the expression of “adult” isoforms of metabolic enzymes and other proteins. However, in a variety of pathophysiologic conditions, including hypoxia, ischemia, hypertrophy, atrophy, diabetes, and hypothyroidism, the postnatal heart returns to the “fetal” gene program...

Taegtmeyer, Heinrich; Sen, Shiraj; Vela, Deborah

2010-01-01

294

Locus for a human hereditary cataract is closely linked to the ?-crystallin gene family  

International Nuclear Information System (INIS)

Within the human ?-crystallin gene cluster polymorphic Taq I sites are present. These give rise to three sets of allelic fragments from the ?-crystallin genes. Together these restriction fragment length polymorphisms define eight possible haplotypes, three of which (Q, R, and S) were found in the Dutch and English population. A fourth haplotype (P) was detected within a family in which a hereditary Coppock-like cataract of the embryonic lens nucleus occurs in heterozygotes. Haplotype P was found only in family members who suffered from cataract, and all family members who suffered from cataract had haplotype P. The absolute correlation between the presence of haplotype P and cataract within this family shows that the ?-crystallin gene cluster and the locus for the Coppock-like cataract are closely linked. This linkage provides genetic evidence that the primary cause of a cataract in humans could possibly be a lesion in a crystallin gene

295

Functional coupling analysis suggests link between the obesity gene FTO and the BDNF-NTRK2 signaling pathway  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background The Fat mass and obesity gene (FTO has been identified through genome wide association studies as an important genetic factor contributing to a higher body mass index (BMI. However, the molecular context in which this effect is mediated has yet to be determined. We investigated the potential molecular network for FTO by analyzing co-expression and protein-protein interaction databases, Coxpresdb and IntAct, as well as the functional coupling predicting multi-source database, FunCoup. Hypothalamic expression of FTO-linked genes defined with this bioinformatics approach was subsequently studied using quantitative real time-PCR in mouse feeding models known to affect FTO expression. Results We identified several candidate genes for functional coupling to FTO through database studies and selected nine for further study in animal models. We observed hypothalamic expression of Profilin 2 (Pfn2, cAMP-dependent protein kinase catalytic subunit beta (Prkacb, Brain derived neurotrophic factor (Bdnf, neurotrophic tyrosine kinase, receptor, type 2 (Ntrk2, Signal transducer and activator of transcription 3 (Stat3, and Btbd12 to be co-regulated in concert with Fto. Pfn2 and Prkacb have previously not been linked to feeding regulation. Conclusions Gene expression studies validate several candidates generated through database studies of possible FTO-interactors. We speculate about a wider functional role for FTO in the context of current and recent findings, such as in extracellular ligand-induced neuronal plasticity via NTRK2/BDNF, possibly via interaction with the transcription factor CCAAT/enhancer binding protein ? (C/EBP?.

Rask-Andersen Mathias

2011-11-01

296

Transcriptional profiling of whole blood identifies a unique 5-gene signature for myelofibrosis and imminent myelofibrosis transformation  

DEFF Research Database (Denmark)

Identifying a distinct gene signature for myelofibrosis may yield novel information of the genes, which are responsible for progression of essential thrombocythemia and polycythemia vera towards myelofibrosis. We aimed at identifying a simple gene signature - composed of a few genes - which were selectively and highly deregulated in myelofibrosis patients. Gene expression microarray studies have been performed on whole blood from 69 patients with myeloproliferative neoplasms. Amongst the top-20 of the most upregulated genes in PMF compared to controls, we identified 5 genes (DEFA4, ELA2, OLFM4, CTSG, and AZU1), which were highly significantly deregulated in PMF only. None of these genes were significantly regulated in ET and PV patients. However, hierarchical cluster analysis showed that these genes were also highly expressed in a subset of patients with ET (n?=?1) and PV (n?=?4) transforming towards myelofibrosis and/or being featured by an aggressive phenotype. We have identified a simple 5-gene signature, which is uniquely and highly significantly deregulated in patients in transitional stages of ET and PV towards myelofibrosis and in patients with PMF only. Some of these genes are considered to be responsible for the derangement of bone marrow stroma in myelofibrosis. Accordingly, this gene-signature may reflect key processes in the pathogenesis and pathophysiology of myelofibrosis development.

Hasselbalch, Hans Carl; Skov, Vibe

2014-01-01

297

Machine learning techniques to identify putative genes involved in nitrogen catabolite repression in the yeast Saccharomyces cerevisiae  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Nitrogen is an essential nutrient for all life forms. Like most unicellular organisms, the yeast Saccharomyces cerevisiae transports and catabolizes good nitrogen sources in preference to poor ones. Nitrogen catabolite repression (NCR refers to this selection mechanism. All known nitrogen catabolite pathways are regulated by four regulators. The ultimate goal is to infer the complete nitrogen catabolite pathways. Bioinformatics approaches offer the possibility to identify putative NCR genes and to discard uninteresting genes. Results We present a machine learning approach where the identification of putative NCR genes in the yeast Saccharomyces cerevisiae is formulated as a supervised two-class classification problem. Classifiers predict whether genes are NCR-sensitive or not from a large number of variables related to the GATA motif in the upstream non-coding sequences of the genes. The positive and negative training sets are composed of annotated NCR genes and manually-selected genes known to be insensitive to NCR, respectively. Different classifiers and variable selection methods are compared. We show that all classifiers make significant and biologically valid predictions by comparing these predictions to annotated and putative NCR genes, and by performing several negative controls. In particular, the inferred NCR genes significantly overlap with putative NCR genes identified in three genome-wide experimental and bioinformatics studies. Conclusion These results suggest that our approach can successfully identify potential NCR genes. Hence, the dimensionality of the problem of identifying all genes involved in NCR is drastically reduced.

Kontos Kevin

2008-12-01

298

Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Neurons in the dorsal spinal cord play important roles in nociception and pain. These neurons receive input from peripheral sensory neurons and then transmit the signals to the brain, as well as receive and integrate descending control signals from the brain. Many molecules important for pain transmission have been demonstrated to be localized to the dorsal horn of the spinal cord. Further understanding of the molecular interactions and signaling pathways in the dorsal horn neurons will require a better knowledge of the molecular neuroanatomy in the dorsal spinal cord. Results A large scale screening was conducted for genes with enriched expression in the dorsal spinal cord using DNA microarray and quantitative real-time PCR. In addition to genes known to be specifically expressed in the dorsal spinal cord, other neuropeptides, receptors, ion channels, and signaling molecules were also found enriched in the dorsal spinal cord. In situ hybridization and immunohistochemistry revealed the cellular expression of a subset of these genes. The regulation of a subset of the genes was also studied in the spinal nerve ligation (SNL neuropathic pain model. In general, we found that the genes that are enriched in the dorsal spinal cord were not among those found to be up-regulated in the spinal nerve ligation model of neuropathic pain. This study also provides a level of validation of the use of DNA microarrays in conjunction with our novel analysis algorithm (SAFER for the identification of differences in gene expression. Conclusion This study identified molecules that are enriched in the dorsal horn of the spinal cord and provided a molecular neuroanatomy in the spinal cord, which will aid in the understanding of the molecular mechanisms important in nociception and pain.

Koblan Kenneth S

2002-08-01

299

GATA4 knockdown in MA-10 Leydig cells identifies multiple target genes in the steroidogenic pathway.  

Science.gov (United States)

GATA4 is an essential transcription factor required for the initiation of genital ridge formation, for normal testicular and ovarian differentiation at the time of sex determination, and for male and female fertility in adulthood. In spite of its crucial roles, the genes and/or gene networks that are ultimately regulated by GATA4 in gonadal tissues remain to be fully understood. This is particularly true for the steroidogenic lineages such as Leydig cells of the testis where many in vitro (promoter) studies have provided good circumstantial evidence that GATA4 is a key regulator of Leydig cell gene expression and steroidogenesis, but formal proof is still lacking. We therefore performed a microarray screening analysis of MA-10 Leydig cells in which Gata4 expression was knocked down using an siRNA strategy. Analysis identified several GATA4-regulated pathways including cholesterol synthesis, cholesterol transport, and especially steroidogenesis. A decrease in GATA4 protein was associated with decreased expression of steroidogenic genes previously suspected to be GATA4 targets such as Cyp11a1 and Star. Gata4 knockdown also led to an important decrease in other novel steroidogenic targets including Srd5a1, Gsta3, Hsd3b1, and Hsd3b6, as well as genes known to participate in cholesterol metabolism such as Scarb1, Ldlr, Soat1, Scap, and Cyp51. Consistent with the decreased expression of these genes, a reduction in GATA4 protein compromised the ability of MA-10 cells to produce steroids both basally and under hormone stimulation. These data therefore provide strong evidence that GATA4 is an essential transcription factor that sits atop of the Leydig cell steroidogenic program. PMID:25504870

Bergeron, Francis; Nadeau, Gabriel; S Viger, Robert

2015-03-01

300

An elm EST database for identifying leaf beetle egg-induced defense genes  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor, egg laying by the elm leaf beetle ( Xanthogaleruca luteola activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes. Results Here we present the first large scale study of egg-induced changes in the transcriptional profile of a tree. Five cDNA libraries were generated from leaves of (i untreated control elms, and elms treated with (ii egg laying and feeding by elm leaf beetles, (iii feeding, (iv artificial transfer of egg clutches, and (v methyl jasmonate. A total of 361,196 ESTs expressed sequence tags (ESTs were identified which clustered into 52,823 unique transcripts (Unitrans and were stored in a database with a public web interface. Among the analyzed Unitrans, 73% could be annotated by homology to known genes in the UniProt (Plant database, particularly to those from Vitis, Ricinus, Populus and Arabidopsis. Comparative in silico analysis among the different treatments revealed differences in Gene Ontology term abundances. Defense- and stress-related gene transcripts were present in high abundance in leaves after herbivore egg laying, but transcripts involved in photosynthesis showed decreased abundance. Many pathogen-related genes and genes involved in phytohormone signaling were expressed, indicative of jasmonic acid biosynthesis and activation of jasmonic acid responsive genes. Cross-comparisons between different libraries based on expression profiles allowed the identification of genes with a potential relevance in egg-induced defenses, as well as other biological processes, including signal transduction, transport and primary metabolism. Conclusion Here we present a dataset for a large-scale study of the mechanisms of plant defense against insect eggs in a co-evolved, natural ecological plant–insect system. The EST database analysis provided here is a first step in elucidating the transcriptional responses of elm to elm leaf beetle infestation, and adds further to our knowledge on insect egg-induced transcriptomic changes in plants. The sequences identified in our comparative analysis give many hints about novel defense mechanisms directed towards eggs.

Büchel Kerstin

2012-06-01

301

Correlation Analysis between SNP and Expression Arrays in Gliomas Identify Potentially Relevant Targets Genes1  

Science.gov (United States)

Primary brain tumors are a major cause of cancer mortality in the United States. Therapy for gliomas, the most common type of primary brain tumors, remains suboptimal. The development of improved therapeutics will require greater knowledge of the biology of gliomas at both the genomic and transcriptional levels. We have previously reported whole genome profiling of chromosome copy number alterations (CNA) in gliomas, and now present our findings on how those changes may affect transcription of genes that may be involved in tumor induction and progression. By calculating correlation values of mRNA expression vs. DNA copy number average in a moving window around a given RNA probeset, biologically relevant information can be gained that is obscured by the analysis of a single data type. Correlation coefficients ranged from ?0.6 to 0.7; highly significant when compared to previously studies. Most correlated genes are located on chromosomes 1, 7, 9, 10, 13, 14, 19, 20 and 22, chromosomes known to have genomic alterations in gliomas. Additionally, we were able to identify CNAs whose gene expression correlation suggests possible epigenetic regulation. This analysis revealed a number of interesting candidates such as CXCL12, PTER, LRRN6C, among others. The results have been verified using real-time PCR and methylation sequencing assays. These data will further help differentiate genes involved in the induction and/or maintenance of the tumorigenic process from those that are mere passenger mutations, thereby enriching for a population of potentially new therapeutic molecular targets. PMID:19190341

Kotliarov, Yuri; Kotliarova, Svetlana; Charong, Nurdina; Li, Aiguo; Walling, Jennifer; Aquilanti, Elisa; Ahn, Susie; Steed, Mary Ellen; Su, Qin; Center, Angela; Zenklusen, Jean C; Fine, Howard A.

2008-01-01

302

Efficient Gene Transfection into Mammalian Cells Mediated by Cross-linked Polyethylenimine  

OpenAIRE

25 kDa branched polyethylenimine (PEI) has successfully been used for in vitro and in vivo gene delivery approaches, but it is cytotoxic. Smaller PEIs are usually non-cytotoxic but less efficient. In order to enhance the gene delivery efficiency and minimize cytotoxicity of PEI, we explored to synthesize cross-linked PEIs with degradable bonds by reacting amines of small branched 2000 Da PEI with small diacrylate (1,4-butanediol diacrylate or ethyleneglycol dimethacrylate) for 2–6 hours. Th...

Zichun Hua; Dingyuan Ma; Qiming Sun; Guanghui Jin; Shufeng Li; Wei Dong

2007-01-01

303

X linked spastic paraplegia (SPG2): clinical heterogeneity at a single gene locus.  

OpenAIRE

X linked hereditary spastic paraplegia is a rare condition that has been divided into two forms (the pure spastic form and the complicated form) as a function of clinical course and severity. A gene for pure hereditary spastic paraplegia (SPG2) has been mapped to the proximal long arm of the X chromosome (Xq21) by linkage to the DXS17 locus, while a gene for a complicated form of the disease has been mapped to the distal long arm by linkage to the DXS52 locus (Xq28). Here we report on the map...

Bonneau, D.; Rozet, J. M.; Bulteau, C.; Berthier, M.; Mettey, R.; Gil, R.; Munnich, A.; Le Merrer, M.

1993-01-01

304

Functional analysis of human mismatch repair gene mutations identifies weak alleles and polymorphisms capable of polygenic interactions  

OpenAIRE

Many of the mutations reported as potentially causing Lynch syndrome are missense mutations in human mismatch repair (MMR) genes. Here, we used a Saccharomyces cerevisiae-based system to study polymorphisms and suspected missense mutations in human MMR genes by modeling them at the appropriate S. cerevisiae chromosomal locus and determining their effect on mutation rates. We identified a number of weak alleles of MMR genes and MMR gene polymorphisms that are capable of interacting with other ...

Martinez, Sandra L.; Kolodner, Richard D.

2010-01-01

305

Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism.  

Science.gov (United States)

X-linked dystonia-parkinsonism (XDP) is a movement disorder endemic to the Philippines. The disease locus, DYT3, has been mapped to Xq13.1. In a search for the causative gene, we performed genomic sequencing analysis, followed by expression analysis of XDP brain tissues. We found a disease-specific SVA (short interspersed nuclear element, variable number of tandem repeats, and Alu composite) retrotransposon insertion in an intron of the TATA-binding protein-associated factor 1 gene (TAF1), which encodes the largest component of the TFIID complex, and significantly decreased expression levels of TAF1 and the dopamine receptor D2 gene (DRD2) in the caudate nucleus. We also identified an abnormal pattern of DNA methylation in the retrotransposon in the genome from the patient's caudate, which could account for decreased expression of TAF1. Our findings suggest that the reduced neuron-specific expression of the TAF1 gene is associated with XDP. PMID:17273961

Makino, Satoshi; Kaji, Ryuji; Ando, Satoshi; Tomizawa, Maiko; Yasuno, Katsuhito; Goto, Satoshi; Matsumoto, Shinnichi; Tabuena, Maria Daisy; Maranon, Elma; Dantes, Marita; Lee, Lillian V; Ogasawara, Kazumasa; Tooyama, Ikuo; Akatsu, Hiroyasu; Nishimura, Masataka; Tamiya, Gen

2007-03-01

306

A Comparison of Logistic Regression, Logic Regression, Classification Tree, and Random Forests to Identify Effective Gene-Gene and Gene-Environmental Interactions.  

Science.gov (United States)

Genome wide association studies (GWAS) have identified numerous single nucleotide polymorphisms (SNPs) that are associated with a variety of common human diseases. Due to the weak marginal effect of most disease-associated SNPs, attention has recently turned to evaluating the combined effect of multiple disease-associated SNPs on the risk of disease. Several recent multigenic studies show potential evidence of applying multigenic approaches in association studies of various diseases including lung cancer. But the question remains as to the best methodology to analyze single nucleotide polymorphisms in multiple genes. In this work, we consider four methods-logistic regression, logic regression, classification tree, and random forests-to compare results for identifying important genes or gene-gene and gene-environmental interactions. To evaluate the performance of four methods, the cross-validation misclassification error and areas under the curves are provided. We performed a simulation study and applied them to the data from a large-scale, population-based, case-control study. PMID:23795347

Yoo, Wonsuk; Ference, Brian A; Cote, Michele L; Schwartz, Ann

2012-08-01

307

HindIII identifies a two allele DNA polymorphism of the human cannabinoid receptor gene (CNR)  

Energy Technology Data Exchange (ETDEWEB)

HCNR p5, a 0.9 kb BamHI/EcoRI fragment from the human cannabinoid receptor gene inserted into pUC19, was used as probe. The fragment is located in an intron approximately 14 kb 5{prime} of the initiation codon. This fragment is a clean single copy sequence by genomic blotting. Hybridization of human genomic DNA digested with HindIII identified a two allele RFLP with bands at 5.5 (A1) and 3.3 kb (A2). The human cannabinoid receptor gene has been genetically mapped in CEPH reference pedigrees to the centromeric/q region of chromosome 6. In situ hybridization localizes it to 6q14-q15. Codominant segregation has been observed in 26 informative two- and three-generation CEPH pedigrees and in 14 medium-sized disease families.

Caenazzo, L.; Hoehe, M.R.; Hsieh, W.T.; Berrettini, W.H.; Bonner, T.I.; Gershon, E.S. (National Inst. of Health, Bethesda, MD (United States))

1991-09-11

308

Development of sequence characterized DNA markers linked to a dominant verticillium wilt resistance gene in tomato.  

Science.gov (United States)

Sequences were determined for codominant RAPD markers closely linked to the Ve locus, a dominant verticillium wilt resistance gene in tomato. Analysis of the sequences linked to Ve and ve revealed a perfectly homologous sequence with a central polymorphic region comprising 79 nucleotide substitutions, insertions, and deletions. Codominant and allele-specific SCARs were developed using conserved and polymorphic sequences linked to the Ve locus. High resolution linkage analysis using F2 progeny segregating for resistance and marker-assisted selection indicated that linkage between the genetic markers and the Ve locus is less than 0.67 +/- 0.49 cM. Sequences were useful in determining the molecular structure of a polymorphic genomic region closely linked to the Ve locus and in developing genetic markers that facilitated marker-assisted selection of the resistant, susceptible, heterozygous, and homozygous genotypes. PMID:9549062

Kawchuk, L M; Hachey, J; Lynch, D R

1998-02-01

309

Exome Sequencing Identifies a Novel Gene, WNK1, for Susceptibility to Pelvic Organ Prolapse (POP).  

Science.gov (United States)

Pelvic organ prolapse (POP) is a common gynecological disorder; however, the genetic components remain largely unidentified. Exome sequencing has been widely used to identify pathogenic gene mutations of several diseases because of its high chromosomal coverage and accuracy. In this study, we performed whole exome sequencing (WES), for the first time, on 8 peripheral blood DNA samples from representative POP cases. After filtering the sequencing data from the dbSNP database (build 138) and the 1000 Genomes Project, 2 missense variants in WNK1, c.2668G > A (p.G890R) and c.6761C> T (p.P2254L), were identified and further validated via Sanger sequencing. In validation stage, the c.2668G > A (p.G890R) variant and 8 additional variants were detected in 11 out of 161 POP patients. All these variants were absent in 231 healthy controls. Functional experiments showed that fibroblasts from the utero-sacral ligaments of POP with WNK1 mutations exhibited loose and irregular alignment compared with fibroblasts from healthy controls. In sum, our study identified a novel gene, WNK1, for POP susceptibility, expanded the causal mutation spectrums of POP, and provided evidence for the genetic diagnosis and medical management of POP in the future. PMID:25739019

Rao, Shuquan; Lang, Jinghe; Zhu, Lan; Chen, Juan

2015-01-01

310

Exome Sequencing Identifies a Novel Gene, WNK1, for Susceptibility to Pelvic Organ Prolapse (POP)  

Science.gov (United States)

Pelvic organ prolapse (POP) is a common gynecological disorder; however, the genetic components remain largely unidentified. Exome sequencing has been widely used to identify pathogenic gene mutations of several diseases because of its high chromosomal coverage and accuracy. In this study, we performed whole exome sequencing (WES), for the first time, on 8 peripheral blood DNA samples from representative POP cases. After filtering the sequencing data from the dbSNP database (build 138) and the 1000 Genomes Project, 2 missense variants in WNK1, c.2668G > A (p.G890R) and c.6761C> T (p.P2254L), were identified and further validated via Sanger sequencing. In validation stage, the c.2668G > A (p.G890R) variant and 8 additional variants were detected in 11 out of 161 POP patients. All these variants were absent in 231 healthy controls. Functional experiments showed that fibroblasts from the utero-sacral ligaments of POP with WNK1 mutations exhibited loose and irregular alignment compared with fibroblasts from healthy controls. In sum, our study identified a novel gene, WNK1, for POP susceptibility, expanded the causal mutation spectrums of POP, and provided evidence for the genetic diagnosis and medical management of POP in the future. PMID:25739019

Rao, Shuquan; Lang, Jinghe; Zhu, Lan; Chen, Juan

2015-01-01

311

Gene Expression Profiling in Hereditary, BRCA1-linked Breast Cancer: Preliminary Report  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Global analysis of gene expression by DNA microarrays is nowadays a widely used tool, especially relevant for cancer research. It helps the understanding of complex biology of cancer tissue, allows identification of novel molecular markers, reveals previously unknown molecular subtypes of cancer that differ by clinical features like drug susceptibility or general prognosis. Our aim was to compare gene expression profiles in breast cancer that develop against a background of inherited predisposing mutations versus sporadic breast cancer. In this preliminary study we analysed seven hereditary, BRCA1 mutation-linked breast cancer tissues and seven sporadic cases that were carefully matched by histopathology and ER status. Additionally, we analysed 6 samples of normal breast tissue. We found that while the difference in gene expression profiles between tumour tissue and normal breast can be easily recognized by unsupervised algorithms, the difference between those two types of tumours is more discrete. However, by supervised methods of data analysis, we were able to select a set of genes that may differentiate between hereditary and sporadic tumours. The most significant difference concerns genes that code for proteins engaged in regulation of transcription, cellular metabolism, signalling, proliferation and cell death. Microarray results for chosen genes (TOB1, SEPHS2 were validated by real-time RT-PCR.

Dudaladava Volha

2006-01-01

312

The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Many complementary solutions are available for the identifier mapping problem. This creates an opportunity for bioinformatics tool developers. Tools can be made to flexibly support multiple mapping services or mapping services could be combined to get broader coverage. This approach requires an interface layer between tools and mapping services. Results Here we present BridgeDb, a software framework for gene, protein and metabolite identifier mapping. This framework provides a standardized interface layer through which bioinformatics tools can be connected to different identifier mapping services. This approach makes it easier for tool developers to support identifier mapping. Mapping services can be combined or merged to support multi-omics experiments or to integrate custom microarray annotations. BridgeDb provides its own ready-to-go mapping services, both in webservice and local database forms. However, the framework is intended for customization and adaptation to any identifier mapping service. BridgeDb has already been integrated into several bioinformatics applications. Conclusion By uncoupling bioinformatics tools from mapping services, BridgeDb improves capability and flexibility of those tools. All described software is open source and available at http://www.bridgedb.org.

Hanspers Kristina

2010-01-01

313

Screening of the Bruton Tyrosine Kinase (BTK Gene Mutations in 13 Iranian Patients with Presumed X-Linked Agammaglobulinemia  

Directory of Open Access Journals (Sweden)

Full Text Available X-linked agammaglobulinemia (XLA is an immunodeficiency caused by mutations in the Bruton tyrosine kinase (Btk gene. In order to identify the mutations in Btk gene in Iranian patients with antibody deficiency, 13 male patients with an XLA phenotype from 11 unrelated families were enrolled as the subjects of investigation for Btk mutation analysis using PCR-SSCP followed by sequencing. Five different mutations were identified in 5 patients from 5 unrelated families. Three mutations had been reported previously including TTTG deletion in intron 15 (4 bps upstream of exon 16 boundary, nonsense point mutation (1896G>A that resulted in a premature stop codon (W588X in kinase domain, and nucleotide alteration in invariant splice donor site of exon12 (IVS12+1G>A. While 2 novel missense mutations (2084A>G, 1783T>C were identified leading to amino acid changes (I651T, Y551H. The results of this study further support the notion that molecular genetic testing represents an important tool for definitive and early diagnosis of XLA and may allow accurate carrier detection and prenatal diagnosis.

Mohammad Gharagozlou

2004-11-01

314

Catheter-Related Microbacterium Bacteremia Identified by 16S rRNA Gene Sequencing  

OpenAIRE

We describe the application of 16S rRNA gene sequencing in defining two cases of catheter-related Microbacterium bacteremia. In the first case, a gram-positive bacillus was isolated from both the blood culture and central catheter tip of a 39-year-old woman with chronic myeloid leukemia. The API Coryne system identified the isolate as 98.9% Aureobacterium or Corynebacterium aquaticum. In the second case, a gram-positive bacillus was recovered from five sets of blood cultures from both central...

Lau, Susanna K. P.; Woo, Patrick C. Y.; Woo, Gibson K. S.; Yuen, Kwok-yung

2002-01-01

315

Globicatella sanguinis bacteraemia identified by partial 16S rRNA gene sequencing.  

Science.gov (United States)

Globicatella sanguinis is a gram-positive coccus, resembling non-haemolytic streptococci. The organism has been isolated infrequently from normally sterile sites of humans. Three isolates obtained by blood culture could not be identified by Rapid 32 ID Strep, but partial sequencing of the 16S rRNA gene revealed the identity of the isolated bacteria, and supplementary biochemical tests confirmed the species identification. The cases histories illustrate the dilemma of finding relevant, newly recognized, opportunistic pathogens and the identification achievement (s) that can be obtained by using new molecular diagnostics. PMID:17654358

Abdul-Redha, Rawaa Jalil; Balslew, Ulla; Christensen, Jens Jørgen; Kemp, Michael

2007-01-01

316

A novel gene tag for identifying microorganisms released into the environment.  

OpenAIRE

A novel method using a moc (mannityl opine catabolism) region from the Agrobacterium tumefaciens Ti plasmid pTi15955 was developed as a tag to identify genetically modified microorganisms released into the environment. Pseudomonas fluorescens 1855.344, a plant-growth-promoting rhizosphere bacterium, was chosen as the organism in which to develop and test the system. moc genes carried by pYDH208, a cosmid clone containing a 20-kb segment of the octopine-mannityl opine-type Ti plasmid, conferre...

Hwang, I.; Farrand, S. K.

1994-01-01

317

B.E.A.R. GeneInfo: A tool for identifying gene-related biomedical publications through user modifiable queries  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Once specific genes are identified through high throughput genomics technologies there is a need to sort the final gene list to a manageable size for validation studies. The triaging and sorting of genes often relies on the use of supplemental information related to gene structure, metabolic pathways, and chromosomal location. Yet in disease states where the genes may not have identifiable structural elements, poorly defined metabolic pathways, or limited chromosomal data, flexible systems for obtaining additional data are necessary. In these situations having a tool for searching the biomedical literature using the list of identified genes while simultaneously defining additional search terms would be useful. Results We have built a tool, BEAR GeneInfo, that allows flexible searches based on the investigators knowledge of the biological process, thus allowing for data mining that is specific to the scientist's strengths and interests. This tool allows a user to upload a series of GenBank accession numbers, Unigene Ids, Locuslink Ids, or gene names. BEAR GeneInfo takes these IDs and identifies the associated gene names, and uses the lists of gene names to query PubMed. The investigator can add additional modifying search terms to the query. The subsequent output provides a list of publications, along with the associated reference hyperlinks, for reviewing the identified articles for relevance and interest. An example of the use of this tool in the study of human prostate cancer cells treated with Selenium is presented. Conclusions This tool can be used to further define a list of genes that have been identified through genomic or genetic studies. Through the use of targeted searches with additional search terms the investigator can limit the list to genes that match their specific research interests or needs. The tool is freely available on the web at http://prostategenomics.org1, and the authors will provide scripts and database components if requested mdatta@mcw.edu

Zhou Guohui

2004-04-01

318

Use of Persistent Identifiers to link Heterogeneous Data Systems in the Integrated Earth Data Applications (IEDA) Facility  

Science.gov (United States)

The Integrated Earth Data Applications (IEDA) facility maintains multiple data systems with a wide range of solid earth data types from the marine, terrestrial, and polar environments. Examples of the different data types include syntheses of ultra-high resolution seafloor bathymetry collected on large collaborative cruises and analytical geochemistry measurements collected by single investigators in small, unique projects. These different data types have historically been channeled into separate, discipline-specific databases with search and retrieval tailored for the specific data type. However, a current major goal is to integrate data from different systems to allow interdisciplinary data discovery and scientific analysis. To increase discovery and access across these heterogeneous systems, IEDA employs several unique IDs, including sample IDs (International Geo Sample Number, IGSN), person IDs (GeoPass ID), funding award IDs (NSF Award Number), cruise IDs (from the Marine Geoscience Data System Expedition Metadata Catalog), dataset IDs (DOIs), and publication IDs (DOIs). These IDs allow linking of a sample registry (System for Earth SAmple Registration), data libraries and repositories (e.g. Geochemical Research Library, Marine Geoscience Data System), integrated synthesis databases (e.g. EarthChem Portal, PetDB), and investigator services (IEDA Data Compliance Tool). The linked systems allow efficient discovery of related data across different levels of granularity. In addition, IEDA data systems maintain links with several external data systems, including digital journal publishers. Links have been established between the EarthChem Portal and ScienceDirect through publication DOIs, returning sample-level objects and geochemical analyses for a particular publication. Linking IEDA-hosted data to digital publications with IGSNs at the sample level and with IEDA-allocated dataset DOIs are under development. As an example, an individual investigator could sign up for a GeoPass account ID, write a proposal to NSF and create a data plan using the IEDA Data Management Plan Tool. Having received the grant, the investigator then collects rock samples on a scientific cruise from dredges and registers the samples with IGSNs. The investigator then performs analytical geochemistry on the samples, and submits the full dataset to the Geochemical Resource Library for a dataset DOI. Finally, the investigator writes an article that is published in Science Direct. Knowing any of the following IDs: Investigator GeoPass ID, NSF Award Number, Cruise ID, Sample IGSNs, dataset DOI, or publication DOI, a user would be able to navigate to all samples, datasets, and publications in IEDA and external systems. Use of persistent identifiers to link heterogeneous data systems in IEDA thus increases access, discovery, and proper citation of hard-earned investigator datasets.

Hsu, L.; Lehnert, K. A.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Walker, J. D.

2012-12-01

319

Mutations of Bruton's tyrosine kinase gene in Brazilian patients with X-linked agammaglobulinemia  

OpenAIRE

Mutations in Bruton's tyrosine kinase (BTK) gene are responsible for X-linked agammaglobulinemia (XLA), which is characterized by recurrent bacterial infections, profound hypogammaglobulinemia, and decreased numbers of mature B cells in peripheral blood. We evaluated 5 male Brazilian patients, ranging from 3 to 10 years of age, from unrelated families, whose diagnosis was based on recurrent infections, markedly reduced levels of IgM, IgG and IgA, and circulating B cell numbers

Ramalho, V. D.; Oliveira Ju?nior, E. B.; Tani, S. M.; Roxo Ju?nior, P.; Vilela, M. M. S.

2010-01-01

320

Calcitonin gene-related peptide (CGRP): a molecular link between obesity and migraine?  

OpenAIRE

Epidemiological studies have begun to suggest obesity is a risk factor for chronic migraine, although no causal relationship has been established, and risk factors for progression from episodic to chronic migraine remain unknown. The neuropeptide calcitonin gene-related peptide (CGRP) plays a important role in the pathophysiology of migraine. Here the potential role of CGRP as a molecular link between obesity and migraine is reviewed. A mechanistic association is supported by several lines of...

Recober, Ana; Goadsby, Peter J.

2010-01-01

321

Fatal hemophagocytic lymphohistiocytosis in X-linked chronic granulomatous disease associated with a perforin gene variant.  

Science.gov (United States)

A patient with previously unrecognized X-linked chronic granulomatous disease (X-CGD) died of multi-organ failure, secondary to ongoing infection and hemophagocytic lymphohistiocytosis (HLH). Post mortem histological investigations were compatible with X-CGD, and a CYBB gene mutation was confirmed. No homozygous mutations in the genes encoding perforin (PRF1), MUNC 13-4 or syntaxin-11 (STX11) were found; however, there was a heterozygous alteration c.1471G>A in the PRF1 gene causing a p.Asp491Asn substitution. Although this substitution has not been reported to cause primary or secondary HLH, we speculate that it may have made the patient more susceptible for HLH under the circumstances of ongoing infection associated with X-CGD. PMID:19058215

van Montfrans, Joris M; Rudd, Eva; van de Corput, Lisette; Henter, Jan-Inge; Nikkels, Peter; Wulffraat, Nico; Boelens, Jaap J

2009-04-01

322

A case of familial X-linked thrombocytopenia with a novel WAS gene mutation  

Directory of Open Access Journals (Sweden)

Full Text Available Wiskott-Aldrich syndrome (WAS is an inherited X-linked disorder. The WAS gene is located on the X chromosome and undergoes mutations, which affect various domains of the WAS protein, resulting in recurrent infection, eczema, and thrombocytopenia. However, the clinical features and severity of the disease vary according to the type of mutations in the WAS gene. Here, we describe the case of a 4-year-old boy with a history of marked thrombocytopenia since birth, who presented with recurrent herpes simplex infection and late onset of eczema. Examination of his family history revealed that older brother, who died from intracranial hemorrhage, had chronic idiopathic thrombocytopenia. Therefore, we proceeded with genetic analysis and found a new deletion mutation in the WAS gene: c.858delC (p.ser287Leufs*21 as a hemizygous form.

Eu Kyoung Lee

2013-06-01

323

Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene Expression Data  

Energy Technology Data Exchange (ETDEWEB)

Three-dimensional gene expression PointCloud data generated by the Berkeley Drosophila Transcription Network Project (BDTNP) provides quantitative information about the spatial and temporal expression of genes in early Drosophila embryos at cellular resolution. The BDTNP team visualizes and analyzes Point-Cloud data using the software application PointCloudXplore (PCX). To maximize the impact of novel, complex data sets, such as PointClouds, the data needs to be accessible to biologists and comprehensible to developers of analysis functions. We address this challenge by linking PCX and Matlab via a dedicated interface, thereby providing biologists seamless access to advanced data analysis functions and giving bioinformatics researchers the opportunity to integrate their analysis directly into the visualization application. To demonstrate the usefulness of this approach, we computationally model parts of the expression pattern of the gene even skipped using a genetic algorithm implemented in Matlab and integrated into PCX via our Matlab interface.

Ruebel, Oliver; Keranen, Soile V.E.; Biggin, Mark; Knowles, David W.; Weber, Gunther H.; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

2011-03-30

324

Osteogenesis imperfecta is linked to both type I collagen structural genes.  

OpenAIRE

The segregation of the two type I collagen structural gene loci COL1A1 and COL1A2 was analysed in eleven osteogenesis imperfecta pedigrees by means of restriction-site variants at, or close to, these loci. In each case, the OI gene was inherited with one or other collagen locus. As well as identifying the common OI loci the result of this analysis sets limits on the frequency of a third locus and lays the foundation for a widely available antenatal diagnostic test.

Sykes, B.; Ogilvie, D.; Wordsworth, P.; Jones, N.

1986-01-01

325

Molecular Cloning of a Bacteroides caccae TonB-Linked Outer Membrane Protein Identified by an Inflammatory Bowel Disease Marker Antibody  

Science.gov (United States)

Commensal enteric bacteria are a required pathogenic factor in inflammatory bowel disease (IBD), but the identity of the pertinent bacterial species is unresolved. Using an IBD-associated pANCA monoclonal antibody, a 100-kDa protein was recently characterized from an IBD clinical isolate of Bacteroides caccae (p2Lc3). In this study, consensus oligonucleotides were designed from 100-kDa peptides and used to identify a single-copy gene from the p2Lc3 genome. Sequence analysis of the genomic clone revealed a 2,844-bp (948 amino acid) open reading frame encoding features typical of the TonB-linked outer membrane protein family. This gene, termed ompW, was detected by Southern analysis only in B. caccae and was absent in other species of Bacteroides and gram-negative coliforms. The closest homologues of OmpW included the outer membrane proteins SusC of Bacteroides thetaiotaomicron and RagA of Porphyromonas gingivalis. Recombinant OmpW protein was immunoreactive with the monoclonal antibody, and serum anti-OmpW immunoglobulin A levels were elevated in a Crohn's disease patient subset. These findings suggest that OmpW may be a target of the IBD-associated immune response and reveal its structural relationship to a bacterial virulence factor of P. gingivalis and periodontal disease. PMID:11553542

Wei, Bo; Dalwadi, Harnisha; Gordon, Lynn K.; Landers, Carol; Bruckner, David; Targan, Stephan R.; Braun, Jonathan

2001-01-01

326

Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown novel proteins serve as molecular evidence for the physiological responses to arsenate stress in plants. Additionally, many of these cDNA clones showing strong upregulation due to arsenate stress could be used as valuable markers. Further characterization of these differentially expressed genes would be useful to develop novel strategies for efficient phytoremediation as well as for engineering arsenic tolerant crops with reduced arsenic translocation to the edible parts of plants.

Kandasamy Suganthi

2010-06-01

327

Novel mutations in the connexin 32 gene associated with X-linked Charcot-Marie-Tooth disease  

Energy Technology Data Exchange (ETDEWEB)

Charcot-Marie-Tooth disease is a pathologically and genetically hetergenous group of disorders that cause a progressive neuropathy, defined pathologically by degeneration of the myelin (CMT 1) of the axon (CMT 2) of the peripheral nerves. An X-linked type of the demyelinating form of this disorder (CMT X) has recently been linked to mutations in the connexin 32 (Cx32) gene, which codes for a 284 amino acid gap junction protein found in myelinated peripheral nerve. To date some 7 different mutations in this gene have been identified as being responsible for CMT X. The majority of these predict nonconservative amino acid substitutions, while one is a frameshift mutation which predicts a premature stop at codon 21. We report the results of molecular studies on three further local CMT X kindreds. The Cx32 gene was amplified by PCR in three overlapping fragments 300-450 bp in length using leukocyte-derived DNA as template. These were either sequenced directly using a deaza dGTP sequencing protocol, or were cloned and sequenced using a TA vector. In two of the kindreds the affected members carried a point mutation which was predicted to effect a non-conservative amino acid change within the first transmembrane domain. Both of these mutations caused a restriction site alteration (the loss of an Nla III and the creation of a Pvu II, respectively), and the former mutation was observed to segregate with the clinicial phenotype in affected family members. Affected members of the third kindred, which was a very large multigenerational family that had been extensively studied previously, were shown to carry a point mutation predicted to cause a premature truncation of the Cx32 gene product in the intracellular carboxy terminus. This mutation obliterated an Rsa I site which allowed a rapid screen of several other family members.

Tan, C.; Ainsworth, P. [Victoria Hospital, Ontario (Canada)]|[Childrens Hospital of Western Ontario (Canada)

1994-09-01

328

Meta-analysis of clinical data using human meiotic genes identifies a novel cohort of highly restricted cancer-specific marker genes.  

Science.gov (United States)

Identifying cancer-specific biomarkers represents an ongoing challenge to the development of novel cancer diagnostic, prognostic and therapeutic strategies. Cancer/testis (CT) genes are an important gene family with expression tightly restricted to the testis in normal individuals but which can also be activated in cancers. Here we develop a pipeline to identify new CT genes. We analysed and validated expression profiles of human meiotic genes in normal and cancerous tissue followed by meta-analyses of clinical data sets from a range of tumour types resulting in the identification of a large cohort of highly specific cancer biomarker genes, including the recombination hot spot activator PRDM9 and the meiotic cohesin genes SMC1beta and RAD21L. These genes not only provide excellent cancer biomarkers for diagnostics and prognostics, but may serve as oncogenes and have excellent drug targeting potential. PMID:22918178

Feichtinger, Julia; Aldeailej, Ibrahim; Anderson, Rebecca; Almutairi, Mikhlid; Almatrafi, Ahmed; Alsiwiehri, Naif; Griffiths, Keith; Stuart, Nicholas; Wakeman, Jane A; Larcombe, Lee; McFarlane, Ramsay J

2012-08-01

329

Expression profiling identifies genes involved in neoplastic transformation of serous ovarian cancer  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background The malignant potential of serous ovarian tumors, the most common ovarian tumor subtype, varies from benign to low malignant potential (LMP tumors to frankly invasive cancers. Given the uncertainty about the relationship between these different forms, we compared their patterns of gene expression. Methods Expression profiling was carried out on samples of 7 benign, 7 LMP and 28 invasive (moderate and poorly differentiated serous tumors and four whole normal ovaries using oligonucleotide microarrays representing over 21,000 genes. Results We identified 311 transcripts that distinguished invasive from benign tumors, and 20 transcripts that were significantly differentially expressed between invasive and LMP tumors at p SLPI and WNT7A and down-regulation of C6orf31, PDGFRA and GLTSCR2 were measured in invasive and LMP compared with benign and normal tissues. Over-expression of WNT7A in an ovarian cancer cell line led to increased migration and invasive capacity. Conclusion These results highlight several genes that may play an important role across the spectrum of serous ovarian tumorigenesis.

Green Adèle C

2009-10-01

330

Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo.  

Science.gov (United States)

We have used the Tol2 transposable element to design and perform effective enhancer trapping in zebrafish. Modified transposon DNA and transposase RNA were delivered into zebrafish embryos by microinjection to produce heritable insertions in the zebrafish genome. The enhancer trap construct carries the EGFP gene controlled by a partial epithelial promoter from the keratin8 gene. Enhanced green fluorescent protein (EGFP) is used as a marker to select F1 transgenic fish and as a reporter to trap enhancers. We have isolated 28 transgenic lines that were derived from the 37 GFP-positive F0 founders and displayed various specific EGFP expression patterns in addition to basal expression from the modified keratin 8 promoter. Analyses of expression by whole-mount RNA in situ hybridization demonstrated that these patterns could recapitulate the expression of the tagged genes to a variable extent and, therefore, confirmed that our construct worked effectively as an enhancer trap. Transgenic offspring from the 37 F0 EGFP-positive founders have been genetically analyzed up to the F2 generation. Flanking sequences from 65 separate transposon insertion sites were identified by thermal asymmetric interlaced polymerase chain reaction. Injection of the transposase RNA into transgenic embryos induced remobilization of genomic Tol2 copies producing novel insertions including some in the germ line. The approach has great potential for developmental and anatomical studies of teleosts. PMID:15366023

Parinov, Serguei; Kondrichin, Igor; Korzh, Vladimir; Emelyanov, Alexander

2004-10-01

331

The statistics of identifying differentially expressed genes in Expresso and TM4: a comparison  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Analysis of DNA microarray data takes as input spot intensity measurements from scanner software and returns differential expression of genes between two conditions, together with a statistical significance assessment. This process typically consists of two steps: data normalization and identification of differentially expressed genes through statistical analysis. The Expresso microarray experiment management system implements these steps with a two-stage, log-linear ANOVA mixed model technique, tailored to individual experimental designs. The complement of tools in TM4, on the other hand, is based on a number of preset design choices that limit its flexibility. In the TM4 microarray analysis suite, normalization, filter, and analysis methods form an analysis pipeline. TM4 computes integrated intensity values (IIV from the average intensities and spot pixel counts returned by the scanner software as input to its normalization steps. By contrast, Expresso can use either IIV data or median intensity values (MIV. Here, we compare Expresso and TM4 analysis of two experiments and assess the results against qRT-PCR data. Results The Expresso analysis using MIV data consistently identifies more genes as differentially expressed, when compared to Expresso analysis with IIV data. The typical TM4 normalization and filtering pipeline corrects systematic intensity-specific bias on a per microarray basis. Subsequent statistical analysis with Expresso or a TM4 t-test can effectively identify differentially expressed genes. The best agreement with qRT-PCR data is obtained through the use of Expresso analysis and MIV data. Conclusion The results of this research are of practical value to biologists who analyze microarray data sets. The TM4 normalization and filtering pipeline corrects microarray-specific systematic bias and complements the normalization stage in Expresso analysis. The results of Expresso using MIV data have the best agreement with qRT-PCR results. In one experiment, MIV is a better choice than IIV as input to data normalization and statistical analysis methods, as it yields as greater number of statistically significant differentially expressed genes; TM4 does not support the choice of MIV input data. Overall, the more flexible and extensive statistical models of Expresso achieve more accurate analytical results, when judged by the yardstick of qRT-PCR data, in the context of an experimental design of modest complexity.

Heath Lenwood S

2006-04-01

332

Massively parallel sequencing identifies the gene Megf8 with ENU-induced mutation causing heterotaxy  

Science.gov (United States)

Forward genetic screens with ENU (N-ethyl-N-nitrosourea) mutagenesis can facilitate gene discovery, but mutation identification is often difficult. We present the first study in which an ENU- induced mutation was identified by massively parallel DNA sequencing. This mutation causes heterotaxy and complex congenital heart defects and was mapped to a 2.2-Mb interval on mouse chromosome 7. Massively parallel sequencing of the entire 2.2-Mb interval identified 2 single-base substitutions, one in an intergenic region and a second causing replacement of a highly conserved cysteine with arginine (C193R) in the gene Megf8. Megf8 is evolutionarily conserved from human to fruit fly, and is observed to be ubiquitously expressed. Morpholino knockdown of Megf8 in zebrafish embryos resulted in a high incidence of heterotaxy, indicating a conserved role in laterality specification. Megf8C193R mouse mutants show normal breaking of symmetry at the node, but Nodal signaling failed to be propagated to the left lateral plate mesoderm. Videomicroscopy showed nodal cilia motility, which is required for left–right patterning, is unaffected. Although this protein is predicted to have receptor function based on its amino acid sequence, surprisingly confocal imaging showed it is translocated into the nucleus, where it is colocalized with Gfi1b and Baf60C, two proteins involved in chromatin remodeling. Overall, through the recovery of an ENU-induced mutation, we uncovered Megf8 as an essential regulator of left–right patterning. PMID:19218456

Zhang, Zhen; Alpert, Deanne; Francis, Richard; Chatterjee, Bishwanath; Yu, Qing; Tansey, Terry; Sabol, Steven L.; Cui, Cheng; Bai, Yongli; Koriabine, Maxim; Yoshinaga, Yuko; Cheng, Jan-Fang; Chen, Feng; Martin, Joel; Schackwitz, Wendy; Gunn, Teresa M.; Kramer, Kenneth L.; De Jong, Pieter J.; Pennacchio, Len A.; Lo, Cecilia W.

2009-01-01

333

Missing Links in Genes to Traits: Toward Teaching for an Integrated Framework of Genetics  

Science.gov (United States)

Genetics, one of the most influential fields, underlies all of biology and produces discoveries that are in the news daily. However, many students leave introductory biology and genetics courses lacking a coherent framework of knowledge to use in their daily lives. We identify substantial "missing links" in the teaching of foundational…

Pavlova, Iglika V.; Kreher, Scott A.

2013-01-01

334

On estimation and identifiability issues of sex-linked inheritance with a case study of pigmentation in Swiss barn owl (Tyto alba).  

Science.gov (United States)

Genetic evaluation using animal models or pedigree-based models generally assume only autosomal inheritance. Bayesian animal models provide a flexible framework for genetic evaluation, and we show how the model readily can accommodate situations where the trait of interest is influenced by both autosomal and sex-linked inheritance. This allows for simultaneous calculation of autosomal and sex-chromosomal additive genetic effects. Inferences were performed using integrated nested Laplace approximations (INLA), a nonsampling-based Bayesian inference methodology. We provide a detailed description of how to calculate the inverse of the X- or Z-chromosomal additive genetic relationship matrix, needed for inference. The case study of eumelanic spot diameter in a Swiss barn owl (Tyto alba) population shows that this trait is substantially influenced by variation in genes on the Z-chromosome ([Formula: see text] and [Formula: see text]). Further, a simulation study for this study system shows that the animal model accounting for both autosomal and sex-chromosome-linked inheritance is identifiable, that is, the two effects can be distinguished, and provides accurate inference on the variance components. PMID:24967075

Larsen, Camilla T; Holand, Anna M; Jensen, Henrik; Steinsland, Ingelin; Roulin, Alexandre

2014-05-01

335

Identifying and Targeting ROS1 Gene Fusions in Non-Small Cell Lung Cancer  

Science.gov (United States)

Purpose Oncogenic gene fusions involving the 3’ region of ROS1 kinase have been identified in various human cancers. In this study, we sought to characterize ROS1 fusion genes in non-small cell lung cancer (NSCLC) and establish the fusion proteins as drug targets. Experimental Design A NSCLC tissue microarray (TMA) panel containing 447 samples was screened for ROS1 rearrangement by fluorescence in-situ hybridization (FISH). This assay was also used to screen NSCLC patients. In positive samples, the identity of the fusion partner was determined through inverse-PCR and RT-PCR. In addition, the clinical utility of ROS1 inhibition was assessed by treating a ROS1-positive patient with crizotinib. The HCC78 cell line, which expresses the SLC34A2-ROS1 fusion, was treated with kinase inhibitors that have activity against ROS1. The effects of ROS1 inhibition on proliferation, cell-cycle progression, and cell signaling pathways were analyzed by MTS assay, flow cytometry, and western blotting. Results In the TMA panel, 5/428 (1.2%) evaluable samples were found to be positive for ROS1 rearrangement. Additionally, 1/48 patients tested positive for rearrangement, and this patient demonstrated tumor shrinkage upon treatment with crizotinib. The patient and one TMA sample displayed expression of the recently identified SDC4-ROS1 fusion, while two TMA samples expressed the CD74-ROS1 fusion and two others expressed the SLC34A2-ROS1 fusion. In HCC78 cells, treatment with ROS1 inhibitors was anti-proliferative and down-regulated signaling pathways that are critical for growth and survival. Conclusions ROS1 inhibition may be an effective treatment strategy for the subset of NSCLC patients whose tumors express ROS1 fusion genes. PMID:22919003

Davies, Kurtis D.; Le, Anh T.; Theodoro, Mariana F.; Skokan, Margaret C.; Aisner, Dara L.; Berge, Eamon M.; Terracciano, Luigi M.; Incarbone, Matteo; Roncalli, Massimo; Cappuzzo, Federico; Camidge, D. Ross; Varella-Garcia, Marileila; Doebele, Robert C.

2013-01-01

336

Transcriptional Profiling of Human Liver Identifies Sex-Biased Genes Associated with Polygenic Dyslipidemia and Coronary Artery Disease  

OpenAIRE

Sex-differences in human liver gene expression were characterized on a genome-wide scale using a large liver sample collection, allowing for detection of small expression differences with high statistical power. 1,249 sex-biased genes were identified, 70% showing higher expression in females. Chromosomal bias was apparent, with female-biased genes enriched on chrX and male-biased genes enriched on chrY and chr19, where 11 male-biased zinc-finger KRAB-repressor domain genes are distributed in ...

Zhang, Yijing; Klein, Kathrin; Sugathan, Aarathi; Nassery, Najlla; Dombkowski, Alan; Zanger, Ulrich M.; Waxman, David J.

2011-01-01

337

Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents  

OpenAIRE

The recent completion of the deletion of all of the nonessential genes in budding yeast has provided a powerful new way of determining those genes that affect the sensitivity of this organism to cytotoxic agents. We have used this system to test the hypothesis that genes whose transcription is increased after DNA damage are important for the survival to that damage. We used a pool of 4,627 diploid strains each with homozygous deletion of a nonessential gene to identify those genes that are im...

Birrell, Geoff W.; Brown, James A.; Wu, H. Irene; Giaever, Guri; Chu, Angela M.; Davis, Ronald W.; Brown, J. Martin

2002-01-01

338

Comparative genome sequencing identifies a prophage-associated genomic island linked to host adaptation of Lawsonia intracellularis infections.  

Science.gov (United States)

Lawsonia intracellularis is an obligate intracellular bacterium and the causative agent of proliferative enteropathy (PE). The disease is endemic in pigs, emerging in horses and has also been reported in a variety of other animal species, including nonhuman primates. Comparing the whole genome sequences of a homologous porcine L. intracellularis isolate cultivated for 10 and 60 passages in vitro, we identified a 18-kb prophage-associated genomic island in the passage 10 (pathogenic variant) that was lost in the passage 60 (non-pathogenic variant). This chromosomal island comprises 15 genes downstream from the prophage DLP12 integrase gene. The prevalence of this genetic element was evaluated in 12 other L. intracellularis isolates and in 53 infected animals and was found to be conserved in all porcine isolates cultivated for up to 20 passages and was lost in isolates cultivated for more than 40 passages. Furthermore, the prophage region was also present in 26 fecal samples derived from pigs clinically affected with both acute and chronic forms of the disease. Nevertheless, equine L. intracellularis isolates evaluated did not harbor this genomic island regardless of the passage in vitro. Additionally, fecal samples from 21 clinically affected horses and four wild rabbits trapped in horse farms experiencing PE outbreaks did not show this prophage-associated island. Although the presence of this prophage-associated island was not essential for a virulent L. intracellularis phenotype, this genetic element was porcine isolate-specific and potentially contributed to the ecological specialization of this organism for the swine host. PMID:23826661

Vannucci, Fabio A; Kelley, Molly R; Gebhart, Connie J

2013-01-01

339

RNA-Sequencing Analysis of 5' Capped RNAs Identifies Many New Differentially Expressed Genes in Acute Hepatitis C Virus Infection  

Directory of Open Access Journals (Sweden)

Full Text Available We describe the first report of RNA sequencing of 5' capped (Pol II RNAs isolated from acutely hepatitis C virus (HCV infected Huh 7.5 cells that provides a general approach to identifying differentially expressed annotated and unannotated genes that participate in viral-host interactions. We identified 100, 684, and 1,844 significantly differentially expressed annotated genes in acutely infected proliferative Huh 7.5 cells at 6, 48, and 72 hours, respectively (fold change ? 1.5 and Bonferroni adjusted p-values < 0.05. Most of the differentially expressed genes (>80% and biological pathways (such as adipocytokine, Notch, Hedgehog and NOD-like receptor signaling were not identified by previous gene array studies. These genes are critical components of host immune, inflammatory and oncogenic pathways and provide new information regarding changes that may benefit the virus or mediate HCV induced pathology. RNAi knockdown studies of newly identified highly upregulated FUT1 and KLHDC7B genes provide evidence that their gene products regulate and facilitate HCV replication in hepatocytes. Our approach also identified novel Pol II unannotated transcripts that were upregulated. Results further identify new pathways that regulate HCV replication in hepatocytes and suggest that our approach will have general applications in studying viral-host interactions in model systems and clinical biospecimens.

Bret S. E. Heale

2012-04-01

340

The Hox-2 Homeo Box Gene Complex on Mouse Chromosome 11 Is Closely Linked to Re  

OpenAIRE

Restriction fragment length polymorphisms have been identified between inbred strains of mice for the homeo box gene complex Hox-2. These genetic markers were used to follow the segregation of different Hox-2 alleles among recombinant inbred strains of mice and among the progeny of a three point genetic cross. The results place the Hoax-2 locus approximately 1 cM from the rex (Re) locus on mouse chromosome 11.

Hart, C. P.; Dalton, D. K.; Nichols, L.; Hunihan, L.; Roderick, T. H.; Langley, S. H.; Taylor, B. A.; Ruddle, F. H.

1988-01-01

341

DNA diversity in sex-linked and autosomal genes of the plant species Silene latifolia and Silene dioica.  

Science.gov (United States)

The relatively recent origin of sex chromosomes in the plant genus Silene provides an opportunity to study the early stages of sex chromosome evolution and, potentially, to test between the different population genetic processes likely to operate in nonrecombining chromosomes such as Y chromosomes. We previously reported much lower nucleotide polymorphism in a Y-linked gene (SlY1) of the plant Silene latifolia than in the homologous X-linked gene (SlX1). Here, we report a more extensive study of nucleotide diversity in these sex-linked genes, including a larger S. latifolia sample and a sample from the closely related species Silene dioica, and we also study the diversity of an autosomal gene, CCLS37.1. We demonstrate that nucleotide diversity in the Y-linked genes of both S. latifolia and S. dioica is very low compared with that of the X-linked gene. However, the autosomal gene also has low DNA polymorphism, which may be due to a selective sweep. We use a single individual of the related hermaphrodite species Silene conica, as an outgroup to show that the low SlY1 diversity is not due to a lower mutation rate than that for the X-linked gene. We also investigate several other possibilities for the low SlY1 diversity, including differential gene flow between the two species for Y-linked, X-linked, and autosomal genes. The frequency spectrum of nucleotide polymorphism on the Y chromosome deviates significantly from that expected under a selective-sweep model. However, we detect population subdivision in both S. latifolia and S. dioica, so it is not simple to test for selective sweeps. We also discuss the possibility that Y-linked diversity is reduced due to highly variable male reproductive success, and we conclude that this explanation is unlikely. PMID:11470835

Filatov, D A; Laporte, V; Vitte, C; Charlesworth, D

2001-08-01

342

Mutations in the X-Linked Retinitis Pigmentosa Genes RPGR and RP2 Found in 8.5% of Families with a Provisional Diagnosis of Autosomal Dominant Retinitis Pigmentosa  

OpenAIRE

This study identifies the fraction of families in a well-characterized cohort with a provisional diagnosis of autosomal dominant retinitis pigmentosa (adRP) that have disease-causing mutations in the X-linked retinitis pigmentosa GTPase regulator (RPGR) gene or the retinitis pigmentosa 2 (RP2) gene.

Churchill, Jennifer D.; Bowne, Sara J.; Sullivan, Lori S.; Lewis, Richard Alan; Wheaton, Dianna K.; Birch, David G.; Branham, Kari E.; Heckenlively, John R.; Daiger, Stephen P.

2013-01-01

343

X-linked markers in the Duchenne muscular dystrophy gene associated with oral clefts.  

Science.gov (United States)

As part of an international consortium, case-parent trios were collected for a genome-wide association study of isolated, non-syndromic oral clefts, including cleft lip (CL), cleft palate (CP), and cleft lip and palate (CLP). Non-syndromic oral clefts have a complex and heterogeneous etiology. Risk is influenced by genes and environmental factors, and differs markedly by gender. Family-based association tests (FBAT) were used on 14,486 single nucleotide polymorphisms (SNPs) spanning the X chromosome, stratified by type of cleft and racial group. Significant results, even after multiple-comparisons correction, were obtained for the Duchenne muscular dystrophy (DMD) gene, the largest single gene in the human genome, among CL/P (i.e., both CL and CLP combined) trios. When stratified into groups of European and Asian ancestry, stronger signals were obtained for Asian subjects. Although conventional sliding-window haplotype analysis showed no increase in significance, selected combinations of the 25 most significant SNPs in the DMD gene identified four SNPs together that attained genome-wide significance among Asian CL/P trios, raising the possibility of interaction between distant SNPs within the DMD gene. PMID:23489894

Patel, Poorav J; Beaty, Terri H; Ruczinski, Ingo; Murray, Jeffrey C; Marazita, Mary L; Munger, Ronald G; Hetmanski, Jacqueline B; Wu, Tao; Murray, Tanda; Rose, Margaret; Redett, Richard J; Jin, Sheng C; Lie, Rolv T; Wu-Chou, Yah-Huei; Wang, Hong; Ye, Xiaoqian; Yeow, Vincent; Chong, Samuel; Jee, Sun H; Shi, Bing; Scott, Alan F

2013-04-01

344

Response of NBS encoding resistance genes linked to both heat and fungal stress in Brassica oleracea.  

Science.gov (United States)

Environmental stresses, including both abiotic and biotic stresses, cause considerable yield loss in crops and can significantly affect their development. Under field conditions, crops are exposed to a variety of concurrent stresses. Among abiotic and biotic stresses, heat and Fusarium oxysporum, are the most important factors affecting development and yield productivity of Brassica oleracea. Genes encoding the nucleotide-binding site (NBS) motif are known to be related to responses to abiotic and biotic stresses in many plants. Hence, this study was conducted to characterize the NBS encoding genes obtained from transcriptome profiles of two cabbage genotypes with contrasting responses to heat stress, and to test expression levels of selected NBS- leucine reich repeat (LRR) genes in F. oxysporum infected plants. We selected 80 up-regulated genes from a total of 264 loci, among which 17 were confirmed to be complete and incomplete members of the TIR-NBS-LRR (TNL) class families, and another identified as an NFYA-HAP2 family member. Expression analysis using qRT-PCR revealed that eight genes showed significant responses to heat shock treatment and F. oxysporum infection. Additionally, in the commercial B. oleracea cultivars with resistance to F. oxysporum, the Bol007132, Bol016084, and Bol030522 genes showed dramatically higher expression in the F. oxysporum resistant line than in the intermediate and susceptible lines. The results of this study will facilitate the identification and the development of molecular markers based on multiple stress resistance genes related to heat and fungal stress under field conditions in B. oleracea. PMID:25461701

Kim, Young-Wook; Jung, Hee-Jeong; Park, Jong-In; Hur, Yoonkang; Nou, Ill-Sup

2015-01-01

345

A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies.  

Science.gov (United States)

Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases. In support of the superior discriminative power of this novel approach, we observed no significant enrichment for GWAS-related genes in coexpression modules extracted from single studies or in meta-modules using gene expression data from non-psychiatric control subjects. Genes in the identified module encode proteins implicated in neuronal signaling and structure, including glutamate metabotropic receptors (GRM1, GRM7), GABA receptors (GABRA2, GABRA4), and neurotrophic and development-related proteins [BDNF, reelin (RELN), Ephrin receptors (EPHA3, EPHA5)]. These results are consistent with the current understanding of molecular mechanisms of MDD and provide a set of putative interacting molecular partners, potentially reflecting components of a functional module across cells and biological pathways that are synchronously recruited in MDD, other brain disorders and MDD-related illnesses. Collectively, this study demonstrates the importance of integrating transcriptome data, gene coexpression modules and GWAS results for providing novel and complementary approaches to investigate the molecular pathology of MDD and other complex brain disorders. PMID:24608543

Chang, Lun-Ching; Jamain, Stephane; Lin, Chien-Wei; Rujescu, Dan; Tseng, George C; Sibille, Etienne

2014-01-01

346

G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background In previous studies, gene neighborhoods—spatial clusters of co-expressed genes in the genome—have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Scoring Tool (G-NEST which combines genomic location, gene expression, and evolutionary sequence conservation data to score putative gene neighborhoods across all possible window sizes simultaneously. Results Using G-NEST on atlases of mouse and human tissue expression data, we found that large neighborhoods of ten or more genes are extremely rare in mammalian genomes. When they do occur, neighborhoods are typically composed of families of related genes. Both the highest scoring and the largest neighborhoods in mammalian genomes are formed by tandem gene duplication. Mammalian gene neighborhoods contain highly and variably expressed genes. Co-localized noisy gene pairs exhibit lower evolutionary conservation of their adjacent genome locations, suggesting that their shared transcriptional background may be disadvantageous. Genes that are essential to mammalian survival and reproduction are less likely to occur in neighborhoods, although neighborhoods are enriched with genes that function in mitosis. We also found that gene orientation and protein-protein interactions are partially responsible for maintenance of gene neighborhoods. Conclusions Our experiments using G-NEST confirm that tandem gene duplication is the primary driver of non-random gene order in mammalian genomes. Non-essentiality, co-functionality, gene orientation, and protein-protein interactions are additional forces that maintain gene neighborhoods, especially those formed by tandem duplicates. We expect G-NEST to be useful for other applications such as the identification of core regulatory modules, common transcriptional backgrounds, and chromatin domains. The software is available at http://docpollard.org/software.html

Lemay Danielle G

2012-09-01

347

Potential New Genes for Resistance to Mycosphaerella Graminicola Identified in Triticum Aestivum x Lophopyrum Elongatum Disomic Substitution Lines  

Science.gov (United States)

Lophopyrum species carry many desirable agronomic traits, including disease resistance, which can be transferred to wheat by interspecific hybridizations. To identify potentially new genes for disease and insect resistance carried by individual Lophopyrum chromosomes, 19 of 21 possible wheat cultiv...

348

Expression Profiling of Liposarcoma Yields a Multigene Predictor of Patient Outcome and Identifies Genes that Contribute to Liposarcomagenesis  

OpenAIRE

Liposarcomas are the second most common type of soft tissue sarcoma but its genetics are poorly defined. To identify genes that contribute to liposarcomagenesis and serve as prognostic candidates, we undertook expression profiling of 140 primary liposarcoma samples, which were randomly split into training set (n=95) and test set (n=45). A multi-gene predictor for DRFS was developed using the supervised principal component method. Expression levels of the 588 genes in the predictor were used t...

Gobble, Ryan M.; Qin, Li-xuan; Brill, Elliott R.; Angeles, Christina V.; Ugras, Stacy; O’connor, Rachael B.; Moraco, Nicole H.; Decarolis, Penelope L.; Antonescu, Christina; Singer, Samuel

2011-01-01

349

Building a Better Mosquito: Identifying the Genes Enabling Malaria and Dengue Fever Resistance in A. gambiae and A. aegypti Mosquitoes  

OpenAIRE

In this interview, George Dimopoulos focuses on the physiological mechanisms used by mosquitoes to combat Plasmodium falciparum and dengue virus infections. Explanation is given for how key refractory genes, those genes conferring resistance to vector pathogens, are identified in the mosquito and how this knowledge can be used to generate transgenic mosquitoes that are unable to carry the malaria parasite or dengue virus.

Dimopoulos, George

2007-01-01

350

A framework to identify gene expression profiles in a model of inflammation induced by lipopolysaccharide after treatment with thalidomide  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Thalidomide is an anti-inflammatory and anti-angiogenic drug currently used for the treatment of several diseases, including erythema nodosum leprosum, which occurs in patients with lepromatous leprosy. In this research, we use DNA microarray analysis to identify the impact of thalidomide on gene expression responses in human cells after lipopolysaccharide (LPS stimulation. We employed a two-stage framework. Initially, we identified 1584 altered genes in response to LPS. Modulation of this set of genes was then analyzed in the LPS stimulated cells treated with thalidomide. Results We identified 64 genes with altered expression induced by thalidomide using the rank product method. In addition, the lists of up-regulated and down-regulated genes were investigated by means of bioinformatics functional analysis, which allowed for the identification of biological processes affected by thalidomide. Confirmatory analysis was done in five of the identified genes using real time PCR. Conclusions The results showed some genes that can further our understanding of the biological mechanisms in the action of thalidomide. Of the five genes evaluated with real time PCR, three were down regulated and two were up regulated confirming the initial results of the microarray analysis.

Paiva Renata T

2012-06-01

351

A new point mutation in the ND1 mitochondrial gene identified in a type II diabetic patient  

Energy Technology Data Exchange (ETDEWEB)

A novel mutation in a mitochondrial gene was identified in a patient with type II diabetes mellitus. G-to-A transition was localized at the nt3316 position of gene ND1 and resulted in alanine threonine replacement at position 4 of mitochondrial NAD-H-dehydrogenase. 6 refs., 2 figs.

Kalinin, V.N. [Research Center of Medical Genetics, Moscow (Russian Federation); Schmidt, W.; Olek, K. [Institut fuer Molekularbiologische Diagnostik, Bonn (Germany)] [and others

1995-08-01

352

Coregulated genes link sulfide:quinone oxidoreductase and arsenic metabolism in Synechocystis sp. strain PCC6803.  

Science.gov (United States)

Although the biogeochemistry of the two environmentally hazardous compounds arsenic and sulfide has been extensively investigated, the biological interference of these two toxic but potentially energy-rich compounds has only been hypothesized and indirectly proven. Here we provide direct evidence for the first time that in the photosynthetic model organism Synechocystis sp. strain PCC6803 the two metabolic pathways are linked by coregulated genes that are involved in arsenic transport, sulfide oxidation, and probably in sulfide-based alternative photosynthesis. Although Synechocystis sp. strain PCC6803 is an obligate photoautotrophic cyanobacterium that grows via oxygenic photosynthesis, we discovered that specific genes are activated in the presence of sulfide or arsenite to exploit the energy potentials of these chemicals. These genes form an operon that we termed suoRSCT, located on a transposable element of type IS4 on the plasmid pSYSM of the cyanobacterium. suoS (sll5036) encodes a light-dependent, type I sulfide:quinone oxidoreductase. The suoR (sll5035) gene downstream of suoS encodes a regulatory protein that belongs to the ArsR-type repressors that are normally involved in arsenic resistance. We found that this repressor has dual specificity, resulting in 200-fold induction of the operon upon either arsenite or sulfide exposure. The suoT gene encodes a transmembrane protein similar to chromate transporters but in fact functioning as an arsenite importer at permissive concentrations. We propose that the proteins encoded by the suoRSCT operon might have played an important role under anaerobic, reducing conditions on primordial Earth and that the operon was acquired by the cyanobacterium via horizontal gene transfer. PMID:25022856

Nagy, Csaba I; Vass, Imre; Rákhely, Gábor; Vass, István Zoltán; Tóth, András; Duzs, Agnes; Peca, Loredana; Kruk, Jerzy; Kós, Péter B

2014-10-01

353

TM4SF10 gene sequencing in XLMR patients identifies common polymorphisms but no disease-associated mutation  

OpenAIRE

Abstract Background The TM4SF10 gene encodes a putative four-transmembrane domains protein of unknown function termed Brain Cell Membrane Protein 1 (BCMP1), and is abundantly expressed in the brain. This gene is located on the short arm of human chromosome X at p21.1. The hypothesis that mutations in the TM4SF10 gene are associated with impaired brain function was investigated by sequencing the gene in individuals with hereditary X-linked mental retardation (XLMR). Methods The coding region (...

Holinski-Feder Elke; Abramowicz Marc J; Gecz Jozef; Kooy Frank; Christophe-Hobertus Christiane; Schwartz Charles; Christophe Daniel

2004-01-01

354

Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor-positive breast carcinoma cell line.  

OpenAIRE

Differences in gene expression are likely to explain the phenotypic differences between hormone-responsive and hormone-unresponsive breast cancer. We have identified differentially expressed cDNAs in the estrogen receptor (ER)-positive MCF7 breast carcinoma cell line compared with the ER-negative MDA-MB-231 breast carcinoma cell line. Differential screening isolated four differentially expressed genes: cytokeratin 8, cytokeratin 18, Hsp27 and GPCR -Br. To identify differentially expressed gen...

Kuang, W. W.; Thompson, D. A.; Hoch, R. V.; Weigel, R. J.

1998-01-01

355

Towards isolation of the gene for X-linked retinitis pigmentosa (RP3)  

Energy Technology Data Exchange (ETDEWEB)

Until recently the region of interest containing the gene for X-linked retinitis pigmentosa (RP3) was thought to lie between CYBB (Xp21.1) and the proximal end of the deletion in patient BB (JBBprox). This region was thought to span 100-150 kb. Here we present new mapping data to show that the distance between the 5{prime} (most proximal) end of CYBB and JBBprox is only 50 kb. Recently Roux et al. (1994) have described the isolation of a gene within this region but this showed no disease-associated changes. Further evidence from mapping the deletion in patient NF (who suffered from McLead`s syndrome and CGD but not RP) and from linkage analysis of our RP3 families with a new dinucleotide repeat suggests that the gene must extend proximally from JBBprox. In order to extend the region of search we have constructed a YAC contig spanning 800 kb to OTC. We are continuing our search for the RP3 gene using a variety of strategies including exon trapping and cDNA enrichment as well as direct screening of cDNA libraries with subclones from this region.

Dry, K.L.; Aldred, M.A.; Hardwick, L.J. [MRC Human Genetics Unit, Scotland (United Kingdom)] [and others

1994-09-01

356

Tomato tos1 mutation identifies a gene essential for osmotic tolerance and abscisic acid sensitivity.  

Science.gov (United States)

Osmotic stress severely limits plant growth and agricultural productivity. We have used mutagenesis to identify plant genes that are required for osmotic stress tolerance in tomato. As a result, we have isolated a novel mutant in tomato (tos1) caused by a single recessive nuclear mutation that is hypersensitive to general osmotic stress. Growth measurements demonstrated that the tos1 mutant is less sensitive to intracellular abscisic acid (ABA) and this decreased ABA sensitivity of tos1 is a basic cellular trait expressed by the mutant at all developmental stages analysed. It is not caused by a deficiency in the synthesis of ABA because the tos1 seedlings accumulated more ABA than the wild type (WT) after osmotic stress. In contrast, the tss2 tomato mutant, which is also hypersensitive to osmotic stress, is hypersensitive to exogenous ABA. Comparative analysis of tos1 and tss2 indicates that appropriate ABA perception and signalling is essential for osmotic tolerance. PMID:12492833

Borsani, Omar; Cuartero, Jesús; Valpuesta, Victoriano; Botella, Miguel A

2002-12-01

357

Genome-wide association analyses identify variants in developmental genes associated with hypospadias  

DEFF Research Database (Denmark)

Hypospadias is a common congenital condition in boys in which the urethra opens on the underside of the penis. We performed a genome-wide association study on 1,006 surgery-confirmed hypospadias cases and 5,486 controls from Denmark. After replication genotyping of an additional 1,972 cases and 1,812 controls from Denmark, the Netherlands and Sweden, 18 genomic regions showed independent association with P <5 x 10(-8). Together, these loci explain 9% of the liability to developing this condition. Several of the identified regions harbor genes with key roles in embryonic development (including HOXA4, IRX5, IRX6 and EYA1). Subsequent pathway analysis with GRAIL and DEPICT provided additional insight into possible genetic mechanisms causing hypospadias.

Geller, Frank; Feenstra, Bjarke

2014-01-01

358

The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A.  

Science.gov (United States)

The wild apple (Malus sieversii) is a large-fruited species from Central Asia, which is used as a source of scab resistance in cultivar breeding. Phytopathological tests with races of Venturia inaequalis were performed to differentiate scab-resistance genes in Malus as well as an avirulence gene in the pathogen. A novel gene-for-gene interaction between V. inaequalis and Malus was identified. The locus of the scab-resistance gene Vh8 is linked with, or possibly allelic to, that of the Vh2 gene in Malus pumila Russian apple R12740-7A, at the lower end of linkage group 2 of Malus. Race 8 isolate NZ188B.2 is compatible with Vh8, suggesting the loss or modification of the complementary AvrVh8 gene, while isolate 1639 overcomes both Vh2 and Vh8, but is incompatible with at least one other gene not detected by any of the other race isolates tested. Our research is the first to differentiate scab-resistance genes in a putative gene cluster in apple with the aid of races of V. inaequalis. PMID:15869661

Bus, Vincent G M; Laurens, François N D; van de Weg, W Eric; Rusholme, Rachel L; Rikkerink, Erik H A; Gardiner, Susan E; Bassett, Heather C M; Kodde, Linda P; Plummer, Kim M

2005-06-01

359

Identifying human disease genes: advances in molecular genetics and computational approaches.  

Science.gov (United States)

The human genome project is one of the significant achievements that have provided detailed insight into our genetic legacy. During the last two decades, biomedical investigations have gathered a considerable body of evidence by detecting more than 2000 disease genes. Despite the imperative advances in the genetic understanding of various diseases, the pathogenesis of many others remains obscure. With recent advances, the laborious methodologies used to identify DNA variations are replaced by direct sequencing of genomic DNA to detect genetic changes. The ability to perform such studies depends equally on the development of high-throughput and economical genotyping methods. Currently, basically for every disease whose origen is still unknown, genetic approaches are available which could be pedigree-dependent or -independent with the capacity to elucidate fundamental disease mechanisms. Computer algorithms and programs for linkage analysis have formed the foundation for many disease gene detection projects, similarly databases of clinical findings have been widely used to support diagnostic decisions in dysmorphology and general human disease. For every disease type, genome sequence variations, particularly single nucleotide polymorphisms are mapped by comparing the genetic makeup of case and control groups. Methods that predict the effects of polymorphisms on protein stability are useful for the identification of possible disease associations, whereas structural effects can be assessed using methods to predict stability changes in proteins using sequence and/or structural information. PMID:25061732

Bakhtiar, S M; Ali, A; Baig, S M; Barh, D; Miyoshi, A; Azevedo, V

2014-01-01

360

Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration.  

Science.gov (United States)

Storage roots of cassava (Manihot esculenta Crantz) exhibit a rapid post-harvest physiological deterioration (PPD) response that can occur within 24-72 h of harvest. PPD is an enzymatically mediated oxidative process with parallels to plant wound, senescence and defence responses. To characterise those genes that show significant change in expression during the PPD response we have used cDNA microarray technology to carry out a large-scale analysis of the cassava root transcriptome during the post-harvest period. We identified 72 non-redundant expressed sequence tags which showed altered regulation during the post-harvest period. Of these 63 were induced, whilst 9 were down-regulated. RNA blot analysis of selected genes was used to verify and extend the microarray data. Additional microarray hybridisation experiments allowed the identification of 21 root-specific and 24 root-wounding-specific sequences. Many of the up-regulated and PPD-specific expressed sequence tags were predicted to play a role in cellular processes including reactive oxygen species turnover, cell wall repair, programmed cell death, ion, water or metabolite transport, signal transduction or perception, stress response, metabolism and biosynthesis, and activation of protein synthesis. PMID:17318318

Reilly, Kim; Bernal, Diana; Cortés, Diego F; Gómez-Vásquez, Rocío; Tohme, Joe; Beeching, John R

2007-05-01

361

Two Mx genes identified in European sea bass (Dicentrarchus labrax) respond differently to VNNV infection.  

Science.gov (United States)

Mx proteins are key components of the antiviral state triggered by interferon type I in response to viral infections. In this study, two different Mx genes have been identified in European sea bass (Dicentrarchus labrax), and their sequences were cloned and characterized. MxA cDNA consists of 1881 bp coding for a putative 626 aminoacids protein, while MxB cDNA has 1920 bp and results in a protein with 639 residues. Their corresponding genomic sequences contain 3538 bp and 5326 bp, respectively, and both present 12 exons and 11 introns. The expression patterns of the two Mx genes after an in vivo challenge with the viral nervous necrosis virus (VNNV), a serious pathogen in farmed European sea bass, have been characterized by real-time PCR. The results showed interesting differences in the transcription profile of both Mx, thus suggesting a differential role for each Mx isoform in the immune response of European sea bass to VNNV, and most likely in the general viral response of this species. PMID:23548865

Novel, P; Fernández-Trujillo, M A; Gallardo-Gálvez, J B; Cano, I; Manchado, M; Buonocore, F; Randelli, E; Scapigliati, G; Alvarez, M C; Béjar, J

2013-06-15

362

A dehydration-inducible gene in the truffle Tuber borchii identifies a novel group of dehydrins  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background The expressed sequence tag M6G10 was originally isolated from a screening for differentially expressed transcripts during the reproductive stage of the white truffle Tuber borchii. mRNA levels for M6G10 increased dramatically during fruiting body maturation compared to the vegetative mycelial stage. Results Bioinformatics tools, phylogenetic analysis and expression studies were used to support the hypothesis that this sequence, named TbDHN1, is the first dehydrin (DHN-like coding gene isolated in fungi. Homologs of this gene, all defined as "coding for hypothetical proteins" in public databases, were exclusively found in ascomycetous fungi and in plants. Although complete (or almost complete fungal genomes and EST collections of some Basidiomycota and Glomeromycota are already available, DHN-like proteins appear to be represented only in Ascomycota. A new and previously uncharacterized conserved signature pattern was identified and proposed to Uniprot database as the main distinguishing feature of this new group of DHNs. Expression studies provide experimental evidence of a transcript induction of TbDHN1 during cellular dehydration. Conclusion Expression pattern and sequence similarities to known plant DHNs indicate that TbDHN1 is the first characterized DHN-like protein in fungi. The high similarity of TbDHN1 with homolog coding sequences implies the existence of a novel fungal/plant group of LEA Class II proteins characterized by a previously undescribed signature pattern.

Bonfante Paola

2006-03-01

363

A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Introduction Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case presentation Case 1 is the 12-year-old daughter (index patient of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1, whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG located in exon 15 (c.1225C>T of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T. Case 2 is the 16-year-old son (brother of the index patient of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride channel 7 gene in this patient (Case 2. The missense mutation (CGG>TGG located in exon 15 (c.1225C>T of the Chloride channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T. In addition to the clinical diagnosis of both cases, the missense mutation we identified in one allele of the Chloride channel 7 gene could be linked to autosomal dominant osteopetrosis-II because the symptoms appear in late childhood or adolescence. Conclusion In this family, the molecular diagnosis was confirmed after identification of the same mutation in the older son (sibling. Furthermore, we detected that the father and his brother (the uncle are carriers of the same mutation, whereas the mother and her sister (the aunt do not carry any mutation of the Chloride channel 7 gene. Thus, the disease penetrance is at least 60% in the family. The mother and father are cousins and a further consanguineous marriage between the aunt and the uncle is not recommended because the dominant allele of the Chloride channel 7 gene will be transferred to the progeny. However, a similar risk is also expected following a marriage between the uncle and an unrelated woman. The p.R409W mutation in the Chloride channel 7 gene has not yet been described in the literature and it possibly has a dominant-negative impact on the protein.

Rashid Ban Mousa

2013-01-01

364

Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Exposure to vanadium pentoxide (V2O5 is a cause of occupational bronchitis. We evaluated gene expression profiles in cultured human lung fibroblasts exposed to V2O5 in vitro in order to identify candidate genes that could play a role in inflammation, fibrosis, and repair during the pathogenesis of V2O5-induced bronchitis. Methods Normal human lung fibroblasts were exposed to V2O5 in a time course experiment. Gene expression was measured at various time points over a 24 hr period using the Affymetrix Human Genome U133A 2.0 Array. Selected genes that were significantly changed in the microarray experiment were validated by RT-PCR. Results V2O5 altered more than 1,400 genes, of which ~300 were induced while >1,100 genes were suppressed. Gene ontology categories (GO categories unique to induced genes included inflammatory response and immune response, while GO catogories unique to suppressed genes included ubiquitin cycle and cell cycle. A dozen genes were validated by RT-PCR, including growth factors (HBEGF, VEGF, CTGF, chemokines (IL8, CXCL9, CXCL10, oxidative stress response genes (SOD2, PIPOX, OXR1, and DNA-binding proteins (GAS1, STAT1. Conclusion Our study identified a variety of genes that could play pivotal roles in inflammation, fibrosis and repair during V2O5-induced bronchitis. The induction of genes that mediate inflammation and immune responses, as well as suppression of genes involved in growth arrest appear to be important to the lung fibrotic reaction to V2O5.

Pluta Linda J

2007-04-01

365

Mutations of Bruton's tyrosine kinase gene in Brazilian patients with X-linked agammaglobulinemia  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in english Mutations in Bruton's tyrosine kinase (BTK) gene are responsible for X-linked agammaglobulinemia (XLA), which is characterized by recurrent bacterial infections, profound hypogammaglobulinemia, and decreased numbers of mature B cells in peripheral blood. We evaluated 5 male Brazilian patients, rangi [...] ng from 3 to 10 years of age, from unrelated families, whose diagnosis was based on recurrent infections, markedly reduced levels of IgM, IgG and IgA, and circulating B cell numbers

V.D., Ramalho; E.B., Oliveira Júnior; S.M., Tani; P., Roxo Júnior; M.M.S., Vilela.

2010-09-01

366

CRX controls retinal expression of the X-linked juvenile retinoschisis (RS1) gene  

OpenAIRE

X-linked juvenile retinoschisis is a heritable condition of the retina in males caused by mutations in the RS1 gene. Still, the cellular function and retina-specific expression of RS1 are poorly understood. To address the latter issue, we characterized the minimal promoter driving expression of RS1 in the retina. Binding site prediction, site-directed mutagenesis, and reporter assays suggest an essential role of two nearby cone-rod homeobox (CRX)-responsive elements (CRE) in the proximal ?1...

Langmann, Thomas; Lai, Christine C. L.; Weigelt, Karin; Tam, Beatrice M.; Warneke-wittstock, Regina; Moritz, Orson L.; Weber, Bernhard H. F.

2008-01-01

367

Identification of RFLP markers linked to the cereal cyst nematode resistance gene (Cre) in wheat.  

Science.gov (United States)

The cereal cyst nematode (CCN) (Heterodera avenae Woll.) is an economically damaging pest of wheat in many of the worlds cereal growing areas. The development of CCN-resistant cultivars may be accelerated by the use of molecular markers. The Cre gene of the wheat line "AUS 10894" confers resistance to CCN. Using a pair of near-isogenic lines (NILs) that should differ only in a small chromosome segment containing the Cre locus, we screened 58 group-2 probes and found two (Tag605 and CDO588) that detect polymorphism between the NILs. Nulli-tetrasomic and ditelosomic lines confirmed that the restriction fragment length polymorphism (RFLP) markers identified were derived from the long arm of wheat chromosome 2. Crosses between "AUS 10894" and "Spear" and the NIL "AP" and its recurrent parent "Prins" were used to produce F2 populations that gave the expected 3?1 segregation ratio for the resistance gene. Linkage analysis identified two RFLP markers flanking the resistance gene. Xglk605 and Xcdo588 mapped 7.3 cM (LOD=6.0) and 8.4 cM (LOD=6.7), respectively, from the Cre locus. PMID:24178105

Williams, K J; Fisher, J M; Langridge, P

1994-12-01

368

Mutations in the JARID1C Gene, Which Is Involved in Transcriptional Regulation and Chromatin Remodeling, Cause X-Linked Mental Retardation  

OpenAIRE

In families with nonsyndromic X-linked mental retardation (NS-XLMR), >30% of mutations seem to cluster on proximal Xp and in the pericentric region. In a systematic screen of brain-expressed genes from this region in 210 families with XLMR, we identified seven different mutations in JARID1C, including one frameshift mutation and two nonsense mutations that introduce premature stop codons, as well as four missense mutations that alter evolutionarily conserved amino acids. In two of these famil...

Jensen, Lars Riff; Amende, Marion; Gurok, Ulf; Moser, Bettina; Gimmel, Verena; Tzschach, Andreas; Janecke, Andreas R.; Tariverdian, Gholamali; Chelly, Jamel; Fryns, Jean-pierre; Van esch, Hilde; Kleefstra, Tjitske; Hamel, Ben; Moraine, Claude; Ge?cz, Jozef

2004-01-01

369

Identification of microsatellite markers (SSR) linked to a new bacterial blight resistance gene xa33(t) in rice cultivar ‘Ba7’  

OpenAIRE

This study attempts to identify a new source of bacterial blight (BB) resistance gene and microsatellite makers (SSR) linked to it. A total number of 139 F2 progenies generated from a cross between the resistant donor ‘Ba7’and ‘Pin Kaset’ were developed and used for this study. A Thai Xoo isolate, TXO16, collected from Phitsanulok province, was used to evaluate the resistance reaction in the F2 population. The segregation ratio of resistance (R) and susceptibility (S) was statisticall...

Theerayut Toojinda

2009-01-01

370

Oligophrenin-1 (OPHN1), a Gene Involved in X-Linked Intellectual Disability, Undergoes RNA Editing and Alternative Splicing during Human Brain Development  

OpenAIRE

Oligophrenin-1 (OPHN1) encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and fun...

Barresi, Sabina; Tomaselli, Sara; Athanasiadis, Alekos; Galeano, Federica; Locatelli, Franco; Bertini, Enrico; Zanni, Ginevra; Gallo, Angela

2014-01-01

371

A cross-species compendium of proteins/gene products related to cold stress identified by bioinformatic approaches.  

Science.gov (United States)

The purpose of this investigation was to construct a compendium of low temperature responsive proteins/gene products across species as identified by bioinformatics based approaches, thus allowing low temperature researchers a searchable database. Another purpose was to identify specific low temperature responsive proteins/gene products across at least two different species. We generated a database containing 2030 low temperature responsive protein/gene product entries, of which 1353 were up-regulated and 549 were down-regulated in response to various cold exposures across 34 different species; including bacteria (9 species), yeast (1 species), animals (including nematodes (1 species), collembola (2 species), insects (5 species), fish (1 species), amphibians (1 species), reptiles (1 species), mammals (2 species)), and plants (moss (1 species), gymnosperms (1 species) and angiosperms (9 species)). There were 39 studies using 12 different cold treatments; 20 used proteomics and 18 used transcriptomics. Concerning our purpose of identifying specific temperature responsive proteins/gene products across species, we found 113 shared proteins/gene products groups, each of which was found in at least two species. Of these shared proteins/gene products groups, 58 proteins/gene products (including protein/gene product families) that were consistently regulated, meaning always either up- or down-regulated, across species. Another 23 proteins/gene products were inconsistently regulated, meaning that the proteins/gene products were up-regulated in some species and treatments while being down-regulated in other species and treatments. An additional 32 proteins/gene products that are part of larger family headings and are difficult to separate from related member proteins (such the ribosomal proteins, 30S, 50S, and others) were inconsistently regulated. This work is an attempt to create a centralized database and repository for low temperature responsive proteins/gene products in all species. PMID:21565197

Carrasco, Martin A; Tan, John C; Duman, John G

2011-08-01

372

Differentially expressed alternatively spliced genes in Malignant Pleural Mesothelioma identified using massively parallel transcriptome sequencing  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Analyses of Expressed Sequence Tags (ESTs databases suggest that most human genes have multiple alternative splice variants. The alternative splicing of pre-mRNA is tightly regulated during development and in different tissue types. Changes in splicing patterns have been described in disease states. Recently, we used whole-transcriptome shotgun pryrosequencing to characterize 4 malignant pleural mesothelioma (MPM tumors, 1 lung adenocarcinoma and 1 normal lung. We hypothesized that alternative splicing profiles might be detected in the sequencing data for the expressed genes in these samples. Methods We developed a software pipeline to map the transcriptome read sequences of the 4 MPM samples and 1 normal lung sample onto known exon junction sequences in the comprehensive AceView database of expressed sequences and to count how many reads map to each junction. 13,274,187 transcriptome reads generated by the Roche/454 sequencing platform for 5 samples were compared with 151,486 exon junctions from the AceView database. The exon junction expression index (EJEI was calculated for each exon junction in each sample to measure the differential expression of alternative splicing events. Top ten exon junctions with the largest EJEI difference between the 4 mesothelioma and the normal lung sample were then examined for differential expression using Quantitative Real Time PCR (qRT-PCR in the 5 sequenced samples. Two of the differentially expressed exon junctions (ACTG2.aAug05 and CDK4.aAug05 were further examined with qRT-PCR in additional 18 MPM and 18 normal lung specimens. Results We found 70,953 exon junctions covered by at least one sequence read in at least one of the 5 samples. All 10 identified most differentially expressed exon junctions were validated as present by RT-PCR, and 8 were differentially expressed exactly as predicted by the sequence analysis. The differential expression of the AceView exon junctions for the ACTG2 and CDK4 genes were also observed to be statistically significant in an additional 18 MPM and 18 normal lung samples examined using qRT-PCR. The differential expression of these two junctions was shown to successfully classify these mesothelioma and normal lung specimens with high sensitivity (89% and 78%, respectively. Conclusion Whole-transcriptome shotgun sequencing, combined with a downstream bioinformatics pipeline, provides powerful tools for the identification of differentially expressed exon junctions resulting from alternative splice variants. The alternatively spliced genes discovered in the study could serve as useful diagnostic markers as well as potential therapeutic targets for MPM.

Sugarbaker David J

2009-12-01

373

Gene expression profiling of precursor T-cell lymphoblastic leukemia/lymphoma identifies oncogenic pathways that are potential therapeutic targets  

OpenAIRE

We compared the gene expression pattern of thymic tumors from precursor T-cell lymphoblastic lymphoma/leukemia (pre-T LBL) that arose in transgenic mice which over-expressed SCL, LMO1, or NUP98-HOXD13 (NHD13) with that of thymocytes from normal littermates. Only two genes, Ccl8 and Mrpl38, were consistently more than 4-fold over-expressed in pre-T LBL from all three genotypes analyzed, and a single gene, Prss16 was consistently under-expressed. However, we identified a number of genes, such a...

Lin, Ying-wei; Aplan, Peter D.

2007-01-01

374

Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma  

OpenAIRE

The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ~3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A)1, JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification...

Varela, Ignacio

2011-01-01

375

Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling  

DEFF Research Database (Denmark)

BACKGROUND: Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). RESULTS: We analyzed the postnatal transformation of adipose in sheep with a time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose and the transition phase 170 genes were differentially expressed, and 717 genes were differentially expressed between the transition and the white adipose phase. Thirty-eight genes were shared among the two sets of differentially expressed genes. We identified a number of regulated transcription factors, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time. CONCLUSIONS: Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides a useful resource for further studies in adipose tissue plasticity.

Basse, Astrid L; Dixen, Karen

2015-01-01

376

A Genome-wide Analysis Identifies Genetic Variants in the RELN Gene Associated with Otosclerosis  

Science.gov (United States)

Otosclerosis is a common form of progressive hearing loss, characterized by abnormal bone remodeling in the otic capsule. The etiology of the disease is largely unknown, and both environmental and genetic factors have been implicated. To identify genetic factors involved in otosclerosis, we used a case-control discovery group to complete a genome-wide association (GWA) study with 555,000 single-nucleotide polymorphisms (SNPs), utilizing pooled DNA samples. By individual genotyping of the top 250 SNPs in a stepwise strategy, we were able to identify two highly associated SNPs that replicated in two additional independent populations. We then genotyped 79 tagSNPs to fine map the two genomic regions defined by the associated SNPs. The region with the strongest association signal, pcombined = 6.23 × 10?10, is on chromosome 7q22.1 and spans intron 1 to intron 4 of reelin (RELN), a gene known for its role in neuronal migration. Evidence for allelic heterogeneity was found in this region. Consistent with the GWA data, expression of RELN was confirmed in the inner ear and in stapes footplate specimens. In conclusion, we provide evidence that implicates RELN in the pathogenesis of otosclerosis. PMID:19230858

Schrauwen, Isabelle; Ealy, Megan; Huentelman, Matthew J.; Thys, Melissa; Homer, Nils; Vanderstraeten, Kathleen; Fransen, Erik; Corneveaux, Jason J.; Craig, David W.; Claustres, Mireille; Cremers, Cor W.R.J.; Dhooge, Ingeborg; Van de Heyning, Paul; Vincent, Robert; Offeciers, Erwin; Smith, Richard J.H.; Van Camp, Guy

2009-01-01

377

Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome.  

Science.gov (United States)

Ruminant livestock represent the single largest anthropogenic source of the potent greenhouse gas methane, which is generated by methanogenic archaea residing in ruminant digestive tracts. While differences between individual animals of the same breed in the amount of methane produced have been observed, the basis for this variation remains to be elucidated. To explore the mechanistic basis of this methane production, we measured methane yields from 22 sheep, which revealed that methane yields are a reproducible, quantitative trait. Deep metagenomic and metatranscriptomic sequencing demonstrated a similar abundance of methanogens and methanogenesis pathway genes in high and low methane emitters. However, transcription of methanogenesis pathway genes was substantially increased in sheep with high methane yields. These results identify a discrete set of rumen methanogens whose methanogenesis pathway transcription profiles correlate with methane yields and provide new targets for CH4 mitigation at the levels of microbiota composition and transcriptional regulation. PMID:24907284

Shi, Weibing; Moon, Christina D; Leahy, Sinead C; Kang, Dongwan; Froula, Jeff; Kittelmann, Sandra; Fan, Christina; Deutsch, Samuel; Gagic, Dragana; Seedorf, Henning; Kelly, William J; Atua, Renee; Sang, Carrie; Soni, Priya; Li, Dong; Pinares-Patiño, Cesar S; McEwan, John C; Janssen, Peter H; Chen, Feng; Visel, Axel; Wang, Zhong; Attwood, Graeme T; Rubin, Edward M

2014-09-01

378

Computational modeling with forward and reverse engineering links signaling network and genomic regulatory responses: NF-?B signaling-induced gene expression responses in inflammation  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background Signal transduction is the major mechanism through which cells transmit external stimuli to evoke intracellular biochemical responses. Diverse cellular stimuli create a wide variety of transcription factor activities through signal transduction pathways, resulting in different gene expression patterns. Understanding the relationship between external stimuli and the corresponding cellular responses, as well as the subsequent effects on downstream genes, is a major challenge in systems biology. Thus, a systematic approach is needed to integrate experimental data and theoretical hypotheses to identify the physiological consequences of environmental stimuli. Results We proposed a systematic approach that combines forward and reverse engineering to link the signal transduction cascade with the gene responses. To demonstrate the feasibility of our strategy, we focused on linking the NF-?B signaling pathway with the inflammatory gene regulatory responses because NF-?B has long been recognized to play a crucial role in inflammation. We first utilized forward engineering (Hybrid Functional Petri Nets to construct the NF-?B signaling pathway and reverse engineering (Network Components Analysis to build a gene regulatory network (GRN. Then, we demonstrated that the corresponding IKK profiles can be identified in the GRN and are consistent with the experimental validation of the IKK kinase assay. We found that the time-lapse gene expression of several cytokines and chemokines (TNF-?, IL-1, IL-6, CXCL1, CXCL2 and CCL3 is concordant with the NF-?B activity profile, and these genes have stronger influence strength within the GRN. Such regulatory effects have highlighted the crucial roles of NF-?B signaling in the acute inflammatory response and enhance our understanding of the systemic inflammatory response syndrome. Conclusion We successfully identified and distinguished the corresponding signaling profiles among three microarray datasets with different stimuli strengths. In our model, the crucial genes of the NF-?B regulatory network were also identified to reflect the biological consequences of inflammation. With the experimental validation, our strategy is thus an effective solution to decipher cross-talk effects when attempting to integrate new kinetic parameters from other signal transduction pathways. The strategy also provides new insight for systems biology modeling to link any signal transduction pathways with the responses of downstream genes of interest.

Peng Chien

2010-06-01

379

Computational modeling with forward and reverse engineering links signaling network and genomic regulatory responses: NF-?B signaling-induced gene expression responses in inflammation  

Science.gov (United States)

Background Signal transduction is the major mechanism through which cells transmit external stimuli to evoke intracellular biochemical responses. Diverse cellular stimuli create a wide variety of transcription factor activities through signal transduction pathways, resulting in different gene expression patterns. Understanding the relationship between external stimuli and the corresponding cellular responses, as well as the subsequent effects on downstream genes, is a major challenge in systems biology. Thus, a systematic approach is needed to integrate experimental data and theoretical hypotheses to identify the physiological consequences of environmental stimuli. Results We proposed a systematic approach that combines forward and reverse engineering to link the signal transduction cascade with the gene responses. To demonstrate the feasibility of our strategy, we focused on linking the NF-?B signaling pathway with the inflammatory gene regulatory responses because NF-?B has long been recognized to play a crucial role in inflammation. We first utilized forward engineering (Hybrid Functional Petri Nets) to construct the NF-?B signaling pathway and reverse engineering (Network Components Analysis) to build a gene regulatory network (GRN). Then, we demonstrated that the corresponding IKK profiles can be identified in the GRN and are consistent with the experimental validation of the IKK kinase assay. We found that the time-lapse gene expression of several cytokines and chemokines (TNF-?, IL-1, IL-6, CXCL1, CXCL2 and CCL3) is concordant with the NF-?B activity profile, and these genes have stronger influence strength within the GRN. Such regulatory effects have highlighted the crucial roles of NF-?B signaling in the acute inflammatory response and enhance our understanding of the systemic inflammatory response syndrome. Conclusion We successfully identified and distinguished the corresponding signaling profiles among three microarray datasets with different stimuli strengths. In our model, the crucial genes of the NF-?B regulatory network were also identified to reflect the biological consequences of inflammation. With the experimental validation, our strategy is thus an effective solution to decipher cross-talk effects when attempting to integrate new kinetic parameters from other signal transduction pathways. The strategy also provides new insight for systems biology modeling to link any signal transduction pathways with the responses of downstream genes of interest. PMID:20529327

2010-01-01

380

Genes required for Drosophila nervous system development identified by RNA interference  

OpenAIRE

RNA interference was used to screen 3,314 Drosophila double-stranded RNAs, corresponding to ?25% of Drosophila genes, for genes that affect the development of the embryonic nervous system. RNA-interference-mediated gene silencing in Drosophila embryos resulted in loss-of-function mutant phenotypes for 43 genes, which is 1.3% of the genes that were screened. We found 18 genes that were not known previously to affect the development of the nervous system. The functions of some of the genes ar...

Ivanov, Andrej I.; Rovescalli, Alessandra C.; Pozzi, Paola; Yoo, Siuk; Mozer, Brian; Li, Hsi-ping; Yu, Shu-hua; Higashida, Haruhiro; Guo, Vicky; Spencer, Michael; Nirenberg, Marshall

2004-01-01