WorldWideScience

Sample records for hydropower site parameters

  1. A review of Environmental Impact Assessment parameters required for set up of a hydropower project

    International Nuclear Information System (INIS)

    Environmental Impact Assessment in general, hydro-meteorological conditions, topography, hydrology, water availability analysis of a river system, importance of hydropower and feasibility study of Environmental Impact assessment due to the construction of the hydropower plant have been discussed in this research work. The site selection is one of the major components so far the hydropower is concerned and also the minimum flow should have known to us so that the capacity of a hydropower plant can be predicted. The sustainable flow, which refers the flow is available throughout the year, has been calculated based on flow duration curve. This study highlights the environmental impact assessment particularly related to hydropower project. Here the study area a district town located in the eastern region of India on the banks of river Kosi has been considered. The historical rainfall and the river discharge data have been collected from various organizations. The stage-discharge correlation and hydrological parameters related to hydropower have been analyzed and also to discuss the review of environmental impact assessment in hydropower project. The EIA analysis can be also carried out by using fuzzy logic wherein the EIA parameters can be given different weight-age based on the various survey reports that have been carried out at different places at different time. Such analysis has also been provided below based on the various data obtained.

  2. Hydropower

    DEFF Research Database (Denmark)

    Fenhann, Jørgen Villy; Kofoed, Jens Peter

    This chapter gives an overview of the various forms of hydropower: conventional hydropower, marine currents, tides, power from salinity gradients, ocean thermal energy conversion and wave power.......This chapter gives an overview of the various forms of hydropower: conventional hydropower, marine currents, tides, power from salinity gradients, ocean thermal energy conversion and wave power....

  3. Hydropower

    International Nuclear Information System (INIS)

    A brief review is given of the development of hydropower in the UK. Most of the untapped potential has head heights below 10 metres and recent developments in turbines to exploit such installations are reported. (UK)

  4. Hydropower

    International Nuclear Information System (INIS)

    This paper reports that, to discover what plans North American hydropower producers have for their hydroelectric resources in the 1990s, Hydro Review conducted a survey of leaders in the hydro generation industry in the U.S. and Canada. Results of the survey point to some interesting trends about upgrade and rehabilitation work, costs of hydro generation, and new development plans. Survey responses present a positive outlook for the North American hydro industry in the 1990s

  5. 76 FR 51022 - Juneau Hydropower, Inc.; Notice of Scoping Meeting and Site Visit and Soliciting Scoping Comments...

    Science.gov (United States)

    2011-08-17

    ... Energy Regulatory Commission Juneau Hydropower, Inc.; Notice of Scoping Meeting and Site Visit and.... Applicant: Juneau Hydropower, Inc. d. Name of Project: Sweetheart Lake Hydroelectric Project. e. Location.... 791(a)-825(r). g. Applicant Contact: Duff Mitchell, Business Manager, Juneau Hydropower, Inc.,...

  6. Siting and assessment of small hydropower potential using GIS and hydrological modelling

    Energy Technology Data Exchange (ETDEWEB)

    Gosain, A.K. [Indian Inst. of Technology, Delhi (India). Dept. of Civil Engineering; Rao, S. [INRM Consultants Pvt Ltd., New Delhi (India)

    2010-07-01

    Small-scale hydropower can solve the energy problems in remote and hilly areas. Small hydro projects are particularly useful because they allow installation of generating capacity in smaller increments to provide greater economic flexibility. However, most of the prospective small hydropower project sites are likely to be ungauged. Therefore, there is generally no flow data available for analyses of power potential for proposed sites. This presentation described a new solution for evaluating the feasibility of proposed small-scale hydropower schemes at ungauged sites. The solution involves a combination of geographic information system (GIS) based technologies and hydrological modeling for selection and assessment of small hydropower sites. The presentation discussed the use of the drainage system of Nagaland State in India. The presentation discussed the methodology, including the various steps that were used, such as the use of GIS technologies to extract the longitudinal profiles of the drainage systems and thereby the prevailing drops along the profile; demarcation of contributing areas of the drainage systems at identified locations; use of a soil and water assessment tool hydrological model for generation of continuous flow series at the locations of interest in the drainage system; formulation of a flow duration curve for each of the identified locations on the stream using the flow data generated through the hydrological modelling; and hydropower assessment at the sites, thereby helping in the initial selection of key sites. It was concluded that the methodology of water yield assessment works satisfactorily when the input data are reasonable. figs.

  7. Analysis of potential impacts of Flaming Gorge Dam hydropower operations on archaeological sites

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, K.L.; Malinowski, L.M.; Hoffecker, J.F.

    1955-12-01

    An archaeological field study was conducted along the Green River in the areas of Little Hole and Browns Park in Utah and Colorado. The purpose of the study was to measure the potential for hydropower operations at Flaming Gorge Dam to directly or indirectly affect archaeological sites in the study area. Thirty-four known sites were relocated, and six new sites were recorded. Information was collected at each site regarding location, description, geomorphic setting, sedimentary context, vegetation, slope, distance from river, elevation above river level, and site condition. Matching the hydrologic projections of river level and sediment load with the geomorphic and sedimentary context at specific site locations indicated that eight sites were in areas with a high potential for erosion.

  8. Application of geographical information system to site selection of small run-of-river hydropower project by considering engineering/economic/environmental criteria and social impact

    Energy Technology Data Exchange (ETDEWEB)

    Rojanamon, Pannathat; Chaisomphob, Taweep [School of Civil Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Rangsit campus, Klong Luang, Pathumthani 12121 (Thailand); Bureekul, Thawilwadee [King Prajadhipok' s Institute, 47/101, Tiwanon Road, Taladkwan Subdistrict, Muang District, Nonthaburi 11000 (Thailand)

    2009-12-15

    In the process of site selection of a small run-of-river hydropower project in Thailand, some problems are addressed as follows: the accessibility of the possible sites which are mostly located in rural and mountainous areas, the large amount of data required, and the lack of participation of the local people living nearby. In order to cope with these problems, this study proposes a new method to select feasible sites of small run-of-river hydropower projects by using Geographic Information System (GIS) technology. A combination of engineering, economic, and environmental criteria, as well as social impact is employed in this study. The selected study area is the upper Nan river basin situated in the north of Thailand. For the engineering criteria, the project locations are found by GIS in visual basic platform, and then economic evaluations of the selected projects are performed. Next, the environmental parameters are used to rank the projects by total weighted scores. Finally, a social impact study at the potential sites is conducted based on the public participation process, i.e. questionnaire survey and focus group discussions. The applicability of the proposed method is verified by the results of site selection of the small hydropower projects located on the Nan river basin in Thailand. This case study can be the model for the process of site selection of similar projects. (author)

  9. Comparison of environmental issues related to development of small hydropower resources at new versus existing sites

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J. M.; Hildebrand, S. G.

    1980-01-01

    Many of the ecological issues associated with the development of small hydropower resources are similar at both new (undeveloped) sites and those with existing dams that will be retrofitted for hydroelectric generation. Issues that could occur with both types of development are: (1) blockage of fish migration routes; (2) water level fluctuations; (3) instream flows, (4) water quality; (5) dredging and dredged material disposal; and (6) threatened or endangered species. However, new site development projects require the alteration of existing aquatic and terrestrial ecosystems that will be, in most cases, significantly greater than the environmental changes associated with the retrofitting of existing dams. Although project design and operation are important factors controlling the nature and magnitude of the environmental impacts of small hydropower resource development, the mitigation of adverse impacts (and the optimization of beneficial effects) is dependent, in large measure, on our ability to accurately predict physical, chemical, and biological changes. Predicting the impacts of new impoundments may be considerably more difficult than predicting the impacts that might occur if an existing dam/impoundment system is developed. A comparative approach at the ecosystem level can provide valuable insights into the structure and function of reservoir systems and significantly increase our predictive capability.

  10. 75 FR 71122 - Erie Boulevard Hydropower L.P.; Notice of Scoping Meetings and Environmental Site Review

    Science.gov (United States)

    2010-11-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Erie Boulevard Hydropower L.P.; Notice of Scoping Meetings and Environmental Site Review November 15, 2010. Commission staff will be conducting two public scoping meetings and...

  11. Substantiation of the parameters of wind-power and hydro-power complex in Arkhangelsk region

    Directory of Open Access Journals (Sweden)

    Anna Vladimirovna Chernova

    2013-02-01

    Full Text Available The algorithm that can be used to find out the location of a wind-hydro energy complex and to determine its basic parameters at the stage of the regional development plan was described in this article. Furthermore, this algorithm is applied for Arkhangelsk region. The results can be applied to new energy facilities or to design of wind power stations with existent hydro power plants in different regions of Russia. Obtained parameters should be refined at the following stages.

  12. 78 FR 68044 - Erie Boulevard Hydropower, L.P.; Notice of Scoping Meetings and Environmental Site Review and...

    Science.gov (United States)

    2013-11-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Erie Boulevard Hydropower, L.P.; Notice of Scoping Meetings and... Boulevard Hydropower, L.P. e. Name of Project: Chasm Hydroelectric Project. f. Location: On the Salmon...

  13. Hydropower Projects

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  14. 76 FR 7835 - Great River Hydropower, LLC; Notice of Scoping Meetings and Environmental Site Review and...

    Science.gov (United States)

    2011-02-11

    ... electronically via the Internet. See 18 CFR 385.2001(a)(1)(iii) and the instructions on the Commission's Web site... the responsibilities of a particular resource agency, they must also serve a copy of the document on that resource agency. k. This application is not ready for environmental analysis at this time. l....

  15. Hydropower potential of the New York State barge canal

    Science.gov (United States)

    Goodman, A. S.; Brown, R. S.

    1980-09-01

    The physical characteristics of the canal system as it relates to hydropower development were studied. The hydropower potential of the canal system was determined, including an inventory of existing and proposed hydropower plants. The remaining unrealized potential of the canal system was evaluated. Various sites were selected for further investigation on the basis of the unrealized potential of the barge canal system. Preliminary estimates of the engineering and economic feasibility of developing hydropower at these sites were also studied.

  16. Hydropower economics

    CERN Document Server

    Forsund, Finn R

    2015-01-01

    This is a thorough revision of the 2007 publication, and includes five new chapters and brings all existing chapters completely up to date.  There have been many advances in hydropower and renewable technologies since the original publication, and Europe, and particularly Scandinavia, plan many more in the coming years.     From a review of the original edition: "… it is important to note that the author deals well with his selected topics. … I recommend this book to all readers who wish to learn more about the economics of hydroelectric power."" (Amitrajeet A. Batabyal, Interfaces, Vol. 39

  17. US hydropower resource assessment for Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1996-05-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

  18. U.S. Hydropower Resource Assessment - California

    Energy Technology Data Exchange (ETDEWEB)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01

    The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

  19. US hydropower resource assessment for Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.

    1994-05-01

    The US Department of Energy is developing an estimate of the hydropower development potential in this country. Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE, menu-driven software application. HES allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Colorado.

  20. US hydropower resource assessment for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Wyoming.

  1. US hydropower resource assessment for Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Kansas.

  2. US hydropower resource assessment for Washington

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1997-07-01

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Washington.

  3. US hydropower resource assessment for New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Connor, A.M.; Francfort, J.E.

    1996-03-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Jersey.

  4. Renewable Energy Essentials: Hydropower

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Hydropower is currently the most common form of renewable energy and plays an important part in global power generation. Worldwide hydropower produced 3 288 TWh, just over 16% of global electricity production in 2008, and the overall technical potential for hydropower is estimated to be more than 16 400 TWh/yr.

  5. Sensitivity of Input Parameters in the PSHA for NPP Sites

    International Nuclear Information System (INIS)

    In this study, the most uncertain input parameter in the PSHA was identified for Korean NPP sites through sensitivity analysis. Shinuljin Nuclear Units 1 and 2 site was selected in this study. Expert panels developed input parameters for PSHA. Input data were analyzed, and used for sensitivity analysis to see the effects of each parameter on seismic hazard. Through sensitivity analysis, we identified the degree of uncertainty of each parameter. The CONPAS, EQHAZAS, and EQHAZAS Manager codes, which were developed by KAERI, were utilized to compute the seismic hazard. The Gutenberg-Richter parameter was identified as the most uncertain one in this study

  6. Coupling climate and hydrological models to evaluate the impact of climate change on run of the river hydropower schemes from UK study sites

    Science.gov (United States)

    Pasten-Zapata, Ernesto; Jones, Julie; Moggridge, Helen

    2015-04-01

    As climate change is expected to generate variations on the Earth's precipitation and temperature, the water cycle will also experience changes. Consequently, water users will have to be prepared for possible changes in future water availability. The main objective of this research is to evaluate the impacts of climate change on river regimes and the implications to the operation and feasibility of run of the river hydropower schemes by analyzing four UK study sites. Run of the river schemes are selected for analysis due to their higher dependence to the available river flow volumes when compared to storage hydropower schemes that can rely on previously accumulated water volumes (linked to poster in session HS5.3). Global Climate Models (GCMs) represent the main tool to assess future climate change. In this research, Regional Climate Models (RCMs), which dynamically downscale GCM outputs providing higher resolutions, are used as starting point to evaluate climate change within the study catchments. RCM daily temperature and precipitation will be downscaled to an appropriate scale for impact studies and bias corrected using different statistical methods: linear scaling, local intensity scaling, power transformation, variance scaling and delta change correction. The downscaled variables will then be coupled to hydrological models that have been previously calibrated and validated against observed daily river flow data. The coupled hydrological and climate models will then be used to simulate historic river flows that are compared to daily observed values in order to evaluate the model accuracy. As this research will employ several different RCMs (from the EURO-CORDEX simulations), downscaling and bias correction methodologies, greenhouse emission scenarios and hydrological models, the uncertainty of each element will be estimated. According to their uncertainty magnitude, a prediction of the best downscaling approach (or approaches) is expected to be obtained. The current progress of the project will be presented along with the steps to be followed in the future.

  7. Early Site Permit Demonstration Program: Plant parameters envelope report

    International Nuclear Information System (INIS)

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry's initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants

  8. Hydropower Baseline Cost Modeling

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Patrick W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Qin Fen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chalise, Dol Raj [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Centurion, Emma E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost-estimating tools that can support the national-scale evaluation of hydropower resources.

  9. Empirical estimation of school siting parameter towards improving children's safety

    Science.gov (United States)

    Aziz, I. S.; Yusoff, Z. M.; Rasam, A. R. A.; Rahman, A. N. N. A.; Omar, D.

    2014-02-01

    Distance from school to home is a key determination in ensuring the safety of hildren. School siting parameters are made to make sure that a particular school is located in a safe environment. School siting parameters are made by Department of Town and Country Planning Malaysia (DTCP) and latest review was on June 2012. These school siting parameters are crucially important as they can affect the safety, school reputation, and not to mention the perception of the pupil and parents of the school. There have been many studies to review school siting parameters since these change in conjunction with this ever-changing world. In this study, the focus is the impact of school siting parameter on people with low income that live in the urban area, specifically in Johor Bahru, Malaysia. In achieving that, this study will use two methods which are on site and off site. The on site method is to give questionnaires to people and off site is to use Geographic Information System (GIS) and Statistical Product and Service Solutions (SPSS), to analyse the results obtained from the questionnaire. The output is a maps of suitable safe distance from school to house. The results of this study will be useful to people with low income as their children tend to walk to school rather than use transportation.

  10. Mini and micro hydropower systems in India

    International Nuclear Information System (INIS)

    Hydropower is one of the renewable sources of energy. In the field of hydropower, even though small/mini/micro hydropower systems make fractional increases in the overall energy production, their impact on the local areas in which they are sited can be significant in stimulating growth of rural industry and in meeting the basic energy needs of the local population for domestic and agricultural use. They also help in reducing demand on other non-renewable polluting resources like fossil fuels. Moreover as compared to big hydropower systems, small hydropower systems are cost competitive and minimally disruptive to the environment. They require less time for construction and reduce transmission losses. They can be designed to suit the limits of water resources available and can be tailored to the needs of the end-use market. Aspects of small hydropower projects which needs to be studied are listed. Modelling of turbines and generators for such projects, and factors to be considered in selection of suitable turbine and generator for a particular small hydropower system are discussed. The technology for small hydropower systems is well developed and available in India. The present estimated potential of such systems in India is 5000 MW out of which 207 MW is harnessed. These small hydropower plants are mostly located in the northern states like Jammu and Kashmir, Uttar Pradesh, Punjab, and Rajasthan. Construction works for 234 MW at 88 sites are going on. During the 8th plan period, 218.5 MW is planned to be developed with an outlay of Rs. 548.25 crores. It is suggested that special subsidies and liberal term loans should be made available for implementing such systems. (M.G.B.). 8 refs., 2 tabs., 1 fig

  11. Hydropower scene: boost for Dominican power supply

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    When it is completed in 1991, the 150 MW Jiguey-Aguacate multi-purpose hydropower scheme will be the largest hydro project in the Dominican Republic. Construction of the scheme was recommended as a result of various studies carried out by the Instituto Nacional de Recursos Hidraulicos (INDHRI), which examined the hydropower potential of the Niazo river. Work is now in progress on site, with commissioning of the first unit expected in 1990.

  12. 2014 Hydropower Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Rocío Uría-Martínez, Patrick W. O’Connor, Megan M. Johnson

    2015-04-30

    The U.S. hydropower fleet has been providing clean, reliable power for more than a hundred years. However, no systematic documentation exists of the U.S. fleet and the trends influencing it in recent years. This first-ever Hydropower Market Report seeks to fill this gap and provide industry and policy makers with a quantitative baseline on the distribution, capabilities, and status of hydropower in the United States.

  13. Hydropower in Estonia

    International Nuclear Information System (INIS)

    Long life practice has proved that small hydropower is not a beaten track in the global energy field. Before the Second World War small hydropower was rather well developed in Estonia as well. Being neglected during the years of Soviet occupation, it is rather important to help it to regain its position in the Estonian energy system once again. Our hydropower potential is not big, but it has got a good established position as an energy saving measure. By now we have some good examples of restored hydropower stations on commercial basis to be optimistic about the future

  14. Hydropower Resource Assessment of Brazilian Streams

    Energy Technology Data Exchange (ETDEWEB)

    Douglas G. Hall

    2011-09-01

    The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

  15. The role of hydropower in environment ally sustainable energy development

    International Nuclear Information System (INIS)

    Hydropower has historically been the renewable energy leader, and from a technical-cost perspective, is very likely to remain the only viable renewable energy source for many countries. In recent years, hydropower has been much maligned, especially by NGOs, for not being a sustainable source of energy. Though hydropower is clearly a renewable source of energy, but the question arises whether it can also be sustainable. Hydropower can play an increasingly important role in enabling communities around the world to meet sustainability objectives. To become more accepted as a key contributor to sustainable energy systems, new and existing hydropower projects need to be built and operated in an environmentally, socially and economically sustainable manner. This paper highlights the sustain ability aspects of hydropower and discusses the criteria for selection of environmentally friendly hydropower project sites so that that hydropower can be developed in a sustainable manner and once again be considered favorably in the planning of generation mix for new energy development. Sustainability of hydropower projects involves treating both the social and environmental sustainability of the project at an early stage and including the interests of all stakeholders of the project. As a case study, the Ghazi- Barotha Hydropower Project (GBHP) in Pakistan has been selected, as it is the best example in managing the social issues and gaining public acceptance because of proper planning and addressing environmental and social issues at an early stage. (author)

  16. Hydropower annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering Lab. (INEL); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering Lab. (INEL)

    2004-02-01

    This report describes hydropower activities supported by the U.S. Department of Energy (DOE) Wind and Hydropower Program during Fiscal Year 2003 (October 1, 2002 to September 30, 2003). Background on the program, FY03 accomplishments, and future plans are presented in the following sections.

  17. Splice site identification using probabilistic parameters and SVM classification

    Directory of Open Access Journals (Sweden)

    Halgamuge SK

    2006-12-01

    Full Text Available Abstract Background Recent advances and automation in DNA sequencing technology has created a vast amount of DNA sequence data. This increasing growth of sequence data demands better and efficient analysis methods. Identifying genes in this newly accumulated data is an important issue in bioinformatics, and it requires the prediction of the complete gene structure. Accurate identification of splice sites in DNA sequences plays one of the central roles of gene structural prediction in eukaryotes. Effective detection of splice sites requires the knowledge of characteristics, dependencies, and relationship of nucleotides in the splice site surrounding region. A higher-order Markov model is generally regarded as a useful technique for modeling higher-order dependencies. However, their implementation requires estimating a large number of parameters, which is computationally expensive. Results The proposed method for splice site detection consists of two stages: a first order Markov model (MM1 is used in the first stage and a support vector machine (SVM with polynomial kernel is used in the second stage. The MM1 serves as a pre-processing step for the SVM and takes DNA sequences as its input. It models the compositional features and dependencies of nucleotides in terms of probabilistic parameters around splice site regions. The probabilistic parameters are then fed into the SVM, which combines them nonlinearly to predict splice sites. When the proposed MM1-SVM model is compared with other existing standard splice site detection methods, it shows a superior performance in all the cases. Conclusion We proposed an effective pre-processing scheme for the SVM and applied it for the identification of splice sites. This is a simple yet effective splice site detection method, which shows a better classification accuracy and computational speed than some other more complex methods.

  18. Parameters of importance to determine during geoscientific site investigation

    International Nuclear Information System (INIS)

    This document identifies and describes geo-scientific parameters that are of importance in order to carry out performance and safety assessments of a deep repository for spent nuclear fuel, based on the information that can be obtained from a site investigation. The document also discusses data needs for planning and design of the rock works and for description of other environmental aspects. Evaluation of the different parameters is discussed in the document as well. The document was produced by a working group consisting of the authors and various SKB staff and consultants, and comprises a step in the planning of a geo-scientific investigation programme at the sites where site investigations will be conducted. The goals of the work presented in this report can be derived directly from SKBs ongoing RD and D Programme. The programme stipulates that a geo-scientific site investigation programme must be available before a site investigation begins. This programme is supposed to specify the goals, measurement methods and evaluation methodology, as well as the acceptance criteria against which the site is evaluated. It is pointed out that site evaluation is a collective term for an interactive process consisting of different parts

  19. Parameters of importance to determine during geoscientific site investigation

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [QuantiSci AB (Sweden); Almen, K.E. [KEA GEO-Konsult AB (Sweden); Ericsson, Lars O.; Karlsson, Fred; Stroem, A. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Fredriksson, Anders [ADG Grundteknik AB (Sweden); Stanfors, R. [Roy Stanfors Consulting AB (Sweden)

    1998-06-01

    This document identifies and describes geo-scientific parameters that are of importance in order to carry out performance and safety assessments of a deep repository for spent nuclear fuel, based on the information that can be obtained from a site investigation. The document also discusses data needs for planning and design of the rock works and for description of other environmental aspects. Evaluation of the different parameters is discussed in the document as well. The document was produced by a working group consisting of the authors and various SKB staff and consultants, and comprises a step in the planning of a geo-scientific investigation programme at the sites where site investigations will be conducted. The goals of the work presented in this report can be derived directly from SKBs ongoing RD and D Programme. The programme stipulates that a geo-scientific site investigation programme must be available before a site investigation begins. This programme is supposed to specify the goals, measurement methods and evaluation methodology, as well as the acceptance criteria against which the site is evaluated. It is pointed out that site evaluation is a collective term for an interactive process consisting of different parts 65 refs, 15 figs, 12 tabs

  20. Kappa (?): estimates, origins, and correlation to site characterisation parameters

    Science.gov (United States)

    Ktenidou, O. J.; Cotton, F.; Drouet, S.; Theodoulidis, N.; Chaljub, E. O.

    2012-12-01

    Knowledge of the acceleration spectral shape is important for various applications in engineering seismology. At high frequencies spectral amplitude drops rapidly. Anderson and Hough (1984) modelled this drop with the spectral decay factor ?, observing that, above a certain frequency, the acceleration spectrum decreases linearly in lin-log space. Thirty years later, and though the debate as to its source, path and site components is still on, ? constitutes a basic input parameter for the generation of stochastic ground motion and the calibration and adjustment of GMPEs. We study ? in the EUROSEISTEST site (http://euroseis.civil.auth.gr): a geologically complex site in Northern Greece, with a permanent strong motion array including surface and downhole stations. Site effects are of great importance here, and records are available from a variety of conditions ranging from soft soil to hard rock. We derive the site-related component of ? (?0) at 16 stations following two approaches: 1. directly, measuring ? on individual S-wave spectra and regressing to zero distance as per Anderson and Hough (1984), following the procedure proposed by Ktenidou et al. (2012); 2. indirectly, deriving station-specific ?0 values from the high-frequency part of the station transfer functions, which are derived from a source-path-site inversion procedure proposed by Drouet et al. (2008). The agreement in ?0 is good. This supports the notion that ?0 is primarily a site effect, since in the second approach source and path effects are accounted for separately. The two approaches also yield similar results for anelastic attenuation within the frequency range studied: both show low regional Q, comparable to the results of crustal Q studies in Greece. We focus on ?0 values, which range from 0.02 s to 0.08 s depending on site type. As expected, ?0 increases for soft sites, but so does the scatter. Because ?0 is considered a site effect proxy, we examine its correlation with local site conditions. We choose three parameters: the widely used site characterisation parameter Vs30, for which many empirical correlations exist, and two parameters used recently to account for surface geology below 30 m: the resonant frequency and the depth to bedrock. We find that ?0 is correlated (in the order of 30%) to all three parameters. This may be considered as an indication of the deeper origins of ?0. We also find that the large scatter observed in ?0 values for sites of a single class, e.g. class C stations, is partly explained when we group them according to conditions beneath the first 30 m. Hence we believe parameters indicating the 'deeper surface structure' may complement existing ?0-Vs30 correlations. Finally, we compare our ?0s with existing ?0-Vs30 correlations, pushing them to the lower boundary of their validity range; most of them give upper bounds. References: Anderson, J.G. & S.E. Hough (1984). A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies, BSSA 74(5), 1969-1993. Drouet S., S. Chevrot, F. Cotton & A. Souriau (2008). Simultaneous inversion of source spectra, attenuation parameters and site responses. Application to the data of the French Accelerometric Network, BSSA 98(1), 198-219. Ktenidou O.J., C. Gelis & L.F. Bonilla (2012). A study on the variability of kappa in a borehole: Implications of the computation method. BSSA (under revision).

  1. Real-Time Safety Risk Assessment Based on a Real-Time Location System for Hydropower Construction Sites

    Science.gov (United States)

    Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns. PMID:25114958

  2. U.S. Hydropower Resource Assessment Final Report

    Energy Technology Data Exchange (ETDEWEB)

    A. M. Conner; J. E. Francfort; B. N. Rinehart

    1998-12-01

    To provide a more accurate assessment of the domestic undeveloped hydropower capacity, the US Department of Energy's Hydropower Program developed a computer model, Hydropower Evaluation Software (HES). HES allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental, legal, and institutional attributes present, and generate reports based on these suitability factors. This report describes the development of HES, its data requirements, and its application to each state assessment; in addition, it summarizes the data derivation process and data for the states. Modeling of the undeveloped hydropower resources in the US, based on environmental, legal, and institutional constraints, has identified 5,677 sites that have a total undeveloped capacity of about 30,000 megawatts.

  3. U.S. Hydropower Resource Assessment Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Conner, Alison M. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Francfort, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Rinehart, Ben N. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL)

    1998-12-01

    To provide a more accurate assessment of the domestic undeveloped hydropower capacity, the U.S. Department of Energy’s Hydropower Program developed a computer model, Hydropower Evaluation Software (HES). HES allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental, legal, and institutional attributes present, and generate reports based on these suitability factors. This report describes the development of HES, its data requirements, and its application to each state assessment; in addition, it summarizes the data derivation process and data for the states. Modeling of the undeveloped hydropower resources in the United States, based on environmental, legal, and institutional constraints, has identified 5,677 sites that have a total undeveloped capacity of about 30,000 megawatts.

  4. Hydropower research and development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report is a compilation of information on hydropower research and development (R and D) activities of the Federal government and hydropower industry. The report includes descriptions of on-going and planned R and D activities, 1996 funding, and anticipated future funding. Summary information on R and D projects and funding is classified into eight categories: fish passage, behavior, and response; turbine-related; monitoring tool development; hydrology; water quality; dam safety; operations and maintenance; and water resources management. Several issues in hydropower R and D are briefly discussed: duplication; priorities; coordination; technical/peer review; and technology transfer/commercialization. Project information sheets from contributors are included as an appendix.

  5. 78 FR 56749 - Site Characteristics and Site Parameters for Nuclear Power Plants

    Science.gov (United States)

    2013-09-13

    ... COMMISSION Site Characteristics and Site Parameters for Nuclear Power Plants AGENCY: Nuclear Regulatory... NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants... Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition. The proposed changes to the...

  6. Geographic and Operational Site Parameters List (GOSPL) for Hanford Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V.; Nichols, William E.; Kincaid, Charles T.

    2006-06-01

    This data package was originally prepared to support a 2004 composite analysis (CA) of low-level waste disposal at the Hanford Site. The Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site (Kincaid et. al. 2004) identified the requirements for that analysis and served as the basis for initial preparation of this data package. Completion of the 2004 CA was later deferred, with the 2004 Annual Status Report for the Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site (DOE 2005) indicating that a comprehensive update to the CA was in preparation and would be submitted in 2006. However, the U.S. Department of Energy (DOE) has recently decided to further defer the CA update and will use the cumulative assessment currently under preparation for the environmental impact statement (EIS) being prepared for tank closure and other site decisions as the updated CA. Submittal of the draft EIS is currently planned for FY 2008. This data package describes the facility-specific parameters (e.g. location, operational dates, etc.) used to numerically simulate contaminant flow and transport in large-scale Hanford assessments. Kincaid et al. (2004) indicated that the System Assessment Capability (SAC) (Kincaid et al. 2000; Bryce et al. 2002; Eslinger 2002a, 2002b) would be used to analyze over a thousand different waste sites. A master spreadsheet termed the Geographic and Operational Site Parameters List (GOSPL) was assembled to facilitate the generation of keyword input files containing general information on each waste site/facility, its operational/disposal history, and its environmental settings (past, current, and future). This report briefly describes each of the key data fields, including the source(s) of data, and provides the resulting inputs to be used for large-scale Hanford assessments.

  7. Hydropower's role in delivering sustainability

    International Nuclear Information System (INIS)

    Johannesburg's World Summit on Sustainable Development stipulated in its Implementation Plan that hydropower of all scales should be included in the drive to increase the contribution of renewable energy. This can be achieved through the plant-life extension and upgrading of existing schemes as well as by the sustainable development of new projects according to the needs, opportunities and resources available. Hydropower is the world's largest source of renewable energy used for power generation; it accounts for 19 percent of the world's supply (by 2010 wind power is expected to contribute 0.6 percent and solar power 0.12 percent. Hydropower is also a truly global resource, as more than 150 countries generate hydroelectric power. There is about 730 GW of hydro capacity in operation worldwide, generating 2650 TWh/year. A further 101 GW is under construction and 338 GW is at the planning stage. Hydropower plays an important role in reducing global GhG emissions by an estimated 10 percent per annum; in its current role, hydropower offsets 4.4 million barrels of oil-equivalent (thermal electric generation) each day. There is vast unexploited potential worldwide for new hydro plants, with only 33 percent of the economic potential having been developed so far. The majority of the remaining potential exists in lesser developed countries in Asia, South America and Africa. For example, Europe has developed 75 percent of its economic potential, whereas Africa has only developed seven percent. Hydropower technologies are reliable, advanced and efficient. The energy conversion efficiency of 80 to 93 percent is far higher than that for other major types of power plant. The level of service from the various types of hydro scheme varies from base-load supply, typically from run-of-river schemes, to peak-load and system-back-up services from hydro storage schemes. In regions where there is long-developed hydro capacity, plant-life extension can be achieved by the replacement of equipment within existing infrastructure; this can extend the operating life by a further 30 to 50 years. Small-scale, decentralised development has been responsible for bringing light and power to remote communities. Such schemes have catalysed local commercial diversification and prosperity. The lower investment demand of smaller schemes has enabled private sector involvement through independent power production. Typically smaller schemes become grid connected if the power system is accessible, as this increases the security of supply. Furthermore, schemes at remote sites can assist transmission system stability. A further important role of smaller scale hydro is the recovery of energy at water infrastructure developed for other purposes. In many countries, large schemes play a significant role in national and regional supply security due to the flexibility of storage reservoirs and independence from fuel price fluctuations. Hydro also integrates well with other generation technologies, with its flexibility enabling thermal plants to operate steadily (saving fuel and reducing emissions). In addition, its responsiveness permits the back-up of the intermittent renewables. The question of storage is clearly a major issue in balancing supply and demand. Hydro reservoirs and pump-storage schemes offer security in the stability and reliability of power systems; they can absorb power when there is an excess and follow load demand instantaneously. A major challenge is that 'support' and 'storage' services are rarely understood and encouraged in the market-driven arena. The main arguments against hydropower concern its social impacts, such as land transformation, displacement of people, and environmental changes, i.e. fauna, flora, sedimentation and water quality. The social and environmental impacts can, however, be mitigated by taking appropriate steps according to established codes of good practice. As a tool for this purpose, the hydropower sector has recently developed and adopted Sustainability Guidelines. These Guidelines are currently being tested by a numb er of governments and international organisations. (author)

  8. Site order parameter pg in ± J Ising square lattices

    International Nuclear Information System (INIS)

    Ising lattices with ± J exchange interactions present frustration that raises the energy of the ground levels as well as its degeneracy. This leads to think that after going over the states in half the configuration space, the different ground states will end up alternating all spins yielding a null site order parameter. In the present work we give numerical results that indicate that there is always a large region in these lattices, which remains free of frustration in the ground state. So if the ergodic separation is done in such a way as to leave this region with one possible spin orientation on one half the configuration space and the other half, it is possible to define a partial spin-glass phase with a positive site order parameter. (Author)

  9. Plant parameter envelopes for early site permit evaluations

    International Nuclear Information System (INIS)

    In 1991, the US Department of Energy and the US nuclear industry initiated a cost-shared Early Site Permit Demonstration Program (ESPDP) to demonstrate the practical implementation of new regulations concerning early site permits (ESPs). The ESPs are expected to contribute to regulatory stability for future nuclear plant orders by addressing site-related issues before an organization makes a major financial investment in committing to build a new plant. The new licensing process increases an organization's ability to respond to future base-load electricity generation needs by open-quotes bankingclose quotes suitable sites and by resolving safety and environmental issues for those sites well before new plants are needed. The objective of the ESPDP is to successfully demonstrate the use of 10CFR52 to obtain ESP(S) for US site(s) for one or more advanced light water reactor (ALWR) nuclear power plants. Certain specific plant-site information is generally not expected to be available at the time of application for an ESP because an ESP applicant may not have made a final decision on which ALWR design may be built on the site because the applicant can wait up to nearly 20 yr after obtaining an ESP before applying for a plant construction permit. To satisfy National Environmental Policy Act requirements, information on the potential environmental impact of the unspecified future plant must be provided with the ESP application. Therefore, an enveloping approach, called plant parameter envelopes (PPEs), was developed to provide required plant information. This paper provides a description of the PPE concept and explains why it is a prudent approach to use for performing safety and environmental impact assessments in support of an ESP application

  10. U.S. hydropower resource assessment for Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01

    The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Connecticut.

  11. U.S. hydropower resource assessment for New York

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1998-08-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of New York.

  12. U.S. hydropower resource assessment for Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1997-12-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Pennsylvania.

  13. U.S. hydropower resource assessment for Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1997-10-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Nevada.

  14. U.S. hydropower resource assessment for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1997-12-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Ohio.

  15. U.S. hydropower resource assessment for Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1998-03-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Oregon.

  16. U.S. hydropower resource assessment for Maine

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01

    The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Maine.

  17. U.S. hydropower resource assessment for Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1998-08-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

  18. U.S. hydropower resource assessment for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1997-11-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Alaska.

  19. Technology Roadmap: Hydropower

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Hydropower could double its contribution by 2050, reaching 2,000 GW of global capacity and over 7,000 TWh. This achievement, driven primarily by the quest of clean electricity, could prevent annual emissions of up to 3 billion tonnes of CO2 from fossil-fuel plants. The bulk of this growth would come from large plants in emerging economies and developing countries. Hydroelectricity’s many advantages include reliability, proven technology, large storage capacity, and very low operating and maintenance costs. Hydropower is highly flexible, a precious asset for electricity network operators, especially given rapid expansion of variable generation from other renewable energy technologies such as wind power and photovoltaics. Many hydropower plants also provide flood control, irrigation, navigation and freshwater supply. The technology roadmap for Hydropower details action needed from policy makers to allow hydroelectric production to double, and addresses necessary conditions, including resolving environmental issues and gaining public acceptance.

  20. Hydropower and its development

    OpenAIRE

    Janusz Steller

    2013-01-01

    Even if the documented history of hydropower reaches back as far as 5000 years ago, it owes its rapid acceleration in growth to the industrial revolution at the beginning of the nineteenth century. The end of the twentieth century brought about new challenges associated, on the one hand, with a growing demand for ancillary grid services, and on the other with new requirements for mitigating the environmental impact. Hydropower technology expansion had come about in a manner aiming to at least...

  1. Enterprise Hydropower plants

    International Nuclear Information System (INIS)

    This brochure describes the Enterprise Hydropower plants of the joint stock company Slovenske elektrarne, a.s. (SE-VE). This Enterprise consists of 34 hydroelectric power plants with total installed electric power 2.399 GW and with mean annual production 4.786 TWh of electric power. Technical data in detail of SE-VE and plans for construction of new hydropower plants as well as influence of use of hydro-energetic potential on the environment are presented

  2. System analysis approach to verification of site characterization parameters

    International Nuclear Information System (INIS)

    Early in the transition of the Basalt Waste Isolation Project (BWIP) from a preliminary geologic investigation to a part of a major system acquisition program, the following project needs were recognized: (1) site-specific system functional requirements, i.e., the capabilities a deep geologic basalt system must provide to ensure long-term isolation of wastes, (2) complete list of design variables and site characteristics (information and data needs) that could affect system capabilities; and (3) relative importance, availability, and uncertainty of these information and data needs. The first project need was satisfied by a conventional functional analysis. The second was answered by a unique extension of that functional analysis. The results of these two efforts have been released in the BWIP System Functional Analysis (SFA) Document. The third need is presently under study. With the advent of a formalized issue resolution strategy (IRS) process as the basis for the BWIP site characterization program, a subset of the SFA information and data needs was used to verify (a) that no significant variable was omitted from consideration in the IRS process, (b) the necessity of IRS site characterization parameters, and (c) the sufficiency of each issue-related set of IRS parameters to address that issue. An example of a SFA branch is discussed

  3. Geochemical Parameters Required from the SKB Site Characterisation Programme

    International Nuclear Information System (INIS)

    SKB has described its approach to site characterisation in a number of Technical Reports. One of the scientific topics in which specific information requirements and priorities are set out is geochemistry. This report for SKI examines critically whether the geochemical parameters identified in the SKB programme documents will be adequate for safety and regulatory requirements. It also examines some of the details of parameter requirements and interpretation tools that will be necessary to convert site investigation data into knowledge about chemical conditions and groundwater movements. The SKB strategy for geochemical data focuses on a small number of 'suitability indicators', primarily dissolved oxygen, pH and salinity. Their parameter requirements aim to assess those primary characteristics, as well as to acquire a wider range of data that will support those assessments and provide a broader understanding of candidate areas. An initial observation in this review that, though it is a primary suitability indicator, dissolved oxygen apparently will not be measured and instead will be inferred from other redox indicators. This raises a number of issues about sampling and monitoring measures, analytical data reliability and sensitivity, and the degree of confidence in geochemical understanding. A geochemical programme involves reconnaissance by desk study and acquisition of new data at levels of details that are appropriate to the stage of site investigations. As early as possible, a conceptual model of a candidate area should help to define the objectives of geochemical measurements on both rock and groundwater samples. It is recommended that parameters requirements should be defined and considered not only in terms of isolated measurements but more in terms of addressing broader objectives that relate to safety and also to geoscientific understanding. The safety priorities remain (e.g. dissolved oxygen) but will then be supported by an understanding of processes. This approach will also help to clarify the rationale for taking samples and making particular measurements and will indicate the tolerances in terms of data error and interpretative uncertainty. Geochemical parameters that are required from rock, mineral, water and dissolved gas samples are listed and discussed along with the reasons for requiring the data. Measures that need to be taken to optimise the quality and representativeness of samples are also discussed because these are paramount in determining the ultimate reliability of data. Finally, interpretative tools that are used to convert raw data into knowledge and confidence in understanding of processes have been briefly considered. These may have additional 'supporting' data requirements and also need to be critically reviewed for their applicability and for the robustness of the conceptual models on which they are based

  4. Geochemical Parameters Required from the SKB Site Characterisation Programme

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2002-01-01

    SKB has described its approach to site characterisation in a number of Technical Reports. One of the scientific topics in which specific information requirements and priorities are set out is geochemistry. This report for SKI examines critically whether the geochemical parameters identified in the SKB programme documents will be adequate for safety and regulatory requirements. It also examines some of the details of parameter requirements and interpretation tools that will be necessary to convert site investigation data into knowledge about chemical conditions and groundwater movements. The SKB strategy for geochemical data focuses on a small number of 'suitability indicators', primarily dissolved oxygen, pH and salinity. Their parameter requirements aim to assess those primary characteristics, as well as to acquire a wider range of data that will support those assessments and provide a broader understanding of candidate areas. An initial observation in this review that, though it is a primary suitability indicator, dissolved oxygen apparently will not be measured and instead will be inferred from other redox indicators. This raises a number of issues about sampling and monitoring measures, analytical data reliability and sensitivity, and the degree of confidence in geochemical understanding. A geochemical programme involves reconnaissance by desk study and acquisition of new data at levels of details that are appropriate to the stage of site investigations. As early as possible, a conceptual model of a candidate area should help to define the objectives of geochemical measurements on both rock and groundwater samples. It is recommended that parameters requirements should be defined and considered not only in terms of isolated measurements but more in terms of addressing broader objectives that relate to safety and also to geoscientific understanding. The safety priorities remain (e.g. dissolved oxygen) but will then be supported by an understanding of processes. This approach will also help to clarify the rationale for taking samples and making particular measurements and will indicate the tolerances in terms of data error and interpretative uncertainty. Geochemical parameters that are required from rock, mineral, water and dissolved gas samples are listed and discussed along with the reasons for requiring the data. Measures that need to be taken to optimise the quality and representativeness of samples are also discussed because these are paramount in determining the ultimate reliability of data. Finally, interpretative tools that are used to convert raw data into knowledge and confidence in understanding of processes have been briefly considered. These may have additional 'supporting' data requirements and also need to be critically reviewed for their applicability and for the robustness of the conceptual models on which they are based.

  5. The potential for small scale hydropower development in the US

    International Nuclear Information System (INIS)

    In an earlier paper (), the potential for small scale hydropower to contribute to US renewable energy supplies, as well as reduce current carbon emissions, was investigated. It was discovered that thousands of viable sites capable of producing significant amounts of hydroelectric power were available throughout the United States. The primary objective of this paper is to determine the cost-effectiveness of developing these small scale hydropower sites. Just because a site has the necessary topographical features to allow small scale hydropower development, does not mean that it should be pursued from a cost-benefit perspective, even if it is a renewable energy resource with minimal effects on the environment. This analysis finds that while the average cost of developing small scale hydropower is relatively high, there still remain hundreds of sites on the low end of the cost scale that are cost-effective to develop right now.

  6. Seismic activity parameters of the Finnish potential repository sites

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J. [Fortum Engineering Oy, Vantaa (Finland)

    2000-10-01

    Posiva Oy has started a project for estimating the possible earthquake induced rock movements on the deposition holes containing canisters of spent nuclear fuel. These estimates will be made for the four investigation sites, Romuvaara, Kivetty, Olkiluoto and Haestholmen. This study deals with the current and future seismicity associated with the above mentioned sites. Seismic belts that participate the seismic behaviour of the studied sites have been identified and the magnitude-frequency distributions of these belts have been estimated. The seismic activity parameters of the sites have been deduced from the characteristics of the seismic belts in order to forecast the seismicity during the next 100,000 years. The report discusses the possible earthquakes induced by future glaciation. The seismic interpretation seems to indicate that the previous postglacial faults in Finnish Lapland have been generated in compressional environment. The orientation of the rather uniform compression has been NW-SE, which coincide with the current stress field. It seems that, although the impact of postglacial crustal rebound must have been significant, the impact of plate tectonics has been dominant. A major assumption of this study has been that future seismicity will generally resemble the current seismicity. However, when the postglacial seismicity is concerned, the magnitude-frequency distribution is likely different and the expected maximum magnitude will be higher. Maximum magnitudes of future postglacial earthquakes have been approximated by strain release examinations. Seismicity has been examined within the framework of the lineament maps, in order to associate the future significant earthquakes with active fault zones in the vicinity of the potential repository sites. (orig.)

  7. Seismic activity parameters of the Finnish potential repository sites

    International Nuclear Information System (INIS)

    Posiva Oy has started a project for estimating the possible earthquake induced rock movements on the deposition holes containing canisters of spent nuclear fuel. These estimates will be made for the four investigation sites, Romuvaara, Kivetty, Olkiluoto and Haestholmen. This study deals with the current and future seismicity associated with the above mentioned sites. Seismic belts that participate the seismic behaviour of the studied sites have been identified and the magnitude-frequency distributions of these belts have been estimated. The seismic activity parameters of the sites have been deduced from the characteristics of the seismic belts in order to forecast the seismicity during the next 100,000 years. The report discusses the possible earthquakes induced by future glaciation. The seismic interpretation seems to indicate that the previous postglacial faults in Finnish Lapland have been generated in compressional environment. The orientation of the rather uniform compression has been NW-SE, which coincide with the current stress field. It seems that, although the impact of postglacial crustal rebound must have been significant, the impact of plate tectonics has been dominant. A major assumption of this study has been that future seismicity will generally resemble the current seismicity. However, when the postglacial seismicity is concerned, the magnitude-frequency distribution is likely different and the expected maximum magnitude will be higher. Maximum magnitudes of future postglacial earthquakes have been approximated by strain release examinations. Seismicity has been examined within the framework of the lineament maps, in order to associate the future significant earthquakes with active fault zones in the vicinity of the potential repository sites. (orig.)

  8. Development potential for hydropower

    International Nuclear Information System (INIS)

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the potential for the development of hydropower in Switzerland. The report updates the energy perspectives made ten years earlier. An overview of Swiss electricity production and consumption is presented and the proportion provided by hydropower is noted. Figures on installed capacity and import/export quantities are presented and discussed. Technological developments and the economical frameworks involved are discussed, as are regulatory measures that can be taken. Theoretical and technically realisable potentials for increased use of hydropower are discussed. The methods used to do this are examined. Strategies and measures to be taken are listed and discussed. An appendix includes data sheets on power plant modelling, including examples

  9. Assessing hydropower resources

    International Nuclear Information System (INIS)

    This article addresses assessing hydroelectric power resources using a standardized computer program. The computer program was developed in response to a need to identify undeveloped potential hydropower resources as part of the development of a National Energy Strategy. The topics discussed in the article include the resource assessment team established by US Department of Energy, and model development and testing

  10. Hydropower and its development

    Directory of Open Access Journals (Sweden)

    Janusz Steller

    2013-09-01

    Full Text Available Even if the documented history of hydropower reaches back as far as 5000 years ago, it owes its rapid acceleration in growth to the industrial revolution at the beginning of the nineteenth century. The end of the twentieth century brought about new challenges associated, on the one hand, with a growing demand for ancillary grid services, and on the other with new requirements for mitigating the environmental impact. Hydropower technology expansion had come about in a manner aiming to at least partially exploit the mechanical energy of sea and ocean waters. This study points out to the most important trends in and barriers to hydropower development, with particular focus on the situation in Poland. This author sees the main threats to Polish hydropower development in how it is perceived solely through the prism of the generation of a particular volume of green energy, and a total underestimation of the quality of electricity supply and the numerous non-energy benefits resulting from hydroelectric power plant operation.

  11. Sustainability Analysis of Hydropower in Nepal

    OpenAIRE

    Adhikari, Dwarika

    2012-01-01

    The purpose of this thesis project was to analyze the sustainability of the hydropower in Nepal. As, Nepal is the second richest country in terms of the water resources, this thesis aims to provide a clear picture of the overall sustainability of the hydro power by measuring social, economical, political and environmental factors with worldwide accepted parameters. The analysis of the parameters was made and then expressed in a quantitative form to make it easy for anyone to understand the th...

  12. Variability and Uncertainties of Key Hydrochemical Parameters for SKB Sites

    International Nuclear Information System (INIS)

    The work described in this report is a development of SKI's capability for the review and evaluation of data that will constitute part of SKB's case for selection of a suitable site and application to construct a geological repository for spent nuclear fuel. The aim has been to integrate a number of different approaches to interpreting and evaluating hydrochemical data, especially with respect to the parameters that matter most in assessing the suitability of a site and in understanding the geochemistry and groundwater conditions at a site. It has been focused on taking an independent view of overall uncertainties in reported data, taking account of analytical, sampling and other random and systematic sources of error. This evaluation was carried out initially with a compilation and general inspection of data from the Simpevarp, Forsmark and Laxemar sites plus data from older 'historical' boreholes in the Aespoe area. That was followed by a more specific interpretation by means of geochemical calculations which test the robustness of certain parameters, namely pH and redox/Eh. Geochemical model calculations have been carried out with widely available computer software. Data sources and their handling were also considered, especially access to SKB's SICADA database. In preparation for the use of geochemical modelling programs and to establish comparability of model results with those reported by SKB, the underlying thermodynamic databases were compared with each other and with other generally accepted databases. Comparisons of log K data for selected solid phases and solution complexes from the different thermodynamic databases were made. In general, there is a large degree of comparability between the databases, but there are some significant, and in a few cases large, differences. The present situation is however adequate for present purposes. The interpretation of redox equilibria is dependent on identifying the relevant solid phases and being able to characterise them thermodynamically. Geochemical modelling with the MEDUSA program and the HYDRA thermodynamic database was used to construct a set of Eh/pH diagrams for the iron and sulphur system in Forsmark groundwaters. Geochemical modelling with the PHREEQCI program was used for two purposes connected with uncertainties in key hydrochemical parameters: (i) to adjust pH to compensate for CO2 outgassing on the basis of an assumption that in situ groundwater should be at equilibrium with calcite, and (ii) to evaluate the hypothetical Eh on the basis of assumed control by Fe3+/Fe2+, Fe(OH)3/Fe2+ and SO4 2-/HS- redox couples so as to assess evidence for control and buffering of redox and for reactivity of other redox sensitive parameters. These calculations were carried out with reported groundwater data from Forsmark and Simpevarp sites and also from the Aespoe HRL. It is emphasised that the purpose of these calculations is to explore and illustrate the theoretical basis of geochemical interpretations, and to understand what are the assumptions, simplifications and uncertainties in interpreting hydrochemical data especially redox and pH. Deviations of ±10 mV are attributable to minor differences in thermodynamic data and other model inputs. Some of the conclusions from geochemical modelling are: (i) pH data, when adjusted to compensate for CO2 outgassing, are typically 0.2 to 0.4 pH units lower than the measured values, which suggests one aspect of uncertainty in measured pH values. (ii) Most measured pH/Eh points for Forsmark are located close to the HS-/SO4 2-line in an Eh/pH diagram, suggesting that the couple HS-/SO4 2-controls Eh at normal SO4 2-concentrations (above about 0.5 mM and around 5 mM). (iii) Eh calculated from the couples SO4 2-/HS- and Fe(OH)3/Fe2+ are rather close to the measured Eh in most cases. In contrast, the Eh calculated from the Fe3+/Fe2+ couple is oxidising, i.e. a positive Eh, which is the result of erroneous Fe3+ values obtained by subtraction of Fe2+ from Fetotal. (iv) There are high uncertainties in EhSO4/HS for Forsmark samples because HS-data are near or at the analytical detection limit. pH is an important factor in modelled Eh values and in the cumulative uncertainty about redox interpretation. A potential difference of about -50 mV could for example be explained by an error in pH of about 0.7. (iv) There are typical differences of -30 to -50 mV and +50 mV between measured Eh and EhSO4/HS and EhFe(OH)3/Fe2+ respectively. Therefore ±100 mV is a cautious assumption for the uncertainty on redox estimations from Eh measurements and from redox modelling. Some other general conclusions are: (i) Uncertainty in all hydrochemical data arises from the effect of mixing with flushing or other extraneous water. The perturbations of pH and redox by such mixing are nonlinear and not reliably estimated or predicted and are thus included in the overall uncertainty estimate. (ii) Salinity and the underlying measurements, namely electrical conductivity, TDS and chloride, are less prone to significant uncertainties than pH and redox. The estimated maximum overall uncertainty quoted by SKB is ±10% and this seems to be reasonable but is valid only for samples which comply with SKB's acceptability criterion of <1% flushing water (or perhaps up to <5%). (iii) Raw data for chloride and TDS could be corrected for dilution by flushing water, using the simple tracer data and/or results from the drilling impact study method; SKB have done this only for one set of water samples from Simpevarp. (iv) There have not been sufficient data reported so far for DOC, colloids, microbes and other parameters that relate to SKB's 'suitability criteria' or other important aspects of site geochemistry to make an independent assessment of the uncertainties

  13. Variability and Uncertainties of Key Hydrochemical Parameters for SKB Sites

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd, Willoughby on the Wolds, Loughborough (United Kingdom); Hermansson, Hans-Peter [Studsvik Nuclear AB, Nykoeping (Sweden)

    2006-12-15

    The work described in this report is a development of SKI's capability for the review and evaluation of data that will constitute part of SKB's case for selection of a suitable site and application to construct a geological repository for spent nuclear fuel. The aim has been to integrate a number of different approaches to interpreting and evaluating hydrochemical data, especially with respect to the parameters that matter most in assessing the suitability of a site and in understanding the geochemistry and groundwater conditions at a site. It has been focused on taking an independent view of overall uncertainties in reported data, taking account of analytical, sampling and other random and systematic sources of error. This evaluation was carried out initially with a compilation and general inspection of data from the Simpevarp, Forsmark and Laxemar sites plus data from older 'historical' boreholes in the Aespoe area. That was followed by a more specific interpretation by means of geochemical calculations which test the robustness of certain parameters, namely pH and redox/Eh. Geochemical model calculations have been carried out with widely available computer software. Data sources and their handling were also considered, especially access to SKB's SICADA database. In preparation for the use of geochemical modelling programs and to establish comparability of model results with those reported by SKB, the underlying thermodynamic databases were compared with each other and with other generally accepted databases. Comparisons of log K data for selected solid phases and solution complexes from the different thermodynamic databases were made. In general, there is a large degree of comparability between the databases, but there are some significant, and in a few cases large, differences. The present situation is however adequate for present purposes. The interpretation of redox equilibria is dependent on identifying the relevant solid phases and being able to characterise them thermodynamically. Geochemical modelling with the MEDUSA program and the HYDRA thermodynamic database was used to construct a set of Eh/pH diagrams for the iron and sulphur system in Forsmark groundwaters. Geochemical modelling with the PHREEQCI program was used for two purposes connected with uncertainties in key hydrochemical parameters: (i) to adjust pH to compensate for CO{sub 2} outgassing on the basis of an assumption that in situ groundwater should be at equilibrium with calcite, and (ii) to evaluate the hypothetical Eh on the basis of assumed control by Fe{sup 3+}/Fe{sup 2+}, Fe(OH)3/Fe{sup 2+} and SO{sub 4} 2-/HS- redox couples so as to assess evidence for control and buffering of redox and for reactivity of other redox sensitive parameters. These calculations were carried out with reported groundwater data from Forsmark and Simpevarp sites and also from the Aespoe HRL. It is emphasised that the purpose of these calculations is to explore and illustrate the theoretical basis of geochemical interpretations, and to understand what are the assumptions, simplifications and uncertainties in interpreting hydrochemical data especially redox and pH. Deviations of {+-}10 mV are attributable to minor differences in thermodynamic data and other model inputs. Some of the conclusions from geochemical modelling are: (i) pH data, when adjusted to compensate for CO{sub 2} outgassing, are typically 0.2 to 0.4 pH units lower than the measured values, which suggests one aspect of uncertainty in measured pH values. (ii) Most measured pH/Eh points for Forsmark are located close to the HS{sup -}/SO{sub 4} 2-line in an Eh/pH diagram, suggesting that the couple HS{sup -}/SO{sub 4} 2-controls Eh at normal SO{sub 4} 2-concentrations (above about 0.5 mM and around 5 mM). (iii) Eh calculated from the couples SO{sub 4} 2-/HS- and Fe(OH)3/Fe{sup 2+} are rather close to the measured Eh in most cases. In contrast, the Eh calculated from the Fe{sup 3+}/Fe{sup 2+} couple is oxidising, i.e. a positive Eh, which is the result of erroneous Fe{sup 3+} values

  14. Hydropower development priority using MCDM method

    International Nuclear Information System (INIS)

    Hydropower is recognized as a renewable and clean energy sources and its potential should be realized in an environmentally sustainable and socially equitable manner. Traditionally, the decision criteria when analyzing hydropower projects, have been mostly a technical and economical analysis which focused on the production of electricity. However, environmental awareness and sensitivity to locally affected people should also be considered. Multi-criteria decision analysis has been applied to study the potential to develop hydropower projects with electric power greater than 100 kW in the Ping River Basin, Thailand, and to determine the advantages and disadvantages of the projects in five main criteria: electricity generation, engineering and economics, socio-economics, environment, and stakeholder involvement. There are 64 potential sites in the study area. Criteria weights have been discussed and assigned by expert groups for each main criteria and subcriteria. As a consequence of weight assignment, the environmental aspect is the most important aspect in the view of the experts. Two scenarios using expert weight and fair weight have been studied to determine the priority for development of each project. This study has been done to assist policy making for hydropower development in the Ping River Basin.

  15. ENVIRONMENTAL PROTECTION IMPROVEMENT POSSIBILITIES FOR SMALL HYDROPOWER PLANT PROJECTS

    OpenAIRE

    Theodor Ghind?; Theodora Ardeleanu

    2012-01-01

    The existing solutions for small hydropower plants were consideredconvenient from the technical point of view over a long period, while general environmental concerns of society increased in all directions during the last decades.This paper refers to how to include environmental protection measures during the selection of the sites for a small hydropower plant and its water intake, during the preparation of the project, and then during operation. Investments for modernization of old small hyd...

  16. Environmental impact of hydropower systems

    International Nuclear Information System (INIS)

    The installed hydropower potential of Romania is evaluated to 15,700 MW and 42 billion MWh/year power generation. Only 39% of this potential are currently being utilized. In this note, the impact of Somes-Tarnita and Mariselu-Cluj hydropower systems on the environment is presented. Also, the socio-economic effects on the local communities are considered. These two hydropower systems supply a total electric power of 470 GWh/year

  17. A dynamical model of Sayano-Shushenskaya hydropower plant: stability, oscillations, and accident

    OpenAIRE

    Leonov, G. A.; Kuznetsov, N. V.; Solovyeva, E. P.

    2015-01-01

    This work is devoted to the construction and study of a mathematical model of hydropower unit, consisting of synchronous generator, hydraulic turbine, and speed governor. It is motivated by the accident happened on the Sayano-Shushenskaya hydropower plant in 2009 year. Parameters of the Sayano-Shushenskaya hydropower plant were used for modeling the system. Oscillations in zones, which were not recommended for operation, were found. The obtained results are consistent with the full-scale test...

  18. SITE SPECIFIC REFERENCE PERSON PARAMETERS AND DERIVED CONCENTRATION STANDARDS FOR THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.

    2013-03-14

    The purpose of this report is twofold. The first is to develop a set of behavioral parameters for a reference person specific for the Savannah River Site (SRS) such that the parameters can be used to determine dose to members of the public in compliance with Department of Energy (DOE) Order 458.1 “Radiation Protection of the Public and the Environment.” A reference person is a hypothetical, gender and age aggregation of human physical and physiological characteristics arrived at by international consensus for the purpose of standardizing radiation dose calculations. DOE O 458.1 states that compliance with the annual dose limit of 100 mrem (1 mSv) to a member of the public may be demonstrated by calculating the dose to the maximally exposed individual (MEI) or to a representative person. Historically, for dose compliance, SRS has used the MEI concept, which uses adult dose coefficients and adult male usage parameters. Beginning with the 2012 annual site environmental report, SRS will be using the representative person concept for dose compliance. The dose to a representative person will be based on 1) the SRS-specific reference person usage parameters at the 95th percentile of appropriate national or regional data, which are documented in this report, 2) the reference person (gender and age averaged) ingestion and inhalation dose coefficients provided in DOE Derived Concentration Technical Standard (DOE-STD-1196-2011), and 3) the external dose coefficients provided in the DC_PAK3 toolbox. The second purpose of this report is to develop SRS-specific derived concentration standards (DCSs) for all applicable food ingestion pathways, ground shine, and water submersion. The DCS is the concentration of a particular radionuclide in water, in air, or on the ground that results in a member of the public receiving 100 mrem (1 mSv) effective dose following continuous exposure for one year. In DOE-STD-1196-2011, DCSs were developed for the ingestion of water, inhalation of air and submersion in air pathways, only. These DCSs are required by DOE O 458.1 to be used at all DOE sites in the design and conduct of radiological environmental protection programs. In this report, DCSs for the following additional pathways were considered and documented: ingestion of meat, dairy, grains, produce (fruits and vegetables), seafood, submersion in water and ground shine. These additional DCSs were developed using the same methods as in DOE-STD-1196-2011 and will be used at SRS, where appropriate, as screening and reference values.

  19. Early Site Permit Demonstration Program, plant parameters envelopes: Comparison with ranges of values for four hypothetical sites. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The purpose of this volume is to report the results of the comparison of the ALWR plan parameters envelope with values of site characteristics developed for our hypothetical sites that generally represent conditions encountered within the United States. This effort is not intended to identify or address the suitability of any existing site, site area, or region in the United States. Also included in this volume is Appendix F, SERCH Summaries Regarding Siting.

  20. Early Site Permit Demonstration Program, plant parameters envelopes: Comparison with ranges of values for four hypothetical sites

    International Nuclear Information System (INIS)

    The purpose of this volume is to report the results of the comparison of the ALWR plan parameters envelope with values of site characteristics developed for our hypothetical sites that generally represent conditions encountered within the United States. This effort is not intended to identify or address the suitability of any existing site, site area, or region in the United States. Also included in this volume is Appendix F, SERCH Summaries Regarding Siting

  1. Assessing Hydropower in the West

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Megan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uria Martinez, Rocio [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    On April 27, the U.S. Department of Energy (DOE) released the 2014 Hydropower Market Report, which provides a quantitative baseline on the distribution, capabilities, and status of hydropower in the United States. Although the report shows many interesting trends and figures, this article focuses on those related to the western region.

  2. The Grossmatt hydro-power station

    International Nuclear Information System (INIS)

    This final report for the Swiss Federal Office of Energy (SFOE) presents the project for a small hydropower station on the Birs river in north-western Switzerland. The report reviews the history of the project, in which a new 385 kW-hydro-power station at the site of an earlier installation is foreseen. Details are presented on the investigations made and on the co-ordination with the owners of the hydro-power station situated up-river, the local power utility and the local authorities. Also, the requirements placed on the project by the fishing authorities are quoted and the solution foreseen is described. Also discussed are the requirements placed on the project by legislation on environmental impact and flood protection. Figures on electrical energy production and building costs are presented

  3. Gis-based procedures for hydropower potential spotting

    Energy Technology Data Exchange (ETDEWEB)

    Larentis, Dante G.; Collischonn, Walter; Tucci, Carlos E.M. [Instituto de Pesquisas Hidraulicas da UFRGS, Av. Bento Goncalves, 9500, CEP 91501-970, Caixa Postal 15029, Porto Alegre, RS (Brazil); Olivera, Francisco (Texas A and M University, Zachry Department of Civil Engineering 3136 TAMU, College Station, TX 77843-3136, US)

    2010-10-15

    The increasing demand for energy, especially from renewable and sustainable sources, spurs the development of small hydropower plants and encourages investment in new survey studies. Preliminary hydropower survey studies usually carry huge uncertainties about the technical, economic and environmental feasibility of the undeveloped potential. This paper presents a methodology for large-scale survey of hydropower potential sites to be applied in the inception phase of hydroelectric development planning. The sequence of procedures to identify hydropower sites is based on remote sensing and regional streamflow data and was automated within a GIS-based computational program: Hydrospot. The program allows spotting more potential sites along the drainage network than it would be possible in a traditional survey study, providing different types of dam-powerhouse layouts and two types (operating modes) of projects: run-of-the-river and storage projects. Preliminary results from its applications in a hydropower-developed basin in Brazil have shown Hydrospot's limitations and potentialities in giving support to the mid-to-long-term planning of the electricity sector. (author)

  4. Hydraulic air pumps for low-head hydropower

    OpenAIRE

    Howey, DA; Pullen, KR

    2009-01-01

    Hydropower is a proven renewable energy resource and future expansion potential exists in smaller-scale, low-head sites. A novel approach to low-head hydropower at run-of-river and tidal estuary sites is to include an intermediate air transmission stage. Water is made to flow through a siphon, rather than a conventional water turbine, and at the top of the siphon the pressure is sub-atmospheric and air is entrained into the water. The siphon forms a novel, hydraulically powered vacuum pump or...

  5. Probabilistic evaluation of seismic design parameters for NPP sites

    International Nuclear Information System (INIS)

    This paper presents a methodology of probabilistic evaluation of peak ground Acceleration (PGA) and evaluation of Uniform Hazard Response Spectra (UHRS) for a Nuclear Power Plant (NPP). A UHRS is a response spectrum having the same mean recurrence interval (MRI), or equivalently, the same probability of exceedence (P), at all frequencies, in a specified span of time. The analysis considers linear and point sources of earthquakes. Numerical results have been presented. It is also shown that the MRI associated with the traditional design response spectra are not the same at all frequencies. The paper examines the issue of the ratio of PGA in OBE to that in SSE from a probabilistic point of view and its effect on design. This paper presents a case study of two NPP sites in India. It is seen that the ratio of the values of PGA for OBE and SSE is highly site-specific. The paper presents a simple case study to determine the limiting value of the ratio of the PGA under OBE to that under SSE for which OBE rather than SSE would govern the design for the case under consideration. (author)

  6. Parameter values for the Heysham site for use in the CODAR2 program

    International Nuclear Information System (INIS)

    Details are given of parameter values relevant to the Heysham site for the calculation of individual and collective radiation exposure arising from routine discharges of liquid effluent to the sea. These parameters are to be used in the CODAR2 computer program, and the approach taken in their specification is the same as that employed previously for the Sizewell site. (author)

  7. Hydropower potential of the Vistula

    OpenAIRE

    J?drzej Kosi?ski; Wac?aw Zdulski

    2013-01-01

    The present article discusses hydropower potential of the Vistula River in view of the formal conditions for power generation in Poland. Having compared different sources, it is shown that the Vistula hydropower infrastructure and the social/economic/environmental benefits thereof and public safety, ought to be given priority in government operations. Their neglect not only violates the Water Law provisions but also runs contrary to the national interest.

  8. Electricity market liberalisation endangers hydropower

    International Nuclear Information System (INIS)

    The article describes the argumentation of the Governmental Conference of the Swiss Mountain Cantons concerning the effects of future electricity market liberalisation on the inland hydropower business. Possible effects such as the postponement of investments in the maintenance and renewal of hydropower plant or merciless predatory competition are listed. Also, problems for the owners that may result from the liberalisation such as being burdened with investments that can no longer be amortised are discussed and possible solutions are mentioned

  9. Hydropower plants: pride and prejudice

    OpenAIRE

    Wüthrich, Davide; Zordan, Jessica; Baehler, Mélanie; Moser, Gaudenz; Pasquier, Romain; Stylo, Malgorzata

    2015-01-01

    The development of alternative energy solutions to meet the increasing energy demand requires the expansion of the production network. In this context hydropower plants (HPPs) represent a reliable renewable energy source [3] and the possibility of integrating a pumping storage system makes HPPs an excellent way to stock energy. Besides energy generation, hydropower plants present numerous benefits, including flood control and water supply, leisure and storage of electricity [7]. Nevertheless ...

  10. The diversity of hydropower projects

    Energy Technology Data Exchange (ETDEWEB)

    Egre, Dominique [Dominique Egre Consultants Inc., Montreal, PQ (Canada); Milewski, Joseph C. [Inter-American Development Bank, Washington, DC (United States)

    2002-11-01

    Hydropower is based on a simple process, taking advantage of the kinetic energy freed by falling water. In practice, this process is applied in many different ways depending on the electrical services sought and the specific site conditions. Accordingly, there is a wide variety of hydroelectric projects, each providing different types of services and generating environmental and social impacts of different nature and magnitude. This article illustrates the necessity to evaluate each hydroelectric project in relation to the services it provides and to compare electricity supply projects on the basis of equivalent services provided to society. The impoundment and presence of a reservoir stand out as the most significant sources of impacts. However, a reservoir also provides the highest level of electricity supply services: it is the most efficient means of storing large amounts of energy and a hydroelectric plant has the capacity of releasing this energy in quantities that can be adjusted instantly to electricity demand. Furthermore, a reservoir allows for many other uses besides energy storage such as the cost-effective development of run-of-river plants downstream with little environmental impacts. (Author)

  11. World Small Hydropower Development Report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Heng; Esser, Lara (ICSGP (China)); Masera, Diego (UNIDO, Vienna (Austria))

    2013-07-01

    Currently, small hydropower plants with a capacity of 10 MW, exist in 148 countries or territories worldwide. Four other countries have been identified with resource potential. This report aims to identify the development status and resource potential of small hydro in various countries, territories and regions throughout the world. Working with experts at the ground level to compile and share existing information, experiences and challenges, one comprehensive report was created. Decision-makers, stakeholders and potential investors clearly need this comprehensive information to more effectively promote small hydropower as a renewable and rural energy source for sustainable development and to overcome the existing development barriers. The findings of this report show that small hydropower potential globally is approximated at almost 173 GW. The figure is arrived by totaling data from a wide range of sources with potential compromise of data integrity to varying degrees. For example, research data on economically feasible potential were more readily available in developed countries than those in the least developed or developing countries. More than half of the world's known hydropower potential is located in Asia, around one third can be found in Europe and the Americas. It is possible in the future that more small hydropower potential might be identified both on the African and American continents. The installed small hydropower capacity (up to 10 MW) is estimated to be 75 GW in 2011/2012. The report provides detailed data for each country/region, including recommendations on the national, regional and international level.

  12. An optimal hydropower contract load determination method considering both human and riverine ecosystem needs

    Science.gov (United States)

    Yin, Xin'an; Yang, Zhifeng; Liu, Cailing; Zhao, Yanwei

    2015-09-01

    In this research, a new method is developed to determine the optimal contract load for a hydropower reservoir, which is achieved by incorporating environmental flows into the determination process to increase hydropower revenues, while mitigating the negative impacts of hydropower generation on riverine ecosystems. In this method, the degree of natural flow regime alteration is adopted as a constraint of hydropower generation to protect riverine ecosystems, and the maximization of mean annual revenue is set as the optimization objective. The contract load in each month and the associated reservoir operating parameters were simultaneously optimized by a genetic algorithm. The proposed method was applied to China's Wangkuai Reservoir to test its effectiveness. The new method offers two advantages over traditional studies. First, it takes into account both the economic benefits and the ecological needs of riverine systems, rather than only the economic benefits, as in previous methods. Second, although many measures have been established to mitigate the negative ecological impacts of hydropower generation, few have been applied to the hydropower planning stage. Thus, since the contract load is an important planning parameter for hydropower generation, influencing both economic benefits and riverine ecosystem protection, this new method could provide guidelines for the establishment of river protection measures at the hydropower planning stage.

  13. Early Site Permit Demonstration Program: Plant parameters envelope report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry`s initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants.

  14. Small Hydropower - The comeback of small hydropower stations

    International Nuclear Information System (INIS)

    This issue of the 'Erneuerbare Energien' (renewable energies) magazine published by the Swiss Solar Energy Society takes a look at small hydropower projects in Switzerland. In a number of interviews and articles, various topics concerning small hydropower are dealt with. First of all, an interview with Bruno Guggisberg, previously responsible for small hydro at the Swiss Federal Office of Energy, examines the potential of small hydro and the various political, technical and economic influences on such projects. Further articles provide an overview of the various types of small hydro schemes, including power generation using height differences in drinking-water and wastewater installations. As far as the components of small hydro schemes are concerned, various types of turbines and further system components that are needed are examined. A further article takes a look at the small hydro market and the market players involved. Ecological aspects and research activities are discussed in further articles. In a second interview with Martin Boelli, presently responsible for small hydropower at the Swiss Federal Office of Energy, the unused potential for the use of hydropower in Switzerland is discussed. Examples of small-scale hydro schemes are examined and the support offered by the Small Hydropower Program is discussed. Finally the question is asked, if the small hydro market in Switzerland is overheated as a result of promotion schemes such as cost-covering remuneration for electricity from renewable energy sources.

  15. Site-specific parameter values for the Nuclear Regulatory Commission's food pathway dose model

    International Nuclear Information System (INIS)

    Routine operations at the Savannah River Site (SRS) in Western South Carolina result in radionuclide releases to the atmosphere and to the Savannah River. The resulting radiation doses to the off-site maximum individual and the off-site population within 80 km of the SRS are estimated on a yearly basis. These estimates are currently generated using dose models prescribed for the commercial nuclear power industry by the Nuclear Regulatory Commission (NRC). The NRC provides default values for dose-model parameters for facilities without resources to develop site-specific values. A survey of land- and water-use characteristics for the Savannah River area has been conducted to determine site-specific values for water recreation, consumption, and agricultural parameters used in the NRC Regulatory Guide 1.109 (1977) dosimetric models. These site parameters include local characteristics of meat, milk, and vegetable production; recreational and commercial activities on the Savannah River; and meat, milk, vegetable, and seafood consumption rates. This paper describes how parameter data were obtained at the Savannah River Site and the impacts of such data on off-site dose. Dose estimates using site-specific parameter values are compared to estimates using the NRC default values

  16. Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. Section 108 of Public Law 95-604 states that the US Department of Energy (DOE) shall ``select and perform remedial actions at the designated processing sites and disposal sites in accordance with the general standards`` prescribed by the EPA. Regulations governing the required remedial action at inactive uranium processing sites were promulgated by the EPA in 1983 and are contained in 40 CFR Part 192 (1993), Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings. This document describes the radiological and physical parameters for the remedial action of the soil.

  17. Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site

    International Nuclear Information System (INIS)

    The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. Section 108 of Public Law 95-604 states that the US Department of Energy (DOE) shall ''select and perform remedial actions at the designated processing sites and disposal sites in accordance with the general standards'' prescribed by the EPA. Regulations governing the required remedial action at inactive uranium processing sites were promulgated by the EPA in 1983 and are contained in 40 CFR Part 192 (1993), Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings. This document describes the radiological and physical parameters for the remedial action of the soil

  18. 78 FR 56749 - Site Characteristics and Site Parameters for Nuclear Power Plants

    Science.gov (United States)

    2013-09-13

    ...any of the following methods: Federal Rulemaking...the Review of Safety Analysis Reports for Nuclear...current staff review methods and practices based...for Site Response and Soil Structure Interaction Analyses,''...

  19. Assessing Climate Change Impacts on Global Hydropower

    OpenAIRE

    Aanund Killingtveit; Byman Hamududu

    2012-01-01

    Currently, hydropower accounts for close to 16% of the world’s total power supply and is the world’s most dominant (86%) source of renewable electrical energy. The key resource for hydropower generation is runoff, which is dependent on precipitation. The future global climate is uncertain and thus poses some risk for the hydropower generation sector. The crucial question and challenge then is what will be the impact of climate change on global hydropower generation and what are the resulting ...

  20. Small Hydropower in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hadjerioua, Boualem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Kurt [Telluride Energy, Telluride, CO (United States)

    2015-09-01

    Small hydropower, defined in this report as hydropower with a generating capacity of up to 10 MW typically built using existing dams, pipelines, and canals has substantial opportunity for growth. Existing small hydropower comprises about 75% of the current US hydropower fleet in terms of number of plants. The economic feasibility of developing new small hydropower projects has substantially improved recently, making small hydropower the type of new hydropower development most likely to occur. In 2013, Congress unanimously approved changes to simplify federal permitting requirements for small hydropower, lowering costs and reducing the amount of time required to receive federal approvals. In 2014, Congress funded a new federal incentive payment program for hydropower, currently worth approximately 1.5 cents/kWh. Federal and state grant and loan programs for small hydropower are becoming available. Pending changes in federal climate policy could benefit all renewable energy sources, including small hydropower. Notwithstanding remaining barriers, development of new small hydropower is expected to accelerate in response to recent policy changes.

  1. Refurbishment of hydropower generation plants

    International Nuclear Information System (INIS)

    This article presents the factors taken into consideration and the methods used for the management of refurbishment work in the hydropower installations of the TUWAG - a Tyrolean hydropower company in Austria. The technical and financial advantages to be gained from refurbishment are discussed and the requirements placed on the structuring of refurbishment projects are described. Various factors such as plant operation and maintenance, increased returns through better efficiency and cost reduction through lower wear and tear and reduced risk of failure are discussed. Annexes to the article cover monitoring and measurement techniques, the simulation of mechanical and hydraulic conditions, profitability calculations and turbine management

  2. An empirical analysis of the hydropower portfolio in Pakistan

    International Nuclear Information System (INIS)

    The Indus Basin of Pakistan with 800 hydropower project sites and a feasible hydropower potential of 60 GW, 89% of which is undeveloped, is a complex system poised for large-scale changes in the future. Motivated by the need to understand future impacts of hydropower alternatives, this study conducted a multi-dimensional, empirical analysis of the full hydropower portfolio. The results show that the full portfolio spans multiple scales of capacity from mega (>1000 MW) to micro (<0.1 MW) projects with a skewed spatial distribution within the provinces, as well as among rivers and canals. Of the total feasible potential, 76% lies in two (out of six) administrative regions and 68% lies in two major rivers (out of more than 125 total channels). Once projects currently under implementation are commissioned, there would be a five-fold increase from a current installed capacity of 6720 MW to 36759 MW. It is recommended that the implementation and design decisions should carefully include spatial distribution and environmental considerations upfront. Furthermore, uncertainties in actual energy generation, and broader hydrological risks due to expected climate change effects should be included in the current planning of these systems that are to provide service over several decades into the future. - Highlights: ? Pakistan has a hydropower potential of 60 GW distributed across 800 projects. ? Under-development projects will realize 36.7 GW of this potential by 2030. ? Project locations are skewed towards some sub-basins and provinces. ? Project sizes are very diverse and have quite limited private sector ownership. ? Gaps in data prevent proper risk assessment for Pakistan's hydropower development.

  3. Hydropower and Sustainable Development: A Journey

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Kristin; Saili, Lau; Taylor, Richard; Abdel-Malek, Refaat

    2010-09-15

    Hydropower produces 16% of our electricity; it is one of the world's major renewable energy resources. It is playing an important role in enabling communities around the world to meet their power and water needs. The pace of hydropower growth has been rapid but sometimes with little guidance to ensure development is based on sustainability principles. Some of the most promising initiatives to fill the void, such as the Hydropower Sustainability Assessment Protocol, have been driven by the hydropower sector itself. Efforts focus on carrying forward this momentum to obtain a tool for hydropower sustainability agreed across sectors and stakeholders.

  4. A Holistic Framework for Environmental Flows Determination in Hydropower Contexts

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Bevelhimer, Mark S [ORNL

    2013-05-01

    Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a framework is that it can expedite the environmental flow process by 1) organizing data and applications to identify predictable relationships between flows and ecology, and 2) suggesting when and where tools should be used in the environmental flow process. In addition to regulatory procedures, a framework should also provide the coordination for a comprehensive research agenda to guide the science of environmental flows. This research program has further reaching benefits than just environmental flow determination by providing modeling applications, data, and geospatial layers to inform potential hydropower development. We address several objectives within this document that highlight the limitations of existing environmental flow paradigms and their applications to hydropower while presenting a new framework catered towards hydropower needs. Herein, we address the following objectives: 1) Provide a brief overview of the Natural Flow Regime paradigm and existing environmental flow frameworks that have been used to determine ecologically sensitive stream flows for hydropower operations. 2) Describe a new conceptual framework to aid in determining flows needed to meet ecological objectives with regard to hydropower operations. The framework is centralized around determining predictable relationships between flow and ecological responses. 3) Provide evidence of how efforts from ORNL, PNNL, and ANL have filled some of the gaps in this broader framework, and suggest how the framework can be used to set the stage for a research agenda for environmental flow.

  5. Balancing hydropower production and river bed incision in operating a run-of-river hydropower scheme along the River Po

    Science.gov (United States)

    Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2013-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local response surface are comparatively assessed. Preliminary results show that a range of potentially interesting trade-off policies exist able to better control river bed incision downstream without significantly decreasing hydropower production.

  6. Conventional Hydropower Technologies Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-07-01

    This factsheet gives a description of the U.S. Department of Energy Water Power Program's efforts to increase generating capacity and efficiency at existing hydroelectric facilities, add hydroelectric generating capacity to non-powered dams, and reduce the environmental effects of hydropower.

  7. Analysis of the primary control system of a hydropower plant in isolated model

    Scientific Electronic Library Online (English)

    Maria Regina Gomes, Zoby; Jurandir Itizo, Yanagihara.

    2009-03-01

    Full Text Available The aim of this work is to study the primary control system of a hydropower plant in isolated mode. The power plant is modeled by differential equations and results are compared to field data from an actual hydropower plant, presenting deviations lower than 1.0%. The study of primary control system [...] is conducted in order to define useful sets of parameters for controllers. Four controllers are studied: traditional, PI, PID and PI-PD. The performances are evaluated by stability criteria and a performance index. For the hydropower plant studied, the PI controller has the best performance.

  8. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eddlemon, Gerald K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2003-03-01

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementing dramatic changes in their approach to protecting the quality of the Nation’s waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in other

  9. Geographic and Operational Site Parameters List (GOSPL) for the 2004 Composite Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V.; Nichols, William E.; Kincaid, Charles T.

    2004-07-01

    This report briefly describes each of the key data fields, including the source(s) of data, and provides the resulting inputs to be used for the 2004 Composite Analysis. A master spreadsheet termed the Geographic and Operational Site Parameters List (GOSPL) was assembled to facilitate the generation of keyword input files containing general information on each waste site, its operational/disposal history, and its environmental settings (past, current, and future).

  10. Preliminary uncertainty and sensitivity analysis for basic transport parameters at the Horonobe Site, Hokkaido, Japan.

    Energy Technology Data Exchange (ETDEWEB)

    James, Scott Carlton; Zimmerman, Dean Anthony (Gram Incorporated, Albuquerque, NM)

    2003-10-01

    Incorporating results from a previously developed finite element model, an uncertainty and parameter sensitivity analysis was conducted using preliminary site-specific data from Horonobe, Japan (data available from five boreholes as of 2003). Latin Hypercube Sampling was used to draw random parameter values from the site-specific measured, or approximated, physicochemical uncertainty distributions. Using pathlengths and groundwater velocities extracted from the three-dimensional, finite element flow and particle tracking model, breakthrough curves for multiple realizations were calculated with the semi-analytical, one-dimensional, multirate transport code, STAMMT-L. A stepwise linear regression analysis using the 5, 50, and 95% breakthrough times as the dependent variables and LHS sampled site physicochemical parameters as the independent variables was used to perform a sensitivity analysis. Results indicate that the distribution coefficients and hydraulic conductivities are the parameters responsible for most of the variation among simulated breakthrough times. This suggests that researchers and data collectors at the Horonobe site should focus on accurately assessing these parameters and quantifying their uncertainty. Because the Horonobe Underground Research Laboratory is in an early phase of its development, this work should be considered as a first step toward an integration of uncertainty and sensitivity analyses with decision analysis.

  11. Field test of ultra-low head hydropower package based on marine thrusters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    The project includes the design, fabrication, assembly, installation, and field test of the first full-scale operating hydropower package (turbine, transmission, and generator) based on a design which incorporates a marine-thruster as the hydraulic prime mover. Included here are: the project overview; engineering design; ultra-low head hydropower package fabrication; component procurement, cost control, and scheduling; thruster hydraulic section installation; site modeling and resulting recommended modifications; testing; and baseline environmental conditions at Stone Drop. (MHR)

  12. Along-the-net reconstruction of hydropower potential with consideration of anthropic alterations

    OpenAIRE

    CLAPS Pierluigi; Ganora, Daniele; Masoero, Alessandro; Laio, Francesco

    2014-01-01

    Even in regions with mature hydropower development, requirements for stable renewable power sources suggest revision of plans of exploitation of water resources, while taking care of the environmental regulations. Mean Annual Flow (MAF) is a key parameter when trying to represent water availability for hydropower purposes. MAF is usually determined in ungauged basins by means of regional statistical analysis. For this study a regional estimation method consistent along-the-river network has b...

  13. MCDA or MCDM Based Selection of Transmission Line Conductor: Small Hydropower Project Planning and Development

    OpenAIRE

    Priyabrata Adhikary; Susmita Kundu

    2014-01-01

    Small hydropower projects are emerging as a solution for sustainable, green, environment friendly, long term and cost-effective source of renewable energy in India for the future. Selecting the appropriate small hydropower project and its parameters in which to invest is a critical task involving different factors and policies. Hence such decision-making can be viewed as a multiple criteria analysis problem with correlating criteria and alternatives. This task should take into...

  14. Assessment of parameters describing representativeness of air quality in-situ measurement sites

    Directory of Open Access Journals (Sweden)

    S. Henne

    2009-09-01

    Full Text Available The atmospheric layer closest to the ground is strongly influenced by variable surface fluxes (emissions, surface deposition and can therefore be very heterogeneous. In order to perform air quality measurements that are representative of a larger domain or a certain degree of pollution, observatories are placed away from population centres or within areas of specific population density. Sites are often categorised based on subjective criteria that are not uniformly applied within different administrative domains. A novel approach for the assessment of parameters reflecting site representativeness is presented here, taking emissions, deposition and transport towards 34 sites covering Western and Central Europe into account. These parameters are directly inter-comparable among the sites and can be used to select sites that are, on average, more or less suitable for data assimilation and comparison with satellite and model data. Advection towards these sites was simulated by backward Lagrangian Particle Dispersion Modelling (LPDM to determine the sites' annual catchment areas for the year 2005 and advection times of 12, 24 and 48 h. Only variations caused by emissions and transport during these periods were considered assuming that these dominate the short-term variability of most but especially short lived trace gases. The parameters of representativeness derived were compared between sites and a novel, uniform and observation-independent categorisation of the sites based on a clustering approach was established. Six groups of European background sites were identified ranging from very remote coastal to polluted rural sites. These six categories explained 50 to 80% of the inter-site variability of median mixing ratios and their standard deviation for NO2 and O3, while differences between group means of the longer lived trace gas CO were insignificant. The derived annual catchment areas strongly depended on the applied LPDM and input wind fields, the catchment settings and the year of analysis. Nevertheless, the parameters of representativeness showed considerably less variability than the catchment geometry, supporting the robustness of the derived station categorisation.

  15. Assessment of parameters describing representativeness of air quality in-situ measurement sites

    Directory of Open Access Journals (Sweden)

    S. Henne

    2010-04-01

    Full Text Available The atmospheric layer closest to the ground is strongly influenced by variable surface fluxes (emissions, surface deposition and can therefore be very heterogeneous. In order to perform air quality measurements that are representative of a larger domain or a certain degree of pollution, observatories are placed away from population centres or within areas of specific population density. Sites are often categorised based on subjective criteria that are not uniformly applied by the atmospheric community within different administrative domains yielding an inconsistent global air quality picture. A novel approach for the assessment of parameters reflecting site representativeness is presented here, taking emissions, deposition and transport towards 34 sites covering Western and Central Europe into account. These parameters are directly inter-comparable among the sites and can be used to select sites that are, on average, more or less suitable for data assimilation and comparison with satellite and model data. Advection towards these sites was simulated by backward Lagrangian Particle Dispersion Modelling (LPDM to determine the sites' average catchment areas for the year 2005 and advection times of 12, 24 and 48 h. Only variations caused by emissions and transport during these periods were considered assuming that these dominate the short-term variability of most but especially short lived trace gases. The derived parameters describing representativeness were compared between sites and a novel, uniform and observation-independent categorisation of the sites based on a clustering approach was established. Six groups of European background sites were identified ranging from generally remote to more polluted agglomeration sites. These six categories explained 50 to 80% of the inter-site variability of median mixing ratios and their standard deviation for NO2 and O3, while differences between group means of the longer-lived trace gas CO were insignificant. The derived annual catchment areas strongly depended on the applied LPDM and input wind fields, the catchment settings and the year of analysis. Nevertheless, the parameters describing representativeness showed considerably less variability than the catchment geometry, supporting the applicability of the derived station categorisation.

  16. A multi-scale spatial approach to address environmental effects of small hydropower development.

    Science.gov (United States)

    McManamay, Ryan A; Samu, Nicole; Kao, Shih-Chieh; Bevelhimer, Mark S; Hetrick, Shelaine C

    2015-01-01

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability. PMID:25223621

  17. A Multi-scale Spatial Approach to Address Environmental Effects of Small Hydropower Development

    Science.gov (United States)

    McManamay, Ryan A.; Samu, Nicole; Kao, Shih-Chieh; Bevelhimer, Mark S.; Hetrick, Shelaine C.

    2015-01-01

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

  18. Hydropower strategy for the Philippines

    International Nuclear Information System (INIS)

    The government-owned National Power Corporation (NPC) of the Philippines is in the early stages of a complete privatisation programme. The electric power sector is expected eventually to be structured around a company that will own the major transmission facilities and will serve as a broker of power and energy between generating companies and the existing distribution companies, Rural Electric Co-operations and other power users. NPC's non-transmission assets will probably be spun-off into various corporations including three generating companies, an engineering and services company and a company owning the Calivaya-Botocan-Kalayaan hydro complex. Plans for increased capacity include a real term increase in the hydropower contribution although it will decline as a percentage of the energy mix as coal and gas plants are developed. Details of the privatisation of specific hydropower projects in the Luzon, Visayas and Mindanao grids are described. (U.K.)

  19. Modelling and controlling hydropower plants

    CERN Document Server

    Munoz-Hernandez, German Ardul; Jones, Dewi Ieuan

    2013-01-01

    Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance.  Modelling and Controlling Hydropower Plants discusses practical and well-documented cases of modelling and controlling hydropower station modelling and control, focussing on a pumped storage scheme based in Dinorwig, North Wales.  Single-input-single-output and multiple-input-multiple-output models, which cover the linear and nonlinear characteristics of pump-storage hydroelectric power stations, are reviewed. The most important dynamic features are discussed, and the verification of these models by hardware in the loop simulation is described. To show how the performance of a pump-storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of the Dinorwig power plant. These include PID, fuzzy approximation, feed-forward and model-based predictive control with linear and hybrid prediction models. Mod...

  20. Jahn-Teller effects and hyperfine parameters of V4+ on tetragonally distorted tetrahedral sites

    International Nuclear Information System (INIS)

    The g values and hyperfine parameters of V4+ on tetragonal sites in various host lattices are analysed in terms of a theory which includes Jahn-Teller interactions. For garnet hosts Jahn-Teller effects are weak, unlike the case for SiO2 and synthetic zircon where Jahn-Teller quenching is significantly strong. (Auth.)

  1. Coastal flooding as a parameter in multi-criteria analysis for industrial site selection

    Science.gov (United States)

    Christina, C.; Memos, C.; Diakoulaki, D.

    2014-12-01

    Natural hazards can trigger major industrial accidents, which apart from affecting industrial installations may cause a series of accidents with serious impacts on human health and the environment far beyond the site boundary. Such accidents, also called Na-Tech (natural - technical) accidents, deserve particular attention since they can cause release of hazardous substances possibly resulting in severe environmental pollution, explosions and/or fires. There are different kinds of natural events or, in general terms, of natural causes of industrial accidents, such as landslides, hurricanes, high winds, tsunamis, lightning, cold/hot temperature, floods, heavy rains etc that have caused accidents. The scope of this paper is to examine the coastal flooding as a parameter in causing an industrial accident, such as the nuclear disaster in Fukushima, Japan, and the critical role of this parameter in industrial site selection. Land use planning is a complex procedure that requires multi-criteria decision analysis involving economic, environmental and social parameters. In this context the parameter of a natural hazard occurrence, such as coastal flooding, for industrial site selection should be set by the decision makers. In this paper it is evaluated the influence that has in the outcome of a multi-criteria decision analysis for industrial spatial planning the parameter of an accident risk triggered by coastal flooding. The latter is analyzed in the context of both sea-and-inland induced flooding.

  2. SITE-94. Discrete-feature modelling of the Aespoe Site: 3. Predictions of hydrogeological parameters for performance assessment

    International Nuclear Information System (INIS)

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Predicted parameters for the near field include fracture spacing, fracture aperture, and Darcy velocity at each of forty canister deposition holes. Parameters for the far field include discharge location, Darcy velocity, effective longitudinal dispersion coefficient and head gradient, flow porosity, and flow wetted surface, for each canister source that discharges to the biosphere. Results are presented in the form of statistical summaries for a total of 42 calculation cases, which treat a set of 25 model variants in various combinations. The variants for the SITE-94 Reference Case model address conceptual and parametric uncertainty related to the site-scale hydrogeologic model and its properties, the fracture network within the repository, effective semi regional boundary conditions for the model, and the disturbed-rock zone around the repository tunnels and shafts. Two calculation cases simulate hydrologic conditions that are predicted to occur during future glacial episodes. 30 refs

  3. SITE-94. Discrete-feature modelling of the Aespoe Site: 3. Predictions of hydrogeological parameters for performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J.E. [Golder Associates AB, Uppsala (Sweden)

    1996-12-01

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Predicted parameters for the near field include fracture spacing, fracture aperture, and Darcy velocity at each of forty canister deposition holes. Parameters for the far field include discharge location, Darcy velocity, effective longitudinal dispersion coefficient and head gradient, flow porosity, and flow wetted surface, for each canister source that discharges to the biosphere. Results are presented in the form of statistical summaries for a total of 42 calculation cases, which treat a set of 25 model variants in various combinations. The variants for the SITE-94 Reference Case model address conceptual and parametric uncertainty related to the site-scale hydrogeologic model and its properties, the fracture network within the repository, effective semi regional boundary conditions for the model, and the disturbed-rock zone around the repository tunnels and shafts. Two calculation cases simulate hydrologic conditions that are predicted to occur during future glacial episodes. 30 refs.

  4. Hydropower development in the Philippines

    International Nuclear Information System (INIS)

    The present policy on energy development is geared towards harnessing renewable and indigenous energy resource which can offer clean, abundant and efficient power supply for the country. a review of the current generation mix of the power system, especially the Luzon grid will establish a high dependency in imported fuel - oil and coal to power our generating plants. Thus, the policy of reducing dependence on imported fuel will depend largely on the success of tapping the alternative renewable and indigenous sources. The sustainable development era of the 90's brought fresh interest on the performance and commercial viability of indigenous and/or renewable sources of energy such as wind, solar, geothermal, natural gas and water power or hydropower. Among these alternative renewable sources, water or hydropower is the most readily available, and will produce clean domestic source of electricity - no carbon dioxide, sulfur dioxide, nitrous oxide or any other air emissions. The potential is available in most parts of the country that are mountainous and have high rainfall. In terms of production, hydropower leads as the most developed and more proven in terms of commercial viability. It is also more reliable, efficient and less expensive than geothermal, biomass, wind and solar energy, as will be shown later. (author)

  5. Pumped Storage and Potential Hydropower from Conduits

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-02-25

    Th is Congressional Report, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation. This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new pumped storage facilities to provide grid reliability benefits, and the range of conduit hydropower opportunities available in the United States.

  6. Mapping Site Response Parameters on Cal Poly Pomona Campus Using the Spectral Ratio Method

    Science.gov (United States)

    HO, K. Y. K.; Polet, J.

    2014-12-01

    Site characteristics are an important factor in earthquake hazard assessment. To better understand site response differences on a small scale, as well as the seismic hazard of the area, we develop site response parameter maps of Cal Poly Pomona campus. Cal Poly Pomona is located in southern California about 40 km east of Los Angeles, within 50 km of San Andreas Fault. The campus is situated on top of the San Jose Fault. With about twenty two thousand students on campus, it is important to know the site response in this area. To this end, we apply the Horizontal-to-Vertical (H/V) spectral ratio technique, which is an empirical method that can be used in an urban environment with no environmental impact. This well-established method is based on the computation of the ratio of vertical ambient noise ground motion over horizontal ambient noise ground motion as a function of frequency. By applying the spectral ratio method and the criteria from Site Effects Assessment Using Ambient Excitations (SESAME) guidelines, we can determine fundamental frequency and a minimum site amplification factor. We installed broadband seismometers throughout the Cal Poly Pomona campus, with an initial number of about 15 sites. The sites are approximately 50 to 150 meters apart and about two hours of waveforms were recorded at each site. We used the Geopsy software to make measurements of the peak frequency and the amplitude of the main peak from the spectral ratio. These two parameters have been determined to be estimates of fundamental frequency and a minimum site amplification factor, respectively. Based on the geological map from the U.S. Geological Survey (USGS) and our data collected from Cal Poly Pomona campus, our preliminary results suggest that the area of campus that is covered by alluvial fan material tends to have a single significant spectral peak with a fundamental frequency of ~1Hz and a minimum amplification factor of ~3.7. The minimum depth of the surface layer is about 56 meters, as determined from the peak frequency and an estimate of the local shear wave velocity. We will present two preliminary site response parameter maps: one for fundamental frequency and one for minimum site amplification factor.

  7. The blue water footprint of electricity from hydropower

    Directory of Open Access Journals (Sweden)

    M. M. Mekonnen

    2012-01-01

    Full Text Available Hydropower accounts for about 16% of the world's electricity supply. It has been debated whether hydroelectric generation is merely an in-stream water user or whether it also consumes water. In this paper we provide scientific support for the argument that hydroelectric generation is in most cases a significant water consumer. The study assesses the blue water footprint of hydroelectricity – the water evaporated from manmade reservoirs to produce electric energy – for 35 selected sites. The aggregated blue water footprint of the selected hydropower plants is 90 Gm3 yr?1, which is equivalent to 10% of the blue water footprint of global crop production in the year 2000. The total blue water footprint of hydroelectric generation in the world must be considerably larger if one considers the fact that this study covers only 8% of the global installed hydroelectric capacity. Hydroelectric generation is thus a significant water consumer. The average water footprint of the selected hydropower plants is 68 m3 GJ?1. Great differences in water footprint among hydropower plants exist, due to differences in climate in the places where the plants are situated, but more importantly as a result of large differences in the area flooded per unit of installed hydroelectric capacity. We recommend that water footprint assessment is added as a component in evaluations of newly proposed hydropower plants as well as in the evaluation of existing hydroelectric dams, so that the consequences of the water footprint of hydroelectric generation on downstream environmental flows and other water users can be evaluated.

  8. River and river-related drainage area parameters for site investigation program

    International Nuclear Information System (INIS)

    In this paper, a number of parameters of importance to a determination of the function of running waters as transport channels for material from the continents to the sea are presented. We have assumed that retention mechanisms of material in the river and in the riparian zone will be covered by special investigations but tried to create a platform for such investigations by quantification of the extension of different main habitats. The choice of parameters has been made so that also the nature conservation value of the river can be preliminary established, and includes a general description of the river type and the inherent ecosystem. The material links directly to that presented in a previous report concerning site investigation programmes for lakes. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The river catchment area and its major constituents; 3) The river morphometry; 4) The river ecosystem; 5) Human-induced damages to the river ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area, represent parameters that can be used to establish the rarity and representativity of the system, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the river morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of key habitats in the system. The fourth group, the ecosystem of the river, includes physical, chemical and biological parameters required for determination of the influence from the terrestrial ecosystem of the catchment area, nutrient status, distribution of different habitats, and presence of fish in the system. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and material in the system. The fifth group, finally, describes the degree of anthropogenic influence on the ecosystem and will in the context of site investigation programmes be used to judge eventual malfunctioning within the entire, or parts of, the ecosystem. Altogether, the selected parameters will create a solid basis for determination of the river type and its representativity of the region where it is located, and of the function and eventual malfunction of the inherent ecosystem

  9. River and river-related drainage area parameters for site investigation program

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, P.; Brunberg, A.K. [Uppsala Univ. (Sweden). Dept. of Limnology; Brydsten, L. [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Science

    2001-05-01

    In this paper, a number of parameters of importance to a determination of the function of running waters as transport channels for material from the continents to the sea are presented. We have assumed that retention mechanisms of material in the river and in the riparian zone will be covered by special investigations but tried to create a platform for such investigations by quantification of the extension of different main habitats. The choice of parameters has been made so that also the nature conservation value of the river can be preliminary established, and includes a general description of the river type and the inherent ecosystem. The material links directly to that presented in a previous report concerning site investigation programmes for lakes. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The river catchment area and its major constituents; 3) The river morphometry; 4) The river ecosystem; 5) Human-induced damages to the river ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area, represent parameters that can be used to establish the rarity and representativity of the system, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the river morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of key habitats in the system. The fourth group, the ecosystem of the river, includes physical, chemical and biological parameters required for determination of the influence from the terrestrial ecosystem of the catchment area, nutrient status, distribution of different habitats, and presence of fish in the system. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and material in the system. The fifth group, finally, describes the degree of anthropogenic influence on the ecosystem and will in the context of site investigation programmes be used to judge eventual malfunctioning within the entire, or parts of, the ecosystem. Altogether, the selected parameters will create a solid basis for determination of the river type and its representativity of the region where it is located, and of the function and eventual malfunction of the inherent ecosystem.

  10. Comparisons of CAP88PC version 2.0 default parameters to site specific inputs

    International Nuclear Information System (INIS)

    The effects of varying the input for the CAP88PC Version 2.0 program on the total effective dose equivalents (TEDEs) were determined for hypothetical releases from the Hot Fuel Examination Facility (HFEF) located at the Argonne National Laboratory site on the Idaho National Engineering and Environmental Laboratory (INEEL). Values for site specific meteorological conditions and agricultural production parameters were determined for the 80 km radius surrounding the HFEF. Four nuclides, 3H, 85Kr, 129I, and 137Cs (with its short lived progeny, 137mBa) were selected for this study; these are the radioactive materials most likely to be released from HFEF under normal or abnormal operating conditions. Use of site specific meteorological parameters of annual precipitation, average temperature, and the height of the inversion layer decreased the TEDE from 137Cs-137mBa up to 36%; reductions for other nuclides were less than 3%. Use of the site specific agricultural parameters reduced TEDE values between 7% and 49%, depending on the nuclide. Reductions are associated with decreased committed effective dose equivalents (CEDEs) from the ingestion pathway. This is not surprising since the HFEF is located well within the INEEL exclusion area, and the surrounding area closest to the release point is a high desert with limited agricultural diversity. Livestock and milk production are important in some counties at distances greater than 30 km from the HFEF

  11. Whithin-field temporal stability of some parameters in viticulture : potential toward a site specific management

    OpenAIRE

    Tisseyre, B.; Mazzoni, C; Fonta, H.

    2008-01-01

    The goal of this paper is to present the results of a study run over 7 consecutive years which aims at characterising the Temporal Stability of Within-Field Variability (TSWFV) for the most routinely measured vine parameters. In the context of precision viticulture TSWFV is of importance to know whether or not it is relevant to use the within-field variability of the year « n » to design a site-specific management strategy for the year « n+1 ». The experiment was based on 6 vine parameters me...

  12. Evaluation of water quality parameters and associated environmental impact at nuclear power plant sites

    International Nuclear Information System (INIS)

    The Nuclear Power Plants use a large quantity of water for the purpose of cooling the turbine condenser. The heated effluents are discharged to aquatic environment by means of once through cooling wherever large water bodies like seacoast or fresh water reservoir are available. The quality of water bodies are important for the growth and biodiversity of aquatic organisms. Several environmental factors like Temperature pH, Dissolved Oxygen have a bearing on the life cycle of aquatic organisms. The paper describes the evaluation of water quality parameters at the two typical sites one on the sea coast (Tarapur) and other at inland site Kaiga and discusses the environmental impact due to discharge to aquatic environment. It is found that the environmental impacts due to both heated effluents and radioactivity are insignificant. The water quality parameters are found to be well within the prescribed standards. (author)

  13. Lake and lake-related drainage area parameters for site investigation program

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, P.; Brunberg, A.K. [Uppsala Univ. (Sweden). Dept. of Limnology; Brydsten, L [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Science

    2000-09-01

    In this paper, a number of parameters of importance to a preliminary determination of the ecological function of lakes are presented. The choice of parameters have been made with respect to a model for the determination of the nature conservation values of lakes which is currently being developed by the authors of this report, but is also well suited for a general description of the lake type and the functioning of the inherent ecosystem. The parameters have been divided into five groups: (1) The location of the object relative important gradients in the surrounding nature; (2) The lake catchment area and its major constituents; (3) The lake morphometry; (4) The lake ecosystem; (5) Human-induced damages to the lake ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area represent parameters that can be used to establish the rarity and representativity of the lake, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the lake morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of different key habitats in the system. The fourth group, the ecosystem of the lake, includes physical, chemical and biological parameters required for determination of the stratification pattern, light climate, influence from the terrestrial ecosystem of the catchment area, trophic status, distribution of key habitats, and presence of fish and rare fauna and flora in the lake. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and material in the system. The fifth group, finally, describes the degree on anthropogenic influence on the ecosystem and will in the context of site investigation programmes be used to judge eventual malfunctioning within the entire, or parts of, the lake ecosystem. Altogether, the selected parameters will create a solid basis for determination of the lake type and its representativity of the region where it is located and of the function and eventual malfunction of the inherent ecosystem.

  14. Lake and lake-related drainage area parameters for site investigation program

    International Nuclear Information System (INIS)

    In this paper, a number of parameters of importance to a preliminary determination of the ecological function of lakes are presented. The choice of parameters have been made with respect to a model for the determination of the nature conservation values of lakes which is currently being developed by the authors of this report, but is also well suited for a general description of the lake type and the functioning of the inherent ecosystem. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The lake catchment area and its major constituents; 3) The lake morphometry; 4) The lake ecosystem; 5) Human-induced damages to the lake ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area represent parameters that can be used to establish the rarity and representativity of the lake, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the lake morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of different key habitats in the system. The fourth group, the ecosystem of the lake, includes physical, chemical and biological parameters required for determination of the stratification pattern, light climate, influence from the terrestrial ecosystem of the catchment area, trophic status, distribution of key habitats, and presence of fish and rare fauna and flora in the lake. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and material in the system. The fifth group, finally, describes the degree on anthropogenic influence on the ecosystem and will in the context of site investigation programmes be used to judge eventual malfunctioning within the entire, or parts of, the lake ecosystem. Altogether, the selected parameters will create a solid basis for determination of the lake type and its representativity of the region where it is located and of the function and eventual malfunction of the inherent ecosystem

  15. Inferring parameters of mutation, selection and demography from patterns of synonymous site evolution in Drosophila.

    OpenAIRE

    Mcvean, GA; Vieira, J

    2001-01-01

    Selection acting on codon usage can cause patterns of synonymous evolution to deviate considerably from those expected under neutrality. To investigate the quantitative relationship between parameters of mutation, selection, and demography, and patterns of synonymous site divergence, we have developed a novel combination of population genetic models and likelihood methods of phylogenetic sequence analysis. Comparing 50 orthologous gene pairs from Drosophila melanogaster and D. virilis and 27 ...

  16. European Extremely Large Telescope Site Characterization II: High angular resolution parameters

    CERN Document Server

    Ramió, Héctor Vázquez; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; Lambas, Diego García; Hach, Youssef; Lazrek, M; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-01-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the Design Study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Mac\\'on range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments and acquisition procedures were taken on each site. A Multiple Aperture Scintillation Sensor (MASS) and a Differential Image Motion Monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing and the isoplanatic angle were studied for each site, and the results are presented here. In order to e...

  17. Biquadratic coupling between two ordering parameters in 1:3 B-site ordered spinels

    International Nuclear Information System (INIS)

    The Letter presents an analysis of the order-disorder phase transition mechanism, Fd3-macron m ? P4332, in 1:3 B-site ordered spinels, Li1.33xCo2-2xTi1+0.67xO4 and Li1-0.5xFe2.5xMn2-2xO4, by using the Landau's theory of phase transitions. Two ordering parameters were used to describe cation distribution: Q1 for cation distribution between tetrahedral and octahedral sites, and Q2 for cation distribution between two octahedral sites. Analysis of the topology of the order parameter vector space indicates biquadratic coupling between Q1 and Q2. For the Li1.33xCo2-2xTi1+0.67xO4 (x=0.50) in the low-temperature ferroelastic phase both ordering parameters differ from zero and they both influence on the spontaneous strain scalar values

  18. Selection of biosphere transfer parameter values for radioactive waste disposal impact assessments, a site specific approach

    International Nuclear Information System (INIS)

    In order to perform radiological impact assessments of radioactive waste disposals, a compartmental model taking into account generic data for biosphere transfer parameters values is usually used. To improve its performance assessments calculations, ANDRA (French national radioactive waste management agency) decided to adapt this type of biosphere model to its sites conditions. On one hand, specific models have been developed such as model for 36Cl based on isotopic dilution and on local stable chlorine contents. On the other hand, biosphere transfer factors values are issued from experimental studies adapted to ANDRA context: soil characteristics, climate, agricultural habits and species. Local maps of radionuclides mobility have thus been able to be established in terms of soils characteristics. These specific data are useful only if main factors controlling mobility have been determined previously for each radionuclide, which implicates good knowledge of environmental radionuclides behaviour. This site-specific approach allows to reduce uncertainty and range of variation of impact calculations and ensure a consistent model. It helps also to achieve scientific community approval by showing mastery of radionuclides environmental processes and public understanding by focusing demonstration on real local conditions. A methodology in two times is presented. The first time is the definition of priority parameters, using a sensibility analysis. The second time is the giving of a value to these priority parameter, using all available knowledge about the behaviour of elements and about site conditions. A few examples for chlorine, uranium, caesium and technetium and limits of this approach are given. (author)

  19. System dynamics in hydropower plants

    Energy Technology Data Exchange (ETDEWEB)

    Stuksrud, Dag Birger

    1998-12-31

    The main purpose of this thesis on system dynamics in hydropower plants was to establish new models of a hydropower system where the turbine/conduits and the electricity supply and generation are connected together as one unit such that possible interactions between the two power regimes can be studied. In order to describe the system dynamics as well as possible, a previously developed analytic model of high-head Francis turbines is improved. The model includes the acceleration resistance in the turbine runner and the draft tube. Expressions for the loss coefficients in the model are derived in order to obtain a purely analytic model. The necessity of taking the hydraulic inertia into account is shown by means of simulations. Unstable behaviour and a higher transient turbine speed than expected may occur for turbines with steep characteristics or large draft tubes. The turbine model was verified previously with respect to a high-head Francis turbine; the thesis performs an experimental verification on a low-head Francis turbine and compares the measurements with simulations from the improved turbine model. It is found that the dynamic turbine model is, after adjustment, capable of describing low-head machines as well with satisfying results. The thesis applies a method called the ``Limited zero-pole method`` to obtain new rational approximations of the elastic behaviour in the conduits with frictional damping included. These approximations are used to provide an accurate state space formulation of a hydropower plant. Simulations performed with the new computer programs show that hydraulic transients such as water-hammer and mass oscillations are reflected in the electric grid. Unstable governing performance in the electric and hydraulic parts also interact. This emphasizes the need for analysing the whole power system as a unit. 63 refs., 149 figs., 4 tabs.

  20. The Grossmatt hydro-power station; Wasserkraftwerk Grossmatt. Konzessionsprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Hintermann, M.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the project for a small hydropower station on the Birs river in north-western Switzerland. The report reviews the history of the project, in which a new 385 kW-hydro-power station at the site of an earlier installation is foreseen. Details are presented on the investigations made and on the co-ordination with the owners of the hydro-power station situated up-river, the local power utility and the local authorities. Also, the requirements placed on the project by the fishing authorities are quoted and the solution foreseen is described. Also discussed are the requirements placed on the project by legislation on environmental impact and flood protection. Figures on electrical energy production and building costs are presented.

  1. Hydrogen sulfide in hydropower reservoirs

    International Nuclear Information System (INIS)

    This paper reports on hydrogen sulfide which is toxic to aquatic life and corrosive to hydropower plant construction materials when ? at concentrations that are considerably lower than detection limits of analytical procedures commonly used in the United states. A titrimetric procedure found in the Chinese literature has been translated and converted to a field method with quality control procedures. This method has allowed the measurement of sulfide distribution in two tributary impoundments and one tailwater and has provided the first available information on the occurrence of sulfide at levels below the commonly detection limits. Also investigated were the effects of sulfide and other anoxic constituents on turbine system fouling and corrosion

  2. Evaluation of the Overall Costs for the Croatian Repository: Varying Site, Design and Financial Parameters

    International Nuclear Information System (INIS)

    Preliminary preparations for the construction of a LILW repository in Croatia included a number of activities and projects related to the siting process, safety assessment, disposal technology and repository design, and public acceptance issues. Costs evaluations have always been a part of the developing project documentation. However, only the estimates of the facility construction and equipment acquisition costs had been included, while other costs associated with the project development and management have not been considered up to now. For the first time the infrastructure status at the potential sites has been evaluated, and the costs of the repository operations as well as the post-closure management has been estimated. Cost parameters have been considered from both technical and fiscal points of view, comparing their relative influence on the overall repository costs. Assessment of the total project costs in eight cases for the four preferential sites and two repository designs gave a clearer picture of the development and management costs differences for the considered options. Without considerations of the operational and post-operational repository management expenses, the total project costs appear to have been heavily underestimated. Also, while the construction costs for the tunnel and the surface type repositories are significantly different, this influence of the repository type on the total project costs becomes far less important when the later phases management expenses are added. Finally, the role of fiscal parameters may further diminish the site and technology impacts on the overall costs. (author)

  3. Trade-offs Between Electricity Production from Small Hydropower Plants and Ecosystem Services in Alpine River Basins

    Science.gov (United States)

    Meier, Philipp; Schwemmle, Robin; Viviroli, Daniel

    2015-04-01

    The need for a reduction in greenhouse gas emissions and the decision to phase out nuclear power plants in Switzerland and Germany increases pressure to develop the remaining hydropower potential in Alpine catchments. Since most of the potential for large reservoirs is already exploited, future development focusses on small run-of-the-river hydropower plants (SHP). Being considered a relatively environment-friendly electricity source, investment in SHP is promoted through subsidies. However, SHP can have a significant impact on riverine ecosystems, especially in the Alpine region where residual flow reaches tend to be long. An increase in hydropower exploitation will therefore increase pressure on ecosystems. While a number of studies assessed the potential for hydropower development in the Alps, two main factors were so far not assessed in detail: (i) ecological impacts within a whole river network, and (ii) economic conditions under which electricity is sold. We present a framework that establishes trade-offs between multiple objectives regarding environmental impacts, electricity production and economic evaluation. While it is inevitable that some ecosystems are compromised by hydropower plants, the context of these impacts within a river network should be considered when selecting suitable sites for SHP. From an ecological point of view, the diversity of habitats, and therefore the diversity of species, should be maintained within a river basin. This asks for objectives that go beyond lumped parameters of hydrological alteration, but also consider habitat diversity and the spatial configuration. Energy production in run-of-the-river power plants depends on available discharge, which can have large fluctuations. In a deregulated electricity market with strong price variations, an economic valuation should therefore be based on the expected market value of energy produced. Trade-off curves between different objectives can help decision makers to define policies for licensing new SHP and for defining minimum flow requirements. The trade-offs are established using a multi-objective evolutionary algorithm. A case study on an Alpine catchment is presented. The position of water intake and outlet and the design capacity of SHP, and different environmental flow policies are used as decision variables. The calculation of complex objectives, as described above, relies on an accurate representation of the physical system. The river network is divided into segments of 500 meters length for each of which the slope is calculated. Natural incremental flows are calculated for each segment using the PREVAH hydrological modelling system. Trade-offs are established on the basin scale as well as on the sub-basin scale. This allows the assessment of the influence of different configurations of SHP on ecosystem quality across different spatial scales.

  4. The importance of hydropower in Austria

    International Nuclear Information System (INIS)

    This article discusses the importance of hydropower-based power generation in Austria as a clean and emission-free source of electricity. The contribution made to total electricity generation is examined and figures are quoted. Hydropower is provided from both storage dams and run-of-river power stations such as those on the river Danube. The use of the various types of hydropower in connection with their economic optimisation, for example for the supply of valuable peak power, is discussed. The promotion of hydropower within the scope of European climate-protection efforts is examined. Projects concerning the augmentation of hydropower capacities are discussed and three exemplary projects are briefly described. Finally, the situation in Austria is compared with that to be found in neighbouring Switzerland.

  5. Recommended food chain parameter values and distributions for use around CANDU sites in Ontario

    International Nuclear Information System (INIS)

    Site-specific parameter values should be used whenever possible to increase the accuracy of dose predictions. Parameter values specific to agricultural practices and human lifestyles in southern Ontario are presented for use in CSA-N288.1-M87 (Canadian Standards Association Guidelines for Calculating Derived Release Limits for Radioactive Material in Airborne and Liquid Effluents for Normal Operation of Nuclear Facilities) and CHERPAC (Chalk River Environmental Research Pathways Analysis Code). Use of these values in place of the default parameter values in CSA-N288.1-M87 is shown to reduce the predicted dose by nearly a factor of 2. (author). 27 refs., 6 tabs., 1 fig

  6. Element-specific and constant parameters used for dose calculations in SR-Site

    International Nuclear Information System (INIS)

    The report presents Best Estimate (BE) values and Probability Distribution Functions (PDFs) of Concentration Ratios (CR) for different types of terrestrial and aquatic biota and distribution coefficients (Kd) for organic and inorganic deposits, as well as for suspended matter in freshwater and marine ecosystems. The BE values have been used in deterministic simulations for derivation of Landscape Dose Factors (LDF) applied for dose assessments in SR-Site. The PDFs have been used in probabilistic simulations for uncertainty and sensitivity analysis of the LDFs. The derivation of LDFs for SR-Site is described in /Avila et al. 2010/. The CR and Kd values have been derived using both site-specific data measured at Laxemar and Forsmark during the site investigation program and literature data. These two data sources have been combined using Bayesian updating methods, which are described in detail in an Appendix, along with the input data used in the statistical analyses and the results obtained. The report also describes a kinetic-allometric model that was applied for deriving values of CR for terrestrial herbivores in cases when site and literature data for an element were missing. In addition, the report presents values for a number of other parameters used in the SR-Site Radionuclide Model for the biosphere: radionuclide decay-ingrowth data, elemental diffusivities, fractions of element content released during decomposition processes, ingestion of food, water and soil by cattle, elements retention fraction on plant surfaces during irrigation. The report also presents parameter values used in calculation of doses to a reference man: dose coefficients for inhalation, ingestion and external exposure, inhalation rates, ingestion rates of food and water

  7. Element-specific and constant parameters used for dose calculations in SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Norden, Sara (Svensk Kaernbraenslehantering AB (Sweden)); Avila, Rodolfo; De la Cruz, Idalmis; Stenberg, Kristofer; Grolander, Sara (Facilia AB (Sweden))

    2010-12-15

    The report presents Best Estimate (BE) values and Probability Distribution Functions (PDFs) of Concentration Ratios (CR) for different types of terrestrial and aquatic biota and distribution coefficients (K{sub d}) for organic and inorganic deposits, as well as for suspended matter in freshwater and marine ecosystems. The BE values have been used in deterministic simulations for derivation of Landscape Dose Factors (LDF) applied for dose assessments in SR-Site. The PDFs have been used in probabilistic simulations for uncertainty and sensitivity analysis of the LDFs. The derivation of LDFs for SR-Site is described in /Avila et al. 2010/. The CR and K{sub d} values have been derived using both site-specific data measured at Laxemar and Forsmark during the site investigation program and literature data. These two data sources have been combined using Bayesian updating methods, which are described in detail in an Appendix, along with the input data used in the statistical analyses and the results obtained. The report also describes a kinetic-allometric model that was applied for deriving values of CR for terrestrial herbivores in cases when site and literature data for an element were missing. In addition, the report presents values for a number of other parameters used in the SR-Site Radionuclide Model for the biosphere: radionuclide decay-ingrowth data, elemental diffusivities, fractions of element content released during decomposition processes, ingestion of food, water and soil by cattle, elements retention fraction on plant surfaces during irrigation. The report also presents parameter values used in calculation of doses to a reference man: dose coefficients for inhalation, ingestion and external exposure, inhalation rates, ingestion rates of food and water

  8. Interactions Between Land Use, Climate and Hydropower in Scotland

    Science.gov (United States)

    Sample, J.

    2014-12-01

    To promote the transition towards a low carbon economy, the Scottish Government has adopted ambitious energy targets, including generating all electricity from renewable sources by 2020. To achieve this, continued investment will be required across a range of sustainable technologies. Hydropower has a long history in Scotland and the present-day operational capacity of ~1.5 GW makes a substantial contribution to the national energy budget. In addition, there remains potential for ~500 MW of further development, mostly in the form of small to medium size run-of-river schemes. Climate change is expected to lead to an intensification of the global hydrological cycle, leading to changes in both the magnitude and seasonality of river flows. There may also be indirect effects, such as changing land use, enhanced evapotranspiration rates and an increased demand for irrigation, all of which could affect the water available for energy generation. Preliminary assessments of hydropower commonly use flow duration curves (FDCs) to estimate the power generation potential at proposed new sites. In this study, we use spatially distributed modelling to generate daily and monthly FDCs for a range of Scottish catchments using a variety of future land use and climate change scenarios. These are then used to assess Scotland's future hydropower potential under different flow regimes. The results are spatially variable and include large uncertainties, but some consistent patterns emerge. Many locations are predicted to experience enhanced seasonality, with lower power generation potential in the summer months and greater potential during the autumn and winter. Some sites may require infrastructural changes in order to continue operating at optimum efficiency. We discuss the implications and limitations of our results, and highlight design and adaptation options for maximising the resilience of hydropower installations under changing future flow patterns.

  9. MOSE: optical turbulence and atmospherical parameters operational forecast at ESO ground-based sites. I: Overview and atmospherical parameters vertical stratification on [0-20] km

    OpenAIRE

    Masciadri, E.; Lascaux, F.; Fini, L.

    2013-01-01

    We present the overview of the MOSE project (MOdeling ESO Sites) aiming at proving the feasibility of the forecast of the classical atmospherical parameters (wind speed intensity and direction, temperature, relative humidity) and the optical turbulence OT (CN2 profiles and the most relevant integrated astro-climatic parameters derived from the CN2: the seeing, the isoplanatic angle, the wavefront coherence time) above the two ESO ground-based sites of Cerro Paranal and Cerro...

  10. Assessment of small hydropower potential using remote sensing data for sustainable development in India

    International Nuclear Information System (INIS)

    India being a developing country has witnessed a rapidly growing energy needs owing to fast industrialization. Sustainable and qualitative growth for developing economics and habitat requires increased energy input from various resources while maintaining balance in the ecosystem during exploitation. Paper discusses state of the resource potentials, achievements and various issues related to the power generation in India. The growing concern over environmental degradation caused by fossil fuel based systems, opposition to large hydropower projects on grounds of displacement of land and population, environmental problems with nuclear fuel based systems and the ever-rising shortage of power highlights the need for tapping alternate energy sources for power generation. Amongst the alternate sources utilization of hydropower on a smaller scale (small, mini and micro hydropower) has become the thrust area for sustainable growth in the power sector. Hydropower is an economical and environmentally clean source of renewable energy abundantly available in hilly regions of India. Hydropower stations have an inherent ability for instantaneous starting, stopping, load variations, etc., and help in improving the reliability of power system. Huge hydropower potential in India, yet to be explored is located at inaccessible mountainous region. However, development of this potential is challenging due to difficult and inaccessible terrain profile. Paper presents application of remote sensing data for identification and selection of probable site for hydropower projects. The algorithm for identification and assessment of water resources and its perennial is developed in Visual Basic (VB) platform and it is successfully applied for IRS-1D, LISS III Geo-coded False Color Composite (FCC) satellite image for plain as well as hilly and mountainous regions. Classification of satellite image in to different objects is modeled as the task of clustering based on the intensity of R-G-B values of pixels. Results obtained are presented and compared with the Survey of India Toposheets (53K/2, 53K/3 and 53J/16). Use of Remote sensing data provides a scientific method of hydropower identification and assessment

  11. The potential micro-hydropower projects in Nakhon Ratchasima province, Thailand

    International Nuclear Information System (INIS)

    At present, fossil fuel energy is commonly used in developing countries, including Thailand. The tendency to use fossil fuel energy is continuously increasing, and the price of fossil fuels is rising. Thus, renewable energy is of interest. Hydropower is one of the oldest renewable energy forms known and one of the best solutions for providing electricity to rural communities. The present paper aims to determine the potential micro-hydropower sites that could provide more than 50 kW but not over 10 MW in Nakhon Ratchasima Province, Thailand. Both reservoir and run-of-the-river schemes are considered for the assessment of potential micro-hydropower sites. For the reservoir scheme, the discharge in the reservoir is employed for generating micro-hydropower electricity. This installation can be carried out without major modifications to the dam. The run-of-the-river scheme diverts water flow from the river mainstream to the intake via a pressure pipe or an open canal, which is then conveyed to the turbine via a penstock to generate electricity. The results showed that there are 6 suitable projects for the reservoir scheme and 11 suitable projects for the run-of-the-river. The maximum power load was 6000 kW and 320 kW for the reservoir and the run-of-the-river schemes, respectively. Hydropower from the run-of-the-river scheme is more suitable than hydropower from the reservoir scheme because of the many mountains in this province. The designed head for the run-of-the-river scheme is thus generally higher than that for the reservoir scheme. Because stream flow during the dry season is very low, electricity can only be produced in the wet season. This research is a pilot study to determine the potential sites of micro-hydropower projects. (author)

  12. Estimation of soil petrophysical parameters from resistivity data: Application to oil-contaminated site characterization

    Directory of Open Access Journals (Sweden)

    Héctor Zegarra Martínez

    2006-08-01

    Full Text Available Vertical Electrical Sounding (VES method, known from 1912, has changed greatly during the last 10 years, into a new technology named Resistivity Imaging (RI with 2D data interpretation. Another possible development for VES method is estimating petrophysical parameters (PP from RI data, using the relationship between electrical resistivity and PP. In order to reach this purpose, the theory of the forward and inverse problem that relates the electrical resistivity with PP was developed. Each field survey should include a VES (RI survey, groundwater resistivity measurements in order to determine the groundwater salinity, and collecting some representative soil samples in the study site for resistivity measurements as function of pore water salinity in laboratory, creating a soil petrophysical model of the site. This technology can be used for the characterization of uncontaminated and oil contaminated sites. For the case of contaminated site PP values determined in laboratory, groundwater salinity and RI data help to define the petrophysical boundary between contaminated and uncontaminated soil, and consequently, to obtain the contamination plume. In this work, the results of the application of this technology in some hydrocarbon contaminated sites in Mexico are presented.

  13. Extreme value analysis of meteorological parameters observed during 1994-2001 at Kaiga generating station site

    International Nuclear Information System (INIS)

    An understanding of extreme weather conditions at the site of interest is essentially required to design engineering structures that can withstand adverse extreme conditions during its lifetime. In this report an analysis of extreme values of meteorological parameters at Kaiga site have been carried out. This information will be useful in the design of more heavy and tall structures proposed to be constructed in future at this site. The meteorological parameters subjected to statistical analysis in this report are maximum yearly wind speed for the period 1994-2001, rainfall data for the period 1987-2001, maximum and minimum air temperature for the period 1995-2001 and minimum humidity for the period 1994-2001. Rainfall data consists of annual rainfall, monthly maximum rainfall and daily maximum rainfall. The extreme value analysis reveals that in the 50 years, maximum possible wind speed at 50 m and 100 m are 29.1 m/s and 34.6 m/s respectively. Maximum possible temperature is 44.1 degC. Minimum possible temperature is 9.4 degC. Minimum possible humidity is 4.6%. Maximum possible annual rainfall is 5383.7 mm, maximum monthly rainfall is 2617.0 mm and maximum possible daily rainfall is 377.3 mm. Similarly the minimum possible annual rainfall in the next 50 years is 2504.3 mm and that in next 100 years is 2308.2 mm. (author)

  14. China's rising hydropower demand challenges water sector.

    Science.gov (United States)

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P W; Guan, Dabo

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 10(9) m(3)?(Gm(3)), or 22% of China's total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm(3) yr(-1) or 3.6 m(3) of water to produce a GJ (10(9) J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability. PMID:26158871

  15. Hydropower - internalized costs and externalized benefits

    International Nuclear Information System (INIS)

    The benefits of hydropower consist of the minimal level of noxious and greenhouse gas emissions, it's energy security from political instability, and its renewable, non-depletable nature. The costs of hydropower consist of negative effects on the river ecosystem and of social changes in communities in the vicinity of large projects. Public awareness of these costs has increased dramatically during the past two decades, and new hydro projects will not get approval unless adequate mitigation measures are taken to avoid, offset, or compensate for adverse environmental and social effects. To a very large extent, the hydropower industry has internalized what were previously social and environmental externalities. However, hydropower operators do not receive any compensation for the benefits, and to date their competitors (coal, natural gas, oil) have not been required to internalize their adverse environmental externalities. (emissions, depletion of supplies, and sometimes dependence on imported primary energy sources). This creates an uneven playing field, and the hydropower industry enthusiastically welcomes a discussion of this issue, and eventually measures to rectify the situation. The IEA Hydropower Agreement has completed a major international study on the environmental and social impacts of hydropower, and one major component of this study was a Life Cycle Assessment and comparison of all the most important electricity generation technologies. (author)

  16. 78 FR 14528 - Mayo Hydropower, LLC, Avalon Hydropower, LLC; Notice of Application for Transfer of License, and...

    Science.gov (United States)

    2013-03-06

    ... Energy Regulatory Commission Mayo Hydropower, LLC, Avalon Hydropower, LLC; Notice of Application for Transfer of License, and Soliciting Comments and Motions To Intervene On November 20, 2012, Mayo Hydropower, LLC (transferor) and Avalon Hydropower, LLC (transferee) filed an application for transfer of...

  17. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    Energy Technology Data Exchange (ETDEWEB)

    Adelman, D.D. [Water Resources Engineer, Lincoln, NE (United States); Stansbury, J. [Univ. of Nebraska-Lincoln, Omaha, NE (United States)

    1997-12-31

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions.

  18. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    International Nuclear Information System (INIS)

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions

  19. A study of the main atmospheric electric parameters at a little polluted seashore site

    International Nuclear Information System (INIS)

    In order to study the electric elements of the air near the ground, we realized a set of apparatus for the measurement of several parameters: electric field, space charge, conductivities, air-earth current, as well as an automatic condensation nuclei counter. The characteristics of a very important photolytic process of nuclei production closely related to air exposure of living algae, at daytime low-tide periods were first determined. Then a systematic study of the electrical behaviour of the air at the seashore, was also carried out in relation with meteorological parameters. The results observed by sea winds, and especially the data on electric field and space charge showed out a very strong electrode effect above the sea surface, and were very different from those recorded at another site, 20 km inland. Finally, the atmospheric electric fog effect at the coastline and the possibility of using our results for forecasting the phenomenon were studied. (author)

  20. The effects of differential injection sites of cold saline on transpulmonary thermodilution parameter values

    Directory of Open Access Journals (Sweden)

    Yang W

    2015-04-01

    Full Text Available Wanjie Yang,1 Qingguo Feng,1 Youzhong An,2 Xuefeng Zhao,1 Kai Wei,1 Chang Li,1 Wei Wang,1 Hongyun Teng1 1Department of Critical Care, The Fifth Central Hospital of Tianjin, Tianjin, People’s Republic of China; 2Department of Critical Care, The People’s Hospital, Peking University, Beijing, People’s Republic of China Aim: To investigate the effects of differential sites for cold saline injection on transpulmonary thermodilution parameter values.Methods: This was a prospective study. Twelve patients were recruited for the following examinations: control condition (injection site at proximal injection end of the Swan-Ganz catheter, proximal end condition (injection site at sheath of the Swan-Ganz catheter, and distal end condition (injection site at PA end of the Swan-Ganz catheter. Sixty measurements were performed for each condition. The cardiac index, global end diastolic volume index (GEDI, and extravascular lung water index for the three different injection sites were recorded from each patient. In addition, the mean transmission time (MTt, downslope time, and area under the curve obtained from PiCCO-VoLEF-Win software were compared among different groups.Results: There were no differences in cardiac index and extravascular lung water index values among the three conditions (P>0.05. There were no differences in GEDI between the proximal end condition and control condition (P>0.05, while the GEDI was significantly lower for the distal end condition (493.33±254.65 mL/m2 than for the control condition (645.53±234.46 mL/m2 (P<0.05 and proximal end condition (717.96±321.63 mL/m2 (P<0.01. There were no differences in downslope time and area under the curve among the three conditions (P>0.05. There were no differences in MTt between the proximal end condition and control condition (P>0.05, while the MTt was significantly lower for distal end condition (40.22±16.37 seconds than for the control condition (42.91±17.93 seconds (P<0.05 and proximal end condition (47.16±16.64 seconds (P<0.01.Conclusion: The differential sites for cold saline injection impacted transpulmonary thermodilution parameter values. Keywords: pulmonary artery catheter, global end diastolic volume index, extravascular lung water index

  1. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    Energy Technology Data Exchange (ETDEWEB)

    Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

  2. Hydropower and biomass - a successful combination

    International Nuclear Information System (INIS)

    The paper contains numbers on the importance of biomass and hydropower in the energy balance of Austria. The importance of the CO2 taxes in the European Communities on the economics of different fuels is outlined. (Quittner)

  3. Various problems concerning radioactive waste disposal sites and parameters for their evaluation

    International Nuclear Information System (INIS)

    The present report first describes various methods used for low-level radioactive waste disposal in the U.S. and then discusses major factors affecting the parameters used for quantitative evaluation of the behavior of radioactive nuclides existing in the environment, focusing on the distribution coefficient which is assumed in a model widely used for such evaluation. Some problems encountered in applying these parameters to practical evaluation are also discussed together with further studies required in the future. The distribution coefficient varies with many physical, chemical and biological factors, and it may be unavoidable to rely on experiments with a simplified system in determining the effect of each factor separately. However, the values obtained from such experiments cannot be used as parameters to reflect the behaviors of these nuclides in real environments. They should be considered as such. Efforts should be made to develop techniques to obtain effective values for the distribution coefficient that properly reflect their behaviors in real environments near disposal sites or in far fields. (N.K.)

  4. An analysis of Turkish hydropower policy

    OpenAIRE

    Erdogdu, Erkan

    2011-01-01

    Over the last decade, Turkish electricity demand has increased more than 8% per annum as a result of economic development. Being one of the renewable energy sources par excellence, non-exhaustible, non-polluting and economically more attractive than other renewable sources, hydropower has turned out to be an important contributor to the future energy mix of the country. This paper deals with hydropower policies to meet increasing electricity demand for sustainable energy development in Turkey...

  5. Hydropower potential of the lower Vistula

    OpenAIRE

    Micha? Szyd?owski; Romuald Szymkiewicz; Dariusz G?siorowski; Piotr Zima; Jakub Hakiel

    2015-01-01

    This paper presents an estimate analysis of the hydropower potential of the lower Vistula River from Warsaw to Gda?sk Bay. The calculations were made for a hydraulic model of the lower Vistula which takes into account potential development of barrages in a cascade system. Results obtained from the model simulations and from hydrological calculations were used to estimate the power of hydropower plants and the average annual energy output from the entire cascade system. The results of calcu...

  6. Value of stochasticity in hydropower planning optimization

    OpenAIRE

    Vistica, Marko

    2012-01-01

    With respect to market liberalization, efficient use of resources is becoming more important for players in the market. In order to achieve that different optimization techniques were developed which enable better operational efficiency. These techniques can be segmented into two different categories, depending on their time horizon: • Yearly time horizon – mid-term hydropower scheduling • Daily time horizon – short-term hydropower scheduling These two time horizons account for two case studi...

  7. Evaluation of flexibility in hydropower stations

    OpenAIRE

    Crona, Mats

    2012-01-01

    This report seeks to evaluate the flexibility in a number of Fortum’s hydropower stations. The deregulation of the Nordic electricity market has put an emphasis on revenue maximizing rather than cost minimizing and there are good indications that flexible assets will be even more valuable in the future when more wind power has been introduced into the system. Through interviews with people involved in the hydropower planning and operation process a number of factors with the potential of affe...

  8. Risk management of hydropower development in China

    International Nuclear Information System (INIS)

    There is a rapidly increasing demand for hydropower in China. However, little research has been conducted to systematically investigate the overall aspects of hydropower development risks. With support of the data collected from a fieldwork survey, this study reports the multiple facets of hydropower development risks in China as perceived by main project participants. All groups have a common view on the criticality of safety, and the groups also have their own priorities, i.e., resettlement of migrants, incompetence of subcontractors, project delay, inadequate or incorrect design, premature failure of facilities and ecological and environmental impacts are the key risks to clients, whereas quality of work, financial related risks, reputation, and claims and disputes are the main concerns to contractors. A case study of Three Gorges Project further demonstrates that, hydropower development risks can be effectively managed by encouraging joint efforts of all participants to achieve the goals on producing renewable energy, reducing emissions of CO2, and providing important social/economical benefits. Future hydropower development should emphasize the interactions between project delivery, environmental, and economical processes to reach appropriate trade-offs among involving stakeholders, by adequately considering the inter-relations between project participants' risks as well as hydropower project's externalities on a broad view. - Highlights: • Largely attributed to unforeseen geology conditions, safety is critical in hydropower development. • Resettlement of migrants is the principal risk to clients, whereas quality of works is the first concern to contractors. • One group's risks are typically related to others', needing collaborative risk management by participants. • Three Gorges Project plays a key role on producing renewable energy, and providing social/economical benefits. • Hydropower development should emphasize the interactions between project delivery, environmental, and social processes

  9. National hydroelectric power resources study. Preliminary inventory of hydropower resources. Volume 1. Pacific Northwest region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-07-01

    The preliminary inventory and analysis procedures provide a comprehensive assessment of the undeveloped hydroelectric power potential in the US and determines which sites merit more thorough investigation. Over 5400 existing structures have been identified as having the physical potential to add hydropower plants or increase hydropower output thereby increasing our present hydropower capacity from a total of 64,000 MW to 158,000 MW and our energy from 280,000 GWH to 503,000 GWH. While the physical potential for this increase is clearly available, some of these projects will undoubtedly not satisfy more-detailed economic analysis as well as the institutional and environmental criteria which will be imposed upon them. Summary tables include estimates of the potential capacity and energy at each site in the inventory. In some cases, individual projects may be site alternatives to others in the same general location, when only one can be considered for hydropower development. The number of sites per state is identified, but specific information is included for only the sites in Alaska, Idaho, Oregon, and Washington in this first volume.

  10. The impact of spatial variability of hydrogeological parameters - Monte Carlo calculations using SITE-94 data

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.; Broed, R. [AlbaNova Univ. Center, Stockholm (Sweden). Stockholm Center for Physics Astronomy and Biotechnology

    2002-03-01

    In this report, several issues related to the probabilistic methodology for performance assessments of repositories for high-level nuclear waste and spent fuel are addressed. Random Monte Carlo sampling is used to make uncertainty analyses for the migration of four nuclides and a decay chain in the geosphere. The nuclides studied are cesium, chlorine, iodine and carbon, and radium from a decay chain. A procedure is developed to take advantage of the information contained in the hydrogeological data obtained from a three-dimensional discrete fracture model as the input data for one-dimensional transport models for use in Monte Carlo calculations. This procedure retains the original correlations between parameters representing different physical entities, namely, between the groundwater flow rate and the hydrodynamic dispersion in fractured rock, in contrast with the approach commonly used that assumes that all parameters supplied for the Monte Carlo calculations are independent of each other. A small program is developed to allow the above-mentioned procedure to be used if the available three-dimensional data are scarce for Monte Carlo calculations. The program allows random sampling of data from the 3-D data distribution in the hydrogeological calculations. The impact of correlations between the groundwater flow and the hydrodynamic dispersion on the uncertainty associated with the output distribution of the radionuclides' peak releases is studied. It is shown that for the SITE-94 data, this impact can be disregarded. A global sensitivity analysis is also performed on the peak releases of the radionuclides studied. The results of these sensitivity analyses, using several known statistical methods, show discrepancies that are attributed to the limitations of these methods. The reason for the difficulties is to be found in the complexity of the models needed for the predictions of radionuclide migration, models that deliver results covering variation of several orders of magnitude. Correlations between parameters also make it difficult to separate the contribution from each parameter on the output. Finally, it is concluded that even in cases where correlations between parameters can be disregarded for the sake of the uncertainty analysis, they cannot be disregarded in the sensitivity analysis of the results. A new approach for global sensitivity analysis based on neural networks has been developed and tested on results for the peak releases of caesium. Promising results have been obtained by this method, which is robust and can tackle results from non-linear models even when there are correlations between parameters. This represents a considerable improvement over the capabilities of the commonly used traditional statistical methods.

  11. The impact of spatial variability of hydrogeological parameters - Monte Carlo calculations using SITE-94 data

    International Nuclear Information System (INIS)

    In this report, several issues related to the probabilistic methodology for performance assessments of repositories for high-level nuclear waste and spent fuel are addressed. Random Monte Carlo sampling is used to make uncertainty analyses for the migration of four nuclides and a decay chain in the geosphere. The nuclides studied are cesium, chlorine, iodine and carbon, and radium from a decay chain. A procedure is developed to take advantage of the information contained in the hydrogeological data obtained from a three-dimensional discrete fracture model as the input data for one-dimensional transport models for use in Monte Carlo calculations. This procedure retains the original correlations between parameters representing different physical entities, namely, between the groundwater flow rate and the hydrodynamic dispersion in fractured rock, in contrast with the approach commonly used that assumes that all parameters supplied for the Monte Carlo calculations are independent of each other. A small program is developed to allow the above-mentioned procedure to be used if the available three-dimensional data are scarce for Monte Carlo calculations. The program allows random sampling of data from the 3-D data distribution in the hydrogeological calculations. The impact of correlations between the groundwater flow and the hydrodynamic dispersion on the uncertainty associated with the output distribution of the radionuclides' peak releases is studied. It is shown that for the SITE-94 data, this impact can be disregarded. A global sensitivity analysis is also performed on the peak releases of the radionuclides studied. The results of these sensitivity analyses, using several known statistical methods, show discrepancies that are attributed to the limitations of these methods. The reason for the difficulties is to be found in the complexity of the models needed for the predictions of radionuclide migration, models that deliver results covering variation of several orders of magnitude. Correlations between parameters also make it difficult to separate the contribution from each parameter on the output. Finally, it is concluded that even in cases where correlations between parameters can be disregarded for the sake of the uncertainty analysis, they cannot be disregarded in the sensitivity analysis of the results. A new approach for global sensitivity analysis based on neural networks has been developed and tested on results for the peak releases of caesium. Promising results have been obtained by this method, which is robust and can tackle results from non-linear models even when there are correlations between parameters. This represents a considerable improvement over the capabilities of the commonly used traditional statistical methods

  12. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.

    Science.gov (United States)

    Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi

    2014-07-01

    Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies. PMID:24726970

  13. Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site

    International Nuclear Information System (INIS)

    The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 [Public Law (PL) 95-6041]. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. The remedial action at the processing site will be conducted to remove the tailings and contaminated materials to meet the EPA bulk soil cleanup standards for surface and subsurface soils. The site areas disturbed by remedial action excavation will be either contoured or backfilled with radiologically uncontaminated soil and contoured to restore the site. The final contours will produce a final surface grade that will create positive drainage from the site

  14. Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 [Public Law (PL) 95-6041]. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. The remedial action at the processing site will be conducted to remove the tailings and contaminated materials to meet the EPA bulk soil cleanup standards for surface and subsurface soils. The site areas disturbed by remedial action excavation will be either contoured or backfilled with radiologically uncontaminated soil and contoured to restore the site. The final contours will produce a final surface grade that will create positive drainage from the site.

  15. Seismic Microzonation Based on Geotechnical Parameters - Estimation of Site Effects in Bucharest (Romania)

    Science.gov (United States)

    Ehret, D.; Hannich, D.

    2004-12-01

    Romania frequently is hit by strong intermediate depth earthquakes occurring in the Vrancea area in the SE Carpathians. During the 20th century four major earthquakes (moment magnitudes between MW = 6.9 and MW = 7.7) occurred in this region which strongly affected the Romanian capital Bucharest (1.9 mio. inhabitants). Due to the large hypocentral distance between the Vrancea area and Bucharest (approx. 160 km) influences of source directivity and travel path effects are assumed to be constant in the entire city. Therefore significant lateral variations in ground motion must be caused by site effects, related to near-surface geology, mainly dominated by large alluvial and diluvial deposits and anthropogenic backfill. The objective of this study, which is part of the German Collaborative Research Center (CRC) 461 `Strong Earthquakes: A Challenge for Geosciences and Civil Engineering', is to quantify the local influence of site effects on earthquake triggered ground motion and to generate a microzonation map of Bucharest. At first a numerical modelling of ground response was performed by using one-dimensional linear-elastic approaches and geotechnical data, derived from the digital geological subsurface model. The analysis of ground motion was carried out at discrete points. For these raster dots the transfer functions were computed and parameterised by characteristic shake parameters (e. g. dominant frequencies, peak amplifications or spectral amplifications at characteristic frequencies). After spatial interpolation of the computed values these parameters could be presented in continuous microzonation maps. Further the surficial ground motion was computed using a novel (visco-) hypoplastic constitutive law that also takes non-linear soil behaviour into account. The results of both approaches were compared with each other and indicate, that the consideration of non-linear effects is required to get more realistic results for the microzonation.

  16. Estimation of soil petrophysical parameters from resistivity data: Application to oil-contaminated site characterization

    Scientific Electronic Library Online (English)

    Vladimir, Shevnin; Omar, Delgado Rodríguez; Aleksandr, Mousatov; David, Flores Hernández; Héctor, Zegarra Martínez; Albert, Ryjov.

    2006-09-01

    Full Text Available El método Sondeo Eléctrico Vertical (SEV), conocido desde 1912, ha cambiado sustancialmente durante los últimos 10 años, apareciendo una nueva tecnología llamada Imagen de Resistividad (IR) con interpretación 2D de los datos de resistividad. Otra vía posible de desarrollo del método SEV es, partiend [...] o de las relaciones existentes entre la resistividad eléctrica y los parámetros petrofísicos (PP), estimar estos últimos a partir de datos de IR. Para la realización práctica de este concepto fue desarrollada la teoría del problema directo e inverso que relaciona la resistividad eléctrica con los PP. Cada trabajo de campo deberá incluir un levantamiento de SEV (IR), mediciones de resistividad eléctrica del agua subterránea con el objetivo de determinar su salinidad y la recolección de algunas muestras representativas de suelo del sitio con mediciones hechas en laboratorio de la resistividad eléctrica como función de la salinidad del agua de poro, creando el modelo petrofísico del suelo de este sitio. Esta tecnología puede ser utilizada tanto para la caracterización de sitios limpios como contaminados por hidrocarburos. Para el caso de sitios contaminados, los valores de los PP determinados en laboratorio, salinidad de agua y los datos de IR, permiten establecer la frontera petrofísica entre suelo limpio y contaminado, y por consiguiente, configurar la pluma contaminante. En este trabajo se incluyen, como ejemplos prácticos, los resultados de la aplicación de esta tecnología en algunos sitios contaminados por hidrocarburos en México. Abstract in english Vertical Electrical Sounding (VES) method, known from 1912, has changed greatly during the last 10 years, into a new technology named Resistivity Imaging (RI) with 2D data interpretation. Another possible development for VES method is estimating petrophysical parameters (PP) from RI data, using the [...] relationship between electrical resistivity and PP. In order to reach this purpose, the theory of the forward and inverse problem that relates the electrical resistivity with PP was developed. Each field survey should include a VES (RI) survey, groundwater resistivity measurements in order to determine the groundwater salinity, and collecting some representative soil samples in the study site for resistivity measurements as function of pore water salinity in laboratory, creating a soil petrophysical model of the site. This technology can be used for the characterization of uncontaminated and oil contaminated sites. For the case of contaminated site PP values determined in laboratory, groundwater salinity and RI data help to define the petrophysical boundary between contaminated and uncontaminated soil, and consequently, to obtain the contamination plume. In this work, the results of the application of this technology in some hydrocarbon contaminated sites in Mexico are presented.

  17. Microalgal diversity in relation to the physicochemical parameters of some Industrial sites in Mangalore, South India.

    Science.gov (United States)

    Miranda, Jyothi; Krishnakumar, G

    2015-11-01

    This study is undertaken to understand the microalgal species composition, diversity, abundance and their association with the polluted sites of an industrial area. The microalgae and the wastewater samples collected from these sites were preserved and analysed using standard methods. One hundred and eight species of the microalgae, belonging to Cyanophyceae, Chlorophyceae, Euglenophyceae, Bacillariophyceace and Desmidaceae, were identified. Of these, the members of Cyanophyceae formed the dominant flora. It was observed that the family Oscillatoriaceae was the most diverse family. In this family, the most diverse genus was found to be the Oscillatoria, with 13 species. Further, the abundance of Oscillatoria princeps indicated that these species are tolerant to the pollution and therefore considered as the 'marker species' of the habitat. The abundance of the Cyanophyceae in these sites was found to be due to the favourable contents of the oxidizable organic matter and the presence of the nutrients, such as the nitrates and the phosphates, in abundance, with less dissolved oxygen. The lesser percentage of the Bacillariophyceae (14%), and the negligible number of the euglenoids (2%) indicated that the sites were rich in the inorganic pollutants and poor in the organic pollutants. The range of Shannon diversity indices was found between 2.10 and 3.50, while the dominance index was found between 0.03 and 0.14, the species evenness between 0.73 and 0.93 and the Margalef index between 1.8 and 6.3. The diversity indices indicated that there is light to moderate level of pollution in the studied sites, with moderate diversity level. The principal component analysis (PCA) of the physicochemical parameters identified the four possible groups, which were responsible for the data structure, explaining the 74% of the total variance of the data set. In the PCA performed using all the variables, the first principal component showed the positive correlation with the total dissolved solids (TDS), salinity, conductivity, temperature, biochemical oxygen demand (BOD) and the sulphates and the negative correlation with the dissolved oxygen (DO) and Pb2+. The second principal component showed the positive correlation with the pH, dissolved oxygen, chemical oxygen demand (COD), nitrates and phosphates, and the negative correlation with the TDS, salinity, conductivity, temperature and BOD. The canonical correspondence analysis (CCA) showed that there were significant (ppollution can be predicted, based on the structure of the microalgal community. PMID:26433901

  18. Hydropower: A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Gilbert A.

    1992-12-01

    The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

  19. Hydropower : A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Gilbert A.

    1992-12-01

    The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

  20. MOSE: optical turbulence and atmospherical parameters operational forecast at ESO ground-based sites. I: Overview and atmospherical parameters vertical stratification on [0-20] km

    CERN Document Server

    Masciadri, E; Fini, L

    2013-01-01

    We present the overview of the MOSE project (MOdeling ESO Sites) aiming at proving the feasibility of the forecast of the classical atmospherical parameters (wind speed intensity and direction, temperature, relative humidity) and the optical turbulence OT (CN2 profiles and the most relevant integrated astro-climatic parameters derived from the CN2: the seeing, the isoplanatic angle, the wavefront coherence time) above the two ESO ground-based sites of Cerro Paranal and Cerro Armazones. The final outcome of the study is to investigate the opportunity to implement an automatic system for the forecast of these parameters at these sites. In this paper we present results related to the Meso-Nh model ability in reconstructing the vertical stratification of the atmospherical parameters along the 20 km above the ground. The very satisfactory performances shown by the model in reconstructing most of these parameters (and in particular the wind speed) put this tool of investigation as the most suitable to be used in as...

  1. Small hydropower for electricity generation

    International Nuclear Information System (INIS)

    Generation of electricity in hydropower plants is non-polluting and represents a hundred years of well proven technology based on indigenous renewable resources. Small hydroelectric plants are particularly well suited for rural electrification in both isolated and integrated girds. Although initial development costs are higher than for most other types of generation plants, operation and maintenance costs are low, and there are no fuel costs. Fluctuations in fuel prices and foreign exchange rates will therefore not affect future generation costs. Economic life time for hydro plants are longer than for other type of generation plants. Civil works amounts on average to half of the development costs, and in some developing countries parts of the mechanical equipment can be fabricated locally. Foreign exchange requirements are therefore generally not higher than for other types of generation plants. Construction of civil works offers job opportunities for local labour. Small hydros are typically of the run-of-river type with negligible environmental impacts. (author). 8 refs, 2 figs, 4 tabs

  2. Low-head hydropower assessment of the Brazilian State of São Paulo

    Science.gov (United States)

    Artan, Guleid A.; Cushing, William Matthew; Mathis, Melissa L.; Tieszen, Larry L.

    2014-01-01

    This study produced a comprehensive estimate of the magnitude of hydropower potential available in the streams that drain watersheds entirely within the State of São Paulo, Brazil. Because a large part of the contributing area is outside of São Paulo, the main stem of the Paraná River was excluded from the assessment. Potential head drops were calculated from the Digital Terrain Elevation Data,which has a 1-arc-second resolution (approximately 30-meter resolution at the equator). For the conditioning and validation of synthetic stream channels derived from the Digital Elevation Model datasets, hydrography data (in digital format) supplied by the São Paulo State Department of Energy and the Agência Nacional de Águas were used. Within the study area there were 1,424 rain gages and 123 streamgages with long-term data records. To estimate average yearly streamflow, a hydrologic regionalization system that divides the State into 21 homogeneous basins was used. Stream segments, upstream areas, and mean annual rainfall were estimated using geographic information systems techniques. The accuracy of the flows estimated with the regionalization models was validated. Overall, simulated streamflows were significantly correlated with the observed flows but with a consistent underestimation bias. When the annual mean flows from the regionalization models were adjusted upward by 10 percent, average streamflow estimation bias was reduced from -13 percent to -4 percent. The sum of all the validated stream reach mean annual hydropower potentials in the 21 basins is 7,000 megawatts (MW). Hydropower potential is mainly concentrated near the Serra do Mar mountain range and along the Tietê River. The power potential along the Tietê River is mainly at sites with medium and high potentials, sites where hydropower has already been harnessed. In addition to the annual mean hydropower estimates, potential hydropower estimates with flow rates with exceedance probabilities of 40 percent, 60 percent, and 90 percent were made.

  3. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-09-01

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropower was held September 9-10, 2003.

  4. Semipalatinsk test site: Parameters of radionuclide transfer to livestock and poultry products under actual radioactive contamination

    International Nuclear Information System (INIS)

    The IAEA document 'Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments' published in 2010 is one of the major sources of knowledge about the migration parameters of radionuclides in the agro-ecosystems that is necessary to assess the dose loads to the population. It is known from there that Sr and Cs transfer has been studied thoroughly, however the factors vary over a wide range. Few studies were conducted for Pu and Am transfer. It should be noted that the studies carried out in real conditions of radioactive contamination, i.e. under natural conditions is also very few. In this regard, since 2007 the territory of the former Semipalatinsk Test Site has been used for comprehensive radioecological studies, where the major radionuclides to be investigated are 90Sr, 137Cs, 239+240Pu, 241Am. The objects for these studies are birds and animals typical for the region, as well as products obtained from them (lamb, beef, horse meat, chicken, pork, cow's milk, mare's milk, eggs, chicken, chicken feathers, wool, leather). It should be noted that these products are the main agricultural goods that are available in these areas. The studies have been conducted with grazing animals in the most contaminated areas of the test site. Some groups of animals and birds were fed to contaminated feed, soil, contaminated water. Radionuclide intake by animal body with air were studied. Husbandry periods for animals and birds ranged from 1 to 150 days. The transfer parameters to cow and mare's milk have been investigated at single and prolonged intake of radionuclides, also their excretion dynamics has been studied. The studies revealed features of the radionuclide transfer into organs and tissues of animals and birds intaken with hay, water and soil. The results showed that the transfer factors vary up to one order. A relationship has been identified between distribution of radionuclides in organs and tissues, which makes it possible to determine the radionuclides in the whole body by their concentration in one organ, or even without slaughtering the animal, using wool, to give a preliminary estimate of the radionuclide concentration in the animal body. The research results outlined in this paper confirm existing data on the metabolism of 90Sr and 137Cs in animals. However, the transfer factors obtained were an order of magnitude smaller than the average transfer factor presented in the IAEA database. The transuranic radionuclides (239+240Pu, 241Am) intaken with soil is absorbed less than when intaken with food. With long-term intake of 239+240Pu by animals with different components of the environment the radionuclides are accumulated only in the liver, 241Am accumulated in the skin, other organs and tissues do not accumulate. The acquired knowledge about the radionuclide transfer parameters may be used to build predictive models and evaluate dose loads to the population that uses animal products obtained in areas with high concentrations of radionuclides in the environment. Document available in abstract form only. (authors)

  5. Semipalatinsk test site: Parameters of radionuclide transfer to livestock and poultry products under actual radioactive contamination

    Energy Technology Data Exchange (ETDEWEB)

    Baigazinov, Z.; Lukashenko, S. [Institute of Radiation Safety and Ecology (Kazakhstan)

    2014-07-01

    The IAEA document 'Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments' published in 2010 is one of the major sources of knowledge about the migration parameters of radionuclides in the agro-ecosystems that is necessary to assess the dose loads to the population. It is known from there that Sr and Cs transfer has been studied thoroughly, however the factors vary over a wide range. Few studies were conducted for Pu and Am transfer. It should be noted that the studies carried out in real conditions of radioactive contamination, i.e. under natural conditions is also very few. In this regard, since 2007 the territory of the former Semipalatinsk Test Site has been used for comprehensive radioecological studies, where the major radionuclides to be investigated are {sup 90}Sr, {sup 137}Cs, {sup 239+240}Pu, {sup 241}Am. The objects for these studies are birds and animals typical for the region, as well as products obtained from them (lamb, beef, horse meat, chicken, pork, cow's milk, mare's milk, eggs, chicken, chicken feathers, wool, leather). It should be noted that these products are the main agricultural goods that are available in these areas. The studies have been conducted with grazing animals in the most contaminated areas of the test site. Some groups of animals and birds were fed to contaminated feed, soil, contaminated water. Radionuclide intake by animal body with air were studied. Husbandry periods for animals and birds ranged from 1 to 150 days. The transfer parameters to cow and mare's milk have been investigated at single and prolonged intake of radionuclides, also their excretion dynamics has been studied. The studies revealed features of the radionuclide transfer into organs and tissues of animals and birds intaken with hay, water and soil. The results showed that the transfer factors vary up to one order. A relationship has been identified between distribution of radionuclides in organs and tissues, which makes it possible to determine the radionuclides in the whole body by their concentration in one organ, or even without slaughtering the animal, using wool, to give a preliminary estimate of the radionuclide concentration in the animal body. The research results outlined in this paper confirm existing data on the metabolism of {sup 90}Sr and {sup 137}Cs in animals. However, the transfer factors obtained were an order of magnitude smaller than the average transfer factor presented in the IAEA database. The transuranic radionuclides ({sup 239+240}Pu, {sup 241}Am) intaken with soil is absorbed less than when intaken with food. With long-term intake of {sup 239+240}Pu by animals with different components of the environment the radionuclides are accumulated only in the liver, {sup 241}Am accumulated in the skin, other organs and tissues do not accumulate. The acquired knowledge about the radionuclide transfer parameters may be used to build predictive models and evaluate dose loads to the population that uses animal products obtained in areas with high concentrations of radionuclides in the environment. Document available in abstract form only. (authors)

  6. Harnessing Hydropower: The Earth's Natural Resource

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-04-01

    This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Nature’s Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

  7. Hydropower potential of the lower Vistula

    Directory of Open Access Journals (Sweden)

    Micha? Szyd?owski

    2015-03-01

    Full Text Available This paper presents an estimate analysis of the hydropower potential of the lower Vistula River from Warsaw to Gda?sk Bay. The calculations were made for a hydraulic model of the lower Vistula which takes into account potential development of barrages in a cascade system. Results obtained from the model simulations and from hydrological calculations were used to estimate the power of hydropower plants and the average annual energy output from the entire cascade system. The results of calculations indicate significant energy benefits resulting from the development of a cascade of hydropower plants in the lower Vistula. This study does not discuss the cascade project’s economic viability or other aspects of its development (inland waterways, flood control, etc..

  8. Development potential for hydropower; Ausbaupotential der Wasserkraft

    Energy Technology Data Exchange (ETDEWEB)

    Laufer, F.; Groetzinger, S.; Peter, M.; Schmutz, A.

    2004-11-15

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the potential for the development of hydropower in Switzerland. The report updates the energy perspectives made ten years earlier. An overview of Swiss electricity production and consumption is presented and the proportion provided by hydropower is noted. Figures on installed capacity and import/export quantities are presented and discussed. Technological developments and the economical frameworks involved are discussed, as are regulatory measures that can be taken. Theoretical and technically realisable potentials for increased use of hydropower are discussed. The methods used to do this are examined. Strategies and measures to be taken are listed and discussed. An appendix includes data sheets on power plant modelling, including examples

  9. 75 FR 16456 - Inglis Hydropower, LLC; Notice Soliciting Scoping Comments

    Science.gov (United States)

    2010-04-01

    ... Energy Regulatory Commission Inglis Hydropower, LLC; Notice Soliciting Scoping Comments March 26, 2010.... c. Date filed: July 22, 2009. d. Applicant: Inglis Hydropower, LLC. e. Name of Project: Inglis Hydropower Project. f. Location: The proposed project would be located at the existing Inglis Bypass...

  10. Supporting Hydropower : An Overview of the World Bank Group's Engagement

    OpenAIRE

    Rex, William; Foster, Vivien; Lyon, Kimberly; Bucknall, Julia; Liden, Rikard

    2014-01-01

    Hydropower development makes an essential contribution to reducing poverty, boosting shared prosperity, and improving sustainability. Water storage associated with some hydropower projects can also make important contributions to water and food security and to climate resilience. The World Bank Group (WBG) thus uses multiple instruments to support sustainable and responsible hydropower pro...

  11. Determination of hydrological parameters using active tracers at radioactive waste burial site - Tarapur

    International Nuclear Information System (INIS)

    Amongst various geohydrological parameters like surface and sub-surface geological conditions, sub-surface drainage, rainfall recharge and water table fluctuations, the rainfall recharge measurement and ground water movement studies are of prime importance from the radioactive waste management point of view. For augmenting the information, required to evaluate these factors in an aquifer, field investigations were carried out. These included detailed surface and sub-surface surveys, by collecting soil and rock samples, using hand augers, from trial pits and bore hole core samples. Survey of sub-surface drainage, water table fluctuations and rainfall records were made and relevant contours plotted. The rainfall recharge studies were carried out over an area of 40 hectars including the waste burial site of 10 hectars by injecting tritium into the ground during the pre-monsoon period of 1978 and monitoring of the same was done during the post-monsoon period to determine the downward movement of rain water i.e. recharge. The ground water movement studies were carried out by multiwell technique, by injecting a tracer in the central well surrounded by six monitoring wells located in a circular pattern at uniform distance. The behaviour and choice of various tracers used such a rhodamine B, tritium etc. has been dealt. The various field techniques adopted for the experiment, the results and conclusion drawn are also dealt. (author)

  12. Influence of meteorological parameters on seasonal pan evaporation at KKNPP site

    International Nuclear Information System (INIS)

    Moisture in the atmosphere plays a significant role in weather and climate that is commonly treated separately from the other constituents of air. Evaporation of water from free water surface is influenced by a number of meteorological variables such as air temperature, relative humidity, wind velocity and solar radiation. It also depends upon other variables such as, geographical location, season, time of day, etc. These variables have been known for a long time, but their evaluation is rather complex, due to their interdependent effects. In this paper, meteorological variables influencing seasonal evaporation in tropical region were examined for 6 years (2004-2009) at Kudankulam Nuclear Power Project Site. The results of correlation and regression analysis revealed that in winter season, relative humidity is the most influencing parameter on pan evaporation rate, which affected negatively. Ambient air temperature, solar radiation and wind velocity are the main variables which show positive correlation in summer season. In south west monsoon, ambient air temperature and wind velocity are the most influential variables. In addition to that, all the four seasons, solar radiation plays significant role and positively correlated with pan evaporation. During north east monsoon, only solar radiation showed its influence on evaporation

  13. Zero field splitting parameters of Mn2+ in Bis (L-asparaginato) Zn (II) at interstitial orthorhombic symmetry site

    Science.gov (United States)

    Pandey, Sangita; Kripal, Ram

    2012-06-01

    The superposition model is used to calculate the crystal field parameters (CFPs) of Mn2+ in Bis (L-asparaginato) Zn (II). The zero field splitting parameters (ZFSPs) D and E are then investigated using perturbation theory and microscopic spin Hamiltonian (SH) theory. The calculated ZFS parameters are compared with the experimental values obtained by electron paramagnetic resonance. Both the zero field splitting parameters (ZFSPs) D and E evaluated theoretically are in good agreement with the experimental values. The results support the notion that the Mn2+ ion occupies interstitial site in Bis (L-asparaginato) Zn (II).

  14. Zero field splitting parameters of Mn²? in Bis (L-asparaginato) Zn (II) at interstitial orthorhombic symmetry site.

    Science.gov (United States)

    Pandey, Sangita; Kripal, Ram

    2012-06-01

    The superposition model is used to calculate the crystal field parameters (CFPs) of Mn(2+) in Bis (L-asparaginato) Zn (II). The zero field splitting parameters (ZFSPs) D and E are then investigated using perturbation theory and microscopic spin Hamiltonian (SH) theory. The calculated ZFS parameters are compared with the experimental values obtained by electron paramagnetic resonance. Both the zero field splitting parameters (ZFSPs) D and E evaluated theoretically are in good agreement with the experimental values. The results support the notion that the Mn(2+) ion occupies interstitial site in Bis (L-asparaginato) Zn (II). PMID:22391223

  15. Hydropower in Sweden : An investigation of the implications of adding detail to the modelling of hydropower in OSeMOSYS

    OpenAIRE

    Flood, Cecilia

    2015-01-01

    The purpose of this thesis is to generate a deeper understanding of the representation of hydropower in long-term models. This is done by mapping and modelling (cascading) hydropower in Sweden with the Open Source energy MOdelling SYStem (OSeMOSYS). The first part of the thesis builds on a literature review and provides an introduction to hydropower in Sweden. The second part focuses on implementing the storage equations in OSeMOSYS. These are applied by modelling hydropower at various levels...

  16. The sustainability of hydropower projects in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    de Methodio Maranhao Neto, Gil; Yana, Laurent

    2010-09-15

    The construction of hydropower plants unquestionably impacts the environment and communities. But countries such as Brazil have been able to build up a sophisticated socio-environmental legislation and institutions as well as a democratic and participative licensing process to protect the nature and the population affected. In some cases, plants greatly contribute towards the creation of local welfare to the population as well as good environmental practices. As a good example of best practices on socio-environmental standards, we will analyze Jirau Hydropower Project, currently under construction on the Madeira River, north of Brazil.

  17. Different Aspects of Flushing of Hydropower Intakes

    OpenAIRE

    Nielsen, Lars Eid; Rettedal, Bjørnar

    2012-01-01

    Different design criteria for successful flushing of hydropower headworks have been evaluated. Main focus has been on handling of floating debris for small hydropower plant in Norway, as well as sediment handling for run of the river-projects in sediment-carrying rivers. As a new way of cleaning intake screens clogged by debris, the concept of backflushing has been investigated. The intake screen, called trash rack, is then cleaned by a reveresed water flow over a short period of time, and th...

  18. 76 FR 30937 - Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar

    Science.gov (United States)

    2011-05-27

    ... Energy Regulatory Commission Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar The Federal Energy Regulatory Commission (FERC) will host a Small/ Low-Impact Hydropower Webinar on June 22, 2011, from 12 noon to 1 p.m. Eastern Daylight Time. The webinar will be...

  19. 75 FR 65012 - Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar

    Science.gov (United States)

    2010-10-21

    ... Energy Regulatory Commission Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar October 13, 2010. The Federal Energy Regulatory Commission will host a Small/Low- Impact Hydropower Webinar on November 10, 2010, from 12 noon to 1 p.m. Eastern Time. The...

  20. 76 FR 81929 - Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar

    Science.gov (United States)

    2011-12-29

    ... Energy Regulatory Commission Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar The Federal Energy Regulatory Commission will host a Small/Low- Impact Hydropower Webinar on January 25, 2012, from 12:00 noon to 1:30 p.m. Eastern Standard Time. The webinar...

  1. Hydrodynamic parameters estimation from self-potential data in a controlled full scale site

    Science.gov (United States)

    Chidichimo, Francesco; De Biase, Michele; Rizzo, Enzo; Masi, Salvatore; Straface, Salvatore

    2015-03-01

    A multi-physical approach developed for the hydrodynamic characterization of porous media using hydrogeophysical information is presented. Several pumping tests were performed in the Hydrogeosite Laboratory, a controlled full-scale site designed and constructed at the CNR-IMAA (Consiglio Nazionale delle Ricerche - Istituto di Metodologia per l'Analisi Ambientale), in Marsico Nuovo (Basilicata Region, Southern Italy), in order to obtain an intermediate stage between laboratory experiments and field survey. The facility consists of a pool, used to study water infiltration processes, to simulate the space and time dynamics of subsurface contamination phenomena, to improve and to find new relationship between geophysical and hydrogeological parameters, to test and to calibrate new geophysical techniques and instruments. Therefore, the Hydrogeosite Laboratory has the advantage of carrying out controlled experiments, like in a flow cell or sandbox, but at field comparable scale. The data collected during the experiments have been used to estimate the saturated hydraulic conductivity ks [ms-1] using a coupled inversion model working in transient conditions, made up of the modified Richards equation describing the water flow in a variably saturated porous medium and the Poisson equation providing the self-potential ϕ [V], which naturally occurs at points of the soil surface owing to the presence of an electric field produced by the motion of underground electrolytic fluids through porous systems. The result obtained by this multi-physical numerical approach, which removes all the approximations adopted in previous works, makes a useful instrument for real heterogeneous aquifer characterization and for predictive analysis of its behavior.

  2. Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems

    OpenAIRE

    Pinte, D.; A. Tilmant; Q. Goor

    2009-01-01

    This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water, which remains to a large extent independent of the availability of water in the basin. The opp...

  3. Peru : Overcoming the Barriers to Hydropower

    OpenAIRE

    World Bank

    2010-01-01

    Hydropower has been the major source of electricity in Peru, traditionally supplying more than 80 percent of electricity requirements, and serving as a source of independent generation for major mines and industries. With the development of natural gas in the early 1990s, and the opening of the Camisea pipeline, the Government of Peru's (GOP's) attention turned to providing incentives for ...

  4. Hydropower and the world's energy future

    International Nuclear Information System (INIS)

    The potential role of hydropower in the context of world-wide demographic growth and increasing demand for energy, and the benefits inherent in hydroelectric power in comparison with other energy options are discussed. Environmental and social impacts, and examples of mitigation measures are reviewed. Recommendations regarding best practices in the future development of hydroelectric power projects proposed

  5. Proven but new. Innovation of hydropower

    Energy Technology Data Exchange (ETDEWEB)

    Harreiter, Herfried [Verbund Hydro Power AG, Vienna (Austria); Godde, Dominik [E.ON Generation GmbH, Hannover (Germany); Zickermann, Richard [ALSTOM (Schweiz) AG, Baden (Switzerland)

    2012-07-01

    Hydropower has been utilised traditionally and its technology is being further developed and advanced. Current developments are addressed by outlining the challenges for operators and manufacturers. The case examples show a wide range of possible innovations. This refers to single components up to novel overall concepts like hybrid plants and compact turbine plants as well as run-of-river power plants. (orig.)

  6. Effects on water quality from mud clearance operations in the Pezze' hydropower basin (Trentino, Italy)

    International Nuclear Information System (INIS)

    The present paper describes dynamic concentration for various parameters, that have been monitored through both continuous and instant samplings, during maintenance operations (mud deposit clearance) in a hydropower basin along Torrent Avisio in Trentino region, Italy. Aim of the work is to demonstrate that, during such operations, an organic water pollution occur besides turbidity. The former is well expressed by a marked value increment of different parameters, as total phosphorus, ammonium and organic matter

  7. High-Resolution Free-GIS operations to assist hydropower potential assessment

    Science.gov (United States)

    Ganora, Daniele; Gallo, Enrico; Masoero, Alessandro; Laio, Francesco; Claps, Pierluigi

    2013-04-01

    Even in regions with mature hydropower development, needs for renewable energy suggest to revise plans of exploitation of water resources, according to EU and national environmental regulations. High resolution hydrological analysis is then needed to comply with the effects of existing hydropower plants and of other water withdrawals. Flow duration curves (FDC) are the tool usually adopted to represent water availability and variability for hydropower purposes. For this study, developed within the RENERFOR-ALCOTRA Project, a regional "spatially smooth" model has been developed for FDC estimation: the procedure adopted relates the L-moments of the FDC to several geomorphoclimatic parameters (more than 100), with the purpose to directly reconstruct a "naturalized" FDC. The proposed procedure is systematically extended to all the gauged basins located in Northwestern Italy, which is an area characterized by the presence of a large number of dams. For each basin, the annual average FDC is computed, its L-moments are calculated and corrected using a simplified model that takes into account the effect of upstream reservoirs and power plants. Then, each corrected L-moment is regionalized using multiple regressions techniques, allowing one to reconstruct the L-moments at any ungauged basin. Finally, the "naturalized" FDC is reconstructed at the ungauged site on the basis of the predicted L-moments. Due to necessity of obtaining high-resolution estimates, the method has been designed to keep the estimates of mean annual runoff congruent in the confluences. This feature is obtained considering only raster-summable explanatory variables, which are only a subset of the available descriptors. The residual hydropower potential is evaluated by mapping the mean naturalized flow estimated for each pixel of a DEM-derived river network raster model in two mountain basins used as case studies. Applying extensively the proposed methodology, the mean annual flow is reconstructed not only in some significant sections, but in all the about 25000 sections defined by each network pixel. We used a 50 m DEM to compute, for each network pixel, the upstream watershed and all the morpho-climatic characteristics needed in the regional model. Maps obtained can return flow-altitude relations for each pixel along a drainage path assuming different possible headrace length (1, 2.5 and 5 km). Spatial algorithms and data management are developed by the use of the Free&OpenSource software GRASS GIS and PostgreSQL as database manager, integrated with PostGIS elaboration to create the outputs. The large number of data and the complexity of the information derived required some thinking about the best way to access and represent the data, that has to be easy-to-use also for no-expert GIS users.

  8. Preliminary study: small hydropower installation on the Steintalerbach stream in Ebnat-Kappel - Reactivation of the 'Muehle' hydropower plant

    International Nuclear Information System (INIS)

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a preliminary study made on the reactivation of an existing but disused hydropower plant. The report describes the current situation at the site, where originally three water-wheels were in use. The new project is described, which foresees a new 231 kW turbine integrated into a new building on the site as well as new weir, a fish ladder and a new water conduit. The local topographical and hydrological situation is discussed. Three project variants for different water volumes are discussed and compared. The variant chosen for possible realisation is described. Figures are given on investment and operating costs, the price of the power produced and the installation's economic viability. Further topics relating to environmental protection issues are also discussed

  9. Relationship between environmental parameters and Pinus sylvestris L. site index in forest plantations in northern Spain acidic plateau

    Directory of Open Access Journals (Sweden)

    Bueis T

    2016-01-01

    Full Text Available The assessment of forest productivity at early stages of stand development may help to define the most appropriate silviculture treatment to be applied for each stand. Site index (dominant height at a reference age is a useful tool for forest productivity estimation. The aim of this study was to develop a model to predict site index for Scots pine (Pinus sylvestris L. plantations in northern Spain acidic plateau by using soil (physical, chemical and biochemical, climatic and physiographic parameters. To meet this objective, data from 35 stands classified into three different site quality classes and 63 soil, climatic and physiographic parameters were examined in order to develop a discriminant model. After selecting 12 discriminant models which were biologically consistent and presented the higher cross-validated rate of correct classification, a model including four parameters (latitude, inorganic Al, porosity and microbial biomass carbon as predictors was chosen. The discriminant model classified 71% of cases correctly and no inferior-quality stands were misassigned to the highest quality class. Soil and physiographic parameters included in the above model are easily obtainable in the field or by simple laboratory analysis, thus our results can be easily integrated in operational forestry to determine site quality.

  10. Extreme value analysis of meteorological parameters observed during the period (1961-2010) for Tarapur Maharashtra Site, Tarapur, India

    International Nuclear Information System (INIS)

    The design of engineering structures requires an understanding of extreme weather conditions that may occur at the site of interest, which is very essential, so that the structures can be designed to withstand weather stresses. In this report an analysis of extreme values of meteorological parameters observed at Tarapur site for the period 1961-2010 is described. The parameters considered are extreme air temperatures, estimated wind gusts at 10 m height, and rainfall data. Extreme value statistical analysis of various meteorological parameters using best fit least square graphical method and order statistics Lieblein technique are compared and results are found to be in good agreement. These derived extreme values are particularly useful for arriving at suitable design values to ensure the safety of any civil structure in Tarapur area with respect to stresses due to weather conditions

  11. Groundwater numerical modelling of the Fjaellveden study site - evaluation of parameter variations

    International Nuclear Information System (INIS)

    The sensitivity/uncertainty of the hydraulic conductivity distribution in crystalline rocks is considered at the Fjaellveden study site - a site included in the Swedish site selection programme for final storage of spent nuclear fuel. A three-dimensional FEM-model assuming steady-state flow with constant fluid properties under saturated conditions is used. The bedrock of the site is divided into three hydraulic units; rock mass, local and regional fracture zones. The data set of hydraulic conductivity of each unit has been treated statistically in various ways, reflecting different aspects of the physical conditions of the site. A total of nine cases have been prepared, all based on 214 data points. (orig./HP)

  12. Parameter Estimation and Sensitivity Analysis of an Urban Surface Energy Balance Parameterization at a Tropical Suburban Site

    Science.gov (United States)

    Harshan, S.; Roth, M.; Velasco, E.

    2014-12-01

    Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model validation studies to identify inherent deficiencies in model physics.

  13. MOSE: optical turbulence and atmospherical parameters operational forecast at ESO ground-based sites. II: atmospherical parameters in the surface layer [0-30] m

    CERN Document Server

    Lascaux, Franck; Fini, Luca

    2013-01-01

    This article is the second of a series of articles aiming at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature, relative humidity) and the optical turbulence (Cn2 and the derived astro-climatic parameters like seeing, isoplanatic angle, wavefront coherence time...). This study is done in the framework of the MOSE project, and focused above the two ESO ground-bases sites of Cerro Paranal and Cerro Armazones. In this paper we present the results related to the Meso-Nh model ability in reconstructing the surface layer atmospherical parameters (wind speed intensity, wind direction and absolute temperature, [0-30] m a.g.l.). The model reconstruction of all the atmospherical parameters in the surface layer is very satisfactory. For the temperature, at all levels, the RMSE (Root Mean Square Error) is inferior to 1{\\deg}C. For the wind speed, it is ~2 m/s, and for the wind direction, it is in the ran...

  14. Environmentally feasible potential for hydropower development regarding environmental constraints

    International Nuclear Information System (INIS)

    In addition to technical and economical reasons, environmental impacts are becoming an increasingly important issue in the policy making of hydropower development. According to different spatial scales, environmental impacts of hydropower projects can be divided into environmental impacts around a plant and environmental impacts downstream. The former can be transformed into a uniformed quantification based on CO2 equivalent (CO2-e), while the latter can be quantified in terms of reduced downstream flow. Environmental constraints around a plant are presented as the minimum production of environmental impacts around a plant, while those downstream are presented as not affecting the downstream environmental flow requirements. Based on five large hydropower projects (LHPs) and 10 small hydropower projects (SHPs) cases in Tibet, China, LHPs have greater environmental impacts around a plant when compared with SHP, but the opposite is true for downstream environmental impacts. For environmental constraints around a plant and downstream, the environmentally feasible potential for hydropower development on the Lhasa River is 398.3 MW, which accounts for 15.6% of its theoretical potential, while the optimized hydropower mode choice is 285.7 MW for LHP and 112.6 MW for SHP. Environmentally feasible potential aims to balance hydropower generation with environmental protection, and tends to maximize the low carbon attributes of hydropower. - Highlights: • We propose an environmentally feasible potential (EFP) for hydropower development. • EFP depends on environmental constraints (EC) around a plant and EC downstream. • Environmentally feasible hydropower potential on the Lhasa River is 398.3 MW

  15. MCDA or MCDM Based Selection of Transmission Line Conductor: Small Hydropower Project Planning and Development

    Directory of Open Access Journals (Sweden)

    Priyabrata Adhikary

    2014-02-01

    Full Text Available Small hydropower projects are emerging as a solution for sustainable, green, environment friendly, long term and cost-effective source of renewable energy in India for the future. Selecting the appropriate small hydropower project and its parameters in which to invest is a critical task involving different factors and policies. Hence such decision-making can be viewed as a multiple criteria analysis problem with correlating criteria and alternatives. This task should take into consideration several conflicting aspects because of the increasing complexity of the social, technological, environmental, and economic factors. Traditional single criteria decision-making approaches cannot handle the complexity of such systems. Multi criteria methods provide a better and flexible tools. This paper aims to evaluate applicability of multi criteria decision aid to decision makers during the small hydropower project planning and development. To the best of the author’s knowledge this novel approach for application of MCDA or MCDM to small hydropower project planning and development scenario is absent in renewable energy literatures due to its assessment complexity.

  16. Environmental redesign of hydropower. Potential and examples

    Energy Technology Data Exchange (ETDEWEB)

    Harby, Atle; Forseth, Torbjoern

    2010-07-01

    Full text: Most of the Norwegian hydropower system was designed more than 30 years ago when environmental concern was lower and the focus was on energy supply security. In the recent years, environmental impacts have gained more focus and we have obtained more knowledge about the function of aquatic ecosystems and their relationship to changes caused by river regulation. The energy system has been operated as a free marked for many years and the future scenarios with integration of an increased amount of intermittent energy sources will lead to changes in the operation of regulated rivers. On top of this, climate change is another factor that has both direct and indirect impacts on the operation of hydropower systems. The combination of more focus on environmental impacts, changes in operation strategies and climate change may create possibilities to increase both the power production income and the environmental conditions in regulated rivers. If this is combined with upgrading and refurbishment, the potential of creating 'win-win' for both power production and the environmental conditions is even higher. The principle for win-win situations will be drawn and some examples of this will be shown. In order to mitigate the negative impacts of hydropower development in the River Surna in Mid-Norway, several options are investigated to optimize the mitigation. In the section with reduced flow, a small hydropower plant may release diverted water back into the river. The amount and timing of flow released through the small hydropower plant are studied to increase fish production. Fish growth in summer is affected by cold water release from the reservoir, and several alternative intake solutions are investigated in order to increase fish growth. Due to hydro operations, potential stranding of fish are investigated. Results will also include the cost and gains of each alternative. Scenarios of climate change and possible changes in air temperature, water temperature and discharge in the regulated river Orkla in Norway was studied in order to predict possible impacts on Atlantic salmon (salmo salar) populations. Results indicates increased hydropower production, less spill of water, higher discharge in winter, reduced periods with surface ice cover, higher water temperature in spring and early summer, increased energy consumption in salmon and then higher mortality in winter, increased growth of salmon during spring and better conditions for fish migration in regulated rivers. The overall results indicates increased production of energy and salmon. (Author)

  17. Influence of the operation of small hydropower station on the communities of selected groups of macrozoobenthos (Ephemeroptera, Plecoptera, Trichoptera) of the submountain section of Hucava river (Polana Mts., Slovakia) - preliminary results

    International Nuclear Information System (INIS)

    The influence of a small hydropower station on communities of mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera) was studied in the metarhithral section of Hucava stream. Natural flow (Hucava 1 = reference site) was compared with reduced flow (Hucava 2) and peak flow regime (Hucava 3). We have not found significant reduction of the number of taxa and indices of diversity and equitability at sites affected by operation of the hydropower station. Stoneflies were the only group that showed the expected decrease. Relative changes (%) in density of studied groups at affected sites also did not support the assumption of an adverse effect of the small hydropower station. (authors)

  18. Better estimation of protein-DNA interaction parameters improve prediction of functional sites

    Directory of Open Access Journals (Sweden)

    O'Flanagan Ruadhan A

    2008-12-01

    Full Text Available Abstract Background Characterizing transcription factor binding motifs is a common bioinformatics task. For transcription factors with variable binding sites, we need to get many suboptimal binding sites in our training dataset to get accurate estimates of free energy penalties for deviating from the consensus DNA sequence. One procedure to do that involves a modified SELEX (Systematic Evolution of Ligands by Exponential Enrichment method designed to produce many such sequences. Results We analyzed low stringency SELEX data for E. coli Catabolic Activator Protein (CAP, and we show here that appropriate quantitative analysis improves our ability to predict in vitro affinity. To obtain large number of sequences required for this analysis we used a SELEX SAGE protocol developed by Roulet et al. The sequences obtained from here were subjected to bioinformatic analysis. The resulting bioinformatic model characterizes the sequence specificity of the protein more accurately than those sequence specificities predicted from previous analysis just by using a few known binding sites available in the literature. The consequences of this increase in accuracy for prediction of in vivo binding sites (and especially functional ones in the E. coli genome are also discussed. We measured the dissociation constants of several putative CAP binding sites by EMSA (Electrophoretic Mobility Shift Assay and compared the affinities to the bioinformatics scores provided by methods like the weight matrix method and QPMEME (Quadratic Programming Method of Energy Matrix Estimation trained on known binding sites as well as on the new sites from SELEX SAGE data. We also checked predicted genome sites for conservation in the related species S. typhimurium. We found that bioinformatics scores based on SELEX SAGE data does better in terms of prediction of physical binding energies as well as in detecting functional sites. Conclusion We think that training binding site detection algorithms on datasets from binding assays lead to better prediction. The improvements in accuracy came from the unbiased nature of the SELEX dataset rather than from the number of sites available. We believe that with progress in short-read sequencing technology, one could use SELEX methods to characterize binding affinities of many low specificity transcription factors.

  19. The 1986 Dharamsala earthquake of Himachal Himalaya estimates of source parameters, average intrinsic attenuation and site amplification functions

    Science.gov (United States)

    Sri Ram, V.; Kumar, Dinesh; Khattri, K. N.

    2005-10-01

    The 26th April 1986 Dharamsala earthquake (mb 5.5) occurred in the Kangra region of Himachal Himalaya, which lies in the rupture zone of great Kangra earthquake of 1905. This was the first moderate sized earthquake to be recorded at a few sites of the strong ground motion array in the NW Himalaya. The accelerograms of this earthquake have been used to estimate its source parameters, site amplification functions and to estimate the effective shear wave attenuation factor Q? in the frontal region of Himachal Himalaya. A double couple fault plane solution for the earthquake has been obtained based on the spectra of the transverse component of the accelerograms. The estimated values of the source parameters are seismic moment: 2.1×1024 dyne-cm, static stress drop (??): 36 bars, source radius (r): 2.8 km and moment magnitude (Mw): 5.4. The estimated average values of effective shear wave attenuation factor Q? for various sites are in the range of 125 to 300 with an overall spatial average of 239. The influence of local site effects on the observed PGA values have been examined on the basis of site amplification functions.

  20. Environmental certification for small hydropower plants

    International Nuclear Information System (INIS)

    This report for the Swiss Federal Institute for Environmental Science and Technology describes product-differentiation options for small hydropower plant in Switzerland and proposes a form of differentiation based on ecological characteristics as a promising market strategy. The labels created in various countries to assure customers of the environmental compatibility of 'green' power production are looked at. In particular, the implications for small hydropower plant associated with the Swiss green power labelling procedure introduced by the Association for the Promotion of Environmentally Sound Electricity (VUE) are discussed. The report proposes a simplified procedure for these small power stations and presents a sample calculation for the overall costs of certification. The report is rounded off with four detailed case studies in which the necessary upgrades to the plant and associated costs are discussed in detail

  1. Small hydropower station in Lavin - Preliminary study

    International Nuclear Information System (INIS)

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a preliminary study regarding a proposed small hydropower installation on the alpine river Lavinuoz in Lavin, Switzerland. The geographical situation with mountains and glaciers in the catchment area of the proposed hydropower installation is discussed as are the appropriate water catchment installations. Possible dangers caused by avalanches and rock fall are examined. The power to be produced - 5,500,000 kWh/y - by the turbine which is nominally rated at 1350 kW is discussed, as are estimates of production costs. Figures on the investments required and the economic feasibility of the project are discussed, as are environmental factors that are to be taken into account.

  2. Site environmental report for Calendar Year 1994 on radiological and nonradiological parameters

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-30

    Battelle Memorial Institute`s nuclear research facilities are currently being maintained in a surveillance and maintenance (S&M) mode with continual decontamination and decommissioning (D&D) activities being conducted under Department of Energy (DOE) Contract W-7405-ENG-92. These activities are referred to under the Contract as the Battelle Columbus Laboratories Decommissioning Project (BCLDP). Operations referenced in this report are performed in support of S&M and D&D activities. Battelle`s King Avenue facility is not considered in this report to the extent that the West Jefferson facility is. The source term at the King Avenue site is a small fraction of the source term at the West Jefferson site. Off site levels of radionuclides that could be attributed to the west Jefferson and King Avenue nuclear operations wereindistinguishable from background levels at specific locations where air, water, and direct radiation measurements were performed. Environmental monitoring continued to demonstrate compliance by Battelle with federal, state and local regulations. Routine, nonradiological activities performed include monitoring liquid effluents and monitoring the ground water system for the West Jefferson North site. Samples of various environmental media including air, water, grass, fish, field and garden crops, sediment and soil were collected from the region surrounding the two sites and analyzed.

  3. Information on Hydrologic Conceptual Models, Parameters, Uncertainty Analysis, and Data Sources for Dose Assessments at Decommissioning Sites

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philip D.; Gee, Glendon W.; Nicholson, Thomas J.

    2000-02-28

    This report addresses issues related to the analysis of uncertainty in dose assessments conducted as part of decommissioning analyses. The analysis is limited to the hydrologic aspects of the exposure pathway involving infiltration of water at the ground surface, leaching of contaminants, and transport of contaminants through the groundwater to a point of exposure. The basic conceptual models and mathematical implementations of three dose assessment codes are outlined along with the site-specific conditions under which the codes may provide inaccurate, potentially nonconservative results. In addition, the hydrologic parameters of the codes are identified and compared. A methodology for parameter uncertainty assessment is outlined that considers the potential data limitations and modeling needs of decommissioning analyses. This methodology uses generic parameter distributions based on national or regional databases, sensitivity analysis, probabilistic modeling, and Bayesian updating to incorporate site-specific information. Data sources for best-estimate parameter values and parameter uncertainty information are also reviewed. A follow-on report will illustrate the uncertainty assessment methodology using decommissioning test cases.

  4. Electron paramagnetic resonance parameters of V 2+ ions in both Cd 2+ sites of CsCdCl 3 crystal

    Science.gov (United States)

    Wen-Chen, Zheng; Shao-Yi, Wu

    2002-01-01

    From the perturbation formulas based on a two-spin-orbit-parameter model, the electron paramagnetic resonance (EPR) zero-field splitting ( D), g-factors ( g//, g?) and hyperfine structure constants ( A//, A?) for V 2+ in Cd 2+(I) and Cd 2+(II) sites of CsCdCl 3 crystal at room and liquid nitrogen temperatures are calculated. From the calculations, the signs of zero-field splittings and hyperfine structure constants are determined and so all of the EPR parameters are explained reasonably on the basis of the structure data of lattice.

  5. Hydropower in Turkey: potential and market assessment

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-15

    The Turkish hydropower market provides huge opportunities for investors and suppliers. Successful market entry is not easy, however, as the market is still not fully liberalized, the need for local intelligence is large and the competition is increasing. There are also potential political, reputational and environmental risks, typical for an emerging economy. The World Bank global 'Ease of doing business' ranking (2010), ranks Turkey as number 73 of 183 countries. (Author)

  6. Water-quality impact assessment for hydropower

    International Nuclear Information System (INIS)

    A methodology to assess the impact of a hydropower facility on downstream water quality is described. Negative impacts can result from the substitution of discharges aerated over a spillway with minimally aerated turbine discharges that are often withdrawn from lower reservoir levels, where dissolved oxygen (DO) is typically low. Three case studies illustrate the proposed method and problems that can be encountered. Historic data are used to establish the probability of low-dissolved-oxygen occurrences. Synoptic surveys, combined with downstream monitoring, give an overall picture of the water-quality dynamics in the river and the reservoir. Spillway aeration is determined through measurements and adjusted for temperature. Theoretical computations of selective withdrawal are sensitive to boundary conditions, such as the location of the outlet-relative to the reservoir bottom, but withdrawal from the different layers is estimated from measured upstream and downstream temperatures and dissolved-oxygen profiles. Based on field measurements, the downstream water quality under hydropower operation is predicted. Improving selective withdrawal characteristics or diverting part of the flow over the spillway provided cost-effective mitigation solutions for small hydropower facilities (less than 15 MW) because of the low capital investment required

  7. India's hydropower vision to 2030 - environmental issues

    International Nuclear Information System (INIS)

    The economic advantages of hydropower has been enhanced in the recent years with the steep increases in the energy costs from fossil fuel and the rapid approaching limits to the exploitable resources of such fuels. It is a matter of concern that the share of hydropower in the total installed capacity in India has been declining in successive plans. In the 1962-63, hydro projects had a 50% share in the total installed capacity which has declined to 24%. Such a dismal share of hydro thermal mix is adversely affecting the optimal utilisation of natural and financial resources besides resulting in failure of power grids. Even a layman can appreciate that in the situation of monsoonic weather the storage of river flows during floods is unavoidable not only to meet the basic needs of bulging population for diverse uses but also to moderate the floods, droughts and poverty. This article focuses on the environmental issues related to hydropower and river valley projects, while pinpointing the vital need of large storage projects in India. The water is becoming scarcer in India due to bulging population; but the environmental activism and biased media reporting are creating large scale obstructions in the execution of hydro projects

  8. China’s rising hydropower demand challenges water sector

    OpenAIRE

    Junguo Liu; Dandan Zhao; P. W. Gerbens-Leenes; Dabo Guan

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9?×?109?m3?(Gm3), or 22% of China’s total water consumption. Ignoring...

  9. A GIS based assessment of hydropower potential in Hornád basin

    OpenAIRE

    ?ofia Kuzevi?ová; Marcela Gerge?ová; Štefan Kuzevi?

    2013-01-01

    The issue of efficient use of hydropower, ones of the available renewable resources is currently in the process of sustainable development of each country, often addressing the issue. Incite multiple aspects. It is now seen just growing interest in exploiting the potential of hydropower. On the basis of active efforts are developed to map the total quantity of usability hydropower at basin level in Slovakia. GIS as a powerful and sophisticated tool for processing spatially localized informati...

  10. Hydropower Reservoir and Sedimentation : A Study of Nam Ngum Reservoir

    OpenAIRE

    Dahal, Sujan

    2013-01-01

    Hydropower accounts for approximately one fifth of the world’s electricity supply and is the best renewable energy source to meet the energy consumption of the world. With ever increasing energy demands hydropower-related construction is on the increase all over the world. Although the energy production from hydropower is efficient and cheap, the social and environmental cost can be high, with downstream ecosystem impacts caused by water quality, hydrological and sediment flux changes. In ...

  11. Pumped-storage with small hydropower – an option?

    OpenAIRE

    Mailler, Benoît; Heller, Philippe; CRETTENAND, Nicolas

    2011-01-01

    This paper contributes towards exploring the technical and institutional feasibility of small hydropower storage and pumped-storage schemes in Switzerland. Within the European and Swiss context of the facilitation of renewable energy technologies, which includes small hydropower (SHP), intermittent sources such as solar and wind increase the need for additional energy storage capacities. Hydropower pumped-storage schemes remain the most efficient and profitable option to “store” electricity. ...

  12. 75 FR 7469 - Panel Member List for Hydropower Licensing Study Dispute Resolution; Notice Extending Filing Date...

    Science.gov (United States)

    2010-02-19

    ... Energy Regulatory Commission Panel Member List for Hydropower Licensing Study Dispute Resolution; Notice Extending Filing Date for Applications for Panel Member List for Hydropower Licensing Study Dispute... in the Commission's hydropower integrated licensing process (ILP) study dispute resolution...

  13. 75 FR 67993 - Hydropower Resource Assessment at Existing Reclamation Facilities-Draft Report

    Science.gov (United States)

    2010-11-04

    ... Bureau of Reclamation Hydropower Resource Assessment at Existing Reclamation Facilities--Draft Report... Bureau of Reclamation has made available for public review and comment the ``Hydropower Resource... and technical potential for hydropower development at existing Bureau of Reclamation...

  14. Determination of transfer coefficients soil/vegetation by means of site-specific soil parameters

    International Nuclear Information System (INIS)

    The transfer of Sr and Cs to different forms of vegetation is influenced by a great number of soil properties, some parameters playing a key part for certain nuclides. The dominant factor for the uptake of Sr is the exchangeable Ca content of the soil. The transfer of Cs to different plants on the other hand is affected by several properties of the soil in about equal strength, for different types of plant and soil one or the other parameter having got greater influence. (orig.) 891 HP/orig. 892 MB

  15. Cross-sectional evaluation of clinical parameters to select high prevalence populations for periodontal disease: the site comparative severity methodology

    Scientific Electronic Library Online (English)

    Sérgio Luís Scombatti de, Souza; Mario, Taba Jr..

    Full Text Available Estudos epidemiológicos mostraram fortes evidências de que a doença periodontal não afeta todos os indivíduos da mesma maneira. Existem indivíduos e sítios com maior risco de ocorrer progressão da doença. Este estudo testou parâmetros para a seleção "a priori" de sítios e indivíduos potencialmente d [...] e risco. Foram utilizados para tal os dados dos exames clínicos periodontais de 2273 pacientes. A perda de inserção clínica foi medida em 6 sítios por dente. Usando um programa de computador, os pacientes foram distribuídos em 14 grupos etários, com intervalos de 5 anos, a partir dos 11 anos de idade e até acima de 75 anos. A medida de cada sítio foi comparada com a média e a mediana da faixa etária do indivíduo, com o resultado da comparação com a mediana indicando a comparação da severidade do sítio (CSS). Foram calculados três parâmetros globais do indivíduo: parâmetro 1 (P1) - porcentagem de sítios com perda de inserção clínica > 4 mm; parâmetro 2 (P2) - porcentagem de sítios com perda de inserção clínica > 7 mm; parâmetro 3 (P3) - porcentagem de sítios com perda de inserção clínica superando a mediana do grupo etário em 100% ou mais. A amostra tinha 1466 (65%) mulheres e 807 (35%) homens. A maioria dos indivíduos apresentou valores de P1, P2 e P3 menores que 30%. O parâmetro 3 permitiu uma divisão da amostra de forma similar àquela realizada por P1 e P2, com a vantagem de analisar o indivíduo em relação a seu grupo etário. Com base nos resultados, sugere-se que a metodologia da CSS possa ser útil na seleção de uma população de alta prevalência de doença, e que linhas de corte entre 10% e 20% seriam as mais apropriadas para o uso do parâmetro 3. Abstract in english Epidemiological studies have shown strong evidence that periodontal disease does not affect all subjects in the same manner. There are subjects and sites with higher risk for disease progression. This study tested parameters to select "a priori" sites and subjects potentially at risk. The data from [...] periodontal clinical examinations of 2273 subjects was used. The clinical loss of attachment was measured in 6 sites per tooth. Using computer software, the patients were distributed into 14 age groups, with intervals of 5 years, from 11 years to greater than 75 years of age. The measure of each site was compared with the average and the median values of the subject age group, with the results indicating site comparative severity (SCS). Three global parameters were calculated: parameter 1 (P1) - percentage of sites with clinical attachment loss > 4 mm; parameter 2 (P2) - percentage of sites with clinical attachment loss > 7 mm; parameter 3 (P3) - percentage of sites with clinical attachment loss surpassing the median value for the age group by 100% or more. There were 1466 (65%) females and 807 (35%) males. Most subjects had P1, P2 and P3 values less than 30%. Parameter 3 allowed a division of the sample similar to that of Parameters 1 and 2, with the advantage of analyzing the subject in relation to his/her age group. It was suggested that the methodology of SCS is useful for selecting a population with a high disease prevalence, and that cut-off lines between 10% and 20% would be appropriate for using Parameter 3.

  16. Energy-Water Nexus Relevant to Baseload Electricity Source Including Mini/Micro Hydropower Generation

    Science.gov (United States)

    Fujii, M.; Tanabe, S.; Yamada, M.

    2014-12-01

    Water, food and energy is three sacred treasures that are necessary for human beings. However, recent factors such as population growth and rapid increase in energy consumption have generated conflicting cases between water and energy. For example, there exist conflicts caused by enhanced energy use, such as between hydropower generation and riverine ecosystems and service water, between shale gas and ground water, between geothermal and hot spring water. This study aims to provide quantitative guidelines necessary for capacity building among various stakeholders to minimize water-energy conflicts in enhancing energy use. Among various kinds of renewable energy sources, we target baseload sources, especially focusing on renewable energy of which installation is required socially not only to reduce CO2 and other greenhouse gas emissions but to stimulate local economy. Such renewable energy sources include micro/mini hydropower and geothermal. Three municipalities in Japan, Beppu City, Obama City and Otsuchi Town are selected as primary sites of this study. Based on the calculated potential supply and demand of micro/mini hydropower generation in Beppu City, for example, we estimate the electricity of tens through hundreds of households is covered by installing new micro/mini hydropower generation plants along each river. However, the result is based on the existing infrastructures such as roads and electric lines. This means that more potentials are expected if the local society chooses options that enhance the infrastructures to increase micro/mini hydropower generation plants. In addition, further capacity building in the local society is necessary. In Japan, for example, regulations by the river law and irrigation right restrict new entry by actors to the river. Possible influences to riverine ecosystems in installing new micro/mini hydropower generation plants should also be well taken into account. Deregulation of the existing laws relevant to rivers and further incentives for business owners of micro/mini hydropower generation along with current feed-in tariff are required if our society choose an option to enhance the renewable energy.

  17. BCLDP site environmental report for calendar year 1997 on radiological and nonradiological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fry, J.

    1998-09-30

    Battelle Memorial Institute currently maintains its retired nuclear research facilities in a surveillance and maintenance (S and M) mode and continues decontamination and decommissioning (D and D) activities. The activities are referred to as the Battelle Columbus Laboratories Decommissioning Project (BCLDP). Operations reference in this report are performed in support of S and M and D and D activities. The majority of this report is devoted to discussion of the West Jefferson facility, because the source term at this facility is larger than the source term at Battelle`s King Avenue site. The contamination found at the King Avenue site consists of small amounts of residual radioactive material in solid form, which has become embedded or captured in nearby surfaces such as walls, floors, ceilings, drains, laboratory equipment, and soils. By the end of calendar year (CY) 1997, most remediation activities were completed at the King Avenue site. The contamination found at the West Jefferson site is the result of research and development activities with irradiated materials. During CY 1997, multiple tests at the West Jefferson Nuclear Sciences Area found no isotopes present above the minimum detectable activity (MDA) for air releases or for liquid discharges to Big Darby Creek. Data obtained from downstream sampling locations were statistically indistinguishable from background levels.

  18. BCLDP site environmental report for calendar year 1997 on radiological and nonradiological parameters

    International Nuclear Information System (INIS)

    Battelle Memorial Institute currently maintains its retired nuclear research facilities in a surveillance and maintenance (S and M) mode and continues decontamination and decommissioning (D and D) activities. The activities are referred to as the Battelle Columbus Laboratories Decommissioning Project (BCLDP). Operations reference in this report are performed in support of S and M and D and D activities. The majority of this report is devoted to discussion of the West Jefferson facility, because the source term at this facility is larger than the source term at Battelle's King Avenue site. The contamination found at the King Avenue site consists of small amounts of residual radioactive material in solid form, which has become embedded or captured in nearby surfaces such as walls, floors, ceilings, drains, laboratory equipment, and soils. By the end of calendar year (CY) 1997, most remediation activities were completed at the King Avenue site. The contamination found at the West Jefferson site is the result of research and development activities with irradiated materials. During CY 1997, multiple tests at the West Jefferson Nuclear Sciences Area found no isotopes present above the minimum detectable activity (MDA) for air releases or for liquid discharges to Big Darby Creek. Data obtained from downstream sampling locations were statistically indistinguishable from background levels

  19. Next Generation Hydropower Technology: Available, Economical, Quickly Deployed, While Minimizing The Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Imad

    2010-09-15

    The Kinetic Energy Recovery Turbine TREK technology is an innovative technology that will convert a fraction of the kinetic energy contained in rivers currents. The TREK technology targets sites that cannot be economically, technically or environmentally developed using conventional hydropower technologies (i.e. hydroelectric dams). The TREK is expected to deliver renewable base load electricity at a competitive cost compared to other renewable energy options. The technology can also be used to provide dispatchable and remote electricity.

  20. Effects of a hydropower plant on Coleopteran diversity and abundance in the Udzungwa Mountains, Tanzania

    OpenAIRE

    Zilihona, I.J.E.; NiemelÀ, J.; Nummelin, M.

    2004-01-01

    The effects of river flow diversion on biodiversity were assessed using Coleoptera as an indicator group in three habitats of the Kihansi Gorge (Udzungwa Mountains, Tanzania), before and after commissioning of a hydropower plant. Data collected using sweep netting and pitfall traps showed that the effect of diversion of the river flow was site-specific, affecting particularly the spray habitat. Rarefaction analysis of both sweep netting and pitfall samples indicated that the expec...

  1. Along-the-net reconstruction of hydropower potential with consideration of anthropic alterations

    Science.gov (United States)

    Masoero, A.; Claps, P.; Gallo, E.; Ganora, D.; Laio, F.

    2014-09-01

    Even in regions with mature hydropower development, requirements for stable renewable power sources suggest revision of plans of exploitation of water resources, while taking care of the environmental regulations. Mean Annual Flow (MAF) is a key parameter when trying to represent water availability for hydropower purposes. MAF is usually determined in ungauged basins by means of regional statistical analysis. For this study a regional estimation method consistent along-the-river network has been developed for MAF estimation; the method uses a multi-regressive approach based on geomorphoclimatic descriptors, and it is applied on 100 gauged basins located in NW Italy. The method has been designed to keep the estimates of mean annual flow congruent at the confluences, by considering only raster-summable explanatory variables. Also, the influence of human alterations in the regional analysis of MAF has been studied: impact due to the presence of existing hydropower plants has been taken into account, restoring the "natural" value of runoff through analytical corrections. To exemplify the representation of the assessment of residual hydropower potential, the model has been applied extensively to two specific mountain watersheds by mapping the estimated mean flow for the basins draining into each pixel of a the DEM-derived river network. Spatial algorithms were developed using the OpenSource Software GRASS GIS and PostgreSQL/PostGIS. Spatial representation of the hydropower potential was obtained using different mean flow vs hydraulic-head relations for each pixel. Final potential indices have been represented and mapped through the Google Earth platform, providing a complete and interactive picture of the available potential, useful for planning and regulation purposes.

  2. Hydropower development trends from a technological paradigm perspective

    International Nuclear Information System (INIS)

    Highlights: • We propose a novel concept of hydropower development technological paradigm. • We create a data analysis system to visualize the keyword foci. • Future trajectories include hybrid power systems and resources from seawater. • The HDTP consists of a three-stage evolution and a policy framework. • The HDTP provides a how-to-do solution for the soft path. - Abstract: Hydropower has long been considered the backbone of the power generation sector in low-carbon and sustainable energy systems. Yet, as reliance on hydropower has been generally declining, the world is awakening to the need to fundamentally rethink the way hydropower is developed and managed. The paper proposes a systematic methodology to research the development trends and find a more sustainable hydropower path. Literature mining using the data analysis system and the technological paradigm theory were adopted to conduct the research. The keyword visualization results were found to meet the laws for the three phases of the technological paradigm. Specific key areas, such as small hydropower plants, hybrid power systems, and hydropower from seawater were identified as past, present and near future trajectories. To further accelerate hydropower development, specific subsidies and incentives need to be provided in areas such as capital costs and technological support. The study paves the way for a soft path solution which complements the hard path in hydropower field

  3. Hydropower: An Essential Partner of Renewable Energy Source

    OpenAIRE

    Lejeune, André; Hui, Samuel; Pirotton, Michel; Erpicum, Sébastien; Dewals, Benjamin(*)

    2010-01-01

    In 2006, the 17 percent of the world’s electricity that was generated from hydropower represented nearly 90 percent of renewable electricity generation worldwide; Hydropower is an important source of renewable energy and produces extremely small quantities of carbon dioxide. Between 1998 and 2008, renewable electricity production in the world rose from 2,794.9 to 3,762.6 TWh, i.e. an additional 967.6 TWh. As a final conclusion, despite hydropower’s high initial costs, its long-term overall co...

  4. Water: resources management under conflicting objectives: hydropower versus national park

    International Nuclear Information System (INIS)

    Hydropower plays an essential role in the Austrian energy supply. About two thirds of the electric consumption are covered by hydropower generation. The objective of this paper is to analyse a pending conflict between hydropower utilisation and environmental concerns along the Austrian section of the Danube downstream of Vienna. In the first step the utilizable hydropower potential of the respective section and the environmental impacts are assessed. In a subsequent step a framework is elaborated to compare and to trade off economic and environmental objectives. Such a procedure requires preference values and is thus subjected to subjectivity, introduced either by decision makers or by involved parties. (author)

  5. An investigation of wash-off controlling parameters at urban and commercial monitoring sites.

    Science.gov (United States)

    Berretta, C; Gnecco, I; Lanza, L G; La Barbera, P

    2007-01-01

    The relationship between the parameters of the wash-off function and the controlling hydrologic variables are investigated in this paper, assuming that the pollutant generation process basically depends on the watershed rainfall-runoff response characteristics. Data collected during an intense monitoring program carried out by the Department of Environmental Engineering of the University of Genova (Italy) within a residential area, an auto dismantler facility, a tourism terminal and a urban waste truck depot are used to this aim. The observed runoff events are classified into different TSS mass delivery processes and the occurrence of the first flush phenomenon is also investigated. The correlation between the mathematical parameters describing the exponential process and the hydrological parameters of the corresponding rainfall-runoff event is analysed: runoff parameters and in particular the maximum flow discharge over the time of concentration of the drainage network are proposed as the controlling factor for the total mass of pollutant that is made available for wash-off during each runoff event. PMID:18075182

  6. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  7. Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili River basin in Assam (India)

    Energy Technology Data Exchange (ETDEWEB)

    Kusre, B.C.; Patra, S.C. [North Eastern Regional Institute of Water and Land Management, PO Kaliabhomora, Dolabari, Tezpur, Assam 784 027 (India); Baruah, D.C.; Bordoloi, P.K. [Department of Energy, Tezpur University, Napaam, Tezpur, Assam 784 028 (India)

    2010-01-15

    A hilly watershed in Kopili River basin in Assam (India) was considered for assessment of hydropower potential using spatial tool (GIS) and hydrological model (SWAT2000). The available data related to topography, soil, land use, weather and discharge pertaining to the study watershed were used to characterize the watershed. The characterization was required for water resources hence hydropower assessment. The hydrology of the study watershed was simulated through the model. The prediction accuracy of the model was confirmed through three well known efficiency criteria viz., coefficient of determination (R{sup 2} = 0.70), Nash-Sutcliffe efficiency (E 0.64) and Index of agreement (d 0.91). A total of 107 sites on 9 streams could be identified as potential location for hydropower generation in the study watershed using the model outputs. Distributed power availability through micro units (<0.5 MW) has been the characteristic feature of the watershed. Estimated potential carbon emission reduction (CER) within the watershed might be up to 125 thousand t CO{sub 2}, even 50% of the potential hydropower of the 1204 sq km watershed could be implemented. The result of the study is expected to boost the initiative for hydropower generation in the region considering the limitation of fossil fuels, increasing power demand and availability of untapped water resources. (author)

  8. Path Transmissibility Analysis Considering Two Types of Correlations in Hydropower Stations

    OpenAIRE

    Baoping Zhi; Zhenyue Ma

    2013-01-01

    A new vibration model is built by introducing the head-cover vibration transfer path based on a previous analysis of the vertical vibration model for hydropower station units and powerhouses. This research focuses on disturbance- and parameter-related transfer paths in a practical situation. In a complex situation, the application of the stochastic perturbation method is expanded using an algebra synthesis method the Hadamard product, and theoretical analyses, and numerical simulations of tra...

  9. BASELINE PARAMETER UPDATE FOR HUMAN HEALTH INPUT AND TRANSFER FACTORS FOR RADIOLOGICAL PERFORMANCE ASSESSMENTS AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Coffield, T; Patricia Lee, P

    2007-01-31

    The purpose of this report is to update parameters utilized in Human Health Exposure calculations and Bioaccumulation Transfer Factors utilized at SRS for Performance Assessment modeling. The reason for the update is to utilize more recent information issued, validate information currently used and correct minor inconsistencies between modeling efforts performed in SRS contiguous areas of the heavy industrialized central site usage areas called the General Separations Area (GSA). SRS parameters utilized were compared to a number of other DOE facilities and generic national/global references to establish relevance of the parameters selected and/or verify the regional differences of the southeast USA. The parameters selected were specifically chosen to be expected values along with identifying a range for these values versus the overly conservative specification of parameters for estimating an annual dose to the maximum exposed individual (MEI). The end uses are to establish a standardized source for these parameters that is up to date with existing data and maintain it via review of any future issued national references to evaluate the need for changes as new information is released. These reviews are to be added to this document by revision.

  10. 21st century Himalayan hydropower: Growing exposure to glacial lake outburst floods?

    Science.gov (United States)

    Schwanghart, Wolfgang; Worni, Raphael; Huggel, Christian; Stoffel, Markus; Korup, Oliver

    2014-05-01

    Primary energy demand in China and India has increased fivefold since 1980. To avoid power shortages and blackouts, the hydropower infrastructure in the Hindu Kush-Himalaya region is seeing massive development, a strategy supported by the policy of the World Bank and in harmony with the framework of the Kyoto Protocol. The targeted investments in clean energy from water resources, however, may trigger far-reaching impacts to downstream communities given that hydropower projects are planned and constructed in close vicinity to glaciated areas. We hypothesize that the location of these new schemes may be subject to higher exposure to a broad portfolio of natural hazards that proliferate in the steep, dissected, and tectonically active topography of the Himalayas. Here we focus on the hazard from glacial lake outburst floods (GLOF), and offer an unprecedented regional analysis for the Hindu Kush-Himalaya orogen. We compiled a database of nearly 4,000 proglacial lakes that we mapped from satellite imagery; and focus on those as potential GLOF sources that are situated above several dozen planned and existing hydropower plants. We implemented a scenario-based flood-wave propagation model of hypothetic GLOFs, and compared thus simulated peak discharges with those of the local design floods at the power plants. Multiple model runs confirm earlier notions that GLOF discharge may exceed meteorological, i.e. monsoon-fed, flood peaks by at least an order of magnitude throughout the Hindu Kush-Himalaya. We further show that the current trend in hydropower development near glaciated areas may lead to a >15% increase of projects that may be impacted by future GLOFs. At the same time, the majority of the projects are to be sited where outburst flood modelling produces its maximum uncertainty, highlighting the problem of locating minimum risk sites for hydropower. Exposure to GLOFs is not uniformly distributed in the Himalayas, and is particularly high in rivers draining the Mt. Everest and Lulana regions of Nepal and Bhutan, respectively. Together with the dense, cascading sequence of hydropower stations along several river networks in these areas, the combination of GLOFs and artificial reservoirs in steep terrain may result in increasing threats to downstream communities. Hydropower stations are infrastructural investments with minimum design lives of several decades, and our results suggest that their planning should be orchestrated with projected changes in glacier response to future climate change. Our data underline the preponderance of glacial lakes in areas with high glacial retreat rates and a commensurate exposure of hydropower stations to GLOFs. To ensure sustainable water resources use at minimum risk implications for on-site downstream communities, potential changes in GLOF hazard should be taken seriously when planning hydropower stations in the Hindu Kush-Himalaya.

  11. Estimation of soil petrophysical parameters from resistivity data: Application to oil-contaminated site characterization

    OpenAIRE

    Héctor Zegarra Martínez; David Flores Hernández; Aleksandr Mousatov; Omar Delgado Rodríguez; Vladimir Shevnin; Albert Ryjov

    2006-01-01

    Vertical Electrical Sounding (VES) method, known from 1912, has changed greatly during the last 10 years, into a new technology named Resistivity Imaging (RI) with 2D data interpretation. Another possible development for VES method is estimating petrophysical parameters (PP) from RI data, using the relationship between electrical resistivity and PP. In order to reach this purpose, the theory of the forward and inverse problem that relates the electrical resistivity with PP was developed. Each...

  12. Development of the methodology on priority of element-specific biosphere parameters for geological disposal applicable to any proposed repository site

    International Nuclear Information System (INIS)

    It is difficult to acquire all of biosphere parameters for geological disposal at the repository site because several hundreds of the parameters have to be dealt with in one calculation case of the biosphere assessment. Before site-specific activities, it is important to develop the data acquisition methodology of biosphere parameters applicable to any proposed repository site. The methodology for identification of the priority of the parameters was developed for the effective data acquisition of biosphere parameters at the site. First of all, flow diagram was constructed to evaluate the availability of the existing generic biosphere dataset. It was found to be effective for the data acquisition at the site to focus on the element-specific parameters with the existing dataset. Secondly, the priority of the data acquisition was identified for element-specific parameters at the site, with considering the variation of dose rate by combining the significant element-specific parameters. The availability of the existing generic biosphere dataset and the priority on data acquisition were identified for the element-specific parameters of key radionuclides in the safety assessment of geological disposal that should be acquired at the site. This priority list would be useful for effective data acquisition at the site. (author)

  13. Final report on a calculational parameter study of soils typical of some ESSEX I cratering sites

    International Nuclear Information System (INIS)

    The one-dimensional computer calculations described in this report were performed to simulate stress-wave propagation and kinetic energy transfer associated with subsurface cratering detonations in soils. A hypothetical 20-ton-yield nuclear explosive was assumed as the energy source, surrounded by a single soil material. Various soil descriptions were selected in order to systematically study the range of soil response to the nuclear detonation. The soils were representative of the layered mixtures of sand and clay found at the ESSEX high-explosive cratering sites near Ft. Polk, Louisiana. Soil properties analyzed in this study include water saturation, bulk density, failure envelope, and low-pressure bulk modulus

  14. Comprehensive investigation of parameter choice in viral integration site analysis and its effects on the gene annotations produced.

    Science.gov (United States)

    Huston, Marshall W; Brugman, Martijn H; Horsman, Sebastiaan; Stubbs, Andrew; van der Spek, Peter; Wagemaker, Gerard

    2012-11-01

    Introducing therapeutic genes into hematopoietic stem cells using retroviral vector-mediated gene transfer is an effective treatment for monogenic diseases. The risks of therapeutic gene integration include aberrant expression of a neighboring gene, resulting in oncogenesis at low frequencies (10(-7)-10(-6)/transduced cell). Mechanisms governing insertional mutagenesis are the subject of intensive ongoing studies that produce large amounts of sequencing data representing genomic regions flanking viral integration sites (IS). Validating and analyzing these data require automated bioinformatics applications. The exact methods used vary between applications, based on the requirements and preferences of the designer. The parameters used to analyze sequence data are capable of shaping the resulting integration site annotations, but a comprehensive examination of these effects is lacking. Here we present a web-based tool for integration site analysis, called Methods for Analyzing ViRal Integration Collections (MAVRIC), and use its highly customizable interface to look at how IS annotations can vary based on the analysis parameters. We used the integration data of the previously published adenosine deaminase severe combined immunodeficiency (ADA-SCID) gene therapy trials for evaluation of MAVRIC. The output illustrates how MAVRIC allows for direct multiparameter comparison of integration patterns. Careful analysis of the SCID data and reanalyses using different parameters for trimming, alignment, and repeat masking revealed the degree of variation that can be expected to arise due to changes in these parameters. We observed mainly small differences in annotation, with the largest effects caused by masking repeat sequences and by changing the size of the window around the IS. PMID:22909036

  15. Site-specific and multielement approach to the determination of liquid-vapor isotope fractionation parameters. The case of alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, I.; Naulet, N.; Martin, M.L.; Martin, G.J. (Universite de Nantes (France))

    1990-10-18

    Isotope fractionation phenomena occurring at the natural abundance level in the course of liquid-vapor transformation have been investigated by using the SNIF-NMR method (site-specific natural isotope fractionation studied by NMR) which has a unique capability of providing simultaneous access to fractionation parameters associated with different molecular isotopomers. This new approach has been combined with the determination of overall carbon and hydrogen fractionation effects by isotope ratio mass spectrometry (IRMS). The results of distillation and evaporation experiments of alcohols performed in technical conditions of practical interest have been analyzed according to the Rayleigh-type model. In order to check the performance of the column, unit fractionation factors were measured beforehand for water and for the hydroxylic sites of methanol and ethanol for which liquid-vapor equilibrium constants were already known. Inverse isotope effects are determined in distillation experiments for the overall carbon isotope ratio and for the site-specific hydrogen isotope ratios associated with the methyl and methylene sites of methanol and ethanol. In contrast, normal isotope effects are produced by distillation for the hydroxylic sites and by evaporation for all the isotopic ratios.

  16. Site-specific and multielement approach to the determination of liquid-vapor isotope fractionation parameters. The case of alcohols

    International Nuclear Information System (INIS)

    Isotope fractionation phenomena occurring at the natural abundance level in the course of liquid-vapor transformation have been investigated by using the SNIF-NMR method (site-specific natural isotope fractionation studied by NMR) which has a unique capability of providing simultaneous access to fractionation parameters associated with different molecular isotopomers. This new approach has been combined with the determination of overall carbon and hydrogen fractionation effects by isotope ratio mass spectrometry (IRMS). The results of distillation and evaporation experiments of alcohols performed in technical conditions of practical interest have been analyzed according to the Rayleigh-type model. In order to check the performance of the column, unit fractionation factors were measured beforehand for water and for the hydroxylic sites of methanol and ethanol for which liquid-vapor equilibrium constants were already known. Inverse isotope effects are determined in distillation experiments for the overall carbon isotope ratio and for the site-specific hydrogen isotope ratios associated with the methyl and methylene sites of methanol and ethanol. In contrast, normal isotope effects are produced by distillation for the hydroxylic sites and by evaporation for all the isotopic ratios

  17. Development of environmentally advanced hydropower turbine system design concepts

    International Nuclear Information System (INIS)

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower''s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable

  18. Development of environmentally advanced hydropower turbine system design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  19. Using Analytical and Numerical Modeling to Assess the Utility of Groundwater Monitoring Parameters at Carbon Capture, Utilization, and Storage Sites

    Science.gov (United States)

    Porse, S. L.; Hovorka, S. D.; Young, M.; Zeidouni, M.

    2012-12-01

    Carbon capture, utilization, and storage (CCUS) is becoming an important bridge to commercial geologic sequestration (GS) to help reduce anthropogenic CO2 emissions. While CCUS at brownfield sites (i.e. mature oil and gas fields) has operational advantages over GS at greenfield sites (i.e. saline formations) such as the use of existing well infrastructure, previous site activities can add a layer of complexity that must be accounted for when developing groundwater monitoring protection networks. Extensive work has been done on developing monitoring networks at GS sites for CO2 accounting and groundwater protection. However, the development of appropriate monitoring strategies at commercial brownfield sites continues to develop. The goals of this research are to address the added monitoring complexity by adapting simple analytical and numerical models to test these approaches using two common subsurface monitoring parameters, pressure and aqueous geochemistry. The analytical pressure model solves for diffusivity in radial coordinates and the leakage rate derived from Darcy's law. The aqueous geochemical calculation computer program PHREEQC solves the advection-reaction-dispersion equation for 1-D transport and mixing of fluids .The research was conducted at a CO2 enhanced oil recovery (EOR) field on the Gulf Coast of Texas. We modeled the performance over time of one monitoring well from the EOR field using physical and operational data including lithology and water chemistry samples, and formation pressure data. We explored through statistical analyses the probability of leakage detection using the analytical and numerical methods by varying the monitoring well location spatially and vertically with respect to a leaky fault. Preliminary results indicate that a pressure based subsurface monitoring system provides a better probability of leakage detection than geochemistry alone, but together these monitoring parameters can improve the chances of leakage detection. By assessing the probability of leakage detection, an initial finding on the use and implementation of each monitoring technique can be made at this field and realistically extrapolated to other CCUS fields.

  20. Derivation of parameters necessary for the evaluation of performance of sites for deep geological repositories with particular reference to bedded salt, Livermore, California. Volume I. Main text

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, J.P.; Rawlings, G.E.; Soto, C.A.; Wood, D.F.; Chorley, D.W.

    1979-12-01

    A survey of parameters to be considered in the evaluation of sites for deep geologic nuclear waste repositories is presented. As yet, no comprehensive site selection procedure or performance evaluation approach has been adopted. A basis is provided for the development of parameters by discussing both site selection and performance evaluation. Three major groups of parameters are considered in this report: geologic, mining/rock mechanics, and hydrogeologic. For each type, the role of the parameter in the evaluation of repository sites is discussed. The derivation of the parameter by measurement, correlation, inference, or other method is discussed. Geologic parameters define the framework of the repository site and can be used in development of conceptual models and the prediction of long-term performance. Methods for deriving geological parameters include mapping, surveying, drilling, geophysical investigation, and historical and regional analysis. Rock mechanics/mining parameters are essential for the prediction of short-term performance and the development of initial conditions for modeling of long-term performance. Rock mechanics/mapping parameters can be derived by field or laboratory investigation, correlation, and theoretically or empirically based inference. Hydrogeologic parameters are the most important for assessment of long-term radionuclide confinement, since transport throughout the regional hydrogeologic system is the most likely mode of radionuclide escape from geologic repositories. Hydrogeologic parameters can be derived by hydrogeologic mapping and interpretation, hydrogeologic system modeling, field measurements, and lab tests. Procedures used in determination and statistical evaluation of geologic and rock mechanics parameters are discussed.

  1. Derivation of parameters necessary for the evaluation of performance of sites for deep geological repositories with particular reference to bedded salt, Livermore, California. Volume I. Main text

    International Nuclear Information System (INIS)

    A survey of parameters to be considered in the evaluation of sites for deep geologic nuclear waste repositories is presented. As yet, no comprehensive site selection procedure or performance evaluation approach has been adopted. A basis is provided for the development of parameters by discussing both site selection and performance evaluation. Three major groups of parameters are considered in this report: geologic, mining/rock mechanics, and hydrogeologic. For each type, the role of the parameter in the evaluation of repository sites is discussed. The derivation of the parameter by measurement, correlation, inference, or other method is discussed. Geologic parameters define the framework of the repository site and can be used in development of conceptual models and the prediction of long-term performance. Methods for deriving geological parameters include mapping, surveying, drilling, geophysical investigation, and historical and regional analysis. Rock mechanics/mining parameters are essential for the prediction of short-term performance and the development of initial conditions for modeling of long-term performance. Rock mechanics/mapping parameters can be derived by field or laboratory investigation, correlation, and theoretically or empirically based inference. Hydrogeologic parameters are the most important for assessment of long-term radionuclide confinement, since transport throughout the regional hydrogeologic system is the most likely mode of radionuclide escape from geologic repositories. Hydrogeologic parameters can be derived by hydrogeologic mapping and interpretation, hydrogeologic system modeling, field measurements, and lab tests. Procedures used in determination and statistical evaluation of geologic and rock mechanics parameters are discussed

  2. Extreme value analysis of meteorological parameters observed during 1964-2000 at Rajasthan Atomic Power Station Site

    International Nuclear Information System (INIS)

    In this report, statistical analysis of extreme value of meteorological parameters at Rajasthan Atomic Power Station (RAPS) site is presented. The parameters examined for extreme value analysis are maximum wind speed at 120 m and gust, maximum and minimum surface air temperature, maximum and minimum atmospheric pressure, maximum and minimum rainfall in a year, and maximum rainfall in a month and a day along with intensity of rainfall averaged over 5 minutes. The period of observation for rainfall is 1964 -2000, while for other variables, it is 1980 -2000. From the extreme value analysis, it is observed that the variables for annual maximum rainfall, monthly maximum rainfall, maximum rainfall intensity, maximum temperature, maximum pressure and maximum hourly wind speed obey Fisher -Tippette type I distribution, whereas annual minimum rainfall, maximum daily rainfall, minimum temperature, minimum atmospheric pressure and gust (5 min. averaged maximum wind speed at 120m height) follow Fisher -Tippette type II distribution. Parameters of the distribution functions for each variable are established and occurrence of the extreme values corresponding to return periods of 50 and 100 years are also derived. These derived extreme values are very useful for arriving at suitable design basis values to ensure safety of any civil structure in the vicinity of RAPS site with respect to expected stresses due to climatic conditions. (author)

  3. Hydropower Reservoir Operation using Standard Operating and Standard Hedging Policies

    OpenAIRE

    T.R. Neelakantan; K. Sasireka

    2013-01-01

    Standard operating policy and hedging policies are commonly used for reservoir operation for municipal or irrigation water supply. Application of these policies to hydropower reservoir operation is complex. In this paper, new standard operating policies and standard hedging policy are proposed for hydropower reservoir operation. The newly proposed policies were applied to the operation of Indira Sagar reservoir in India and demonstrated.

  4. 77 FR 2286 - Northern Illinois Hydropower, LLC; Notice of Meeting

    Science.gov (United States)

    2012-01-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Northern Illinois Hydropower, LLC; Notice of Meeting a. Date and Time of... Hydropower, LLC to discuss potentially moving the powerhouse location for the Brandon Road Project No....

  5. Geothermal and hydropower production in Iceland

    International Nuclear Information System (INIS)

    This paper analyzes the impact of current and future development of geothermal and hydropower production on the economy of Iceland. Natural conditions in Iceland favor the increased utilization and development of both of these abundant power sources. The mean surface run-off in Iceland is about 50 l/s/km2 (liters per second per square kilometer), with a large part of the country consisting of a plateau more than 400 meters above sea level. More than half of the country is above 500 meters above sea level. ne technically harnessable hydropower potential is estimated at 64 TWh/year (terawatthours per year), of which 30 TWh/year is considered economically and environmentally harnessable. In addition, Iceland has abundant geothermal energy sources. A quarter of the entire country is a volcanic area. Keeping in mind that geothermal resources are not strictly renewable, it is estimated that the potential power production from this source is 20 TWh/year. Present utilization of these two resources totals only 4.2 TWh/year, or only about 8% of Iceland's aggregate potential. There are many issues facing Iceland today as it considers development opportunities utilizing both of these abundant power supplies. This paper will first consider the technical aspects of both hydropower and geothermal power production in Iceland. Then, the economic consequences of alternative utilization of these energy sources will be evaluated. The first alternative to be considered will be the direct export of power by HVDC submarine cable to other countries, such as Scotland or the United Kingdom. Iceland could, as a second alterative, concentrate its efforts on bringing in energy intensive industries into the country

  6. Hydropower System Management Considering the Minimum Outflow

    Directory of Open Access Journals (Sweden)

    M. L. Arganis

    2008-01-01

    Full Text Available This paper deals with the operating rules of the Grijalva River hydropower serial system obtained by means of stochastic dynamic programming and its subsequent simulation using historical records and synthetic series. Penalties in spills and deficit were considered in optimum policies. During simulation several restrictions were added to the original problem, particularly to ensure minimum outflow so as to guarantee the ecological river flow, which enables operators to adjust energy at daily demands peak and consider the existing autocorrelation between biweekly volume data.

  7. Dan jiang kou hydropower station turbine refurbishment

    International Nuclear Information System (INIS)

    Dan jiangkou hydropower station refurbished project, isan important project of Chinese refurbishment market. Tianjin Alstom Hydro Co., ltd won this contract by right of good performance and design technology,Its design took into account all the constraints linked to the existing frame. It results in a specific and highly advanced shape.The objective of this paper is to introduce the successful turbine hydraulic design, model test and mechanical design of Dan jiangkou project; and also analyze the cavitation phenomena occurred on runner band surface of Unit 4 after putting into commercial operation. These technology and feedback shall be a good reference and experience for other similar projects

  8. The Buchholz small hydro-power plant

    International Nuclear Information System (INIS)

    This short, illustrated final report for the Swiss Federal Office of Energy (SFOE) describes the commissioning of a small hydro-power installation on the Glatt river, Eastern Switzerland after more than 90 years of downtime. The authors state that the hydro-plant meets all requirements regarding nature conservancy, flood protection and ecology (river continuum for fish). The construction of the plant, which features a dam-integrated powerhouse, is described, as is a novel means of allowing fish to pass the dam. The work done in rebuilding the installation is documented in a series of photographs

  9. Report of the hydropower and climate change workshop

    International Nuclear Information System (INIS)

    This workshop was held in response to a survey conducted to determine the hydropower industry's interest in adapting to climate change. The impacts of climate change and unusual weather events on the hydropower industry were reviewed. The workshop examined current levels of awareness about the potential impacts of climate change as well as hydropower sector vulnerability to climate change and its impact on the operation and planning of hydropower systems. Past and future changes in hydrologic regimes were examined, and regional climate model results were analyzed. Representatives shared experiences related to unusual weather events. A total of 20 papers were presented at the workshop. Presentations were followed by breakout sessions held to discuss vulnerabilities within the hydropower sector. 4 tabs

  10. Project SHARE Sustainable Hydropower in Alpine Rivers Ecosystems

    Science.gov (United States)

    Mammoliti Mochet, Andrea

    2010-05-01

    SHARE - Sustainable Hydropower in Alpine Rivers Ecosystems is a running project early approved and co funded by the European regional development fund in the context of the European Territorial Cooperation Alpine Space programme 2007 - 2013: the project is formally ongoing from August 2009 and it will end July 2012. Hydropower is the most important renewable resource for electricity production in alpine areas: it has advantages for the global CO2 balance but creates serious environmental impacts. RES-e Directives require renewable electricity enhance but, at the same time, the Water Framework Directive obliges member States to reach or maintain a water bodies "good" ecological status, intrinsically limiting the hydropower exploitation. Administrators daily face an increasing demand of water abstraction but lack reliable tools to rigorously evaluate their effects on mountain rivers and the social and economical outputs on longer time scale. The project intends to develop, test and promote a decision support system to merge on an unprejudiced base, river ecosystems and hydropower requirements. This approach will be led using existing scientific tools, adjustable to transnational, national and local normative and carried on by permanent panel of administrators and stakeholders. Scientific knowledge related to HP & river management will be "translated" by the communication tools and spent as a concrete added value to build a decision support system. In particular, the Multicriteria Analysis (MCA) will be applied to assess different management alternatives where a single-criterion approach (such as cost-benefit analysis) falls short, especially where environmental, technical, economic and social criteria can't be quantified by monetary values. All the existing monitoring databases will be used and harmonized with new information collected during the Pilot case studies. At the same time, all information collected will be available to end users and actors of related projects. The project openly pursues integrated river management aims (environmental and economic): - define, share and test a decision making framework based on validated methodologies in order to allow public decision makers to take transparent decisions about planning and management of HP concessions, taking account resulting effects on river ecosystems and on all different stakeholders - creation of a technical panel including public decision makers, stakeholders and PPs to promote & transfer the SHARE approach to local, national & transnational level to concretely upgrade the actual standard of problem solving attitude; - classify scenarios of water use optimization, taking into account the different actor needs; - establish a set of generally applicable and comparable indicators & monitoring standards based on transferable guidelines and metrics considering the specific disparities among power stations, diversity of technical approaches and different river ecosystems; - designation and mapping of alpine hydro systems more vulnerable typologies; - designation and mapping of the most convenient sites and typologies of "low impact" new plants; - contribute to the concrete local integration implementation of WFD and RES-e directives. The project partnership embodies different alpine countries & hydrosystems, profiles, status, end users, networks and previous experiences. At the same time the project official observers represent the links with outside the project networks, end users & stakeholders.

  11. Using Conventional Hydropower to Help Alleviate Variable Resource Grid Integration Challenges in the Western U.S

    Science.gov (United States)

    Veselka, T. D.; Poch, L.

    2011-12-01

    Integrating high penetration levels of wind and solar energy resources into the power grid is a formidable challenge in virtually all interconnected systems due to the fact that supply and demand must remain in balance at all times. Since large scale electricity storage is currently not economically viable, generation must exactly match electricity demand plus energy losses in the system as time unfolds. Therefore, as generation from variable resources such as wind and solar fluctuate, production from generating resources that are easier to control and dispatch need to compensate for these fluctuations while at the same time respond to both instantaneous change in load and follow daily load profiles. The grid in the Western U.S. is not exempt to grid integration challenges associated with variable resources. However, one advantage that the power system in the Western U.S. has over many other regional power systems is that its footprint contains an abundance of hydropower resources. Hydropower plants, especially those that have reservoir water storage, can physically change electricity production levels very quickly both via a dispatcher and through automatic generation control. Since hydropower response time is typically much faster than other dispatchable resources such as steam or gas turbines, it is well suited to alleviate variable resource grid integration issues. However, despite an abundance of hydropower resources and the current low penetration of variable resources in the Western U.S., problems have already surfaced. This spring in the Pacific Northwest, wetter than normal hydropower conditions in combination with transmission constraints resulted in controversial wind resource shedding. This action was taken since water spilling would have increased dissolved oxygen levels downstream of dams thereby significantly degrading fish habitats. The extent to which hydropower resources will be able to contribute toward a stable and reliable Western grid is currently being studied. Typically these studies consider the inherent flexibility of hydropower technologies, but tend to fall short on details regarding grid operations, institutional arrangements, and hydropower environmental regulations. This presentation will focus on an analysis that Argonne National Laboratory is conducting in collaboration with the Western Area Power Administration (Western). The analysis evaluates the extent to which Western's hydropower resources may help with grid integration challenges via a proposed Energy Imbalance Market. This market encompasses most of the Western Electricity Coordinating Council footprint. It changes grid operations such that the real-time dispatch would be, in part, based on a 5-minute electricity market. The analysis includes many factors such as site-specific environmental considerations at each of its hydropower facilities, long-term firm purchase agreements, and hydropower operating objectives and goals. Results of the analysis indicate that site-specific details significantly affect the ability of hydropower plant to respond to grid needs in a future which will have a high penetration of variable resources.

  12. Soil physical parameters and their heterogeneity on a homogenously established post-mining recultivation site in Eastern Germany

    Science.gov (United States)

    Krümmelbein, J.; Raab, T.; Bens, O.; Hüttl, R. F.

    2009-04-01

    The largest lignite mining area of Germany is located in Lusatia, Eastern Germany. In this region lignite mining leads to disturbances on a landscape level. Recultivation efforts attempt to regenerate post mining areas for various land use options. Our study is concerned with the agricultural recultivation of post lignite mining areas in this region. The sandy to loamy substrate that is used for recultivation stems from depths of several meters and is therefore free of soil organic matter. However, some lignite fragments are present. The substrate itself is unstructured. During the excavation, deposition and management process the substrate is subject to strong mechanical stresses. This practice leads to more or less serious soil compaction causing decreased yields of agricultural crops. In this context we investigate the effect of different organic soil additives in combination with different recultivation crop rotations on the development of soil structure for improved agricultural land use. Our experimental site has recently been heaped up and levelled off. On each of the 24 experimental sub areas undisturbed soil samples have been taken to characterise the experimental substrates according to their mechanical and hydraulic parameters and to determine the scattering of these parameters on a site that is supposed to be established as homogenously as possible. We present the experimental set-up and first results of the status-quo sampling of the site before any recultivation practice has been applied. The results show that the site is profoundly heterogeneous in terms of mechanical stability, bulk density, total pore volume, saturated hydraulic conductivity, etc.. Moreover the mechanical stability, in this case precompression stress, decreases with increasing bulk density which shows that the assumption that a substrate's mechanical stability increases with increasing bulk density is not necessarily true.

  13. A model of the environmental impacts of hydropower projects

    International Nuclear Information System (INIS)

    The aim was to create a model of the effects of hydropower modernization and extension projects in Finland. To illustrate the effects of hydropower projects a checklist in the form of matrice was constructed. In this matrice all issues that could be significant in future hydropower projects were collected. Stable physical environmental changes are the starting-point for this matrice. The temporary change of hydropower constructions have also been under consideration. These are mainly environmental changes during construction. In chapter two the effects of hydropower modernization and extension projects physical environmental changes were examined. In chapter three the matrice was applied to some example cases. The cases were chosen to represent future hydropower projects. In addition these example cases represent urban areas, rural areas and uninhabited areas. The example cases were the extension of Tainionkoski hydropower plant at Vuoksi river, the modernization of Aeetsae power plant at Kokemaeenjoki river, the modernization of Stadsfors power plant at Lapuanjoki river in the centre of Uusikaarlepyy town and the construction of Kaitfors power plant at Perhonjoki river. Conclusions from usability of the model can be drawn on the ground of the example cases. The purpose of the model is to produce a checklist of estimated environmental effects in hydropower project of various kinds. Examination of issues within the model depends on local circumstances. Endangered animal and plant species, for example, can be studied and estimated only if endangered animal and plant species exist in the area of hydropower plant. Furthermore, the direction and extent of environmental effects depend on the local circumstances. The model is mainly a checklist of environmental effects caused by hydropower plant projects

  14. Tailoring seasonal climate forecasts for hydropower operations

    Directory of Open Access Journals (Sweden)

    P. Block

    2011-04-01

    Full Text Available Integration of seasonal precipitation forecasts into water resources operations and planning is practically nonexistent, even in regions of scarcity. This is often attributable to water manager's tendency to act in a risk averse manner, preferring to avoid consequences of poor forecasts, at the expense of unrealized benefits. Convincing demonstrations of forecast value are therefore desirable to support assimilation into practice. A dynamically linked system, including forecast, rainfall-runoff, and hydropower models, is applied to the upper Blue Nile basin in Ethiopia to compare benefits and reliability generated by actual forecasts against a climatology-based approach, commonly practiced in most water resources systems. Processing one hundred decadal sequences demonstrates superior forecast-based benefits in 68 cases, a respectable advancement, however benefits in a few forecast-based sequences are noticeably low, likely to dissuade manager's adoption. A hydropower sensitivity test reveals a propensity toward poor-decision making when forecasts over-predict wet conditions. Tailoring the precipitation forecast to highlight critical dry forecasts minimizes this inclination, resulting in 97% of the sequences favoring the forecast-based approach. Considering managerial risk preferences for the system, even risk-averse actions, if coupled with forecasts, exhibit superior benefits and reliability compared with risk-taking tendencies conditioned on climatology.

  15. Tailoring seasonal climate forecasts for hydropower operations

    Science.gov (United States)

    Block, P.

    2011-04-01

    Integration of seasonal precipitation forecasts into water resources operations and planning is practically nonexistent, even in regions of scarcity. This is often attributable to water manager's tendency to act in a risk averse manner, preferring to avoid consequences of poor forecasts, at the expense of unrealized benefits. Convincing demonstrations of forecast value are therefore desirable to support assimilation into practice. A dynamically linked system, including forecast, rainfall-runoff, and hydropower models, is applied to the upper Blue Nile basin in Ethiopia to compare benefits and reliability generated by actual forecasts against a climatology-based approach, commonly practiced in most water resources systems. Processing one hundred decadal sequences demonstrates superior forecast-based benefits in 68 cases, a respectable advancement, however benefits in a few forecast-based sequences are noticeably low, likely to dissuade manager's adoption. A hydropower sensitivity test reveals a propensity toward poor-decision making when forecasts over-predict wet conditions. Tailoring the precipitation forecast to highlight critical dry forecasts minimizes this inclination, resulting in 97% of the sequences favoring the forecast-based approach. Considering managerial risk preferences for the system, even risk-averse actions, if coupled with forecasts, exhibit superior benefits and reliability compared with risk-taking tendencies conditioned on climatology.

  16. 75 FR 10230 - Inglis Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To...

    Science.gov (United States)

    2010-03-05

    ... Energy Regulatory Commission Inglis Hydropower, LLC; Notice of Application Accepted for Filing and... Hydropower, LLC. e. Name of Project: Inglis Hydropower Project. f. Location: The proposed project would be... Inglis Hydropower Project would operate in a run-of-river mode by using flows released to maintain...

  17. A GIS based assessment of hydropower potential in Hornád basin

    Directory of Open Access Journals (Sweden)

    ?ofia Kuzevi?ová

    2013-12-01

    Full Text Available The issue of efficient use of hydropower, ones of the available renewable resources is currently in the process of sustainable development of each country, often addressing the issue. Incite multiple aspects. It is now seen just growing interest in exploiting the potential of hydropower. On the basis of active efforts are developed to map the total quantity of usability hydropower at basin level in Slovakia. GIS as a powerful and sophisticated tool for processing spatially localized information and offers support for renewable energy sources (not excluding the field of hydropower. Through the integration of spatial data allows assessing the real problems and thus contributing effectively to make rational decisions. Especially in the field of hydropower projects have GIS well founded importance. Of course is important to mention that the potential for hydroelectric power is useless without the operation of hydropower that converts water into electrical energy. For the needs of administrators of watercourses and operators of water systems, the proposed model can be an important tool for decision-making in relation to its implementation activities. Contribution to the design solutions for potential hydropower will address river basin Hornád.

  18. China’s rising hydropower demand challenges water sector

    Science.gov (United States)

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P. W.; Guan, Dabo

    2015-07-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9?×?109?m3?(Gm3), or 22% of China’s total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6?Gm3 yr-1 or 3.6?m3 of water to produce a GJ (109?J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability.

  19. DOE Hydropower Program Annual Report for FY 2002

    Energy Technology Data Exchange (ETDEWEB)

    Garold L. Sommers; R. T. Hunt

    2003-07-01

    The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

  20. Design of a reliable and low-cost stand-alone micro hydropower station

    International Nuclear Information System (INIS)

    A stand-alone micro-hydropower station was presented. The plant was comprised of a squirrel cage induction machine coupled to a Kaplan water turbine. Power converters were used to control the variable frequency and voltage outputs of the generator caused by variations in water flow. The hydropower plant was installed a farm in the Kwazulu-Natal region of South Africa, and was designed to provide electricity in relation to the low power demand of users in the region as well as according to the site's hydrology and topology. Load forecasts for the 8 houses using the system were conducted. A generator with a higher output than the average power needed to feed the load was selected in order to ensure load supply during peak demand. The system was designed to shore energy generated during off-peak periods in batteries. An AC-DC-AC converter was used as an interface between the generator and the load in order to ensure voltage and frequency stabilization. Simulations of plant components were conducted to demonstrate output power supply during water flow variations. Results of the modelling study indicated that power converters are needed to stabilize generator outputs. The hydropower design is a cost-effective means of supplying power to low-income households. 10 refs., 2 tabs., 7 figs.

  1. Nepal as a Business Hub for Hydropower Industry : Introduction to Hydropower Industry of Nepal

    OpenAIRE

    Shahi, Prakash

    2014-01-01

    Nepal at present is suffering from the energy crisis due to the lack of enough production of electricity in the country. The main purpose of this thesis is to evaluate the present situation of electricity crisis in Nepal and provide the information to the foreign investors about the investment opportunities in hydropower sector in Nepal. The theoretical section gives the details about Nepal and electricity production scenario in Nepal. It also gives the detail about the demand and supply of e...

  2. Climate change effects on hydropower potential of the Alcantara river basin in Sicily (Italy)

    Science.gov (United States)

    Tito Aronica, Giuseppe; Bonaccorso, Brunella

    2013-04-01

    In recent years an increasing attention has been paid to hydropower generation, since it is a renewable, efficient, and reliable source of energy, as well as an effective tool to reduce the atmospheric concentrations of greenhouse gases resulting from human activities. At the same time, however, hydropower is high vulnerable to global warming, because water resources are closely linked to climate changes. Indeed, the effects of climate change on water availability are expected to affect hydropower generation with special reference to Southern countries which are supposed to face dryer conditions in the next decades. The aim of this paper is to assess the impact of future climate change on the hydrological regime of the Alcantara river basin, Eastern Sicily (Italy), based on Monte Carlo simulations. Synthetic series of daily rainfall and temperature are generated, based on observed data, through a first order Markov chain and an ARMA model respectively, for the current scenario and two future scenarios at 2025. In particular, the mean and standard deviation values of daily rainfall and temperature at 2025, calculated using simulations of the Hadley Centre Ocean-Atmosphere General Circulation Model (HadCM3), are adopted to generate future scenarios of precipitation and temperature. Synthetic series for the two climatic scenarios are, then, introduced as input into the IHACRES model to simulate the hydrological response of the basin. The effects of climate change are, then, investigated by analysing potential modification of the resulting flow duration curves and utilisation curves, which allow to estimate a site's energy potential for the design of run-of-river hydropower plants.

  3. Loss of European silver eel passing a hydropower station

    DEFF Research Database (Denmark)

    Pedersen, Michael Ingemann; Jepsen, Niels; Aarestrup, Kim; Koed, Anders; Pedersen, Stig; Økland, F.

    2012-01-01

    The aim of this study was to assess escapement success of silver eels, Anguilla anguilla (L.), in a lowland river while passing a reservoir and a hydropower station. It was hypothesized that passage success would be lowest at the hydropower station and that survival and migration speed would be...... within the study period, only 23% of the tagged eels reached the tidal limit, mainly due to difficulties in passing the hydropower dam. With such high loss-rates, the escapement goals set in the management plan cannot be achieved...

  4. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    Science.gov (United States)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level, variability due to geographic distribution of wind resources, and forecast error. Electric power system factors include the mix of thermal generation resources, available transmission, demand patterns, and market structures. Hydropower factors include relative storage capacity, reservoir operating policies and hydrologic conditions. In addition, the wind, power system, and hydropower factors are often interrelated because stochastic weather patterns can simultaneously influence wind generation, power demand, and hydrologic inflows. One of the central findings is that the sensitivity of the model to changes cannot be performed one factor at a time because the impact of the factors is highly interdependent. For example, the net value of wind generation may be very sensitive to changes in transmission capacity under some hydrologic conditions, but not at all under others.

  5. Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems

    Directory of Open Access Journals (Sweden)

    A. Tilmant

    2009-03-01

    Full Text Available This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water. The opportunity cost (forgone benefits of this static management approach may be important in river basins where large irrigation areas are present in the upstream reaches. Temporary reallocation of some (or all of the irrigation water downstream to consumptive and/or non-consumptive users can increase the social benefits if the sum of the downstream productivities exceeds those of the upstream farmers whose entitlements are curtailed. However, such a dynamic allocation process will be socially acceptable if upstream farmers are compensated for increasing the availability of water downstream. This paper also presents a methodology to derive the individual contribution of downstream non-consumptive users, i.e. hydropower plants, to the financial compensation of upstream farmers. This dynamic management approach is illustrated with a cascade of multipurpose reservoirs in the Euphrates river basin. The analysis of simulation results reveals that, on average, the annual benefits obtained with the dynamic allocation process are 6% higher that those derived from a static allocation.

  6. Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model

    International Nuclear Information System (INIS)

    This paper analyzes the long-term relationships between hydropower generation and climate factors (precipitation), hydropower generation capacity (installed capacity of hydropower station) to quantify the vulnerability of renewable energy production in China for the case of hydropower generation. Furthermore, this study applies Grey forecasting model to forecast precipitation in different provinces, and then sets up different scenarios for precipitation based on the IPCC Special Report on Emission Scenarios and results from PRECIS (Providing Regional Climate projections for Impacts Studies) model. The most important result found in this research is the increasing hydropower vulnerability of the poorest regions and the main hydropower generation provinces of China to climate change. Other main empirical results reveal that the impacts of climate change on the supply of hydropower generation in China will be noteworthy for the society. Different scenarios have different effects on hydropower generation, of which A2 scenario (pessimistic, high emission) has the largest. Meanwhile, the impacts of climate change on hydropower generation of every province are distinctly different, of which the Southwest part has the higher vulnerability than the average level while the central part lower. - Highlights: • The hydropower vulnerability will be enlarged with the rapid increase of hydropower capacity. • Modeling the vulnerability of hydropower in different scenarios and different provinces. • The increasing hydropower vulnerability of the poorest regions to climate change. • The increasing hydropower vulnerability of the main hydropower generation provinces. • Rainfall pattern caused by climate change would be the reason for the increasing vulnerability

  7. Validation of cosmogenic nuclide production rate scaling factors through direct measurement. Part 3, Field data and site parameters

    International Nuclear Information System (INIS)

    This is part three of a series of comprehensive reports detailing the results of the IPR Marsden-funded research project 'Cosmogenic nuclides in earth science: validation of production systematics', which set out to validate scaling factors used in determining production rates of cosmogenic nuclides used for surface exposure dating. The research was carried out in Australia, New Zealand and Antarctica, and had two aspects to it: (i) direct measurement of cosmic-ray flux using portable monitors, and (ii) measurement of 7Be and 10Be in sealed water targets. This report presents details of field experiments and measurements carried out between 1997 and 2001, during and after sun-spot cycle 23 solar minimum. Included are measurement times, weather conditions and relevant site parameters. A brief discussion of shielding and neutron scattering effects is also included. (author). 20 refs., 14 figs., 3 tabs

  8. The impact of drought on hydropower generation

    International Nuclear Information System (INIS)

    The paper explores the effects of extended drought on power generation at Shasta hydropower plant, a Bureau of Reclamation facility in Northern California. Statistical measures of water availability and power generation for the drought period 1988-90 are examined and compared with comparable statistics for both a normal water year, and a period of above normal water availability. The key role of hydraulic head in power generation is examined. A brief examination is made of functions served by the reservoir waters and the potential for tradeoff water allocations between power and other project functions during emergency water periods. The opportunity for revised emergency water allocations to power is minimal, due to the fact that practically all water used for other project functions goes first through the generators. Potential impacts of reduced generation on power revenues and rates are examined. Annual revenue losses during the drought are estimated at about $24 million

  9. Glen Canyon Hydropower vs. the Grand Canyon

    International Nuclear Information System (INIS)

    Many resource allocation problems currently face the hydropower industry. The current Environmental Impact Statement effort on the operation of Glen Canyon Dam is the focus of this discussion. This paper relates the process of approaching the conflict, the differing views and conflicting strategies of the parties, the emotional and logical investment of the participants, and the concerns for fairness and openness derived from the historic distrust between those with differing views. The paper is prepared from the perspective of the Bureau of Reclamation, the lead Federal agency in the effort, and the perspectives of the author who has been in a lead role in the agency's approach to the challenge. The paper describes the formulation of positions by the interested parties and the surrounding values and depth of concern exhibited in the process

  10. Private hydropower projects: exporting the american experience

    International Nuclear Information System (INIS)

    This paper addresses different aspects of exporting the American knowledge and experience in the private development of small-scale hydropower projects. It details the 'export' and 'adaptation/translation' of American PURPA philosophy to other countries. The major stumbling blocks on the road to exportation are listed. The subject countries'market evaluation is explained, as well as methods for researching and gathering the necessary information on a specific country. Methods of choosing a target country are discussed, and the criteria necessary for making a choice are detailed. The subject of legal framework and privatization of power generation issues overseas and the ways and means to help the 'export of U.S. expertise' through U.S. Government programs are described. The subjects of financing and joint ventures with local entities are also included in this paper. Various scenarios for private development overseas are presented

  11. Relationship among soil parameters, tree nutrition and site index of Pinus radiata D. Don in Asturias, NW Spain

    Energy Technology Data Exchange (ETDEWEB)

    Afif-Khouri, E.; Camara Obregon, M. A.; Oliveira-Prendes, J. A.; Gorgoso-Varela, J. J.; Canga-Libano, E.

    2010-07-01

    The relationships among soil parameters, tree nutrition and site index were examined in Pinus radiata D. Don stands in a climatically homogeneous area of NW Spain. Thirty-eight even-aged stands, ranging from 10 to 54 years, were sampled. In each stand, a representative plot of 0.1 ha was selected and different stand variables and parent material were considered. The soils in the study area are strongly acidic, with high proportions of organic matter, high C/N ratios, and low exchangeable base cation and available P concentration extracted by Mehlich 3 method (PM3). Although foliar N was sufficient in every stand studied, widespread deficiencies of K, P and, to a lesser extent, Mg and Ca were diagnosed. The foliar concentrations of P were positively correlated with PM3 and effective cation exchange capacity. The SI values ranged between 9.5 and 28.8 m and were positively correlated with foliar P and extractable K in soil. In the stands developed on quartzite and sandstone lithologies, the SI was negatively correlated with slope and foliar N respectively. The results suggest the importance of site selection and fertilizer treatment in reforestation programmes. (Author) 63 refs.

  12. Bridging the Information Gap: Remote Sensing and Micro Hydropower Feasibility in Data-Scarce Regions

    Science.gov (United States)

    Muller, Marc Francois

    Access to electricity remains an impediment to development in many parts of the world, particularly in rural areas with low population densities and prohibitive grid extension costs. In that context, community-scale run-of-river hydropower---micro-hydropower---is an attractive local power generation option, particularly in mountainous regions, where appropriate slope and runoff conditions occur. Despite their promise, micro hydropower programs have generally failed to have a significant impact on rural electrification in developing nations. In Nepal, despite very favorable conditions and approximately 50 years of experience, the technology supplies only 4% of the 10 million households that do not have access to the central electricity grid. These poor results point towards a major information gap between technical experts, who may lack the incentives or local knowledge needed to design appropriate systems for rural villages, and local users, who have excellent knowledge of the community but lack technical expertise to design and manage infrastructure. Both groups suffer from a limited basis for evidence-based decision making due to sparse environmental data available to support the technical components of infrastructure design. This dissertation draws on recent advances in remote sensing data, stochastic modeling techniques and open source platforms to bridge that information gap. Streamflow is a key environmental driver of hydropower production that is particularly challenging to model due to its stochastic nature and the complexity of the underlying natural processes. The first part of the dissertation addresses the general challenge of Predicting streamflow in Ungauged Basins (PUB). It first develops an algorithm to optimize the use of rain gauge observations to improve the accuracy of remote sensing precipitation measures. It then derives and validates a process-based model to estimate streamflow distribution in seasonally dry climates using the stochastic nature of rainfall, and proposes a novel geostatistical method to regionalize its parameters across the stream network. Although motivated by the needs of micro hydropower design in Nepal, these techniques represent contributions to the broader international challenge of PUB and can be applied worldwide. The economic drivers of rural electrification are then considered by presenting an econometric technique to estimate the cost function and demand curve of micro hydropower in Nepal. The empirical strategy uses topography-based instrumental variables to identify price elasticities. All developed methods are assembled in a computer tool, along with a search algorithm that uses a digital elevation model to optimize the placement of micro hydropower infrastructure. The tool---Micro Hydro [em]Power---is an open source application that can be accessed and operated on a web-browser (http://mfmul.shinyapps.io/mhpower). Its purpose is to assist local communities in the design and evaluation of micro hydropower alternatives in their locality, while using cost and demand information provided by local users to generate accurate feasibility maps at the national level, thus bridging the information gap.

  13. Assessing Optimal Flight Parameters for Generating Accurate Multispectral Orthomosaicks by UAV to Support Site-Specific Crop Management

    Directory of Open Access Journals (Sweden)

    Francisco-Javier Mesas-Carrascosa

    2015-09-01

    Full Text Available This article describes the technical specifications and configuration of a multirotor unmanned aerial vehicle (UAV to acquire remote images using a six-band multispectral sensor. Several flight missions were programmed as follows: three flight altitudes (60, 80 and 100 m, two flight modes (stop and cruising modes and two ground control point (GCP settings were considered to analyze the influence of these parameters on the spatial resolution and spectral discrimination of multispectral orthomosaicked images obtained using Pix4Dmapper. Moreover, it is also necessary to consider the area to be covered or the flight duration according to any flight mission programmed. The effect of the combination of all these parameters on the spatial resolution and spectral discrimination of the orthomosaicks is presented. Spectral discrimination has been evaluated for a specific agronomical purpose: to use the UAV remote images for the detection of bare soil and vegetation (crop and weeds for in-season site-specific weed management. These results show that a balance between spatial resolution and spectral discrimination is needed to optimize the mission planning and image processing to achieve   every agronomic objective. In this way, users do not have to sacrifice flying at low altitudes to cover the whole area of interest completely.

  14. Hydropower Computation Using Visual Basic for Application Programming

    Science.gov (United States)

    Yan, Wang; Hongliang, Hu

    Hydropower computation is essential to determine the operating conditions of hydroelectric station. Among the existing methods for hydropower computation, equal monthly hydropower output and dynamic programming are the most commonly used methods, but both of them are too complex in computation and hard to be finished manually. Taking the advantage of the data processing ability of Microsoft Excel and its attached Visual Basic for Application (VBA) program, the complex hydropower computation can be easily achieved. An instance was analyzed in two methods and all delt with VBA. VBA demonstrates its powerful function in solving problem with complex computation, visualizing, and secondary data processing. The results show that the dynamic programming method was more receptive than the other one.

  15. National hydroelectric power resources study. Preliminary inventory of hydropower resources. Volume 3. Mid-Continent region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-07-01

    The US Corps of Engineers' assessment of the nation's hydroelectric resources provides a current and comprehensive estimate of the potential for incremental or new generation at existing dams and other water resource projects, as well as for undeveloped sites in the US. The demand for hydroelectric power is addressed and various related policy and technical considerations are investigated to determine the incentives, constraints, and impacts of developing hydropower to meet a portion of the future energy demands. The comprehensive data represent the effort of the Corps of Engineers based on site-specific analysis and evaluation. Summary tables include estimates of the potential capacity and energy at each site in the inventory. The number of sites and potential capacity in each state are identified, but specific detailed information is included for sites in Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming.

  16. The Jungfraujoch high-alpine research station (3454 m) as a background clean continental site for the measurement of aerosol parameters

    Energy Technology Data Exchange (ETDEWEB)

    Nyeki, S.; Baltensperger, U.; Jost, D.T.; Weingartner, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Colbeck, I. [Essex Univ., Colchester (United Kingdom)

    1997-09-01

    Aerosol physical parameter measurements are reported here for the first full annual set of data from the Jungfraujoch site. Comparison to NOAA background and regional stations indicate that the site may be designated as `clean continental` during the free tropospheric influenced period 03:00 -09:00. (author) figs., tab., refs.

  17. Hydropower engineering. Paper no. IGEC-1-005

    International Nuclear Information System (INIS)

    Hydropower, one of the corner stones of sustainable energy development, is the largest renewable source of energy. There is a large demand worldwide for people trained to design, operate, maintain and optimise hydropower systems. Hydro Power University, a name which encompasses both education, research and development within hydropower in Sweden, offers a unique and broad international masters programme within hydropower engineering including civil, mechanical and electrical engineering. The programme is the result of a close collaboration between Lulea University of Technology and Uppsala University, at the research and education level. This master programme, Hydropower Engineering, is open to both Swedish and foreign students free of charge. It aims to provide students with state of the art knowledge and experience on parts of the hydropower system such as turbine technology, generator design, rotor dynamics, tribology, dams/dam safety, maintenance and operation and environmental aspects. World unique laboratory experiments are offered to the students at Porjus and Alvkarleby, Sweden. The Porjus Hydropower Centre offers world unique facilities: two full scale turbines of 10 MW each, one with the latest generator technology - Powerformer. The turbines are exclusively dedicated for use in education, research and development. State of the art in measurement technology is available. Both units are at the centre of each education programme offered by the Hydro Power University. In Alvkarleby, spillways, discharge capacity and turbines model testing can be undertaken at the Vattenfall laboratory also with state of the art experimental material and highly qualified staff. The large number of applications from developing countries indicates a need of scholarships, which needs to be resolved for the development of hydropower. (author)

  18. DOE Hydropower Program Annual Report for FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Sale, M. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cada, G. F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dauble, D. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rinehart, B. N. [Consultant; Sommers, G. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Flynn, J. V. [U.S. Dept. of Energy, Washington, D.C. (United States); Brookshier, P. A. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2001-04-17

    This report describes the activities of the U.S. Department of Energy (DOE) Hydropower Program during Fiscal Year 2000 (October 1, 1999, to September 30, 2000). Background, current activities, and future plans are presented in the following sections for all components of the Program. Program focus for FY 2000 was on (1) advanced turbine development, (2) basic and applied R&D, (3) environmental mitigation, (4) low head/low power hydropower technology, and (5) technology transfer.

  19. Hydropower's Contribution to Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Altinbilek, D.; Abdel-Malek, R.; Devernay, J.M.; Gill, R.; Leney, S.; Moss, Terry; Schiffer, H.P.; Taylor, R.M.

    2007-07-01

    The role of hydropower within mixed power systems is analysed from the point of view of both quantitative and qualitative performance. Interrelationships with all other generation technologies are discussed and synergies identified. Resources, sustainability criteria and investment challenges are reviewed in the context of development. The objective of the paper is to define hydropower's contribution within the clean, clever and competitive markets of the future.

  20. Short-term forecasting model for aggregated regional hydropower generation

    International Nuclear Information System (INIS)

    Highlights: • Original short-term forecasting model for the hourly hydropower generation. • The use of NWP forecasts allows horizons of several days. • New variable to represent the capacity level for generating hydroelectric energy. • The proposed model significantly outperforms the persistence model. - Abstract: This paper presents an original short-term forecasting model of the hourly electric power production for aggregated regional hydropower generation. The inputs of the model are previously recorded values of the aggregated hourly production of hydropower plants and hourly water precipitation forecasts using Numerical Weather Prediction tools, as well as other hourly data (load demand and wind generation). This model is composed of three modules: the first one gives the prediction of the “monthly” hourly power production of the hydropower plants; the second module gives the prediction of hourly power deviation values, which are added to that obtained by the first module to achieve the final forecast of the hourly hydropower generation; the third module allows a periodic adjustment of the prediction of the first module to improve its BIAS error. The model has been applied successfully to the real-life case study of the short-term forecasting of the aggregated hydropower generation in Spain and Portugal (Iberian Peninsula Power System), achieving satisfactory results for the next-day forecasts. The model can be valuable for agents involved in electricity markets and useful for power system operations

  1. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    Science.gov (United States)

    Hertwich, Edgar G

    2013-09-01

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated. PMID:23909506

  2. Risk assessment of river-type hydropower plants using fuzzy logic approach

    International Nuclear Information System (INIS)

    In this paper, a fuzzy rating tool was developed for river-type hydropower plant projects, and risk assessment and expert judgments were utilized instead of probabilistic reasoning. The methodology is a multi-criteria decision analysis, which provides a flexible and easily understood way to analyze project risks. The external risks, which are partly under the control of companies, were considered in the model. A total of eleven classes of risk factors were determined based on the expert interviews, field studies and literature review as follows: site geology, land use, environmental issues, grid connection, social acceptance, macroeconomic, natural hazards, change of laws and regulations, terrorism, access to infrastructure and revenue. The relative importance of risk factors was determined from the survey results. The survey was conducted with the experts that have experience in the construction of river-type hydropower schemes. The survey results revealed that the site geology and environmental issues were considered as the most important risks. The new risk assessment method enabled a Risk Index (R) value to be calculated, establishing a 4-grade evaluation system. The proposed risk analysis will give investors a more rational basis to make decisions and it can prevent cost and schedule overruns. - Highlights: ? A new methodology is proposed for risk rating of river-type hydropower plant projects. ? The relative importance of the risk factors was determined from the expert judgments. ? The most concerned risks have been found as environmental issues and site geology. ? The proposed methodology was tested on a real case. ? The proposed risk analysis will give investors a more rational basis.

  3. Geospatial Technology for Mapping Suitable Sites for Hydro Power Plant

    Directory of Open Access Journals (Sweden)

    Dr. Nagraj S. Patil

    2013-08-01

    Full Text Available Hydropower is one possible method of generating electric power close to potential consumers. The accessibility of the possible sites which are mostly located in rural and mountainous areas, large amount of data is required, consumes huge amount of money and time. Since small hydropower schemes, used to produce electrical energy which is benefited for nearby small towns, villages or small industries. Expensive ground investigations must be carefully targeted to the areas which are most likely to yield useful sites for hydropower development. In order to cope with these problems, the present study proposes the use of Geospatial Technology & Soil Water Analysis Tool (SWAT hydrological model to select the feasible sites of small hydropower projects. The study using the above methodology to identifies suitable site in Bennihalla catchment, for small scale hydropower development. The hydrological factors yield a map representing an overall feasible potential site for small hydropower development. In the present study sub catchment 1 and outlet of the catchment are more suitable for small scale hydropower plant.

  4. Projecting changes in annual hydropower generation using regional runoff data: an assessment of the United States federal hydropower plants

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Shih-Chieh [ORNL; Sale, Michael J [ORNL; Ashfaq, Moetasim [ORNL; Uria Martinez, Rocio [ORNL; Kaiser, Dale Patrick [ORNL; Wei, Yaxing [ORNL; Diffenbaugh, Noah [Stanford University

    2015-01-01

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease in annual generation at federal projects is projected to be less than 2 TWh, with an estimated ensemble uncertainty of 9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.

  5. Advanced hydropower turbine: AHTS-Advanced Hydropower Turbine System Program; Turbinas hidraulicas avancadas: Programa AHTS-Advanced Hydropower Turbine System

    Energy Technology Data Exchange (ETDEWEB)

    Macorin, Adriano De Figueiredo; Tomisawa, Alessandra Terumi; Van Deursen, Gustavo Jose Ferreira; Bermann, Celio [Universidade de Sao Paulo (USP), SP (Brazil)], email: brunosilva@usp.br

    2010-07-01

    Due to a privileged hydrography and energy policies that remounts to the beginning of the 20th century, Brazilian's electrical grid can be considered one of the cleanest in the world regarding the emission of atmospheric pollutants. Nevertheless, as in every human large enterprise, it is well known that hydroelectric power plants also lead to harmful environmental impacts. This article presents the AHTS Program (Advanced Hydropower Turbine System) started in 1994 in USA and developed to assess and conceive new hydro turbines to mitigate two of the main negative impacts of the installation and operation of this kind of power plant: (a) turbine-passed fish mortality and (b) the low dissolved oxygen - DO - levels downstream of the dams. The criteria used to concept the turbines are also justified in this article. As well as the modifications made in each case by the following companies: Alden Research Lab e o Northern Research and Engineering Corporation (ARL/NREC) and Voith Hydro (Voith). (author)

  6. Norwegian hydropower a valuable peak power source

    Energy Technology Data Exchange (ETDEWEB)

    Brekke, Hermod

    2010-07-01

    Full text: The paper gives a historical technical review of the development and installation of approximately 20 000 MW of hydraulic turbines in Norway after World War II. The non polluting production of electricity was consumed for lightening and heating for civil consume and the growing electric furnace industry in Norway in addition to export in rainy years. The paper is mainly based on the authors experience in the design of large turbines, and control systems for operation of Francis Turbines and Reversible Pump Turbines for high and medium heads and Pelton turbines for high heads. During the last 15 years the development of small hydro power plants has also given an increasing contribution to the power production. A brief discussion will be given on the choice of equipment for small hydro production with a very small winter production and overload during the summer. The possibility of operation of a small hydropower plants connected to an isolated grid will also briefly be presented. In addition to the general design of turbines and control systems for large hydro plants, a detailed description will be given of the stability analysis for the governing system which was developed for the large high head plants with long high pressure tunnels systems. A discussion will be included on the introduction of the air cushioned surge chambers for fast stable operation of power plants with long tunnels, connected to isolated grids. Also the principle of stabilizing unstable turbine governing system by means of pressure feed back systems, will be presented and discussed. A description of such system developed in 1992, will be given proving that stability could be obtained in a system with long conduits connected to the turbines. However, the 'governing speed' needed for isolated operation could not be fulfilled without a fast by pass pressure relieve system for Francis turbines, which was not installed in the case for the analysis. Finally a discussion will be given on a possible increase of the Norwegian hydropower peak power production to meet the growing the European demand for peak power caused by the growing non stationary production from wind mills and ocean energy from waves and sea current. Also building of reversible pump turbine power plants will be discussed even if approximately 10% power will be consumed by loss in the pumping phase compared to direct use of the water from reservoirs. (Author)

  7. Probabilistic Seismic Hazard Characterization and Design Parameters for the Sites of the Nuclear Power Plants of Ukraine

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (US DOE), under the auspices of the International Nuclear Safety Program (INSP) is supporting in-depth safety assessments (ISA) of nuclear power plants in Eastern Europe and the former Soviet Union for the purpose of evaluating the safety and upgrades necessary to the stock of nuclear power plants in Ukraine. For this purpose the Hazards Mitigation Center at Lawrence Livermore National Laboratory (LLNL) has been asked to assess the seismic hazard and design parameters at the sites of the nuclear power plants in Ukraine. The probabilistic seismic hazard (PSH) estimates were updated using the latest available data and knowledge from LLNL, the U.S. Geological Survey, and other relevant recent studies from several consulting companies. Special attention was given to account for the local seismicity, the deep focused earthquakes of the Vrancea zone, in Romania, the region around Crimea and for the system of potentially active faults associated with the Pripyat Dniepro Donnetts rift. Aleatory (random) uncertainty was estimated from the available data and the epistemic (knowledge) uncertainty was estimated by considering the existing models in the literature and the interpretations of a small group of experts elicited during a workshop conducted in Kiev, Ukraine, on February 2-4, 1999

  8. Probabilistic Seismic Hazard Characterization and Design Parameters for the Sites of the Nuclear Power Plants of Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Savy, J.B.; Foxall, W.

    2000-01-26

    The U.S. Department of Energy (US DOE), under the auspices of the International Nuclear Safety Program (INSP) is supporting in-depth safety assessments (ISA) of nuclear power plants in Eastern Europe and the former Soviet Union for the purpose of evaluating the safety and upgrades necessary to the stock of nuclear power plants in Ukraine. For this purpose the Hazards Mitigation Center at Lawrence Livermore National Laboratory (LLNL) has been asked to assess the seismic hazard and design parameters at the sites of the nuclear power plants in Ukraine. The probabilistic seismic hazard (PSH) estimates were updated using the latest available data and knowledge from LLNL, the U.S. Geological Survey, and other relevant recent studies from several consulting companies. Special attention was given to account for the local seismicity, the deep focused earthquakes of the Vrancea zone, in Romania, the region around Crimea and for the system of potentially active faults associated with the Pripyat Dniepro Donnetts rift. Aleatory (random) uncertainty was estimated from the available data and the epistemic (knowledge) uncertainty was estimated by considering the existing models in the literature and the interpretations of a small group of experts elicited during a workshop conducted in Kiev, Ukraine, on February 2-4, 1999.

  9. Field GE gamma spectrometry for on site measurements of some parameters characterizing radon-222 exhalation rates from soils and covers

    International Nuclear Information System (INIS)

    We describe a new method based on differential gamma spectrometry for on site determination of some of the parameters which are relevant for the production of radon 222 in soil gas and its transfer from soil to indoor and outdoor atmospheres. This method is investigated in the context of a 3-year Slovenian-French cooperation programme, the PROTEUS project. We are currently using a germanium detector of 100 cm3. The height of the 20 deg. C collimated detector above the soil surface is from 1.5 to 3 m when using a tripod. This arrangement provides results which are representative of soil areas ranging from 1 to 4 square metres. Routine measurements would require larger detector volumes. The main objective is to provide technology and methodology for an efficient mapping of zones with potential for being the source of a high level of indoor radon, eliminating the need for soil sampling followed by laboratory analysis. The feasibility of an airborne mapping laboratory flying at low altitude will be investigated. Another objective is the rapid measurement of radon profiles across covers used to reduce exhalation rates from the surface of a pile of tailings, with characterisation of the influence of humidity content of the top layer. Airborne survey would allow for measuring exhalations from surfaces of slurries not otherwise accessible. (author)

  10. a Review of Hydropower Reservoir and Greenhouse Gas Emissions

    Science.gov (United States)

    Rosa, L. P.; Dos Santos, M. A.

    2013-05-01

    Like most manmade projects, hydropower dams have multiple effects on the environment that have been studied in some depth over the past two decades. Among their most important effects are potential changes in water movement, flowing much slower than in the original river. This favors the appearance of phytoplankton as nutrients increase, with methanogenesis replacing oxidative water and generating anaerobic conditions. Although research during the late 1990s highlighted the problems caused by hydropower dams emitting greenhouse gases, crucial aspects of this issue still remain unresolved. Similar to natural water bodies, hydropower reservoirs have ample biota ranging from microorganisms to aquatic vertebrates. Microorganisms (bacteria) decompose organic matter producing biogenic gases under water. Some of these biogenic gases cause global warming, including methane, carbon dioxide and nitrous oxide. The levels of GHG emissions from hydropower dams are a strategic matter of the utmost importance, and comparisons with other power generation options such as thermo-power are required. In order to draw up an accurate assessment of the net emissions caused by hydropower dams, significant improvements are needed in carbon budgets and studies of representative hydropower dams. To determine accurately the net emissions caused by hydro reservoir formation is required significant improvement of carbon budgets studies on different representatives' hydro reservoirs at tropical, boreal, arid, semi arid and temperate climate. Comparisons must be drawn with emissions by equivalent thermo power plants, calculated and characterized as generating the same amount of energy each year as the hydropower dams, burning different fuels and with varying technology efficiency levels for steam turbines as well as coal, fuel oil and natural gas turbines and combined cycle plants. This paper brings to the scientific community important aspects of the development of methods and techniques applied as well as identifying the main players and milestones to this subject.

  11. Renewable energy in the Baltic countries: the case of hydropower

    International Nuclear Information System (INIS)

    This paper analyses the use of renewable energy sources (RES) dedicated mainly for electricity generation in the Baltic countries (Estonia, Latvia and Lithuania). Hydropower sector including both large (medium) and small power plants is particularly considered. The region has very limited energy resources of its own and is heavily dependent on the import of the primary energy sources (in some way except Estonia). The main objective of energy policy of the Baltic countries is to reduce such a total dependence by favouring the use of RES. A brief description of energy sector is given, focusing on electricity generation. RES potential currently in use and to be exploited in the future, buy- back rates of the key sources are presented. The countries' target broken down according to the individual RES to meet the EU 'green' electricity directive (2001/77/CE) are presented. Small and large hydropower potential is analyzed, a general overview of hydro-plants in operation and planned schemes is provided. A particular attention is devoted to environmental and social aspects of hydropower development. The requirements of the protected areas in relation to dam construction are analyzed, an estimation of resistance to small hydropower development is shown. The environmental legislation including forbidden rivers for damming actually in force in the Baltic countries is considered; hydropower image perceptible by general public, NGOs and official environmental bodies are discussed. The causes and legal basis of the promulgation of the list of forbidden rivers are revealed. A conclusion is drawn that the contradiction between two EU legal frameworks - environmental protection and promotion of renewables, in the case of hydropower, exists. The evaluation of the quantitative impact of the forbidden rivers on small hydropower resources in Lithuania proves. the environmental legislation is one of the strictest in the European countries. (authors)

  12. Siphon-based turbine - Demonstration project: hydropower plant at a paper factory in Perlen, Switzerland; Demonstrationsprojekt Saugheber - Turbinen. Wasserturbinenanlage Papierfabrik Perlen (WTA-PF)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the demonstration project that concerned the re-activation and refurbishing of a very low-head hydropower installation. The functional principles of the siphon-turbine used are explained and the potential for its use at many low-head sites examined. The authors are of the opinion that innovative technology and simple mechanical concepts could be used to reactivate out-of-use hydropower plant or be used to refurbish existing plant to provide increased efficiency and reliability. Various other points that are to be considered when planning the refurbishment of a hydropower plant such as retaining mechanical and hydraulic symmetry in the plant are listed and concepts for reducing operating costs are discussed. Figures on the three runner-regulated turbines installed in Perlen are quoted.

  13. Key techniques for evaluation of safety monitoring sensors in water conservancy and hydropower engineering

    Directory of Open Access Journals (Sweden)

    Yan XIANG

    2012-12-01

    Full Text Available For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitoring sensors are employed in a majority of engineering projects. These sensors are used to monitor the project during the dam construction and operation periods, and play an important role in reservoir safety operation and producing benefits. With the changing of operating environments and run-time of projects, there are some factors affecting the operation and management of projects, such as a certain amount of damaged sensors and instability of the measured data. Therefore, it is urgent to evaluate existing safety monitoring sensors in water conservancy and hydropower engineering projects. However, there are neither standards nor evaluation guidelines at present. Based on engineering practice, this study examined some key techniques for the evaluation of safety monitoring sensors, including the evaluation process of the safety monitoring system, on-site detection methods of two typical pieces of equipment, the differential resistor sensor and vibrating wire sensor, the on-site detection methods of communication cable faults, and a validity test of the sensor measured data. These key techniques were applied in the Xiaolangdi Water Control Project and Xiaoxi Hydropower Project. The results show that the measured data of a majority of sensors are reliable and reasonable, and can reasonably reflect the structural change behavior in the project operating process, indicating that the availabilities of the safety monitoring sensors of the two projects are high.

  14. Improving real-time inflow forecasting into hydropower reservoirs through a complementary modelling framework

    Science.gov (United States)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2015-08-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead time is considered within the day-ahead (Elspot) market of the Nordic exchange market. A complementary modelling framework presents an approach for improving real-time forecasting without needing to modify the pre-existing forecasting model, but instead formulating an independent additive or complementary model that captures the structure the existing operational model may be missing. We present here the application of this principle for issuing improved hourly inflow forecasts into hydropower reservoirs over extended lead times, and the parameter estimation procedure reformulated to deal with bias, persistence and heteroscedasticity. The procedure presented comprises an error model added on top of an unalterable constant parameter conceptual model. This procedure is applied in the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead times up to 17 h. Evaluation of the percentage of observations bracketed in the forecasted 95 % confidence interval indicated that the degree of success in containing 95 % of the observations varies across seasons and hydrologic years.

  15. Identification and determination of trapping parameters as key site parameters for CO2 storage for the active CO2 storage site in Ketzin (Germany) - Comparison of different experimental approaches and analysis of field data

    Science.gov (United States)

    Zemke, Kornelia; Liebscher, Axel

    2015-04-01

    Petrophysical properties like porosity and permeability are key parameters for a safe long-term storage of CO2 but also for the injection operation itself. The accurate quantification of residual trapping is difficult, but very important for both storage containment security and storage capacity; it is also an important parameter for dynamic simulation. The German CO2 pilot storage in Ketzin is a Triassic saline aquifer with initial conditions of the target sandstone horizon of 33.5 ° C/6.1 MPa at 630 m. One injection and two observation wells were drilled in 2007 and nearly 200 m of core material was recovered for site characterization. From June 2008 to September 2013, slightly more than 67 kt food-grade CO2 has been injected and continuously monitored. A fourth observation well has been drilled after 61 kt injected CO2 in summer 2012 at only 25 m distance to the injection well and new core material was recovered that allow study CO2 induced changes in petrophysical properties. The observed only minor differences between pre-injection and post-injection petrophysical parameters of the heterogeneous formation have no severe consequences on reservoir and cap rock integrity or on the injection behavior. Residual brine saturation for the Ketzin reservoir core material was estimated by different methods. Brine-CO2 flooding experiments for two reservoir samples resulted in 36% and 55% residual brine saturation (Kiessling, 2011). Centrifuge capillary pressure measurements (pc = 0.22 MPa) yielded the smallest residual brine saturation values with ~20% for the lower part of the reservoir sandstone and ~28% for the upper part (Fleury, 2010). The method by Cerepi (2002), which calculates the residual mercury saturation after pressure release on the imbibition path as trapped porosity and the retracted mercury volume as free porosity, yielded unrealistic low free porosity values of only a few percent, because over 80% of the penetrated mercury remained in the samples after pressure release to atmospheric pressure. The results from the centrifuge capillary pressure measurements were then used for calibrating the cutoff time of NMR T2 relaxation (average value 8 ms) to differentiate between the mobile and immobile water fraction (standard for clean sandstone 33 ms). Following Norden (2010) a cutoff time of 10 ms was applied to estimate the residual saturation as Bound Fluid Volume for the Ketzin core materials and to estimate NMR permeability after Timur-Coates. This adapted cutoff value is also consistent with results from RST logging after injection. The maximum measured CO2 saturation corresponds to the effective porosity for the upper most CO2 filled sandstone horizon. The directly measured values and the estimated residual brine saturations from NMR measurements with the adapted cutoff time of 10 ms are within the expected range compared to the literature data with a mean residual brine saturation of 53%. A. Cerepi et al., 2002, Journal of Petroleum Science and Engineering 35. M. Fleury et al., 2011, SCA2010-06. D. Kiessling et al., 2010, International Journal of Greenhouse Gas Control 4. B. Norden et al. 2010, SPE Reservoir Evaluation & Engineering 13. .

  16. Hidroenergia 2010: International congress on small hydropower. Conference report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This conference, held in 2010 in Lausanne, Switzerland, gathered together the main stakeholders of the small hydropower community to debate about topics affecting the development of the sector, to exchange experience and to present new advances in the technological area. The two-day conference was held in a total of nine sessions, a poster session and a workshop. The first session was dedicated to water management in the Alps and covered new regulations, administrative procedures and finance issues. Contributions included a review of the present situation and the development of common guidelines to meet the challenge of conflicting technical and environmental objectives, the facilitation of small hydropower in Switzerland and the institutional frameworks involved, recent trends in small hydro project financing and the growing roles of venture capital, private equity and changing market dynamics. Finally the prospects for small hydropower in Serbia were discussed. In two parallel sessions the following topics were looked at: The promotion of small hydropower in Switzerland using various sources of water and remuneration for the power produced, small hydro in the Canton of Vaud, Switzerland, the use of karst groundwater for the underground production of power were looked at as well as the analysis of hydraulic facilities for combining pumped storage hydropower systems and wind power in Austria. The final presentation took a look at the new 'La Tzintre' hydropower project. The parallel session dealt with technical innovations and engineering solutions with presentations on the development of small diagonal turbines, the adaptation of propeller turbines to higher specific needs and the problems encountered in doing so. The use of centrifugal pumps as turbines, including a review of technology and applications were also dealt with. Two further parallel sessions looked at EU-funded projects and sustainability issues. The Sustainable Energy Europe project was introduced and its target of improving water resource management was discussed. An assessment of the potential for small hydropower in Switzerland was presented. Further topics discussed included challenges faced in environmental management in Norway, the use of telemetric data for flood management in Thailand, the refurbishment of a small hydro scheme in western Switzerland, the realisation of the Alpbach small hydropower plant station in Kandersteg, Switzerland, the refurbishment of the Rivaz Mill small hydro installation in the vineyards along the Lake of Geneva, Switzerland and the development of a new turbine for very low heads and with low environmental impact. On the second day of the congress, four sessions and a workshop were held. The first set of parallel sessions covered multi-purpose hydro schemes such as the Chievo project on the Adige river in Italy, experience gained at the Boshava scheme in Macedonia and the development of a new tubular propeller. In the second, parallel set of presentations, technical innovations and engineering solutions were looked at. The use of computational fluid design (CFD) in the design of a diagonal turbine, the Ashlu Creek energy dissipation system in British Columbia, the planning of the two Asiganga tandem installations in the Himalayas and performance tests of hydraulic units in low-head small hydropower installations in Poland were discussed. In the second set of parallel sessions the following topics were discussed: The dynamic effects of small hydropower plants and experience gained with the design of small power plants. Finally, the ASEAN Hycom competence centre in Indonesia was presented. In the parallel session, the following topics were discussed: The Hydrobot remote survey of national hydropower resources, the 'Swissrivers' tool for the prediction of mini-hydropower production in Switzerland, increasing energy-efficiency by the use of artificial intelligence, the optimisation of a hydropower project using a real-time forecasting tool and, finally, a method to evaluate the effective potential hydrop

  17. DOE: Quantifying the Value of Hydropower in the Electric Grid

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-31

    The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

  18. Application of Geochemical Parameters for the Early Detection of CO2 Leakage from Sequestration Sites into Groundwater

    Science.gov (United States)

    Kharaka, Y. K.; Beers, S.; Thordsen, J.; Thomas, B.; Campbell, P.; Herkelrath, W. N.; Abedini, A. A.

    2011-12-01

    Geologically sequestered CO2 is buoyant, has a low viscosity and, when dissolved in brine, becomes reactive to minerals and well pipes. These properties of CO2 may cause it to leak upward, possibly contaminating underground sources of drinking water. We have participated in several multi-laboratory field experiments to investigate the chemical and isotopic parameters that are applicable to monitoring the flow of injected CO2 into deep saline aquifers and into potable shallow groundwater. Geochemical results from the deep SECARB Phase III tests at Cranfield oil field, Mississippi, and from the Frio Brine I and II pilots located in the S. Liberty oil field, Dayton, Texas, proved powerful tools in: 1- Tracking the successful injection and flow of CO2 into the injection sandstones; 2- showing major changes in the chemical (pH, alkalinity, and major divalent cations) and isotopic (?13C values of CO2, and ?18O values of CO2 and brine) compositions of formation water; 3-. showing mobilization of metals, including Fe Mn and Pb, and organic compounds , including DOC, BTEX, PAHs, and phenols following CO2 injection; and 4- showing that some of the CO2 injected into the Frio "C" sandstone was detected in the overlying "B" sandstone that is separated from it by 15 m of shale and siltstone. Rapid, significant and systematic changes were also observed in the isotopic and chemical compositions of shallow groundwater at the Zero Emissions Research and Technology (ZERT) site located in Bozeman, Montana, in response to four yearly injections of variable amounts of CO2 gas through a slotted pipe placed horizontally at a depth of ~2 m below ground level. The observed changes, included the lowering of groundwater pH from ~7.0 to values as low as 5.6, increases in the alkalinity from about 400 mg/L as HCO3 to values of up to 1330 mg/L, increases in the electrical conductance from ~600 ?S/cm to up to 1800 ?S/cm, as well as increases in the concentrations of cations and metals following CO2 injection. Geochemical modeling, sequential extractions of cations from the ZERT-aquifer sediments, and controlled laboratory CO2-groundwater-sediment interactions demonstrated that calcite dissolution and ion exchange on organic material and inorganic mineral surfaces are responsible for the observed chemical changes. Results from both the deep and shallow field tests show that geochemical methods have highly sensitive chemical and isotopic tracers that are needed at CO2 injection sites to monitor injection performance and for early detection of any CO2 and brine leakages.

  19. 77 FR 47619 - Alcoa Power Generating Inc.; Brookfield Smoky Mountain Hydropower LLC; Notice of Application for...

    Science.gov (United States)

    2012-08-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Alcoa Power Generating Inc.; Brookfield Smoky Mountain Hydropower LLC... 31, 2012, Alcoa Power Generating Inc. (transferor) and Brookfield Smoky Mountain Hydropower...

  20. 76 FR 7838 - Mahoning Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2011-02-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Mahoning Hydropower, LLC; Notice of Preliminary Permit Application Accepted.... On December 30, 2010, Mahoning Hydropower, LLC filed an application for a preliminary...

  1. 76 FR 6459 - Mahoning Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2011-02-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Mahoning Hydropower, LLC; Notice of Preliminary Permit Application Accepted.... On December 30, 2010, Mahoning Hydropower, LLC filed an application for a preliminary...

  2. 75 FR 8320 - Coastal Hydropower LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2010-02-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Coastal Hydropower LLC; Notice of Preliminary Permit Application Accepted.... On November 5, 2009, Coastal Hydropower LLC filed an application for a preliminary permit,...

  3. 77 FR 52016 - Brookfield Smoky Mountain Hydropower LLC; Supplemental Notice That Initial Market-Based Rate...

    Science.gov (United States)

    2012-08-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Brookfield Smoky Mountain Hydropower LLC; Supplemental Notice That Initial... notice in the above-referenced proceeding, of Brookfield Smoky Mountain Hydropower LLC's application...

  4. Modelling and Simulation of Temperature Variations of Bearings in a Hydropower Generation Unit

    OpenAIRE

    Gunasekara, Cotte Gamage Sarathchandra

    2011-01-01

    Hydropower contributes around 20% to the world electricity supply and is considered as the most important, clean, emissions free and economical renewable energy source.  Total installed capacity of Hydropower generation is approximately 777GW in the world (2998TWh/year). Furthermore, estimated technically feasible hydropower potential in the world is 14000TWh/year. The hydropower is the major renewable energy source in many countries and running at a higher plant-factor. Bearing overheating i...

  5. Hydropower in the Context of Sustainable Energy Supply: A Review of Technologies and Challenges

    OpenAIRE

    Kaunda, Chiyembekezo S.; Kimambo, Cuthbert Z.; Torbjorn K. Nielsen

    2012-01-01

    Hydropower is an important renewable energy resource worldwide. However, its development is accompanied with environmental and social drawbacks. Issues of degradation of the environment and climate change can negatively impact hydropower generation. A sustainable hydropower project is possible, but needs proper planning and careful system design to manage the challenges. Well-planned hydropower projects can contribute to supply sustainable energy. An up-to-date knowledge is necessary for ener...

  6. Hydropower Production Profiles: Impacts on Capacity Structure, Emissions, and Windfall Profits

    OpenAIRE

    Maria Kopsakangas-Savolainen; Rauli Svento

    2014-01-01

    Production structure in markets with a significant role of hydropower is sensitive to the production profile of hydropower. In this paper we utilize a long-run oriented real-time price based simulation model to analyze through scenarios the impact of different hydropower production profiles on the total annual energy consumed, prices, and capacity structure. We also show the relation between different hydropower production profiles and emissions, costs, and windfall profits. There seems to be...

  7. Resource rent taxation and benchmarking: a new perspective for the Swiss hydropower sector

    OpenAIRE

    Banfi, Silvia; Filippini, Massimo; Svizzera

    2009-01-01

    The electricity generation in Switzerland is mainly based on hydropower (55% of total production). The exploitation of water in the hydropower sector can generate significant so-called resource rents. These are defined by the surplus return above the value of capital, labor, materials and energy used to exploit hydropower. In Switzerland, hydropower producers pay to the State a fixed fee per kW gross capacity. With this system the substantial differences in costs, revenues and in the p...

  8. Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model

    OpenAIRE

    Bing Wang; Xiao-Jie Liang; Hao Zhang; Lu Wang; Yi-Ming Wei

    2014-01-01

    This paper analyzes the long-term relationships between hydropower generation and climate factors (precipitation), hydropower generation capacity (installed capacity of hydropower station) to quantify the vulnerability of renewable energy production in China for the case of hydropower generation. Furthermore, this study applies Grey Forecasting Model to forecast precipitation in different provinces, and then sets up different scenarios for precipitation based on the IPCC Special Report on Emi...

  9. Resource rent taxation and benchmarking: a new perspective for the Swiss hydropower sector

    OpenAIRE

    Banfi, Silvia; FILIPPINI, MASSIMO

    2010-01-01

    The electricity generation in Switzerland is mainly based on hydropower (55% of total production). The exploitation of water in the hydropower sector can generate significant so-called resource rents. These are defined by the surplus return above the value of capital, labor, materials and energy used to exploit hydropower. In Switzerland, hydropower producers pay to the State a fixed fee per kW gross capacity. With this system the substantial differences in costs, revenues and in the p...

  10. Development of Hydropower in India: Between Global Norms and Local Actions

    OpenAIRE

    Choudhury, Nirmalya

    2013-01-01

    Hydropower is an important source of renewable energy. At the same time hydropower projects are prone to adverse environmental and social impacts. This makes responsible hydropower development an important area of research. This thesis addresses the process governing hydropower development in India through an analysis of the importance of environment impact assessment (EIA) and EIA follow-up in the overall decision-making, existence of resettlement and rehabilitation (R&R) norms to mitigate s...

  11. Derivation of parameters necessary for the evaluation of performance of sites for deep geological repositories with particular reference to bedded salt, Livermore, California. Volume II. Appendices

    International Nuclear Information System (INIS)

    The method of selection of parameters to be considered in the selection of a site for underground disposal of radioactive wastes is reported in volume 1. This volume contains the appendix to that report. The topics include: specific rock mechanics tests; drilling investigation techniques and equipment; geophysical surveying; theoretical study of a well text in a nonhomogeneous aquifer; and basic statistical and probability theory that may be used in the derivation of input parameters

  12. Managing Tradeoffs between Hydropower and the Environment in the Mekong River Basin

    Science.gov (United States)

    Loucks, Daniel P.; Wild, Thomas B.

    2015-04-01

    Hydropower dams are being designed and constructed at a rapid pace in the Mekong/Lancang River basin in Southeast Asia. These reservoirs are expected to trap significant amounts sediment, decreasing much of the river's capability to transport nutrients and maintain its geomorphology and habitats. We apply a simulation model for identifying and evaluating alternative dam siting, design and operating policy (SDO) options that could help maintain more natural sediment regimes downstream of dams and for evaluating the effect of these sediment-focused SDO strategies on hydropower production and reliability. We apply this approach to the planned reservoirs that would prevent a significant source of sediment from reaching critical Mekong ecosystems such as Cambodia's Tonle Sap Lake and the Mekong delta in Vietnam. Model results suggest that various SDO modifications could increase sediment discharge from this site by 300-450% compared to current plans, but a 30-55% loss in short-term annual energy production depending on various configurations of upstream reservoirs. Simulation results also suggest that sediment management-focused reservoir operating policies could cause ecological damage if they are not properly implemented.

  13. Model for 3D-visualization of streams and techno-economic estimate of locations for construction of small hydropower plants

    International Nuclear Information System (INIS)

    The main researches of this dissertation are focused to a development of a model for preliminary assesment of the hydro power potentials for small hydropower plants construction using Geographic Information System - GIS. For this purpose, in the first part of dissertation is developed a contemporary methodological approach for 3D- visualization of the land surface and river streams in a GIS platform. In the methodology approach, as input graphical data are used digitized maps in scale 1:25000, where each map covers an area of 10x14 km and consists of many layers with graphic data in shape (vector) format. Using GIS tools, from the input point and isohyetal contour data layers with different interpolation techniques have been obtained digital elevation model - DEM, which further is used for determination of additional graphic maps with useful land surface parameters such as: slope raster maps, hill shade models of the surface, different maps with hydrologic parameters and many others. The main focus of researches is directed toward the developing of contemporary methodological approaches based on GIS systems, for assessment of the hydropower potentials and selection of suitable location for small hydropower plant construction - SHPs, and especially in the mountainous hilly area that are rich with water resources. For this purpose it is done a practical analysis at a study area which encompasses the watershed area of the Brajchanska River at the east part of Prespa Lake. The main accent considering the analysis of suitable locations for SHP construction is set to the techno-engineering criteria, and in this context is made a topographic analysis regarding the slope (gradient) either of all as well of particular river streams. It is also made a hydrological analysis regarding the flow rates (discharges). The slope analysis is executed at a pixel (cell) level a swell as at a segment (line) level along a given stream. The slope value at segment level gives in GIS platform practical and efficient information regarding the elevation drops along river streams from the potential points of intake locations to the location of objects of the small hydropower plants. In the hydrology analysis are used historic measured data in table format regarding the flow rates and precipitation for the period 1961-2000 from two pluviometric station that are close each other. At the calculation of precipitations at annual level in GIS platform is used a stochastic quadratic equation for correlation between the rainfall (precipitation) and elevation which is valid for the climatic zone of the south-west region of Republic of Macedonia. using more hydrological methods: Rational method, Area-proportion method, Regression analysis and others, are obtained graphic raster maps for numerical values of flow rates at pixel level, and also is executed a comparative analysis of obtained results. Having available data for slope (elevation drops) and values of flows, is made analysis of the hydro power potential and locations for SHP construction along Brajchanska river and its main tributaries. The analysis showed that at the higher elevation of 1000 m.a.s.l. are found more than 10 potential locations for SHP construction. From the executed analysis was also determined, that the combination of more intakes that are directed to one SHP plant gives significantly more power output and energy. Together with the techno-engineering analysis, is also given a short review considering the economic justification for SHP construction and the impact at the environment. The developed model at the study area can also serve as a practical model at the analysis regarding the assessment and the site selection of SHP in all other areas reach with water resources. The methodological approach developed in this research, can contribute to a great extent for quick and efficient decision making regarding the preliminary screening of locations and assessment of the hydro power potentials for SHP construction at small and medium watershed areas. (Author)

  14. Short-term hydropower production planning by stochastic programming

    DEFF Research Database (Denmark)

    Fleten, Stein-Erik; Kristoffersen, Trine

    2008-01-01

    Within the framework of multi-stage mixed-integer linear stochastic programming we develop a short-term production plan for a price-taking hydropower plant operating under uncertainty. Current production must comply with the day-ahead commitments of the previous day which makes short-term product......Within the framework of multi-stage mixed-integer linear stochastic programming we develop a short-term production plan for a price-taking hydropower plant operating under uncertainty. Current production must comply with the day-ahead commitments of the previous day which makes short...... future profits. A demonstration is presented with data from a Norwegian hydropower producer and the Nordic power market at Nord Pool....

  15. Preliminary study for the 'Stroppel' residual-water hydropower installation

    International Nuclear Information System (INIS)

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a preliminary study made on the replacement of an old weir that controls the flow of residual water with a small hydropower turbine. The present situation and installations on the river Limmat near Untersiggenthal in northern Switzerland is described. The local geology, hydro-geology and topography are discussed. Six different variants for the use of the hydropower potential are discussed. The variant chosen for recommendation is described in detail. Apart from the normal technical details, the study provides details on flood-water protection and describes a fish by-pass that has already been built. Environmental aspects are discussed that are to be considered when the hydropower installation is built. The calculations for investment and operating costs are presented and the economic viability of the power station is discussed

  16. Hydropower, an integral part of Canada's climate change strategy

    International Nuclear Information System (INIS)

    The development and implementation of a climate change policy could be among the most far-reaching environmental initiatives ever embarked upon in Canada and abroad. If Canada is to stabilize or reduce its Greenhouse Gas (GHG) emissions over the long term, a significant adjustment to Canadian industry will be required as we move away from fossil fuel-intensive and GHG producing activities. Future hydroelectric projects provide Canada with a unique opportunity to significantly reduce the costs associated with stabilizing its GHG emissions. In addition, the energy storage and dispatchability associated with hydropower can support development of other low emitting renewable resources such as wind and solar. This document discusses the potential role of hydropower as a tool to reduce emissions, recommends action to reduce barriers facing hydropower and comments on some of the policy tools available to manage Canada's GHG emissions. (author)

  17. Quantifying the Value of Hydropower in the Electric Grid. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Key, T. [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-02-01

    The report summarizes a 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. The study looked at existing large hydropower operations in the U.S., models for different electricity futures, markets, costs of existing and new technologies as well as trends related to hydropower investments in other parts of the world.

  18. 18 CFR 2.23 - Use of reserved authority in hydropower licenses to ameliorate cumulative impacts.

    Science.gov (United States)

    2010-04-01

    ... authority in hydropower licenses to ameliorate cumulative impacts. 2.23 Section 2.23 Conservation of Power... § 2.23 Use of reserved authority in hydropower licenses to ameliorate cumulative impacts. The... opportunity for hearing by the licensee and all interested parties. Hydropower licenses also contain...

  19. 18 CFR 141.14 - Form No. 80, Licensed Hydropower Development Recreation Report.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Form No. 80, Licensed Hydropower Development Recreation Report. 141.14 Section 141.14 Conservation of Power and Water Resources... Hydropower Development Recreation Report. The form of the report, Licensed Hydropower Development...

  20. 78 FR 71601 - KC Small Hydro LLC; Advanced Hydropower, Inc.; Notice of Preliminary Permit Application Accepted...

    Science.gov (United States)

    2013-11-29

    ... Energy Regulatory Commission KC Small Hydro LLC; Advanced Hydropower, Inc.; Notice of Preliminary Permit... the applicant to KC Small Hydro LLC. (KCS Hydro). On November 5, 2013, Advanced Hydropower, Inc... the feasibility of a hydropower project to be located at the U.S. Army Corps of Engineers'...

  1. 78 FR 69847 - North Side Canal Company; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Science.gov (United States)

    2013-11-21

    ... Qualifying Conduit Hydropower Facility and Soliciting Comments and Motions To Intervene On November 5, 2013, North Side Canal Company, filed a notice of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower...

  2. 78 FR 63176 - Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting...

    Science.gov (United States)

    2013-10-23

    ... Energy Regulatory Commission Notice of Preliminary Determination of a Qualifying Conduit Hydropower... hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The 22 kW Orchard City Water Treatment...

  3. 76 FR 12103 - Erie Boulevard Hydropower, L.P; Notice of Settlement Agreement and Soliciting Comments

    Science.gov (United States)

    2011-03-04

    ... Energy Regulatory Commission Erie Boulevard Hydropower, L.P; Notice of Settlement Agreement and.... Date Filed: February 18, 2011. d. Applicant: Erie Boulevard Hydropower, L.P. e. Location: The existing... Daoust, Erie Boulevard Hydropower, 33 West 1st Street, South, Fulton, NY, 13069; (315) 598-6131. i....

  4. 75 FR 59707 - Coastal Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2010-09-28

    ... Energy Regulatory Commission Coastal Hydropower, LLC; Notice of Preliminary Permit Application Accepted..., 2010. On February 9, 2010, and supplemented on July 16, 2010, Coastal Hydropower, LLC filed an...-hours. Applicant Contact: Neil Anderson, Coastal Hydropower, LLC, Key Centre, 601 108th Avenue,...

  5. 78 FR 56872 - City of Barre, Vermont; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Science.gov (United States)

    2013-09-16

    ... Conduit Hydropower Facility and Soliciting Comments and Motions To Intervene On August 29, 2013, City of Barre, Vermont filed a notice of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower...

  6. 78 FR 28838 - New England Hydropower Company, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2013-05-16

    ... Energy Regulatory Commission New England Hydropower Company, LLC; Notice of Preliminary Permit... April 29, 2013, the New England Hydropower Company, LLC filed an application for a preliminary permit...: Mr. Michael C. Kerr, New England Hydropower Company, LLC, P.O. Box 5524, Beverly Farms,...

  7. 78 FR 62351 - North Side Canal Company; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Science.gov (United States)

    2013-10-18

    ... Qualifying Conduit Hydropower Facility and Soliciting Comments and Motions To Intervene On October 3, 2013, North Side Canal Company, filed a notice of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower...

  8. 78 FR 61958 - New England Hydropower Company, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2013-10-08

    ... Energy Regulatory Commission New England Hydropower Company, LLC; Notice of Preliminary Permit... August 20, 2013, the New England Hydropower Company, LLC filed an application for a preliminary permit.... Michael C. Kerr, New England Hydropower Company, LLC, P.O. Box 5524, Beverly Farms, Massachusetts...

  9. 77 FR 75630 - New England Hydropower Company, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2012-12-21

    ... Federal Energy Regulatory Commission New England Hydropower Company, LLC; Notice of Preliminary Permit... December 7, 2012, the New England Hydropower Company, LLC, filed an application for a preliminary permit... privately owned. Applicant Contact: Mr. Michael C. Kerr, New England Hydropower Company, LLC, P.O. Box...

  10. 78 FR 38027 - Wilkesboro Hydroelectric Company, LLC; Wilkesboro Hydropower, LLC; Notice of Application for...

    Science.gov (United States)

    2013-06-25

    ... Energy Regulatory Commission Wilkesboro Hydroelectric Company, LLC; Wilkesboro Hydropower, LLC; Notice of..., Wilkesboro Hydroelectric Company, LLC (transferor) and Wilkesboro Hydropower, LLC (transferee) filed an application for the transfer of license for the W. Kerr Scott Hydropower Project, FERC No. 12642, located...

  11. 78 FR 69080 - Houtama Hydropower LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2013-11-18

    ... Energy Regulatory Commission Houtama Hydropower LLC; Notice of Preliminary Permit Application Accepted..., 2013, Houtama Hydropower LLC filed an application for a preliminary permit, pursuant to section 4(f) of... Contact: Mr. William C. Hampton, CEO, Houtama Hydropower ] LLC, 1044 NW 12th Drive, Pendleton, OR...

  12. 78 FR 64493 - Juneau Hydropower, Inc.; Notice of Subsequent Draft License Application (DLA) and Draft...

    Science.gov (United States)

    2013-10-29

    ... Energy Regulatory Commission Juneau Hydropower, Inc.; Notice of Subsequent Draft License Application (DLA..., 2013. d. Applicant: Juneau Hydropower, Inc. e. Name of Project: Sweetheart Lake Hydroelectric Project.... Applicant Contact: Duff Mitchell, Business Manager, Juneau Hydropower, Inc., P.O. Box 22775, Juneau,...

  13. 75 FR 59706 - Coastal Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2010-09-28

    ... Federal Energy Regulatory Commission Coastal Hydropower, LLC; Notice of Preliminary Permit Application..., 2010. On February 9, 2010, and supplemented on July 16, 2010, Coastal Hydropower, LLC filed an..., Coastal Hydropower, LLC, Key Centre, 601 108th Avenue, NE., Suite 1900, Bellevue, WA 98004; phone:...

  14. 78 FR 66355 - Pleasant Grove City, UT; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Science.gov (United States)

    2013-11-05

    ... Conduit Hydropower Facility and Soliciting Comments and Motions To Intervene On October 22, 2013, as... a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The 120 kW Battle...

  15. 76 FR 19765 - Toutant Hydropower Inc.; Notice of Application Accepted for Filing, Soliciting Comments, Motions...

    Science.gov (United States)

    2011-04-08

    ... Energy Regulatory Commission Toutant Hydropower Inc.; Notice of Application Accepted for Filing... Hydropower Inc. e. Name of Project: M.S.C. (Toutant) Hydroelectric Project. f. Location: The project is..., 16 U.S.C. 791a-825r. h. Applicant Contact: Roland Toutant, Toutant Hydropower, Inc., 80 Bungay...

  16. 77 FR 63301 - Juneau Hydropower, Inc.; Notice of Draft License Application and Preliminary Draft Environmental...

    Science.gov (United States)

    2012-10-16

    ... Energy Regulatory Commission Juneau Hydropower, Inc.; Notice of Draft License Application and Preliminary...: August 31, 2012. d. Applicant: Juneau Hydropower, Inc. e. Name of Project: Sweetheart Lake Hydroelectric... Hydropower, Inc., P.O. Box 22775, Juneau, AK 99802; 907-789-2775, email: duff.mitchell@juneauhydro.com ....

  17. 78 FR 53752 - City of Sandpoint, Idaho; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Science.gov (United States)

    2013-08-30

    ... Qualifying Conduit Hydropower Facility and Soliciting Comments and Motions To Intervene On August 15, 2013, City of Sandpoint, Idaho filed a notice of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower...

  18. 75 FR 62518 - Northern Illinois Hydropower, LLC; Notice of Application Ready for Environmental Analysis and...

    Science.gov (United States)

    2010-10-12

    ... Energy Regulatory Commission Northern Illinois Hydropower, LLC; Notice of Application Ready for....: 12717-002. c. Date filed: May 27, 2009. d. Applicant: Northern Illinois Hydropower, LLC. e. Name of...). h. Applicant Contact: Damon Zdunich, Northern Illinois Hydropower, LLC, 801 Oakland Avenue,...

  19. 76 FR 58262 - Notice of Proposed Restricted Service List or Section 106 Consultation; Boott Hydropower Inc...

    Science.gov (United States)

    2011-09-20

    ...; Boott Hydropower Inc.; Eldred L. Field Hydroelectric Facility Trust; Lowell Hydroelectric Project... installation of pneumatic crest gates at the Lowell Hydroelectric Project. Boott Hydropower, Inc. and Eldred L..., Boott Hydropower, Inc., Eldred L. Field Hydroelectric Facility Trust, One Tech Drive, Suite 220,...

  20. 77 FR 66608 - New England Hydropower Company, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2012-11-06

    ... Energy Regulatory Commission New England Hydropower Company, LLC; Notice of Preliminary Permit... October 15, 2012, New England Hydropower Company, LLC filed an application for a preliminary permit... Wasserman, New England Hydropower Company, LLC, P.O. Box 5524, Beverly Farms, Massachusetts 01915; (978)...

  1. 78 FR 12050 - Juneau Hydropower, Inc.; Notice of Successive Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2013-02-21

    ... Energy Regulatory Commission Juneau Hydropower, Inc.; Notice of Successive Preliminary Permit Application..., 2012, Juneau Hydropower, Inc., filed an application for a successive preliminary permit, pursuant to...: Duff Mitchell, Business Manager, Juneau Hydropower, Inc. P.O. Box 22775, Juneau, AK 99802; email:...

  2. 78 FR 61987 - Corbett Water District; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Science.gov (United States)

    2013-10-09

    ... Conduit Hydropower Facility and Soliciting Comments and Motions To Intervene On September 23, 2013, Corbett Water District filed a notice of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower...

  3. 77 FR 30308 - Proposed Renewal of Information Collection: Alternatives Process in Hydropower Licensing

    Science.gov (United States)

    2012-05-22

    ... Office of the Secretary Proposed Renewal of Information Collection: Alternatives Process in Hydropower... Process in Hydropower Licensing, OMB Control Number 1094-0001. FOR FURTHER INFORMATION CONTACT: To request... develop for inclusion in a hydropower license issued by the Federal Energy Regulatory Commission...

  4. 75 FR 65620 - Inglis Hydropower, LLC; Notice of Application Ready for Environmental Analysis and Soliciting...

    Science.gov (United States)

    2010-10-26

    ... Energy Regulatory Commission Inglis Hydropower, LLC; Notice of Application Ready for Environmental.... c. Date filed: July 22, 2009. d. Applicant: Inglis Hydropower, LLC. e. Name of Project: Inglis Hydropower Project. f. Location: The project would be located at the existing Inglis bypass channel...

  5. 75 FR 18193 - Northern Illinois Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting...

    Science.gov (United States)

    2010-04-09

    ... Energy Regulatory Commission Northern Illinois Hydropower, LLC; Notice of Application Accepted for Filing...: Northern Illinois Hydropower, LLC. e. Name of Project: Dresden Island Project. f. Location: U.S. Army Corps... Zdunich, Northern Illinois Hydropower, LLC, 801 Oakland Avenue, Joliet, IL 60435, (312) 320-1610. i....

  6. 78 FR 2988 - New England Hydropower Company, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2013-01-15

    ... Energy Regulatory Commission New England Hydropower Company, LLC; Notice of Preliminary Permit... December 28, 2012, the New England Hydropower Company, LLC, filed an application for a preliminary permit... Protection. Applicant Contact: Mr. Michael C. Kerr, New England Hydropower Company, LLC, P.O. Box...

  7. 75 FR 51258 - Boott Hydropower, Inc.; Eldred L Field Hydroelectric Facility Trust; Notice of Application for...

    Science.gov (United States)

    2010-08-19

    ... Energy Regulatory Commission Boott Hydropower, Inc.; Eldred L Field Hydroelectric Facility Trust; Notice... No.: 2790-055. c. Date Filed: July 6, 2010. d. Applicant: Boott Hydropower, Inc. and Eldred L Field... Hydropower, Inc., One Tech Drive, Suite 220, Andover, MA 01810. Tel: (978) 681-1900 Ext 809. i. FERC...

  8. 77 FR 71590 - New England Hydropower Company, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2012-12-03

    ... Federal Energy Regulatory Commission New England Hydropower Company, LLC; Notice of Preliminary Permit... November 9, 2012, the New England Hydropower Company, LLC, filed an application for a preliminary permit.... Michael C. Kerr, New England Hydropower Company, LLC, P.O. Box 5524, Beverly Farms, Massachusetts...

  9. 77 FR 31349 - Coastal Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2012-05-25

    ... Energy Regulatory Commission Coastal Hydropower, LLC; Notice of Preliminary Permit Application Accepted..., Coastal Hydropower, LLC filed an application for a preliminary permit, pursuant to section 4(f) of the... Contact: Neil Anderson, Coastal Hydropower, LLC, Key Centre, 601 108th Avenue NE., Suite 1900,...

  10. 78 FR 55251 - Hydropower Regulatory Efficiency Act of 2013; Notice of Workshop

    Science.gov (United States)

    2013-09-10

    ... Energy Regulatory Commission Hydropower Regulatory Efficiency Act of 2013; Notice of Workshop The Federal... process for the issuance of a license for hydropower development at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the Hydropower Regulatory Efficiency Act of...

  11. 78 FR 2990 - Juneau Hydropower, Inc.; Notice of Successive Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2013-01-15

    ... Energy Regulatory Commission Juneau Hydropower, Inc.; Notice of Successive Preliminary Permit Application..., 2012, Juneau Hydropower, Inc., filed an application for a successive preliminary permit, pursuant to...: Duff Mitchell, Business Manager, Juneau Hydropower, Inc. P.O. Box 22775, Juneau, AK 99802; email:...

  12. 78 FR 58535 - Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of Workshop

    Science.gov (United States)

    2013-09-24

    ... Energy Regulatory Commission Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of... two-year process for the issuance of a license for hydropower development at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the Hydropower Regulatory...

  13. 75 FR 24937 - Northern Illinois Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting...

    Science.gov (United States)

    2010-05-06

    ... Energy Regulatory Commission Northern Illinois Hydropower, LLC; Notice of Application Accepted for Filing...: Northern Illinois Hydropower, LLC. e. Name of Project: Brandon Road Hydroelectric Project. f. Location: U.S... Zdunich, Northern Illinois Hydropower, LLC, 801 Oakland Avenue, Joliet, IL 60435, (312) 320-1610. i....

  14. 77 FR 58375 - Inglis Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2012-09-20

    ... Energy Regulatory Commission Inglis Hydropower, LLC; Notice of Preliminary Permit Application Accepted..., Inglis Hydropower, LLC filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of a hydropower project located at the...

  15. Projected impacts of climate change on hydropower potential in China

    Science.gov (United States)

    Liu, Xingcai; Tang, Qiuhong; Voisin, Nathalie; Cui, Huijuan

    2016-02-01

    Hydropower is an important renewable energy source in China, but it is sensitive to climate change, because the changing climate may alter hydrological conditions (e.g., river flow and reservoir storage). Future changes and associated uncertainties in China's gross hydropower potential (GHP) and developed hydropower potential (DHP) are projected using simulations from eight global hydrological models (GHMs) forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Results show that the estimation of the present GHP of China is comparable to other studies; overall, the annual GHP is projected to change by -1.7 to 2% in the near future (2020-2050) and increase by 3 to 6 % in the late 21st century (2070-2099). The annual DHP is projected to change by -2.2 to -5.4 % (0.7-1.7 % of the total installed hydropower capacity [IHC]) and -1.3 to -4% (0.4-1.3 % of total IHC) for 2020-2050 and 2070-2099, respectively. Regional variations emerge: GHP will increase in northern China, but decrease in southern China - mostly in South-Central China and Eastern China - where numerous reservoirs and large IHCs currently are located. The area with the highest GHP in Southwest China will have more GHP, while DHP will reduce in the regions with high IHC (e.g., Sichuan and Hubei) in the future. The largest decrease in DHP (in %) will occur in autumn or winter, when streamflow is relatively low and water use is competitive. Large ranges in hydropower estimates across GHMs and GCMs highlight the necessity of using multi-model assessments under climate change conditions. This study prompts the consideration of climate change in planning for hydropower development and operations in China.

  16. EMTA’s Evaluation of the Elastic Properties for Fiber Polymer Composites Potentially Used in Hydropower Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Paquette, Joshua

    2010-08-01

    Fiber-reinforced polymer composites can offer important advantages over metals where lightweight, cost-effective manufacturing and high mechanical performance can be achieved. To date, these materials have not been used in hydropower systems. In view of the possibility to tailor their mechanical properties to specific applications, they now have become a subject of research for potential use in hydropower systems. The first step in any structural design that uses composite materials consists of evaluating the basic composite mechanical properties as a function of the as-formed composite microstructure. These basic properties are the elastic stiffness, stress-strain response, and strength. This report describes the evaluation of the elastic stiffness for a series of common discontinuous fiber polymer composites processed by injection molding and compression molding in order to preliminarily estimate whether these composites could be used in hydropower systems for load-carrying components such as turbine blades. To this end, the EMTA (Copyright © Battelle 2010) predictive modeling tool developed at the Pacific Northwest National Laboratory (PNNL) has been applied to predict the elastic properties of these composites as a function of three key microstructural parameters: fiber volume fraction, fiber orientation distribution, and fiber length distribution. These parameters strongly control the composite mechanical performance and can be tailored to achieve property enhancement. EMTA uses the standard and enhanced Mori-Tanaka type models combined with the Eshelby equivalent inclusion method to predict the thermoelastic properties of the composite based on its microstructure.

  17. DOE Hydropower Program Biennial Report for FY 2005-2006

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Acker, Thomas L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Northern Arizona State Univ., Flagstaff, AZ (United States); Carlson, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2006-07-01

    This report describes the progress of the R&D conducted in FY 2005-2006 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  18. Memorandum of Understanding for Hydropower Two-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-04-01

    On March 24, 2010, the Department of the Army (DOA) through the U.S. Army Corps of Engineers (USACE or Corps), the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to “help meet the nation’s needs for reliable, affordable, and environmentally sustainable hydropower by building a long-term working relationship, prioritizing similar goals, and aligning ongoing and future renewable energy development efforts.” This report documents efforts so far.

  19. DOE Hydropower Program Annual Report for FY 2004

    Energy Technology Data Exchange (ETDEWEB)

    Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ahlgrimm, James [U.S. Dept. of Energy, Washington, D.C. (United States); Acker, Tomas L. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2005-02-01

    This report describes the progress of the R&D conducted in FY 2004 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  20. CFD computations of hydropower plant intake flow using unsteady RANS

    OpenAIRE

    Nöid, Lovisa

    2015-01-01

    At the intake of hydropower plants, air-core vortex formation is known to cause severe damage. In order to study how to prevent and reduce the origin of the vortex, Vattenfall has built a scale model of the Akkats hydropower plant dam, where scale testing is possible. This thesis work consists of discerning whether Computational Fluid Dynamics (CFD) in terms of solving the Unsteady Reynolds Average Navier-Stokes equations (URANS) can be used as a complement to scale testing. For this work, th...

  1. The influence of climate change on Tanzania's hydropower sustainability

    Science.gov (United States)

    Sperna Weiland, Frederiek; Boehlert, Brent; Meijer, Karen; Schellekens, Jaap; Magnell, Jan-Petter; Helbrink, Jakob; Kassana, Leonard; Liden, Rikard

    2015-04-01

    Economic costs induced by current climate variability are large for Tanzania and may further increase due to future climate change. The Tanzanian National Climate Change Strategy addressed the need for stabilization of hydropower generation and strengthening of water resources management. Increased hydropower generation can contribute to sustainable use of energy resources and stabilization of the national electricity grid. To support Tanzania the World Bank financed this study in which the impact of climate change on the water resources and related hydropower generation capacity of Tanzania is assessed. To this end an ensemble of 78 GCM projections from both the CMIP3 and CMIP5 datasets was bias-corrected and down-scaled to 0.5 degrees resolution following the BCSD technique using the Princeton Global Meteorological Forcing Dataset as a reference. To quantify the hydrological impacts of climate change by 2035 the global hydrological model PCR-GLOBWB was set-up for Tanzania at a resolution of 3 minutes and run with all 78 GCM datasets. From the full set of projections a probable (median) and worst case scenario (95th percentile) were selected based upon (1) the country average Climate Moisture Index and (2) discharge statistics of relevance to hydropower generation. Although precipitation from the Princeton dataset shows deviations from local station measurements and the global hydrological model does not perfectly reproduce local scale hydrographs, the main discharge characteristics and precipitation patterns are represented well. The modeled natural river flows were adjusted for water demand and irrigation within the water resources model RIBASIM (both historical values and future scenarios). Potential hydropower capacity was assessed with the power market simulation model PoMo-C that considers both reservoir inflows obtained from RIBASIM and overall electricity generation costs. Results of the study show that climate change is unlikely to negatively affect the average potential of future hydropower production; it will likely make hydropower more profitable. Yet, the uncertainty in climate change projections remains large and risks are significant, adaptation strategies should ideally consider a worst case scenario to ensure robust power generation. Overall a diversified power generation portfolio, anchored in hydropower and supported by other renewables and fossil fuel-based energy sources, is the best solution for Tanzania

  2. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-Strike Modeling

    Directory of Open Access Journals (Sweden)

    Zhiqun Deng

    2011-01-01

    Full Text Available Hydropower is the largest renewable energy source in the world. However, in the Columbia and Snake River basins, several species of Pacific salmon and steelhead have been listed for protection under the Endangered Species Act due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making hydroelectric facilities more fish friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for relicensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to compare fish passage performance of the newly installed advanced turbine to an existing turbine. Modeled probabilities were compared to the results of a large-scale live-fish survival study and a Sensor Fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury, while those predicted by the stochastic model were in close agreement with experimental results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, no statistical evidence suggested significant differences in blade-strike injuries between the two turbines, thus the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal to or higher than that for fish passing through the conventional turbine could not be rejected.

  3. Capturing the Green River -- Multispectral airborne videography to evaluate the environmental impacts of hydropower operations

    International Nuclear Information System (INIS)

    The 500-mile long Green River is the largest tributary of the Colorado River. From its origin in the Wind River Range mountains of western Wyoming to its confluence with the Colorado River in southeastern Utah, the Green River is vital to the arid region through which it flows. Large portions of the area remain near-wilderness with the river providing a source of recreation in the form of fishing and rafting, irrigation for farming and ranching, and hydroelectric power. In the late 1950's and early 1960's hydroelectric facilities were built on the river. One of these, Flaming Gorge Dam, is located just south of the Utah-Wyoming border near the town of Dutch John, Utah. Hydropower operations result in hourly and daily fluctuations in the releases of water from the dam that alter the natural stream flow below the dam and affect natural resources in and along the river corridor. In the present study, the authors were interested in evaluating the potential impacts of hydropower operations at Flaming Gorge Dam on the downstream natural resources. Considering the size of the area affected by the daily pattern of water release at the dam as well as the difficult terrain and limited accessibility of many reaches of the river, evaluating these impacts using standard field study methods was virtually impossible. Instead an approach was developed that used multispectral aerial videography to determine changes in the affected parameters at different flows, hydrologic modeling to predict flow conditions for various hydropower operating scenarios, and ecological information on the biological resources of concern to assign impacts

  4. An in vitro RNA editing system from cauliflower mitochondria: Editing site recognition parameters can vary in different plant species

    OpenAIRE

    NEUWIRT, JULIA; TAKENAKA, MIZUKI; van der Merwe, Johannes A.; BRENNICKE, AXEL

    2005-01-01

    Most of the 400 RNA editing sites in flowering plant mitochondria are found in mRNAs. Consequently, the sequence vicinities of homologous sites are highly conserved between different species and are presumably recognized by likewise conserved trans-factors. To investigate the evolutionary adaptation to sequence variation, we have now analyzed the recognition elements of an editing site with divergent upstream sequences in the two species pea and cauliflower. This variation is tolerated at the...

  5. Preliminary analysis of important site-specific dose assessment parameters and exposure pathways applicable to a groundwater release scenario at Yucca Mountain

    International Nuclear Information System (INIS)

    To develop capabilities for compliance determination, the Nuclear Regulatory Commission (NRC) conducts total system performance assessment (TSPA) for the proposed repository at Yucca Mountain (YM) in an iterative manner. Because the new Environmental Protection Agency (EPA) standard for YM may set a dose or risk limit, an auxiliary study was conducted to develop estimates of site-specific dose assessment parameters for future TSPAS. YM site-relevant data was obtained for irrigation, agriculture, resuspension, crop interception, and soil. A Monte Carlo based importance analysis was used to identify predominant parameters for the groundwater pathway. In this analysis, the GENII-S code generated individual annual total effective dose equivalents (TEDEs) for 20 nuclides and 43 sampled parameters based upon unit groundwater concentrations. Scatter plots and correlation results indicate the crop interception fraction, food transfer factors, consumption rates, and irrigation rate are correlated with TEDEs for specific nuclides. Influential parameter groups correspond to expected pathway readily to plants, such as 99Tc, indicate crop ingestion pathway parameters are most highly correlated with the TEDE, and those that transfer to milk (59Ni) or beef (79Se, 129I, 135Cs, 137Cs) show predominant correlations with animal product ingestion pathway parameters. Such relationships provide useful insight to important parameters and exposure pathways applicable to doses from specific nuclides

  6. Reducing potential damages by freshet abatement in hydropower lakes. An argument for financing hydropower projects

    International Nuclear Information System (INIS)

    Dam reservoirs with significant water volumes (storage coefficients exceeding 8-10%) cause diminishing of the maximum flow downstream, especially due to the aleatory variation of the initial water level in the reservoir. Depending on the flow reduction in the dam, a methodology for determining the flow for the whole water course downstream is proposed, taking into account various potential combinations for flood generation in the catchment area. Differences between potential damages caused by floods in case of natural conditions versus those occurring in case of engineered zones result in important public financial benefits, amounting up to around 30% of the investments required for dam construction. For instance, in the case of hydropower lake Dragan on the Crisul Repede River the damages diminished down to about 50% for downstream watercourse. (authors)

  7. DOE Hydropower Program Biennial Report for FY 2005-2006

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Michael J [ORNL; Cada, Glenn F [ORNL; Acker, Thomas L. [Northern Arizona State University and National Renewable Energy Laboratory; Carlson, Thomas [Pacific Northwest National Laboratory (PNNL); Dauble, Dennis D. [Pacific Northwest National Laboratory (PNNL); Hall, Douglas G. [Idaho National Laboratory (INL)

    2006-07-01

    SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington. Completed a state-of-the-science review of hydropower optimization methods and published reports on alternative operating strategies and opportunities for spill reduction. Carried out feasibility studies of new environmental performance measurements of the new MGR turbine at Wanapum Dam, including measurement of behavioral responses, biomarkers, bioindex testing, and the use of dyes to assess external injuries. Evaluated the benefits of mitigation measures for instream flow releases and the value of surface flow outlets for downstream fish passage. Refined turbulence flow measurement techniques, the computational modeling of unsteady flows, and models of blade strike of fish. Published numerous technical reports, proceedings papers, and peer-reviewed literature, most of which are available on the DOE Hydropower website. Further developed and tested the sensor fish measuring device at hydropower plants in the Columbia River. Data from the sensor fish are coupled with a computational model to yield a more detailed assessment of hydraulic environments in and around dams. Published reports related to the Virtual Hydropower Prospector and the assessment of water energy resources in the U.S. for low head/low power hydroelectric plants. Convened a workshop to consider the environmental and technical issues associated with new hydrokinetic and wave energy technologies. Laboratory and DOE staff participated in numerous workshops, conferences, coordination meetings, planning meetings, implementation meetings, and reviews to transfer the results of DOE-sponsored research to end-users.

  8. 75 FR 5071 - Mississippi L&D 21, LLC, Mississippi River No. 21 Hydropower Company Lock + TM

    Science.gov (United States)

    2010-02-01

    ... Energy Regulatory Commission Mississippi L&D 21, LLC, Mississippi River No. 21 Hydropower Company Lock... No. 21 Hydropower Company (Hydropower Company) filed an application for a preliminary permit for the proposed Mississippi River No. 21 Hydropower Project No. 13637. On January 8, 2010, Lock + TM Hydro...

  9. Integration of hydropower in the IMAGE/TIMER model - Steps toward endogenous modelling of global hydropower by construction of regional cost supply curves

    OpenAIRE

    Niessink, R.J.M.

    2015-01-01

    In the electricity sector, hydropower or “hydro-electricity” is currently the largest renewable energy source, with a global capacity of about 1 TW in 2013 and providing 85% of global electricity from renewable sources. However, despite the importance of the resource many energy models pay much less attention to hydropower than to other renewables. In the energy model TIMER used at PBL Netherlands Environmental Assessment Agency as part of the IMAGE framework, hydropower is modelled as an ene...

  10. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    International Nuclear Information System (INIS)

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals

  11. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Muhlbachova, G. [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Sagova-Mareckova, M., E-mail: sagova@vurv.cz [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Omelka, M. [Charles University, Faculty of Mathematics and Physics, Dept. of Probability and Mathematical Statistics, Prague 8, Karlin (Czech Republic); Szakova, J.; Tlustos, P. [Czech University of Life Sciences, Department of Agroenvironmental Chemistry and Plant Nutrition, Prague 6, Suchdol (Czech Republic)

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals.

  12. Hydropower computerized reconnaissance package version 2. 0. [HYDRO-CAL, PAPER-ECON, and HYDRO-ECON

    Energy Technology Data Exchange (ETDEWEB)

    Broadus, C.R.

    1981-04-01

    The Hydropower Computerized Reconnaissance (HCR) Package is a computerized preliminary engineering and economic study package for small hydroelectric projects which consists of three programs developed at the Idaho National Engineering Laboratory. One engineering program evaluates the flow characteristics of a site and determines the energy generated for various turbine configurations and two economic programs provide two levels of economic studies depending upon the amount of site-specific information available. An Apple II computer is utilized to provide a quick-turnaround capability. The models and methods used in the HCR package are described, and information is provided on program application, sample run sessions, program outputs, and listings of the main programs.

  13. Hydropower recovery in water supply systems: Models and case study

    International Nuclear Information System (INIS)

    Highlights: • We present hydropower recovery models for water supply systems. • Hydropower recovery potential in water supply systems is highly variable. • The case studied could make the supply systems self-sufficient in terms of energy. • Hydropower recovery can reduce GHGs emissions and generate carbon credits. - Abstract: The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems

  14. 77 FR 64506 - Robert D. Willis Hydropower Rate

    Science.gov (United States)

    2012-10-22

    ... Register, (77 FR 40609), of the proposed rate increase for the Willis project. Southwestern provided a 30... proposed Willis power rate were announced by a Federal Register notice published on July 10, 2012 (77 FR... Southwestern Power Administration Robert D. Willis Hydropower Rate AGENCY: Southwestern Power...

  15. 75 FR 40816 - Northern Illinois Hydropower, LLC; Notice of Meeting

    Science.gov (United States)

    2010-07-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Northern Illinois Hydropower, LLC; Notice of Meeting July 7, 2010. a. Date and Time of Meeting: Thursday, July 22, 2010 from 9 a.m. to 12 p.m. CDT. b. Place: Illinois...

  16. The impact of environmental constraints on hydro-power projects

    International Nuclear Information System (INIS)

    Environmental side-effects which might occur in connection with hydropower generation are sediment deposition upstream of dams, degradation downstream of dams, interruption of fish migration, change of habitat characteristics for fauna and flora through reduction of flow velocity upstream of dams, change of habitat characteristics for fauna and flora through reduction of flow rate downstream of diversions, raise of groundwater level upstream of dams, drop of groundwater level downstream of dams. The side-effects listed above must not necessarily be seen as negative impact on riverine environment, in certain circumstances some of them might even be desirable. This is the case in river portions where the original morphological process progresses towards conditions that must be considered as environmental hazards. Apart from the effect of hydropower generation on riverine environment it must not be ignored that, on global scale the impact of hydropower generation on environment is basically positive as it lacks the negative effects of all other power generating methods (fossil fuel, nuclear reaction, photovoltaic processes). Hydropower is clean energy, self-regenerating and without any waste. The required equipment has the longest lifetime of all competing techniques (i.e. 100 years and more) and does not create hazards even when dismantling and recycling should become necessary one day. (author)

  17. False Shades of Green: The Case of Brazilian Amazonian Hydropower

    Directory of Open Access Journals (Sweden)

    James Randall Kahn

    2014-09-01

    Full Text Available The Federal Government of Brazil has ambitious plans to build a system of 58 additional hydroelectric dams in the Brazilian Amazon, with Hundreds of additional dams planned for other countries in the watershed. Although hydropower is often billed as clean energy, we argue that the environmental impacts of this project are likely to be large, and will result in substantial loss of biodiversity, as well as changes in the flows of ecological services. Moreover, the projects will generate significant greenhouse gas emissions from deforestation and decay of organic matter in the reservoirs. These emissions are equivalent to the five years of emissions that would be generated by gas powered plants of equivalent capacity. In addition, we examine the economic benefits of the hydropower in comparison to new alternatives, such as photovoltaic energy and wind power. We find that current costs of hydropower exceed alternatives, and the costs of costs of these alternatives are likely to fall substantially below those of hydropower, while the environmental damages from the dams will be extensive and irreversible.

  18. Quadrennial Technology Review 2015: Technology Assessments--Hydropower

    Energy Technology Data Exchange (ETDEWEB)

    Sam Baldwin, Gilbert Bindewald, Austin Brown, Charles Chen, Kerry Cheung, Corrie Clark, Joe Cresko,

    2015-10-07

    Hydropower has provided reliable and flexible base and peaking power generation in the United States for more than a century, contributing on average 10.5% of cumulative U.S. power sector net generation over the past six and one-half decades (1949–2013). It is the nation’s largest source of renewable electricity, with 79 GW of generating assets and 22 GW of pumped-storage assets in service, with hydropower providing half of all U.S. renewable power-sector generation (50% in 2014). In addition to this capacity, the U.S. Department of Energy (DOE) has identified greater than 80 GW of new hydropower resource potential: at least 5 GW from rehabilitation and expansion of existing generating assets, up to 12 GW of potential at existing dams without power facilities, and over 60 GW of potential low-impact new development (LIND) in undeveloped stream reaches. However, despite this growth potential, hydropower capacity and production growth have stalled in recent years, with existing assets even experiencing decreases in capacity and production from lack of sustaining investments in infrastructure and increasing constraints on water use.

  19. The use of multicriteria decision making methods to find the environmental costs of hydropower development alternatives

    International Nuclear Information System (INIS)

    The conference paper deals with a decision support system (DSS) developed to find the costs of environmental goods. The system is based on multicriteria decision making and uses pairwise comparisons of two and two criteria. The criteria weights are calculated with linear regression. When one criterion is monetary, all criteria weights can be expressed in monetary units when the weights are known. The DSS has been tested on a hydropower project in the area of Sauda in Norway. To represent the decision makers, three panels each consisting of three persons were formed. The persons were selected from governmental agencies, the developers, the local environmental administration and a local politician. The DSS worked well with the panels. One problem was that impacts of hydropower projects are very site specific and also hard to quantify. Therefore, a considerable amount of time was used in creating a cognitive understanding of the issues involved and how they were represented by quantitative criteria. Some had also difficulties in accepting the principle of expressing environmental goods in monetary units. The results so far are preliminary. This research work is part of the Norwegian research programme Energy, Environment and Development. 3 refs., 4 figs., 2 tabs

  20. Construction Claim Types and Causes for a Large-Scale Hydropower Project in Bhutan

    Directory of Open Access Journals (Sweden)

    Bonaventura H.W. Hadikusumo

    2015-01-01

    Full Text Available Hydropower construction projects are complex and uncertain, have long gestational periods and involve several parties. Furthermore, they require the integration of different components (Civil, Mechanical and Electrical to work together as a single unit. These projects require highly specialised designs, detailed plans and specifications, high-risk construction methods, effective management, skilful supervision and close coordination. Thus, claims are common in such projects. These claims are undesirable because they require significant time and resources to resolve and cause adversarial relationships among the parties involved. Therefore, it is in the common interest of all involved parties to prevent, minimise, or resolve claims as amicably as possible. Identifying common claim types and their causes is essential in devising techniques to minimise and avoid them in future projects. This report details a case study performed on a large-scale hydropower project in Bhutan. The findings of this case study indicate that differing site conditions are the major contributor of impact and change claims and 95% of total claims can be settled by negotiation, whereas 5% of claims can be settled by arbitration.

  1. Developing a module for estimating climate warming effects on hydropower pricing in California

    International Nuclear Information System (INIS)

    Climate warming is expected to alter hydropower generation in California through affecting the annual stream-flow regimes and reducing snowpack. On the other hand, increased temperatures are expected to increase hydropower demand for cooling in warm periods while decreasing demand for heating in winter, subsequently altering the annual hydropower pricing patterns. The resulting variations in hydropower supply and pricing regimes necessitate changes in reservoir operations to minimize the revenue losses from climate warming. Previous studies in California have only explored the effects of hydrological changes on hydropower generation and revenues. This study builds a long-term hydropower pricing estimation tool, based on artificial neural network (ANN), to develop pricing scenarios under different climate warming scenarios. Results suggest higher average hydropower prices under climate warming scenarios than under historical climate. The developed tool is integrated with California's Energy-Based Hydropower Optimization Model (EBHOM) to facilitate simultaneous consideration of climate warming on hydropower supply, demand and pricing. EBHOM estimates an additional 5% drop in annual revenues under a dry warming scenario when climate change impacts on pricing are considered, with respect to when such effects are ignored, underlining the importance of considering changes in hydropower demand and pricing in future studies and policy making. - Highlights: ? Addressing the major gap in previous climate change and hydropower studies in California. ? Developing an ANN-based long-term hydropower price estimation tool. ? Estimating climate change effects on hydropower demand and pricing in California. ? Investigating the sensitivity of hydropower operations to future price changes. ? Underlining the importance of consideration of climate change impacts on electricity pricing.

  2. Implications of the sedimentation phenomenon in the design of hydropower reservoirs

    International Nuclear Information System (INIS)

    The influence of sedimentation phenomena on the operational parameters of the hydropower reservoirs built on several Romanian rivers was assessed. A cascade of eight reservoirs on the Olt river, with initial volumes of 20-50 M m3, lost about 30% of the conservation capacity and about 3-7% of head as well. Smaller reservoirs, with volumes of 2-10 M m3, lost 60-85% of their capacity. Dredging operations had to be done, thus, increasing the initial costs by 20%. The acquired experience revealed that the evolution in time of the reservoir capacity over the operation period should be as accurately as possible taken into account in the designing stage. The operation conditions and designing criterions for small and medium hydropower reservoir have to be reassessed also from the environmental and efficiency points of view. The content of the paper is the following: 1. Sedimentation knowledge and planning concepts for inland rivers; 2. Implications of the sedimentation phenomenon; 3. Forecast of the sedimentation phenomenon; 4. Retrospective and perspective; 5. Conclusions. (authors)

  3. Experimental investigation of creep behavior of clastic rock in Xiangjiaba Hydropower Project

    Directory of Open Access Journals (Sweden)

    Yu ZHANG

    2015-01-01

    Full Text Available There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties. In order to investigate the creep behavior of clastic rock, triaxial creep tests were conducted using a rock servo-controlling rheological testing machine. The results show that the creep behavior of clastic rock is significant at a high level of deviatoric stress, and less time-dependent deformation occurs at high confining pressure. Based on the creep test results, the relationship between axial strain and time under different confining pressures was investigated, and the relationship between axial strain rate and deviatoric stress was also discussed. The strain rate increases rapidly, and the rock sample fails eventually under high deviatoric stress. Moreover, the creep failure mechanism under different confining pressures was analyzed. The main failure mechanism of clastic rock is plastic shear, accompanied by a significant compression and ductile dilatancy. On the other hand, with the determined parameters, the Burgers creep model was used to fit the creep curves. The results indicate that the Burgers model can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project.

  4. Managing flow, sediment, and hydropower regimes in the Sre Pok, Se San, and Se Kong Rivers of the Mekong basin

    Science.gov (United States)

    Wild, Thomas B.; Loucks, Daniel P.

    2014-06-01

    The Lancang/Mekong River Basin is presently undergoing a period of rapid hydropower development. In its natural undeveloped state, the river transports about 160 million metric tons of sediment per year, maintaining the geomorphologic features of the basin, sustaining habitats, and transporting the nutrients that support ecosystem productivity. Despite the importance of sediment in the river, currently little attention is being paid to reservoir sediment trapping. This study is devoted to assessing the potential for managing sediment and its impact on energy production in the Se San, Sre Pok, and Se Kong tributaries of the Mekong River. These tributaries drain a set of adjacent watersheds that are important with respect to biodiversity and ecological productivity, and serve as a significant source of flow and sediment to the mainstream Mekong River. A daily sediment transport model is used to assess tradeoffs among energy production and sediment and flow regime alteration in multiple reservoir systems. This study finds that eventually about 40%-80% of the annual suspended sediment load may be trapped in reservoirs. Clearly, these reservoirs will affect the rivers' sediment regimes. However, even after 100 years of simulated sedimentation, reservoir storage capacities and hydropower production at most reservoir sites are not significantly reduced. This suggests that the strongest motivation for implementing measures to reduce trapped sediment is their impact not on hydropower production but on fish migration and survival and on sediment-dependent ecosystems such as the Vietnam Delta and Cambodia's Tonle Sap Lake.

  5. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    Science.gov (United States)

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  6. Influence of the site of arterial occlusion on multiple baseline hemodynamic MRI parameters and post-thrombolytic recanalization in acute stroke

    International Nuclear Information System (INIS)

    In this prospective MRI study, we evaluated the impact of the site of occlusion on multiple baseline perfusion parameters and subsequent recanalization in 49 stroke patients who were given intravenous tissue plasminogen activator (tPA). Pretreatment magnetic resonance angiography (MRA) revealed an arterial occlusion in 47 patients: (1) internal carotid artery (ICA) + M1 middle cerebral artery (MCA) occlusion (n=12); (2) M1 MCA occlusion (n=19); (3) M2 MCA, distal branches of the MCA and anterior cerebral artery (ACA) occlusion (n=16). Patients with ICA occlusion had significantly larger DWI, PWI and mismatch lesion volume on pretreatment MRI compared to patients with other sites of occlusion. The differences in cerebral blood flow (CBF) and peak height were significantly higher in patients with ICA occlusion compared to patients with other sites of occlusion (P=0.03 and P=0.04, respectively). Day 1 MRA showed recanalization in 28 patients (60%). The rate of recanalization was significantly different depending on the site of occlusion: 33% in ICA + M1 MCA occlusion, 63% in M1 MCA occlusion and 81% in either M2 MCA, distal branches of the MCA or ACA occlusion (P=0.002). Our data suggest that CBF and peak height are the most relevant MRI parameters to assess the severity of hemodynamic impairment in regard to the site of occlusion. (orig.)

  7. Modeling sugar cane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    Science.gov (United States)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-01-01

    Agro-Land Surface Models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of Agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS' phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte-Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugar cane cultivation in Australia and Brazil. Ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting climate-mediated different sensitivities of modeled sugar cane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.

  8. Modeling sugar cane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    Directory of Open Access Journals (Sweden)

    A. Valade

    2014-01-01

    Full Text Available Agro-Land Surface Models (agro-LSM have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of Agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS' phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management or to ORCHIDEE (other ecosystem variables including biomass through distinct Monte-Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugar cane cultivation in Australia and Brazil. Ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate, radiation interception (extinction coefficient, and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting climate-mediated different sensitivities of modeled sugar cane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.

  9. A note on the evolution of the daily pattern of thermal comfort-related micrometeorological parameters in small urban sites in Athens

    Science.gov (United States)

    Charalampopoulos, Ioannis; Tsiros, Ioannis; Chronopoulou-Sereli, Aikaterini; Matzarakis, Andreas

    2015-09-01

    Studies on human thermal comfort in urban areas typically quantify and assess the influence of the atmospheric parameters studying the values and their patterns of the selected index or parameter. In this paper, the interpretation tools are the first derivative of the selected parameters (?Parameter/?t) and the violin plots. Using these tools, the effect of sites' configuration on thermal conditions was investigated. Both derivatives and violin plots indicated the ability of vegetation to act as a buffer to the rapid changes of air temperature, mean radiant temperature, and the physiologically equivalent temperature (PET). The study is focused on the "thermal extreme" seasons of winter (December, January, and February) and summer (June, July, and August) during a 3-year period of measurements in five selected sites under calm wind and sunny conditions. According to the results, the absence of vegetation leads to high derivative values whereas the existence of dense vegetation tends to keep the parameters' values relatively low, especially under hot weather conditions.

  10. An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks

    Science.gov (United States)

    Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor

    2015-04-01

    Continuity of service of a high quality water supply is vital in sustaining economic and social development. However, water supply and wastewater treatment are highly energy intensive processes and the overall cost of water provision is rising rapidly due to increased energy costs, higher capital investment requirements, and more stringent regulatory compliance in terms of both national and EU legislation. Under the EU Directive 2009/28/EC, both Ireland and the UK are required to have 16% and 15% respectively of their electricity generated by renewable sources by 2020. The projected impacts of climate change, population growth and urbanisation will place additional pressures on resources, further increasing future water demand which in turn will lead to higher energy consumption. Therefore, there is a need to achieve greater efficiencies across the water industry. The implementation of micro-hydropower turbines within the water supply network has shown considerable viability for energy recovery. This is achieved by harnessing energy at points of high flow or pressure along the network which can then be utilised on site or alternatively sold to the national grid. Micro-hydropower can provide greater energy security for utilities together with a reduction in greenhouse gas emissions. However, potential climate change impacts on water resources in the medium-to-long term currently act as a key barrier to industry confidence as changes in flow and pressure within the network can significantly alter the available energy for recovery. The present study aims to address these uncertainties and quantify the regional and local impacts of climate change on the viability of energy recovery across water infrastructure in Ireland and the UK. Specifically, the research focuses on assessing the potential future effects of climate change on flow rates at multiple pressure reducing valve sites along the water supply network and also in terms of flow at a number of wastewater treatment works. This analysis is achieved through development of an empirical model utilising historical climatic data in conjunction with low, medium and high emission IPCC climate scenarios using the HADCM3 global climate model across a baseline condition and two further time steps. Results highlight projected alterations in flow rates together with the potential for increases in the frequency and persistence of drought/flooding events and the resulting impacts on future energy recovery. Critical climate change limits are also identified indicating the tolerable ranges within which hydropower recovery is financially viable, thus allowing for more informed decision making across potential sites.

  11. Population around the French nuclear power plant sites: a key-parameter for crisis management and safety economics

    International Nuclear Information System (INIS)

    This paper undertakes an analysis of population around the French nuclear power plant sites, tackles the problem of evacuation planning and provides a glimpse into ongoing research at the Laboratory of Nuclear Safety Economics of the IRSN, about the cost assessment of a nuclear accident and long-term land contamination. (author)

  12. Small hydropower in southern Africa - an overview of five countries in the region

    Scientific Electronic Library Online (English)

    Wim Jonker, Klunne.

    Full Text Available This paper looks at the status of small hydropower in Lesotho, Mozambique, South Africa, Swaziland and Zimbabwe. For each country, an overview will be given of the electricity sector and the role of hydropower, the potential for small hydropower and the expected future of this technology. Small hydr [...] opower has played an important role in the history of providing electricity in the region. After a period with limited interest in applications of small hydropower, in all five countries, a range of stakeholders from policy makers to developers are showing a renewed interest in small hydropower. Although different models were followed, all five countries covered in the paper do currently see activities around grid connected small scale hydropower. Particular frameworks that facilitate IPPs and Power Purchase Agreements with the national utility do provide a basis for (local) commercial banks to provide finance. Off-grid hydropower for rural electrification purposes sees activities in the countries with an active (support) role of government in this respect only. Small hydropower, renewable energy technology has large potential across the southern Africa region, both for grid connected and off-grid applications. Historically, small hydropower played an important role in the development of the region. Since the mid-1960s, however, the main emphasis has been on centralised fossil fuel-based electricity generation. Developers and policy makers have only recently begun looking at small hydropower again.

  13. Impacts of changes in flow in glacier fed river in Nepal on hydropower production.

    Science.gov (United States)

    Khadka Mishra, S.

    2014-12-01

    Variability of water flow in rivers due to change in temperature, precipitation and melting of glacier translates to change in water availability for agriculture, biodiversity conservation, and hydropower production impacting 1.5 billion people living downstream in India and Nepal. Previous studies ranked hydropower sector as the highest priority sector considering the urgency and severity of impacts in countries such as Nepal where hydropower shares 96 percentage of electricity production. In India, 45 per cent of hydroelectricity is generated from glacier fed rivers and hydropower shares 17 per cent of power generation. This study developed a framework to estimate the change in river flow attributed to global climate change and quantify its impact on hydropower generation in South Asian Mountains. The framework is applied on one of the major rivers Koshi River in Nepal with existing and proposed hydropower plants. The integrated assessment approach involved estimation of the change in flow in the river in the first part. Model was developed to estimate the change in flow that uses time series data on precipitation, temperature, remote sensing imagery on snow accumulation and ablation, and slope and surface hydrology. In the second part, another model was developed to investigate the impact of change in flow on hydropower production in various types of hydropower production plants. Data on flow, characteristics of hydropower plants and hydropower produced monthly from power plants in and outside of the river basin were used to model the flow and power generation from various categories of power plants. We will further discuss the results of the integrated assessments of potential changes in hydropower generation in various categories of hydropower plants based on Koshi River under various expected changes in flow and the implications for hydropower generation from other river systems in Nepal and India.

  14. Examination of methane ebullition in a Swiss hydropower reservoir

    Science.gov (United States)

    DelSontro, T.; Ostrovsky, I.; Eugster, W.; McGinnis, D. F.; Wehrli, B.

    2012-04-01

    Ebullition is one of the most important methane emission pathways from inland water bodies, yet the stochastic nature of ebullition complicates its monitoring. Therefore, a bubble-calibrated 120 kHz split-beam echosounder (Simrad EK60, Kongsberg Maritime) was utilized to survey the active ebullition area of a small temperate hydropower reservoir (Lake Wohlen, Switzerland), which is known for intense methane bubble release in summer. The performed bubble size calibration agreed well with the literature and the presented hydroacoustic technique to estimate methane bubble flux in the presence of non-bubble targets was determined to be the most appropriate post-processing method for this reservoir. The acoustically-determined average methane ebullition flux from the sediment to the water column from seven campaigns was 580 mg CH4 m-2 d-1 (range, 130 to 1450). Bubble size distribution, which mostly included 1 to 20 mm diameter bubbles, was strongly related to the magnitude of sediment ebullition flux. The bubble size distribution is an important consideration when calculating the resulting surface efflux using a bubble dissolution model. Using the Sauter mean diameter to represent the volume to surface area to volume ratio of the bubble size distribution in the bubble model resulted in an average atmospheric emission of 490 mg CH4 m-2 d-1. The spatially-averaged data and the standard deviation from seven sampling campaigns revealed areas of 'high' and 'low' ebullition fluxes that seemed to correlate to geomorphology of the reservoir, which still contains the former river channel. The hydroacoustic flux estimates were compared with other methods of methane flux assessments used simultaneously: the traditional chamber method and the eddy covariance technique combined with spectrometer methane measurements (Fast Methane Analyzer, Los Gatos Research). Chamber measurements on all but one day were higher than the hydroacoustic survey results (but within the same order of magnitude), which is likely due to the extended coverage of echosounder surveys identifying more areas of low fluxes. However, hydroacoustic assessments and eddy covariance measurements of methane flux were similar and both revealed a flux dependence on the time of day, which was further related to scheduled water level changes in the reservoir. While the eddy covariance technique can provide continuous data useful for correlating with external forcing factors related to emissions, echosounder surveys provide spatial-specific information and thus resolve the locations of methane ebullition. Ideally, combining these methods would allow for the best coverage of the spatiotemporal dynamics of ebullition over a given study site.

  15. Conduit-hydropower potential in the City of Tshwane water distribution system: A discussion of potential applications, financial and other benefits

    Scientific Electronic Library Online (English)

    I, Loots; M, van Dijk; S J, van Vuuren; J N, Bhagwan; A, Kurtz.

    2014-10-01

    Full Text Available In water distribution networks, water is often fed under gravity from a higher reservoir to another reservoir at a lower level. The residual pressure head at the receiving reservoir is then dissipated through control valves (mechanically or hydraulically actuated), sometimes augmented by orifice pla [...] tes where there is a propensity for cavitation. There are possibilities to add turbines in parallel and generate hydroelectricity at these locations using the flow and head available. The benefit of this hydropower generating application is that minimal civil works need to be done, as the control valves are normally inside a control room/valve chamber. No negative environmental or social effects require mitigation, and the anticipated lead times should be short. From a topographical perspective the City of Tshwane has a lower elevation than the bulk service reservoirs of Rand Water, which is the main water supply. Water is distributed through a large water system that includes 160 reservoirs, 42 water towers, 10 677 km of pipes and more than 260 pressure reducing stations (PRS) that operate at pressures of up to 250 m. The top ten hydropower potential sites in the City of Tshwane water distribution network have a total energy generating capacity of approximately 10 000 MWh/a. A number of potential conduit-hydropower sites have shown promise of short payback periods. The identifying and development of these sites in Tshwane to convert water pressure to electricity is ongoing and exploited further. Various challenges currently exist with reservoir communication in isolated areas due to vandalism and theft of necessary infrastructure, including electricity cables and solar panels. Because conduit-hydropower systems can be housed completely inside chambers, vandalism and theft can be mitigated. Therefore, one of the major benefits of hydropower turbines at these sites is that the hydroelectric potential could be exploited to power telemetry, pressure management, flow control and monitoring/security systems. Alternatively or additionally, other local demand and/or (depending upon the quantum of energy available) off-site energy demand clusters, or even a municipal or national grid, could also be serviced by these power stations. The capacity of hydroelectric installations can vary to suit the application for the amount of power needed or to be generated. Short payback periods, especially when using pumps as turbines, also make conduit-hydropower systems attractive

  16. Geospatial Technology for Mapping Suitable Sites for Hydro Power Plant

    OpenAIRE

    Dr. Nagraj S. Patil; Prof. I. T. Shirkol; Prof. S. G. Joshi

    2013-01-01

    Hydropower is one possible method of generating electric power close to potential consumers. The accessibility of the possible sites which are mostly located in rural and mountainous areas, large amount of data is required, consumes huge amount of money and time. Since small hydropower schemes, used to produce electrical energy which is benefited for nearby small towns, villages or small industries. Expensive ground investigations must be carefully targeted to the areas which are most likely ...

  17. Scaling-up parameters for site restoration process using surfactant-enhanced soil washing coupled with wastewater treatment by Fenton and Fenton-like processes.

    Science.gov (United States)

    Bandala, Erick R; Cossio, Horacio; Sánchez-Lopez, Adriana D; Córdova, Felipe; Peralta-Herández, Juan M; Torres, Luis G

    2013-01-01

    Estimation of scaling-up parameters for a site restoration process using a surfactant-enhanced soil washing (SESW) process followed by the application of advanced oxidation processes (Fenton and photo-Fenton) was performed. For the SESW, different parameters were varied and the soil washing efficiency for pesticide (2,4-D) removal assessed. The resulting wastewater was treated using the Fenton reaction in the absence and presence of ultraviolet (UV) radiation for pesticide removal. Results showed that agitation speed of 1550 rpm was preferable for the best pesticide removal from contaminated soil. It was possible to wash contaminated soils with different soil concentrations; however the power drawn was higher as the soil concentration increased. Complete removal of the pesticide and the remaining surfactant was achieved using different reaction conditions. The best degradation conditions were for the photo-Fenton process using [Fe(II)] = 0.3 mM; [H2O2] = 4.0 mM where complete 2,4-D and sodium dodecylsulfate (SDS) removal was observed after 8 and 10 minutes of reaction, respectively. Further increase in the hydrogen peroxide or iron salt concentration did not show any improvement in the reaction rate. Kinetic parameters, i.e. reaction rate constant and scaling-up parameters, were determined. It was shown that, by coupling both processes (SESW and AOPs), it is possible the restoration of contaminated sites. PMID:23530350

  18. An examination of the variability of some environmental transfer parameters evaluated using the contamination produced by the Chernobyl accident in various Italian sites

    International Nuclear Information System (INIS)

    Following the accident at the Chernobyl power plant a considerable effort was carried out by some Italian laboratories to evaluate the levels of contamination in the environment and the components of the human food chain. The radionuclide concentrations measured in samples of atmospherical particulates, soils, edible fruits, vegetation and milk offered the opportunity to estimate some of the parameters concerning the environmental transfer of 131I and 137Cs (dry deposition velocity, weathering-decay constant, vegetation-interception factor, transfer factor from vegetation to cow's and sheep's milk, foliar translocation coefficient etc.) An analysis of the variability of these parameters was carried out using data collected in various Italian sites showing different environmental situations. The values obtained have been compared with the ones in some models for assessing the environmental transfer of radionuclides. Within the limits of their variability the parameters estimated are not significantly lower than the conservative data suggested in the literature. (15 refs., 2 figs., 5 tabs.)

  19. Speciated mercury at marine, coastal, and inland sites in New England – Part 2: Relationships with atmospheric physical parameters

    OpenAIRE

    Mao, H; Talbot, R.; Hegarty, J.; J. Koermer

    2011-01-01

    Long-term continuous measurements of gaseous elemental mercury (Hgo), reactive gaseous mercury (RGM), and particulate phase mercury (Hgp) were conducted at coastal (Thompson Farm, denoted as TF), marine (Appledore Island, denoted as AI), and elevated inland (Pac Monadnock, denoted as PM) monitoring sites of the AIRMAP Observing Network. Diurnal, seasonal, annual, and interannual variability in Hgo, RGM, and Hgp<...

  20. Effects of soil bulk density on gas transport parameters and pore-network properties across a sandy field site

    DEFF Research Database (Denmark)

    Masís-Meléndez, F.; De Jonge, L. W.; Chamindu Deepagoda, T. K; Tuller, M.; Møldrup, Per

    2015-01-01

    The gas diffusion coefficient, air permeability, and their interrelations with air-filled porosity are essential for characterization of diffusive and convective transport of gases in soils. Variations in soil bulk density can affect water retention, air-filled pore space, and pore......-network connectivity and tortuosity and, thereby, control gas diffusion and air permeability. Considering 86 undisturbed core samples with variable bulk densities that were extracted on a 15 by 15 m grid from the top layer of a sandy field, the effects of soil bulk density on gas transport parameters and the soil...... water characteristic were investigated. Interactions with soil organic matter, sand, and clay fractions were also examined. To evaluate bulk density effects, two constitutive parameters were derived from each of the three measured relationships. The Campbell pore-size distribution index (b) and the air...

  1. Investigation of Site-Specific Wind Field Parameters and Their Effect on Loads of Offshore Wind Turbines

    Directory of Open Access Journals (Sweden)

    Jörg R. Seume

    2012-10-01

    Full Text Available The main contributing factors to unsteady loading of Offshore Wind Turbines (OWT are wind shear, turbulence, and waves. In the present paper, the turbulence intensity and the wind shear exponent are investigated. Using data from the FINO 1 research platform, these parameters are analyzed and compared with the proposed wind field parameters in the IEC standard 61400-3. Based on this analysis, aeroelastic simulations are performed to determine the effect of wind field parameters on the fatigue and the extreme loads on the rotor blades. For the investigations, the aeroelastic model of a 5 MW OWT is used with a focus on design load cases in an operating state (power production. The fatigue loads are examined by means of the damage-equivalent load-range approach. In order to determine the extreme loads with a recurrence period of 50 years, a peak over threshold extrapolation method and a novel method based on average conditional exceedance rates are used. The results show that the requirements of the IEC standard are very conservative for the design of the rotor blades. Therefore, there could be a large optimization potential for the reduction of weight and cost of the rotor blades.

  2. Processes, mechanisms, parameters, and modeling approaches for partially saturated flow in soil and rock media; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Narasimhan, T.N. [Lawrence Berkeley Lab., CA (United States)

    1993-06-01

    This report discusses conceptual models and mathematical equations, analyzes distributions and correlations among hydrological parameters of soils and tuff, introduces new path integration approaches, and outlines scaling procedures to model potential-driven fluid flow in heterogeneous media. To properly model the transition from fracture-dominated flow under saturated conditions to matrix-dominated flow under partially saturated conditions, characteristic curves and permeability functions for fractures and matrix need to be improved and validated. Couplings from two-phase flow, heat transfer, solute transport, and rock deformation to liquid flow are also important. For stochastic modeling of alternating units of welded and nonwelded tuff or formations bounded by fault zones, correlations and constraints on average values of saturated permeability and air entry scaling factor between different units need to be imposed to avoid unlikely combinations of parameters and predictions. Large-scale simulations require efficient and verifiable numerical algorithms. New path integration approaches based on postulates of minimum work and mass conservation to solve flow geometry and potential distribution simultaneously are introduced. This verifiable integral approach, together with fractal scaling procedures to generate statistical realizations with parameter distribution, correlation, and scaling taken into account, can be used to quantify uncertainties and generate the cumulative distribution function for groundwater travel times.

  3. Speciated mercury at marine, coastal, and inland sites in New England – Part 2: Relationships with atmospheric physical parameters

    Directory of Open Access Journals (Sweden)

    H. Mao

    2011-10-01

    Full Text Available Long-term continuous measurements of gaseous elemental mercury (Hgo, reactive gaseous mercury (RGM, and particulate phase mercury (Hgp were conducted at coastal (Thompson Farm, denoted as TF, marine (Appledore Island, denoted as AI, and elevated inland (Pac Monadnock, denoted as PM monitoring sites of the AIRMAP Observing Network. Diurnal, seasonal, annual, and interannual variability in Hgo, RGM, and Hgp from the three distinctly different environments were characterized and compared in Part 1. Here in Part 2 relationships between speciated mercury (i.e., Hgo, RGM, and Hgp and climate variables (e.g., temperature, wind speed, humidity, solar radiation, and precipitation were examined. The best point-to-point correlations were found between Hgo and temperature in summer at TF and spring at PM, but there was no similar correlation at AI. Subsets of data demonstrated regional impacts of episodic dynamic processes such as strong cyclonic systems on ambient levels of Hgo at all three sites, possibly through enhanced oceanic evasion of Hgo. A tendency of higher levels of RGM and Hgp was identified in spring and summer under sunny conditions in all environments. Specifically, the 10th, 25th, median, 75th, and 90th percentile mixing ratios of RGM and Hgp increased with stronger solar radiation at both the coastal and marine sites. These metrics decreased with increasing wind speed at AI indicating enhanced loss of RGM and Hgp through deposition. RGM and Hgp levels correlated with temperature positively in spring, summer and fall at the coastal and marine locations. In the coastal region relationships between RGM and relative humidity suggested a clear decreasing tendency in all metrics from <40% to 100% relative humidity in all seasons especially in spring, compared to less variability in the marine environment. The effect of precipitation on RGM at coastal and marine locations was similar. At the coastal site, RGM levels were a factor of 3–4 higher under dry conditions than rainy conditions in all seasons. In winter RGM mixing ratios appeared to be mostly above the limit of detection (LOD during snowfalls suggesting less scavenging efficiency of snow. Mixing ratios of Hgp at the coastal and marine sites remained above the LOD under rainy conditions. Precipitation had negligible impact on the magnitude and pattern of diurnal variation of Hgp in all seasons in the marine environment.

  4. Speciated mercury at marine, coastal, and inland sites in New England – Part 2: Relationships with atmospheric physical parameters

    Directory of Open Access Journals (Sweden)

    H. Mao

    2012-05-01

    Full Text Available Long-term continuous measurements of gaseous elemental mercury (Hg0, reactive gaseous mercury (RGM, and particulate phase mercury (HgP were conducted at coastal (Thompson Farm, denoted as TF, marine (Appledore Island, denoted as AI, and elevated inland rural (Pac Monadnock, denoted as PM monitoring sites of the AIRMAP Observing Network. Diurnal, seasonal, annual, and interannual variability in Hg0, RGM, and HgP from the three distinctly different environments were characterized and compared in Part 1. Here in Part 2 relationships between speciated mercury (i.e., Hg0, RGM, and HgP and climate variables (e.g., temperature, wind speed, humidity, solar radiation, and precipitation were examined. The best point-to-point correlations were found between Hg0 and temperature in summer at TF and spring at PM, but there was no similar correlation at AI. Subsets of data demonstrated regional impacts of episodic dynamic processes such as strong cyclonic systems on ambient levels of Hg0 at all three sites, possibly through enhanced oceanic evasion of Hg0. A tendency of higher levels of RGM and HgP was identified in spring and summer under sunny conditions in all environments. Specifically, the 10th, 25th, median, 75th, and 90th percentile mixing ratios of RGM and HgP increased with stronger solar radiation at both the coastal and marine sites. These metrics decreased with increasing wind speed at AI indicating enhanced loss of RGM and HgP through deposition. RGM and HgP levels correlated with temperature positively in spring, summer and fall at the coastal and marine locations. At the coastal site relationships between RGM and relative humidity suggested a clear decreasing tendency in all metrics from <40% to 100% relative humidity in all seasons especially in spring, compared to less variability in the marine environment. The effect of precipitation on RGM at coastal and marine locations was similar. At the coastal site, RGM levels were a factor of 3–4 to two orders of magnitude higher under dry conditions than rainy conditions in all seasons. In winter RGM mixing ratios appeared to be mostly above the limit of detection (LOD during snowfalls suggesting less scavenging efficiency of snow. Mixing ratios of HgP at the coastal and marine sites remained above the LOD under rainy conditions. Precipitation had negligible impact on the magnitude and pattern of diurnal variation of HgP in all seasons in the marine environment.

  5. Small hydropower station in Lavin - Preliminary study; Kleinwasserkraftwerk Lavin - Vorstudie

    Energy Technology Data Exchange (ETDEWEB)

    Merz, F.

    2008-05-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a preliminary study regarding a proposed small hydropower installation on the alpine river Lavinuoz in Lavin, Switzerland. The geographical situation with mountains and glaciers in the catchment area of the proposed hydropower installation is discussed as are the appropriate water catchment installations. Possible dangers caused by avalanches and rock fall are examined. The power to be produced - 5,500,000 kWh/y - by the turbine which is nominally rated at 1350 kW is discussed, as are estimates of production costs. Figures on the investments required and the economic feasibility of the project are discussed, as are environmental factors that are to be taken into account.

  6. Impacts of alternative Great Lakes regulation plans on hydropower production

    International Nuclear Information System (INIS)

    Hydropower production is evaluated for two alternative regulation measures developed under the recent International Joint Commission Great Lakes Water Levels Reference. Measure 1.18 included a new control structure to regulate outflows from Lake Erie, while measure 1.21 was a revision of the current regulation plans for lakes Superior and Ontario. A negative impact to the entire hydropower system was calculated to range between US$11.9 and US$20.9 million/year under measure 1.18, while measure 1.21 had a positive impact in the range of US$1 to US$3 million/year. Considering the impacts to all interests, the Reference Study Board recommended no further consideration be given to measure 1.18, but that a measure similar to 1.21 should be implemented. (author). 34 refs., 9 tabs., 2 figs

  7. The 'Pontareuse' small hydropower station in Boudry, Switzerland

    International Nuclear Information System (INIS)

    This illustrated report for the Swiss Federal Office of Energy (SFOE) describes work done in 2007 on the preliminary project for a small hydropower project to be realised in Boudry, Switzerland. The goal of this project is to take advantage of the hydro power of the river Areuse using an existing artificial weir which has been built and renovated as part of several river corrections in the past. Three variants for the construction of the proposed hydropower installation with a maximum projected power rating of 391 kilowatts are presented in detail. Options for the realisation of a fish pass to enable fish to pass the weir are also discussed. Figures are presented on the financial viability of the project which, although low, could however become interesting when the expected tariff changes in connection with the new Swiss legislation on electrical energy supply are considered

  8. Environmental certification for small hydropower plants; Umweltzertifizierung Kleinwasserkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Truffer, B.; Meier, W.; Vollenweider, S. [Eidgenoessische Anstalt fuer Wasserversorgung, Abwasserreinigung und Gewaesserschutz (EAWAG), Kastanienbaum (Switzerland); Seiler, B.; Dettli, R. [Econcept AG, Zuerich (Switzerland)

    2001-07-01

    This report for the Swiss Federal Institute for Environmental Science and Technology describes product-differentiation options for small hydropower plant in Switzerland and proposes a form of differentiation based on ecological characteristics as a promising market strategy. The labels created in various countries to assure customers of the environmental compatibility of 'green' power production are looked at. In particular, the implications for small hydropower plant associated with the Swiss green power labelling procedure introduced by the Association for the Promotion of Environmentally Sound Electricity (VUE) are discussed. The report proposes a simplified procedure for these small power stations and presents a sample calculation for the overall costs of certification. The report is rounded off with four detailed case studies in which the necessary upgrades to the plant and associated costs are discussed in detail.

  9. Some data on Hydropower (onshore and offshore). Potential, Costs, Impacts

    International Nuclear Information System (INIS)

    Hydropower generation seems worldwide the most attractive renewable energy by its cost of about 3 cents per KWh and its flexibility. But it will be limited under 10.000 TWh/year with a capacity increased to 3.000 GW and a lakes area increased to 500.000 km2. Pump storage plants may be the best solution for the necessary storage associated with wind and power which will be used for a large part of the world energy needs. The corresponding extra cost for storage will be in the range of 2 cents per KWh of intermittent energy. The necessary P.S.P. capacity in 2050 may be 3.000 GW occupying 30.000 km2 most out of rivers. As for generation, the P.S.P. may be used at least one century. Directly or indirectly, Hydropower will be an essential part of the future world energy. (author)

  10. Renovation and uprating of seven hydropower plants in Java

    International Nuclear Information System (INIS)

    The Indonesian Power Authority is planning to renovate and uprate seven hydropower stations in Java to expand plant life expectancy, ensure operating safety and reliability, and increase power and generation within economical limits. The power plants were constructed in the early 1920s and extended between 1945 and 1950. Their capacities vary between 4 and 20 MW. For the renovation project, Colenco Power Consulting Ltd. is acting as a consultant to PLN. In February 1990, Colenco inspected all seven power plants. The results of the inspections served as the basis for the development of renovation plans for each of the seven hydropower plants. To determine the cost of the proposed renovation plans, appraisers had to determine a method for comparing the value of an existing plant to that of a renovated one. The two different evaluation methods used for these comparisons are the focus of this paper

  11. The economic value of short-term regulated hydropower production

    International Nuclear Information System (INIS)

    The economic value of short-term regulation of hydropower depends on the marginal price of electricity. A systematic method to estimate the revenue from short-term regulated hydropower production has been developed. It can thus be used to compare the cost of different restrictions and constraints imposed on the regulation practice. Constraints on water level or discharge variations in the river can be imposed e.g because of environmental reasons. In this method the total hydropower production of the river is optimized. Input to the model consists of the amount of available water, the marginal price of production, price elasticity and the given constraints. The following constraints can be applied: maximum and minimum discharge at each power plant, maximum and minimum reservoir levels at each power plant, maximum variation of tailwaters at each power plant during the period of interest, maximum change of discharge per time unit and the minimum spinning reserves of the system. Output data comprises power output, discharge and water levels (head) at each power plant, and the calculated revenue based on produced power and the given marginal price of production. The method has two basic components: an optimization algorithm and a river simulation algorithm. The optimization algorithm is based on a quadratic cost function and a linear model. The model has been applied to Oulujoki River in Northern Finland. There are seven hydropower plants along the river, it is over 100 km long and it is extensively used for peak power production. Two typical weeks were simulated with different restrictions set on water level variation and available amount of water

  12. Nonlinear Predictive Control of a Hydropower System Model

    OpenAIRE

    Runfan Zhang; Diyi Chen; Xiaoyi Ma

    2015-01-01

    A six-dimensional nonlinear hydropower system controlled by a nonlinear predictive control method is presented in this paper. In terms of the nonlinear predictive control method; the performance index with terminal penalty function is selected. A simple method to find an appropriate terminal penalty function is introduced and its effectiveness is proved. The input-to-state-stability of the controlled system is proved by using the Lyapunov function. Subsequently a six-dimensional model of the ...

  13. Investment timing and optimal capacity choice for small hydropower projects

    OpenAIRE

    Bøckman, Thor; Fleten, Stein-Erik; Juliussen, Erik; Langhammer, Håvard; Revdal, Ingemar

    2006-01-01

    This paper presents a method for assessing small hydropower projects that are subject to uncertain electricity prices. We present a real options-based method with continuous scaling, and we find that there is a unique price limit for initiating the project. If the current electricity price is below this limit it is never optimal to invest, but above this limit investment is made according to the function for optimal size. The connection between the real option and the physical properties of a...

  14. Hydraulic transient events in hydropower plants with installed Francis turbines.

    OpenAIRE

    Mazij, Jernej

    2009-01-01

    Hydraulic transient events are the result of time related changes of hydrodinamical quantities in a hydraulic passage system. Treatise of transient events is essential to ensure safe operation of the hydropower plant, and for suitable design of turbine components and related hydromechanical equipment. Causes of transient events and their characteristics in different hydraulic passage systems are presented in this work. Basic system of water hammer equation was derived, consisting of the momen...

  15. Investment timing and optimal capacity choice for small hydropower projects

    OpenAIRE

    Bøckman, Thor; Fleten, Stein-Erik; Juliussen, Erik; Langhammer, Håvard; Revdal, Ingemar

    2006-01-01

    This paper presents a method for assessing small hydropower projects that are subject to uncertain electricity prices. We present a real options-based method with continuous scaling, and we find that there is a unique price limit for initiating the project. If the current electricity price is below this limit it is never optimal to invest, but above this limit investment is made according to the function for optimal size. The connection between the real option and the physical properties o...

  16. Peak Operation of Cascaded Hydropower Plants Serving Multiple Provinces

    Directory of Open Access Journals (Sweden)

    Jianjian Shen

    2015-10-01

    Full Text Available The bulk hydropower transmission via trans-provincial and trans-regional power networks in China provides great operational flexibility to dispatch power resources between multiple power grids. This is very beneficial to alleviate the tremendous peak load pressure of most provincial power grids. This study places the focus on peak operations of cascaded hydropower plants serving multiple provinces under a regional connected AC/DC network. The objective is to respond to peak loads of multiple provincial power grids simultaneously. A two-stage search method is developed for this problem. In the first stage, a load reconstruction strategy is proposed to combine multiple load curves of power grids into a total load curve. The purpose is to deal with different load features in load magnitudes, peaks and valleys. A mutative-scale optimization method is then used to determine the generation schedules of hydropower plants. In the second stage, an exterior point search method is established to allocate the generation among multiple receiving power grids. This method produces an initial solution using the load shedding algorithm, and further improves it by iteratively coordinating the generation among different power grids. The proposed method was implemented to the operations of cascaded hydropower plants on Xin-Fu River and another on Hongshui River. The optimization results in two cases satisfied the peak demands of receiving provincial power grids. Moreover, the maximum load difference between peak and valley decreased 12.67% and 11.32% in Shanghai Power Grid (SHPG and Zhejiang Power Grid (ZJPG, exceeding by 4.85% and 6.72% those of the current operational method, respectively. The advantage of the proposed method in alleviating peak-shaving pressure is demonstrated.

  17. Climate change impacts on financial risk in hydropower projects

    OpenAIRE

    Gareth P. Harrison; Whittington, Bert; Wallace, Robin

    2003-01-01

    Limiting the emissions of greenhouse gases from power generation will depend, among other things, on the continuing and increased use of hydroelectric power. However, climate change itself may alter rainfall patterns, adversely affecting the financial viability of existing and potential hydro schemes. Previous work developed a methodology for quantifying the potential impact of climate change on the economics of hydropower schemes. Here, the analysis is extended to examine the potential fo...

  18. Metal coordination study at Ag and Cd sites in crown thioether complexes through DFT calculations and hyperfine parameters.

    Science.gov (United States)

    do Nascimento, Rafael R; Lima, Filipe C D A; Gonçalves, Marcos B; Errico, Leonardo A; Rentería, Mario; Petrilli, Helena M

    2015-04-01

    Structural and electronic properties of [C12H24S6X], [C13H26S6OX], and [C14H28S6OX] (X: Ag(+), Cd(2+)) crown thioether complexes were investigated within the framework of the density functional theory (DFT) using the projector augmented wave (PAW) method. The theoretical results were compared with time-differential perturbed ?-? angular correlations (TDPAC) experiments reported in the literature using the (111)Ag?(111)Cd probe. In the case of X=Ag(+), a refinement of the structure was performed and the predicted equilibrium structures compared with available X-ray diffraction experimental data. Structural distortions induced by replacing Ag(+) with Cd(2+) were investigated as well as the electric-field gradient (EFG) tensor at the Cd(2+) sites. Our results suggest that the EFG at Cd(2+) sites corresponds to the Ag(+) coordination sphere structure, i.e., before the structural relaxations of the molecule with X=Cd(2+) are completed. The results are discussed in terms of the characteristics of the TDPAC (111)Ag?(111)Cd probe and the time window of the measurement, and provide an interesting tool with which to probe molecular relaxations. PMID:25814377

  19. Sensitivity analysis of groundwater lifetime expectancy to hydro-dispersive parameters: The case of ANDRA Meuse/Haute-Marne site

    International Nuclear Information System (INIS)

    Within the framework of deep geological nuclear waste disposal investigations, ANDRA (French National Radioactive Waste Management Agency) has built a numerical model of groundwater flow and hydro-dispersive mass transport with the aim to analyze the characteristics of solutes transfer throughout the multilayered aquifer system including the clay host formation. As an exploratory tool, a sensitivity analysis was conducted on the average time for a water molecule flowing through the potential repository emplacement to reach the limits of the model. The correlated hydraulic conductivities and porosities of 14 hydrogeological layers are the uncertain hydro-dispersive parameters under study. A derivative-based method (Elementary Effects) is compared to regression-based global sensitivity analysis techniques (Standardized regression coefficients and Response Surface Method). As a result, the main behavior of the groundwater flow and mass transport through the multilayered system was captured. The relative effects of advective and dispersive processes are analyzed, however some uncertainties remain on the non-linear features of some input factors and their contribution to interaction processes. - Highlights: • 3D multilayered groundwater flow and transport model of the Eastern Paris basin. • Calculation of the mean lifetime expectancy of groundwater flow. • Sensitivity analysis over hydro-dispersive parameters of fourteen geological layers. • Screening exercise using the Elementary Effects method. • Regression-based global sensitivity analysis

  20. Sustainability of hydropower as source of renewable and clean energy

    International Nuclear Information System (INIS)

    Hydroelectric energy has been in recent times placed as an important future source of renewable and clean energy. The advantage of hydropower as a renewable energy is that it produces negligible amounts of greenhouse gases, it stores large amounts of electricity at low cost and it can be adjusted to meet consumer demand. This noble vision however is becoming more challenging due to rapid urbanization development and increasing human activities surrounding the catchment area. Numerous studies have shown that there are several contributing factors that lead towards the loss of live storage in reservoir, namely geology, ground slopes, climate, drainage density and human activities. Sediment deposition in the reservoir particularly for hydroelectric purposes has several major concerns due to the reduced water storage volume which includes increase in the risk of flooding downstream which directly effects the safety of human population and properties, contributes to economic losses not only in revenue for power generation but also large capital and maintenance cost for reservoir restorations works. In the event of functional loss of capabilities of a hydropower reservoir as a result of sedimentation or siltation could lead to both economical and environmental impact. The objective of this paper is aimed present the importance of hydropower as a source of renewable and clean energy in the national energy mix and the increasing challenges of sustainability.

  1. Hydropower generation and storage, transmission constraints and market power

    International Nuclear Information System (INIS)

    We study hydropower generation and storage in the presence of uncertainty about future inflows, market power and limited transmission capacity to neighboring regions. Within our simple two-period model, market power leads to too little storage. The monopolist finds it profitable to produce more than the competitive amount in the first period and thereby stores little water in the first of two periods in order to become import constrained in the second period. In addition, little storage reduces the probability of becoming export constrained in the second period, even if the second period exhibits large inflow. Empirical findings for an area in the western part of Norway with only hydropower and high ownership concentration at the supply side, fit well to our theoretical model. We apply a numerical model to examine various policies to reduce the inefficiencies created by the local monopoly. Transmission investments have two effects. First, the export possibilities in the first period increase. More export leads to lower storage in the first period. Second, larger import capacity reduces the market power problem in the second period. The two opposite effects of transmission investments in a case with market power may be unique to hydropower systems. Introducing financial transmission rights enhance the market power of the monopolist in our model. Price caps in both or in the second period only, reduce the strategic value of water storage. (Author)

  2. Small hydropower plants in the region of Mariovo (Macedonia)

    International Nuclear Information System (INIS)

    In this paper the results of an initial Pre-feasibility study within the framework of the PHARE Programme for Cross Border Cooperation between Republic of Macedonia and Republic of Greece. In this study we have looked at the existing research originating from three sources. The Strategies for Economic Development of Republic of Macedonia, the Development Plans of the Electric Power Company of Macedonia as well as the existing technical documentation and studies on a level of idea projects for specific location for small hydropower plants in Mariovo region. Furthermore, analysis and evaluation of this documentation is included. Research done in this region has produced evidence of numerous potential locations for small hydropower plants (total of 46) generating power between 58 kW and 4900 kW, discharging between 0,082 m3/s and 30 m3/s with a head between 6 m and 208 m for which we have detailed data. Furthermore, in the paper we pay attention to the enormous and so far unrealised hydro energetic power which could be utilised by constructing small hydropower plants in Republic of Macedonia. specifically in the Mariovo region. (Original)

  3. Analysis of Flow Estimation Methods for Small Hydropower Schemes in Bua River

    OpenAIRE

    Chisomo Kasamba; Preksedis Marco Ndomba; Samuel Baker Kucel; Miguel M. Uamusse

    2015-01-01

    Any hydropower project requires an ample availability of stream flow data. Unfortunately, most of the hydropower projects especially small hydropower projects are conducted on ungauged river and consequently hydrologists have for a longtime used stream flow estimation methods using the mean annual flows to gauge rivers. Unfortunately flow estimation methods which include the runoff data method, area ratio method and the correlation flow methods employ a lot of assumptions which affect their u...

  4. Dispatch Method for Independently Owned Hydropower Plants in the Same River Flow

    OpenAIRE

    Slavko Krajcar; Ivan Rajšl; Perica Ilak; Marko Delimar

    2012-01-01

    This paper proposes a coexistence model for two independent companies both operating hydropower plants in the same river flow, based on a case study of the Cetina river basin in Croatia. Companies are participants of the day-ahead electricity market. The incumbent company owns the existing hydropower plants and holds concessions for the water. The new company decides to build a pump storage hydropower plant that uses one of the existing reservoirs as its lower reservoir. Meeting reservoir wat...

  5. Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids

    OpenAIRE

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.; Wang, Yibo; Feng, Wei

    2015-01-01

    Hybrid photovoltaic (PV) -battery-hydropower microgrids can be considered to enhance electricity accessibility and availability in remote areas. However, the coexistence of different renewable energy sources with different inertias and control strategies may affect system stability. In this paper, a hierarchical controller for hybrid PV-battery-hydropower microgrid is proposed in order to achieve the parallel operation of hydropower and PV-battery system with different rates, and to guarantee...

  6. Technical assessment of the Portuguese national programme for dams with high hydropower potential (PNBEPH)

    OpenAIRE

    De Lembre, Hilde; Adriaenssens, Veronique; Lust, Arnoud; Devoldere, Kris; Willems, Sofie; Laureysens, Ilse; Olmeda, Concha; Ana Maria GERALDES; Guimarães, Ana; Barrios, Violeta; Garcia, David

    2009-01-01

    The Portuguese National Programme for Dams with High Hydropower Potential (PNBEPH) foresees the construction of 10 new hydropower installations in several river basins. Among other relevant impacts that fall out of the scope of this study, hydropower projects can have an important impact on water quality - mainly on hydro-morphological conditions for aquatic life to sustain. According to the Water Framework Directive (WFD), the deadline for achieving a good status of surface...

  7. Assessing residual hydropower potential of the La Plata Basin accounting for future user demands

    OpenAIRE

    Popescu, I.; Brandimarte, L.; M. S. U. Perera; M. Peviani

    2012-01-01

    La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), which are having fast growing economies in South America. These countries need energy for their sustainable development; hence hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB) and makes an analysis of the maximum and residual hydropower potential of t...

  8. Harnessing the hydropower potential in Africa: What should be the place and role of Grand Inga hydropower project?

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Latsoucabe

    2010-09-15

    Harnessing Africa's huge hydropower potential should be made a priority for the sustainable development of the Continent. Particularly, Grand Inga hydropower project in DRC, due to its gigantic size (40,000 MW) and favourable natural characteristics, could be 'Africa's flagship Project of the 21st Century' offering enormous comparative advantages and opportunities for the benefits of the entire African Continent. Nevertheless, to make it a feasible and palpable 'Model Project', capable of producing clean and affordable energy, the paper tries to respond to key questions on the several daunting challenges to address for its sustainable, cost-effective and timely development and operation.

  9. A new approach towards comparing environmental impacts from small-scale hydropower, large-scale hydropower and wind power

    OpenAIRE

    Aase, Anne Guri

    2013-01-01

    In 2012 did Norway, in collaboration with Sweden, agree on a common energy certificate market where both countries set a goal for producing 67, 5 TWh of renewable energy within the year 2020. These certificates are energy neutral, but they are expected to increase the building of small-scale hydropower and wind power plants. This has created much debate surround the environmental impacts and habitat fragmentations which occur from the increased building, and more knowledge is needed to establ...

  10. Multi parameter tuning of a firn air transport model for the NEEM ice core site in Northern Greenland

    Science.gov (United States)

    Buizert, Christo; Petrenko, Vasilii; Martinerie, Patricia; Severinghaus, Jeffrey; Rubino, Mauro; Etheridge, David; Hogan, Chris; Sturges, William; Levin, Ingeborg; Blunier, Thomas

    2010-05-01

    The compacted snow (firn) found in the accumulation zone of major ice sheets acts as a unique archive of old air. Contrary to ice cores, large sample volumes can be pumped from the firn, making this archive especially suited for studying changes in the isotopic composition of atmospheric trace gases. At the NEEM deep drilling site in northern Greenland firn air has been sampled from 4 different bore holes during two field campaigns. Through a collaboration of several laboratories NEEM firn air has been analyzed for an unprecedented number of analytes, including isotopes of CO2, CH4, N2O, CO and H2. The atmospheric signal as recorded in the firn is affected by a number of processes such as diffusion, advection and gravitational enrichment. Modeling of gas transport is therefore essential for the interpretation of firn gas records. For the NEEM site there is a joint effort to derive the firn transport properties by comparing the output of four different firn models. How the molecular diffusivity changes with depth is uncertain, and it is common practice to tune the model by forcing it with a gas of relatively well-known atmospheric history (usually CO2), and subsequently optimizing the fit to experimental data. By tuning to a single atmospheric history, the problem is under-determined. Many gas age distributions can be found that optimize the fit. To constrain the problem better the NEEM diffusivity profile is tuned to an ensemble of analytes, including CO2, CH4, SF6, ?14CO2, and several CFCs. It is however not a priori clear how to combine constraints from different gases in the tuning procedure. We introduce a method that can quantify how well a certain gas constrains the diffusivity profile at each depth, based on 1) the particular shape of its atmospheric history and uncertainties therein, 2) measurement uncertainties and 3) the possibility of in situ alteration. By taking these three factors into consideration, we can determine for each depth how to weigh the individual contributions of the different gases in the ensemble. We let the gas that places the most stringent constraint carry the most weight, thus exploiting the relative strength of each gas to the fullest.

  11. Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philip D.; Ye, Ming; Rockhold, Mark L.; Neuman, Shlomo P.; Cantrell, Kirk J.

    2007-07-30

    This report to the Nuclear Regulatory Commission (NRC) describes the development and application of a methodology to systematically and quantitatively assess predictive uncertainty in groundwater flow and transport modeling that considers the combined impact of hydrogeologic uncertainties associated with the conceptual-mathematical basis of a model, model parameters, and the scenario to which the model is applied. The methodology is based on a n extension of a Maximum Likelihood implementation of Bayesian Model Averaging. Model uncertainty is represented by postulating a discrete set of alternative conceptual models for a site with associated prior model probabilities that reflect a belief about the relative plausibility of each model based on its apparent consistency with available knowledge and data. Posterior model probabilities are computed and parameter uncertainty is estimated by calibrating each model to observed system behavior; prior parameter estimates are optionally included. Scenario uncertainty is represented as a discrete set of alternative future conditions affecting boundary conditions, source/sink terms, or other aspects of the models, with associated prior scenario probabilities. A joint assessment of uncertainty results from combining model predictions computed under each scenario using as weight the posterior model and prior scenario probabilities. The uncertainty methodology was applied to modeling of groundwater flow and uranium transport at the Hanford Site 300 Area. Eight alternative models representing uncertainty in the hydrogeologic and geochemical properties as well as the temporal variability were considered. Two scenarios represent alternative future behavior of the Columbia River adjacent to the site were considered. The scenario alternatives were implemented in the models through the boundary conditions. Results demonstrate the feasibility of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow and transport modeling and illustrate the benefits of the methodology I providing better estimates of predictive uncertiay8, quantitative results for use in assessing risk, and an improved understanding of the system behavior and the limitations of the models.

  12. Impact of hydrogeological and geomechanical properties on surface uplift at a CO2 injection site: Parameter estimation and uncertainty quantification

    Science.gov (United States)

    Newell, P.; Yoon, H.; Martinez, M. J.; Bishop, J. E.; Arnold, B. W.; Bryant, S.

    2013-12-01

    It is essential to couple multiphase flow and geomechanical response in order to predict a consequence of geological storage of CO2. In this study, we estimate key hydrogeologic features to govern the geomechanical response (i.e., surface uplift) at a large-scale CO2 injection project at In Salah, Algeria using the Sierra Toolkit - a multi-physics simulation code developed at Sandia National Laboratories. Importantly, a jointed rock model is used to study the effect of postulated fractures in the injection zone on the surface uplift. The In Salah Gas Project includes an industrial-scale demonstration of CO2 storage in an active gas field where CO2 from natural gas production is being re-injected into a brine-filled portion of the structure downdip of the gas accumulation. The observed data include millimeter scale surface deformations (e.g., uplift) reported in the literature and injection well locations and rate histories provided by the operators. Our preliminary results show that the intrinsic permeability and Biot coefficient of the injection zone are important. Moreover pre-existing fractures within the injection zone affect the uplift significantly. Estimation of additional (i.e., anisotropy ratio) and coupled parameters will help us to develop models, which account for the complex relationship between mechanical integrity and CO2 injection-induced pressure changes. Uncertainty quantification of model predictions will be also performed using various algorithms including null-space Monte Carlo and polynomial-chaos expansion methods. This work will highlight that our coupled reservoir and geomechanical simulations associated with parameter estimation can provide a practical solution for designing operating conditions and understanding subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Soil-biological, soil-chemical and soil-physical parameters along a pollutant gradient on grassland sites in the vicinity o Brixlegg (Tyrol) - a pilot project

    International Nuclear Information System (INIS)

    It was the main aim of this pilot project to check the indicator value of soil organisms by means of distinct pollutant gradients - heavy metals, organic compounds (PCB, dioxins) -. On the basis of available results (1/2/3/), 4 grassland sites at increasing distances from a local emission source (copper production from scrap metal) were selected. Physical and chemical analyses as well as the quantification of habitat structures were used for the characterization of the sites. The following analyses were carried out accompanyingly: The performances of soil microorganisms under pollutant load, the accumulation of pollutants, and the structures of plants and animal communities (macro, meso and microfauna). The investigation area and the examined parameters are introduced, as well as first result on soil chemistry and enzymatics as well as for the accumulation of heavy metals in an earthworm species are introduced. (orig.)

  14. Statistical analysis of parameters of river waters of Tikara and Brahmani near the proposed super thermal power plant site at Talcher

    International Nuclear Information System (INIS)

    A detailed study on water quality was conducted on rivers Tikara and Brahmani one of which (Brahmani) is the source of water for super thermal power plant in Talcher, Orissa. Four sites were selected for study, 2 in Tikara and the rest in Brahmani. Person's correlation coefficient was worked for all the water quality parameters. High correlations were observed between conductivity with TDS, calcium and chlorides. High correlations were also observed between hardness with chlorides and calcium, and it has been concluded that the result will help in the calculation of some of the parameters without experimental determination. The analyses, show that there is no appreciable pollution in these rivers. However, flyash and pollutants from thermal plant might pollute these rivers. Suggestions have been given to abate pollution. (author)

  15. Reasoning Under Uncertainty in Seismic Hazard Analysis: Modeling the Joint Probability of Earthquake, Site and Ground-Motion Parameters Using Bayesian Networks

    Science.gov (United States)

    Kuehn, N. M.; Carsten, R.; Frank, S.

    2008-12-01

    Empirical ground-motion models for use in seismic hazard analysis are commonly described by regression models, where the ground-motion parameter is assumed to be dependent on some earthquake- and site- specific parameters such as magnitude, distance or local vs30. In regression analysis only the target is treated as a random variable, while the predictors are not; they are implicitly assumed to be complete and error-free, which is not the case for magnitudes or distances in earthquake catalogs. However, in research areas such as machine learning or artificial intelligence techniques to overcome these issues exist. Borrowing from these fields, we present a novel multivariate approach to ground-motion estimation by means of the Bayesian network (BN) formalism. This elegant and intuitively appealing framework allows for reasoning under uncertainty by modeling directly the joint probability distribution of all variables, while at the same time offering explicit insight into the probabilistic relationships between variables. The formalism provides us with efficient methods for computing any marginal or conditional distribution of any subset of variables. In particular, if some earthquake- or site-related parameters are unknown, the distribution of the ground motion parameter of interest can still be calculated. In this case, the associated uncertainty is incorporated in the model framework. Here, we explore the use of BNs in the development of ground-motion models. Therefore, we construct BNs for both a synthetic and the NGA dataset, the most comprehensive strong ground motion dataset currently available. The analysis shows that BNs are able to capture the probabilistic dependencies between the different variables of interest. Comparison of the learned BN with the NGA model of Boore and Atkinson (2008) shows a reasonable agreement in distance and magnitude ranges with good data coverage.

  16. Perspectives for hydropower stations in Switzerland: long-term competitiveness and possibilities for improvement

    International Nuclear Information System (INIS)

    This first general study - which has the character of a preliminary study - examines the questions if the liberalisation of the electricity market will have a negative effect on the competitiveness of hydropower in the long-term and what measures can be taken against such effects. Long-term competitiveness is defined as the ability of a business in this sector to make investments in renewal in the long-term, i.e. after its concessions have expired. The three main aims of the study are: 1. Assessment of the long-term competitiveness of the sector and identification of the factors which could either have a negative effect on it or improve it, 2. Analysis of cost structures and presentation of measures through which the long-term competitiveness of the sector can be reinforced, 3. Presentation of possible political measures to be taken in this business area in order to improve the long-term competitiveness of hydropower stations. The study identifies the most important factors that determine future competitiveness as being the market prices for electricity and capital costs (depreciation and interest on own and borrowed capital). Further, water fees, taxes and regulations concerning residual water flow can be of great importance for investment decisions, in particular for those enterprises that operate close to their profitability limits. The results of the analysis indicate that, in the future, a considerable number of enterprises must be reckoned with that will refrain from renewing their plant. Such outcomes depend, of course, on developments in electricity market prices, specific investment costs, rates of interest and other economic, political, and legal conditions. Making a prognosis about the development of such parameters is linked with a high degree of uncertainty. By means of sensitivity calculations and the definition of various scenarios, attempts are made to take these uncertainties into account . Finally, the study makes reference to the fact that economic policy measures could help improve the competitiveness of hydropower. All measures that aim to internalise external costs of power generation are considered as being particularly promising in this respect. Targeted aid for particular enterprises could be provided as a supporting measure

  17. Exporting dams: China's hydropower industry goes global.

    Science.gov (United States)

    McDonald, Kristen; Bosshard, Peter; Brewer, Nicole

    2009-07-01

    In line with China's "going out" strategy, China's dam industry has in recent years significantly expanded its involvement in overseas markets. The Chinese Export-Import Bank and other Chinese financial institutions, state-owned enterprises, and private firms are now involved in at least 93 major dam projects overseas. The Chinese government sees the new global role played by China's dam industry as a "win-win" situation for China and host countries involved. But evidence from project sites such as the Merowe Dam in Sudan demonstrates that these dams have unrecognized social and environmental costs for host communities. Chinese dam builders have yet to adopt internationally accepted social and environmental standards for large infrastructure development that can assure these costs are adequately taken into account. But the Chinese government is becoming increasingly aware of the challenge and the necessity of promoting environmentally and socially sound investments overseas. PMID:18992986

  18. Experimental determination of site-specific transfer parameter of 131I, 134,137Cs and 210Pb from fodder into milk and meat

    International Nuclear Information System (INIS)

    Measurements of 131I, 134,137Cs and 210Pb in feed and food-stuff during 1978-1994 (approximately 5000 measurements) provided opportunity to determine site-specific feed-to-milk (Fm) and feed-to-meat (Ff) parameter values. Unexpectedly, during summer of 1986 (post-Chernobyl data only) the mean equilibrium Fm and Ff values for cesium were lower as compared with mean pre-Chernobyl data. Post-Chernobyl 1986 winter Fm and Ff values, as well as 1987 and 1988 data, suddenly rose and were larger than pre-Chernobyl ones. Later the values showed a decrease. Post-Chernobyl Ff values for 210Pb were more than expected too. Other changes for 210Pb remains an open question. The mean equilibrium pre-Chernobyl Fm and Ff parameter values for radiocesium and 210Pb was slightly smaller during winter time as compared with summer time. Fm values for radioiodine are in a good agreement with earlier convinced values. Plausible explanation of pre- and post-Chernobyl differences include peculiarity of Chernobyl fallout, differences of physical-chemical forms with different bio-activity and bio-availability, special features of metabolism in farm animals, changing nutrition practices and etc. Food-chain modelling and site-specific Fm and Ff values obtained in this study may be used to predict radioiodine, radiocesium (possible 210Pb) activity in food, especially in the case of Ignalina NPP accident

  19. Application of GSO for Load Allocation between Hydropower Units and Its Model Analysis based on Multi-objective

    OpenAIRE

    Liying Wang; Linming Zhao; Hongyan Yan

    2012-01-01

    The optimum load distribution between the hydropower units is an effective measure for reducing the total water rate and increasing the energy output of a hydropower station, and it is becoming a more interesting studying topic. In order to increase the economic benefit of the station, a multi-objective optimization model of load allocation between hydropower units is established in accordance with the characteristics and particularity of the hydropower station, and the minimum water rate of ...

  20. Development of a methodology for estimation of Technical Hydropower potential in Iceland using high resolution Hydrological Modeling

    OpenAIRE

    Tinna Þórarinsdóttir 1985

    2012-01-01

    Large portion of the total energy consumption in Iceland originates from hydropower. The last estimation of the hydropower potential was conducted thirty years ago, in 1981. Since then, there have been major technical developments that call for a renewal of estimation of hydropower potential. The main objective of this study is develop a methodology that can be used for calculating and mapping of technical hydropower potential in Iceland, using current technology and data available at the Ice...

  1. A Process-based, Climate-Sensitive Model to Derive Methane Emissions from Natural Wetlands: Application to 5 Wetland Sites, Sensitivity to Model Parameters and Climate

    Science.gov (United States)

    Walter, Bernadette P.; Heimann, Martin

    1999-01-01

    Methane emissions from natural wetlands constitutes the largest methane source at present and depends highly on the climate. In order to investigate the response of methane emissions from natural wetlands to climate variations, a 1-dimensional process-based climate-sensitive model to derive methane emissions from natural wetlands is developed. In the model the processes leading to methane emission are simulated within a 1-dimensional soil column and the three different transport mechanisms diffusion, plant-mediated transport and ebullition are modeled explicitly. The model forcing consists of daily values of soil temperature, water table and Net Primary Productivity, and at permafrost sites the thaw depth is included. The methane model is tested using observational data obtained at 5 wetland sites located in North America, Europe and Central America, representing a large variety of environmental conditions. It can be shown that in most cases seasonal variations in methane emissions can be explained by the combined effect of changes in soil temperature and the position of the water table. Our results also show that a process-based approach is needed, because there is no simple relationship between these controlling factors and methane emissions that applies to a variety of wetland sites. The sensitivity of the model to the choice of key model parameters is tested and further sensitivity tests are performed to demonstrate how methane emissions from wetlands respond to climate variations.

  2. Evaluation of neutron flux parameters in irradiation sites of research reactor using the Westcott-formalism for the k0 neutron activation analysis method

    Science.gov (United States)

    Kasban, H.; Hamid, Ashraf

    2015-12-01

    Instrumental Neutron Activation Analysis using k0 (k0-INAA) method has been used to determine a number of elements in sediment samples collected from El-Manzala Lake in Egypt. k0-INAA according to Westcott's formalism has been implemented using the complete irradiation kit of the fast pneumatic rabbit and some selected manually loaded irradiation sites for short and long irradiation at Egypt Second Research Reactor (ETRR-2). Zr-Au and Co sets as neutron flux monitors are used to determine the neutron flux parameters (f and α) in each irradiation sites. Two reference materials IAEA Soil-7 samples have been inserted and implemented for data validation and an internal monostandard multi monitor used (k0 based IM-NAA). It was given a good agreement between the experimental analyzed values and that obtained of the certified values. The major and trace elements in the sediment samples have been evaluated with the use of Co as an internal and Au as an external monostandard comparators. The concentrations of the elements (Cr, Mn and Zn) in the sediment samples of the present work are discussed regarding to those obtained from other sites.

  3. 75 FR 8321 - Coastal Hydropower LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2010-02-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Project No. 13619-000 Coastal Hydropower LLC; Notice of Preliminary Permit... February 18, 2010. On November 5, 2009, Coastal Hydropower LLC filed an application for a...

  4. 78 FR 61985 - City of Astoria, Oregon; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    Science.gov (United States)

    2013-10-09

    ... Conduit Hydropower Facility and Soliciting Comments and Motions To Intervene On September 24, 2013, City of Astoria, Oregon (Astoria) filed a notice of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the...

  5. 78 FR 79433 - Mahoning Hydropower, LLC, Ohio, Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2013-12-30

    ... Commission's (Commission or FERC) regulations, 18 CFR part 380 (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed Mahoning Hydropower, LLC's application for a license to construct, operate... Energy Regulatory Commission Mahoning Hydropower, LLC, Ohio, Notice of Availability of...

  6. 77 FR 27451 - Boott Hydropower, Inc.; Notice of Section 106 Consultation Meeting

    Science.gov (United States)

    2012-05-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Boott Hydropower, Inc.; Notice of Section 106 Consultation Meeting On May 24... Preservation Officer, the Advisory Council on Historic Preservation, Boott Hydropower, Inc., and any...

  7. 76 FR 75542 - Porcupine Dam Hydropower Project; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2011-12-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Porcupine Dam Hydropower Project; Notice of Preliminary Permit Application... Dam Hydropower Project to be located on the East Fork of the Little Bear River near the town of...

  8. 75 FR 62516 - Northern Illinois Hydropower, LLC; Notice of Application Ready for Environmental Analysis and...

    Science.gov (United States)

    2010-10-12

    ... Energy Regulatory Commission Northern Illinois Hydropower, LLC; Notice of Application Ready for....: 12626-002. c. Date filed: March 31, 2009. d. Applicant: Northern Illinois Hydropower, LLC. e. Name of... Power Act, 16 U.S.C. 791 (a)-825(r). h. Applicant Contact: Damon Zdunich, Northern Illinois...

  9. 77 FR 51551 - Proposed Renewal of Information Collection: Alternatives Process in Hydropower Licensing

    Science.gov (United States)

    2012-08-24

    ... comments on the collection of information was published on May 22, 2012 (77 FR 30308). No comments were... Office of the Secretary Proposed Renewal of Information Collection: Alternatives Process in Hydropower... information for Alternatives Process in Hydropower Licensing. This collection request has been forwarded...

  10. 77 FR 4290 - Conway Ranch Hydropower Project; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2012-01-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Conway Ranch Hydropower Project; Notice of Preliminary Permit Application... the Federal Power Act (FPA), proposing to study the feasibility of the Conway Ranch Hydropower...

  11. Technical and economic qualities of hydropower in comparison with other forms of electricity production

    International Nuclear Information System (INIS)

    By comparing ecological and technical aspects of hydropower with other forms of electricity production, we are able to assess its potential in terms of economic added value. The most obvious benefits of hydropower are its storage capability, high level of efficiency, ease of control and provision of reactive power. An assessment of the technical qualities of hydropower encompasses today's power generation and capacity, as well as the interaction with the power transmission network in both normal operation and in the case of disturbances. The benefits of hydropower versus other forms of electricity production are as follows: an energy production with the highest level of electrical efficiency (between 80% and 90%); advantage of energy production via water storage systems; excellent tradability thanks to ready availability upon demand; ideally suited for use for bridging discrepancies between purchased volume and demand thanks to high efficiency at partial load; thanks to its ready availability, hydropower can be used to quickly restore power following major damage to, or disturbances in, the electricity transmission network; provision of reactive power. Hydropower offers the following economic benefits: in an open market, services provided by hydropower plants are compensated directly; higher energy prices have to be paid for load compensation; energy production from storage systems may be utilised like a call option; hydropower plants produce electricity from a renewable energy source, which makes it more easily marketable. (author)

  12. "Fish Friendly" Hydropower Turbine Development and Deployment. Alden Turbine Preliminary Engineering and Model Testing

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D. [Electric Power Research Institute, Palo Alto, CA (United States)

    2011-10-01

    This report presents the results of a collaborative research project funded by the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and hydropower industry partners with the objective of completing the remaining developmental engineering required for a “fish-friendly” hydropower turbine called the Alden turbine.

  13. Assessing residual hydropower potential of the La Plata Basin accounting for future user demands

    Science.gov (United States)

    Popescu, I.; Brandimarte, L.; Perera, M. S. U.; Peviani, M.

    2012-08-01

    La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), which have fast growing economies in South America. These countries need energy for their sustainable development; hence, hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB), and it analyses the maximum and residual hydropower potential of the basin for a horizon of 30 yr (i.e. year 2040). Current hydropower production is estimated based on historical available data, while future energy production is deduced from the available water in the catchment (estimated based on measured hydrographs of the past years), whereas electricity demand is assessed by correlating existing electricity demand with the estimated population growth and economic development. The maximum and residual hydropower potential of the basin were assessed for the mean annual flows of the present hydrological regime (1970-2000) and topographical characteristics of the area. Computations were performed using an integrated GIS environment called VAPIDRO-ASTE released by the Research on Energy System (Italy). The residual hydropower potential of the basin is computed considering first that the water supply needs for population, industry and agriculture are served, and then hydropower energy is produced. The calculated hydropower production is found to be approximately half of the estimated electricity demand, which shows that there is a need to look for other sources of energy in the future.

  14. Assessing residual hydropower potential of the La Plata Basin accounting for future user demands

    Directory of Open Access Journals (Sweden)

    I. Popescu

    2012-04-01

    Full Text Available La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay, which are having fast growing economies in South America. These countries need energy for their sustainable development; hence hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB and makes an analysis of the maximum and residual hydropower potential of the basin for a horizon of 30 yr (i.e. year 2040. Current hydropower production is estimated based on historic available data while future energy production is deduced from the maximum available water in the catchment, whereas electricity demand is assessed by correlating existing electricity demand with the estimated population growth and economic development. The maximum and residual hydropower potential of the basin, were assessed for the mean annual flows of the present hydrological regime (1970–2000 and topographical characteristics of the area.

    Computations were performed using an integrated GIS environment called Vapidro-Aste released by the Research on Energy System (Italy. The residual hydropower potential of the basin is computed considering that first the water supply needs for population, industry and agriculture are served and than hydropower energy is produced. The calculated hydropower production is found to be approximately half of the estimated electricity demand, which shows that there is a need to look for other sources of energy in the future.

  15. Assigning the EPR fine structure parameters of the Mn(II) centers in Bacillus subtilis oxalate decarboxylase by site-directed mutagenesis and DFT/MM calculations.

    Science.gov (United States)

    Campomanes, Pablo; Kellett, Whitney F; Easthon, Lindsey M; Ozarowski, Andrew; Allen, Karen N; Angerhofer, Alexander; Rothlisberger, Ursula; Richards, Nigel G J

    2014-02-12

    Oxalate decarboxylase (OxDC) catalyzes the Mn-dependent conversion of the oxalate monoanion into CO2 and formate. EPR-based strategies for investigating the catalytic mechanism of decarboxylation are complicated by the difficulty of assigning the signals associated with the two Mn(II) centers located in the N- and C-terminal cupin domains of the enzyme. We now report a mutational strategy that has established the assignment of EPR fine structure parameters to each of these Mn(II) centers at pH 8.5. These experimental findings are also used to assess the performance of a multistep strategy for calculating the zero-field splitting parameters of protein-bound Mn(II) ions. Despite the known sensitivity of calculated D and E values to the computational approach, we demonstrate that good estimates of these parameters can be obtained using cluster models taken from carefully optimized DFT/MM structures. Overall, our results provide new insights into the strengths and limitations of theoretical methods for understanding electronic properties of protein-bound Mn(II) ions, thereby setting the stage for future EPR studies on the electronic properties of the Mn(II) centers in OxDC and site-specific variants. PMID:24444454

  16. Hydrological assessment for mini hydropower potential at Sungai Pahang - Temerloh

    International Nuclear Information System (INIS)

    Sg Pahang at Temerloh was considered for assessment of hydropower potential using hydrological analysis method and hydrological model. The available data related to topography, soil, land use, weather and discharge pertaining to the study catchment were used to characterize the catchment. The characterization was required for water resources hence hydropower assessment. The hydrology of the study catchment was simulated through the model. This hydrological study is required due to the proposed mini hydroelectric power plant at Pulau Temerloh. It is essential to evaluate the existing river flow characteristic and to model the environmental flow assessment of the river. Two rainfalll stations, JPS Temerloh and Pintu Kawalan Paya Kertam Station are selected to develop the Rainfall Intensity Duration frequency (RIDF) Curve to determine the rainfall intensity of the area. Daily river flow were recorded at Sg Pahang at Temerloh and Sg Pahang at Lubok Paku were used to develop the Flow Duration Curve (FDC) to study the characteristic of Sungai Pahang flow. The 7 days low flow with 10 years return period (7Q10 low flow) was obtained using both Gumbel Method and Log Pearson Type III Method. The results from FDC shows that 50% percentage of time the Sg Pahang - Temerloh is exceeded over a historical period is 400 m3/s and 50% percentage of time the Sg Pahang - Lubok Paku is exceeded over a historical period is 650 m3/s. The required environmental flow are set to be 7Q10 low flow which is 64.215 m3/s for Sg Pahang at Temerloh and 79.24 m3/s for Sg Pahang at Lubok Paku. The results show the water resources are abundant and hence boost the mini hydropower potentiality at Sg Pahang.

  17. 75 FR 51451 - Erie Boulevard Hydropower, L.P.; Notice of Intent To File License Application, Filing of Pre...

    Science.gov (United States)

    2010-08-20

    ... Energy Regulatory Commission Erie Boulevard Hydropower, L.P.; Notice of Intent To File License..., 2010. d. Submitted By: Erie Boulevard Hydropower, L.P. e. Name of Project: Chasm Hydroelectric Project....gov . j. Erie Boulevard Hydropower, L.P. (Erie) filed its request to use the Traditional...

  18. 76 FR 2359 - Great River Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To...

    Science.gov (United States)

    2011-01-13

    ... Federal Energy Regulatory Commission Great River Hydropower, LLC; Notice of Application Accepted for...: Great River Hydropower, LLC. e. Name of Project: Upper Mississippi River Lock & Dam No. 21 Hydroelectric... following facilities: (1) A new 796-foot-long by 46-foot-wide by 25-foot-high concrete hydropower...

  19. 75 FR 45106 - Great River Hydropower, LLC; Notice of Application Tendered for Filing With the Commission and...

    Science.gov (United States)

    2010-08-02

    ... Energy Regulatory Commission Great River Hydropower, LLC; Notice of Application Tendered for Filing With...: Great River Hydropower, LLC. e. Name of Project: Upper Mississippi River Lock & Dam No. 21 Hydroelectric...' Lock & Dam No. 21, and would consist of the following facilities: (1) A new hydropower...

  20. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Science.gov (United States)

    2012-07-20

    ... Energy Regulatory Commission Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek... No.: 9690-109. c. Date Filed: June 19, 2012. d. Applicants: Eagle Creek Hydropower, LLC; Eagle Creek... President-- Operations, Eagle Creek Hydropower, LLC, Eagle Creek Water Resources, LLC, Eagle Creek...

  1. 77 FR 6552 - Mahoning Hydropower, LLC; Notice of Intent To File License Application, Filing of Pre-Application...

    Science.gov (United States)

    2012-02-08

    ... Energy Regulatory Commission Mahoning Hydropower, LLC; Notice of Intent To File License Application.... b. Project No.: P-13954-001. c. Date Filed: December 7, 2011. d. Submitted By: Mahoning Hydropower.... Potential Applicant Contact: Anthony Marra, Mahoning Hydropower, LLC, 11365 Normandy Lane, Chagrin Falls,...

  2. 77 FR 75628 - STS Hydropower, Ltd., Dan River, Inc., and City of Danville, VA; Notice of Application for...

    Science.gov (United States)

    2012-12-21

    ... Energy Regulatory Commission STS Hydropower, Ltd., Dan River, Inc., and City of Danville, VA; Notice of..., 2012, Jeoffrey L. Burtch, as Chapter 7 Bankruptcy Trustee for Dan River, Inc. and STS Hydropower, Ltd... the license for the Schoolfield Hydroelectric Project from Dan River, Inc. and STS Hydropower, Ltd....

  3. 78 FR 62322 - Hydropower Regulatory Efficiency Act of 2013; Notice of Rescheduled Two-Year Licensing Process...

    Science.gov (United States)

    2013-10-16

    ... Energy Regulatory Commission Hydropower Regulatory Efficiency Act of 2013; Notice of Rescheduled Two-Year... issuance of a license for hydropower development at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the Hydropower Regulatory Efficiency Act of 2013. The...

  4. Decision making algorithms for hydro-power plant location

    CERN Document Server

    Majumder, Mrinmoy

    2013-01-01

    The present study has attempted to apply the advantage of neuro-genetic algorithms for optimal decision making in maximum utilization of natural resources. Hydro-power is one of the inexpensive, but a reliable source of alternative energy which is foreseen as the possible answer to the present crisis in the energy sector. However, the major problem related to hydro-energy is its dependency on location. An ideal location can produce maximum energy with minimum loss. Besides, such power-plant also requires substantial amount of land which is a precious resource nowadays due to the rapid and unco

  5. Electric Energy Conversion Systems : Wave Energy and Hydropower

    OpenAIRE

    Thorburn, Karin

    2006-01-01

    Electric energy conversion is an important issue in today's society as our daily lives largely depend on the supplies of energy. Two energy sources are studied for conversion in the present thesis, ocean waves and hydropower. The work focuses on the generator and the transmission of its output to the electric grid. Different approaches have been used, over the years, to convert the energy in ocean waves, and the method presently used is based on a point absorber (buoy) directly coupled to a l...

  6. Short-term hydropower production planning by stochastic programming

    DEFF Research Database (Denmark)

    Fleten, Stein-Erik; Kristoffersen, Trine Krogh

    2008-01-01

    Within the framework of multi-stage mixed-integer linear stochastic programming we develop a short-term production plan for a price-taking hydropower plant operating under uncertainty. Current production must comply with the day-ahead commitments of the previous day which makes short-term production planning a matter of spatial distribution among the reservoirs of the plant. Day-ahead market prices and reservoir inflows are, however, uncertain beyond the current operation day and water must be a...

  7. Evaluation of hydropower potential in Pohorje streams considering environmental objectives

    OpenAIRE

    Skroza, Andrea

    2011-01-01

    Harmonizing objectives of the two European Directives, Directive 2000/60/EC and Directive 2009/28/EC, is a challenging task. The objective of Directive 2009/28/EC is to increase energy production from renewable energy sources, while the objective of Directive 2000/60/EC is to maintain and improve good quality of water. Both directives affect the development of obtaining energy from small hydropower plants. Directive 2009/28/EC aims to increase the production of energy from small hydroelectric...

  8. Portfolio management of hydropower producer via stochastic programming

    International Nuclear Information System (INIS)

    This paper presents a stochastic linear programming framework for the hydropower portfolio management problem with uncertainty in market prices and inflows on medium term. The uncertainty is modeled as a scenario tree using the Monte Carlo simulation method, and the objective is to maximize the expected revenue over the entire scenario tree. The portfolio decisions of the stochastic model are formulated as a tradeoff involving different scenarios. Numerical results illustrate the impact of uncertainty on the portfolio management decisions, and indicate the significant value of stochastic solution. (author)

  9. DOE Hydropower Program Annual Report for FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL)

    2004-02-01

    This report describes the progress of the R&D conducted in FY 2003 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Testing of the Alden/NREC pilot scale runner, and Improved Mitigation Practices); (2) Supporting Research and Testing (Biological Design Criteria, Computer and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Wind/Hydro Integration Studies and Technical Support and Outreach); and (4) Engineering and Analysis (Innovative Technology Characterization).

  10. Effects of Climate Change on Federal Hydropower. Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    This is a formal Department of Energy report to Congress. It outlines the findings of an assessment directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities.

  11. Assessment of the Effects of Climate Change on Federal Hydropower

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Michael J. [M.J. Sale and Associates, Hanson, MA (United States); Shih-Chieh, Kao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ashfaq, Moetasim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kaiser, Dale P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez, Rocio [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Webb, Cindy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wei, Yaxing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-10-01

    As directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities. This Oak Ridge National Laboratory report, referred to as the “9505 Assessment,” describes the technical basis for the report to Congress that was called for in the SECURE Water Act.

  12. MAXIMIZING HYDROPOWER PRODUCTION FROM RESERVOIRS:THE CASE STUDY OF MARKABA

    International Nuclear Information System (INIS)

    Hydropower is a form of renewable energy that is clean and cheap. Under uncertain climatic conditions, maximization of hydropower production becomes a challenging task.Stochastic Dynamic programming (SDP) is a promising optimization algorithm that is usedfor complex non-linear reservoir operational policies and strategies.In this research, a combined simulation-SDPoptimization model isdeveloped andverified for maximizing large-scale hydropower production in a monthly time step. The model isdeveloped to generate optimal operational policies for the Qarawn reservoir in Lebanon and test these policies in real time conditions. The model isused to derive operational regimes for the Qarawn reservoirunder varying flows using transitional probability matrices. Simulating the derived rules and the generated operational policies proved effective in maximizingthe hydropower production from the Markaba power plant. The model could be successfully applied to other hydropower dams in the region. (author)

  13. Mini-hydropower development in human province of China and its position in the national economy

    International Nuclear Information System (INIS)

    Hunan province is situated in the southern part of the middle reaches of Yangtze River. With a population of 61 million, it covers an area of about 211,800 km2, equivalent to forty percents of the territorial area of France. Throughout the province, there are more than 5300 rivers and 13000 reservoirs completed before 1991, of which over 7300 mini-hydropower stations are under operation. The theoretical hydropower potential is 15320 MW among them 12990 MW can be exploited with a total installed capacity of 1320 MW and an annual generation output of 4150 GWh. The paper will describe the general condition of the hydropower resources, development of mini-hydropower in Human province and its positive role in the national economy. Additionally, the standard of classification, the type of equipment for the medium and small-sized hydropower plants and market conditions in Hunan will be also involved in the paper. 5 tabs

  14. DOE Hydropower Program biennial report 1996-1997 (with an updated annotated bibliography)

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, B.N.; Francfort, J.E.; Sommers, G.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States)

    1997-06-01

    This report, the latest in a series of biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1996 and 1997. The report discusses the activities in the six areas of the hydropower program: advanced hydropower turbine systems; environmental research; hydropower research and development; renewable Indian energy resources; resource assessment; and technology transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering and Environmental Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

  15. National hydroelectric power resources study. Preliminary inventory of hydropower resources. Volume 2. Pacific Southwest region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-07-01

    The estimates of existing, incremental, and the undeveloped hydropower potential for all states in the various regions of the country are presented. In the Pacific Southwest region, the maximum physical potential for all sites exceeds 33,000 MW of capacity with an estimated average annual energy greater than 85,000 GWH. By comparison, these values represent about 6% of the total potential capacity and hydroelectric energy generation estimated for the entire US. Of the total capacity estimated for the region, 9900 MW has been installed. The remainder (23,200 MW) is the maximum which could be developed by upgrading and expanding existing projects (6000 MW) and by installing new hydroelectric power capacity at all potentially feasible, undeveloped sites (17,200 MW). Small-scale facilities account for less than 4% of the region's total installed capacity, but another 600 MW could be added to these and other small water resource projects. In addition, 600 MW could be installed at potentially feasible, undeveloped small-scale sites. The small-scale resource varies considerably, with the states of California and Utah having the largest potential for incremental development at existing projects in the Pacific Southwest region. States comprising the Southwest are Arizona, California, Hawaii, Nevada, and Utah.

  16. National hydroelectric power resources study. Preliminary inventory of hydropower resources. Volume 4. Lake Central region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-07-01

    The estimates of existing, incremental and the undeveloped hydropower potential for all states in the various regions of the country are presented. In the Lake Central region, the maximum physical potential for all sites exceeds 26,000 MW with an estimated average annual energy of more than 75,000 GWH. By comparison, these values represent about 5% of both the total potential capacity and hydroelectric energy estimated for the entire US. Of the total capacity estimated for the region, 2600 MW has been installed. The remainder (23,600 MW) is the maximum which could be developed by upgrading and expanding existing projects (15,800 MW), and by installing new hydroelectric power capacity at all potentially feasible, undeveloped sites (7800 MW). Small-scale facilities account for some 24% of the region's total installed capacity, but another 900 MW could be added to these and other small water-resource projects. In addition, 900 MW could be installed at potentially feasible, undeveloped small-scale sites. The small-scale resource varies considerably, with the states of Michigan and Wisconsin having the largest potential for incremental development at existing projects in the Lake Central region. This Lake Central region is composed of Minnesota, Wisconsin, Michigan, Ohio, Indiana, Illinois, Kentucky, Missouri, and Iowa.

  17. Using the Quake-Catcher Network (QCN) to derive source parameters and the site attenuation term, kappa (?), using aftershocks of the 2010 Darfield, New Zealand earthquake

    Science.gov (United States)

    Neighbors, C.; Cochran, E. S.; Ryan, K. J.; Funning, G.; Kaiser, A. E.

    2013-12-01

    We utilize a dense network of Quake-Catcher Network (QCN) MEMs accelerometers to investigate source parameters and the shallow site attenuation parameter, kappa (?), for aftershocks of the 3 September 2010 Mw7.1 Darfield earthquake in Christchurch, NZ. Approximately 190 QCN accelerometers captured over 180 aftershocks ? Mw4.0 from 9 September 2010 to 31 July 2011. Sensors were deployed in local residences as part of the QCN Rapid Aftershock Mobilization Project (RAMP), collecting vast amounts of data at dense spatial scales. The low cost, 14-bit QCN sensors perform within ANSS Class C sensor standards (Evans et al., 2013), and, the time series and response spectra of the sensors compare favorably to the strong-motion 24-bit NZ GeoNet sensors (Cochran et al., 2011). To find ?, we measure deviations from the ?-2 fall-off on the acceleration amplitude spectrum of Fourier-transformed S-wave windows containing 80% of the S-wave energy. We use both manual and automated methods to fit the slope of the fall-off (i.e., ?) following Anderson and Hough (1984). A known issue with this method is that ? should be measured above the corner frequency (f0) to avoid bias from source effects. Studies have recently reported larger than average stress drops for these aftershocks (e.g., Kaiser and Oth, 2013), which may yield significant variation from the theoretically determined f0. Here, we aim to find the site attenuation, ?, by simultaneously solving for f0 and the seismic moment (M0) for each station and event. For robust results, we employ several methods to find the source and site parameters. Initially, we use a linearized least-squares fitting routine for each event-station pair (e.g., Anderson and Humphrey, 1991). This method does not require a single M0 for an event recorded at multiple stations, resulting in disagreements across M0 and f0 for any given event. Consequently, we also employ a more physically meaningful approach that calculates a single M0 and f0 for a given event using a linearized general inversion scheme (e.g., Sarker and Abers, 1998; Stachnik et al., 2004). Due to a strong trade-off between f0 and ?, we lastly try the nonlinear least-squares Gauss-Newton algorithm, which obtains a constant M0 and produces a more reasonable f0 and well-fitted ?. Initial results show ? estimates range from 0.01 to 0.1 sec and our calculated moment magnitudes (Mw) agree with the USGS NEIC catalog. Another goal of this study is to determine if the QCN data can be confidently used to find source parameters. With the vast amount of strong-motion data collected, QCN offers an ideal dataset to determine source parameters from spectral fitting; particularly in Christchurch, where smaller datasets may contain a proportionally higher number of recordings that are biased by local effects, including site amplification and nonlinear response like liquefaction. For a single event, preliminary findings show that QCN sensors yield higher M0 values than GeoNet stations, thus prompting further investigation.

  18. Quantifying eco-sustainable water releases from small hydropower plants by means of the Principle of Marginal Utility

    Science.gov (United States)

    Gorla, L.; Characklis, G.; Perona, P.

    2012-04-01

    Water use for hydropower production is increasing in mountain regions, as is an awareness of the importance of generating sustainable water releases for riparian ecosystems. Traditionally, hydropower releases have been regulated by minimum flow release policies, but these can have a number of shortcomings. Perona and Dürrenmatt propose a method of determining releases that is based on the Principle of Equal Marginal Utility (PEMU), which considers the environment as a (non-traditional) water user that is in full competition with other uses. Although simple, this model suggests a way of generating quasi-natural flow releases at diversion nodes while maximizing the aggregate economic benefit of all uses, including environmental. In this paper we demonstrate the implementation of the method of Perona and Dürrenmatt for several real-cases in Switzerland, evaluating the long term performances of various release policies from both an ecological and economic point of view. The model is implemented by proposing some simple environmental utility functions, followed by an examination of: i) the statistics of the flow releases predicted by the model using the "Range of Variability Approach" originally proposed by Richter et al. (1997); ii) the meaning of environmental benefits, through use of a parametric analysis which evaluates the best allocation strategy; iii) the implicit economic valuation of ecosystem health underlying each simulated alternative. This last point is evaluated assuming that allocating a unit of water to the environment and not to hydropower means assigning a higher economic value to the environment. The long term mean of the ratio between the allocated flows may be used as a suitable engineering parameter, which allows for a comparison of the environmental value of water with other uses over the system lifetime. Results are used to explore the idea that the balance between cumulative financial value, loss of biodiversity and the future costs of ecosystem restoration can be used as a means of improving water resource management.

  19. Development of soil physical parameters on initial landforms - An example from a post-mining recultivation site in Lusatia, East Germany

    Science.gov (United States)

    Kruemmelbein, J.; Raab, T. A.; Bens, O.; Hüttl, R. F.

    2009-12-01

    Recultivation efforts in mining areas attempt to regenerate soils and landscapes for various land use options and create initial conditions which are beneficial for the development of the future ecosystems. On very young landforms physical and chemical properties of soils play a major role for the further evolution of the developing ecosystem as well as the landforms itself. Less is known about the very first alterations of physical parameters in accordance to different land uses and recultivation practices. Our study deals with the agricultural recultivation of post lignite mining areas in Lusatia, East Germany. The sandy substrate used for recultivation stems from depths of several meters and is therefore free of recent soil organic matter. The substrate itself is unstructured. After it has been excavated and transported on conveyor belts to the recultivation site, it is piled up to dams of a height of 1-4 m and levelled off with heavy crawlers. During these processes the substrate is subjected to strong mechanical stresses. This practice induces compaction which causes decreasing yields of agricultural crops to a certain extent. In this context we are investigating the effect of different organic soil additives in combination with different recultivation crop rotations on the development of soil structure for improved agricultural land use. Our experimental site has recently been heaped up and levelled off. On the 25 experimental sub areas 2175 undisturbed soil samples were taken out of three soil depths to characterize initial physical properties before any recultivation measures have been applied,. We present laboratory results of this status-quo sampling. The results indicate that the site is very heterogeneous in terms of mechanical stability, bulk density, total pore volume, saturated hydraulic conductivity and air permeability. Moreover, our results show that bulk density is not an appropriate parameter to derive soil functions, e.g. permeability or stability. Additionally we found that even in areas of bulk densities > 1.8 g/cm3 and with an inclination < 2 % impressive run-off and gully erosion developed during heavy rainfall events. We conclude that initial processes altering soil physical parameters play a major role for the landform evolution within the first 12 months after dumping. Further studies should reveal the mid-term impact of organic additives on the soils after 7 yrs.

  20. Land And Water Use Characteristics And Human Health Input Parameters For Use In Environmental Dosimetry And Risk Assessments At The Savannah River Site

    International Nuclear Information System (INIS)

    Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) Regulatory Guides. Within the regulatory guides, default values are provided for many of the dose model parameters but the use of site-specific values by the applicant is encouraged. A detailed survey of land and water use parameters was conducted in 1991 and is being updated here. These parameters include local characteristics of meat, milk and vegetable production; river recreational activities; and meat, milk and vegetable consumption rates as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors to be used in human health exposure calculations at SRS are documented. Based on comparisons to the 2009 SRS environmental compliance doses, the following effects are expected in future SRS compliance dose calculations: (1) Aquatic all-pathway maximally exposed individual doses may go up about 10 percent due to changes in the aquatic bioaccumulation factors; (2) Aquatic all-pathway collective doses may go up about 5 percent due to changes in the aquatic bioaccumulation factors that offset the reduction in average individual water consumption rates; (3) Irrigation pathway doses to the maximally exposed individual may go up about 40 percent due to increases in the element-specific transfer factors; (4) Irrigation pathway collective doses may go down about 50 percent due to changes in food productivity and production within the 50-mile radius of SRS; (5) Air pathway doses to the maximally exposed individual may go down about 10 percent due to the changes in food productivity in the SRS area and to the changes in element-specific transfer factors; and (6) Air pathway collective doses may go down about 30 percent mainly due to the decrease in the inhalation rate assumed for the average individual.