WorldWideScience

Sample records for hydropower site parameters

  1. Hydropower

    Fenhann, J. (Risoe DTU, Roskilde (Denmark)); Kofoed, J.P. (Aalborg Univ., Aalborg (Denmark))

    2010-11-15

    This chapter gives an overview of the various forms of hydropower: conventional hydropower, marine currents, tides, power from salinity gradients, ocean thermal energy conversion and wave power. (Author)

  2. A review of Environmental Impact Assessment parameters required for set up of a hydropower project

    Environmental Impact Assessment in general, hydro-meteorological conditions, topography, hydrology, water availability analysis of a river system, importance of hydropower and feasibility study of Environmental Impact assessment due to the construction of the hydropower plant have been discussed in this research work. The site selection is one of the major components so far the hydropower is concerned and also the minimum flow should have known to us so that the capacity of a hydropower plant can be predicted. The sustainable flow, which refers the flow is available throughout the year, has been calculated based on flow duration curve. This study highlights the environmental impact assessment particularly related to hydropower project. Here the study area a district town located in the eastern region of India on the banks of river Kosi has been considered. The historical rainfall and the river discharge data have been collected from various organizations. The stage-discharge correlation and hydrological parameters related to hydropower have been analyzed and also to discuss the review of environmental impact assessment in hydropower project. The EIA analysis can be also carried out by using fuzzy logic wherein the EIA parameters can be given different weight-age based on the various survey reports that have been carried out at different places at different time. Such analysis has also been provided below based on the various data obtained.

  3. Hydropower

    Fenhann, Jørgen Villy; Kofoed, Jens Peter

    This chapter gives an overview of the various forms of hydropower: conventional hydropower, marine currents, tides, power from salinity gradients, ocean thermal energy conversion and wave power.......This chapter gives an overview of the various forms of hydropower: conventional hydropower, marine currents, tides, power from salinity gradients, ocean thermal energy conversion and wave power....

  4. 76 FR 51022 - Juneau Hydropower, Inc.; Notice of Scoping Meeting and Site Visit and Soliciting Scoping Comments...

    2011-08-17

    ... Energy Regulatory Commission Juneau Hydropower, Inc.; Notice of Scoping Meeting and Site Visit and.... Applicant: Juneau Hydropower, Inc. d. Name of Project: Sweetheart Lake Hydroelectric Project. e. Location.... 791(a)-825(r). g. Applicant Contact: Duff Mitchell, Business Manager, Juneau Hydropower, Inc.,...

  5. Evaluation of economic rent of hydropower projects

    Existing studies have mostly estimated the ex post economic rent of hydropower for the hydroelectric system of a province or a country as a whole and have ignored the site- or project-specific variations in the economic rent of hydropower plants. Further, most of the existing studies have used simplified methods to calculate the rent ex post. This paper presents a rigorous methodology for estimation of site-specific (i.e., project specific) economic rent of hydropower ex ante. It applies the methodology in the case of a hydropower project and analyzes the sensitivity of the rent to variations in some key parameters.

  6. Analysis of potential impacts of Flaming Gorge Dam hydropower operations on archaeological sites

    Moeller, K.L.; Malinowski, L.M.; Hoffecker, J.F.

    1955-12-01

    An archaeological field study was conducted along the Green River in the areas of Little Hole and Browns Park in Utah and Colorado. The purpose of the study was to measure the potential for hydropower operations at Flaming Gorge Dam to directly or indirectly affect archaeological sites in the study area. Thirty-four known sites were relocated, and six new sites were recorded. Information was collected at each site regarding location, description, geomorphic setting, sedimentary context, vegetation, slope, distance from river, elevation above river level, and site condition. Matching the hydrologic projections of river level and sediment load with the geomorphic and sedimentary context at specific site locations indicated that eight sites were in areas with a high potential for erosion.

  7. Application of geographical information system to site selection of small run-of-river hydropower project by considering engineering/economic/environmental criteria and social impact

    Rojanamon, Pannathat; Chaisomphob, Taweep [School of Civil Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Rangsit campus, Klong Luang, Pathumthani 12121 (Thailand); Bureekul, Thawilwadee [King Prajadhipok' s Institute, 47/101, Tiwanon Road, Taladkwan Subdistrict, Muang District, Nonthaburi 11000 (Thailand)

    2009-12-15

    In the process of site selection of a small run-of-river hydropower project in Thailand, some problems are addressed as follows: the accessibility of the possible sites which are mostly located in rural and mountainous areas, the large amount of data required, and the lack of participation of the local people living nearby. In order to cope with these problems, this study proposes a new method to select feasible sites of small run-of-river hydropower projects by using Geographic Information System (GIS) technology. A combination of engineering, economic, and environmental criteria, as well as social impact is employed in this study. The selected study area is the upper Nan river basin situated in the north of Thailand. For the engineering criteria, the project locations are found by GIS in visual basic platform, and then economic evaluations of the selected projects are performed. Next, the environmental parameters are used to rank the projects by total weighted scores. Finally, a social impact study at the potential sites is conducted based on the public participation process, i.e. questionnaire survey and focus group discussions. The applicability of the proposed method is verified by the results of site selection of the small hydropower projects located on the Nan river basin in Thailand. This case study can be the model for the process of site selection of similar projects. (author)

  8. 76 FR 7835 - Great River Hydropower, LLC; Notice of Scoping Meetings and Environmental Site Review and...

    2011-02-11

    ... Energy Regulatory Commission Great River Hydropower, LLC; Notice of Scoping Meetings and Environmental... River Hydropower, LLC. e. Name of Project: Upper Mississippi River Lock & Dam No. 21 Hydroelectric... hydropower structure consisting of 30 turbine bays, located about 100 feet downstream of the existing dam;...

  9. 75 FR 71122 - Erie Boulevard Hydropower L.P.; Notice of Scoping Meetings and Environmental Site Review

    2010-11-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Erie Boulevard Hydropower L.P.; Notice of Scoping Meetings and Environmental Site Review November 15, 2010. Commission staff will be conducting two public scoping meetings and...

  10. Environmental governance in the Mekong. Hydropower site selection processes in the Se Son and Sre Pok basins

    Oejendal, J.; Mathur, V.; Sithirith, M.

    2002-02-01

    This report aims to highlight regional environmental governance in the Lower Mekong Basin. The emphasis on regional governance is not only motivated by the shared and interdependent natural resources and threat of transboundary impacts within the Basin, but also by growing economic interdependence, increasing population density and political interactions within and between the countries. The study has chosen hydropower as it represents a key sector in terms of environmental protection. Hydropower projects on the Mekong River and its tributaries have been viewed as one of the primary engines of economic growth for the countries of the Lower Mekong Basin: Cambodia, Lao PDR, Thailand, and Vietnam. Yet this is occurring against a backdrop of prevailing poverty, widespread dependence on natural resources and degenerating ecosystems. Recent experience shows a range of adverse social and environmental impacts from already completed hydropower projects, both directly (i.e. from the project activities) and indirectly (from economic activity or demographic change induced by the projects). This experience has led a variety of civil society groups to oppose the construction of infrastructure projects under current procedures. To address the issue of environmental governance, we conducted an empirical review using a 'process tracing method'. Through this approach we followed the process of hydropower planning in an international tributary to the Mekong River, the Se San/Sre Pok sub-basins, where major hydropower development plans are currently being developed. Our research approach combined secondary sources with primary data from interviewing the people involved in decision-making on Mekong issues. Our research questions were: What are the historical patterns of hydropower site selection in the Lower Mekong Basin? What institutions and actors attempt to exercise what kind of governance for environmental purposes, and with what mandate? What have been the decisive

  11. SITE-94. Chemical and physical transport parameters for SITE-94

    Andersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden). Technical Environmental Planning

    1996-02-01

    Important parameters are the interactions of radionuclides with solid surfaces, parameters describing the geometrical conditions like porosity, data on water composition (ionic strength, pH, redox conditions, complex formers etc) and data on the solids that may be of importance to the water and radionuclide chemistry. In this report some of these data of relevance for the Aespoe site are discussed. Based on a literature survey, sorption data as well as values for some other parameters have been selected for rock, fracture fillings and bentonite relevant to the chemical conditions in and around a repository at Aespoe. A comparison to data used for earlier, site-specific as well as general, safety assessments of underground repositories has been performed. The data are recommendations for modelling of radionuclide release from a hypothetical high level waste repository at Aespoe. Since the data to a large extent are not based on experimental measurements, more accurate predictions may be expected if more experimental data are available. Before such studies are performed for a specific site, a variational analysis in order to evaluate the importance of the single parameters is recommended. After such a study, the key parameters may be investigated in detail and the modelling can be expected to be more accurate what concerns influence of single parameters. However, the uncertainty in conceptual areas like how to model accurately the long term hydrology of the site etc still remains. 32 refs.

  12. Hydropower Economics

    Finn R. Førsund

    2005-01-01

    The key question in hydropower production is the time pattern of the use of the water in the reservoir. The water used to produce electricity today can alternatively be used tomorrow. The analysis of the operation of hydropower is therefore essentially a dynamic one. The paper introduces some basic models for social allocation of stored water over discrete time periods using non-linear programming assuming capacities of generation and transmission as given. Implications of constraints such as...

  13. Hydropower Projects

    None

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  14. US hydropower resource assessment for Montana

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Montana.

  15. US hydropower resource assessment for New Jersey

    Connor, A.M.; Francfort, J.E.

    1996-03-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Jersey.

  16. US hydropower resource assessment for Wisconsin

    Conner, A.M.; Francfort, J.E.

    1996-05-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

  17. US hydropower resource assessment for Oklahoma

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose, The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Oklahoma.

  18. US hydropower resource assessment for Kansas

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Kansas.

  19. U.S. Hydropower Resource Assessment - California

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01

    The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

  20. US hydropower resource assessment for Indiana

    Francfort, J.E.

    1995-12-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Indiana.

  1. US hydropower resource assessment for Washington

    Conner, A.M.; Francfort, J.E.

    1997-07-01

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Washington.

  2. Sensitivity of Input Parameters in the PSHA for NPP Sites

    In this study, the most uncertain input parameter in the PSHA was identified for Korean NPP sites through sensitivity analysis. Shinuljin Nuclear Units 1 and 2 site was selected in this study. Expert panels developed input parameters for PSHA. Input data were analyzed, and used for sensitivity analysis to see the effects of each parameter on seismic hazard. Through sensitivity analysis, we identified the degree of uncertainty of each parameter. The CONPAS, EQHAZAS, and EQHAZAS Manager codes, which were developed by KAERI, were utilized to compute the seismic hazard. The Gutenberg-Richter parameter was identified as the most uncertain one in this study

  3. Early Site Permit Demonstration Program: Plant parameters envelope report

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry's initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants

  4. Empirical estimation of school siting parameter towards improving children's safety

    Aziz, I. S.; Yusoff, Z. M.; Rasam, A. R. A.; Rahman, A. N. N. A.; Omar, D.

    2014-02-01

    Distance from school to home is a key determination in ensuring the safety of hildren. School siting parameters are made to make sure that a particular school is located in a safe environment. School siting parameters are made by Department of Town and Country Planning Malaysia (DTCP) and latest review was on June 2012. These school siting parameters are crucially important as they can affect the safety, school reputation, and not to mention the perception of the pupil and parents of the school. There have been many studies to review school siting parameters since these change in conjunction with this ever-changing world. In this study, the focus is the impact of school siting parameter on people with low income that live in the urban area, specifically in Johor Bahru, Malaysia. In achieving that, this study will use two methods which are on site and off site. The on site method is to give questionnaires to people and off site is to use Geographic Information System (GIS) and Statistical Product and Service Solutions (SPSS), to analyse the results obtained from the questionnaire. The output is a maps of suitable safe distance from school to house. The results of this study will be useful to people with low income as their children tend to walk to school rather than use transportation.

  5. Renewable Energy Essentials: Hydropower

    NONE

    2010-07-01

    Hydropower is currently the most common form of renewable energy and plays an important part in global power generation. Worldwide hydropower produced 3 288 TWh, just over 16% of global electricity production in 2008, and the overall technical potential for hydropower is estimated to be more than 16 400 TWh/yr.

  6. Hydropower Baseline Cost Modeling

    O' Connor, Patrick W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Qin Fen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chalise, Dol Raj [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Centurion, Emma E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost-estimating tools that can support the national-scale evaluation of hydropower resources.

  7. Mini and micro hydropower systems in India

    Hydropower is one of the renewable sources of energy. In the field of hydropower, even though small/mini/micro hydropower systems make fractional increases in the overall energy production, their impact on the local areas in which they are sited can be significant in stimulating growth of rural industry and in meeting the basic energy needs of the local population for domestic and agricultural use. They also help in reducing demand on other non-renewable polluting resources like fossil fuels. Moreover as compared to big hydropower systems, small hydropower systems are cost competitive and minimally disruptive to the environment. They require less time for construction and reduce transmission losses. They can be designed to suit the limits of water resources available and can be tailored to the needs of the end-use market. Aspects of small hydropower projects which needs to be studied are listed. Modelling of turbines and generators for such projects, and factors to be considered in selection of suitable turbine and generator for a particular small hydropower system are discussed. The technology for small hydropower systems is well developed and available in India. The present estimated potential of such systems in India is 5000 MW out of which 207 MW is harnessed. These small hydropower plants are mostly located in the northern states like Jammu and Kashmir, Uttar Pradesh, Punjab, and Rajasthan. Construction works for 234 MW at 88 sites are going on. During the 8th plan period, 218.5 MW is planned to be developed with an outlay of Rs. 548.25 crores. It is suggested that special subsidies and liberal term loans should be made available for implementing such systems. (M.G.B.). 8 refs., 2 tabs., 1 fig

  8. Hydropower scene: boost for Dominican power supply

    1988-12-01

    When it is completed in 1991, the 150 MW Jiguey-Aguacate multi-purpose hydropower scheme will be the largest hydro project in the Dominican Republic. Construction of the scheme was recommended as a result of various studies carried out by the Instituto Nacional de Recursos Hidraulicos (INDHRI), which examined the hydropower potential of the Niazo river. Work is now in progress on site, with commissioning of the first unit expected in 1990.

  9. 2014 Hydropower Market Report

    Rocío Uría-Martínez, Patrick W. O’Connor, Megan M. Johnson

    2015-04-30

    The U.S. hydropower fleet has been providing clean, reliable power for more than a hundred years. However, no systematic documentation exists of the U.S. fleet and the trends influencing it in recent years. This first-ever Hydropower Market Report seeks to fill this gap and provide industry and policy makers with a quantitative baseline on the distribution, capabilities, and status of hydropower in the United States.

  10. Parameters of importance to determine during geoscientific site investigation

    This document identifies and describes geo-scientific parameters that are of importance in order to carry out performance and safety assessments of a deep repository for spent nuclear fuel, based on the information that can be obtained from a site investigation. The document also discusses data needs for planning and design of the rock works and for description of other environmental aspects. Evaluation of the different parameters is discussed in the document as well. The document was produced by a working group consisting of the authors and various SKB staff and consultants, and comprises a step in the planning of a geo-scientific investigation programme at the sites where site investigations will be conducted. The goals of the work presented in this report can be derived directly from SKBs ongoing RD and D Programme. The programme stipulates that a geo-scientific site investigation programme must be available before a site investigation begins. This programme is supposed to specify the goals, measurement methods and evaluation methodology, as well as the acceptance criteria against which the site is evaluated. It is pointed out that site evaluation is a collective term for an interactive process consisting of different parts

  11. Hydropower in Estonia

    Long life practice has proved that small hydropower is not a beaten track in the global energy field. Before the Second World War small hydropower was rather well developed in Estonia as well. Being neglected during the years of Soviet occupation, it is rather important to help it to regain its position in the Estonian energy system once again. Our hydropower potential is not big, but it has got a good established position as an energy saving measure. By now we have some good examples of restored hydropower stations on commercial basis to be optimistic about the future

  12. Assessment Parameters and Matching between the Sites and Wind Turbines

    Chermitti, A.; Bencherif, M.; Nakoul, Z.; Bibitriki, N.; Benyoucef, B.

    The objective of this paper is to introduce the assessment parameters of the wind energy production of sites and pairing between the sites and wind turbines. The exploration is made with the wind data gathered at 10 m high is based on the atlas of the wind of Algeria established by the National office of the Meteorology runs 37 stations of measures. The data is used for a feasibility analysis of optimum future utilization of Wind generator potentiality in five promising sites covering a part of landscape types and regions in Algeria. Detailed technical assessment for the ten most promising potential wind sites was made using the capacity factor and the site effectiveness approach. The investigation was performed assuming several models of small, medium and big size wind machines representing different ranges of characteristic speeds and rated power suitable for water pumping and electric supply. The results show that small wind turbines could be installed in some coast region and medium wind turbines could be installed in the high plateau and some desert regions and utilized for water supply and electrical power generation, the sites having an important wind deposit, in high plateau we find Tiaret site's but in the desert there is some sites for example Adrar, Timimoun and In Amenas, in these sites could be installed a medium and big size wind turbines.

  13. Hydropower Resource Assessment of Brazilian Streams

    Douglas G. Hall

    2011-09-01

    The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

  14. Blood mixtures: impact of puncture site on blood parameters.

    Bonnet, X; El Hassani, M S; Lecq, S; Michel, C L; El Mouden, E H; Michaud, B; Slimani, T

    2016-08-01

    Various puncture routes, veins, arteries, heart, are used to take blood in animals. For anatomical reasons, differences in blood composition are expected among puncture sites. However, this issue has been rarely assessed and contrasted results have been reported: strong effects of puncture site versus a lack of effect. We captured free-ranging freshwater turtles from different locations to compare the mean concentrations of 12 blood parameters (metabolites, hormone, ions, and enzyme) among three puncture sites: (1) a lateral branch of the jugular vein, (2) a dorsal subcarapacial cervical plexus (sometimes incorrectly referred as the 'cervical sinus' in the literature), and (3) a caudal plexus site (sometimes incorrectly referred as the 'caudal sinus'). Because we used very small syringes (27-30G), we were able to separate lymph, blood, or blood-lymph mixtures. Our results show very strong effects of puncture site and of mixture level (mean maximal difference between sites was 250 %). We also found strong sex and geographical effects. Typically, there were differences in concentrations of blood solutes sampled from the lateral jugular vein and subcarapacial plexus, mainly due to sampling a mixture of blood and lymph from the 'blood' at the subcarapacial site and pure blood from the lateral jugular site, and likewise, samples from the caudal site were highly variable due to often sampling a mixture of blood and lymph. These results have technical and fundamental implications, especially when performing comparative analyses. Further, by selecting precise puncture sites, physiological differences between lymph and blood compartments could be investigated. PMID:27146147

  15. Hydropower annual report 2003

    Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering Lab. (INEL); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering Lab. (INEL)

    2004-02-01

    This report describes hydropower activities supported by the U.S. Department of Energy (DOE) Wind and Hydropower Program during Fiscal Year 2003 (October 1, 2002 to September 30, 2003). Background on the program, FY03 accomplishments, and future plans are presented in the following sections.

  16. Hydropower development in India

    Saxena, Praveen [Govt. of India, New Delhi (India). Ministry of New and Renewable Energy], E-mail: psaxena_98@yahoo.com; Kumar, Arun [Indian Institute of Technology Roorkee, Uttarakhand (India). Alternate Hydro Energy Centre], E-mail: aheciitr@gmail.com

    2011-04-15

    India is posed for large deployment of hydropower in present conducive policy and investment environment. Growing energy demand and concern for carbon emission is making hydropower development more favorable. The Government of India is ensuring a good performance of the new SHP stations by linking the incentives to the SHP developers with the performance of the station. (author)

  17. 78 FR 56749 - Site Characteristics and Site Parameters for Nuclear Power Plants

    2013-09-13

    ... COMMISSION Site Characteristics and Site Parameters for Nuclear Power Plants AGENCY: Nuclear Regulatory... NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants... Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition. The proposed changes to the...

  18. Real-Time Safety Risk Assessment Based on a Real-Time Location System for Hydropower Construction Sites

    Jiang, Hanchen; Lin, Peng; Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge ...

  19. Real-Time Safety Risk Assessment Based on a Real-Time Location System for Hydropower Construction Sites

    Hanchen Jiang; Peng Lin; Qixiang Fan; Maoshan Qiang

    2014-01-01

    The concern for workers’ safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge ...

  20. Real-time safety risk assessment based on a real-time location system for hydropower construction sites.

    Jiang, Hanchen; Lin, Peng; Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns. PMID:25114958

  1. Real-Time Safety Risk Assessment Based on a Real-Time Location System for Hydropower Construction Sites

    Hanchen Jiang

    2014-01-01

    Full Text Available The concern for workers’ safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM, the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns.

  2. Hydropower research and development

    NONE

    1997-03-01

    This report is a compilation of information on hydropower research and development (R and D) activities of the Federal government and hydropower industry. The report includes descriptions of on-going and planned R and D activities, 1996 funding, and anticipated future funding. Summary information on R and D projects and funding is classified into eight categories: fish passage, behavior, and response; turbine-related; monitoring tool development; hydrology; water quality; dam safety; operations and maintenance; and water resources management. Several issues in hydropower R and D are briefly discussed: duplication; priorities; coordination; technical/peer review; and technology transfer/commercialization. Project information sheets from contributors are included as an appendix.

  3. Hydropower's role in delivering sustainability

    equipment within existing infrastructure; this can extend the operating life by a further 30 to 50 years. Small-scale, decentralised development has been responsible for bringing light and power to remote communities. Such schemes have catalysed local commercial diversification and prosperity. The lower investment demand of smaller schemes has enabled private sector involvement through independent power production. Typically smaller schemes become grid connected if the power system is accessible, as this increases the security of supply. Furthermore, schemes at remote sites can assist transmission system stability. A further important role of smaller scale hydro is the recovery of energy at water infrastructure developed for other purposes. In many countries, large schemes play a significant role in national and regional supply security due to the flexibility of storage reservoirs and independence from fuel price fluctuations. Hydro also integrates well with other generation technologies, with its flexibility enabling thermal plants to operate steadily (saving fuel and reducing emissions). In addition, its responsiveness permits the back-up of the intermittent renewables. The question of storage is clearly a major issue in balancing supply and demand. Hydro reservoirs and pump-storage schemes offer security in the stability and reliability of power systems; they can absorb power when there is an excess and follow load demand instantaneously. A major challenge is that 'support' and 'storage' services are rarely understood and encouraged in the market-driven arena. The main arguments against hydropower concern its social impacts, such as land transformation, displacement of people, and environmental changes, i.e. fauna, flora, sedimentation and water quality. The social and environmental impacts can, however, be mitigated by taking appropriate steps according to established codes of good practice. As a tool for this purpose, the hydropower sector has recently developed and

  4. U.S. hydropower resource assessment for Maine

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01

    The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Maine.

  5. U.S. hydropower resource assessment for North Carolina

    Conner, A.M.; Francfort, J.E.

    1997-10-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of North Carolina.

  6. U.S. hydropower resource assessment for Pennsylvania

    Conner, A.M.; Francfort, J.E.

    1997-12-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Pennsylvania.

  7. U.S. hydropower resource assessment for New York

    Conner, A.M.; Francfort, J.E.

    1998-08-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of New York.

  8. U.S. hydropower resource assessment for Nevada

    Conner, A.M.; Francfort, J.E.

    1997-10-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Nevada.

  9. U.S. hydropower resource assessment for Michigan

    Conner, A.M.; Francfort, J.E.

    1998-02-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Michigan.

  10. U.S. hydropower resource assessment for Ohio

    Conner, A.M.; Francfort, J.E.

    1997-12-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Ohio.

  11. U.S. hydropower resource assessment for Minnesota

    Francfort, J.E.

    1996-07-01

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Minnesota.

  12. U.S. hydropower resource assessment for Idaho

    Conner, A.M.; Francfort, J.E.

    1998-08-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

  13. U.S. hydropower resource assessment for South Carolina

    Conner, A.M.; Francfort, J.E.

    1997-06-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. To assist in providing this estimate, the Idaho National Engineering Laboratory developed the Hydropower Evaluation Software (HES) computer model. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of South Carolina.

  14. U.S. hydropower resource assessment for Connecticut

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01

    The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Connecticut.

  15. Geochemical Parameters Required from the SKB Site Characterisation Programme

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2002-01-01

    SKB has described its approach to site characterisation in a number of Technical Reports. One of the scientific topics in which specific information requirements and priorities are set out is geochemistry. This report for SKI examines critically whether the geochemical parameters identified in the SKB programme documents will be adequate for safety and regulatory requirements. It also examines some of the details of parameter requirements and interpretation tools that will be necessary to convert site investigation data into knowledge about chemical conditions and groundwater movements. The SKB strategy for geochemical data focuses on a small number of 'suitability indicators', primarily dissolved oxygen, pH and salinity. Their parameter requirements aim to assess those primary characteristics, as well as to acquire a wider range of data that will support those assessments and provide a broader understanding of candidate areas. An initial observation in this review that, though it is a primary suitability indicator, dissolved oxygen apparently will not be measured and instead will be inferred from other redox indicators. This raises a number of issues about sampling and monitoring measures, analytical data reliability and sensitivity, and the degree of confidence in geochemical understanding. A geochemical programme involves reconnaissance by desk study and acquisition of new data at levels of details that are appropriate to the stage of site investigations. As early as possible, a conceptual model of a candidate area should help to define the objectives of geochemical measurements on both rock and groundwater samples. It is recommended that parameters requirements should be defined and considered not only in terms of isolated measurements but more in terms of addressing broader objectives that relate to safety and also to geoscientific understanding. The safety priorities remain (e.g. dissolved oxygen) but will then be supported by an understanding of

  16. Geochemical Parameters Required from the SKB Site Characterisation Programme

    SKB has described its approach to site characterisation in a number of Technical Reports. One of the scientific topics in which specific information requirements and priorities are set out is geochemistry. This report for SKI examines critically whether the geochemical parameters identified in the SKB programme documents will be adequate for safety and regulatory requirements. It also examines some of the details of parameter requirements and interpretation tools that will be necessary to convert site investigation data into knowledge about chemical conditions and groundwater movements. The SKB strategy for geochemical data focuses on a small number of 'suitability indicators', primarily dissolved oxygen, pH and salinity. Their parameter requirements aim to assess those primary characteristics, as well as to acquire a wider range of data that will support those assessments and provide a broader understanding of candidate areas. An initial observation in this review that, though it is a primary suitability indicator, dissolved oxygen apparently will not be measured and instead will be inferred from other redox indicators. This raises a number of issues about sampling and monitoring measures, analytical data reliability and sensitivity, and the degree of confidence in geochemical understanding. A geochemical programme involves reconnaissance by desk study and acquisition of new data at levels of details that are appropriate to the stage of site investigations. As early as possible, a conceptual model of a candidate area should help to define the objectives of geochemical measurements on both rock and groundwater samples. It is recommended that parameters requirements should be defined and considered not only in terms of isolated measurements but more in terms of addressing broader objectives that relate to safety and also to geoscientific understanding. The safety priorities remain (e.g. dissolved oxygen) but will then be supported by an understanding of processes

  17. Technology Roadmap: Hydropower

    NONE

    2012-07-01

    Hydropower could double its contribution by 2050, reaching 2,000 GW of global capacity and over 7,000 TWh. This achievement, driven primarily by the quest of clean electricity, could prevent annual emissions of up to 3 billion tonnes of CO2 from fossil-fuel plants. The bulk of this growth would come from large plants in emerging economies and developing countries. Hydroelectricity’s many advantages include reliability, proven technology, large storage capacity, and very low operating and maintenance costs. Hydropower is highly flexible, a precious asset for electricity network operators, especially given rapid expansion of variable generation from other renewable energy technologies such as wind power and photovoltaics. Many hydropower plants also provide flood control, irrigation, navigation and freshwater supply. The technology roadmap for Hydropower details action needed from policy makers to allow hydroelectric production to double, and addresses necessary conditions, including resolving environmental issues and gaining public acceptance.

  18. Seismic activity parameters of the Finnish potential repository sites

    Posiva Oy has started a project for estimating the possible earthquake induced rock movements on the deposition holes containing canisters of spent nuclear fuel. These estimates will be made for the four investigation sites, Romuvaara, Kivetty, Olkiluoto and Haestholmen. This study deals with the current and future seismicity associated with the above mentioned sites. Seismic belts that participate the seismic behaviour of the studied sites have been identified and the magnitude-frequency distributions of these belts have been estimated. The seismic activity parameters of the sites have been deduced from the characteristics of the seismic belts in order to forecast the seismicity during the next 100,000 years. The report discusses the possible earthquakes induced by future glaciation. The seismic interpretation seems to indicate that the previous postglacial faults in Finnish Lapland have been generated in compressional environment. The orientation of the rather uniform compression has been NW-SE, which coincide with the current stress field. It seems that, although the impact of postglacial crustal rebound must have been significant, the impact of plate tectonics has been dominant. A major assumption of this study has been that future seismicity will generally resemble the current seismicity. However, when the postglacial seismicity is concerned, the magnitude-frequency distribution is likely different and the expected maximum magnitude will be higher. Maximum magnitudes of future postglacial earthquakes have been approximated by strain release examinations. Seismicity has been examined within the framework of the lineament maps, in order to associate the future significant earthquakes with active fault zones in the vicinity of the potential repository sites. (orig.)

  19. Seismic activity parameters of the Finnish potential repository sites

    Saari, J. [Fortum Engineering Oy, Vantaa (Finland)

    2000-10-01

    Posiva Oy has started a project for estimating the possible earthquake induced rock movements on the deposition holes containing canisters of spent nuclear fuel. These estimates will be made for the four investigation sites, Romuvaara, Kivetty, Olkiluoto and Haestholmen. This study deals with the current and future seismicity associated with the above mentioned sites. Seismic belts that participate the seismic behaviour of the studied sites have been identified and the magnitude-frequency distributions of these belts have been estimated. The seismic activity parameters of the sites have been deduced from the characteristics of the seismic belts in order to forecast the seismicity during the next 100,000 years. The report discusses the possible earthquakes induced by future glaciation. The seismic interpretation seems to indicate that the previous postglacial faults in Finnish Lapland have been generated in compressional environment. The orientation of the rather uniform compression has been NW-SE, which coincide with the current stress field. It seems that, although the impact of postglacial crustal rebound must have been significant, the impact of plate tectonics has been dominant. A major assumption of this study has been that future seismicity will generally resemble the current seismicity. However, when the postglacial seismicity is concerned, the magnitude-frequency distribution is likely different and the expected maximum magnitude will be higher. Maximum magnitudes of future postglacial earthquakes have been approximated by strain release examinations. Seismicity has been examined within the framework of the lineament maps, in order to associate the future significant earthquakes with active fault zones in the vicinity of the potential repository sites. (orig.)

  20. The potential for small scale hydropower development in the US

    In an earlier paper (), the potential for small scale hydropower to contribute to US renewable energy supplies, as well as reduce current carbon emissions, was investigated. It was discovered that thousands of viable sites capable of producing significant amounts of hydroelectric power were available throughout the United States. The primary objective of this paper is to determine the cost-effectiveness of developing these small scale hydropower sites. Just because a site has the necessary topographical features to allow small scale hydropower development, does not mean that it should be pursued from a cost-benefit perspective, even if it is a renewable energy resource with minimal effects on the environment. This analysis finds that while the average cost of developing small scale hydropower is relatively high, there still remain hundreds of sites on the low end of the cost scale that are cost-effective to develop right now.

  1. Variability and Uncertainties of Key Hydrochemical Parameters for SKB Sites

    The work described in this report is a development of SKI's capability for the review and evaluation of data that will constitute part of SKB's case for selection of a suitable site and application to construct a geological repository for spent nuclear fuel. The aim has been to integrate a number of different approaches to interpreting and evaluating hydrochemical data, especially with respect to the parameters that matter most in assessing the suitability of a site and in understanding the geochemistry and groundwater conditions at a site. It has been focused on taking an independent view of overall uncertainties in reported data, taking account of analytical, sampling and other random and systematic sources of error. This evaluation was carried out initially with a compilation and general inspection of data from the Simpevarp, Forsmark and Laxemar sites plus data from older 'historical' boreholes in the Aespoe area. That was followed by a more specific interpretation by means of geochemical calculations which test the robustness of certain parameters, namely pH and redox/Eh. Geochemical model calculations have been carried out with widely available computer software. Data sources and their handling were also considered, especially access to SKB's SICADA database. In preparation for the use of geochemical modelling programs and to establish comparability of model results with those reported by SKB, the underlying thermodynamic databases were compared with each other and with other generally accepted databases. Comparisons of log K data for selected solid phases and solution complexes from the different thermodynamic databases were made. In general, there is a large degree of comparability between the databases, but there are some significant, and in a few cases large, differences. The present situation is however adequate for present purposes. The interpretation of redox equilibria is dependent on identifying the relevant solid phases and being able to

  2. Interactions between land use, climate and hydropower in Scotland

    Sample, James

    2015-04-01

    To promote the transition towards a low carbon economy, the Scottish Government has adopted ambitious energy targets, including generating all electricity from renewable sources by 2020. To achieve this, continued investment will be required across a range of sustainable technologies. Hydropower has a long history in Scotland and the present-day operational capacity of ~1.5 GW makes a substantial contribution to the national energy budget. In addition, there remains potential for ~500 MW of further development, mostly in the form of small to medium size run-of-river schemes. Climate change is expected to lead to an intensification of the global hydrological cycle, leading to changes in both the magnitude and seasonality of river flows. There may also be indirect effects, such as changing land use, enhanced evapotranspiration rates and an increased demand for irrigation, all of which could affect the water available for energy generation. Preliminary assessments of hydropower commonly use flow duration curves (FDCs) to estimate the power generation potential at proposed new sites. In this study, we use spatially distributed modelling to generate daily and monthly FDCs on a 1 km by 1 km grid across Scotland, using a variety of future land use and climate change scenarios. Parameter-related uncertainty in the model has been constrained using Bayesian Markov Chain Monte Carlo (MCMC) techniques to derive posterior probability distributions for key model parameters. Our results give an indication of the sensitivity and vulnerability of Scotland's run-of-river hydropower resources to possible changes in climate and land use. The effects are spatially variable and the range of uncertainty is sometimes large, but consistent patterns do emerge. For example, many locations are predicted to experience enhanced seasonality, with significantly lower power generation potential in the summer months and greater potential during the autumn and winter. Some sites may require

  3. Hydropower and its development

    Janusz Steller

    2013-09-01

    Full Text Available Even if the documented history of hydropower reaches back as far as 5000 years ago, it owes its rapid acceleration in growth to the industrial revolution at the beginning of the nineteenth century. The end of the twentieth century brought about new challenges associated, on the one hand, with a growing demand for ancillary grid services, and on the other with new requirements for mitigating the environmental impact. Hydropower technology expansion had come about in a manner aiming to at least partially exploit the mechanical energy of sea and ocean waters. This study points out to the most important trends in and barriers to hydropower development, with particular focus on the situation in Poland. This author sees the main threats to Polish hydropower development in how it is perceived solely through the prism of the generation of a particular volume of green energy, and a total underestimation of the quality of electricity supply and the numerous non-energy benefits resulting from hydroelectric power plant operation.

  4. ENVIRONMENTAL PROTECTION IMPROVEMENT POSSIBILITIES FOR SMALL HYDROPOWER PLANT PROJECTS

    Theodor Ghindă; Theodora Ardeleanu

    2012-01-01

    The existing solutions for small hydropower plants were consideredconvenient from the technical point of view over a long period, while general environmental concerns of society increased in all directions during the last decades.This paper refers to how to include environmental protection measures during the selection of the sites for a small hydropower plant and its water intake, during the preparation of the project, and then during operation. Investments for modernization of old small hyd...

  5. Hydropower development priority using MCDM method

    Hydropower is recognized as a renewable and clean energy sources and its potential should be realized in an environmentally sustainable and socially equitable manner. Traditionally, the decision criteria when analyzing hydropower projects, have been mostly a technical and economical analysis which focused on the production of electricity. However, environmental awareness and sensitivity to locally affected people should also be considered. Multi-criteria decision analysis has been applied to study the potential to develop hydropower projects with electric power greater than 100 kW in the Ping River Basin, Thailand, and to determine the advantages and disadvantages of the projects in five main criteria: electricity generation, engineering and economics, socio-economics, environment, and stakeholder involvement. There are 64 potential sites in the study area. Criteria weights have been discussed and assigned by expert groups for each main criteria and subcriteria. As a consequence of weight assignment, the environmental aspect is the most important aspect in the view of the experts. Two scenarios using expert weight and fair weight have been studied to determine the priority for development of each project. This study has been done to assist policy making for hydropower development in the Ping River Basin.

  6. SITE SPECIFIC REFERENCE PERSON PARAMETERS AND DERIVED CONCENTRATION STANDARDS FOR THE SAVANNAH RIVER SITE

    Jannik, T.

    2013-03-14

    The purpose of this report is twofold. The first is to develop a set of behavioral parameters for a reference person specific for the Savannah River Site (SRS) such that the parameters can be used to determine dose to members of the public in compliance with Department of Energy (DOE) Order 458.1 “Radiation Protection of the Public and the Environment.” A reference person is a hypothetical, gender and age aggregation of human physical and physiological characteristics arrived at by international consensus for the purpose of standardizing radiation dose calculations. DOE O 458.1 states that compliance with the annual dose limit of 100 mrem (1 mSv) to a member of the public may be demonstrated by calculating the dose to the maximally exposed individual (MEI) or to a representative person. Historically, for dose compliance, SRS has used the MEI concept, which uses adult dose coefficients and adult male usage parameters. Beginning with the 2012 annual site environmental report, SRS will be using the representative person concept for dose compliance. The dose to a representative person will be based on 1) the SRS-specific reference person usage parameters at the 95th percentile of appropriate national or regional data, which are documented in this report, 2) the reference person (gender and age averaged) ingestion and inhalation dose coefficients provided in DOE Derived Concentration Technical Standard (DOE-STD-1196-2011), and 3) the external dose coefficients provided in the DC_PAK3 toolbox. The second purpose of this report is to develop SRS-specific derived concentration standards (DCSs) for all applicable food ingestion pathways, ground shine, and water submersion. The DCS is the concentration of a particular radionuclide in water, in air, or on the ground that results in a member of the public receiving 100 mrem (1 mSv) effective dose following continuous exposure for one year. In DOE-STD-1196-2011, DCSs were developed for the ingestion of water, inhalation of

  7. Research on efficiency test of a turbine in Khan Khwar hydropower station

    The efficiency test is an important indicator to evaluate the energy conversion performance of a hydraulic turbine. For hydropower stations which do not have the direct flow measurement conditions, whether the characteristic curve of a turbine obtained through similarity theory conversion by using the comprehensive characteristic curve of the turbine can correctly reflect the operating performance of the prototype unit is a key issue in this industry. By taking the No.1 unit of Khan Khwar hydropower station as the example, the efficiency test of this turbine was studied on the site, including the measurement method of test parameters, the configuration of the computer test system, as well as the processing and analysis of test data.

  8. Early Site Permit Demonstration Program, plant parameters envelopes: Comparison with ranges of values for four hypothetical sites

    The purpose of this volume is to report the results of the comparison of the ALWR plan parameters envelope with values of site characteristics developed for our hypothetical sites that generally represent conditions encountered within the United States. This effort is not intended to identify or address the suitability of any existing site, site area, or region in the United States. Also included in this volume is Appendix F, SERCH Summaries Regarding Siting

  9. Early Site Permit Demonstration Program, plant parameters envelopes: Comparison with ranges of values for four hypothetical sites. Volume 2

    1992-09-01

    The purpose of this volume is to report the results of the comparison of the ALWR plan parameters envelope with values of site characteristics developed for our hypothetical sites that generally represent conditions encountered within the United States. This effort is not intended to identify or address the suitability of any existing site, site area, or region in the United States. Also included in this volume is Appendix F, SERCH Summaries Regarding Siting.

  10. Environmental impact of hydropower systems

    The installed hydropower potential of Romania is evaluated to 15,700 MW and 42 billion MWh/year power generation. Only 39% of this potential are currently being utilized. In this note, the impact of Somes-Tarnita and Mariselu-Cluj hydropower systems on the environment is presented. Also, the socio-economic effects on the local communities are considered. These two hydropower systems supply a total electric power of 470 GWh/year

  11. The water footprint of electricity from hydropower

    M. M. Mekonnen

    2011-09-01

    Full Text Available Hydropower accounts for about 16% of the world's electricity supply. It has been debated whether hydroelectric generation is merely an in-stream water user or whether it also consumes water. In this paper we provide scientific support for the argument that hydroelectric generation is in most cases a significant water consumer. The study assesses the blue water footprint of hydroelectricity – the water evaporated from manmade reservoirs to produce electric energy – for 35 selected sites. The aggregated blue water footprint of the selected hydropower plants is 90 Gm3 yr−1, which is equivalent to 10% of the blue water footprint of global crop production in the year 2000. The total blue water footprint of hydroelectric generation in the world must be considerably larger if one considers the fact that this study covers only 8% of the global installed hydroelectric capacity. Hydroelectric generation is thus a significant water consumer. The average water footprint of the selected hydropower plants is 68 m3 GJ−1. Great differences in water footprint among hydropower plants exist, due to differences in climate in the places where the plants are situated, but more importantly as a result of large differences in the area flooded per unit of installed hydroelectric capacity. We recommend that water footprint assessment is added as a component in evaluations of newly proposed hydropower plants as well as in the evaluation of existing hydroelectric dams, so that the consequences of the water footprint of hydroelectric generation on downstream environmental flows and other water users can be evaluated.

  12. The water footprint of electricity from hydropower

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-09-01

    Hydropower accounts for about 16% of the world';s electricity supply. It has been debated whether hydroelectric generation is merely an in-stream water user or whether it also consumes water. In this paper we provide scientific support for the argument that hydroelectric generation is in most cases a significant water consumer. The study assesses the blue water footprint of hydroelectricity - the water evaporated from manmade reservoirs to produce electric energy - for 35 selected sites. The aggregated blue water footprint of the selected hydropower plants is 90 Gm3 yr-1, which is equivalent to 10% of the blue water footprint of global crop production in the year 2000. The total blue water footprint of hydroelectric generation in the world must be considerably larger if one considers the fact that this study covers only 8% of the global installed hydroelectric capacity. Hydroelectric generation is thus a significant water consumer. The average water footprint of the selected hydropower plants is 68 m3 GJ-1. Great differences in water footprint among hydropower plants exist, due to differences in climate in the places where the plants are situated, but more importantly as a result of large differences in the area flooded per unit of installed hydroelectric capacity. We recommend that water footprint assessment is added as a component in evaluations of newly proposed hydropower plants as well as in the evaluation of existing hydroelectric dams, so that the consequences of the water footprint of hydroelectric generation on downstream environmental flows and other water users can be evaluated.

  13. A dynamical model of Sayano-Shushenskaya hydropower plant: stability, oscillations, and accident

    Leonov, G. A.; Kuznetsov, N. V.; Solovyeva, E. P.

    2015-01-01

    This work is devoted to the construction and study of a mathematical model of hydropower unit, consisting of synchronous generator, hydraulic turbine, and speed governor. It is motivated by the accident happened on the Sayano-Shushenskaya hydropower plant in 2009 year. Parameters of the Sayano-Shushenskaya hydropower plant were used for modeling the system. Oscillations in zones, which were not recommended for operation, were found. The obtained results are consistent with the full-scale test...

  14. Techno-economical method for the capacity sizing of a small hydropower plant

    Research highlights: → A method for the capacity sizing of a small hydropower plant was developed. → The model was developed on the basis of the flow duration curve of the site. → Seven techno-economical parameters were considered in the analysis. → The influence of the design operating conditions on the parameters was analysed. → The method allowed a proper choice of the optimal design operating conditions. -- Abstract: This paper presents a method for the capacity sizing of a small hydropower plant on the basis of techno-economical analyses of the flow duration curve. Seven technical and economical parameters were considered: the turbine type, the turbine dimensions, the annual energy production, the maximum installation height to avoid cavitation inception, the machine cost, the Net Present Value (NPV) and the Internal Rate of Return (IRR). A proper model was proposed to study the effects of the design operating conditions on these parameters. The model, applied to the flow duration curve, allowed to analyse the feasibility, the profitability and the performance of the plant in the available flowing range of the site. To verify the effectiveness of the proposed method, three sites having different flow duration curves were analysed.

  15. Hydropower Development Programming in China

    2002-01-01

    In the light of the speech delivered by Mr.Zhou Dabing,Deputy Manager General of China National Electric Power Corporation,on its hosted “Hydropower Developing Seminar”, during the national “10th Fivc-ynar Plan” and the “Farsight Program to 2015”, the installed capacity of hydropower shall be up to 75GW by 2000,

  16. Turbulence parameter inside and above a tall spruce site

    Biermann, T.; Staudt, K.; Serafimovich, A.; Foken, T.

    2009-04-01

    In the EGER (ExchanGE processes in mountainous Regions) project, different physical, chemical and biological processes in the soil-vegetation-boundary-layer system were investigated. Field experiments were performed at the BayCEER research site Waldstein/Weidenbrunnen, a spruce site located in the Fichtelgebirge Mountains in North-Eastern Bavaria, which are challenging for their heterogeneity and orographically structured terrain. Turbulence structure, advection, flux gradients of meteorological and chemical quantities were observed within the first intensive observation period (IOP 1) in September and October 2007. Observations of turbulence structure were obtained by a vertical profile of sonic anemometers covering all parts of the forest up to the lower part of the roughness sub layer. Field observations are complemented by simulations of ACASA model (Advanced Canopy-Atmosphere-Soil Algorithm). Integral turbulence characteristics, the normalized standard deviation of a turbulent quantity, can be used to describe the structure of turbulence. A comparison between measured and predicted values shows whether turbulence is fully developed or not and is therefore used in quality assessment. For this quality control and as an input for models, when measurements are not available, parameterizations for profiles are needed. Since there is no uniform theory for those parameterizations inside a forest available, different approaches were tested with data collected during the EGER IOP1. In order to parameterize the integral turbulence characteristics of the wind components inside the roughness sub layer a dimensionless height ζ = hc L-1 should be used instead of ζ = z L-1, which is used above short vegetation. Profiles of integral turbulence characteristics from different ecosystems show that the decrease inside the roughness sub layer is similar but that parameterizations of profiles can not be generalized due to different stand structures. Selecting the profiles of the

  17. Hydraulic air pumps for low-head hydropower

    Howey, DA; Pullen, KR

    2009-01-01

    Hydropower is a proven renewable energy resource and future expansion potential exists in smaller-scale, low-head sites. A novel approach to low-head hydropower at run-of-river and tidal estuary sites is to include an intermediate air transmission stage. Water is made to flow through a siphon, rather than a conventional water turbine, and at the top of the siphon the pressure is sub-atmospheric and air is entrained into the water. The siphon forms a novel, hydraulically powered vacuum pump or...

  18. Early Site Permit Demonstration Program: Plant parameters envelope report. Volume 1

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry`s initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants.

  19. Hydropower's future, the environment, and global electricity systems

    Sternberg, R. [Department of Earth and Environmental Studies, Montclair State University, 1 Normal Ave, Montclair, NJ 07043-1624 (United States)

    2010-02-15

    Hydropower is a well established electricity system on the global scene. Global electricity needs by far exceed the amount of electricity that hydrosystems can provide to meet global electricity needs. Much of the world's hydropower remains to be brought into production. Improved technology, better calibrated environmental parameters for large projects have become the norm in the past 15 years. How and why does hydropower retain a prominent role in electricity production? How and why does hydropower find social acceptance in diverse social systems? How does hydropower project planning address issues beyond electricity generation? How does the systems approach to hydropower installations further analysis of comparative energy sources powering electricity systems? Attention to the environmental impact of hydropower facilities forms an integral part of systems analysis. Similarly, the technical, political and economic variables call for balanced analysis to identify the viability status of hydro projects. Economic competition among energy systems requires in context assessments as these shape decision making in planning of hydropower systems. Moreover, technological change has to be given a time frame during which the sector advances in productivity and share in expanding electricity generation. The low production costs per kWh assure hydropower at this juncture, 2009, a very viable future. (author)

  20. Empirical estimation of school siting parameter towards improving children's safety

    Distance from school to home is a key determination in ensuring the safety of hildren. School siting parameters are made to make sure that a particular school is located in a safe environment. School siting parameters are made by Department of Town and Country Planning Malaysia (DTCP) and latest review was on June 2012. These school siting parameters are crucially important as they can affect the safety, school reputation, and not to mention the perception of the pupil and parents of the school. There have been many studies to review school siting parameters since these change in conjunction with this ever-changing world. In this study, the focus is the impact of school siting parameter on people with low income that live in the urban area, specifically in Johor Bahru, Malaysia. In achieving that, this study will use two methods which are on site and off site. The on site method is to give questionnaires to people and off site is to use Geographic Information System (GIS) and Statistical Product and Service Solutions (SPSS), to analyse the results obtained from the questionnaire. The output is a maps of suitable safe distance from school to house. The results of this study will be useful to people with low income as their children tend to walk to school rather than use transportation

  1. Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site. Revision 1

    1994-01-01

    The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. Section 108 of Public Law 95-604 states that the US Department of Energy (DOE) shall ``select and perform remedial actions at the designated processing sites and disposal sites in accordance with the general standards`` prescribed by the EPA. Regulations governing the required remedial action at inactive uranium processing sites were promulgated by the EPA in 1983 and are contained in 40 CFR Part 192 (1993), Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings. This document describes the radiological and physical parameters for the remedial action of the soil.

  2. Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site

    The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. Section 108 of Public Law 95-604 states that the US Department of Energy (DOE) shall ''select and perform remedial actions at the designated processing sites and disposal sites in accordance with the general standards'' prescribed by the EPA. Regulations governing the required remedial action at inactive uranium processing sites were promulgated by the EPA in 1983 and are contained in 40 CFR Part 192 (1993), Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings. This document describes the radiological and physical parameters for the remedial action of the soil

  3. Hydropower: Partnership with the Environment

    None

    2001-06-01

    This brochure provides useful information on types of hydroelectric facilities as well as general information on capacity, generation, environmental issues, and advanced conventional hydropower technology within the United States.

  4. Hydropower potential of the Vistula

    Jędrzej Kosiński

    2013-06-01

    Full Text Available The present article discusses hydropower potential of the Vistula River in view of the formal conditions for power generation in Poland. Having compared different sources, it is shown that the Vistula hydropower infrastructure and the social/economic/environmental benefits thereof and public safety, ought to be given priority in government operations. Their neglect not only violates the Water Law provisions but also runs contrary to the national interest.

  5. Hydropower potential of the Vistula

    Jędrzej Kosiński; Wacław Zdulski

    2013-01-01

    The present article discusses hydropower potential of the Vistula River in view of the formal conditions for power generation in Poland. Having compared different sources, it is shown that the Vistula hydropower infrastructure and the social/economic/environmental benefits thereof and public safety, ought to be given priority in government operations. Their neglect not only violates the Water Law provisions but also runs contrary to the national interest.

  6. World Small Hydropower Development Report

    Liu, Heng; Esser, Lara (ICSGP (China)); Masera, Diego (UNIDO, Vienna (Austria))

    2013-07-01

    Currently, small hydropower plants with a capacity of 10 MW, exist in 148 countries or territories worldwide. Four other countries have been identified with resource potential. This report aims to identify the development status and resource potential of small hydro in various countries, territories and regions throughout the world. Working with experts at the ground level to compile and share existing information, experiences and challenges, one comprehensive report was created. Decision-makers, stakeholders and potential investors clearly need this comprehensive information to more effectively promote small hydropower as a renewable and rural energy source for sustainable development and to overcome the existing development barriers. The findings of this report show that small hydropower potential globally is approximated at almost 173 GW. The figure is arrived by totaling data from a wide range of sources with potential compromise of data integrity to varying degrees. For example, research data on economically feasible potential were more readily available in developed countries than those in the least developed or developing countries. More than half of the world's known hydropower potential is located in Asia, around one third can be found in Europe and the Americas. It is possible in the future that more small hydropower potential might be identified both on the African and American continents. The installed small hydropower capacity (up to 10 MW) is estimated to be 75 GW in 2011/2012. The report provides detailed data for each country/region, including recommendations on the national, regional and international level.

  7. An optimal hydropower contract load determination method considering both human and riverine ecosystem needs

    Yin, Xin'an; Yang, Zhifeng; Liu, Cailing; Zhao, Yanwei

    2015-09-01

    In this research, a new method is developed to determine the optimal contract load for a hydropower reservoir, which is achieved by incorporating environmental flows into the determination process to increase hydropower revenues, while mitigating the negative impacts of hydropower generation on riverine ecosystems. In this method, the degree of natural flow regime alteration is adopted as a constraint of hydropower generation to protect riverine ecosystems, and the maximization of mean annual revenue is set as the optimization objective. The contract load in each month and the associated reservoir operating parameters were simultaneously optimized by a genetic algorithm. The proposed method was applied to China's Wangkuai Reservoir to test its effectiveness. The new method offers two advantages over traditional studies. First, it takes into account both the economic benefits and the ecological needs of riverine systems, rather than only the economic benefits, as in previous methods. Second, although many measures have been established to mitigate the negative ecological impacts of hydropower generation, few have been applied to the hydropower planning stage. Thus, since the contract load is an important planning parameter for hydropower generation, influencing both economic benefits and riverine ecosystem protection, this new method could provide guidelines for the establishment of river protection measures at the hydropower planning stage.

  8. Site Earthquake Characteristics and Dynamic Parameter Test of Phase Ⅲ Qinshan Nuclear Power Engineering

    ZHOV Nian-qing; ZHAO Zai-li; QIN Min

    2009-01-01

    The earthquake characteristics and geological structure of the site to sitting the Qinshan Nuclear Power Station are closely related. According to site investigation drilling, sampling, seismic sound logging wave test in single-hole and cross-hole, laboratory wave velocity test of intact rock, together with analysis of the site geological conditions, the seismic wave test results of the site between strata lithology and the geologic structure were studied. The relationships of seismic waves with the site lithology and the geologic structure were set up.The dynamic parameters of different grades of weathering profile were deduced. The results assist the seismic design of Phase Ⅲ Qinshan Nuclear Power Plant, China.

  9. The blue water footprint of electricity from hydropower

    Mekonnen, M. M.; Hoekstra, A. Y.

    2012-01-01

    Hydropower accounts for about 16% of the world's electricity supply. It has been debated whether hydroelectric generation is merely an in-stream water user or whether it also consumes water. In this paper we provide scientific support for the argument that hydroelectric generation is in most cases a significant water consumer. The study assesses the blue water footprint of hydroelectricity - the water evaporated from manmade reservoirs to produce electric energy - for 35 selected sites. The aggregated blue water footprint of the selected hydropower plants is 90 Gm3 yr-1, which is equivalent to 10% of the blue water footprint of global crop production in the year 2000. The total blue water footprint of hydroelectric generation in the world must be considerably larger if one considers the fact that this study covers only 8% of the global installed hydroelectric capacity. Hydroelectric generation is thus a significant water consumer. The average water footprint of the selected hydropower plants is 68 m3 GJ-1. Great differences in water footprint among hydropower plants exist, due to differences in climate in the places where the plants are situated, but more importantly as a result of large differences in the area flooded per unit of installed hydroelectric capacity. We recommend that water footprint assessment is added as a component in evaluations of newly proposed hydropower plants as well as in the evaluation of existing hydroelectric dams, so that the consequences of the water footprint of hydroelectric generation on downstream environmental flows and other water users can be evaluated.

  10. Small Hydropower - The comeback of small hydropower stations

    This issue of the 'Erneuerbare Energien' (renewable energies) magazine published by the Swiss Solar Energy Society takes a look at small hydropower projects in Switzerland. In a number of interviews and articles, various topics concerning small hydropower are dealt with. First of all, an interview with Bruno Guggisberg, previously responsible for small hydro at the Swiss Federal Office of Energy, examines the potential of small hydro and the various political, technical and economic influences on such projects. Further articles provide an overview of the various types of small hydro schemes, including power generation using height differences in drinking-water and wastewater installations. As far as the components of small hydro schemes are concerned, various types of turbines and further system components that are needed are examined. A further article takes a look at the small hydro market and the market players involved. Ecological aspects and research activities are discussed in further articles. In a second interview with Martin Boelli, presently responsible for small hydropower at the Swiss Federal Office of Energy, the unused potential for the use of hydropower in Switzerland is discussed. Examples of small-scale hydro schemes are examined and the support offered by the Small Hydropower Program is discussed. Finally the question is asked, if the small hydro market in Switzerland is overheated as a result of promotion schemes such as cost-covering remuneration for electricity from renewable energy sources.

  11. Health implications of hydropower development

    Hydropower development had been neglected in many countries during the past few decades, but the situation dramatically changed during the 1970s owing to the constantly increasing costs of electricity generation by fossil-fuel and nuclear power plants. Currently, hydroelectric generation accounts for approximately 23% of total global electricity supply. Much of the hydropower potential in developing countries of Africa, Asia and Latin America still remains to be exploited. Like any other source of energy, hydropower development has several health impacts. Conceptually, health implications of hydropower development can be divided into two broad categories: short-term and long-term problems. Short-term health impacts occur during the planning, construction and immediate post-construction phases, whereas long-term impacts stem from the presence of large man-made lakes, development of extensive canal systems, alteration of the ecosystem of the area, and changing socio-economic conditions. Longer-term impacts are further classified into two categories: introduction of new diseases and/or intensification of existing ones due to the improvements of the habitats of disease-carrying vectors, and health problems arising from resettlement of the people whose homes and land-holdings are inundated by the reservoirs. All these impacts are discussed in detail. Health impacts of hydropower developments have not yet been studied extensively. It is often implicitly assumed that health impacts of major dams are minor compared with other social and environmental impacts. Future studies could possibly reverse this assumption. (author)

  12. Review of China s Hydropower Manufacturing Industry

    2010-01-01

    China's hydropower equipment manufacturing technology has benef ited from the policy of reform and opening-up and the "Three Gorges Model." The latter means an approach of self-supply of hydropower equipment. Based on the foundations laid through independent research and development, by way of digesting, absorbing and innovating the technologies introduced from abroad for the Left Bank Station of the Three Gorges Hydropower Station, domestic suppliers independently designed and manufactured large hydropower...

  13. Assessing Climate Change Impacts on Global Hydropower

    Aanund Killingtveit; Byman Hamududu

    2012-01-01

    Currently, hydropower accounts for close to 16% of the world’s total power supply and is the world’s most dominant (86%) source of renewable electrical energy. The key resource for hydropower generation is runoff, which is dependent on precipitation. The future global climate is uncertain and thus poses some risk for the hydropower generation sector. The crucial question and challenge then is what will be the impact of climate change on global hydropower generation and what are the resulting ...

  14. Directions In Hydropower : Scaling up for Development

    World Bank

    2010-01-01

    After a period of stagnation, the story of hydropower infrastructure is changing. Emerging global dynamics are recasting the role and value of hydropower in development, recognizing its potential contribution to a complex web of energy security, water security and regional development and integration. In addition to bringing electricity to the 1.6 billion people who lack access, hydropower...

  15. Small Hydropower in the United States

    Hadjerioua, Boualem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Kurt [Telluride Energy, Telluride, CO (United States)

    2015-09-01

    Small hydropower, defined in this report as hydropower with a generating capacity of up to 10 MW typically built using existing dams, pipelines, and canals has substantial opportunity for growth. Existing small hydropower comprises about 75% of the current US hydropower fleet in terms of number of plants. The economic feasibility of developing new small hydropower projects has substantially improved recently, making small hydropower the type of new hydropower development most likely to occur. In 2013, Congress unanimously approved changes to simplify federal permitting requirements for small hydropower, lowering costs and reducing the amount of time required to receive federal approvals. In 2014, Congress funded a new federal incentive payment program for hydropower, currently worth approximately 1.5 cents/kWh. Federal and state grant and loan programs for small hydropower are becoming available. Pending changes in federal climate policy could benefit all renewable energy sources, including small hydropower. Notwithstanding remaining barriers, development of new small hydropower is expected to accelerate in response to recent policy changes.

  16. China's rising hydropower demand challenges water sector

    Liu, J.; Zhao, D.; Gerbens-Leenes, P.W.; Guan, D.

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China b

  17. Soft Soil Site Characterization on the Coast of Yantai and Its Effect on Ground Motion Parameters

    Lü Yuejun; Tang Rongyu; Peng Yanju

    2005-01-01

    According to the Chinese GB50011-2001 code and the recommended provisions of FEMANEHRP and EUROCODE 8, by using shear wave velocity and borehole data, the site classification is evaluated for a typical soft soil site on the Yantai seacoast. The site seismic ground motion effect is analyzed and the influence of the coastal soil on design ground motion parameters is discussed. The results show that the brief site classification can not represent the real conditions of a soft soil site; the soft soil on the coast has a remarkable impact on the magnitude and spectrum of ground motion acceleration. The magnification on peak acceleration is bigger, however, due to the nonlinear deformation of the soil. The magnification is reduced nonlinearly with the increase of input ground motion; the spectrum is broadened and the characteristic period elongated on the soft soil site.

  18. Refurbishment of hydropower generation plants

    This article presents the factors taken into consideration and the methods used for the management of refurbishment work in the hydropower installations of the TUWAG - a Tyrolean hydropower company in Austria. The technical and financial advantages to be gained from refurbishment are discussed and the requirements placed on the structuring of refurbishment projects are described. Various factors such as plant operation and maintenance, increased returns through better efficiency and cost reduction through lower wear and tear and reduced risk of failure are discussed. Annexes to the article cover monitoring and measurement techniques, the simulation of mechanical and hydraulic conditions, profitability calculations and turbine management

  19. An empirical analysis of the hydropower portfolio in Pakistan

    The Indus Basin of Pakistan with 800 hydropower project sites and a feasible hydropower potential of 60 GW, 89% of which is undeveloped, is a complex system poised for large-scale changes in the future. Motivated by the need to understand future impacts of hydropower alternatives, this study conducted a multi-dimensional, empirical analysis of the full hydropower portfolio. The results show that the full portfolio spans multiple scales of capacity from mega (>1000 MW) to micro (<0.1 MW) projects with a skewed spatial distribution within the provinces, as well as among rivers and canals. Of the total feasible potential, 76% lies in two (out of six) administrative regions and 68% lies in two major rivers (out of more than 125 total channels). Once projects currently under implementation are commissioned, there would be a five-fold increase from a current installed capacity of 6720 MW to 36759 MW. It is recommended that the implementation and design decisions should carefully include spatial distribution and environmental considerations upfront. Furthermore, uncertainties in actual energy generation, and broader hydrological risks due to expected climate change effects should be included in the current planning of these systems that are to provide service over several decades into the future. - Highlights: ► Pakistan has a hydropower potential of 60 GW distributed across 800 projects. ► Under-development projects will realize 36.7 GW of this potential by 2030. ► Project locations are skewed towards some sub-basins and provinces. ► Project sizes are very diverse and have quite limited private sector ownership. ► Gaps in data prevent proper risk assessment for Pakistan's hydropower development.

  20. Preliminary uncertainty and sensitivity analysis for basic transport parameters at the Horonobe Site, Hokkaido, Japan

    Incorporating results from a previously developed finite element model, an uncertainty and parameter sensitivity analysis was conducted using preliminary site-specific data from Horonobe, Japan (data available from five boreholes as of 2003). Latin Hypercube Sampling was used to draw random parameter values from the site-specific measured, or approximated, physicochemical uncertainty distributions. Using pathlengths and groundwater velocities extracted from the three-dimensional, finite element flow and particle tracking model, breakthrough curves for multiple realizations were calculated with the semi-analytical, one-dimensional, multirate transport code, STAMMT-L. A stepwise linear regression analysis using the 5, 50, and 95% breakthrough times as the dependent variables and LHS sampled site physicochemical parameters as the independent variables was used to perform a sensitivity analysis. Results indicate that the distribution coefficients and hydraulic conductivities are the parameters responsible for most of the variation among simulated breakthrough times. This suggests that researchers and data collectors at the Horonobe site should focus on accurately assessing these parameters and quantifying their uncertainty. Because the Horonobe Underground Research Laboratory is in an early phase of its development, this work should be considered as a first step toward an integration of uncertainty and sensitivity analyses with decision analysis

  1. Clinicopathological Parameters Associated with Surgical Site Infections in Patients who Underwent Pancreatic Resection

    Nanashima, Atsushi; Abo, Takafumi; Arai, Junichi; Oyama, Shousaburo; Mochinaga, Koji; Matsumoto, Hirofumi; Takagi, Katsunori; Kunizaki, Masaki; To, Kazuo; Takeshita, Hiroaki; HIDAKA, SHIGEKAZU; Nagayasu, Takeshi

    2014-01-01

    Background/Aims: To clarify parameters associated with postoperative surgical site infection (SSI) after pancreatectomy, we examined clinicopathological and surgical records in 186 patients who underwent pancreatectomy at a single academic institute. Methodology: Patient demographics, liver functional parameters, histological findings, surgical records and post-hepatectomy outcomes during hospitalization were compared between the non-SSI and SSI group, in which SSIs included superficial and d...

  2. Hydropower and Sustainable Development: A Journey

    Schumann, Kristin; Saili, Lau; Taylor, Richard; Abdel-Malek, Refaat

    2010-09-15

    Hydropower produces 16% of our electricity; it is one of the world's major renewable energy resources. It is playing an important role in enabling communities around the world to meet their power and water needs. The pace of hydropower growth has been rapid but sometimes with little guidance to ensure development is based on sustainability principles. Some of the most promising initiatives to fill the void, such as the Hydropower Sustainability Assessment Protocol, have been driven by the hydropower sector itself. Efforts focus on carrying forward this momentum to obtain a tool for hydropower sustainability agreed across sectors and stakeholders.

  3. Micro-hydropower in the United States

    Haroldsen, R. O.; Simpson, F. B.

    1981-09-01

    The interest and problems relating to the development of micro-hydropower, i.e., capacities of less than 100 kW, was assessed. A total of 62 individuals from 10 states and 4 groups, i.e., developers, A/E firms, equipment manufacturers, and state and federal agencies, were polled to determine their perceptions of the advantages and disadvantages of micro-hydro developments and the needs for such developments. Financing, technical assistance, and help with the economic analysis and regulatory aspects of micro-hydro development appeared to be the paramount needs. Whether or not a specific site can be successfully developed depends on site conditions. A micro-hydro plant discussed as an example is shown to be a poor investment, e.g., maximum $200 per month return on $60,000 investment.

  4. Assessment of parameters describing representativeness of air quality in-situ measurement sites

    S. Henne

    2009-09-01

    Full Text Available The atmospheric layer closest to the ground is strongly influenced by variable surface fluxes (emissions, surface deposition and can therefore be very heterogeneous. In order to perform air quality measurements that are representative of a larger domain or a certain degree of pollution, observatories are placed away from population centres or within areas of specific population density. Sites are often categorised based on subjective criteria that are not uniformly applied within different administrative domains. A novel approach for the assessment of parameters reflecting site representativeness is presented here, taking emissions, deposition and transport towards 34 sites covering Western and Central Europe into account. These parameters are directly inter-comparable among the sites and can be used to select sites that are, on average, more or less suitable for data assimilation and comparison with satellite and model data. Advection towards these sites was simulated by backward Lagrangian Particle Dispersion Modelling (LPDM to determine the sites' annual catchment areas for the year 2005 and advection times of 12, 24 and 48 h. Only variations caused by emissions and transport during these periods were considered assuming that these dominate the short-term variability of most but especially short lived trace gases. The parameters of representativeness derived were compared between sites and a novel, uniform and observation-independent categorisation of the sites based on a clustering approach was established. Six groups of European background sites were identified ranging from very remote coastal to polluted rural sites. These six categories explained 50 to 80% of the inter-site variability of median mixing ratios and their standard deviation for NO2 and O3, while differences between group means of the longer lived trace gas CO were insignificant. The derived annual catchment areas strongly depended on the applied LPDM

  5. Assessment of parameters describing representativeness of air quality in-situ measurement sites

    S. Henne

    2010-04-01

    Full Text Available The atmospheric layer closest to the ground is strongly influenced by variable surface fluxes (emissions, surface deposition and can therefore be very heterogeneous. In order to perform air quality measurements that are representative of a larger domain or a certain degree of pollution, observatories are placed away from population centres or within areas of specific population density. Sites are often categorised based on subjective criteria that are not uniformly applied by the atmospheric community within different administrative domains yielding an inconsistent global air quality picture. A novel approach for the assessment of parameters reflecting site representativeness is presented here, taking emissions, deposition and transport towards 34 sites covering Western and Central Europe into account. These parameters are directly inter-comparable among the sites and can be used to select sites that are, on average, more or less suitable for data assimilation and comparison with satellite and model data. Advection towards these sites was simulated by backward Lagrangian Particle Dispersion Modelling (LPDM to determine the sites' average catchment areas for the year 2005 and advection times of 12, 24 and 48 h. Only variations caused by emissions and transport during these periods were considered assuming that these dominate the short-term variability of most but especially short lived trace gases. The derived parameters describing representativeness were compared between sites and a novel, uniform and observation-independent categorisation of the sites based on a clustering approach was established. Six groups of European background sites were identified ranging from generally remote to more polluted agglomeration sites. These six categories explained 50 to 80% of the inter-site variability of median mixing ratios and their standard deviation for NO2 and O3, while differences between group means of the longer

  6. A Holistic Framework for Environmental Flows Determination in Hydropower Contexts

    McManamay, Ryan A [ORNL; Bevelhimer, Mark S [ORNL

    2013-05-01

    Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a

  7. Hydropower Baseline Cost Modeling, Version 2

    O' Connor, Patrick W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost estimating tools that can support the national-scale evaluation of hydropower resources.

  8. Joint Assessment of Parameter and Conceptual Model Uncertainty at the Hanford Site 300 Area

    Meyer, P. D.; Ye, M.; Neuman, S. P.

    2005-12-01

    Assessment of conceptual model and parameter uncertainties is important for science-based decision making, long-term stewardship and monitoring network design. We use the recently developed Maximum Likelihood Bayesian Model Averaging (MLBMA) method to assess jointly the uncertainty associated with alternative flow and transport models, and their parameters, at the 300 Area of the DOE Hanford Site in Washington. Eight groundwater flow and transport model alternatives are considered representing various levels of model complexity, e.g., the degree to which they resolve temporal variations in river stage and spatial variations in hydraulic and transport parameters. The eight models are implemented using MODFLOW and MT3DMS in conjunction with the statistical parameter estimation package PEST and its sensitivity routine SENSAN within the framework of GMS (Groundwater Modeling System). Each of the eight flow and transport models is calibrated jointly against site measurements of hydraulic head and concentration. Parameters found to be insensitive to these measurements and measurements found to have negligible effect on model parameters are excluded from the calibration. The relative plausibility of each calibrated model is expressed in terms of a posterior model probability computed on the basis of Kashyap's information criterion KIC. Models having relatively small posterior probabilities are discarded and those with relatively large posterior probabilities are retained to obtain MLBMA predictions of flow and transport at the site. This is done by (a) using the parameter estimates and their covariance matrices to generate numerous Monte Carlo realizations of model parameters; (b) generating corresponding realizations of predicted heads, concentrations and fluxes; (c) computing the mean and variance of these quantities over all realizations; and (d) averaging the latter over all models using their posterior probabilities as weights. We conclude by comparing the predictive

  9. Coastal flooding as a parameter in multi-criteria analysis for industrial site selection

    Christina, C.; Memos, C.; Diakoulaki, D.

    2014-12-01

    Natural hazards can trigger major industrial accidents, which apart from affecting industrial installations may cause a series of accidents with serious impacts on human health and the environment far beyond the site boundary. Such accidents, also called Na-Tech (natural - technical) accidents, deserve particular attention since they can cause release of hazardous substances possibly resulting in severe environmental pollution, explosions and/or fires. There are different kinds of natural events or, in general terms, of natural causes of industrial accidents, such as landslides, hurricanes, high winds, tsunamis, lightning, cold/hot temperature, floods, heavy rains etc that have caused accidents. The scope of this paper is to examine the coastal flooding as a parameter in causing an industrial accident, such as the nuclear disaster in Fukushima, Japan, and the critical role of this parameter in industrial site selection. Land use planning is a complex procedure that requires multi-criteria decision analysis involving economic, environmental and social parameters. In this context the parameter of a natural hazard occurrence, such as coastal flooding, for industrial site selection should be set by the decision makers. In this paper it is evaluated the influence that has in the outcome of a multi-criteria decision analysis for industrial spatial planning the parameter of an accident risk triggered by coastal flooding. The latter is analyzed in the context of both sea-and-inland induced flooding.

  10. SITE-94. Discrete-feature modelling of the Aespoe Site: 3. Predictions of hydrogeological parameters for performance assessment

    Geier, J.E. [Golder Associates AB, Uppsala (Sweden)

    1996-12-01

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Predicted parameters for the near field include fracture spacing, fracture aperture, and Darcy velocity at each of forty canister deposition holes. Parameters for the far field include discharge location, Darcy velocity, effective longitudinal dispersion coefficient and head gradient, flow porosity, and flow wetted surface, for each canister source that discharges to the biosphere. Results are presented in the form of statistical summaries for a total of 42 calculation cases, which treat a set of 25 model variants in various combinations. The variants for the SITE-94 Reference Case model address conceptual and parametric uncertainty related to the site-scale hydrogeologic model and its properties, the fracture network within the repository, effective semi regional boundary conditions for the model, and the disturbed-rock zone around the repository tunnels and shafts. Two calculation cases simulate hydrologic conditions that are predicted to occur during future glacial episodes. 30 refs.

  11. SITE-94. Discrete-feature modelling of the Aespoe Site: 3. Predictions of hydrogeological parameters for performance assessment

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Predicted parameters for the near field include fracture spacing, fracture aperture, and Darcy velocity at each of forty canister deposition holes. Parameters for the far field include discharge location, Darcy velocity, effective longitudinal dispersion coefficient and head gradient, flow porosity, and flow wetted surface, for each canister source that discharges to the biosphere. Results are presented in the form of statistical summaries for a total of 42 calculation cases, which treat a set of 25 model variants in various combinations. The variants for the SITE-94 Reference Case model address conceptual and parametric uncertainty related to the site-scale hydrogeologic model and its properties, the fracture network within the repository, effective semi regional boundary conditions for the model, and the disturbed-rock zone around the repository tunnels and shafts. Two calculation cases simulate hydrologic conditions that are predicted to occur during future glacial episodes. 30 refs

  12. Mapping Site Response Parameters on Cal Poly Pomona Campus Using the Spectral Ratio Method

    HO, K. Y. K.; Polet, J.

    2014-12-01

    Site characteristics are an important factor in earthquake hazard assessment. To better understand site response differences on a small scale, as well as the seismic hazard of the area, we develop site response parameter maps of Cal Poly Pomona campus. Cal Poly Pomona is located in southern California about 40 km east of Los Angeles, within 50 km of San Andreas Fault. The campus is situated on top of the San Jose Fault. With about twenty two thousand students on campus, it is important to know the site response in this area. To this end, we apply the Horizontal-to-Vertical (H/V) spectral ratio technique, which is an empirical method that can be used in an urban environment with no environmental impact. This well-established method is based on the computation of the ratio of vertical ambient noise ground motion over horizontal ambient noise ground motion as a function of frequency. By applying the spectral ratio method and the criteria from Site Effects Assessment Using Ambient Excitations (SESAME) guidelines, we can determine fundamental frequency and a minimum site amplification factor. We installed broadband seismometers throughout the Cal Poly Pomona campus, with an initial number of about 15 sites. The sites are approximately 50 to 150 meters apart and about two hours of waveforms were recorded at each site. We used the Geopsy software to make measurements of the peak frequency and the amplitude of the main peak from the spectral ratio. These two parameters have been determined to be estimates of fundamental frequency and a minimum site amplification factor, respectively. Based on the geological map from the U.S. Geological Survey (USGS) and our data collected from Cal Poly Pomona campus, our preliminary results suggest that the area of campus that is covered by alluvial fan material tends to have a single significant spectral peak with a fundamental frequency of ~1Hz and a minimum amplification factor of ~3.7. The minimum depth of the surface layer is about 56

  13. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eddlemon, Gerald K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2003-03-01

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementing dramatic changes in their approach to protecting the quality of the Nation’s waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in

  14. Field test of ultra-low head hydropower package based on marine thrusters. Final report

    1983-12-01

    The project includes the design, fabrication, assembly, installation, and field test of the first full-scale operating hydropower package (turbine, transmission, and generator) based on a design which incorporates a marine-thruster as the hydraulic prime mover. Included here are: the project overview; engineering design; ultra-low head hydropower package fabrication; component procurement, cost control, and scheduling; thruster hydraulic section installation; site modeling and resulting recommended modifications; testing; and baseline environmental conditions at Stone Drop. (MHR)

  15. River and river-related drainage area parameters for site investigation program

    Blomqvist, P.; Brunberg, A.K. [Uppsala Univ. (Sweden). Dept. of Limnology; Brydsten, L. [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Science

    2001-05-01

    In this paper, a number of parameters of importance to a determination of the function of running waters as transport channels for material from the continents to the sea are presented. We have assumed that retention mechanisms of material in the river and in the riparian zone will be covered by special investigations but tried to create a platform for such investigations by quantification of the extension of different main habitats. The choice of parameters has been made so that also the nature conservation value of the river can be preliminary established, and includes a general description of the river type and the inherent ecosystem. The material links directly to that presented in a previous report concerning site investigation programmes for lakes. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The river catchment area and its major constituents; 3) The river morphometry; 4) The river ecosystem; 5) Human-induced damages to the river ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area, represent parameters that can be used to establish the rarity and representativity of the system, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the river morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of key habitats in the system. The fourth group, the ecosystem of the river, includes physical, chemical and biological parameters required for determination of the influence from the terrestrial ecosystem of the catchment area, nutrient status, distribution of different habitats, and presence of fish in the system. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and

  16. River and river-related drainage area parameters for site investigation program

    In this paper, a number of parameters of importance to a determination of the function of running waters as transport channels for material from the continents to the sea are presented. We have assumed that retention mechanisms of material in the river and in the riparian zone will be covered by special investigations but tried to create a platform for such investigations by quantification of the extension of different main habitats. The choice of parameters has been made so that also the nature conservation value of the river can be preliminary established, and includes a general description of the river type and the inherent ecosystem. The material links directly to that presented in a previous report concerning site investigation programmes for lakes. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The river catchment area and its major constituents; 3) The river morphometry; 4) The river ecosystem; 5) Human-induced damages to the river ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area, represent parameters that can be used to establish the rarity and representativity of the system, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the river morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of key habitats in the system. The fourth group, the ecosystem of the river, includes physical, chemical and biological parameters required for determination of the influence from the terrestrial ecosystem of the catchment area, nutrient status, distribution of different habitats, and presence of fish in the system. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and

  17. Comparisons of CAP88PC version 2.0 default parameters to site specific inputs

    The effects of varying the input for the CAP88PC Version 2.0 program on the total effective dose equivalents (TEDEs) were determined for hypothetical releases from the Hot Fuel Examination Facility (HFEF) located at the Argonne National Laboratory site on the Idaho National Engineering and Environmental Laboratory (INEEL). Values for site specific meteorological conditions and agricultural production parameters were determined for the 80 km radius surrounding the HFEF. Four nuclides, 3H, 85Kr, 129I, and 137Cs (with its short lived progeny, 137mBa) were selected for this study; these are the radioactive materials most likely to be released from HFEF under normal or abnormal operating conditions. Use of site specific meteorological parameters of annual precipitation, average temperature, and the height of the inversion layer decreased the TEDE from 137Cs-137mBa up to 36%; reductions for other nuclides were less than 3%. Use of the site specific agricultural parameters reduced TEDE values between 7% and 49%, depending on the nuclide. Reductions are associated with decreased committed effective dose equivalents (CEDEs) from the ingestion pathway. This is not surprising since the HFEF is located well within the INEEL exclusion area, and the surrounding area closest to the release point is a high desert with limited agricultural diversity. Livestock and milk production are important in some counties at distances greater than 30 km from the HFEF

  18. On the validity of evolutionary models with site-specific parameters.

    Konrad Scheffler

    Full Text Available Evolutionary models that make use of site-specific parameters have recently been criticized on the grounds that parameter estimates obtained under such models can be unreliable and lack theoretical guarantees of convergence. We present a simulation study providing empirical evidence that a simple version of the models in question does exhibit sensible convergence behavior and that additional taxa, despite not being independent of each other, lead to improved parameter estimates. Although it would be desirable to have theoretical guarantees of this, we argue that such guarantees would not be sufficient to justify the use of these models in practice. Instead, we emphasize the importance of taking the variance of parameter estimates into account rather than blindly trusting point estimates - this is standardly done by using the models to construct statistical hypothesis tests, which are then validated empirically via simulation studies.

  19. The inversion of anelastic coefficient, source parameters and site respond using genetic algorithm

    刘杰; 郑斯华; 黄玉龙

    2003-01-01

    It gradually becomes a common work using large seismic wave data to obtain source parameters, such as seismic moment, break radius, stress drop, with completingof digital seismic network in China (Hough, et al, 1999; Bindi, et al, 2001). These parameters are useful on earthquake prediction and seismic hazard analysis.Although the computation methods of source parameters are simple in principle and the many research works have been done, it is not easy to obtain the parameters accurately. There are two factors affecting the stability of computation results. The first one is the effect of spread path and site respond on signal. According to the research results, there are different geometrical spreading coefficients on different epicenter distance. The better method is to introduce trilinear geometrical spreading model (Atkinson, Mereu, 1992; Atkinson, Boore, 1995; WONG, et al, 2002). In addition, traditional site respond is estimated by comparing with rock station, such as linear inversion method (Andrews, 1982), but the comparative estimation will introduce some errors when selecting different stations. Some recent research results show that site respond is not flat for rock station (Moya, et al, 2000; ZHANG,. et al, 2001; JIN, et al, 2000; Dutta, et al, 2001). The second factor is to obtain low-frequency level and corner frequency fromdisplacement spectrum. Because the source spectrum model is nonlinear function,these values are obtained by eye. The subjectivity is strong. The small change of corner frequency will affect significantly the result of stress drop.

  20. A Multi-scale Spatial Approach to Address Environmental Effects of Small Hydropower Development

    McManamay, Ryan A.; Samu, Nicole; Kao, Shih-Chieh; Bevelhimer, Mark S.; Hetrick, Shelaine C.

    2015-01-01

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

  1. Modelling and controlling hydropower plants

    Munoz-Hernandez, German Ardul; Jones, Dewi Ieuan

    2013-01-01

    Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance.  Modelling and Controlling Hydropower Plants discusses practical and well-documented cases of modelling and controlling hydropower station modelling and control, focussing on a pumped storage scheme based in Dinorwig, North Wales.  Single-input-single-output and multiple-input-multiple-output models, which cover the linear and nonlinear characteristics of pump-storage hydroelectric power stations, are reviewed. The most important dynamic features are discussed, and the verification of these models by hardware in the loop simulation is described. To show how the performance of a pump-storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of the Dinorwig power plant. These include PID, fuzzy approximation, feed-forward and model-based predictive control with linear and hybrid prediction models. Mod...

  2. Hydropower strategy for the Philippines

    The government-owned National Power Corporation (NPC) of the Philippines is in the early stages of a complete privatisation programme. The electric power sector is expected eventually to be structured around a company that will own the major transmission facilities and will serve as a broker of power and energy between generating companies and the existing distribution companies, Rural Electric Co-operations and other power users. NPC's non-transmission assets will probably be spun-off into various corporations including three generating companies, an engineering and services company and a company owning the Calivaya-Botocan-Kalayaan hydro complex. Plans for increased capacity include a real term increase in the hydropower contribution although it will decline as a percentage of the energy mix as coal and gas plants are developed. Details of the privatisation of specific hydropower projects in the Luzon, Visayas and Mindanao grids are described. (U.K.)

  3. Evaluation of water quality parameters and associated environmental impact at nuclear power plant sites

    The Nuclear Power Plants use a large quantity of water for the purpose of cooling the turbine condenser. The heated effluents are discharged to aquatic environment by means of once through cooling wherever large water bodies like seacoast or fresh water reservoir are available. The quality of water bodies are important for the growth and biodiversity of aquatic organisms. Several environmental factors like Temperature pH, Dissolved Oxygen have a bearing on the life cycle of aquatic organisms. The paper describes the evaluation of water quality parameters at the two typical sites one on the sea coast (Tarapur) and other at inland site Kaiga and discusses the environmental impact due to discharge to aquatic environment. It is found that the environmental impacts due to both heated effluents and radioactivity are insignificant. The water quality parameters are found to be well within the prescribed standards. (author)

  4. Lake and lake-related drainage area parameters for site investigation program

    Blomqvist, P.; Brunberg, A.K. [Uppsala Univ. (Sweden). Dept. of Limnology; Brydsten, L [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Science

    2000-09-01

    In this paper, a number of parameters of importance to a preliminary determination of the ecological function of lakes are presented. The choice of parameters have been made with respect to a model for the determination of the nature conservation values of lakes which is currently being developed by the authors of this report, but is also well suited for a general description of the lake type and the functioning of the inherent ecosystem. The parameters have been divided into five groups: (1) The location of the object relative important gradients in the surrounding nature; (2) The lake catchment area and its major constituents; (3) The lake morphometry; (4) The lake ecosystem; (5) Human-induced damages to the lake ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area represent parameters that can be used to establish the rarity and representativity of the lake, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the lake morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of different key habitats in the system. The fourth group, the ecosystem of the lake, includes physical, chemical and biological parameters required for determination of the stratification pattern, light climate, influence from the terrestrial ecosystem of the catchment area, trophic status, distribution of key habitats, and presence of fish and rare fauna and flora in the lake. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and material in the system. The fifth group, finally, describes the degree on anthropogenic influence on the ecosystem and will in the context of site investigation programmes be used to judge eventual malfunctioning within the entire, or parts of, the lake

  5. Lake and lake-related drainage area parameters for site investigation program

    In this paper, a number of parameters of importance to a preliminary determination of the ecological function of lakes are presented. The choice of parameters have been made with respect to a model for the determination of the nature conservation values of lakes which is currently being developed by the authors of this report, but is also well suited for a general description of the lake type and the functioning of the inherent ecosystem. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The lake catchment area and its major constituents; 3) The lake morphometry; 4) The lake ecosystem; 5) Human-induced damages to the lake ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area represent parameters that can be used to establish the rarity and representativity of the lake, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the lake morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of different key habitats in the system. The fourth group, the ecosystem of the lake, includes physical, chemical and biological parameters required for determination of the stratification pattern, light climate, influence from the terrestrial ecosystem of the catchment area, trophic status, distribution of key habitats, and presence of fish and rare fauna and flora in the lake. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and material in the system. The fifth group, finally, describes the degree on anthropogenic influence on the ecosystem and will in the context of site investigation programmes be used to judge eventual malfunctioning within the entire, or parts of, the lake ecosystem

  6. Inflow Uncertainty in Hydropower Markets

    2007-01-01

    In order to analyse the consequences of uncertainty for prices and efficiency in a hydropower system, we apply a two-period model with uncertainty in water inflow. We study three different market structures, perfect competition, monopoly and oligopoly and stress the importance of the shape of the demand function under different distributions of water inflow. The uncertainty element creates possibilities of exercising market power depending on the distribution of uncertainty among producers. T...

  7. Inflow uncertainty in hydropower markets

    Hansen, Petter Vegard

    2007-01-01

    Abstract: In order to analyse the consequences of uncertainty for prices and efficiency in a hydropower system, we apply a two-period model with uncertainty in water inflow. We study three different market structures, perfect competition, monopoly and oligopoly and stress the importance of the shape of the demand function under different distributions of water inflow. The uncertainty element creates possibilities of exercising market power depending on the distribution of uncer...

  8. Inflow Uncertainty in Hydropower Markets

    Hansen, Petter Vegard

    2007-01-01

    Abstract: In order to analyse the consequences of uncertainty for prices and efficiency in a hydropower system, we apply a two-period model with uncertainty in water inflow. We study three different market structures, perfect competition, monopoly and oligopoly and stress the importance of the shape of the demand function under different distributions of water inflow. The uncertainty element creates possibilities of exercising market power depending on the distribution of uncer...

  9. European Extremely Large Telescope Site Characterization II: High angular resolution parameters

    Ramió, Héctor Vázquez; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; Lambas, Diego García; Hach, Youssef; Lazrek, M; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-01-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the Design Study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Mac\\'on range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments and acquisition procedures were taken on each site. A Multiple Aperture Scintillation Sensor (MASS) and a Differential Image Motion Monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing and the isoplanatic angle were studied for each site, and the results are presented here. In order to e...

  10. Pumped Storage and Potential Hydropower from Conduits

    none,

    2015-02-25

    Th is Congressional Report, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation. This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new pumped storage facilities to provide grid reliability benefits, and the range of conduit hydropower opportunities available in the United States.

  11. Hydropower development in the Philippines

    The present policy on energy development is geared towards harnessing renewable and indigenous energy resource which can offer clean, abundant and efficient power supply for the country. a review of the current generation mix of the power system, especially the Luzon grid will establish a high dependency in imported fuel - oil and coal to power our generating plants. Thus, the policy of reducing dependence on imported fuel will depend largely on the success of tapping the alternative renewable and indigenous sources. The sustainable development era of the 90's brought fresh interest on the performance and commercial viability of indigenous and/or renewable sources of energy such as wind, solar, geothermal, natural gas and water power or hydropower. Among these alternative renewable sources, water or hydropower is the most readily available, and will produce clean domestic source of electricity - no carbon dioxide, sulfur dioxide, nitrous oxide or any other air emissions. The potential is available in most parts of the country that are mountainous and have high rainfall. In terms of production, hydropower leads as the most developed and more proven in terms of commercial viability. It is also more reliable, efficient and less expensive than geothermal, biomass, wind and solar energy, as will be shown later. (author)

  12. The blue water footprint of electricity from hydropower

    M. M. Mekonnen

    2012-01-01

    Full Text Available Hydropower accounts for about 16% of the world's electricity supply. It has been debated whether hydroelectric generation is merely an in-stream water user or whether it also consumes water. In this paper we provide scientific support for the argument that hydroelectric generation is in most cases a significant water consumer. The study assesses the blue water footprint of hydroelectricity – the water evaporated from manmade reservoirs to produce electric energy – for 35 selected sites. The aggregated blue water footprint of the selected hydropower plants is 90 Gm3 yr−1, which is equivalent to 10% of the blue water footprint of global crop production in the year 2000. The total blue water footprint of hydroelectric generation in the world must be considerably larger if one considers the fact that this study covers only 8% of the global installed hydroelectric capacity. Hydroelectric generation is thus a significant water consumer. The average water footprint of the selected hydropower plants is 68 m3 GJ−1. Great differences in water footprint among hydropower plants exist, due to differences in climate in the places where the plants are situated, but more importantly as a result of large differences in the area flooded per unit of installed hydroelectric capacity. We recommend that water footprint assessment is added as a component in evaluations of newly proposed hydropower plants as well as in the evaluation of existing hydroelectric dams, so that the consequences of the water footprint of hydroelectric generation on downstream environmental flows and other water users can be evaluated.

  13. Evaluation of the Overall Costs for the Croatian Repository: Varying Site, Design and Financial Parameters

    Preliminary preparations for the construction of a LILW repository in Croatia included a number of activities and projects related to the siting process, safety assessment, disposal technology and repository design, and public acceptance issues. Costs evaluations have always been a part of the developing project documentation. However, only the estimates of the facility construction and equipment acquisition costs had been included, while other costs associated with the project development and management have not been considered up to now. For the first time the infrastructure status at the potential sites has been evaluated, and the costs of the repository operations as well as the post-closure management has been estimated. Cost parameters have been considered from both technical and fiscal points of view, comparing their relative influence on the overall repository costs. Assessment of the total project costs in eight cases for the four preferential sites and two repository designs gave a clearer picture of the development and management costs differences for the considered options. Without considerations of the operational and post-operational repository management expenses, the total project costs appear to have been heavily underestimated. Also, while the construction costs for the tunnel and the surface type repositories are significantly different, this influence of the repository type on the total project costs becomes far less important when the later phases management expenses are added. Finally, the role of fiscal parameters may further diminish the site and technology impacts on the overall costs. (author)

  14. Recommended food chain parameter values and distributions for use around CANDU sites in Ontario

    Site-specific parameter values should be used whenever possible to increase the accuracy of dose predictions. Parameter values specific to agricultural practices and human lifestyles in southern Ontario are presented for use in CSA-N288.1-M87 (Canadian Standards Association Guidelines for Calculating Derived Release Limits for Radioactive Material in Airborne and Liquid Effluents for Normal Operation of Nuclear Facilities) and CHERPAC (Chalk River Environmental Research Pathways Analysis Code). Use of these values in place of the default parameter values in CSA-N288.1-M87 is shown to reduce the predicted dose by nearly a factor of 2. (author). 27 refs., 6 tabs., 1 fig

  15. Element-specific and constant parameters used for dose calculations in SR-Site

    Norden, Sara (Svensk Kaernbraenslehantering AB (Sweden)); Avila, Rodolfo; De la Cruz, Idalmis; Stenberg, Kristofer; Grolander, Sara (Facilia AB (Sweden))

    2010-12-15

    The report presents Best Estimate (BE) values and Probability Distribution Functions (PDFs) of Concentration Ratios (CR) for different types of terrestrial and aquatic biota and distribution coefficients (K{sub d}) for organic and inorganic deposits, as well as for suspended matter in freshwater and marine ecosystems. The BE values have been used in deterministic simulations for derivation of Landscape Dose Factors (LDF) applied for dose assessments in SR-Site. The PDFs have been used in probabilistic simulations for uncertainty and sensitivity analysis of the LDFs. The derivation of LDFs for SR-Site is described in /Avila et al. 2010/. The CR and K{sub d} values have been derived using both site-specific data measured at Laxemar and Forsmark during the site investigation program and literature data. These two data sources have been combined using Bayesian updating methods, which are described in detail in an Appendix, along with the input data used in the statistical analyses and the results obtained. The report also describes a kinetic-allometric model that was applied for deriving values of CR for terrestrial herbivores in cases when site and literature data for an element were missing. In addition, the report presents values for a number of other parameters used in the SR-Site Radionuclide Model for the biosphere: radionuclide decay-ingrowth data, elemental diffusivities, fractions of element content released during decomposition processes, ingestion of food, water and soil by cattle, elements retention fraction on plant surfaces during irrigation. The report also presents parameter values used in calculation of doses to a reference man: dose coefficients for inhalation, ingestion and external exposure, inhalation rates, ingestion rates of food and water

  16. Element-specific and constant parameters used for dose calculations in SR-Site

    The report presents Best Estimate (BE) values and Probability Distribution Functions (PDFs) of Concentration Ratios (CR) for different types of terrestrial and aquatic biota and distribution coefficients (Kd) for organic and inorganic deposits, as well as for suspended matter in freshwater and marine ecosystems. The BE values have been used in deterministic simulations for derivation of Landscape Dose Factors (LDF) applied for dose assessments in SR-Site. The PDFs have been used in probabilistic simulations for uncertainty and sensitivity analysis of the LDFs. The derivation of LDFs for SR-Site is described in /Avila et al. 2010/. The CR and Kd values have been derived using both site-specific data measured at Laxemar and Forsmark during the site investigation program and literature data. These two data sources have been combined using Bayesian updating methods, which are described in detail in an Appendix, along with the input data used in the statistical analyses and the results obtained. The report also describes a kinetic-allometric model that was applied for deriving values of CR for terrestrial herbivores in cases when site and literature data for an element were missing. In addition, the report presents values for a number of other parameters used in the SR-Site Radionuclide Model for the biosphere: radionuclide decay-ingrowth data, elemental diffusivities, fractions of element content released during decomposition processes, ingestion of food, water and soil by cattle, elements retention fraction on plant surfaces during irrigation. The report also presents parameter values used in calculation of doses to a reference man: dose coefficients for inhalation, ingestion and external exposure, inhalation rates, ingestion rates of food and water

  17. Reliability validation of hydropower units of high-head developments

    G.L. Kozinets

    2012-01-01

    Throughout the development of the hydropower special attention was paid to the formation of a theoretical framework and methods of parameters and operating modes of powerhouses study. Under current design standards mathematical modeling of powerhouse is performed in two-dimensional for the axisymmetric problem. Up to now this method of simulation in Russia is the determining, although it has long lagged behind the capabilities of modern universal software of finite element analysis.The articl...

  18. Extreme value analysis of meteorological parameters observed during 1994-2001 at Kaiga generating station site

    An understanding of extreme weather conditions at the site of interest is essentially required to design engineering structures that can withstand adverse extreme conditions during its lifetime. In this report an analysis of extreme values of meteorological parameters at Kaiga site have been carried out. This information will be useful in the design of more heavy and tall structures proposed to be constructed in future at this site. The meteorological parameters subjected to statistical analysis in this report are maximum yearly wind speed for the period 1994-2001, rainfall data for the period 1987-2001, maximum and minimum air temperature for the period 1995-2001 and minimum humidity for the period 1994-2001. Rainfall data consists of annual rainfall, monthly maximum rainfall and daily maximum rainfall. The extreme value analysis reveals that in the 50 years, maximum possible wind speed at 50 m and 100 m are 29.1 m/s and 34.6 m/s respectively. Maximum possible temperature is 44.1 degC. Minimum possible temperature is 9.4 degC. Minimum possible humidity is 4.6%. Maximum possible annual rainfall is 5383.7 mm, maximum monthly rainfall is 2617.0 mm and maximum possible daily rainfall is 377.3 mm. Similarly the minimum possible annual rainfall in the next 50 years is 2504.3 mm and that in next 100 years is 2308.2 mm. (author)

  19. Resource and utilization of Estonian hydropower

    An overview of the Estonian hydropower resources and their utilization at present as well as prospective for the future are presented in this paper. A short overview of advantages of small hydropower stations and related issues is given. Some technological aspects are treated briefly. (authors)

  20. Land surface scheme conceptualisation and parameter values for three sites with contrasting soils and climate

    M. Soet

    2000-01-01

    Full Text Available The objective of the present study is to test the performance of the ECMWF land surface module (LSM developed by Viterbo and Beljaars (1995 and to identify primary future adjustments, focusing on the hydrological components. This was achieved by comparing off-line simulations against observations and a detailed state-of-the-art model over a range of experimental conditions. Results showed that the standard LSM, which uses fixed vegetation and soil parameter values, systematically underestimated evapotranspiration, partly due to underestimating bare soil evaporation, which appeared to be a conceptual problem. In dry summer conditions, transpiration was seriously underestimated. The bias in surface runoff and percolation was not of the same sign for all three locations. A sensitivity analysis, set up to explore the impact of using standard parameter values, found that implementing specific soil hydraulic properties had a significant effect on runoff and percolation at all three sites. Evapotranspiration, however affected only slightly at the temperate humid climate sites. Under semi-arid conditions, introducing site specific soil hydraulic properties plus a realistic rooting depth improved simulation results considerably. Future adjustments to the standard LSM should focus on parameter values of soil hydraulic functions and rooting depths and, conceptually, on the bare soil evaporation parameterisation and the soil bottom boundary condition. Implications of changing soil hydraulic properties for future large-simulations were explored briefly. For Europe, soil data requirements can be fulfilled partly by the recent data base HYPRES. Sandy and loamy sand soils will then cover about 65% of Europe, whereas in the present model 100% of the area is loam. Keywords: land surface model; soil hydraulic properties; water balance simulation

  1. Study on inelastic attenuation coefficient, site response and source parameters in Shanxi region

    啜永清; 苏燕; 贾建喜; 黄金刚

    2004-01-01

    Based on 310 horizontal-component digital seismograms recorded at 14 seismic stations in Shanxi Digital Seismograph Network, the inelastic attenuation coefficient in Shanxi region is studied. By the methods of Atkinson and Moya, the site response of each station and several source parameters are obtained and the inversion results from both methods are compared and analyzed. The frequency-dependent inelastic attenuation coefficient Q is estimated as Q( f )=323.2 f 0.506. The site responses of 14 seismic stations do not show significant amplification, which is consistent with their basement on rock. We also found the dependence of corner frequency on seismic moment, seismic moment on stress drop, source radius on stress drop.

  2. Trade-offs Between Electricity Production from Small Hydropower Plants and Ecosystem Services in Alpine River Basins

    Meier, Philipp; Schwemmle, Robin; Viviroli, Daniel

    2015-04-01

    The need for a reduction in greenhouse gas emissions and the decision to phase out nuclear power plants in Switzerland and Germany increases pressure to develop the remaining hydropower potential in Alpine catchments. Since most of the potential for large reservoirs is already exploited, future development focusses on small run-of-the-river hydropower plants (SHP). Being considered a relatively environment-friendly electricity source, investment in SHP is promoted through subsidies. However, SHP can have a significant impact on riverine ecosystems, especially in the Alpine region where residual flow reaches tend to be long. An increase in hydropower exploitation will therefore increase pressure on ecosystems. While a number of studies assessed the potential for hydropower development in the Alps, two main factors were so far not assessed in detail: (i) ecological impacts within a whole river network, and (ii) economic conditions under which electricity is sold. We present a framework that establishes trade-offs between multiple objectives regarding environmental impacts, electricity production and economic evaluation. While it is inevitable that some ecosystems are compromised by hydropower plants, the context of these impacts within a river network should be considered when selecting suitable sites for SHP. From an ecological point of view, the diversity of habitats, and therefore the diversity of species, should be maintained within a river basin. This asks for objectives that go beyond lumped parameters of hydrological alteration, but also consider habitat diversity and the spatial configuration. Energy production in run-of-the-river power plants depends on available discharge, which can have large fluctuations. In a deregulated electricity market with strong price variations, an economic valuation should therefore be based on the expected market value of energy produced. Trade-off curves between different objectives can help decision makers to define policies

  3. Attenuation, source parameters and site effects of SH waves in Taiwan

    Chang, Shun-Chiang; Wen, Kuo-Liang

    2016-04-01

    Generalized inversion technique (GIT) (Castro et al., 1990) was used to derive SH-wave in the frequency range 0.2-25 Hz (interval 0.1 Hz). The inversion results can find attenuation characteristics, earthquake source parameters and site amplification functions. The characteristics of the site amplification are referred to horizontal-to-vertical (H/V) Fourier spectral ratios of microtremor for a referent rock site. The SH-wave from 28 earthquakes with magnitude ranging from ML 5 to 7, of 1319 earthquake records at 146 TSMIP strong motion stations in Jianan Plain, southwestern Taiwan are used in this analysis. The SH-wave quality factor Q(f) is estimated as 52.83f0.77 for 0.2<= f < =25 Hz. The stress drops can be found from source spectra by using the omega-square model. The results of site amplification are similar to horizontal-to-vertical spectral ratio of the microtremor which have clearly and similar predominant peaks.

  4. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    Adelman, D.D. [Water Resources Engineer, Lincoln, NE (United States); Stansbury, J. [Univ. of Nebraska-Lincoln, Omaha, NE (United States)

    1997-12-31

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions.

  5. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions

  6. A study of the main atmospheric electric parameters at a little polluted seashore site

    In order to study the electric elements of the air near the ground, we realized a set of apparatus for the measurement of several parameters: electric field, space charge, conductivities, air-earth current, as well as an automatic condensation nuclei counter. The characteristics of a very important photolytic process of nuclei production closely related to air exposure of living algae, at daytime low-tide periods were first determined. Then a systematic study of the electrical behaviour of the air at the seashore, was also carried out in relation with meteorological parameters. The results observed by sea winds, and especially the data on electric field and space charge showed out a very strong electrode effect above the sea surface, and were very different from those recorded at another site, 20 km inland. Finally, the atmospheric electric fog effect at the coastline and the possibility of using our results for forecasting the phenomenon were studied. (author)

  7. System dynamics in hydropower plants

    Stuksrud, Dag Birger

    1998-12-31

    The main purpose of this thesis on system dynamics in hydropower plants was to establish new models of a hydropower system where the turbine/conduits and the electricity supply and generation are connected together as one unit such that possible interactions between the two power regimes can be studied. In order to describe the system dynamics as well as possible, a previously developed analytic model of high-head Francis turbines is improved. The model includes the acceleration resistance in the turbine runner and the draft tube. Expressions for the loss coefficients in the model are derived in order to obtain a purely analytic model. The necessity of taking the hydraulic inertia into account is shown by means of simulations. Unstable behaviour and a higher transient turbine speed than expected may occur for turbines with steep characteristics or large draft tubes. The turbine model was verified previously with respect to a high-head Francis turbine; the thesis performs an experimental verification on a low-head Francis turbine and compares the measurements with simulations from the improved turbine model. It is found that the dynamic turbine model is, after adjustment, capable of describing low-head machines as well with satisfying results. The thesis applies a method called the ``Limited zero-pole method`` to obtain new rational approximations of the elastic behaviour in the conduits with frictional damping included. These approximations are used to provide an accurate state space formulation of a hydropower plant. Simulations performed with the new computer programs show that hydraulic transients such as water-hammer and mass oscillations are reflected in the electric grid. Unstable governing performance in the electric and hydraulic parts also interact. This emphasizes the need for analysing the whole power system as a unit. 63 refs., 149 figs., 4 tabs.

  8. External effects in Swiss hydropower

    The article discusses the external costs and benefits of hydropower that are not internalised in normal book-keeping. Several negative and positive effects are discussed. The results of a study that addressed the difficult task of quantifying these external effects are presented. An assessment of the results gained shows that difficulties are to be met regarding system limits, methods of expressing the effects in monetary terms and ethical factors. The report also examines the consideration of external effects as a correction factor for falsified market prices for electricity

  9. The importance of hydropower in Austria

    This article discusses the importance of hydropower-based power generation in Austria as a clean and emission-free source of electricity. The contribution made to total electricity generation is examined and figures are quoted. Hydropower is provided from both storage dams and run-of-river power stations such as those on the river Danube. The use of the various types of hydropower in connection with their economic optimisation, for example for the supply of valuable peak power, is discussed. The promotion of hydropower within the scope of European climate-protection efforts is examined. Projects concerning the augmentation of hydropower capacities are discussed and three exemplary projects are briefly described. Finally, the situation in Austria is compared with that to be found in neighbouring Switzerland.

  10. The effects of differential injection sites of cold saline on transpulmonary thermodilution parameter values

    Yang W

    2015-04-01

    Full Text Available Wanjie Yang,1 Qingguo Feng,1 Youzhong An,2 Xuefeng Zhao,1 Kai Wei,1 Chang Li,1 Wei Wang,1 Hongyun Teng1 1Department of Critical Care, The Fifth Central Hospital of Tianjin, Tianjin, People’s Republic of China; 2Department of Critical Care, The People’s Hospital, Peking University, Beijing, People’s Republic of China Aim: To investigate the effects of differential sites for cold saline injection on transpulmonary thermodilution parameter values.Methods: This was a prospective study. Twelve patients were recruited for the following examinations: control condition (injection site at proximal injection end of the Swan-Ganz catheter, proximal end condition (injection site at sheath of the Swan-Ganz catheter, and distal end condition (injection site at PA end of the Swan-Ganz catheter. Sixty measurements were performed for each condition. The cardiac index, global end diastolic volume index (GEDI, and extravascular lung water index for the three different injection sites were recorded from each patient. In addition, the mean transmission time (MTt, downslope time, and area under the curve obtained from PiCCO-VoLEF-Win software were compared among different groups.Results: There were no differences in cardiac index and extravascular lung water index values among the three conditions (P>0.05. There were no differences in GEDI between the proximal end condition and control condition (P>0.05, while the GEDI was significantly lower for the distal end condition (493.33±254.65 mL/m2 than for the control condition (645.53±234.46 mL/m2 (P<0.05 and proximal end condition (717.96±321.63 mL/m2 (P<0.01. There were no differences in downslope time and area under the curve among the three conditions (P>0.05. There were no differences in MTt between the proximal end condition and control condition (P>0.05, while the MTt was significantly lower for distal end condition (40.22±16.37 seconds than for the control condition (42.91±17.93 seconds (P<0.05 and

  11. A new fuzzy self-tuning PD load frequency controller for micro-hydropower system

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh

    2016-03-01

    This paper presents a new approach for controlling the secondary load bank of a micro-hydropower system using a fuzzy self-tuning proportional-derivative (PD) controller. This technology is designed in order to optimize the micro-hydropower system in a resort island located in the South China Sea. Thus, this technology will be able to mitigate the diesel fuel consumption and cost of electricity supply on the island. The optimal hydropower generation for this system depends on the available stream flow at the potential sites. At low stream flow, both the micro-hydropower system and the currently installed diesel generators are required to feed the load. However, when the hydropower generation exceeds the load demand, the diesel generator is shut down. Meanwhile, the system frequency is controlled by a secondary load bank that absorbs the hydropower which exceeds the consumer demand. The fuzzy rules were designed to automatically tune the PD gains under dynamic frequency variations. Performances of the fuzzy self-tuning PD controller were compared with the conventional PD controller. The result of the controller implementation shows the viability of the proposed new controller in achieving a higher performance and more robust load frequency control than the conventional PD controller.

  12. Assessment of small hydropower potential using remote sensing data for sustainable development in India

    India being a developing country has witnessed a rapidly growing energy needs owing to fast industrialization. Sustainable and qualitative growth for developing economics and habitat requires increased energy input from various resources while maintaining balance in the ecosystem during exploitation. Paper discusses state of the resource potentials, achievements and various issues related to the power generation in India. The growing concern over environmental degradation caused by fossil fuel based systems, opposition to large hydropower projects on grounds of displacement of land and population, environmental problems with nuclear fuel based systems and the ever-rising shortage of power highlights the need for tapping alternate energy sources for power generation. Amongst the alternate sources utilization of hydropower on a smaller scale (small, mini and micro hydropower) has become the thrust area for sustainable growth in the power sector. Hydropower is an economical and environmentally clean source of renewable energy abundantly available in hilly regions of India. Hydropower stations have an inherent ability for instantaneous starting, stopping, load variations, etc., and help in improving the reliability of power system. Huge hydropower potential in India, yet to be explored is located at inaccessible mountainous region. However, development of this potential is challenging due to difficult and inaccessible terrain profile. Paper presents application of remote sensing data for identification and selection of probable site for hydropower projects. The algorithm for identification and assessment of water resources and its perennial is developed in Visual Basic (VB) platform and it is successfully applied for IRS-1D, LISS III Geo-coded False Color Composite (FCC) satellite image for plain as well as hilly and mountainous regions. Classification of satellite image in to different objects is modeled as the task of clustering based on the intensity of R-G-B values

  13. The potential micro-hydropower projects in Nakhon Ratchasima province, Thailand

    At present, fossil fuel energy is commonly used in developing countries, including Thailand. The tendency to use fossil fuel energy is continuously increasing, and the price of fossil fuels is rising. Thus, renewable energy is of interest. Hydropower is one of the oldest renewable energy forms known and one of the best solutions for providing electricity to rural communities. The present paper aims to determine the potential micro-hydropower sites that could provide more than 50 kW but not over 10 MW in Nakhon Ratchasima Province, Thailand. Both reservoir and run-of-the-river schemes are considered for the assessment of potential micro-hydropower sites. For the reservoir scheme, the discharge in the reservoir is employed for generating micro-hydropower electricity. This installation can be carried out without major modifications to the dam. The run-of-the-river scheme diverts water flow from the river mainstream to the intake via a pressure pipe or an open canal, which is then conveyed to the turbine via a penstock to generate electricity. The results showed that there are 6 suitable projects for the reservoir scheme and 11 suitable projects for the run-of-the-river. The maximum power load was 6000 kW and 320 kW for the reservoir and the run-of-the-river schemes, respectively. Hydropower from the run-of-the-river scheme is more suitable than hydropower from the reservoir scheme because of the many mountains in this province. The designed head for the run-of-the-river scheme is thus generally higher than that for the reservoir scheme. Because stream flow during the dry season is very low, electricity can only be produced in the wet season. This research is a pilot study to determine the potential sites of micro-hydropower projects. (author)

  14. Microalgal diversity in relation to the physicochemical parameters of some Industrial sites in Mangalore, South India.

    Miranda, Jyothi; Krishnakumar, G

    2015-11-01

    This study is undertaken to understand the microalgal species composition, diversity, abundance and their association with the polluted sites of an industrial area. The microalgae and the wastewater samples collected from these sites were preserved and analysed using standard methods. One hundred and eight species of the microalgae, belonging to Cyanophyceae, Chlorophyceae, Euglenophyceae, Bacillariophyceace and Desmidaceae, were identified. Of these, the members of Cyanophyceae formed the dominant flora. It was observed that the family Oscillatoriaceae was the most diverse family. In this family, the most diverse genus was found to be the Oscillatoria, with 13 species. Further, the abundance of Oscillatoria princeps indicated that these species are tolerant to the pollution and therefore considered as the 'marker species' of the habitat. The abundance of the Cyanophyceae in these sites was found to be due to the favourable contents of the oxidizable organic matter and the presence of the nutrients, such as the nitrates and the phosphates, in abundance, with less dissolved oxygen. The lesser percentage of the Bacillariophyceae (14%), and the negligible number of the euglenoids (2%) indicated that the sites were rich in the inorganic pollutants and poor in the organic pollutants. The range of Shannon diversity indices was found between 2.10 and 3.50, while the dominance index was found between 0.03 and 0.14, the species evenness between 0.73 and 0.93 and the Margalef index between 1.8 and 6.3. The diversity indices indicated that there is light to moderate level of pollution in the studied sites, with moderate diversity level. The principal component analysis (PCA) of the physicochemical parameters identified the four possible groups, which were responsible for the data structure, explaining the 74% of the total variance of the data set. In the PCA performed using all the variables, the first principal component showed the positive correlation with the total

  15. China's rising hydropower demand challenges water sector.

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P W; Guan, Dabo

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 10(9) m(3) (Gm(3)), or 22% of China's total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm(3) yr(-1) or 3.6 m(3) of water to produce a GJ (10(9) J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability. PMID:26158871

  16. Hydropower - internalized costs and externalized benefits

    The benefits of hydropower consist of the minimal level of noxious and greenhouse gas emissions, it's energy security from political instability, and its renewable, non-depletable nature. The costs of hydropower consist of negative effects on the river ecosystem and of social changes in communities in the vicinity of large projects. Public awareness of these costs has increased dramatically during the past two decades, and new hydro projects will not get approval unless adequate mitigation measures are taken to avoid, offset, or compensate for adverse environmental and social effects. To a very large extent, the hydropower industry has internalized what were previously social and environmental externalities. However, hydropower operators do not receive any compensation for the benefits, and to date their competitors (coal, natural gas, oil) have not been required to internalize their adverse environmental externalities. (emissions, depletion of supplies, and sometimes dependence on imported primary energy sources). This creates an uneven playing field, and the hydropower industry enthusiastically welcomes a discussion of this issue, and eventually measures to rectify the situation. The IEA Hydropower Agreement has completed a major international study on the environmental and social impacts of hydropower, and one major component of this study was a Life Cycle Assessment and comparison of all the most important electricity generation technologies. (author)

  17. 78 FR 14528 - Mayo Hydropower, LLC, Avalon Hydropower, LLC; Notice of Application for Transfer of License, and...

    2013-03-06

    ... Energy Regulatory Commission Mayo Hydropower, LLC, Avalon Hydropower, LLC; Notice of Application for Transfer of License, and Soliciting Comments and Motions To Intervene On November 20, 2012, Mayo Hydropower, LLC (transferor) and Avalon Hydropower, LLC (transferee) filed an application for transfer of...

  18. Treatise on water hammer in hydropower standards and guidelines

    This paper reviews critical water hammer parameters as they are presented in official hydropower standards and guidelines. A particular emphasize is given to a number of IEC standards and guidelines that are used worldwide. The paper critically assesses water hammer control strategies including operational scenarios (closing and opening laws), surge control devices (surge tank, pressure regulating valve, flywheel, etc.), redesign of the water conveyance system components (tunnel, penstock), or limitation of operating conditions (limited operating range) that are variably covered in standards and guidelines. Little information is given on industrial water hammer models and solutions elsewhere. These are briefly introduced and discussed in the light of capability (simple versus complex systems), availability of expertise (in house and/or commercial) and uncertainty. The paper concludes with an interesting water hammer case study referencing the rules and recommendations from existing hydropower standards and guidelines in a view of effective water hammer control. Recommendations are given for further work on development of a special guideline on water hammer (hydraulic transients) in hydropower plants

  19. The impact of spatial variability of hydrogeological parameters - Monte Carlo calculations using SITE-94 data

    Pereira, A.; Broed, R. [AlbaNova Univ. Center, Stockholm (Sweden). Stockholm Center for Physics Astronomy and Biotechnology

    2002-03-01

    In this report, several issues related to the probabilistic methodology for performance assessments of repositories for high-level nuclear waste and spent fuel are addressed. Random Monte Carlo sampling is used to make uncertainty analyses for the migration of four nuclides and a decay chain in the geosphere. The nuclides studied are cesium, chlorine, iodine and carbon, and radium from a decay chain. A procedure is developed to take advantage of the information contained in the hydrogeological data obtained from a three-dimensional discrete fracture model as the input data for one-dimensional transport models for use in Monte Carlo calculations. This procedure retains the original correlations between parameters representing different physical entities, namely, between the groundwater flow rate and the hydrodynamic dispersion in fractured rock, in contrast with the approach commonly used that assumes that all parameters supplied for the Monte Carlo calculations are independent of each other. A small program is developed to allow the above-mentioned procedure to be used if the available three-dimensional data are scarce for Monte Carlo calculations. The program allows random sampling of data from the 3-D data distribution in the hydrogeological calculations. The impact of correlations between the groundwater flow and the hydrodynamic dispersion on the uncertainty associated with the output distribution of the radionuclides' peak releases is studied. It is shown that for the SITE-94 data, this impact can be disregarded. A global sensitivity analysis is also performed on the peak releases of the radionuclides studied. The results of these sensitivity analyses, using several known statistical methods, show discrepancies that are attributed to the limitations of these methods. The reason for the difficulties is to be found in the complexity of the models needed for the predictions of radionuclide migration, models that deliver results covering variation of several

  20. China's rising hydropower demand challenges water sector

    J. Liu; Zhao, D.; Gerbens-Leenes, P.W.; Guan, D.

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 109 m3 (Gm3), or 22% of China’s total water consumption. Ignoring the reservoir WF ...

  1. Hydropower

    Concerns over climate change and the Climate Change Levy are said to have created an upsurge in interest in hydroelectric power. The advantages of hydro are extolled and the lesser known factor of yield is explained. UK hydro companies have formed an exporters' network with the aim of increasing their contribution to the global demand for renewable energy. Ian Pope Associates have been busy in eastern Europe, especially on rehabilitation of hydro stations and training of local personnel. Similarly, EPD Consultants (part of the Pell Frischmann Group) have been busy in India, Albania and Kenya. Gilbert Gilkes and Gordon has recently supplied turbines in Guatemala and Thailand

  2. Change of avalanching parameters in the near zone of explosion site

    E. G. Mokrov

    2013-01-01

    Full Text Available Spatial variations of avalanche formation parameters in the relation with the explosive mass and its location have been experimentally studied. The charges were installed in five locations: on the ground, in the snow layer at a height of 0.6 m above the ground, on the snow surface, at a height of 1 m and 2 m above the snow surface. Mass of explosive was 0.5, 1, 2 and 4 kg. The experiments were in March 2012 on the Suoluayv plateau (600 m a.s.l. in Khibiny Mountains. Studies have shown that at explosion sites the disturbance of snow structure, its density and shear strength occurs throughout the whole depth of snow cover, depending on the structure and density of snow layers as well as the explosive mass and its location.

  3. Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site

    1993-10-01

    The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 [Public Law (PL) 95-6041]. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. The remedial action at the processing site will be conducted to remove the tailings and contaminated materials to meet the EPA bulk soil cleanup standards for surface and subsurface soils. The site areas disturbed by remedial action excavation will be either contoured or backfilled with radiologically uncontaminated soil and contoured to restore the site. The final contours will produce a final surface grade that will create positive drainage from the site.

  4. Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site

    The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 [Public Law (PL) 95-6041]. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. The remedial action at the processing site will be conducted to remove the tailings and contaminated materials to meet the EPA bulk soil cleanup standards for surface and subsurface soils. The site areas disturbed by remedial action excavation will be either contoured or backfilled with radiologically uncontaminated soil and contoured to restore the site. The final contours will produce a final surface grade that will create positive drainage from the site

  5. Point-charge calculation of quadrupolar parameters for bridging oxygen sites in vitreous silica: Structural implications

    The quadrupolar coupling constant Cq and the asymmetry parameter η for the bridging oxygen sites in vitreous silica structures derived via classical molecular dynamics simulation have been calculated using the point-charge lattice summation method. The results of these calculations indicate that while Cq is a function of both the Si-O-Si angle and the associated Si-O distances, η depends only on the Si-O-Si angle. The analytical forms of these functional dependences are found to be similar to those reported in previous studies based on ab initio calculations on small clusters. However, the magnitude of Cq is found to decrease with increasing Si-O distance in contrast with a reverse trend obtained in previous ab initio calculations on small clusters. The present results, when combined with the previously reported 17O nuclear magnetic resonance spectroscopic results for bridging oxygen sites in vitreous silica, imply a strong negative correlation between Si-O bond lengths and Si-O-Si bond angles in the glass structure. Such a negative correlation is consistent with the anomalous density variation in silica as well as with energetic considerations

  6. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and

  7. MOSE: optical turbulence and atmospherical parameters operational forecast at ESO ground-based sites. I: Overview and atmospherical parameters vertical stratification on [0-20] km

    Masciadri, E; Fini, L

    2013-01-01

    We present the overview of the MOSE project (MOdeling ESO Sites) aiming at proving the feasibility of the forecast of the classical atmospherical parameters (wind speed intensity and direction, temperature, relative humidity) and the optical turbulence OT (CN2 profiles and the most relevant integrated astro-climatic parameters derived from the CN2: the seeing, the isoplanatic angle, the wavefront coherence time) above the two ESO ground-based sites of Cerro Paranal and Cerro Armazones. The final outcome of the study is to investigate the opportunity to implement an automatic system for the forecast of these parameters at these sites. In this paper we present results related to the Meso-Nh model ability in reconstructing the vertical stratification of the atmospherical parameters along the 20 km above the ground. The very satisfactory performances shown by the model in reconstructing most of these parameters (and in particular the wind speed) put this tool of investigation as the most suitable to be used in as...

  8. Hydropower and biomass - a successful combination

    The paper contains numbers on the importance of biomass and hydropower in the energy balance of Austria. The importance of the CO2 taxes in the European Communities on the economics of different fuels is outlined. (Quittner)

  9. An analysis of Turkish hydropower policy

    Erdogdu, Erkan

    2011-01-01

    Over the last decade, Turkish electricity demand has increased more than 8% per annum as a result of economic development. Being one of the renewable energy sources par excellence, non-exhaustible, non-polluting and economically more attractive than other renewable sources, hydropower has turned out to be an important contributor to the future energy mix of the country. This paper deals with hydropower policies to meet increasing electricity demand for sustainable energy development in Turkey...

  10. Hydropower potential of the lower Vistula

    Michał Szydłowski; Romuald Szymkiewicz; Dariusz Gąsiorowski; Piotr Zima; Jakub Hakiel

    2015-01-01

    This paper presents an estimate analysis of the hydropower potential of the lower Vistula River from Warsaw to Gdańsk Bay. The calculations were made for a hydraulic model of the lower Vistula which takes into account potential development of barrages in a cascade system. Results obtained from the model simulations and from hydrological calculations were used to estimate the power of hydropower plants and the average annual energy output from the entire cascade system. The results of calcu...

  11. Hydropower generator and power system interaction

    Bladh, Johan

    2012-01-01

    After decades of routine operation, the hydropower industry faces new challenges. Large-scale integration of other renewable sources of generation in the power system accentuates the role of hydropower as a regulating resource. At the same time, an extensive reinvestment programme has commenced where many old components and apparatus are being refurbished or replaced. Introduction of new technical solutions in existing power plants requires good systems knowledge and careful consideration. Im...

  12. Risk management of hydropower development in China

    There is a rapidly increasing demand for hydropower in China. However, little research has been conducted to systematically investigate the overall aspects of hydropower development risks. With support of the data collected from a fieldwork survey, this study reports the multiple facets of hydropower development risks in China as perceived by main project participants. All groups have a common view on the criticality of safety, and the groups also have their own priorities, i.e., resettlement of migrants, incompetence of subcontractors, project delay, inadequate or incorrect design, premature failure of facilities and ecological and environmental impacts are the key risks to clients, whereas quality of work, financial related risks, reputation, and claims and disputes are the main concerns to contractors. A case study of Three Gorges Project further demonstrates that, hydropower development risks can be effectively managed by encouraging joint efforts of all participants to achieve the goals on producing renewable energy, reducing emissions of CO2, and providing important social/economical benefits. Future hydropower development should emphasize the interactions between project delivery, environmental, and economical processes to reach appropriate trade-offs among involving stakeholders, by adequately considering the inter-relations between project participants' risks as well as hydropower project's externalities on a broad view. - Highlights: • Largely attributed to unforeseen geology conditions, safety is critical in hydropower development. • Resettlement of migrants is the principal risk to clients, whereas quality of works is the first concern to contractors. • One group's risks are typically related to others', needing collaborative risk management by participants. • Three Gorges Project plays a key role on producing renewable energy, and providing social/economical benefits. • Hydropower development should emphasize the interactions between project

  13. National hydroelectric power resources study. Preliminary inventory of hydropower resources. Volume 1. Pacific Northwest region

    None

    1979-07-01

    The preliminary inventory and analysis procedures provide a comprehensive assessment of the undeveloped hydroelectric power potential in the US and determines which sites merit more thorough investigation. Over 5400 existing structures have been identified as having the physical potential to add hydropower plants or increase hydropower output thereby increasing our present hydropower capacity from a total of 64,000 MW to 158,000 MW and our energy from 280,000 GWH to 503,000 GWH. While the physical potential for this increase is clearly available, some of these projects will undoubtedly not satisfy more-detailed economic analysis as well as the institutional and environmental criteria which will be imposed upon them. Summary tables include estimates of the potential capacity and energy at each site in the inventory. In some cases, individual projects may be site alternatives to others in the same general location, when only one can be considered for hydropower development. The number of sites per state is identified, but specific information is included for only the sites in Alaska, Idaho, Oregon, and Washington in this first volume.

  14. Semipalatinsk test site: Parameters of radionuclide transfer to livestock and poultry products under actual radioactive contamination

    The IAEA document 'Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments' published in 2010 is one of the major sources of knowledge about the migration parameters of radionuclides in the agro-ecosystems that is necessary to assess the dose loads to the population. It is known from there that Sr and Cs transfer has been studied thoroughly, however the factors vary over a wide range. Few studies were conducted for Pu and Am transfer. It should be noted that the studies carried out in real conditions of radioactive contamination, i.e. under natural conditions is also very few. In this regard, since 2007 the territory of the former Semipalatinsk Test Site has been used for comprehensive radioecological studies, where the major radionuclides to be investigated are 90Sr, 137Cs, 239+240Pu, 241Am. The objects for these studies are birds and animals typical for the region, as well as products obtained from them (lamb, beef, horse meat, chicken, pork, cow's milk, mare's milk, eggs, chicken, chicken feathers, wool, leather). It should be noted that these products are the main agricultural goods that are available in these areas. The studies have been conducted with grazing animals in the most contaminated areas of the test site. Some groups of animals and birds were fed to contaminated feed, soil, contaminated water. Radionuclide intake by animal body with air were studied. Husbandry periods for animals and birds ranged from 1 to 150 days. The transfer parameters to cow and mare's milk have been investigated at single and prolonged intake of radionuclides, also their excretion dynamics has been studied. The studies revealed features of the radionuclide transfer into organs and tissues of animals and birds intaken with hay, water and soil. The results showed that the transfer factors vary up to one order. A relationship has been identified between distribution of radionuclides in organs and tissues, which makes it

  15. Semipalatinsk test site: Parameters of radionuclide transfer to livestock and poultry products under actual radioactive contamination

    Baigazinov, Z.; Lukashenko, S. [Institute of Radiation Safety and Ecology (Kazakhstan)

    2014-07-01

    The IAEA document 'Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments' published in 2010 is one of the major sources of knowledge about the migration parameters of radionuclides in the agro-ecosystems that is necessary to assess the dose loads to the population. It is known from there that Sr and Cs transfer has been studied thoroughly, however the factors vary over a wide range. Few studies were conducted for Pu and Am transfer. It should be noted that the studies carried out in real conditions of radioactive contamination, i.e. under natural conditions is also very few. In this regard, since 2007 the territory of the former Semipalatinsk Test Site has been used for comprehensive radioecological studies, where the major radionuclides to be investigated are {sup 90}Sr, {sup 137}Cs, {sup 239+240}Pu, {sup 241}Am. The objects for these studies are birds and animals typical for the region, as well as products obtained from them (lamb, beef, horse meat, chicken, pork, cow's milk, mare's milk, eggs, chicken, chicken feathers, wool, leather). It should be noted that these products are the main agricultural goods that are available in these areas. The studies have been conducted with grazing animals in the most contaminated areas of the test site. Some groups of animals and birds were fed to contaminated feed, soil, contaminated water. Radionuclide intake by animal body with air were studied. Husbandry periods for animals and birds ranged from 1 to 150 days. The transfer parameters to cow and mare's milk have been investigated at single and prolonged intake of radionuclides, also their excretion dynamics has been studied. The studies revealed features of the radionuclide transfer into organs and tissues of animals and birds intaken with hay, water and soil. The results showed that the transfer factors vary up to one order. A relationship has been identified between distribution of

  16. Hydropower: A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.

    McCoy, Gilbert A.

    1992-12-01

    The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

  17. Hydropower : A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.

    McCoy, Gilbert A.

    1992-12-01

    The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

  18. Joint irrigation districts hydropower assessment study. Final feasibility assessment report. Volume I

    None

    1979-02-01

    In August 1978, the United States Department of Energy and the Turlock Irrigation District entered into a cooperative agreement for a Joint District's Low-Head Hydropower Assessment Study. The purpose of the agreement was to carry out a study of the hydropower potential at sites within the borders of the Turlock, Merced, South San Joaquin, and Oakdale Irrigation Districts in California. The required data were gathered and analyzed. The results of this study indicate the total potential small hydropower capacity with the Joint Districts is 19,560 kW installed with an annual energy generation of 68,561,800 kWh. This is equivalent to oil-savings of 118,616 barrels per y.

  19. Identification of shaft orbit of hydropower unit by simultaneous optimization of feature parameters and support vector machine based on hybrid artificial bee colony%基于混合蜂群算法特征参数同步优化支持向量机的水电机组轴心轨迹识别方法研究

    肖剑; 周建中; 李超顺; 王常青; 张孝远; 肖汉

    2013-01-01

    In the research of identification of shaft orbit of hydropower generating unit, the selection of feature parameter in traditional SVM system is not adaptive, which results in lower classification performance and long computation time. Aiming at the problems above, this paper proposes a novel method to identify the shaft orbit based on HABC-SVM. Artificial bee colony is introduced to the solution of SVM identification optimal model, and the search strategy, food source and update equation of artificial bee swarm are improved. Through the simulation experiment, four typical samples of shaft orbit of hydraulic turbines are obtained, the 19 kinds of feature parameters extracted from shaft orbit and parameters of SVM are optimized synchronously, and the improved HABC algorithm is compared with PSO-SVM algorithm and GA-SVM algorithm. The results show that HABC-SVM has good adaptability and classification accuracy, can acquire the optimal solutions of SVM parameters and feature subset synchronously, enhance the performance of classifier, and improve the precision of identification of shaft orbit, which has some guidance significance to fault diagnosis of hydropower generating unit.%在水电机组轴心轨迹识别研究中,为解决传统支持向量机方法中特征参数无法自适应选择而导致分类性能不高、计算时间过长等问题,提出混合人工蜜蜂群算法特征参数同步优化支持向量机(HABC-SVM)的轴心轨迹识别方法。将人工蜜蜂群算法引入到支持向量机识别优化模型的求解中,对人工蜜蜂群从搜索策略、蜜源编码、更新策略等方面进行了改进。通过仿真试验获取水电机组的四类典型轴心轨迹样本,对轴心轨迹中提取的19种特征参数和支持向量机参数进行了同步优化,将改进HABC算法与PSO-SVM算法和GA-SVM算法进行了对比。研究结果表明HABC-SVM具有良好的自适应性和分类精度,可以同步获取支持向量机参

  20. Hydrodynamic parameters estimation from self-potential data in a controlled full scale site

    Chidichimo, Francesco; De Biase, Michele; Rizzo, Enzo; Masi, Salvatore; Straface, Salvatore

    2015-03-01

    A multi-physical approach developed for the hydrodynamic characterization of porous media using hydrogeophysical information is presented. Several pumping tests were performed in the Hydrogeosite Laboratory, a controlled full-scale site designed and constructed at the CNR-IMAA (Consiglio Nazionale delle Ricerche - Istituto di Metodologia per l'Analisi Ambientale), in Marsico Nuovo (Basilicata Region, Southern Italy), in order to obtain an intermediate stage between laboratory experiments and field survey. The facility consists of a pool, used to study water infiltration processes, to simulate the space and time dynamics of subsurface contamination phenomena, to improve and to find new relationship between geophysical and hydrogeological parameters, to test and to calibrate new geophysical techniques and instruments. Therefore, the Hydrogeosite Laboratory has the advantage of carrying out controlled experiments, like in a flow cell or sandbox, but at field comparable scale. The data collected during the experiments have been used to estimate the saturated hydraulic conductivity ks [ms-1] using a coupled inversion model working in transient conditions, made up of the modified Richards equation describing the water flow in a variably saturated porous medium and the Poisson equation providing the self-potential ϕ [V], which naturally occurs at points of the soil surface owing to the presence of an electric field produced by the motion of underground electrolytic fluids through porous systems. The result obtained by this multi-physical numerical approach, which removes all the approximations adopted in previous works, makes a useful instrument for real heterogeneous aquifer characterization and for predictive analysis of its behavior.

  1. Harnessing Hydropower: The Earth's Natural Resource

    None

    2011-04-01

    This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Nature’s Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

  2. A Guide for Local Benefit Sharing in Hydropower Projects

    Wang, Chaogang

    2012-01-01

    Local benefit sharing in hydropower projects can be defined as the systematic efforts by project proponents to sustainably benefit local communities affected by hydropower investments. Benefit sharing is a promising approach for implementing hydropower projects sustainably, and is emerging as a supplement to the requirements of compensation and mitigation. Benefit sharing can provide equit...

  3. 75 FR 16456 - Inglis Hydropower, LLC; Notice Soliciting Scoping Comments

    2010-04-01

    ... Energy Regulatory Commission Inglis Hydropower, LLC; Notice Soliciting Scoping Comments March 26, 2010.... c. Date filed: July 22, 2009. d. Applicant: Inglis Hydropower, LLC. e. Name of Project: Inglis Hydropower Project. f. Location: The proposed project would be located at the existing Inglis Bypass...

  4. Supporting Hydropower : An Overview of the World Bank Group's Engagement

    Rex, William; Foster, Vivien; Lyon, Kimberly; Bucknall, Julia; Liden, Rikard

    2014-01-01

    Hydropower development makes an essential contribution to reducing poverty, boosting shared prosperity, and improving sustainability. Water storage associated with some hydropower projects can also make important contributions to water and food security and to climate resilience. The World Bank Group (WBG) thus uses multiple instruments to support sustainable and responsible hydropower pro...

  5. Hydropower potential of the lower Vistula

    Michał Szydłowski

    2015-03-01

    Full Text Available This paper presents an estimate analysis of the hydropower potential of the lower Vistula River from Warsaw to Gdańsk Bay. The calculations were made for a hydraulic model of the lower Vistula which takes into account potential development of barrages in a cascade system. Results obtained from the model simulations and from hydrological calculations were used to estimate the power of hydropower plants and the average annual energy output from the entire cascade system. The results of calculations indicate significant energy benefits resulting from the development of a cascade of hydropower plants in the lower Vistula. This study does not discuss the cascade project’s economic viability or other aspects of its development (inland waterways, flood control, etc..

  6. Development potential for hydropower; Ausbaupotential der Wasserkraft

    Laufer, F.; Groetzinger, S.; Peter, M.; Schmutz, A.

    2004-11-15

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the potential for the development of hydropower in Switzerland. The report updates the energy perspectives made ten years earlier. An overview of Swiss electricity production and consumption is presented and the proportion provided by hydropower is noted. Figures on installed capacity and import/export quantities are presented and discussed. Technological developments and the economical frameworks involved are discussed, as are regulatory measures that can be taken. Theoretical and technically realisable potentials for increased use of hydropower are discussed. The methods used to do this are examined. Strategies and measures to be taken are listed and discussed. An appendix includes data sheets on power plant modelling, including examples

  7. Hydropower in Sweden : An investigation of the implications of adding detail to the modelling of hydropower in OSeMOSYS

    Flood, Cecilia

    2015-01-01

    The purpose of this thesis is to generate a deeper understanding of the representation of hydropower in long-term models. This is done by mapping and modelling (cascading) hydropower in Sweden with the Open Source energy MOdelling SYStem (OSeMOSYS). The first part of the thesis builds on a literature review and provides an introduction to hydropower in Sweden. The second part focuses on implementing the storage equations in OSeMOSYS. These are applied by modelling hydropower at various levels...

  8. Relationship between environmental parameters and Pinus sylvestris L. site index in forest plantations in northern Spain acidic plateau

    Bueis T

    2016-06-01

    Full Text Available The assessment of forest productivity at early stages of stand development may help to define the most appropriate silviculture treatment to be applied for each stand. Site index (dominant height at a reference age is a useful tool for forest productivity estimation. The aim of this study was to develop a model to predict site index for Scots pine (Pinus sylvestris L. plantations in northern Spain acidic plateau by using soil (physical, chemical and biochemical, climatic and physiographic parameters. To meet this objective, data from 35 stands classified into three different site quality classes and 63 soil, climatic and physiographic parameters were examined in order to develop a discriminant model. After selecting 12 discriminant models which were biologically consistent and presented the higher cross-validated rate of correct classification, a model including four parameters (latitude, inorganic Al, porosity and microbial biomass carbon as predictors was chosen. The discriminant model classified 71% of cases correctly and no inferior-quality stands were misassigned to the highest quality class. Soil and physiographic parameters included in the above model are easily obtainable in the field or by simple laboratory analysis, thus our results can be easily integrated in operational forestry to determine site quality.

  9. Water quality parameters and total aerobic bacterial and vibrionaceae loads in eastern oysters (Crassostrea virginica) from oyster gardening sites

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae conc...

  10. Minimizing water consumption when producing hydropower

    Leon, A. S.

    2015-12-01

    In 2007, hydropower accounted for only 16% of the world electricity production, with other renewable sources totaling 3%. Thus, it is not surprising that when alternatives are evaluated for new energy developments, there is strong impulse for fossil fuel or nuclear energy as opposed to renewable sources. However, as hydropower schemes are often part of a multipurpose water resources development project, they can often help to finance other components of the project. In addition, hydropower systems and their associated dams and reservoirs provide human well-being benefits, such as flood control and irrigation, and societal benefits such as increased recreational activities and improved navigation. Furthermore, hydropower due to its associated reservoir storage, can provide flexibility and reliability for energy production in integrated energy systems. The storage capability of hydropower systems act as a regulating mechanism by which other intermittent and variable renewable energy sources (wind, wave, solar) can play a larger role in providing electricity of commercial quality. Minimizing water consumption for producing hydropower is critical given that overuse of water for energy production may result in a shortage of water for other purposes such as irrigation, navigation or fish passage. This paper presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head and the desired power production. As part of this analysis, various dimensionless relationships between power production, flow discharge and head losses were derived. These relationships were used to withdraw general insights on determining optimal flow discharge and

  11. The sustainability of hydropower projects in Brazil

    de Methodio Maranhao Neto, Gil; Yana, Laurent

    2010-09-15

    The construction of hydropower plants unquestionably impacts the environment and communities. But countries such as Brazil have been able to build up a sophisticated socio-environmental legislation and institutions as well as a democratic and participative licensing process to protect the nature and the population affected. In some cases, plants greatly contribute towards the creation of local welfare to the population as well as good environmental practices. As a good example of best practices on socio-environmental standards, we will analyze Jirau Hydropower Project, currently under construction on the Madeira River, north of Brazil.

  12. Groundwater numerical modelling of the Fjaellveden study site - evaluation of parameter variations

    The sensitivity/uncertainty of the hydraulic conductivity distribution in crystalline rocks is considered at the Fjaellveden study site - a site included in the Swedish site selection programme for final storage of spent nuclear fuel. A three-dimensional FEM-model assuming steady-state flow with constant fluid properties under saturated conditions is used. The bedrock of the site is divided into three hydraulic units; rock mass, local and regional fracture zones. The data set of hydraulic conductivity of each unit has been treated statistically in various ways, reflecting different aspects of the physical conditions of the site. A total of nine cases have been prepared, all based on 214 data points. (orig./HP)

  13. MOSE: optical turbulence and atmospherical parameters operational forecast at ESO ground-based sites. II: atmospherical parameters in the surface layer [0-30] m

    Lascaux, Franck; Fini, Luca

    2013-01-01

    This article is the second of a series of articles aiming at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature, relative humidity) and the optical turbulence (Cn2 and the derived astro-climatic parameters like seeing, isoplanatic angle, wavefront coherence time...). This study is done in the framework of the MOSE project, and focused above the two ESO ground-bases sites of Cerro Paranal and Cerro Armazones. In this paper we present the results related to the Meso-Nh model ability in reconstructing the surface layer atmospherical parameters (wind speed intensity, wind direction and absolute temperature, [0-30] m a.g.l.). The model reconstruction of all the atmospherical parameters in the surface layer is very satisfactory. For the temperature, at all levels, the RMSE (Root Mean Square Error) is inferior to 1{\\deg}C. For the wind speed, it is ~2 m/s, and for the wind direction, it is in the ran...

  14. Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems

    A. Tilmant; Q. Goor; Pinte, D.

    2009-01-01

    This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water, which remains to a large extent independent of the availability of water in the basin. The opp...

  15. Effects on water quality from mud clearance operations in the Pezze' hydropower basin (Trentino, Italy)

    The present paper describes dynamic concentration for various parameters, that have been monitored through both continuous and instant samplings, during maintenance operations (mud deposit clearance) in a hydropower basin along Torrent Avisio in Trentino region, Italy. Aim of the work is to demonstrate that, during such operations, an organic water pollution occur besides turbidity. The former is well expressed by a marked value increment of different parameters, as total phosphorus, ammonium and organic matter

  16. Better estimation of protein-DNA interaction parameters improve prediction of functional sites

    O'Flanagan Ruadhan A

    2008-12-01

    Full Text Available Abstract Background Characterizing transcription factor binding motifs is a common bioinformatics task. For transcription factors with variable binding sites, we need to get many suboptimal binding sites in our training dataset to get accurate estimates of free energy penalties for deviating from the consensus DNA sequence. One procedure to do that involves a modified SELEX (Systematic Evolution of Ligands by Exponential Enrichment method designed to produce many such sequences. Results We analyzed low stringency SELEX data for E. coli Catabolic Activator Protein (CAP, and we show here that appropriate quantitative analysis improves our ability to predict in vitro affinity. To obtain large number of sequences required for this analysis we used a SELEX SAGE protocol developed by Roulet et al. The sequences obtained from here were subjected to bioinformatic analysis. The resulting bioinformatic model characterizes the sequence specificity of the protein more accurately than those sequence specificities predicted from previous analysis just by using a few known binding sites available in the literature. The consequences of this increase in accuracy for prediction of in vivo binding sites (and especially functional ones in the E. coli genome are also discussed. We measured the dissociation constants of several putative CAP binding sites by EMSA (Electrophoretic Mobility Shift Assay and compared the affinities to the bioinformatics scores provided by methods like the weight matrix method and QPMEME (Quadratic Programming Method of Energy Matrix Estimation trained on known binding sites as well as on the new sites from SELEX SAGE data. We also checked predicted genome sites for conservation in the related species S. typhimurium. We found that bioinformatics scores based on SELEX SAGE data does better in terms of prediction of physical binding energies as well as in detecting functional sites. Conclusion We think that training binding site detection

  17. External effects of hydropower in Switzerland

    The use of hydropower has implications on the environment and the socio-economic system. All these effects have a certain value, either in a positive sense as benefits or in a negative sense as damages. Many of these effects are known, quantified and even internalised, that is, the beneficiary pays for his or her benefits and the sufferer gets a compensation. Yet, this is not the case with all implications. In this case, the effects are so-called externalities, costs or benefits which are not included in the price of the product. Prices for products are a good measure to promote the sustainable development of markets, as long as they contain all externalities, that is, as long as they are 'true' prices. Therefore, the inclusion of externalities in the evaluation of product costs became an important issue during the last years. The study 'External Effects of Hydropower in Switzerland' is an attempt to identify and quantify externalities of hydropower and to attribute a monetary value to all these effects. In a first part, the study gives a list of possible externalities and analyses different methods to quantify and value these effects. The evaluation is then based on a number of specific plants and projects, mainly with available environmental impact studies and project data including the construction phase. In order to extend the result on the total number of Swiss hydropower plants, an extrapolation is done based on selected plant criteria for each effect. (author)

  18. Peru : Overcoming the Barriers to Hydropower

    World Bank

    2010-01-01

    Hydropower has been the major source of electricity in Peru, traditionally supplying more than 80 percent of electricity requirements, and serving as a source of independent generation for major mines and industries. With the development of natural gas in the early 1990s, and the opening of the Camisea pipeline, the Government of Peru's (GOP's) attention turned to providing incentives for ...

  19. Hydropower and the world's energy future

    The potential role of hydropower in the context of world-wide demographic growth and increasing demand for energy, and the benefits inherent in hydroelectric power in comparison with other energy options are discussed. Environmental and social impacts, and examples of mitigation measures are reviewed. Recommendations regarding best practices in the future development of hydroelectric power projects proposed

  20. Preliminary assessment of several parameters to measure and compare usefulness of the CEOS reference pseudo-invariant calibration sites

    Chander, Gyanesh; Angal, Amit; Xiong, Xiaoxiong; Helder, Dennis L.; Mishra, Nischal; Choi, Taeyoung; Wu, Aisheng

    2010-01-01

    Test sites are central to any future quality assurance and quality control (QA/QC) strategy. The Committee on Earth Observation Satellites (CEOS) Working Group for Calibration and Validation (WGCV) Infrared Visible Optical Sensors (IVOS) worked with collaborators around the world to establish a core set of CEOS-endorsed, globally distributed, reference standard test sites (both instrumented and pseudo-invariant) for the post-launch calibration of space-based optical imaging sensors. The pseudo-invariant calibration sites (PICS) have high reflectance and are usually made up of sand dunes with low aerosol loading and practically no vegetation. The goal of this paper is to provide preliminary assessment of "several parameters" than can be used on an operational basis to compare and measure usefulness of reference sites all over the world. The data from Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Earth Observing-1 (EO-1) Hyperion sensors over the CEOS PICS were used to perform a preliminary assessment of several parameters, such as usable area, data availability, top-of-atmosphere (TOA) reflectance, at-sensor brightness temperature, spatial uniformity, temporal stability, spectral stability, and typical spectrum observed over the sites.

  1. Information on Hydrologic Conceptual Models, Parameters, Uncertainty Analysis, and Data Sources for Dose Assessments at Decommissioning Sites

    Meyer, Philip D.; Gee, Glendon W.; Nicholson, Thomas J.

    2000-02-28

    This report addresses issues related to the analysis of uncertainty in dose assessments conducted as part of decommissioning analyses. The analysis is limited to the hydrologic aspects of the exposure pathway involving infiltration of water at the ground surface, leaching of contaminants, and transport of contaminants through the groundwater to a point of exposure. The basic conceptual models and mathematical implementations of three dose assessment codes are outlined along with the site-specific conditions under which the codes may provide inaccurate, potentially nonconservative results. In addition, the hydrologic parameters of the codes are identified and compared. A methodology for parameter uncertainty assessment is outlined that considers the potential data limitations and modeling needs of decommissioning analyses. This methodology uses generic parameter distributions based on national or regional databases, sensitivity analysis, probabilistic modeling, and Bayesian updating to incorporate site-specific information. Data sources for best-estimate parameter values and parameter uncertainty information are also reviewed. A follow-on report will illustrate the uncertainty assessment methodology using decommissioning test cases.

  2. Information on Hydrologic Conceptual Models, Parameters, Uncertainty Analysis, and Data Sources for Dose Assessments at Decommissioning Sites

    This report addresses issues related to the analysis of uncertainty in dose assessments conducted as part of decommissioning analyses. The analysis is limited to the hydrologic aspects of the exposure pathway involving infiltration of water at the ground surface, leaching of contaminants, and transport of contaminants through the groundwater to a point of exposure. The basic conceptual models and mathematical implementations of three dose assessment codes are outlined along with the site-specific conditions under which the codes may provide inaccurate, potentially nonconservative results. In addition, the hydrologic parameters of the codes are identified and compared. A methodology for parameter uncertainty assessment is outlined that considers the potential data limitations and modeling needs of decommissioning analyses. This methodology uses generic parameter distributions based on national or regional databases, sensitivity analysis, probabilistic modeling, and Bayesian updating to incorporate site-specific information. Data sources for best-estimate parameter values and parameter uncertainty information are also reviewed. A follow-on report will illustrate the uncertainty assessment methodology using decommissioning test cases

  3. Site environmental report for Calendar Year 1994 on radiological and nonradiological parameters

    NONE

    1995-06-30

    Battelle Memorial Institute`s nuclear research facilities are currently being maintained in a surveillance and maintenance (S&M) mode with continual decontamination and decommissioning (D&D) activities being conducted under Department of Energy (DOE) Contract W-7405-ENG-92. These activities are referred to under the Contract as the Battelle Columbus Laboratories Decommissioning Project (BCLDP). Operations referenced in this report are performed in support of S&M and D&D activities. Battelle`s King Avenue facility is not considered in this report to the extent that the West Jefferson facility is. The source term at the King Avenue site is a small fraction of the source term at the West Jefferson site. Off site levels of radionuclides that could be attributed to the west Jefferson and King Avenue nuclear operations wereindistinguishable from background levels at specific locations where air, water, and direct radiation measurements were performed. Environmental monitoring continued to demonstrate compliance by Battelle with federal, state and local regulations. Routine, nonradiological activities performed include monitoring liquid effluents and monitoring the ground water system for the West Jefferson North site. Samples of various environmental media including air, water, grass, fish, field and garden crops, sediment and soil were collected from the region surrounding the two sites and analyzed.

  4. Research on Power Benefits Assessment of SiPing Hydropower Station under the Operation of Sanliping Hydropower Station

    Yu, Tian; Xiaohui, Lei; Qian, Yu; Jialan, Sun

    In order to research on the effect on the hydropower benefits of SiPing Hydropower station by SaLiPing hydropower station in operation, cascaded optimal operation model has been established, with the objective function of maximizing minimum power and maximizing the generated energy capacity respectively, 0.5 times power probability is selected as system power constraint. The hydropower benefits in SiPing hydropower station is calculated before and after SanLiPing in operation. The result shows that after SanLiPing in operation, the hydropower benefits in SiPing are improved through the compensation of SanLiPing, as well as its flood control condition, brought huge economic benefits to cascaded hydropower stations.

  5. Site-dependent variation of spectroscopic relaxation parameters in Nd glasses

    Laser-induced fluorescence line-narrowing has revealed that the emission properties of Nd3+ in various glasses are strongly dependent on the nature of the site. In a mixed anion glass, the multiplicity of ligand combinations causes additional complications. The spectral and kinetic manifestations of these are presented and discussed

  6. BCLDP site environmental report for calendar year 1997 on radiological and nonradiological parameters

    Battelle Memorial Institute currently maintains its retired nuclear research facilities in a surveillance and maintenance (S and M) mode and continues decontamination and decommissioning (D and D) activities. The activities are referred to as the Battelle Columbus Laboratories Decommissioning Project (BCLDP). Operations reference in this report are performed in support of S and M and D and D activities. The majority of this report is devoted to discussion of the West Jefferson facility, because the source term at this facility is larger than the source term at Battelle's King Avenue site. The contamination found at the King Avenue site consists of small amounts of residual radioactive material in solid form, which has become embedded or captured in nearby surfaces such as walls, floors, ceilings, drains, laboratory equipment, and soils. By the end of calendar year (CY) 1997, most remediation activities were completed at the King Avenue site. The contamination found at the West Jefferson site is the result of research and development activities with irradiated materials. During CY 1997, multiple tests at the West Jefferson Nuclear Sciences Area found no isotopes present above the minimum detectable activity (MDA) for air releases or for liquid discharges to Big Darby Creek. Data obtained from downstream sampling locations were statistically indistinguishable from background levels

  7. BCLDP site environmental report for calendar year 1997 on radiological and nonradiological parameters

    Fry, J.

    1998-09-30

    Battelle Memorial Institute currently maintains its retired nuclear research facilities in a surveillance and maintenance (S and M) mode and continues decontamination and decommissioning (D and D) activities. The activities are referred to as the Battelle Columbus Laboratories Decommissioning Project (BCLDP). Operations reference in this report are performed in support of S and M and D and D activities. The majority of this report is devoted to discussion of the West Jefferson facility, because the source term at this facility is larger than the source term at Battelle`s King Avenue site. The contamination found at the King Avenue site consists of small amounts of residual radioactive material in solid form, which has become embedded or captured in nearby surfaces such as walls, floors, ceilings, drains, laboratory equipment, and soils. By the end of calendar year (CY) 1997, most remediation activities were completed at the King Avenue site. The contamination found at the West Jefferson site is the result of research and development activities with irradiated materials. During CY 1997, multiple tests at the West Jefferson Nuclear Sciences Area found no isotopes present above the minimum detectable activity (MDA) for air releases or for liquid discharges to Big Darby Creek. Data obtained from downstream sampling locations were statistically indistinguishable from background levels.

  8. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  9. Environmentally feasible potential for hydropower development regarding environmental constraints

    In addition to technical and economical reasons, environmental impacts are becoming an increasingly important issue in the policy making of hydropower development. According to different spatial scales, environmental impacts of hydropower projects can be divided into environmental impacts around a plant and environmental impacts downstream. The former can be transformed into a uniformed quantification based on CO2 equivalent (CO2-e), while the latter can be quantified in terms of reduced downstream flow. Environmental constraints around a plant are presented as the minimum production of environmental impacts around a plant, while those downstream are presented as not affecting the downstream environmental flow requirements. Based on five large hydropower projects (LHPs) and 10 small hydropower projects (SHPs) cases in Tibet, China, LHPs have greater environmental impacts around a plant when compared with SHP, but the opposite is true for downstream environmental impacts. For environmental constraints around a plant and downstream, the environmentally feasible potential for hydropower development on the Lhasa River is 398.3 MW, which accounts for 15.6% of its theoretical potential, while the optimized hydropower mode choice is 285.7 MW for LHP and 112.6 MW for SHP. Environmentally feasible potential aims to balance hydropower generation with environmental protection, and tends to maximize the low carbon attributes of hydropower. - Highlights: • We propose an environmentally feasible potential (EFP) for hydropower development. • EFP depends on environmental constraints (EC) around a plant and EC downstream. • Environmentally feasible hydropower potential on the Lhasa River is 398.3 MW

  10. BASELINE PARAMETER UPDATE FOR HUMAN HEALTH INPUT AND TRANSFER FACTORS FOR RADIOLOGICAL PERFORMANCE ASSESSMENTS AT THE SAVANNAH RIVER SITE

    Coffield, T; Patricia Lee, P

    2007-01-31

    The purpose of this report is to update parameters utilized in Human Health Exposure calculations and Bioaccumulation Transfer Factors utilized at SRS for Performance Assessment modeling. The reason for the update is to utilize more recent information issued, validate information currently used and correct minor inconsistencies between modeling efforts performed in SRS contiguous areas of the heavy industrialized central site usage areas called the General Separations Area (GSA). SRS parameters utilized were compared to a number of other DOE facilities and generic national/global references to establish relevance of the parameters selected and/or verify the regional differences of the southeast USA. The parameters selected were specifically chosen to be expected values along with identifying a range for these values versus the overly conservative specification of parameters for estimating an annual dose to the maximum exposed individual (MEI). The end uses are to establish a standardized source for these parameters that is up to date with existing data and maintain it via review of any future issued national references to evaluate the need for changes as new information is released. These reviews are to be added to this document by revision.

  11. Forecasts of the atmospherical parameters close to the ground at the LBT site in the context of the ALTA project

    Turchi, Alessio; Fini, Luca

    2016-01-01

    In this paper we study the abilities of an atmospherical mesoscale model in forecasting the classical atmospherical parameters relevant for astronomical applications at the surface layer (wind speed, wind direction, temperature, relative humidity) on the Large Binocular Telescope (LBT) site - Mount Graham, Arizona. The study is carried out in the framework of the ALTA project aiming at implementing an automated system for the forecasts of atmospherical parameters (Meso-Nh code) and the optical turbulence (Astro-Meso-Nh code) for the service-mode operation of the LBT. The final goal of such an operational tool is to provide predictions with high time frequency of atmospheric and optical parameters for an optimized planning of the telescope operation (dome thermalization, wind-dependent dome orientation, observation planning based on predicted seeing, adaptive optics optimization, etc...). Numerical simulations are carried out with the Meso-Nh and Astro-Meso-Nh codes, which were proven to give excellent results...

  12. Fixed-Parameter Algorithm for General Pedigrees with a Single Pair of Sites

    Doan, Duong D.; Evans, Patricia A.

    The problem of computing the minimum number of recombination events for general pedigrees with two sites for all members is investigated. We show that this NP-hard problem can be parametrically reduced to the Bipartization by Edge Removal problem and therefore can be solved by an O(2 k ·n 2) exact algorithm, where n is the number of members and k is the number of recombination events.

  13. Effect of saline soil parameters on endo mycorrhizal colonisation of dominant halophytes in four Hungarian sites

    Fuzy, A.; Biro, B.; Toth, T.

    2010-07-01

    Soil and root samples were collected from the rhizosphere of dominant halophytes (Artemisia santonicum, Aster tripolium, Festuca pseudovina, Lepidium crassifolium, Plantago maritima and Puccinellia limosa) at four locations with saline soils in Hungary. The correlations- between arbuscular mycorrhiza (AM) fungal colonisation parameters (% colonisation, % arbuscules) and soil physical, chemical and biological parameters were determined Endomycorrhiza colonisation was found to be negatively correlated with the electric conductivity of the soil paste, the salt-specific ion concentrations and the cation exchange capacity, showing the sensitivity of AM fungi at increasing salt concentrations, independently of the types of salt-specific anions. A positive correlation was detected between the mycorrhiza colonisation and the abundance of oligotroph bacteria known to be the less variable and more stable (k-strategist) group. This fact and the negative correlation found with the humus content underlines the importance of nutrient availability and the limitations of the symbiotic interactions in stressed saline or sodic soils. (Author) 29 refs.

  14. Optimal sizing of a run-of-river small hydropower plant

    The sizing of a small hydropower plant of the run-of-river type is very critical for the cost effectiveness of the investment. In the present work, a numerical method is used for the optimal sizing of such a plant that comprises two hydraulic turbines operating in parallel, which can be of different type and size in order to improve its efficiency. The study and analysis of the plant performance is conducted using a newly developed evaluation algorithm that simulates in detail the plant operation during the year and computes its production results and economic indices. A parametric study is performed first in order to quantify the impact of some important construction and operation factors. Next, a stochastic evolutionary algorithm is implemented for the optimization process. The examined optimization problem uses data of a specific site and is solved in the single and two-objective modes, considering, together with economic, some additional objectives, as maximization of the produced energy and the best exploitation of the water stream potential. Analyzing the results of various optimizations runs, it becomes possible to identify the most advantageous design alternatives to realize the project. It was found that the use of two turbines of different size can enhance sufficiently both the energy production of the plant and the economic results of the investment. Finally, the sensitivity of the plant performance to other external parameters can be easily studied with the present method, and some indicative results are given for different financial or hydrologic conditions

  15. Site-specific and multielement approach to the determination of liquid-vapor isotope fractionation parameters. The case of alcohols

    Isotope fractionation phenomena occurring at the natural abundance level in the course of liquid-vapor transformation have been investigated by using the SNIF-NMR method (site-specific natural isotope fractionation studied by NMR) which has a unique capability of providing simultaneous access to fractionation parameters associated with different molecular isotopomers. This new approach has been combined with the determination of overall carbon and hydrogen fractionation effects by isotope ratio mass spectrometry (IRMS). The results of distillation and evaporation experiments of alcohols performed in technical conditions of practical interest have been analyzed according to the Rayleigh-type model. In order to check the performance of the column, unit fractionation factors were measured beforehand for water and for the hydroxylic sites of methanol and ethanol for which liquid-vapor equilibrium constants were already known. Inverse isotope effects are determined in distillation experiments for the overall carbon isotope ratio and for the site-specific hydrogen isotope ratios associated with the methyl and methylene sites of methanol and ethanol. In contrast, normal isotope effects are produced by distillation for the hydroxylic sites and by evaporation for all the isotopic ratios

  16. Site-specific and multielement approach to the determination of liquid-vapor isotope fractionation parameters. The case of alcohols

    Moussa, I.; Naulet, N.; Martin, M.L.; Martin, G.J. (Universite de Nantes (France))

    1990-10-18

    Isotope fractionation phenomena occurring at the natural abundance level in the course of liquid-vapor transformation have been investigated by using the SNIF-NMR method (site-specific natural isotope fractionation studied by NMR) which has a unique capability of providing simultaneous access to fractionation parameters associated with different molecular isotopomers. This new approach has been combined with the determination of overall carbon and hydrogen fractionation effects by isotope ratio mass spectrometry (IRMS). The results of distillation and evaporation experiments of alcohols performed in technical conditions of practical interest have been analyzed according to the Rayleigh-type model. In order to check the performance of the column, unit fractionation factors were measured beforehand for water and for the hydroxylic sites of methanol and ethanol for which liquid-vapor equilibrium constants were already known. Inverse isotope effects are determined in distillation experiments for the overall carbon isotope ratio and for the site-specific hydrogen isotope ratios associated with the methyl and methylene sites of methanol and ethanol. In contrast, normal isotope effects are produced by distillation for the hydroxylic sites and by evaporation for all the isotopic ratios.

  17. Reliability validation of hydropower units of high-head developments

    G.L. Kozinets

    2012-08-01

    Full Text Available Throughout the development of the hydropower special attention was paid to the formation of a theoretical framework and methods of parameters and operating modes of powerhouses study. Under current design standards mathematical modeling of powerhouse is performed in two-dimensional for the axisymmetric problem. Up to now this method of simulation in Russia is the determining, although it has long lagged behind the capabilities of modern universal software of finite element analysis.The article presents analysis of the mathematical modeling methods for powerhouses of high-head hydroelectric power plants. Statement of the problem of three-dimensional modeling of the object – powerhouse is given. The procedure for multilayer three-dimensional modeling of water-conveyance conduits is presented. Outlined are the advantages of detailed numerical models of powerhouses in the context of their reliability verification.

  18. Change of avalanching parameters in the near zone of explosion site

    E. G. Mokrov; N. V. Barashev

    2015-01-01

    Spatial variations of avalanche formation parameters in the relation with the explosive mass and its location have been experimentally studied. The charges were installed in five locations: on the ground, in the snow layer at a height of 0.6 m above the ground, on the snow surface, at a height of 1 m and 2 m above the snow surface. Mass of explosive was 0.5, 1, 2 and 4 kg. The experiments were in March 2012 on the Suoluayv plateau (600 m a.s.l.) in Khibiny Mountains. Studies have shown that a...

  19. Environmental certification for small hydropower plants

    This report for the Swiss Federal Institute for Environmental Science and Technology describes product-differentiation options for small hydropower plant in Switzerland and proposes a form of differentiation based on ecological characteristics as a promising market strategy. The labels created in various countries to assure customers of the environmental compatibility of 'green' power production are looked at. In particular, the implications for small hydropower plant associated with the Swiss green power labelling procedure introduced by the Association for the Promotion of Environmentally Sound Electricity (VUE) are discussed. The report proposes a simplified procedure for these small power stations and presents a sample calculation for the overall costs of certification. The report is rounded off with four detailed case studies in which the necessary upgrades to the plant and associated costs are discussed in detail

  20. Geological and geophysical techniques for development of siting and design parameters

    It appears that the USNRC has made much of lessons learned from nuclear power plant licensing. These lessons, together with the concerned participation of the Earth Science community at large, have given NRC a basis for what is perceived by this commentator as being as much as we in the waste management community could ask for. Much is granted to us in freedom to apply good judgement without the bounds of prescription; much is asked of us toward delivering the most diligent of work product. The licenseability and functionality of each low-level radioactive waste disposal facility will be determined by the geologic environment in which it is to be placed, and by the expertise and goodwill of the scientists and engineers involved in its design and licensing. Geologic site characterization is the first and most basic step in that process. The geological and geophysical means by which this characterization is accomplished must be chosen and employed in the full mutuality of the fact that geology governs geophysical response and that geophysical interpretation is absolutely essential in characterizing the length, breadth, and depth of each site. Each step in the employment of geological and geophysical techniques must be made with total incorporation of related data and findings. Severe introspection and questioning must be accomplished immediately on the development of each line of evidence, and the results must be applied directly and immediately to each remaining activity

  1. Hydropower in Turkey: potential and market assessment

    2010-10-15

    The Turkish hydropower market provides huge opportunities for investors and suppliers. Successful market entry is not easy, however, as the market is still not fully liberalized, the need for local intelligence is large and the competition is increasing. There are also potential political, reputational and environmental risks, typical for an emerging economy. The World Bank global 'Ease of doing business' ranking (2010), ranks Turkey as number 73 of 183 countries. (Author)

  2. Research on Dynamic Parameters of Soil Site in the Tianjin Coastal Area

    Peng Yanju; Lv Yuejun; Qian Haitao

    2011-01-01

    The Tianjin coastal area is a typical soft soil region, where the soil is a marine deposit of the late Quaternary. The soil dynamic parameters from seismic risk assessment reports are collected, and drilling of 15 holes was carried out to sample the soils and measure their dynamic characteristics. The data was divided into 7 types based on lithology, namely, muddy clay, muddy silty clay, silt, silty clay, clay, silty sand and fine sand. Statistics of the dynamic parameters of these soils are collected to obtain the mean values of dynamic shear modulus ratio and damping ratio at different depths. Then, two typical drill holes are selected to establish the soil dynamic models to investigate the seismic response in different cases. The dynamic seismic responses of soil are calculated using the statistical values of this paper, and the values of Code (1994) and those recommended by Yuan Xiaoming et al. (2000), respectively. The applicability and pertinence of the statistical value obtained in this paper are demonstrated by the response spectrum shape, peak ground acceleration and response spectral characteristics. The results can be taken as a reference of the soil dynamic value in this area and can be used in the seismic risk assessment of engineering projects.

  3. Derivation of parameters necessary for the evaluation of performance of sites for deep geological repositories with particular reference to bedded salt, Livermore, California. Volume I. Main text

    Ashby, J.P.; Rawlings, G.E.; Soto, C.A.; Wood, D.F.; Chorley, D.W.

    1979-12-01

    A survey of parameters to be considered in the evaluation of sites for deep geologic nuclear waste repositories is presented. As yet, no comprehensive site selection procedure or performance evaluation approach has been adopted. A basis is provided for the development of parameters by discussing both site selection and performance evaluation. Three major groups of parameters are considered in this report: geologic, mining/rock mechanics, and hydrogeologic. For each type, the role of the parameter in the evaluation of repository sites is discussed. The derivation of the parameter by measurement, correlation, inference, or other method is discussed. Geologic parameters define the framework of the repository site and can be used in development of conceptual models and the prediction of long-term performance. Methods for deriving geological parameters include mapping, surveying, drilling, geophysical investigation, and historical and regional analysis. Rock mechanics/mining parameters are essential for the prediction of short-term performance and the development of initial conditions for modeling of long-term performance. Rock mechanics/mapping parameters can be derived by field or laboratory investigation, correlation, and theoretically or empirically based inference. Hydrogeologic parameters are the most important for assessment of long-term radionuclide confinement, since transport throughout the regional hydrogeologic system is the most likely mode of radionuclide escape from geologic repositories. Hydrogeologic parameters can be derived by hydrogeologic mapping and interpretation, hydrogeologic system modeling, field measurements, and lab tests. Procedures used in determination and statistical evaluation of geologic and rock mechanics parameters are discussed.

  4. Derivation of parameters necessary for the evaluation of performance of sites for deep geological repositories with particular reference to bedded salt, Livermore, California. Volume I. Main text

    A survey of parameters to be considered in the evaluation of sites for deep geologic nuclear waste repositories is presented. As yet, no comprehensive site selection procedure or performance evaluation approach has been adopted. A basis is provided for the development of parameters by discussing both site selection and performance evaluation. Three major groups of parameters are considered in this report: geologic, mining/rock mechanics, and hydrogeologic. For each type, the role of the parameter in the evaluation of repository sites is discussed. The derivation of the parameter by measurement, correlation, inference, or other method is discussed. Geologic parameters define the framework of the repository site and can be used in development of conceptual models and the prediction of long-term performance. Methods for deriving geological parameters include mapping, surveying, drilling, geophysical investigation, and historical and regional analysis. Rock mechanics/mining parameters are essential for the prediction of short-term performance and the development of initial conditions for modeling of long-term performance. Rock mechanics/mapping parameters can be derived by field or laboratory investigation, correlation, and theoretically or empirically based inference. Hydrogeologic parameters are the most important for assessment of long-term radionuclide confinement, since transport throughout the regional hydrogeologic system is the most likely mode of radionuclide escape from geologic repositories. Hydrogeologic parameters can be derived by hydrogeologic mapping and interpretation, hydrogeologic system modeling, field measurements, and lab tests. Procedures used in determination and statistical evaluation of geologic and rock mechanics parameters are discussed

  5. 75 FR 7469 - Panel Member List for Hydropower Licensing Study Dispute Resolution; Notice Extending Filing Date...

    2010-02-19

    ... Energy Regulatory Commission Panel Member List for Hydropower Licensing Study Dispute Resolution; Notice Extending Filing Date for Applications for Panel Member List for Hydropower Licensing Study Dispute... in the Commission's hydropower integrated licensing process (ILP) study dispute resolution...

  6. 75 FR 67993 - Hydropower Resource Assessment at Existing Reclamation Facilities-Draft Report

    2010-11-04

    ... Bureau of Reclamation Hydropower Resource Assessment at Existing Reclamation Facilities--Draft Report... Bureau of Reclamation has made available for public review and comment the ``Hydropower Resource... and technical potential for hydropower development at existing Bureau of Reclamation...

  7. Hydropower Reservoir and Sedimentation : A Study of Nam Ngum Reservoir

    Dahal, Sujan

    2013-01-01

    Hydropower accounts for approximately one fifth of the world’s electricity supply and is the best renewable energy source to meet the energy consumption of the world. With ever increasing energy demands hydropower-related construction is on the increase all over the world. Although the energy production from hydropower is efficient and cheap, the social and environmental cost can be high, with downstream ecosystem impacts caused by water quality, hydrological and sediment flux changes. In ...

  8. India's hydropower vision to 2030 - environmental issues

    The economic advantages of hydropower has been enhanced in the recent years with the steep increases in the energy costs from fossil fuel and the rapid approaching limits to the exploitable resources of such fuels. It is a matter of concern that the share of hydropower in the total installed capacity in India has been declining in successive plans. In the 1962-63, hydro projects had a 50% share in the total installed capacity which has declined to 24%. Such a dismal share of hydro thermal mix is adversely affecting the optimal utilisation of natural and financial resources besides resulting in failure of power grids. Even a layman can appreciate that in the situation of monsoonic weather the storage of river flows during floods is unavoidable not only to meet the basic needs of bulging population for diverse uses but also to moderate the floods, droughts and poverty. This article focuses on the environmental issues related to hydropower and river valley projects, while pinpointing the vital need of large storage projects in India. The water is becoming scarcer in India due to bulging population; but the environmental activism and biased media reporting are creating large scale obstructions in the execution of hydro projects

  9. Water-quality impact assessment for hydropower

    A methodology to assess the impact of a hydropower facility on downstream water quality is described. Negative impacts can result from the substitution of discharges aerated over a spillway with minimally aerated turbine discharges that are often withdrawn from lower reservoir levels, where dissolved oxygen (DO) is typically low. Three case studies illustrate the proposed method and problems that can be encountered. Historic data are used to establish the probability of low-dissolved-oxygen occurrences. Synoptic surveys, combined with downstream monitoring, give an overall picture of the water-quality dynamics in the river and the reservoir. Spillway aeration is determined through measurements and adjusted for temperature. Theoretical computations of selective withdrawal are sensitive to boundary conditions, such as the location of the outlet-relative to the reservoir bottom, but withdrawal from the different layers is estimated from measured upstream and downstream temperatures and dissolved-oxygen profiles. Based on field measurements, the downstream water quality under hydropower operation is predicted. Improving selective withdrawal characteristics or diverting part of the flow over the spillway provided cost-effective mitigation solutions for small hydropower facilities (less than 15 MW) because of the low capital investment required

  10. Extreme value analysis of meteorological parameters observed during 1964-2000 at Rajasthan Atomic Power Station Site

    In this report, statistical analysis of extreme value of meteorological parameters at Rajasthan Atomic Power Station (RAPS) site is presented. The parameters examined for extreme value analysis are maximum wind speed at 120 m and gust, maximum and minimum surface air temperature, maximum and minimum atmospheric pressure, maximum and minimum rainfall in a year, and maximum rainfall in a month and a day along with intensity of rainfall averaged over 5 minutes. The period of observation for rainfall is 1964 -2000, while for other variables, it is 1980 -2000. From the extreme value analysis, it is observed that the variables for annual maximum rainfall, monthly maximum rainfall, maximum rainfall intensity, maximum temperature, maximum pressure and maximum hourly wind speed obey Fisher -Tippette type I distribution, whereas annual minimum rainfall, maximum daily rainfall, minimum temperature, minimum atmospheric pressure and gust (5 min. averaged maximum wind speed at 120m height) follow Fisher -Tippette type II distribution. Parameters of the distribution functions for each variable are established and occurrence of the extreme values corresponding to return periods of 50 and 100 years are also derived. These derived extreme values are very useful for arriving at suitable design basis values to ensure safety of any civil structure in the vicinity of RAPS site with respect to expected stresses due to climatic conditions. (author)

  11. Effects of a hydropower plant on Coleopteran diversity and abundance in the Udzungwa Mountains, Tanzania

    Zilihona, I.J.E.; NiemelÀ, J.; Nummelin, M.

    2004-01-01

    The effects of river flow diversion on biodiversity were assessed using Coleoptera as an indicator group in three habitats of the Kihansi Gorge (Udzungwa Mountains, Tanzania), before and after commissioning of a hydropower plant. Data collected using sweep netting and pitfall traps showed that the effect of diversion of the river flow was site-specific, affecting particularly the spray habitat. Rarefaction analysis of both sweep netting and pitfall samples indicated that the expec...

  12. Hydropower development trends from a technological paradigm perspective

    Highlights: • We propose a novel concept of hydropower development technological paradigm. • We create a data analysis system to visualize the keyword foci. • Future trajectories include hybrid power systems and resources from seawater. • The HDTP consists of a three-stage evolution and a policy framework. • The HDTP provides a how-to-do solution for the soft path. - Abstract: Hydropower has long been considered the backbone of the power generation sector in low-carbon and sustainable energy systems. Yet, as reliance on hydropower has been generally declining, the world is awakening to the need to fundamentally rethink the way hydropower is developed and managed. The paper proposes a systematic methodology to research the development trends and find a more sustainable hydropower path. Literature mining using the data analysis system and the technological paradigm theory were adopted to conduct the research. The keyword visualization results were found to meet the laws for the three phases of the technological paradigm. Specific key areas, such as small hydropower plants, hybrid power systems, and hydropower from seawater were identified as past, present and near future trajectories. To further accelerate hydropower development, specific subsidies and incentives need to be provided in areas such as capital costs and technological support. The study paves the way for a soft path solution which complements the hard path in hydropower field

  13. Water: resources management under conflicting objectives: hydropower versus national park

    Hydropower plays an essential role in the Austrian energy supply. About two thirds of the electric consumption are covered by hydropower generation. The objective of this paper is to analyse a pending conflict between hydropower utilisation and environmental concerns along the Austrian section of the Danube downstream of Vienna. In the first step the utilizable hydropower potential of the respective section and the environmental impacts are assessed. In a subsequent step a framework is elaborated to compare and to trade off economic and environmental objectives. Such a procedure requires preference values and is thus subjected to subjectivity, introduced either by decision makers or by involved parties. (author)

  14. A micro-hydropower system model with PD load frequency controller for Resort Islands in the South China Sea

    Reyasudin Basir Khan, M.; Pasupuleti, Jagadeesh; Jidin, Razali

    2016-03-01

    A model of high-penetration micro-hydropower system with no storage is presented in this paper. This technology is designed in order to reduce the diesel fuel consumption and cost of electricity supply in a resort island located in the South China Sea. The optimal hydropower generation for this system depends on the available stream flow at the potential sites. At low stream flow, both the micro-hydropower system and the currently installed diesel generators are required to feed the load. However, when the hydropower generation exceeds the load demand, the diesel generator is shut down. Meanwhile, the system frequency is controlled by a secondary load bank that absorbs the hydropower which exceeds the consumer demand. This paper also presents a discrete frequency control system using proportional-derivative (PD) controller. The controller is employed in order to manipulate the system frequency by controlling the secondary load system. The simulation results indicate that a variety of load conditions can be satisfactorily controlled by the PD controller. Hence, this particular type of controller is suitable to be implemented in micro-grid systems for remote areas that require low cost and easy-to- maintain controllers.

  15. Study on the Inelastic Attenuation Coefficient, Site Response and Source Parameters in the Southeast Area of Gansu Province

    Guo Xiao; Zhang Yuansheng; Shen Hailiang; Li Wen

    2008-01-01

    Using digital seismograms recorded by the Gansu digital seismic network, the inelastic attenuation coefficient is calculated based on a genetic algorithm and the method proposed by Atkinson. Then, the site response and source parameters are investigated by the Moya method. The inversion results indicate the frequency-dependent inelastic attenuation, Q value, in the southeastern Gansu is estimated as Q(f) = 404.2f0.264. Except for the Tianshui station, the site responses of the other stations do not show significant amplifications, which is consistent with their basement on rocks. The stress drops of all 39 earthquakes range between 1×105 and 7×106 Pa. We also found the dependence of corner frequency on seismic moment and seismic magnitude.

  16. Analysis of meteorological parameters and its impact on atmospheric dispersion of 41Ar plume at BARC site

    A study on atmospheric dispersion of 41Ar plume was carried out considering the influence of meteorological parameters at Bhabha Atomic Research Centre site. A comparative analysis has been presented taking into account of two different observation sessions. During normal operation of research reactors, 41Ar as activation product, is getting released (below authorized discharge limit) at Bhabha Atomic Research Centre site. The external exposure during the passage of the radioactive plume was estimated using measurement of radiation field by installing Gamma-tracers at different locations. To establish a correlation and to assess the plume behavior, meteorological data and dose rate data from Gamma-tracers was collected at the same time interval

  17. Dose assessment around nuclear sites: a review of population habit data, time spent and other parameters (without dietary)

    Dose assessment around nuclear facilities require the knowledge of local population way of life. In France, the sample surveys of life habits near nuclear sites are scarce. This paper reviews the existing data that can be used as parameters of life habits to calculate the exposure pathways of nuclear facilities located near a river or a sea. The time spent at different activities, the protection factors of the building, the inhalation rates, the accidental ingestion of river water or sea water, sand or soil have been studied. Data listed can be used for as default values when there are no site specific data and are issued from two origins: some have already been used in dose assessments published, British works have been specially studied, the others are usual practice values which are largely employed by experts and are put in the dose calculation softwares of the French Institute of Protection and Nuclear Safety. (author)

  18. 21st century Himalayan hydropower: Growing exposure to glacial lake outburst floods?

    Schwanghart, Wolfgang; Worni, Raphael; Huggel, Christian; Stoffel, Markus; Korup, Oliver

    2014-05-01

    Primary energy demand in China and India has increased fivefold since 1980. To avoid power shortages and blackouts, the hydropower infrastructure in the Hindu Kush-Himalaya region is seeing massive development, a strategy supported by the policy of the World Bank and in harmony with the framework of the Kyoto Protocol. The targeted investments in clean energy from water resources, however, may trigger far-reaching impacts to downstream communities given that hydropower projects are planned and constructed in close vicinity to glaciated areas. We hypothesize that the location of these new schemes may be subject to higher exposure to a broad portfolio of natural hazards that proliferate in the steep, dissected, and tectonically active topography of the Himalayas. Here we focus on the hazard from glacial lake outburst floods (GLOF), and offer an unprecedented regional analysis for the Hindu Kush-Himalaya orogen. We compiled a database of nearly 4,000 proglacial lakes that we mapped from satellite imagery; and focus on those as potential GLOF sources that are situated above several dozen planned and existing hydropower plants. We implemented a scenario-based flood-wave propagation model of hypothetic GLOFs, and compared thus simulated peak discharges with those of the local design floods at the power plants. Multiple model runs confirm earlier notions that GLOF discharge may exceed meteorological, i.e. monsoon-fed, flood peaks by at least an order of magnitude throughout the Hindu Kush-Himalaya. We further show that the current trend in hydropower development near glaciated areas may lead to a >15% increase of projects that may be impacted by future GLOFs. At the same time, the majority of the projects are to be sited where outburst flood modelling produces its maximum uncertainty, highlighting the problem of locating minimum risk sites for hydropower. Exposure to GLOFs is not uniformly distributed in the Himalayas, and is particularly high in rivers draining the Mt

  19. The concept of te flowing water power plant. Utilization of hydropower at technically different and ecologically sensitive sites; Das Konzept des Fliessgewaesserkraftwerkes. Wasserkraftnutzung an technisch schwierigen und oekologisch sensiblen Standorten

    Aufleger, Markus; Brinkmeier, Barbara

    2011-07-01

    The expansion of the utilization of hydroelectric power in Alpine and Pre-alpine area is a sensitive issue in the area of tension between the necessary utilisation of renewable energy sources and the sensitive ecological requirements. The concept of the flowing water power plant tries to combine the necessary river engineering reorganization measures with energy utilization. The demands on technically difficult and environmentally sensitive sites should be fulfilled. This concept has been subjected to a feasibility study for the large valley Tittmoning at the river Lower Salzach. The results of this feasibility study should be considered in further planning of the river engineering retrofitting of Lower Salzach in the context of the necessary variation studies.

  20. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform

  1. Hydroelectric power in Hawaii. A report on the statewide survey of potential hydroelectric sites

    Beck, C. A.

    1981-02-01

    An assessment was made of the hydropower potential in Hawaii. The major conclusion of this study is that hydropower resources in the State of Hawaii are substantial, and they offer the potential for major increases in hydropower generating capacity. Hydropower resources on all islands total about 50 MW of potential generating capacity. Combined with the 18 MW of existing hydropower capacity, hydropower resources potentially could generate about 307 million kWh of electric energy annually. This represents about 28% of the present combined electricity needs of the Neighbor Islands, Kauai, Molokai, Maui, and the Big Island. Hydropower resources on Kauai equal 72% of that island's electricity needs; on Molokai, 40%, on the Big Island, 20%; and on Maui, 18%. The island of Oahu, however, has only small hydropower resources, and could only generate a negligible portion of its electricity needs from this energy source. A summary of existing and future (potential) hydropower capacities and estimated annual outputs for each island is presented. How much of the potential capacity is being actively considered for development and how much is only tentatively proposed at the time is indicated. The economics of hydropower at specific sites were analyzed. The major conclusion of this analysis is that hydropower development costs vary widely among the different sites, but that generally the cost of hydroelectric power is either less than or comparable to the cost of oil-fired power.

  2. Development of environmentally advanced hydropower turbine system design concepts

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  3. Development of environmentally advanced hydropower turbine system design concepts

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower''s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable

  4. Low-head hydropower assessment of the Brazilian State of São Paulo

    Artan, Guleid A.; Cushing, William Matthew; Mathis, Melissa; Tieszen, Larry L.

    2014-01-01

    This study produced a comprehensive estimate of the magnitude of hydropower potential available in the streams that drain watersheds entirely within the State of São Paulo, Brazil. Because a large part of the contributing area is outside of São Paulo, the main stem of the Paraná River was excluded from the assessment. Potential head drops were calculated from the Digital Terrain Elevation Data,which has a 1-arc-second resolution (approximately 30-meter resolution at the equator). For the conditioning and validation of synthetic stream channels derived from the Digital Elevation Model datasets, hydrography data (in digital format) supplied by the São Paulo State Department of Energy and the Agência Nacional de Águas were used. Within the study area there were 1,424 rain gages and 123 streamgages with long-term data records. To estimate average yearly streamflow, a hydrologic regionalization system that divides the State into 21 homogeneous basins was used. Stream segments, upstream areas, and mean annual rainfall were estimated using geographic information systems techniques. The accuracy of the flows estimated with the regionalization models was validated. Overall, simulated streamflows were significantly correlated with the observed flows but with a consistent underestimation bias. When the annual mean flows from the regionalization models were adjusted upward by 10 percent, average streamflow estimation bias was reduced from -13 percent to -4 percent. The sum of all the validated stream reach mean annual hydropower potentials in the 21 basins is 7,000 megawatts (MW). Hydropower potential is mainly concentrated near the Serra do Mar mountain range and along the Tietê River. The power potential along the Tietê River is mainly at sites with medium and high potentials, sites where hydropower has already been harnessed. In addition to the annual mean hydropower estimates, potential hydropower estimates with flow rates with exceedance probabilities of 40

  5. Hydrological parameter estimations from a conservative tracer test with variable-density effects at the Boise Hydrogeophysical Research Site

    Dafflon, B.; Barrash, W.; Cardiff, M.; Johnson, T. C.

    2011-12-01

    Reliable predictions of groundwater flow and solute transport require an estimation of the detailed distribution of the parameters (e.g., hydraulic conductivity, effective porosity) controlling these processes. However, such parameters are difficult to estimate because of the inaccessibility and complexity of the subsurface. In this regard, developments in parameter estimation techniques and investigations of field experiments are still challenging and necessary to improve our understanding and the prediction of hydrological processes. Here we analyze a conservative tracer test conducted at the Boise Hydrogeophysical Research Site in 2001 in a heterogeneous unconfined fluvial aquifer. Some relevant characteristics of this test include: variable-density (sinking) effects because of the injection concentration of the bromide tracer, the relatively small size of the experiment, and the availability of various sources of geophysical and hydrological information. The information contained in this experiment is evaluated through several parameter estimation approaches, including a grid-search-based strategy, stochastic simulation of hydrological property distributions, and deterministic inversion using regularization and pilot-point techniques. Doing this allows us to investigate hydraulic conductivity and effective porosity distributions and to compare the effects of assumptions from several methods and parameterizations. Our results provide new insights into the understanding of variable-density transport processes and the hydrological relevance of incorporating various sources of information in parameter estimation approaches. Among others, the variable-density effect and the effective porosity distribution, as well as their coupling with the hydraulic conductivity structure, are seen to be significant in the transport process. The results also show that assumed prior information can strongly influence the estimated distributions of hydrological properties.

  6. Hydropower - a Green energy? tropical reservoirs and Greenhouse gas emissions

    Gunkel, Guenter [Department of Water Quality Control, Berlin University of Technology (Germany)

    2009-09-15

    Reservoirs are man-made lakes that severely impact on river ecosystems, and in addition, the new lake ecosystem can be damaged by several processes. Thus, the benefits of a reservoir, including energy production and flood control, must be measured against their impact on nature. New investigations point out that shallow and tropical reservoirs have high emission rates of the greenhouse gases CO{sub 2} and CH{sub 4}. The methane emissions contribute strongly to climate change because CH{sub 4} has a 25 times higher global warming potential than CO{sub 2}. The pathways for its production include ebullition, diffuse emission via the water-air interface, and degassing in turbines and downstream of the reservoir in the spillway and the initial river stretch. Greenhouse gas emissions are promoted by a eutrophic state of the reservoir, and, with higher trophic levels, anaerobic conditions occur with the emission of CH{sub 4}. This means that a qualitative and quantitative jump in greenhouse gas emissions takes place. Available data from Petit Saut, French Guinea, provides a first quantification of these pathways. A simple evaluation of the global warming potential of a reservoir can be undertaken using the energy density, the ratio of the reservoir surface and the hydropower capacity; this parameter is mainly determined by the reservoir's morphometry but not by the hydropower capacity. Energy densities of some reservoirs are given and it is clearly seen that some reservoirs have a global warming potential higher than that of coal use for energy production. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. Global hydropower potential during recent droughts and under changing climate

    Van Vliet, Michelle T. H.; Sheffield, Justin; Wiberg, David; Wood, Eric F.

    2015-04-01

    There is a strong dependency of world's electricity sector on available water resources for hydropower generation. Recent droughts showed the vulnerability of the electricity sector to surface water constraints with reduced potentials for hydropower generation in different regions worldwide. Using a global modelling framework consisting of the VIC hydrological model and a hydropower model, we assess the impacts of recent droughts and future climate change on hydropower generation potentials worldwide. Our hydrological-electricity modelling framework was optimized and evaluated for 1981-2010, showing a realistic representation of observed streamflow and hydropower generation. We assessed the impacts of recent droughts and future climate change for more than 25,000 hydropower plants worldwide. Our results show that hydropower production potentials were significantly reduced during severe recent streamflow droughts (including e.g. summer of 2003 in Europe and 2007 in the United States). Model simulations with bias-corrected CMIP5 general circulation model output indicate that in several regions considerable reductions in hydropower production potentials are projected due to declines in streamflow during parts of the year. Considering these impacts and the long design life of power plant infrastructure, adaptation options should be included in today's planning and strategies to meet the growing electricity demand in the 21st century.

  8. Hydro-power development in remote locations of developing countries

    Smith, Granville J.

    1985-11-01

    In many developing countries hydropower can be used to replace the consumption of imported oil. The economic advantage of using hydropower increases if a low cost, locally manufactured turbine, called the cross flow turbine, can be used. This paper discusses the technical design and use of the cross flow turbine in the context of a hydroelectric development project in Africa.

  9. 77 FR 2286 - Northern Illinois Hydropower, LLC; Notice of Meeting

    2012-01-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Northern Illinois Hydropower, LLC; Notice of Meeting a. Date and Time of... Hydropower, LLC to discuss potentially moving the powerhouse location for the Brandon Road Project No....

  10. Hydropower Development and Ecosystem Services in Central America

    Anderson, Elizabeth P.

    2013-01-01

    This paper provides an overview of the characteristics of Central American rivers and related freshwater ecosystem services, discusses trends in hydropower development and known environmental and social consequences, and offers suggestions for finding a balance between hydropower and the protection of other freshwater ecosystem services, based on experiences from the region.

  11. Hydropower Reservoir Operation using Standard Operating and Standard Hedging Policies

    T.R. Neelakantan; K. Sasireka

    2013-01-01

    Standard operating policy and hedging policies are commonly used for reservoir operation for municipal or irrigation water supply. Application of these policies to hydropower reservoir operation is complex. In this paper, new standard operating policies and standard hedging policy are proposed for hydropower reservoir operation. The newly proposed policies were applied to the operation of Indira Sagar reservoir in India and demonstrated.

  12. Geothermal and hydropower production in Iceland

    This paper analyzes the impact of current and future development of geothermal and hydropower production on the economy of Iceland. Natural conditions in Iceland favor the increased utilization and development of both of these abundant power sources. The mean surface run-off in Iceland is about 50 l/s/km2 (liters per second per square kilometer), with a large part of the country consisting of a plateau more than 400 meters above sea level. More than half of the country is above 500 meters above sea level. ne technically harnessable hydropower potential is estimated at 64 TWh/year (terawatthours per year), of which 30 TWh/year is considered economically and environmentally harnessable. In addition, Iceland has abundant geothermal energy sources. A quarter of the entire country is a volcanic area. Keeping in mind that geothermal resources are not strictly renewable, it is estimated that the potential power production from this source is 20 TWh/year. Present utilization of these two resources totals only 4.2 TWh/year, or only about 8% of Iceland's aggregate potential. There are many issues facing Iceland today as it considers development opportunities utilizing both of these abundant power supplies. This paper will first consider the technical aspects of both hydropower and geothermal power production in Iceland. Then, the economic consequences of alternative utilization of these energy sources will be evaluated. The first alternative to be considered will be the direct export of power by HVDC submarine cable to other countries, such as Scotland or the United Kingdom. Iceland could, as a second alterative, concentrate its efforts on bringing in energy intensive industries into the country

  13. Projected impact of climate change on hydropower potential in China

    Liu, Xingcai; Tang, Qiuhong; Voisin, Nathalie; Huijuan, Cui

    2016-08-22

    In China, hydroelectric power is abundant, and half of hydropower potential is currently unexploited. Hydropower has been an important electrical energy during the past decades, and is still growing rapidly in China. However, hydropower is highly dependent on streamflow and is sensitive to climate change. It is of great interest to examine the impact of climate change on hydropower potential against the background within the context of the undergoing fast development of hydropower in China. Future changes in gross hydropower potential (GHP) of China are projected using simulations from eight global hydrological models (GHMs) forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Developed hydropower potential (DHP), based on existing reservoirs and installed hydropower capacity (IHC) in 2004, is also estimated by incorporating a hydropower module. Results show that GHP will generally decrease in southern China and increase in northern China; annual GHP would change by -1.7% to 2% in the near future (2020-2050), and increase by 3-6% of present GHP at the late 21st century (2070-2099). Annual DHP will decrease by about 2.2-5.4% (0.7-1.7% of total IHC) and 1.3%-4% (0.4-1.3% of total IHC) in 2020-2050 and 2070-2099, respectively, which are mostly contributed by the large DHP decrease in South Central China (SCC) and Eastern China (EC), where most reservoirs and large IHC are currently located. The hotspot region of hydropower in Southwest China, where many hydropower stations are under planning or construction, show increases of near 2-6% and 4-11% in annual GHP for the 2020-2050 and 2070-2099, respectively. In another hotspot region, Sichuan and Hubei provinces, DHP will decrease by 2.6-5.7% (0.46-0.97% of total IHC) and 0.8-5% (0.13-0.91% of total IHC) in the 2020-2050 and 2070-2099, respectively. This is mainly due to the significant reduction in discharge; meanwhile, increasing floods

  14. Path Transmissibility Analysis Considering Two Types of Correlations in Hydropower Stations

    Baoping Zhi

    2013-01-01

    Full Text Available A new vibration model is built by introducing the head-cover vibration transfer path based on a previous analysis of the vertical vibration model for hydropower station units and powerhouses. This research focuses on disturbance- and parameter-related transfer paths in a practical situation. In a complex situation, the application of the stochastic perturbation method is expanded using an algebra synthesis method the Hadamard product, and theoretical analyses, and numerical simulations of transfer paths in the new vibration model are carried out through the expanded perturbation method. The path transfer force, the path transmissibility, and the path disturbance ranges in the frequency domain are provided. The results indicate that the methods proposed in this study can efficiently reduce the disturbance range and can accurately analyze the transfer paths of hydraulic-source vertical vibration in hydropower stations.

  15. The Buchholz small hydro-power plant

    This short, illustrated final report for the Swiss Federal Office of Energy (SFOE) describes the commissioning of a small hydro-power installation on the Glatt river, Eastern Switzerland after more than 90 years of downtime. The authors state that the hydro-plant meets all requirements regarding nature conservancy, flood protection and ecology (river continuum for fish). The construction of the plant, which features a dam-integrated powerhouse, is described, as is a novel means of allowing fish to pass the dam. The work done in rebuilding the installation is documented in a series of photographs

  16. Project Risk Management in Hydropower Plant Projects

    Weddy Bernadi Sudirman; Sarwono Hardjomuljadi

    2011-01-01

    The development of hydroelectric power plant is one of the efforts in utilising water resources for people’s welfare by generating the energy for electricity purpose. Nowadays, the installed capacity of hydro electric power plants is 3,529 MW from the total installed capacity 24,846 MW from various power plants owned by PT PLN (Persero) and the hydropower potential 75,000 MW all over Indonesia. Hydroelectric power plant has complex structures and involves large amounts of capital with a lon...

  17. Dan jiang kou hydropower station turbine refurbishment

    Dan jiangkou hydropower station refurbished project, isan important project of Chinese refurbishment market. Tianjin Alstom Hydro Co., ltd won this contract by right of good performance and design technology,Its design took into account all the constraints linked to the existing frame. It results in a specific and highly advanced shape.The objective of this paper is to introduce the successful turbine hydraulic design, model test and mechanical design of Dan jiangkou project; and also analyze the cavitation phenomena occurred on runner band surface of Unit 4 after putting into commercial operation. These technology and feedback shall be a good reference and experience for other similar projects

  18. Using Conventional Hydropower to Help Alleviate Variable Resource Grid Integration Challenges in the Western U.S

    Veselka, T. D.; Poch, L.

    2011-12-01

    currently being studied. Typically these studies consider the inherent flexibility of hydropower technologies, but tend to fall short on details regarding grid operations, institutional arrangements, and hydropower environmental regulations. This presentation will focus on an analysis that Argonne National Laboratory is conducting in collaboration with the Western Area Power Administration (Western). The analysis evaluates the extent to which Western's hydropower resources may help with grid integration challenges via a proposed Energy Imbalance Market. This market encompasses most of the Western Electricity Coordinating Council footprint. It changes grid operations such that the real-time dispatch would be, in part, based on a 5-minute electricity market. The analysis includes many factors such as site-specific environmental considerations at each of its hydropower facilities, long-term firm purchase agreements, and hydropower operating objectives and goals. Results of the analysis indicate that site-specific details significantly affect the ability of hydropower plant to respond to grid needs in a future which will have a high penetration of variable resources.

  19. Report of the hydropower and climate change workshop

    This workshop was held in response to a survey conducted to determine the hydropower industry's interest in adapting to climate change. The impacts of climate change and unusual weather events on the hydropower industry were reviewed. The workshop examined current levels of awareness about the potential impacts of climate change as well as hydropower sector vulnerability to climate change and its impact on the operation and planning of hydropower systems. Past and future changes in hydrologic regimes were examined, and regional climate model results were analyzed. Representatives shared experiences related to unusual weather events. A total of 20 papers were presented at the workshop. Presentations were followed by breakout sessions held to discuss vulnerabilities within the hydropower sector. 4 tabs

  20. Project SHARE Sustainable Hydropower in Alpine Rivers Ecosystems

    Mammoliti Mochet, Andrea

    2010-05-01

    SHARE - Sustainable Hydropower in Alpine Rivers Ecosystems is a running project early approved and co funded by the European regional development fund in the context of the European Territorial Cooperation Alpine Space programme 2007 - 2013: the project is formally ongoing from August 2009 and it will end July 2012. Hydropower is the most important renewable resource for electricity production in alpine areas: it has advantages for the global CO2 balance but creates serious environmental impacts. RES-e Directives require renewable electricity enhance but, at the same time, the Water Framework Directive obliges member States to reach or maintain a water bodies "good" ecological status, intrinsically limiting the hydropower exploitation. Administrators daily face an increasing demand of water abstraction but lack reliable tools to rigorously evaluate their effects on mountain rivers and the social and economical outputs on longer time scale. The project intends to develop, test and promote a decision support system to merge on an unprejudiced base, river ecosystems and hydropower requirements. This approach will be led using existing scientific tools, adjustable to transnational, national and local normative and carried on by permanent panel of administrators and stakeholders. Scientific knowledge related to HP & river management will be "translated" by the communication tools and spent as a concrete added value to build a decision support system. In particular, the Multicriteria Analysis (MCA) will be applied to assess different management alternatives where a single-criterion approach (such as cost-benefit analysis) falls short, especially where environmental, technical, economic and social criteria can't be quantified by monetary values. All the existing monitoring databases will be used and harmonized with new information collected during the Pilot case studies. At the same time, all information collected will be available to end users and actors of related

  1. 75 FR 65012 - Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar

    2010-10-21

    ...-Impact Hydropower Webinar October 13, 2010. The Federal Energy Regulatory Commission will host a Small/Low- Impact Hydropower Webinar on November 10, 2010, from 12 noon to 1 p.m. Eastern Time. The webinar will be open to the public and advance registration is required. The purpose of this webinar is...

  2. 76 FR 81929 - Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar

    2011-12-29

    ...-Impact Hydropower Webinar The Federal Energy Regulatory Commission will host a Small/Low- Impact Hydropower Webinar on January 25, 2012, from 12:00 noon to 1:30 p.m. Eastern Standard Time. The webinar will be open to the public and advance registration is required. The purpose of this webinar is to...

  3. 76 FR 30937 - Small Hydropower Development in the United States; Notice of Small/Low-Impact Hydropower Webinar

    2011-05-27

    ...-Impact Hydropower Webinar The Federal Energy Regulatory Commission (FERC) will host a Small/ Low-Impact Hydropower Webinar on June 22, 2011, from 12 noon to 1 p.m. Eastern Daylight Time. The webinar will be open to the public and advance registration is required. The purpose of this webinar is to...

  4. Tailoring seasonal climate forecasts for hydropower operations

    P. Block

    2011-04-01

    Full Text Available Integration of seasonal precipitation forecasts into water resources operations and planning is practically nonexistent, even in regions of scarcity. This is often attributable to water manager's tendency to act in a risk averse manner, preferring to avoid consequences of poor forecasts, at the expense of unrealized benefits. Convincing demonstrations of forecast value are therefore desirable to support assimilation into practice. A dynamically linked system, including forecast, rainfall-runoff, and hydropower models, is applied to the upper Blue Nile basin in Ethiopia to compare benefits and reliability generated by actual forecasts against a climatology-based approach, commonly practiced in most water resources systems. Processing one hundred decadal sequences demonstrates superior forecast-based benefits in 68 cases, a respectable advancement, however benefits in a few forecast-based sequences are noticeably low, likely to dissuade manager's adoption. A hydropower sensitivity test reveals a propensity toward poor-decision making when forecasts over-predict wet conditions. Tailoring the precipitation forecast to highlight critical dry forecasts minimizes this inclination, resulting in 97% of the sequences favoring the forecast-based approach. Considering managerial risk preferences for the system, even risk-averse actions, if coupled with forecasts, exhibit superior benefits and reliability compared with risk-taking tendencies conditioned on climatology.

  5. Hydropower may produce more greenhouse gases

    According to this article, dam projects in hydropower development may lead to increased emission of greenhouse gases and may create great inconveniences for the local community. Hence it is not without problems to sponsor such projects through the Clean Development Mechanism (CDM) of the Kyoto Protocol. In many countries the great era of hydroelectric development is over and the potential is now in the developing countries. The aim of the CDM is two-fold: sustainable development in the developing countries, and cheap reduction of greenhouse gas emission from developed nations. It has been agreed upon in the climate negotiations that it is the developing country receiving the investments that shall document that the projects conform to the goal of sustainable development of that country. The concept of sustain ability is a vague one, and it is a great challenge to make it more precise so that requirements may be posed on CDM projects. This is important as projects that are suitable from a climate point of view may have undesirable environmental or social effects, which may be in conflict with the goal of sustainable development. This also pertains to hydropower. It also appears that water reservoirs are not always as clean as has been assumed

  6. Relationship among soil parameters, tree nutrition and site index of Pinus radiata D. Don in Asturias, NW Spain

    Afif-Khouri, E.; Camara Obregon, M. A.; Oliveira-Prendes, J. A.; Gorgoso-Varela, J. J.; Canga-Libano, E.

    2010-07-01

    The relationships among soil parameters, tree nutrition and site index were examined in Pinus radiata D. Don stands in a climatically homogeneous area of NW Spain. Thirty-eight even-aged stands, ranging from 10 to 54 years, were sampled. In each stand, a representative plot of 0.1 ha was selected and different stand variables and parent material were considered. The soils in the study area are strongly acidic, with high proportions of organic matter, high C/N ratios, and low exchangeable base cation and available P concentration extracted by Mehlich 3 method (PM3). Although foliar N was sufficient in every stand studied, widespread deficiencies of K, P and, to a lesser extent, Mg and Ca were diagnosed. The foliar concentrations of P were positively correlated with PM3 and effective cation exchange capacity. The SI values ranged between 9.5 and 28.8 m and were positively correlated with foliar P and extractable K in soil. In the stands developed on quartzite and sandstone lithologies, the SI was negatively correlated with slope and foliar N respectively. The results suggest the importance of site selection and fertilizer treatment in reforestation programmes. (Author) 63 refs.

  7. Assessing Optimal Flight Parameters for Generating Accurate Multispectral Orthomosaicks by UAV to Support Site-Specific Crop Management

    Francisco-Javier Mesas-Carrascosa

    2015-09-01

    Full Text Available This article describes the technical specifications and configuration of a multirotor unmanned aerial vehicle (UAV to acquire remote images using a six-band multispectral sensor. Several flight missions were programmed as follows: three flight altitudes (60, 80 and 100 m, two flight modes (stop and cruising modes and two ground control point (GCP settings were considered to analyze the influence of these parameters on the spatial resolution and spectral discrimination of multispectral orthomosaicked images obtained using Pix4Dmapper. Moreover, it is also necessary to consider the area to be covered or the flight duration according to any flight mission programmed. The effect of the combination of all these parameters on the spatial resolution and spectral discrimination of the orthomosaicks is presented. Spectral discrimination has been evaluated for a specific agronomical purpose: to use the UAV remote images for the detection of bare soil and vegetation (crop and weeds for in-season site-specific weed management. These results show that a balance between spatial resolution and spectral discrimination is needed to optimize the mission planning and image processing to achieve   every agronomic objective. In this way, users do not have to sacrifice flying at low altitudes to cover the whole area of interest completely.

  8. The Jungfraujoch high-alpine research station (3454 m) as a background clean continental site for the measurement of aerosol parameters

    Nyeki, S.; Baltensperger, U.; Jost, D.T.; Weingartner, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Colbeck, I. [Essex Univ., Colchester (United Kingdom)

    1997-09-01

    Aerosol physical parameter measurements are reported here for the first full annual set of data from the Jungfraujoch site. Comparison to NOAA background and regional stations indicate that the site may be designated as `clean continental` during the free tropospheric influenced period 03:00 -09:00. (author) figs., tab., refs.

  9. China’s rising hydropower demand challenges water sector

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P. W.; Guan, Dabo

    2015-07-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 109 m3 (Gm3), or 22% of China’s total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm3 yr-1 or 3.6 m3 of water to produce a GJ (109 J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability.

  10. DOE Hydropower Program Annual Report for FY 2002

    Garold L. Sommers; R. T. Hunt

    2003-07-01

    The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

  11. Design of a reliable and low-cost stand-alone micro hydropower station

    A stand-alone micro-hydropower station was presented. The plant was comprised of a squirrel cage induction machine coupled to a Kaplan water turbine. Power converters were used to control the variable frequency and voltage outputs of the generator caused by variations in water flow. The hydropower plant was installed a farm in the Kwazulu-Natal region of South Africa, and was designed to provide electricity in relation to the low power demand of users in the region as well as according to the site's hydrology and topology. Load forecasts for the 8 houses using the system were conducted. A generator with a higher output than the average power needed to feed the load was selected in order to ensure load supply during peak demand. The system was designed to shore energy generated during off-peak periods in batteries. An AC-DC-AC converter was used as an interface between the generator and the load in order to ensure voltage and frequency stabilization. Simulations of plant components were conducted to demonstrate output power supply during water flow variations. Results of the modelling study indicated that power converters are needed to stabilize generator outputs. The hydropower design is a cost-effective means of supplying power to low-income households. 10 refs., 2 tabs., 7 figs.

  12. Design of a reliable and low-cost stand-alone micro hydropower station

    Kusakana, K.; Munda, J.L. [Tshwane Univ. of Technology, Pretoria (South Africa)

    2008-07-01

    A stand-alone micro-hydropower station was presented. The plant was comprised of a squirrel cage induction machine coupled to a Kaplan water turbine. Power converters were used to control the variable frequency and voltage outputs of the generator caused by variations in water flow. The hydropower plant was installed a farm in the Kwazulu-Natal region of South Africa, and was designed to provide electricity in relation to the low power demand of users in the region as well as according to the site's hydrology and topology. Load forecasts for the 8 houses using the system were conducted. A generator with a higher output than the average power needed to feed the load was selected in order to ensure load supply during peak demand. The system was designed to shore energy generated during off-peak periods in batteries. An AC-DC-AC converter was used as an interface between the generator and the load in order to ensure voltage and frequency stabilization. Simulations of plant components were conducted to demonstrate output power supply during water flow variations. Results of the modelling study indicated that power converters are needed to stabilize generator outputs. The hydropower design is a cost-effective means of supplying power to low-income households. 10 refs., 2 tabs., 7 figs.

  13. Small hydropower in Southern Africa – an overview of five countries in the region

    Jonker Klunne, Wim

    2013-01-01

    This paper looks at the status of small hydropower in Lesotho, Mozambique, South Africa, Swaziland and Zimbabwe. For each country, an overview will be given of the electricity sector and the role of hydropower, the potential for small hydropower and the expected future of this technology. Small hydropower has played an important role in the history of providing electricity in the region. After a period with limited interest in applications of small hydropower, in all five countries, a range o...

  14. Present Situation and Future Trends of River-Basin Cascade Hydropower Dispatch in China

    2010-01-01

    Hydropower resources in river basins are typically developed in a cascade manner. The cascade hydropower stations use water from the same river; in a sense, they form a cluster of hydropower stations which are linked together by the river stream. The dispatch and management of the cascade hydropower stations in a river basin differ from those of an ordinary single hydropower station. Without doubt, unified dispatch can facilitate the full harnessing of hydraulic resources and is in a better position to fulf...

  15. Nepal as a Business Hub for Hydropower Industry : Introduction to Hydropower Industry of Nepal

    Shahi, Prakash

    2014-01-01

    Nepal at present is suffering from the energy crisis due to the lack of enough production of electricity in the country. The main purpose of this thesis is to evaluate the present situation of electricity crisis in Nepal and provide the information to the foreign investors about the investment opportunities in hydropower sector in Nepal. The theoretical section gives the details about Nepal and electricity production scenario in Nepal. It also gives the detail about the demand and supply of e...

  16. Loss of European silver eel passing a hydropower station

    Pedersen, Michael Ingemann; Jepsen, Niels; Aarestrup, Kim; Koed, Anders; Pedersen, Stig; Økland, F.

    2012-01-01

    The aim of this study was to assess escapement success of silver eels, Anguilla anguilla (L.), in a lowland river while passing a reservoir and a hydropower station. It was hypothesized that passage success would be lowest at the hydropower station and that survival and migration speed would be...... within the study period, only 23% of the tagged eels reached the tidal limit, mainly due to difficulties in passing the hydropower dam. With such high loss-rates, the escapement goals set in the management plan cannot be achieved...

  17. Economies of Scale in the Swiss Hydropower Sector

    Massimo Filippini; Cornelia Luchsinger

    2005-01-01

    The paper considers the estimation of a translog cost function employing panel data for a sample of 43 Swiss hydropower companies, over the period of 1995-2002. The results of this analysis indicate the existence of economies of scale and density for most output levels. The basic novelty in this paper is the estimation of a cost function for a sample of hydropower companies. In the economic literature no study on the cost structure of the hydropower plants using an econometric approach has be...

  18. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level

  19. China’s rising hydropower demand challenges water sector

    Junguo Liu; Dandan Zhao; Gerbens-Leenes, P. W.; Dabo Guan

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 109 m3 (Gm3), or 22% of China’s total water consumption. Ignoring the reservoir WF ...

  20. Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems

    A. Tilmant

    2009-03-01

    Full Text Available This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water. The opportunity cost (forgone benefits of this static management approach may be important in river basins where large irrigation areas are present in the upstream reaches. Temporary reallocation of some (or all of the irrigation water downstream to consumptive and/or non-consumptive users can increase the social benefits if the sum of the downstream productivities exceeds those of the upstream farmers whose entitlements are curtailed. However, such a dynamic allocation process will be socially acceptable if upstream farmers are compensated for increasing the availability of water downstream. This paper also presents a methodology to derive the individual contribution of downstream non-consumptive users, i.e. hydropower plants, to the financial compensation of upstream farmers. This dynamic management approach is illustrated with a cascade of multipurpose reservoirs in the Euphrates river basin. The analysis of simulation results reveals that, on average, the annual benefits obtained with the dynamic allocation process are 6% higher that those derived from a static allocation.

  1. Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model

    This paper analyzes the long-term relationships between hydropower generation and climate factors (precipitation), hydropower generation capacity (installed capacity of hydropower station) to quantify the vulnerability of renewable energy production in China for the case of hydropower generation. Furthermore, this study applies Grey forecasting model to forecast precipitation in different provinces, and then sets up different scenarios for precipitation based on the IPCC Special Report on Emission Scenarios and results from PRECIS (Providing Regional Climate projections for Impacts Studies) model. The most important result found in this research is the increasing hydropower vulnerability of the poorest regions and the main hydropower generation provinces of China to climate change. Other main empirical results reveal that the impacts of climate change on the supply of hydropower generation in China will be noteworthy for the society. Different scenarios have different effects on hydropower generation, of which A2 scenario (pessimistic, high emission) has the largest. Meanwhile, the impacts of climate change on hydropower generation of every province are distinctly different, of which the Southwest part has the higher vulnerability than the average level while the central part lower. - Highlights: • The hydropower vulnerability will be enlarged with the rapid increase of hydropower capacity. • Modeling the vulnerability of hydropower in different scenarios and different provinces. • The increasing hydropower vulnerability of the poorest regions to climate change. • The increasing hydropower vulnerability of the main hydropower generation provinces. • Rainfall pattern caused by climate change would be the reason for the increasing vulnerability

  2. Analysis of information systems for hydropower operations

    Sohn, R. L.; Becker, L.; Estes, J.; Simonett, D.; Yeh, W. W. G.

    1976-01-01

    The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined.

  3. Emissions from tropical hydropower and the IPCC

    Highlights: • Tropical dams emit greenhouse gases, which are undercounted in IPCC guidelines. • IPCC comparisons with other energy sources undercount hydroelectric emissions. • GHG inventories must fully count emissions as a basis for negotiating national quotas. • The IPCC needs to reassess emissions from dams independent of the hydropower industry. - Abstract: Tropical hydroelectric emissions are undercounted in national inventories of greenhouse gases under the United Nations Framework Convention on Climate Change (UNFCCC), giving them a role in undermining the effectiveness of as-yet undecided emission limits. These emissions are also largely left out of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Renewable Energy Sources and Climate Change Mitigation, and have been excluded from a revision of the IPCC guidelines on wetlands. The role of hydroelectric dams in emissions inventories and in mitigation has been systematically ignored

  4. Hydro-power and its ecological implications

    Hydro-power is not only one of the oldest energy sources of man but played also a significant role for his cultural development. During the Antique Age water-puma, watermills and other water driven engines and instruments such as the water-organ and water clocks reached a high level of sophistication. Along with the fast expansion of watermills ecological impacts started during the Middle Ages, when the construction of millstreams and even the damming of lakes became significant activities. The critical change from local towards regional environmental impact, however, started only in connection with hydroelectric power engineering and comprises mainly the period since 1940. Its ecological, socioeconomic and even seismic consequences are underlined and described in this paper: It will be, however, demonstrated that the most unexpected positive ecological outcome from certain constructions of hydroelectric power-plants did also occur. (author)

  5. Glen Canyon Hydropower vs. the Grand Canyon

    Many resource allocation problems currently face the hydropower industry. The current Environmental Impact Statement effort on the operation of Glen Canyon Dam is the focus of this discussion. This paper relates the process of approaching the conflict, the differing views and conflicting strategies of the parties, the emotional and logical investment of the participants, and the concerns for fairness and openness derived from the historic distrust between those with differing views. The paper is prepared from the perspective of the Bureau of Reclamation, the lead Federal agency in the effort, and the perspectives of the author who has been in a lead role in the agency's approach to the challenge. The paper describes the formulation of positions by the interested parties and the surrounding values and depth of concern exhibited in the process

  6. Rethinking Pumped Storage Hydropower in the European Alps: A Call for New Integrated Assessment Tools to Support the Energy Transition

    Astrid Björnsen Gurung

    2016-05-01

    Full Text Available The European Alps are well positioned to contribute significantly to the energy transition. In addition to sites with above-average potential for wind and solar power, the “water towers” of Europe provide flexible, low-carbon power generation as well as energy storage. In the future, hydropower systems are expected to become more than mere electricity generators, serving a key role as flexible complements to intermittent power generators and as providers of large-scale seasonal and daily energy storage. Energy transition on national and European scales can be facilitated by expanding the capacity of pumped storage hydropower (PSHP plants. Yet the extension of hydropower production, in particular PSHP, remains controversial, primarily due to environmental concerns. Focusing on 2 Alpine countries, Austria and Switzerland, this paper provides a system view of hydropower production and energy storage in the Alps. It discusses advantages and drawbacks of various assessment tools and identifies gaps and needs for the integrated assessment of PSHP plants. It concludes that instruments that evaluate the impacts and sustainability of PSHP projects need to be developed, elaborated, and applied in a participatory manner, in order to promote public dialogue, increase social acceptance, and, ideally, encourage energy consumers to become advocates of a sustainable energy future.

  7. Bridging the Information Gap: Remote Sensing and Micro Hydropower Feasibility in Data-Scarce Regions

    Muller, Marc Francois

    nature of rainfall, and proposes a novel geostatistical method to regionalize its parameters across the stream network. Although motivated by the needs of micro hydropower design in Nepal, these techniques represent contributions to the broader international challenge of PUB and can be applied worldwide. The economic drivers of rural electrification are then considered by presenting an econometric technique to estimate the cost function and demand curve of micro hydropower in Nepal. The empirical strategy uses topography-based instrumental variables to identify price elasticities. All developed methods are assembled in a computer tool, along with a search algorithm that uses a digital elevation model to optimize the placement of micro hydropower infrastructure. The tool---Micro Hydro [em]Power---is an open source application that can be accessed and operated on a web-browser (http://mfmul.shinyapps.io/mhpower). Its purpose is to assist local communities in the design and evaluation of micro hydropower alternatives in their locality, while using cost and demand information provided by local users to generate accurate feasibility maps at the national level, thus bridging the information gap.

  8. National hydroelectric power resources study. Preliminary inventory of hydropower resources. Volume 3. Mid-Continent region

    None

    1979-07-01

    The US Corps of Engineers' assessment of the nation's hydroelectric resources provides a current and comprehensive estimate of the potential for incremental or new generation at existing dams and other water resource projects, as well as for undeveloped sites in the US. The demand for hydroelectric power is addressed and various related policy and technical considerations are investigated to determine the incentives, constraints, and impacts of developing hydropower to meet a portion of the future energy demands. The comprehensive data represent the effort of the Corps of Engineers based on site-specific analysis and evaluation. Summary tables include estimates of the potential capacity and energy at each site in the inventory. The number of sites and potential capacity in each state are identified, but specific detailed information is included for sites in Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming.

  9. Hydropower Computation Using Visual Basic for Application Programming

    Yan, Wang; Hongliang, Hu

    Hydropower computation is essential to determine the operating conditions of hydroelectric station. Among the existing methods for hydropower computation, equal monthly hydropower output and dynamic programming are the most commonly used methods, but both of them are too complex in computation and hard to be finished manually. Taking the advantage of the data processing ability of Microsoft Excel and its attached Visual Basic for Application (VBA) program, the complex hydropower computation can be easily achieved. An instance was analyzed in two methods and all delt with VBA. VBA demonstrates its powerful function in solving problem with complex computation, visualizing, and secondary data processing. The results show that the dynamic programming method was more receptive than the other one.

  10. Field GE gamma spectrometry for on site measurements of some parameters characterizing radon-222 exhalation rates from soils and covers

    We describe a new method based on differential gamma spectrometry for on site determination of some of the parameters which are relevant for the production of radon 222 in soil gas and its transfer from soil to indoor and outdoor atmospheres. This method is investigated in the context of a 3-year Slovenian-French cooperation programme, the PROTEUS project. We are currently using a germanium detector of 100 cm3. The height of the 20 deg. C collimated detector above the soil surface is from 1.5 to 3 m when using a tripod. This arrangement provides results which are representative of soil areas ranging from 1 to 4 square metres. Routine measurements would require larger detector volumes. The main objective is to provide technology and methodology for an efficient mapping of zones with potential for being the source of a high level of indoor radon, eliminating the need for soil sampling followed by laboratory analysis. The feasibility of an airborne mapping laboratory flying at low altitude will be investigated. Another objective is the rapid measurement of radon profiles across covers used to reduce exhalation rates from the surface of a pile of tailings, with characterisation of the influence of humidity content of the top layer. Airborne survey would allow for measuring exhalations from surfaces of slurries not otherwise accessible. (author)

  11. Probabilistic Seismic Hazard Characterization and Design Parameters for the Sites of the Nuclear Power Plants of Ukraine

    Savy, J.B.; Foxall, W.

    2000-01-26

    The U.S. Department of Energy (US DOE), under the auspices of the International Nuclear Safety Program (INSP) is supporting in-depth safety assessments (ISA) of nuclear power plants in Eastern Europe and the former Soviet Union for the purpose of evaluating the safety and upgrades necessary to the stock of nuclear power plants in Ukraine. For this purpose the Hazards Mitigation Center at Lawrence Livermore National Laboratory (LLNL) has been asked to assess the seismic hazard and design parameters at the sites of the nuclear power plants in Ukraine. The probabilistic seismic hazard (PSH) estimates were updated using the latest available data and knowledge from LLNL, the U.S. Geological Survey, and other relevant recent studies from several consulting companies. Special attention was given to account for the local seismicity, the deep focused earthquakes of the Vrancea zone, in Romania, the region around Crimea and for the system of potentially active faults associated with the Pripyat Dniepro Donnetts rift. Aleatory (random) uncertainty was estimated from the available data and the epistemic (knowledge) uncertainty was estimated by considering the existing models in the literature and the interpretations of a small group of experts elicited during a workshop conducted in Kiev, Ukraine, on February 2-4, 1999.

  12. Hydropower engineering. Paper no. IGEC-1-005

    Hydropower, one of the corner stones of sustainable energy development, is the largest renewable source of energy. There is a large demand worldwide for people trained to design, operate, maintain and optimise hydropower systems. Hydro Power University, a name which encompasses both education, research and development within hydropower in Sweden, offers a unique and broad international masters programme within hydropower engineering including civil, mechanical and electrical engineering. The programme is the result of a close collaboration between Lulea University of Technology and Uppsala University, at the research and education level. This master programme, Hydropower Engineering, is open to both Swedish and foreign students free of charge. It aims to provide students with state of the art knowledge and experience on parts of the hydropower system such as turbine technology, generator design, rotor dynamics, tribology, dams/dam safety, maintenance and operation and environmental aspects. World unique laboratory experiments are offered to the students at Porjus and Alvkarleby, Sweden. The Porjus Hydropower Centre offers world unique facilities: two full scale turbines of 10 MW each, one with the latest generator technology - Powerformer. The turbines are exclusively dedicated for use in education, research and development. State of the art in measurement technology is available. Both units are at the centre of each education programme offered by the Hydro Power University. In Alvkarleby, spillways, discharge capacity and turbines model testing can be undertaken at the Vattenfall laboratory also with state of the art experimental material and highly qualified staff. The large number of applications from developing countries indicates a need of scholarships, which needs to be resolved for the development of hydropower. (author)

  13. DOE Hydropower Program Annual Report for FY 2000

    Sale, M. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cada, G. F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dauble, D. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rinehart, B. N. [Consultant; Sommers, G. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Flynn, J. V. [U.S. Dept. of Energy, Washington, D.C. (United States); Brookshier, P. A. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2001-04-17

    This report describes the activities of the U.S. Department of Energy (DOE) Hydropower Program during Fiscal Year 2000 (October 1, 1999, to September 30, 2000). Background, current activities, and future plans are presented in the following sections for all components of the Program. Program focus for FY 2000 was on (1) advanced turbine development, (2) basic and applied R&D, (3) environmental mitigation, (4) low head/low power hydropower technology, and (5) technology transfer.

  14. The electricity system, energy storage and hydropower: an overview

    This paper discusses the electricity system, energy storage and hydropower. Typically, electricity is consumed as it is needed and generated to match consumption. Interest and development work in energy storage are increasingly driven by its contributions in several areas of concern: reliability and the rise of renewables. A full range of energy storage technologies is needed and with its many advantages hydropower will continue to fill a need for large scale bulk storage

  15. The Classification of Accidental Situations’ Scenarios on Hydropower Plants

    Skvortsova Olga; Dashkina Anastasiia; Petrovskaia Ekaterina; Terleev Vitaly; Nikonorov Aleksandr; Badenko Vladimir; Volkova Yulia; Pavlov Sergey

    2016-01-01

    The collapse of hydropower plant could lead to significant financial, social and environmental damages. Accordingly the issue of safety and reliability is one of major problems of designing, maintenance and operation. The proposed solution consists in evaluation of implementation frequency of emergencies scenario, which can be defined by suggested classification of accidental situations’ scenarios based on systems analysis to implement incidents on hydropower plants. Emergency scenarios on hy...

  16. Evaluation of hydropower upgrade projects - a real options approach

    Elverhøi, Morten; Fleten, Stein-Erik; Fuss, Sabine; Heggedal, Ane Marte; Szolgayova, Jana; Troland, Ole Christian

    2010-01-01

    When evaluating whether to refurbish existing hydropower plants or invest in a new power plant, there are two important aspects to take into consideration. These are the capacity chosen for the production facilities and the timing of the investment. This paper presents an investment decision support framework for hydropower producers with production facilities due for restoration. The producer can choose between refurbishing existing power plants and investing in a new production facility. A ...

  17. GRAVEL SLUICING IN ALPINE RUN-OF-RIVER HYDROPOWER PLANTS

    Helmut SCHEUERLEIN

    2001-01-01

    Deposition of coarse sediment at the entrance of a reservoir is for many reasons an undesired side effect. Besides loss of storage volume which concerns also fine sediment carried in suspension, the coarser material transported as bedload - particularly the gravel fraction - is to cause additional effects upstream as well as downstream of the reservoir. Upstream the depositions at the entrance of the reservoir may result in a backup effect at flood events with increasing risk of inundations, and downstream of the reservoir the deficiency of coarse material inevitably results in degradation of the river bed. In the frame of a real hydropower plant (Bad TOlz in Southern Bavaria) the possibility of sluicing coarse material through the reservoir towards downstream has been studied and finally realized. The sluicing process has been coupled with water level drawdown at flood events of appropriate characteristics. The sluicing action was controlled by monitoring and evaluating environmentally significant parameters (sediment concentration, etc.). The results were promising and valuable hints for further actions of this kind could be extracted.

  18. Hydropower and biomass as renewable energy sources in Turkey

    When talking about renewable energy sources today, the most important and economical energy sources for Turkey are hydropower and biomass.The present study gives a review of production, consumption, and economics of hydropower and biomass as renewable energy sources in Turkey. Turkey has a total gross hydropower potential of 433 GW, but only 125 GW of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 36% of the economically usable potential of the country could be tapped. On the other hand, biomass (wood and wastes) energy is the second most important renewable energy source for Turkey. However, the biomass energy sources of Turkey are limited. In 1998, the biomass share of the total energy consumption of the country is 10%. In this study, the potential of important biomass energy sources and animal solid wastes of the country were determined. The effects of hydropower and biomass usage on the environment were also discussed. Considering total cereal products and fatty seed plants, approximately 50-60 million tons per year of biomass and 8-10 million tons of solid matter animal waste are produced, and 70% of total biomass is seen as being usable for energy. Some useful suggestions and recommendations are also presented. The present study shows that there is an important potential for hydropower and biomass energy sources in Turkey. (author)

  19. Short-term forecasting model for aggregated regional hydropower generation

    Highlights: • Original short-term forecasting model for the hourly hydropower generation. • The use of NWP forecasts allows horizons of several days. • New variable to represent the capacity level for generating hydroelectric energy. • The proposed model significantly outperforms the persistence model. - Abstract: This paper presents an original short-term forecasting model of the hourly electric power production for aggregated regional hydropower generation. The inputs of the model are previously recorded values of the aggregated hourly production of hydropower plants and hourly water precipitation forecasts using Numerical Weather Prediction tools, as well as other hourly data (load demand and wind generation). This model is composed of three modules: the first one gives the prediction of the “monthly” hourly power production of the hydropower plants; the second module gives the prediction of hourly power deviation values, which are added to that obtained by the first module to achieve the final forecast of the hourly hydropower generation; the third module allows a periodic adjustment of the prediction of the first module to improve its BIAS error. The model has been applied successfully to the real-life case study of the short-term forecasting of the aggregated hydropower generation in Spain and Portugal (Iberian Peninsula Power System), achieving satisfactory results for the next-day forecasts. The model can be valuable for agents involved in electricity markets and useful for power system operations

  20. Risk assessment of river-type hydropower plants using fuzzy logic approach

    In this paper, a fuzzy rating tool was developed for river-type hydropower plant projects, and risk assessment and expert judgments were utilized instead of probabilistic reasoning. The methodology is a multi-criteria decision analysis, which provides a flexible and easily understood way to analyze project risks. The external risks, which are partly under the control of companies, were considered in the model. A total of eleven classes of risk factors were determined based on the expert interviews, field studies and literature review as follows: site geology, land use, environmental issues, grid connection, social acceptance, macroeconomic, natural hazards, change of laws and regulations, terrorism, access to infrastructure and revenue. The relative importance of risk factors was determined from the survey results. The survey was conducted with the experts that have experience in the construction of river-type hydropower schemes. The survey results revealed that the site geology and environmental issues were considered as the most important risks. The new risk assessment method enabled a Risk Index (R) value to be calculated, establishing a 4-grade evaluation system. The proposed risk analysis will give investors a more rational basis to make decisions and it can prevent cost and schedule overruns. - Highlights: → A new methodology is proposed for risk rating of river-type hydropower plant projects. → The relative importance of the risk factors was determined from the expert judgments. → The most concerned risks have been found as environmental issues and site geology. → The proposed methodology was tested on a real case. → The proposed risk analysis will give investors a more rational basis.

  1. Advanced hydropower turbine: AHTS-Advanced Hydropower Turbine System Program; Turbinas hidraulicas avancadas: Programa AHTS-Advanced Hydropower Turbine System

    Macorin, Adriano De Figueiredo; Tomisawa, Alessandra Terumi; Van Deursen, Gustavo Jose Ferreira; Bermann, Celio [Universidade de Sao Paulo (USP), SP (Brazil)], email: brunosilva@usp.br

    2010-07-01

    Due to a privileged hydrography and energy policies that remounts to the beginning of the 20th century, Brazilian's electrical grid can be considered one of the cleanest in the world regarding the emission of atmospheric pollutants. Nevertheless, as in every human large enterprise, it is well known that hydroelectric power plants also lead to harmful environmental impacts. This article presents the AHTS Program (Advanced Hydropower Turbine System) started in 1994 in USA and developed to assess and conceive new hydro turbines to mitigate two of the main negative impacts of the installation and operation of this kind of power plant: (a) turbine-passed fish mortality and (b) the low dissolved oxygen - DO - levels downstream of the dams. The criteria used to concept the turbines are also justified in this article. As well as the modifications made in each case by the following companies: Alden Research Lab e o Northern Research and Engineering Corporation (ARL/NREC) and Voith Hydro (Voith). (author)

  2. Hydropower as a restoration opportunity for obstructed river reaches?; Wasserkraft als Sanierungsmotor fuer hydromorphologische Belastungen?

    Lashofer, Alois; Hawle, Werner; Cassidy, Tim; Pucher, Michael; Fuerst, Josef; Pelikan, Bernhard [Univ. fuer Bodenkultur Wien (Austria). Inst. fuer Wasserwirtschaft, Hydrologie und konstr. Wasserbau

    2011-07-01

    The demand for hydropower has shifted from the basic aim to meet increasing demands for electricity, to delivering renewable energy solutions that are sustainable, productive and effective for both society and the environment. The present paper describes an exploratory study of both, the hydroelectric and ecological potential of existing lateral structures currently obstructing the river network throughout Austria. By matching these potentials for each site, a number of benefits accrue for decision-making. The Hypo-Last project identified 148 sites that can be considered as possible project sites to fund the on-site restoration or mitigation measures as required by the Water Framework Directive and implemented in the Austrian Water Act. (orig.)

  3. Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems

    D. Pinte

    2009-07-01

    Full Text Available This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water, which remains to a large extent independent of the availability of water in the basin. The opportunity cost (forgone benefits of this static management approach may be important in river basins where large irrigation areas are present in the upstream reaches. Continuously adjusting allocation decisions based on the hydrologic status of the system will lead to the temporary reallocation of some (or all of the irrigation water downstream to consumptive and/or non-consumptive users. Such a dynamic allocation process will increase the social benefits if the sum of the downstream productivities exceeds those of the upstream farmers whose entitlements are curtailed. However, this process will be socially acceptable if upstream farmers are compensated for increasing the availability of water downstream. This paper also presents a methodology to derive the individual contribution of downstream non-consumptive users, i.e. hydropower plants, to the financial compensation of upstream farmers. This dynamic management approach is illustrated with a cascade of multipurpose reservoirs in the Euphrates river basin. The analysis of simulation results reveals that, on average, the annual benefits obtained with the dynamic allocation process are 6% higher that those derived from a static allocation.

  4. Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems

    Tilmant, A.; Goor, Q.; Pinte, D.

    2009-07-01

    This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water, which remains to a large extent independent of the availability of water in the basin. The opportunity cost (forgone benefits) of this static management approach may be important in river basins where large irrigation areas are present in the upstream reaches. Continuously adjusting allocation decisions based on the hydrologic status of the system will lead to the temporary reallocation of some (or all) of the irrigation water downstream to consumptive and/or non-consumptive users. Such a dynamic allocation process will increase the social benefits if the sum of the downstream productivities exceeds those of the upstream farmers whose entitlements are curtailed. However, this process will be socially acceptable if upstream farmers are compensated for increasing the availability of water downstream. This paper also presents a methodology to derive the individual contribution of downstream non-consumptive users, i.e. hydropower plants, to the financial compensation of upstream farmers. This dynamic management approach is illustrated with a cascade of multipurpose reservoirs in the Euphrates river basin. The analysis of simulation results reveals that, on average, the annual benefits obtained with the dynamic allocation process are 6% higher that those derived from a static allocation.

  5. Parameters of radiation situation on the territory of the Red Forest site in the Chernobyl exclusion zone as impact factors for wild non-human species

    Detailed description of parameters of radiation situation on the territory of the Red Forest site in the Chernobyl exclusion zone is given. Results of measurements of soil contamination by 90Sr, 134,137Cs, 154,155Eu, 241Am and 238,239,240Pu are provided. Some parameters of a spatial dynamic many-nuclides source of radiation exposure formation for wild animals are calculated. Typical profiles of radionuclides distribution in soil are demonstrated. (author)

  6. Siphon-based turbine - Demonstration project: hydropower plant at a paper factory in Perlen, Switzerland; Demonstrationsprojekt Saugheber - Turbinen. Wasserturbinenanlage Papierfabrik Perlen (WTA-PF)

    NONE

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the demonstration project that concerned the re-activation and refurbishing of a very low-head hydropower installation. The functional principles of the siphon-turbine used are explained and the potential for its use at many low-head sites examined. The authors are of the opinion that innovative technology and simple mechanical concepts could be used to reactivate out-of-use hydropower plant or be used to refurbish existing plant to provide increased efficiency and reliability. Various other points that are to be considered when planning the refurbishment of a hydropower plant such as retaining mechanical and hydraulic symmetry in the plant are listed and concepts for reducing operating costs are discussed. Figures on the three runner-regulated turbines installed in Perlen are quoted.

  7. a Review of Hydropower Reservoir and Greenhouse Gas Emissions

    Rosa, L. P.; Dos Santos, M. A.

    2013-05-01

    Like most manmade projects, hydropower dams have multiple effects on the environment that have been studied in some depth over the past two decades. Among their most important effects are potential changes in water movement, flowing much slower than in the original river. This favors the appearance of phytoplankton as nutrients increase, with methanogenesis replacing oxidative water and generating anaerobic conditions. Although research during the late 1990s highlighted the problems caused by hydropower dams emitting greenhouse gases, crucial aspects of this issue still remain unresolved. Similar to natural water bodies, hydropower reservoirs have ample biota ranging from microorganisms to aquatic vertebrates. Microorganisms (bacteria) decompose organic matter producing biogenic gases under water. Some of these biogenic gases cause global warming, including methane, carbon dioxide and nitrous oxide. The levels of GHG emissions from hydropower dams are a strategic matter of the utmost importance, and comparisons with other power generation options such as thermo-power are required. In order to draw up an accurate assessment of the net emissions caused by hydropower dams, significant improvements are needed in carbon budgets and studies of representative hydropower dams. To determine accurately the net emissions caused by hydro reservoir formation is required significant improvement of carbon budgets studies on different representatives' hydro reservoirs at tropical, boreal, arid, semi arid and temperate climate. Comparisons must be drawn with emissions by equivalent thermo power plants, calculated and characterized as generating the same amount of energy each year as the hydropower dams, burning different fuels and with varying technology efficiency levels for steam turbines as well as coal, fuel oil and natural gas turbines and combined cycle plants. This paper brings to the scientific community important aspects of the development of methods and techniques applied

  8. Key techniques for evaluation of safety monitoring sensors in water conservancy and hydropower engineering

    Yan XIANG

    2012-12-01

    Full Text Available For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitoring sensors are employed in a majority of engineering projects. These sensors are used to monitor the project during the dam construction and operation periods, and play an important role in reservoir safety operation and producing benefits. With the changing of operating environments and run-time of projects, there are some factors affecting the operation and management of projects, such as a certain amount of damaged sensors and instability of the measured data. Therefore, it is urgent to evaluate existing safety monitoring sensors in water conservancy and hydropower engineering projects. However, there are neither standards nor evaluation guidelines at present. Based on engineering practice, this study examined some key techniques for the evaluation of safety monitoring sensors, including the evaluation process of the safety monitoring system, on-site detection methods of two typical pieces of equipment, the differential resistor sensor and vibrating wire sensor, the on-site detection methods of communication cable faults, and a validity test of the sensor measured data. These key techniques were applied in the Xiaolangdi Water Control Project and Xiaoxi Hydropower Project. The results show that the measured data of a majority of sensors are reliable and reasonable, and can reasonably reflect the structural change behavior in the project operating process, indicating that the availabilities of the safety monitoring sensors of the two projects are high.

  9. Metaheuristic Approaches for Hydropower System Scheduling

    Ieda G. Hidalgo

    2015-01-01

    Full Text Available This paper deals with the short-term scheduling problem of hydropower systems. The objective is to meet the daily energy demand in an economic and safe way. The individuality of the generating units and the nonlinearity of their efficiency curves are taken into account. The mathematical model is formulated as a dynamic, mixed integer, nonlinear, nonconvex, combinatorial, and multiobjective optimization problem. We propose two solution methods using metaheuristic approaches. They combine Genetic Algorithm with Strength Pareto Evolutionary Algorithm and Ant Colony Optimization. Both approaches are divided into two phases. In the first one, to maximize the plant’s net generation, the problem is solved for each hour of the day (static dispatch. In the second phase, to minimize the units’ switching on-off, the day is considered as a whole (dynamic dispatch. The proposed methodology is applied to two Brazilian hydroelectric plants, in cascade, that belong to the national interconnected system. The nondominated solutions from both approaches are presented. All of them meet demand respecting the physical, electrical, and hydraulic constraints.

  10. Improving real-time inflow forecasting into hydropower reservoirs through a complementary modelling framework

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2015-08-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead time is considered within the day-ahead (Elspot) market of the Nordic exchange market. A complementary modelling framework presents an approach for improving real-time forecasting without needing to modify the pre-existing forecasting model, but instead formulating an independent additive or complementary model that captures the structure the existing operational model may be missing. We present here the application of this principle for issuing improved hourly inflow forecasts into hydropower reservoirs over extended lead times, and the parameter estimation procedure reformulated to deal with bias, persistence and heteroscedasticity. The procedure presented comprises an error model added on top of an unalterable constant parameter conceptual model. This procedure is applied in the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead times up to 17 h. Evaluation of the percentage of observations bracketed in the forecasted 95 % confidence interval indicated that the degree of success in containing 95 % of the observations varies across seasons and hydrologic years.

  11. Regional double-porosity solute transport in the Culebra dolomite: An analysis of parameter sensitivity and importance at the Waste Isolation Pilot Plant (WIPP) site

    A high-transmissivity fracture-controlled path is assumed, for modeling purposes, to provide the means for transport of infinitely long-lived radionuclides through the Culebra dolomite to the accessible environment at the Waste Isolation Pilot Plant (WIPP) site, following a breach which does not disturb the existing head potentials within the unit. Both matrix diffusion and sorption retard the transport. Parameter ranges and base-case values depict the uncertain properties of the Culebra while simulations with SWIFT II exhibit the corresponding ranges in travel time, the performance measure adopted for this report. Consistent with the paucity of the double-porosity data base, model assumptions are kept simple and parameter ranges relatively large. Thus, computed travel times may be unrealistic and should not be quoted apart from the model assumptions. Computed parameter sensitivities and estimated parameter importance, however, should provide valuable guidance to the current site-characterization program at the WIPP site. The report demonstrates the importance of the rate of fluid flow within the fractures and the relative capacity of the rock matrix for the retention of radioactive contaminants. It also demonstrates the relative unimportance of some of the matrix kinetic parameters which relate to the matrix-diffusion time. 53 refs., 46 figs., 15 tabs

  12. DOE: Quantifying the Value of Hydropower in the Electric Grid

    None

    2012-12-31

    The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms

  13. 76 FR 6459 - Mahoning Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2011-02-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Mahoning Hydropower, LLC; Notice of Preliminary Permit Application Accepted.... On December 30, 2010, Mahoning Hydropower, LLC filed an application for a preliminary...

  14. 76 FR 7838 - Mahoning Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2011-02-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Mahoning Hydropower, LLC; Notice of Preliminary Permit Application Accepted.... On December 30, 2010, Mahoning Hydropower, LLC filed an application for a preliminary...

  15. 77 FR 52016 - Brookfield Smoky Mountain Hydropower LLC; Supplemental Notice That Initial Market-Based Rate...

    2012-08-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Brookfield Smoky Mountain Hydropower LLC; Supplemental Notice That Initial... notice in the above-referenced proceeding, of Brookfield Smoky Mountain Hydropower LLC's application...

  16. 75 FR 8320 - Coastal Hydropower LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2010-02-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Coastal Hydropower LLC; Notice of Preliminary Permit Application Accepted.... On November 5, 2009, Coastal Hydropower LLC filed an application for a preliminary permit,...

  17. Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation Needs

    McManamay, Ryan A.; Brewer, Shannon K.; Jager, Henriette I.; Troia, Matthew J.

    2016-09-01

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.

  18. Reevaluation of Turkey's hydropower potential and electric energy demand

    This paper deals with Turkey's hydropower potential and its long-term electric energy demand predictions. In the paper, at first, Turkey's energy sources are briefly reviewed. Then, hydropower potential is analyzed and it has been concluded that Turkey's annual economically feasible hydropower potential is about 188 TWh, nearly 47% greater than the previous estimation figures of 128 TWh. A review on previous prediction models for Turkey's long-term electric energy demand is presented. In order to predict the future demand, new increment ratio scenarios, which depend on both observed data and future predictions of population, energy consumption per capita and total energy consumption, are developed. The results of 11 prediction models are compared and analyzed. It is concluded that Turkey's annual electric energy demand predictions in 2010, 2015 and 2020 vary between 222 and 242 (average 233) TWh; 302 and 356 (average 334) TWh; and 440 and 514 (average 476) TWh, respectively. A discussion on the role of hydropower in meeting long-term demand is also included in the paper and it has been predicted that hydropower can meet 25-35% of Turkey's electric energy demand in 2020

  19. Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation Needs.

    McManamay, Ryan A; Brewer, Shannon K; Jager, Henriette I; Troia, Matthew J

    2016-09-01

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments. PMID:27344163

  20. Nonlinear Predictive Control of a Hydropower System Model

    Runfan Zhang

    2015-09-01

    Full Text Available A six-dimensional nonlinear hydropower system controlled by a nonlinear predictive control method is presented in this paper. In terms of the nonlinear predictive control method; the performance index with terminal penalty function is selected. A simple method to find an appropriate terminal penalty function is introduced and its effectiveness is proved. The input-to-state-stability of the controlled system is proved by using the Lyapunov function. Subsequently a six-dimensional model of the hydropower system is presented in the paper. Different with other hydropower system models; the above model includes the hydro-turbine system; the penstock system; the generator system; and the hydraulic servo system accurately describing the operational process of a hydropower plant. Furthermore, the numerical experiments show that the six-dimensional nonlinear hydropower system controlled by the method is stable. In addition, the numerical experiment also illustrates that the nonlinear predictive control method enjoys great advantages over a traditional control method in nonlinear systems. Finally, a strategy to combine the nonlinear predictive control method with other methods is proposed to further facilitate the application of the nonlinear predictive control method into practice.

  1. Water-quality parameters and total aerobic bacterial and Vibrionaceae loads in Eastern oysters (Crassostrea virginica) from oyster-gardening sites.

    Fay, Johnna P; Richards, Gary P; Ozbay, Gulnihal

    2012-05-01

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water-quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae concentrations in Eastern oysters (Crassostrea virginica). One site was located at the end of a man-made canal, whereas the other was located in an open bay. Measured water parameters included temperature, dissolved oxygen (DO), salinity, pH, total nitrogen, nitrate, nitrite, total phosphorus, and total suspended solids. The highest Vibrionaceae levels, as determined by the colony overlay procedure for peptidases, were at the canal site in September (3.5 × 10(5) g(-1)) and at the bay site in August (1.9 × 10(5) g(-1)). Vibrionaceae levels were significantly greater during the duration of the study at the canal site (P = 0.01). This study provides the first baseline levels for total Vibrionaceae in the Delaware Inland Bays. Minimum DO readings at the bay and canal sites were 3.0 and 2.3 mg l(-1), respectively, far less than the state-targeted minimum threshold of 5.0 mg l(-1). Total phosphorus levels exceeded recommendations of ≤0.1 mg l(-1) at the bay and canal sites for all monthly samplings, with mean monthly highs at both sites ≥0.68 mg l(-1) in August. Nitrogen occasionally exceeded the recommended level of 1.0 mg l(-1) at both sites. Overall, waters were highly degraded from high phosphates, nitrogen, and total suspended solids as well as low DO. PMID:22183874

  2. VS30 – A site-characterization parameter for use in building Codes, simplified earthquake resistant design, GMPEs, and ShakeMaps

    Borcherdt, Roger D.

    2012-01-01

    VS30, defined as the average seismic shear-wave velocity from the surface to a depth of 30 meters, has found wide-spread use as a parameter to characterize site response for simplified earthquake resistant design as implemented in building codes worldwide. VS30 , as initially introduced by the author for the US 1994 NEHRP Building Code, provides unambiguous definitions of site classes and site coefficients for site-dependent response spectra based on correlations derived from extensive borehole logging and comparative ground-motion measurement programs in California. Subsequent use of VS30 for development of strong ground motion prediction equations (GMPEs) and measurement of extensive sets of VS borehole data have confirmed the previous empirical correlations and established correlations of SVS30 with VSZ at other depths. These correlations provide closed form expressions to predict S30 V at a large number of additional sites and further justify S30 V as a parameter to characterize site response for simplified building codes, GMPEs, ShakeMap, and seismic hazard mapping.

  3. Analysis Of α And f Parameters And ko Factor In Irradiation Sites of RSG G.A. Siwabessy Reactor

    Determination of neutron flux thermal to epithermal ratio f and parameter a and ko factor has been done in irradiation facility of RSG G.A. Siwabessy reactor. Those parameters are needed to determine the concentration of an element in a sample using ko NAA method. While parameters f were measured using foil activation method. α parameter was obtained from power function fitting at epithermal neutron spectrum. Based on the fitting method, the α parameter (non 1/E epithermal spectrum) was determined of 0.0267, 0.0255 and -0.0346 at system rabbit, IP2 and CIP irradiation position, respectively. The ko factor is dependent on absolute gamma fraction, thermal cross section and resonance integral. The neutron flux thermal to epithermal ratio f at all rabbit system is about 40, which is met for neutron activation analysis

  4. Modelling and Simulation of Temperature Variations of Bearings in a Hydropower Generation Unit

    Gunasekara, Cotte Gamage Sarathchandra

    2011-01-01

    Hydropower contributes around 20% to the world electricity supply and is considered as the most important, clean, emissions free and economical renewable energy source.  Total installed capacity of Hydropower generation is approximately 777GW in the world (2998TWh/year). Furthermore, estimated technically feasible hydropower potential in the world is 14000TWh/year. The hydropower is the major renewable energy source in many countries and running at a higher plant-factor. Bearing overheating i...

  5. Hydropower in the Context of Sustainable Energy Supply: A Review of Technologies and Challenges

    Chiyembekezo S. Kaunda; Kimambo, Cuthbert Z.; Torbjorn K. Nielsen

    2012-01-01

    Hydropower is an important renewable energy resource worldwide. However, its development is accompanied with environmental and social drawbacks. Issues of degradation of the environment and climate change can negatively impact hydropower generation. A sustainable hydropower project is possible, but needs proper planning and careful system design to manage the challenges. Well-planned hydropower projects can contribute to supply sustainable energy. An up-to-date knowledge is necessary for ener...

  6. Resource rent taxation and benchmarking: a new perspective for the Swiss hydropower sector

    Banfi, Silvia; Filippini, Massimo; Svizzera

    2009-01-01

    The electricity generation in Switzerland is mainly based on hydropower (55% of total production). The exploitation of water in the hydropower sector can generate significant so-called resource rents. These are defined by the surplus return above the value of capital, labor, materials and energy used to exploit hydropower. In Switzerland, hydropower producers pay to the State a fixed fee per kW gross capacity. With this system the substantial differences in costs, revenues and in the p...

  7. Resource Rent Taxation and Benchmarking.A New Perspective for the Swiss Hydropower Sector

    Massimo Filippini; Silvia Banfi

    2009-01-01

    The electricity generation in Switzerland is mainly based on hydropower (55% of total production). The exploitation of water in the hydropower sector can generate significant so-called resource rents. These are defined by the surplus return above the value of capital, labor, materials and energy used to exploit hydropower. In Switzerland, hydropower producers pay to the State a fixed fee per kW gross capacity. With this system the substantial differences in costs, revenues and in the p...

  8. Hydropower Production Profiles: Impacts on Capacity Structure, Emissions, and Windfall Profits

    Maria Kopsakangas-Savolainen; Rauli Svento

    2014-01-01

    Production structure in markets with a significant role of hydropower is sensitive to the production profile of hydropower. In this paper we utilize a long-run oriented real-time price based simulation model to analyze through scenarios the impact of different hydropower production profiles on the total annual energy consumed, prices, and capacity structure. We also show the relation between different hydropower production profiles and emissions, costs, and windfall profits. There seems to be...

  9. Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model

    Bing Wang; Xiao-Jie Liang; Hao Zhang; Lu Wang; Yi-Ming Wei

    2014-01-01

    This paper analyzes the long-term relationships between hydropower generation and climate factors (precipitation), hydropower generation capacity (installed capacity of hydropower station) to quantify the vulnerability of renewable energy production in China for the case of hydropower generation. Furthermore, this study applies Grey Forecasting Model to forecast precipitation in different provinces, and then sets up different scenarios for precipitation based on the IPCC Special Report on Emi...

  10. Impact of high/low flows on sediment-yield and hydropower potential

    Bunji Hydropower Project is a run-of-river hydropower project, with peaking reservoir, on Indus River near Gilgit. The study aimed at the impact of high/low flows on sediment-yield and hydropower potential of Bunji Hydropower project. The flows were divided into high-low flows, on the basis of sediment-yield. High-flow months include June to September, whereas low flows from October to May. Suspended sediment-yield for high/low flows was determined at Kachura sediment gauging station by sediment-rating curve method whereas bed load for high/low flows was determined with different bed load formulas. By adding both the loads, total sediment-yield for high/low flows was determined. Then this sediment-yield was transposed to Bunji Dam site. The bed material load is determined by three equations, England Hansen (1967) equation, Ackers- White (1973) equation and Yang's (1972) unit stream power. None of the equations satisfy the observed values of load. According to the location of gauging stations i.e. Kachura and Partab Bridge on Indus River and Alam Bridge on Gilgit River, the flows for Bunji dam site were determined. From these flows, power, peak/off-peak energy was computed. Benefits for power and energy were computed with specially designed worksheet (M.S. Excel). The river cross-sections and longitudinal profile of Indus River in the project-area, surveyed for pre-feasibility study, have been used for estimating trapped sediments, and amount of flushed material. The reservoir life was determined by M.A. Churchill (1948) method. The unsluiced Bunji reservoir life by actual trap-efficiency (40 percent) is 6 year, whereas by 50 percent trap efficiency (percentage of sand is 50 percent in suspended, sediment) it is 5 years. The sluiced reservoir life on the basis of 20 percent bed-load trap efficiency is 83 years. Delta profile in reservoir is provided on monthly basis for the two years of data i.e. year 1973 and 1994 by estimating the transport slope for zero bed

  11. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    Muhlbachova, G. [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Sagova-Mareckova, M., E-mail: sagova@vurv.cz [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Omelka, M. [Charles University, Faculty of Mathematics and Physics, Dept. of Probability and Mathematical Statistics, Prague 8, Karlin (Czech Republic); Szakova, J.; Tlustos, P. [Czech University of Life Sciences, Department of Agroenvironmental Chemistry and Plant Nutrition, Prague 6, Suchdol (Czech Republic)

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals.

  12. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals

  13. Model for 3D-visualization of streams and techno-economic estimate of locations for construction of small hydropower plants

    The main researches of this dissertation are focused to a development of a model for preliminary assesment of the hydro power potentials for small hydropower plants construction using Geographic Information System - GIS. For this purpose, in the first part of dissertation is developed a contemporary methodological approach for 3D- visualization of the land surface and river streams in a GIS platform. In the methodology approach, as input graphical data are used digitized maps in scale 1:25000, where each map covers an area of 10x14 km and consists of many layers with graphic data in shape (vector) format. Using GIS tools, from the input point and isohyetal contour data layers with different interpolation techniques have been obtained digital elevation model - DEM, which further is used for determination of additional graphic maps with useful land surface parameters such as: slope raster maps, hill shade models of the surface, different maps with hydrologic parameters and many others. The main focus of researches is directed toward the developing of contemporary methodological approaches based on GIS systems, for assessment of the hydropower potentials and selection of suitable location for small hydropower plant construction - SHPs, and especially in the mountainous hilly area that are rich with water resources. For this purpose it is done a practical analysis at a study area which encompasses the watershed area of the Brajchanska River at the east part of Prespa Lake. The main accent considering the analysis of suitable locations for SHP construction is set to the techno-engineering criteria, and in this context is made a topographic analysis regarding the slope (gradient) either of all as well of particular river streams. It is also made a hydrological analysis regarding the flow rates (discharges). The slope analysis is executed at a pixel (cell) level a swell as at a segment (line) level along a given stream. The slope value at segment level gives in GIS

  14. Managing Tradeoffs between Hydropower and the Environment in the Mekong River Basin

    Loucks, Daniel P.; Wild, Thomas B.

    2015-04-01

    Hydropower dams are being designed and constructed at a rapid pace in the Mekong/Lancang River basin in Southeast Asia. These reservoirs are expected to trap significant amounts sediment, decreasing much of the river's capability to transport nutrients and maintain its geomorphology and habitats. We apply a simulation model for identifying and evaluating alternative dam siting, design and operating policy (SDO) options that could help maintain more natural sediment regimes downstream of dams and for evaluating the effect of these sediment-focused SDO strategies on hydropower production and reliability. We apply this approach to the planned reservoirs that would prevent a significant source of sediment from reaching critical Mekong ecosystems such as Cambodia's Tonle Sap Lake and the Mekong delta in Vietnam. Model results suggest that various SDO modifications could increase sediment discharge from this site by 300-450% compared to current plans, but a 30-55% loss in short-term annual energy production depending on various configurations of upstream reservoirs. Simulation results also suggest that sediment management-focused reservoir operating policies could cause ecological damage if they are not properly implemented.

  15. 18 CFR 141.14 - Form No. 80, Licensed Hydropower Development Recreation Report.

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Form No. 80, Licensed Hydropower Development Recreation Report. 141.14 Section 141.14 Conservation of Power and Water Resources... Hydropower Development Recreation Report. The form of the report, Licensed Hydropower Development...

  16. 78 FR 62351 - North Side Canal Company; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    2013-10-18

    ... Qualifying Conduit Hydropower Facility and Soliciting Comments and Motions To Intervene On October 3, 2013, North Side Canal Company, filed a notice of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower...

  17. 75 FR 59706 - Coastal Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2010-09-28

    ... Federal Energy Regulatory Commission Coastal Hydropower, LLC; Notice of Preliminary Permit Application..., 2010. On February 9, 2010, and supplemented on July 16, 2010, Coastal Hydropower, LLC filed an..., Coastal Hydropower, LLC, Key Centre, 601 108th Avenue, NE., Suite 1900, Bellevue, WA 98004; phone:...

  18. 78 FR 38027 - Wilkesboro Hydroelectric Company, LLC; Wilkesboro Hydropower, LLC; Notice of Application for...

    2013-06-25

    ... Energy Regulatory Commission Wilkesboro Hydroelectric Company, LLC; Wilkesboro Hydropower, LLC; Notice of..., Wilkesboro Hydroelectric Company, LLC (transferor) and Wilkesboro Hydropower, LLC (transferee) filed an application for the transfer of license for the W. Kerr Scott Hydropower Project, FERC No. 12642, located...

  19. 77 FR 30308 - Proposed Renewal of Information Collection: Alternatives Process in Hydropower Licensing

    2012-05-22

    ... Office of the Secretary Proposed Renewal of Information Collection: Alternatives Process in Hydropower... Process in Hydropower Licensing, OMB Control Number 1094-0001. FOR FURTHER INFORMATION CONTACT: To request... develop for inclusion in a hydropower license issued by the Federal Energy Regulatory Commission...

  20. 76 FR 12103 - Erie Boulevard Hydropower, L.P; Notice of Settlement Agreement and Soliciting Comments

    2011-03-04

    ... Energy Regulatory Commission Erie Boulevard Hydropower, L.P; Notice of Settlement Agreement and.... Date Filed: February 18, 2011. d. Applicant: Erie Boulevard Hydropower, L.P. e. Location: The existing... Daoust, Erie Boulevard Hydropower, 33 West 1st Street, South, Fulton, NY, 13069; (315) 598-6131. i....

  1. 78 FR 63176 - Notice of Preliminary Determination of a Qualifying Conduit Hydropower Facility and Soliciting...

    2013-10-23

    ... Energy Regulatory Commission Notice of Preliminary Determination of a Qualifying Conduit Hydropower... hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The 22 kW Orchard City Water Treatment...

  2. 75 FR 51258 - Boott Hydropower, Inc.; Eldred L Field Hydroelectric Facility Trust; Notice of Application for...

    2010-08-19

    ... Energy Regulatory Commission Boott Hydropower, Inc.; Eldred L Field Hydroelectric Facility Trust; Notice... No.: 2790-055. c. Date Filed: July 6, 2010. d. Applicant: Boott Hydropower, Inc. and Eldred L Field... Hydropower, Inc., One Tech Drive, Suite 220, Andover, MA 01810. Tel: (978) 681-1900 Ext 809. i. FERC...

  3. 78 FR 55251 - Hydropower Regulatory Efficiency Act of 2013; Notice of Workshop

    2013-09-10

    ... Energy Regulatory Commission Hydropower Regulatory Efficiency Act of 2013; Notice of Workshop The Federal... process for the issuance of a license for hydropower development at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the Hydropower Regulatory Efficiency Act of...

  4. 78 FR 64493 - Juneau Hydropower, Inc.; Notice of Subsequent Draft License Application (DLA) and Draft...

    2013-10-29

    ... Energy Regulatory Commission Juneau Hydropower, Inc.; Notice of Subsequent Draft License Application (DLA..., 2013. d. Applicant: Juneau Hydropower, Inc. e. Name of Project: Sweetheart Lake Hydroelectric Project.... Applicant Contact: Duff Mitchell, Business Manager, Juneau Hydropower, Inc., P.O. Box 22775, Juneau,...

  5. 78 FR 66355 - Pleasant Grove City, UT; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    2013-11-05

    ... Conduit Hydropower Facility and Soliciting Comments and Motions To Intervene On October 22, 2013, as... a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower Regulatory Efficiency Act of 2013 (HREA). The 120 kW Battle...

  6. 75 FR 59707 - Coastal Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2010-09-28

    ... Energy Regulatory Commission Coastal Hydropower, LLC; Notice of Preliminary Permit Application Accepted..., 2010. On February 9, 2010, and supplemented on July 16, 2010, Coastal Hydropower, LLC filed an...-hours. Applicant Contact: Neil Anderson, Coastal Hydropower, LLC, Key Centre, 601 108th Avenue,...

  7. 78 FR 2990 - Juneau Hydropower, Inc.; Notice of Successive Preliminary Permit Application Accepted for Filing...

    2013-01-15

    ... Energy Regulatory Commission Juneau Hydropower, Inc.; Notice of Successive Preliminary Permit Application..., 2012, Juneau Hydropower, Inc., filed an application for a successive preliminary permit, pursuant to...: Duff Mitchell, Business Manager, Juneau Hydropower, Inc. P.O. Box 22775, Juneau, AK 99802; email:...

  8. 75 FR 62518 - Northern Illinois Hydropower, LLC; Notice of Application Ready for Environmental Analysis and...

    2010-10-12

    ... Energy Regulatory Commission Northern Illinois Hydropower, LLC; Notice of Application Ready for....: 12717-002. c. Date filed: May 27, 2009. d. Applicant: Northern Illinois Hydropower, LLC. e. Name of...). h. Applicant Contact: Damon Zdunich, Northern Illinois Hydropower, LLC, 801 Oakland Avenue,...

  9. 77 FR 63301 - Juneau Hydropower, Inc.; Notice of Draft License Application and Preliminary Draft Environmental...

    2012-10-16

    ... Energy Regulatory Commission Juneau Hydropower, Inc.; Notice of Draft License Application and Preliminary...: August 31, 2012. d. Applicant: Juneau Hydropower, Inc. e. Name of Project: Sweetheart Lake Hydroelectric... Hydropower, Inc., P.O. Box 22775, Juneau, AK 99802; 907-789-2775, email: duff.mitchell@juneauhydro.com ....

  10. 75 FR 24937 - Northern Illinois Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting...

    2010-05-06

    ... Energy Regulatory Commission Northern Illinois Hydropower, LLC; Notice of Application Accepted for Filing...: Northern Illinois Hydropower, LLC. e. Name of Project: Brandon Road Hydroelectric Project. f. Location: U.S... Zdunich, Northern Illinois Hydropower, LLC, 801 Oakland Avenue, Joliet, IL 60435, (312) 320-1610. i....

  11. 76 FR 58262 - Notice of Proposed Restricted Service List or Section 106 Consultation; Boott Hydropower Inc...

    2011-09-20

    ...; Boott Hydropower Inc.; Eldred L. Field Hydroelectric Facility Trust; Lowell Hydroelectric Project... installation of pneumatic crest gates at the Lowell Hydroelectric Project. Boott Hydropower, Inc. and Eldred L..., Boott Hydropower, Inc., Eldred L. Field Hydroelectric Facility Trust, One Tech Drive, Suite 220,...

  12. 75 FR 18193 - Northern Illinois Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting...

    2010-04-09

    ... Energy Regulatory Commission Northern Illinois Hydropower, LLC; Notice of Application Accepted for Filing...: Northern Illinois Hydropower, LLC. e. Name of Project: Dresden Island Project. f. Location: U.S. Army Corps... Zdunich, Northern Illinois Hydropower, LLC, 801 Oakland Avenue, Joliet, IL 60435, (312) 320-1610. i....

  13. 76 FR 19765 - Toutant Hydropower Inc.; Notice of Application Accepted for Filing, Soliciting Comments, Motions...

    2011-04-08

    ... Energy Regulatory Commission Toutant Hydropower Inc.; Notice of Application Accepted for Filing... Hydropower Inc. e. Name of Project: M.S.C. (Toutant) Hydroelectric Project. f. Location: The project is..., 16 U.S.C. 791a-825r. h. Applicant Contact: Roland Toutant, Toutant Hydropower, Inc., 80 Bungay...

  14. 78 FR 69847 - North Side Canal Company; Notice of Preliminary Determination of a Qualifying Conduit Hydropower...

    2013-11-21

    ... Qualifying Conduit Hydropower Facility and Soliciting Comments and Motions To Intervene On November 5, 2013, North Side Canal Company, filed a notice of intent to construct a qualifying conduit hydropower facility, pursuant to section 30 of the Federal Power Act, as amended by section 4 of the Hydropower...

  15. 77 FR 58375 - Inglis Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2012-09-20

    ... Energy Regulatory Commission Inglis Hydropower, LLC; Notice of Preliminary Permit Application Accepted..., Inglis Hydropower, LLC filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of a hydropower project located at the...

  16. 78 FR 12050 - Juneau Hydropower, Inc.; Notice of Successive Preliminary Permit Application Accepted for Filing...

    2013-02-21

    ... Energy Regulatory Commission Juneau Hydropower, Inc.; Notice of Successive Preliminary Permit Application..., 2012, Juneau Hydropower, Inc., filed an application for a successive preliminary permit, pursuant to...: Duff Mitchell, Business Manager, Juneau Hydropower, Inc. P.O. Box 22775, Juneau, AK 99802; email:...

  17. 18 CFR 2.23 - Use of reserved authority in hydropower licenses to ameliorate cumulative impacts.

    2010-04-01

    ... authority in hydropower licenses to ameliorate cumulative impacts. 2.23 Section 2.23 Conservation of Power... § 2.23 Use of reserved authority in hydropower licenses to ameliorate cumulative impacts. The... opportunity for hearing by the licensee and all interested parties. Hydropower licenses also contain...

  18. 77 FR 31349 - Coastal Hydropower, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2012-05-25

    ... Energy Regulatory Commission Coastal Hydropower, LLC; Notice of Preliminary Permit Application Accepted..., Coastal Hydropower, LLC filed an application for a preliminary permit, pursuant to section 4(f) of the... Contact: Neil Anderson, Coastal Hydropower, LLC, Key Centre, 601 108th Avenue NE., Suite 1900,...

  19. 78 FR 69080 - Houtama Hydropower LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2013-11-18

    ... Energy Regulatory Commission Houtama Hydropower LLC; Notice of Preliminary Permit Application Accepted..., 2013, Houtama Hydropower LLC filed an application for a preliminary permit, pursuant to section 4(f) of... Contact: Mr. William C. Hampton, CEO, Houtama Hydropower ] LLC, 1044 NW 12th Drive, Pendleton, OR...

  20. 78 FR 58535 - Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of Workshop

    2013-09-24

    ... Energy Regulatory Commission Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of... two-year process for the issuance of a license for hydropower development at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the Hydropower Regulatory...

  1. Quantifying the Value of Hydropower in the Electric Grid. Final Report

    Key, T. [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-02-01

    The report summarizes a 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. The study looked at existing large hydropower operations in the U.S., models for different electricity futures, markets, costs of existing and new technologies as well as trends related to hydropower investments in other parts of the world.

  2. Preliminary study for the 'Stroppel' residual-water hydropower installation

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a preliminary study made on the replacement of an old weir that controls the flow of residual water with a small hydropower turbine. The present situation and installations on the river Limmat near Untersiggenthal in northern Switzerland is described. The local geology, hydro-geology and topography are discussed. Six different variants for the use of the hydropower potential are discussed. The variant chosen for recommendation is described in detail. Apart from the normal technical details, the study provides details on flood-water protection and describes a fish by-pass that has already been built. Environmental aspects are discussed that are to be considered when the hydropower installation is built. The calculations for investment and operating costs are presented and the economic viability of the power station is discussed

  3. Hydropower, an integral part of Canada's climate change strategy

    The development and implementation of a climate change policy could be among the most far-reaching environmental initiatives ever embarked upon in Canada and abroad. If Canada is to stabilize or reduce its Greenhouse Gas (GHG) emissions over the long term, a significant adjustment to Canadian industry will be required as we move away from fossil fuel-intensive and GHG producing activities. Future hydroelectric projects provide Canada with a unique opportunity to significantly reduce the costs associated with stabilizing its GHG emissions. In addition, the energy storage and dispatchability associated with hydropower can support development of other low emitting renewable resources such as wind and solar. This document discusses the potential role of hydropower as a tool to reduce emissions, recommends action to reduce barriers facing hydropower and comments on some of the policy tools available to manage Canada's GHG emissions. (author)

  4. EMTA’s Evaluation of the Elastic Properties for Fiber Polymer Composites Potentially Used in Hydropower Systems

    Nguyen, Ba Nghiep; Paquette, Joshua

    2010-08-01

    Fiber-reinforced polymer composites can offer important advantages over metals where lightweight, cost-effective manufacturing and high mechanical performance can be achieved. To date, these materials have not been used in hydropower systems. In view of the possibility to tailor their mechanical properties to specific applications, they now have become a subject of research for potential use in hydropower systems. The first step in any structural design that uses composite materials consists of evaluating the basic composite mechanical properties as a function of the as-formed composite microstructure. These basic properties are the elastic stiffness, stress-strain response, and strength. This report describes the evaluation of the elastic stiffness for a series of common discontinuous fiber polymer composites processed by injection molding and compression molding in order to preliminarily estimate whether these composites could be used in hydropower systems for load-carrying components such as turbine blades. To this end, the EMTA (Copyright © Battelle 2010) predictive modeling tool developed at the Pacific Northwest National Laboratory (PNNL) has been applied to predict the elastic properties of these composites as a function of three key microstructural parameters: fiber volume fraction, fiber orientation distribution, and fiber length distribution. These parameters strongly control the composite mechanical performance and can be tailored to achieve property enhancement. EMTA uses the standard and enhanced Mori-Tanaka type models combined with the Eshelby equivalent inclusion method to predict the thermoelastic properties of the composite based on its microstructure.

  5. Capturing the Green River -- Multispectral airborne videography to evaluate the environmental impacts of hydropower operations

    The 500-mile long Green River is the largest tributary of the Colorado River. From its origin in the Wind River Range mountains of western Wyoming to its confluence with the Colorado River in southeastern Utah, the Green River is vital to the arid region through which it flows. Large portions of the area remain near-wilderness with the river providing a source of recreation in the form of fishing and rafting, irrigation for farming and ranching, and hydroelectric power. In the late 1950's and early 1960's hydroelectric facilities were built on the river. One of these, Flaming Gorge Dam, is located just south of the Utah-Wyoming border near the town of Dutch John, Utah. Hydropower operations result in hourly and daily fluctuations in the releases of water from the dam that alter the natural stream flow below the dam and affect natural resources in and along the river corridor. In the present study, the authors were interested in evaluating the potential impacts of hydropower operations at Flaming Gorge Dam on the downstream natural resources. Considering the size of the area affected by the daily pattern of water release at the dam as well as the difficult terrain and limited accessibility of many reaches of the river, evaluating these impacts using standard field study methods was virtually impossible. Instead an approach was developed that used multispectral aerial videography to determine changes in the affected parameters at different flows, hydrologic modeling to predict flow conditions for various hydropower operating scenarios, and ecological information on the biological resources of concern to assign impacts

  6. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-Strike Modeling

    Zhiqun Deng

    2011-01-01

    Full Text Available Hydropower is the largest renewable energy source in the world. However, in the Columbia and Snake River basins, several species of Pacific salmon and steelhead have been listed for protection under the Endangered Species Act due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making hydroelectric facilities more fish friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for relicensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to compare fish passage performance of the newly installed advanced turbine to an existing turbine. Modeled probabilities were compared to the results of a large-scale live-fish survival study and a Sensor Fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury, while those predicted by the stochastic model were in close agreement with experimental results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, no statistical evidence suggested significant differences in blade-strike injuries between the two turbines, thus the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal to or higher than that for fish passing through the conventional turbine could not be rejected.

  7. Importance of hydropower for the global power generation

    The renewable energy sources have in the last ten years - not only in Germany, but also worldwide - can post disproportionately strong growth rates. This is especially true in the electricity production. Especially the new renewable energies have a stable, strong growth and gain as compared to the conventional generation ever more ground. Nevertheless, hydropower remains by far the most important source of renewable energy in electricity generation. An analysis shows that hydropower can make significant contributions to sustainable and climate-friendly energy supply by 2050, if it is possible to raise their still unused potential.

  8. DOE Hydropower Program Biennial Report for FY 2005-2006

    Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Acker, Thomas L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Northern Arizona State Univ., Flagstaff, AZ (United States); Carlson, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2006-07-01

    This report describes the progress of the R&D conducted in FY 2005-2006 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  9. DOE Hydropower Program Annual Report for FY 2004

    Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ahlgrimm, James [U.S. Dept. of Energy, Washington, D.C. (United States); Acker, Tomas L. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2005-02-01

    This report describes the progress of the R&D conducted in FY 2004 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  10. Willingness to pay for environmental improvements in hydropower regulated rivers

    Kataria, Mitesh [Department of Economics, Swedish University of Agricultural Sciences, Box 7013, 750 07 Uppsala (Sweden)

    2009-01-15

    This paper uses a choice experiment to estimate how Swedish households value different environmental improvements for the hydropower regulated rivers. We obtained clear evidence that Swedish households have preferences for environmental improvement in hydropower regulated waters, at least when the cost is relatively low. Remedial measures that improve the conditions for all of the included environmental attributes i.e. fish, benthic invertebrates, river-margin vegetation and birds were found to have a significant welfare increasing impact. The results can be of value for the implementation of the Water Framework Directives in Sweden, which aims to reform the use of all surface water and ground water in the member states. (author)

  11. Willingness to pay for environmental improvements in hydropower regulated rivers

    This paper uses a choice experiment to estimate how Swedish households value different environmental improvements for the hydropower regulated rivers. We obtained clear evidence that Swedish households have preferences for environmental improvement in hydropower regulated waters, at least when the cost is relatively low. Remedial measures that improve the conditions for all of the included environmental attributes i.e. fish, benthic invertebrates, river-margin vegetation and birds were found to have a significant welfare increasing impact. The results can be of value for the implementation of the Water Framework Directives in Sweden, which aims to reform the use of all surface water and ground water in the member states. (author)

  12. Memorandum of Understanding for Hydropower Two-Year Progress Report

    None

    2012-04-01

    On March 24, 2010, the Department of the Army (DOA) through the U.S. Army Corps of Engineers (USACE or Corps), the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to “help meet the nation’s needs for reliable, affordable, and environmentally sustainable hydropower by building a long-term working relationship, prioritizing similar goals, and aligning ongoing and future renewable energy development efforts.” This report documents efforts so far.

  13. The influence of climate change on Tanzania's hydropower sustainability

    Sperna Weiland, Frederiek; Boehlert, Brent; Meijer, Karen; Schellekens, Jaap; Magnell, Jan-Petter; Helbrink, Jakob; Kassana, Leonard; Liden, Rikard

    2015-04-01

    Economic costs induced by current climate variability are large for Tanzania and may further increase due to future climate change. The Tanzanian National Climate Change Strategy addressed the need for stabilization of hydropower generation and strengthening of water resources management. Increased hydropower generation can contribute to sustainable use of energy resources and stabilization of the national electricity grid. To support Tanzania the World Bank financed this study in which the impact of climate change on the water resources and related hydropower generation capacity of Tanzania is assessed. To this end an ensemble of 78 GCM projections from both the CMIP3 and CMIP5 datasets was bias-corrected and down-scaled to 0.5 degrees resolution following the BCSD technique using the Princeton Global Meteorological Forcing Dataset as a reference. To quantify the hydrological impacts of climate change by 2035 the global hydrological model PCR-GLOBWB was set-up for Tanzania at a resolution of 3 minutes and run with all 78 GCM datasets. From the full set of projections a probable (median) and worst case scenario (95th percentile) were selected based upon (1) the country average Climate Moisture Index and (2) discharge statistics of relevance to hydropower generation. Although precipitation from the Princeton dataset shows deviations from local station measurements and the global hydrological model does not perfectly reproduce local scale hydrographs, the main discharge characteristics and precipitation patterns are represented well. The modeled natural river flows were adjusted for water demand and irrigation within the water resources model RIBASIM (both historical values and future scenarios). Potential hydropower capacity was assessed with the power market simulation model PoMo-C that considers both reservoir inflows obtained from RIBASIM and overall electricity generation costs. Results of the study show that climate change is unlikely to negatively affect the

  14. Influence of the site of arterial occlusion on multiple baseline hemodynamic MRI parameters and post-thrombolytic recanalization in acute stroke

    In this prospective MRI study, we evaluated the impact of the site of occlusion on multiple baseline perfusion parameters and subsequent recanalization in 49 stroke patients who were given intravenous tissue plasminogen activator (tPA). Pretreatment magnetic resonance angiography (MRA) revealed an arterial occlusion in 47 patients: (1) internal carotid artery (ICA) + M1 middle cerebral artery (MCA) occlusion (n=12); (2) M1 MCA occlusion (n=19); (3) M2 MCA, distal branches of the MCA and anterior cerebral artery (ACA) occlusion (n=16). Patients with ICA occlusion had significantly larger DWI, PWI and mismatch lesion volume on pretreatment MRI compared to patients with other sites of occlusion. The differences in cerebral blood flow (CBF) and peak height were significantly higher in patients with ICA occlusion compared to patients with other sites of occlusion (P=0.03 and P=0.04, respectively). Day 1 MRA showed recanalization in 28 patients (60%). The rate of recanalization was significantly different depending on the site of occlusion: 33% in ICA + M1 MCA occlusion, 63% in M1 MCA occlusion and 81% in either M2 MCA, distal branches of the MCA or ACA occlusion (P=0.002). Our data suggest that CBF and peak height are the most relevant MRI parameters to assess the severity of hemodynamic impairment in regard to the site of occlusion. (orig.)

  15. Reducing potential damages by freshet abatement in hydropower lakes. An argument for financing hydropower projects

    Dam reservoirs with significant water volumes (storage coefficients exceeding 8-10%) cause diminishing of the maximum flow downstream, especially due to the aleatory variation of the initial water level in the reservoir. Depending on the flow reduction in the dam, a methodology for determining the flow for the whole water course downstream is proposed, taking into account various potential combinations for flood generation in the catchment area. Differences between potential damages caused by floods in case of natural conditions versus those occurring in case of engineered zones result in important public financial benefits, amounting up to around 30% of the investments required for dam construction. For instance, in the case of hydropower lake Dragan on the Crisul Repede River the damages diminished down to about 50% for downstream watercourse. (authors)

  16. Modeling sugarcane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Caubel, A.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-06-01

    Agro-land surface models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugarcane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte Carlo sampling method associated with the calculation of partial ranked correlation coefficients is used to quantify the sensitivity of harvested biomass to input

  17. Modeling sugar cane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    A. Valade

    2014-01-01

    Full Text Available Agro-Land Surface Models (agro-LSM have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of Agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS' phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management or to ORCHIDEE (other ecosystem variables including biomass through distinct Monte-Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used to quantify the sensitivity of harvested

  18. Modeling sugar cane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-01-01

    Agro-Land Surface Models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of Agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS' phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte-Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used to quantify the sensitivity of harvested biomass to input

  19. Development of Site-Specific Soil Design Basis Earthquake (DBE) Parameters for the Integrated Waste Treatment Unit (IWTU)

    Payne, Suzette

    2008-08-01

    Horizontal and vertical PC 3 (2,500 yr) Soil Design Basis Earthquake (DBE) 5% damped spectra, corresponding time histories, and strain-compatible soil properties were developed for the Integrated Waste Treatment Unit (IWTU). The IWTU is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Laboratory (INL). Mean and 84th percentile horizontal DBE spectra derived from site-specific site response analyses were evaluated for the IWTU. The horizontal and vertical PC 3 (2,500 yr) Soil DBE 5% damped spectra at the 84th percentile were selected for Soil Structure Interaction (SSI) analyses at IWTU. The site response analyses were performed consistent with applicable Department of Energy (DOE) Standards, recommended guidance of the Nuclear Regulatory Commission (NRC), American Society of Civil Engineers (ASCE) Standards, and recommendations of the Blue Ribbon Panel (BRP) and Defense Nuclear Facilities Safety Board (DNFSB).

  20. DOE Hydropower Program Biennial Report for FY 2005-2006

    Sale, Michael J [ORNL; Cada, Glenn F [ORNL; Acker, Thomas L. [Northern Arizona State University and National Renewable Energy Laboratory; Carlson, Thomas [Pacific Northwest National Laboratory (PNNL); Dauble, Dennis D. [Pacific Northwest National Laboratory (PNNL); Hall, Douglas G. [Idaho National Laboratory (INL)

    2006-07-01

    SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington

  1. A specific and correlative study of natural atmospheric radioactivity, condensation nuclei and some electrical parameters in marine or urban sites

    In order to determine the correlations between the following atmospheric parameters: radon and condensation nuclei concentrations, total conductivity and space charge, we analysed their behavior over a long period, in connection with meteorological data. We simulaneously studied the equilibrium state between 222Rn and its short-lived daughters pointing out a radioactive desequilibrium as a function of the meteorological conditions. Simultaneously, we established average experimental curves of cumulated particle size distributions of natural radioactivity in the air, differentiating urban and marine influences. Finally, a comparison between the various parameters showed that the total conductivity greatly depends on condensation nuclei and radon concentrations in the air

  2. Population around the French nuclear power plant sites: a key-parameter for crisis management and safety economics

    This paper undertakes an analysis of population around the French nuclear power plant sites, tackles the problem of evacuation planning and provides a glimpse into ongoing research at the Laboratory of Nuclear Safety Economics of the IRSN, about the cost assessment of a nuclear accident and long-term land contamination. (author)

  3. The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation

    Chang, R. Y.-W.; Slowik, J. G.; Shantz, N. C.; A. Vlasenko; Liggio, J.; Sjostedt, S. J.; Leaitch, W. R.; Abbatt, J. P. D.

    2010-01-01

    Cloud condensation nuclei (CCN) concentrations were measured at Egbert, a rural site in Ontario, Canada during the spring of 2007. The CCN concentrations were compared to values predicted from the aerosol chemical composition and size distribution using κ-Köhler theory, with the specific goal of this work being to determine the hygroscopic parameter (κ) of the oxygenated organic component of the aerosol, assuming that oxygenation drives the hygroscopicity for the entire organic fraction of th...

  4. Modeling dissolved oxygen dynamics in blackwater rivers: The importance of site-specific data and carbon flux parameter complexity

    The validity of models predicting parameters of ecosystem health may be limited by the resolution of data available for target river reaches. Here we test the ability of the Environmental Fluid Dynamics Code (EFDC) model to accurately predict dissolved oxygen (DO) concentrations in two reaches of s...

  5. The role of hydropower in meeting Turkey's electric energy demand

    The inherent technical, economic and environmental benefits of hydroelectric power, make it an important contributor to the future world energy mix, particularly in the developing countries. These countries, such as Turkey, have a great and ever-intensifying need for power and water supplies and they also have the greatest remaining hydro potential. From the viewpoint of energy sources such as petroleum and natural gas, Turkey is not a rich country; but it has an abundant hydropower potential to be used for generation of electricity and must increase hydropower production in the near future. This paper deals with policies to meet the increasing electricity demand for Turkey. Hydropower and especially small hydropower are emphasized as Turkey's renewable energy sources. The results of two case studies, whose results were not taken into consideration in calculating Turkey's hydro electric potential, are presented. Turkey's small hydro power potential is found to be an important energy source, especially in the Eastern Black Sea Region. The results of a study in which Turkey's long-term demand has been predicted are also presented. According to the results of this paper, Turkey's hydro electric potential can meet 33-46% of its electric energy demand in 2020 and this potential may easily and economically be developed

  6. Simulation Modeling for Electrical Switching System of Hydropower Station

    Ran HU

    2013-08-01

    Full Text Available This paper proposes a simulation modeling method for the electrical switching system of hydropower station, which is a sub-topic for Hydropower Station Simulation Training System. The graphics model of commonly used electrical switch equipment is developed with a certain software. As vast and different types of Hydropower station circuit breakers and associated grounding switches, and each specific action of the switch process is not same, so the modular modeling method is described to solve the problem. According to the role and status in power plant, electrical switch system is divided into several sub modules, among which a number of small modules are sorted in. In each sub module, a common model is developed. Besides, the application method that the network topology analysis algorithm used in electrical switching system simulation logic judgment is introduced. With the ‘connecting line fusion’ technique, logic function expression member information table is automatically generated, thereby enhancing the suitability for the electrical switch simulation model. The methods mentioned above assure the real-time, typicality and flexibility in simulation, and have been successfully used in the development of a large hydropower station simulator.

  7. Hydropower recovery in water supply systems: Models and case study

    Highlights: • We present hydropower recovery models for water supply systems. • Hydropower recovery potential in water supply systems is highly variable. • The case studied could make the supply systems self-sufficient in terms of energy. • Hydropower recovery can reduce GHGs emissions and generate carbon credits. - Abstract: The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems

  8. Quadrennial Technology Review 2015: Technology Assessments--Hydropower

    Sam Baldwin, Gilbert Bindewald, Austin Brown, Charles Chen, Kerry Cheung, Corrie Clark, Joe Cresko,

    2015-10-07

    Hydropower has provided reliable and flexible base and peaking power generation in the United States for more than a century, contributing on average 10.5% of cumulative U.S. power sector net generation over the past six and one-half decades (1949–2013). It is the nation’s largest source of renewable electricity, with 79 GW of generating assets and 22 GW of pumped-storage assets in service, with hydropower providing half of all U.S. renewable power-sector generation (50% in 2014). In addition to this capacity, the U.S. Department of Energy (DOE) has identified greater than 80 GW of new hydropower resource potential: at least 5 GW from rehabilitation and expansion of existing generating assets, up to 12 GW of potential at existing dams without power facilities, and over 60 GW of potential low-impact new development (LIND) in undeveloped stream reaches. However, despite this growth potential, hydropower capacity and production growth have stalled in recent years, with existing assets even experiencing decreases in capacity and production from lack of sustaining investments in infrastructure and increasing constraints on water use.

  9. False Shades of Green: The Case of Brazilian Amazonian Hydropower

    James Randall Kahn

    2014-09-01

    Full Text Available The Federal Government of Brazil has ambitious plans to build a system of 58 additional hydroelectric dams in the Brazilian Amazon, with Hundreds of additional dams planned for other countries in the watershed. Although hydropower is often billed as clean energy, we argue that the environmental impacts of this project are likely to be large, and will result in substantial loss of biodiversity, as well as changes in the flows of ecological services. Moreover, the projects will generate significant greenhouse gas emissions from deforestation and decay of organic matter in the reservoirs. These emissions are equivalent to the five years of emissions that would be generated by gas powered plants of equivalent capacity. In addition, we examine the economic benefits of the hydropower in comparison to new alternatives, such as photovoltaic energy and wind power. We find that current costs of hydropower exceed alternatives, and the costs of costs of these alternatives are likely to fall substantially below those of hydropower, while the environmental damages from the dams will be extensive and irreversible.

  10. Hydro hall of fame: Honoring the foundations of hydropower

    McLeish, T.B. [Blackstone Valley Electric Company, Lincoln, RI (United States)

    1996-10-01

    Three hydropower plants are described in the article. Subarticles provide information on Vulcan Street Hydroelectric Central Station (Wisconsin), Columbia Canal Hydro Plant (South Carolina), and Bridge Mill Power Station (Rhode Island). Historical aspects of construction and operation are summarized. Technical information is also tabulated for the two plants still in operation (Columbia and Bridge Mill).

  11. The impact of environmental constraints on hydro-power projects

    Environmental side-effects which might occur in connection with hydropower generation are sediment deposition upstream of dams, degradation downstream of dams, interruption of fish migration, change of habitat characteristics for fauna and flora through reduction of flow velocity upstream of dams, change of habitat characteristics for fauna and flora through reduction of flow rate downstream of diversions, raise of groundwater level upstream of dams, drop of groundwater level downstream of dams. The side-effects listed above must not necessarily be seen as negative impact on riverine environment, in certain circumstances some of them might even be desirable. This is the case in river portions where the original morphological process progresses towards conditions that must be considered as environmental hazards. Apart from the effect of hydropower generation on riverine environment it must not be ignored that, on global scale the impact of hydropower generation on environment is basically positive as it lacks the negative effects of all other power generating methods (fossil fuel, nuclear reaction, photovoltaic processes). Hydropower is clean energy, self-regenerating and without any waste. The required equipment has the longest lifetime of all competing techniques (i.e. 100 years and more) and does not create hazards even when dismantling and recycling should become necessary one day. (author)

  12. 75 FR 40816 - Northern Illinois Hydropower, LLC; Notice of Meeting

    2010-07-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Northern Illinois Hydropower, LLC; Notice of Meeting July 7, 2010. a. Date and Time of Meeting: Thursday, July 22, 2010 from 9 a.m. to 12 p.m. CDT. b. Place: Illinois...

  13. 77 FR 64506 - Robert D. Willis Hydropower Rate

    2012-10-22

    ... Register, (77 FR 40609), of the proposed rate increase for the Willis project. Southwestern provided a 30... proposed Willis power rate were announced by a Federal Register notice published on July 10, 2012 (77 FR... Southwestern Power Administration Robert D. Willis Hydropower Rate AGENCY: Southwestern Power...

  14. Construction Claim Types and Causes for a Large-Scale Hydropower Project in Bhutan

    Bonaventura H.W. Hadikusumo

    2015-01-01

    Full Text Available Hydropower construction projects are complex and uncertain, have long gestational periods and involve several parties. Furthermore, they require the integration of different components (Civil, Mechanical and Electrical to work together as a single unit. These projects require highly specialised designs, detailed plans and specifications, high-risk construction methods, effective management, skilful supervision and close coordination. Thus, claims are common in such projects. These claims are undesirable because they require significant time and resources to resolve and cause adversarial relationships among the parties involved. Therefore, it is in the common interest of all involved parties to prevent, minimise, or resolve claims as amicably as possible. Identifying common claim types and their causes is essential in devising techniques to minimise and avoid them in future projects. This report details a case study performed on a large-scale hydropower project in Bhutan. The findings of this case study indicate that differing site conditions are the major contributor of impact and change claims and 95% of total claims can be settled by negotiation, whereas 5% of claims can be settled by arbitration.

  15. Implications of the sedimentation phenomenon in the design of hydropower reservoirs

    The influence of sedimentation phenomena on the operational parameters of the hydropower reservoirs built on several Romanian rivers was assessed. A cascade of eight reservoirs on the Olt river, with initial volumes of 20-50 M m3, lost about 30% of the conservation capacity and about 3-7% of head as well. Smaller reservoirs, with volumes of 2-10 M m3, lost 60-85% of their capacity. Dredging operations had to be done, thus, increasing the initial costs by 20%. The acquired experience revealed that the evolution in time of the reservoir capacity over the operation period should be as accurately as possible taken into account in the designing stage. The operation conditions and designing criterions for small and medium hydropower reservoir have to be reassessed also from the environmental and efficiency points of view. The content of the paper is the following: 1. Sedimentation knowledge and planning concepts for inland rivers; 2. Implications of the sedimentation phenomenon; 3. Forecast of the sedimentation phenomenon; 4. Retrospective and perspective; 5. Conclusions. (authors)

  16. Experimental investigation of creep behavior of clastic rock in Xiangjiaba Hydropower Project

    Yu ZHANG

    2015-01-01

    Full Text Available There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties. In order to investigate the creep behavior of clastic rock, triaxial creep tests were conducted using a rock servo-controlling rheological testing machine. The results show that the creep behavior of clastic rock is significant at a high level of deviatoric stress, and less time-dependent deformation occurs at high confining pressure. Based on the creep test results, the relationship between axial strain and time under different confining pressures was investigated, and the relationship between axial strain rate and deviatoric stress was also discussed. The strain rate increases rapidly, and the rock sample fails eventually under high deviatoric stress. Moreover, the creep failure mechanism under different confining pressures was analyzed. The main failure mechanism of clastic rock is plastic shear, accompanied by a significant compression and ductile dilatancy. On the other hand, with the determined parameters, the Burgers creep model was used to fit the creep curves. The results indicate that the Burgers model can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project.

  17. Assessing the impact of hydropower and climate change on the fish fauna in Alpine rivers

    Melcher, Andreas; Unfer, Guenther; Schmutz, Stefan

    2010-07-01

    Full text: Water temperature is amongst other factors a driver of fish community composition in rivers. Climate change and human pressures caused by hydropower can change the temperature regime and cause alterations of the fish fauna. In this paper we (1) use observed water temperature data from 1976 to 2005 to develop multiple linear regression models and to predict water temperature based on other abiotic parameters. Three variables, altitude, mean monthly flow rate, and distance from the source are able to describe up to 80% of the variance of mean monthly water temperatures during summer. Analyses of water temperature timelines showed a warming trend over the last 30 years. Furthermore (2), we use ecological models driven by monthly water temperature and human pressures to evaluate their impact on fish communities. We found significant correlations between human impacts and fish response. For water bodies dominated by European grayling (Thymallus thymallus), which are mainly influenced by hydropower, the typical mean water temperature for August ranges from 12 to 14 deg. C. Salmonid species are cold water species with limited tolerance against high water temperatures. Several case studies show lowered densities, biomass and a shift of the fish species composition due to hydropeaking, impoundment and the change of water temperature. Derived conclusions concerning habitat quality and in particular water temperature will provide important information for the planning of future restoration and mitigation measures in hydro morphologically impacted rivers under the respect of climate change. (Author)

  18. Developing a module for estimating climate warming effects on hydropower pricing in California

    Climate warming is expected to alter hydropower generation in California through affecting the annual stream-flow regimes and reducing snowpack. On the other hand, increased temperatures are expected to increase hydropower demand for cooling in warm periods while decreasing demand for heating in winter, subsequently altering the annual hydropower pricing patterns. The resulting variations in hydropower supply and pricing regimes necessitate changes in reservoir operations to minimize the revenue losses from climate warming. Previous studies in California have only explored the effects of hydrological changes on hydropower generation and revenues. This study builds a long-term hydropower pricing estimation tool, based on artificial neural network (ANN), to develop pricing scenarios under different climate warming scenarios. Results suggest higher average hydropower prices under climate warming scenarios than under historical climate. The developed tool is integrated with California's Energy-Based Hydropower Optimization Model (EBHOM) to facilitate simultaneous consideration of climate warming on hydropower supply, demand and pricing. EBHOM estimates an additional 5% drop in annual revenues under a dry warming scenario when climate change impacts on pricing are considered, with respect to when such effects are ignored, underlining the importance of considering changes in hydropower demand and pricing in future studies and policy making. - Highlights: ► Addressing the major gap in previous climate change and hydropower studies in California. ► Developing an ANN-based long-term hydropower price estimation tool. ► Estimating climate change effects on hydropower demand and pricing in California. ► Investigating the sensitivity of hydropower operations to future price changes. ► Underlining the importance of consideration of climate change impacts on electricity pricing.

  19. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  20. Speciated mercury at marine, coastal, and inland sites in New England – Part 2: Relationships with atmospheric physical parameters

    H. Mao

    2011-10-01

    Full Text Available Long-term continuous measurements of gaseous elemental mercury (Hgo, reactive gaseous mercury (RGM, and particulate phase mercury (Hgp were conducted at coastal (Thompson Farm, denoted as TF, marine (Appledore Island, denoted as AI, and elevated inland (Pac Monadnock, denoted as PM monitoring sites of the AIRMAP Observing Network. Diurnal, seasonal, annual, and interannual variability in Hgo, RGM, and Hgp from the three distinctly different environments were characterized and compared in Part 1. Here in Part 2 relationships between speciated mercury (i.e., Hgo, RGM, and Hgp and climate variables (e.g., temperature, wind speed, humidity, solar radiation, and precipitation were examined. The best point-to-point correlations were found between Hgo and temperature in summer at TF and spring at PM, but there was no similar correlation at AI. Subsets of data demonstrated regional impacts of episodic dynamic processes such as strong cyclonic systems on ambient levels of Hgo at all three sites, possibly through enhanced oceanic evasion of Hgo. A tendency of higher levels of RGM and Hgp was identified in spring and summer under sunny conditions in all environments. Specifically, the 10th, 25th, median, 75th, and 90th percentile mixing ratios of RGM and Hgp increased with stronger solar radiation at both the coastal and marine sites. These metrics decreased with increasing wind speed at AI indicating enhanced loss of RGM and Hgp through deposition. RGM and Hgp levels correlated with temperature positively in spring, summer and fall at the coastal and marine locations. In the coastal region relationships between RGM and relative humidity suggested a clear decreasing tendency in all metrics from <40% to 100% relative humidity in all seasons especially in spring, compared to less variability in the marine environment

  1. Processes, mechanisms, parameters, and modeling approaches for partially saturated flow in soil and rock media; Yucca Mountain Site Characterization Project

    Wang, J.S.Y.; Narasimhan, T.N. [Lawrence Berkeley Lab., CA (United States)

    1993-06-01

    This report discusses conceptual models and mathematical equations, analyzes distributions and correlations among hydrological parameters of soils and tuff, introduces new path integration approaches, and outlines scaling procedures to model potential-driven fluid flow in heterogeneous media. To properly model the transition from fracture-dominated flow under saturated conditions to matrix-dominated flow under partially saturated conditions, characteristic curves and permeability functions for fractures and matrix need to be improved and validated. Couplings from two-phase flow, heat transfer, solute transport, and rock deformation to liquid flow are also important. For stochastic modeling of alternating units of welded and nonwelded tuff or formations bounded by fault zones, correlations and constraints on average values of saturated permeability and air entry scaling factor between different units need to be imposed to avoid unlikely combinations of parameters and predictions. Large-scale simulations require efficient and verifiable numerical algorithms. New path integration approaches based on postulates of minimum work and mass conservation to solve flow geometry and potential distribution simultaneously are introduced. This verifiable integral approach, together with fractal scaling procedures to generate statistical realizations with parameter distribution, correlation, and scaling taken into account, can be used to quantify uncertainties and generate the cumulative distribution function for groundwater travel times.

  2. Operating multireservoir hydropower systems for downstream water quality

    Hydropower reservoir operations often impact tailwater quality and water quality in the stream or river below the impoundment for many miles. Determining optimal operating strategies for a system of hydropower reservoirs involves solving a highly dimensional nonlinear, nonconvex optimization problem. This research adds the additional complexities of downstream water quality considerations within the optimization formulation to determine operating strategies for a system of hydropower reservoirs operating in series (tandem) or parallel. The formulation was used to determine operating strategies for six reservoirs of the upper Cumberland river basin in Tennessee and Kentucky. Significant dissolved oxygen (DO) violations occur just upstream of Nashville, Tennessee below Old Hickory dam during the months of August and September. Daily reservoir releases were determined for the period of June through September which would produce the maximum hydropower revenue while meeting downstream water quality objectives. Optimal releases for three operational strategies were compared to historical operations for the years 1985, 1986, and 1988. These strategies included: spilling as necessary to meet water quality criteria, near normal operation (minimal spills), and drawdown of reservoirs as necessary to meet criteria without spills. Optimization results showed an 8% to 15% hydropower loss may be necessary to meet water quality criteria through spills and a 2% to 9% improvement in DO below Old Hickory may be possible without significant spills. Results also showed that substantial increases in initial headwater elevations would be necessary to meet daily DO criteria and avoid spills. The optimal control theory algorithm used to solve the problem proved to be an efficient and robust solver of this large optimization problem

  3. An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks

    Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor

    2015-04-01

    Continuity of service of a high quality water supply is vital in sustaining economic and social development. However, water supply and wastewater treatment are highly energy intensive processes and the overall cost of water provision is rising rapidly due to increased energy costs, higher capital investment requirements, and more stringent regulatory compliance in terms of both national and EU legislation. Under the EU Directive 2009/28/EC, both Ireland and the UK are required to have 16% and 15% respectively of their electricity generated by renewable sources by 2020. The projected impacts of climate change, population growth and urbanisation will place additional pressures on resources, further increasing future water demand which in turn will lead to higher energy consumption. Therefore, there is a need to achieve greater efficiencies across the water industry. The implementation of micro-hydropower turbines within the water supply network has shown considerable viability for energy recovery. This is achieved by harnessing energy at points of high flow or pressure along the network which can then be utilised on site or alternatively sold to the national grid. Micro-hydropower can provide greater energy security for utilities together with a reduction in greenhouse gas emissions. However, potential climate change impacts on water resources in the medium-to-long term currently act as a key barrier to industry confidence as changes in flow and pressure within the network can significantly alter the available energy for recovery. The present study aims to address these uncertainties and quantify the regional and local impacts of climate change on the viability of energy recovery across water infrastructure in Ireland and the UK. Specifically, the research focuses on assessing the potential future effects of climate change on flow rates at multiple pressure reducing valve sites along the water supply network and also in terms of flow at a number of wastewater

  4. Geospatial Technology for Mapping Suitable Sites for Hydro Power Plant

    Dr. Nagraj S. Patil; Prof. I. T. Shirkol; Prof. S. G. Joshi

    2013-01-01

    Hydropower is one possible method of generating electric power close to potential consumers. The accessibility of the possible sites which are mostly located in rural and mountainous areas, large amount of data is required, consumes huge amount of money and time. Since small hydropower schemes, used to produce electrical energy which is benefited for nearby small towns, villages or small industries. Expensive ground investigations must be carefully targeted to the areas which are most likely ...

  5. Roach (Rutilus rutilus) reproductive cycle: a study of biochemical and histological parameters in a low contaminated site.

    Geraudie, Perrine; Gerbron, Marie; Hill, Elisabeth; Minier, Christophe

    2010-09-01

    Fish reproduction is subjected to worrying trends in many aquatic environments. In this study, we report the absence of histological and biochemical alterations in fish sampled in a low contaminated site (characterised by the absence of detectable oestrogenic activity and mutagenicity in sediment extracts). A total of 474 roach (Rutilus rutilus) were monthly sampled during 18 months, and no intersex fish were recorded after careful histological examination, thus indicating that the incidence of this phenomenon may be very low under natural conditions. Furthermore, mean male plasma vitellogenin concentration was 24 ng ml(-1) and was only slightly elevated during the spawning period (up to 120 ng ml(-1)) indicating that these low values may be characteristic of a low contaminated site. Of the male roach, 45.3% were sampled, a sex-ratio that did not significantly deviated from the expected 1:1 ratio between male and female. Results also showed that natural conditions can greatly affect the reproductive cycle of roach. Gametogenesis showed a biphasic pattern with first gonad maturation between September and December and a final maturation occurring at the end of winter/early spring. Under decreasing temperatures, particularly below 6 degrees C, gametogenesis was stopped or even regressed with secondary oocytes becoming rare under histological observation. Conversely, elevated temperatures during the winter lead to an earlier gonad maturation. PMID:19680761

  6. Sensitivity analysis of groundwater lifetime expectancy to hydro-dispersive parameters: The case of ANDRA Meuse/Haute-Marne site

    Within the framework of deep geological nuclear waste disposal investigations, ANDRA (French National Radioactive Waste Management Agency) has built a numerical model of groundwater flow and hydro-dispersive mass transport with the aim to analyze the characteristics of solutes transfer throughout the multilayered aquifer system including the clay host formation. As an exploratory tool, a sensitivity analysis was conducted on the average time for a water molecule flowing through the potential repository emplacement to reach the limits of the model. The correlated hydraulic conductivities and porosities of 14 hydrogeological layers are the uncertain hydro-dispersive parameters under study. A derivative-based method (Elementary Effects) is compared to regression-based global sensitivity analysis techniques (Standardized regression coefficients and Response Surface Method). As a result, the main behavior of the groundwater flow and mass transport through the multilayered system was captured. The relative effects of advective and dispersive processes are analyzed, however some uncertainties remain on the non-linear features of some input factors and their contribution to interaction processes. - Highlights: • 3D multilayered groundwater flow and transport model of the Eastern Paris basin. • Calculation of the mean lifetime expectancy of groundwater flow. • Sensitivity analysis over hydro-dispersive parameters of fourteen geological layers. • Screening exercise using the Elementary Effects method. • Regression-based global sensitivity analysis

  7. Sensitivity of erythemal UV/global irradiance ratios to atmospheric parameters: application for estimating erythemal radiation at four sites in Thailand

    Buntoung, Sumaman; Janjai, Serm; Nunez, Manuel; Choosri, Pranomkorn; Pratummasoot, Noppamas; Chiwpreecha, Kulanist

    2014-11-01

    Factors affecting the ratio of erythemal UV (UVER) to broadband (G) irradiance were investigated in this study. Data from four solar monitoring sites in Thailand, namely Chiang Mai, Ubon Ratchathani, Nakhon Pathom and Songkhla were used to investigate the UVER/G ratio in response to geometric and atmospheric parameters. These comprised solar zenith angle, aerosol load, total ozone column, precipitable water and clearness index. A modeling scheme was developed to isolate and examine the effect of each individual environmental parameter on the ratio. Results showed that all parameters with the exception of solar zenith angle and clearness index influenced the ratios in a linear manner. These results were also used to develop a semi-empirical model for estimating hourly erythemal UV irradiance. Data from 2009 to 2010 were used to construct the ratio model while validation was performed using erythemal UV irradiance at the above four sites in 2011. The validation results showed reasonable agreement with a root mean square difference of 13.5% and mean bias difference of - 0.5%, under all sky conditions and 10.9% and - 0.3%, respectively, under cloudless conditions.

  8. Effects of Flaming Gorge Dam hydropower operations on sediment transport in the Browns Park reach of the Green River, Utah and Colorado

    Three methods for comparing sediment transport were applied to four proposed hydropower operational scenarios under study for Flaming Gorge Dam on the Green River in Utah. These methods were effective discharge, equilibrium potential, and cumulative sediment load with flow exceedance plots. Sediment loads transported by the Green River in the Browns Park reach were calculated with the Engelund-Hansen equation for three historical water years and four hydropower operational scenarios. A model based on the Engelund-Hansen equation was developed using site-specific information and validated by comparing predictions for a moderate water year with measured historical values. The three methods were used to assess the impacts of hydropower operational scenarios on sediment resources. The cumulative sediment load method provided the most useful information for impact evaluation. Effective discharge was not a useful tool because of the limited number of discrete flows associated with synthetic hydrographs for the hydropower operational scenarios. The equilibrium potential method was relatively insensitive to the variations in operating conditions, rendering it comparatively ineffective for impact evaluation

  9. Impacts of changes in flow in glacier fed river in Nepal on hydropower production.

    Khadka Mishra, S.

    2014-12-01

    Variability of water flow in rivers due to change in temperature, precipitation and melting of glacier translates to change in water availability for agriculture, biodiversity conservation, and hydropower production impacting 1.5 billion people living downstream in India and Nepal. Previous studies ranked hydropower sector as the highest priority sector considering the urgency and severity of impacts in countries such as Nepal where hydropower shares 96 percentage of electricity production. In India, 45 per cent of hydroelectricity is generated from glacier fed rivers and hydropower shares 17 per cent of power generation. This study developed a framework to estimate the change in river flow attributed to global climate change and quantify its impact on hydropower generation in South Asian Mountains. The framework is applied on one of the major rivers Koshi River in Nepal with existing and proposed hydropower plants. The integrated assessment approach involved estimation of the change in flow in the river in the first part. Model was developed to estimate the change in flow that uses time series data on precipitation, temperature, remote sensing imagery on snow accumulation and ablation, and slope and surface hydrology. In the second part, another model was developed to investigate the impact of change in flow on hydropower production in various types of hydropower production plants. Data on flow, characteristics of hydropower plants and hydropower produced monthly from power plants in and outside of the river basin were used to model the flow and power generation from various categories of power plants. We will further discuss the results of the integrated assessments of potential changes in hydropower generation in various categories of hydropower plants based on Koshi River under various expected changes in flow and the implications for hydropower generation from other river systems in Nepal and India.

  10. Examination of methane ebullition in a Swiss hydropower reservoir

    DelSontro, T.; Ostrovsky, I.; Eugster, W.; McGinnis, D. F.; Wehrli, B.

    2012-04-01

    Ebullition is one of the most important methane emission pathways from inland water bodies, yet the stochastic nature of ebullition complicates its monitoring. Therefore, a bubble-calibrated 120 kHz split-beam echosounder (Simrad EK60, Kongsberg Maritime) was utilized to survey the active ebullition area of a small temperate hydropower reservoir (Lake Wohlen, Switzerland), which is known for intense methane bubble release in summer. The performed bubble size calibration agreed well with the literature and the presented hydroacoustic technique to estimate methane bubble flux in the presence of non-bubble targets was determined to be the most appropriate post-processing method for this reservoir. The acoustically-determined average methane ebullition flux from the sediment to the water column from seven campaigns was 580 mg CH4 m-2 d-1 (range, 130 to 1450). Bubble size distribution, which mostly included 1 to 20 mm diameter bubbles, was strongly related to the magnitude of sediment ebullition flux. The bubble size distribution is an important consideration when calculating the resulting surface efflux using a bubble dissolution model. Using the Sauter mean diameter to represent the volume to surface area to volume ratio of the bubble size distribution in the bubble model resulted in an average atmospheric emission of 490 mg CH4 m-2 d-1. The spatially-averaged data and the standard deviation from seven sampling campaigns revealed areas of 'high' and 'low' ebullition fluxes that seemed to correlate to geomorphology of the reservoir, which still contains the former river channel. The hydroacoustic flux estimates were compared with other methods of methane flux assessments used simultaneously: the traditional chamber method and the eddy covariance technique combined with spectrometer methane measurements (Fast Methane Analyzer, Los Gatos Research). Chamber measurements on all but one day were higher than the hydroacoustic survey results (but within the same order of

  11. Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area

    Meyer, Philip D.; Ye, Ming; Rockhold, Mark L.; Neuman, Shlomo P.; Cantrell, Kirk J.

    2007-07-30

    This report to the Nuclear Regulatory Commission (NRC) describes the development and application of a methodology to systematically and quantitatively assess predictive uncertainty in groundwater flow and transport modeling that considers the combined impact of hydrogeologic uncertainties associated with the conceptual-mathematical basis of a model, model parameters, and the scenario to which the model is applied. The methodology is based on a n extension of a Maximum Likelihood implementation of Bayesian Model Averaging. Model uncertainty is represented by postulating a discrete set of alternative conceptual models for a site with associated prior model probabilities that reflect a belief about the relative plausibility of each model based on its apparent consistency with available knowledge and data. Posterior model probabilities are computed and parameter uncertainty is estimated by calibrating each model to observed system behavior; prior parameter estimates are optionally included. Scenario uncertainty is represented as a discrete set of alternative future conditions affecting boundary conditions, source/sink terms, or other aspects of the models, with associated prior scenario probabilities. A joint assessment of uncertainty results from combining model predictions computed under each scenario using as weight the posterior model and prior scenario probabilities. The uncertainty methodology was applied to modeling of groundwater flow and uranium transport at the Hanford Site 300 Area. Eight alternative models representing uncertainty in the hydrogeologic and geochemical properties as well as the temporal variability were considered. Two scenarios represent alternative future behavior of the Columbia River adjacent to the site were considered. The scenario alternatives were implemented in the models through the boundary conditions. Results demonstrate the feasibility of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow

  12. Impact of hydrogeological and geomechanical properties on surface uplift at a CO2 injection site: Parameter estimation and uncertainty quantification

    Newell, P.; Yoon, H.; Martinez, M. J.; Bishop, J. E.; Arnold, B. W.; Bryant, S.

    2013-12-01

    It is essential to couple multiphase flow and geomechanical response in order to predict a consequence of geological storage of CO2. In this study, we estimate key hydrogeologic features to govern the geomechanical response (i.e., surface uplift) at a large-scale CO2 injection project at In Salah, Algeria using the Sierra Toolkit - a multi-physics simulation code developed at Sandia National Laboratories. Importantly, a jointed rock model is used to study the effect of postulated fractures in the injection zone on the surface uplift. The In Salah Gas Project includes an industrial-scale demonstration of CO2 storage in an active gas field where CO2 from natural gas production is being re-injected into a brine-filled portion of the structure downdip of the gas accumulation. The observed data include millimeter scale surface deformations (e.g., uplift) reported in the literature and injection well locations and rate histories provided by the operators. Our preliminary results show that the intrinsic permeability and Biot coefficient of the injection zone are important. Moreover pre-existing fractures within the injection zone affect the uplift significantly. Estimation of additional (i.e., anisotropy ratio) and coupled parameters will help us to develop models, which account for the complex relationship between mechanical integrity and CO2 injection-induced pressure changes. Uncertainty quantification of model predictions will be also performed using various algorithms including null-space Monte Carlo and polynomial-chaos expansion methods. This work will highlight that our coupled reservoir and geomechanical simulations associated with parameter estimation can provide a practical solution for designing operating conditions and understanding subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office

  13. The impact of the site meteorological conditions, model and parameters of atmospheric dispersion on the assessment results of public radiation exposure under normal operation of nuclear facilities

    The real meteorological condition of the nuclear facilities located in different regions in China was used to do the comparative evaluation of the public radiation exposure from airborne effluent of a hypothetical 1000 MWe pressure water reactor (PWR) under the routine operation. The public radiation exposure is far less than the State Radiation Exposure Limit, because the airborne emission from the 1000 MWe PWR under the routine operation is very low. The site-meteorological condition, the dispersion model and its parameters have little influence on the public radiation exposure. Therefore it can simplify the assessment of the impact on environment of nuclear power station. (4 tabs., 4 figs.)

  14. Effects of soil bulk density on gas transport parameters and pore-network properties across a sandy field site

    Masís-Meléndez, F.; De Jonge, L. W.; Chamindu, Deepagoda;

    2015-01-01

    The gas diffusion coefficient, air permeability, and their interrelations with air-filled porosity are essential for characterization of diffusive and convective transport of gases in soils. Variations in soil bulk density can affect water retention, air-filled pore space, and pore-network connec......The gas diffusion coefficient, air permeability, and their interrelations with air-filled porosity are essential for characterization of diffusive and convective transport of gases in soils. Variations in soil bulk density can affect water retention, air-filled pore space, and pore...... water characteristic were investigated. Interactions with soil organic matter, sand, and clay fractions were also examined. To evaluate bulk density effects, two constitutive parameters were derived from each of the three measured relationships. The Campbell pore-size distribution index (b) and the air......-entry matric potential (yae) were derived from the soil water characteristic; the diffusive percolation threshold (eDPT), the air-filled porosity where gas diffusivity ceases to almost zero because of interconnected water films creating isolated–inactive air content, and a pore-network connectivity index (A2...

  15. A New Tool for Environmental and Economic Optimization of Hydropower Operations

    Saha, S.; Hayse, J. W.

    2012-12-01

    As part of a project funded by the U.S. Department of Energy, researchers from Argonne, Oak Ridge, Pacific Northwest, and Sandia National Laboratories collaborated on the development of an integrated toolset to enhance hydropower operational decisions related to economic value and environmental performance. As part of this effort, we developed an analytical approach (Index of River Functionality, IRF) and an associated software tool to evaluate how well discharge regimes achieve ecosystem management goals for hydropower facilities. This approach defines site-specific environmental objectives using relationships between environmental metrics and hydropower-influenced flow characteristics (e.g., discharge or temperature), with consideration given to seasonal timing, duration, and return frequency requirements for the environmental objectives. The IRF approach evaluates the degree to which an operational regime meets each objective and produces a score representing how well that regime meets the overall set of defined objectives. When integrated with other components in the toolset that are used to plan hydropower operations based upon hydrologic forecasts and various constraints on operations, the IRF approach allows an optimal release pattern to be developed based upon tradeoffs between environmental performance and economic value. We tested the toolset prototype to generate a virtual planning operation for a hydropower facility located in the Upper Colorado River basin as a demonstration exercise. We conducted planning as if looking five months into the future using data for the recently concluded 2012 water year. The environmental objectives for this demonstration were related to spawning and nursery habitat for endangered fishes using metrics associated with maintenance of instream habitat and reconnection of the main channel with floodplain wetlands in a representative reach of the river. We also applied existing mandatory operational constraints for the

  16. Methodology and parameters for assessing human health effects for waste sites at the Savannah River Plant: Environmental information document

    This report provides a summary of the components of risk assessment and presents the technical basis for application of the risk evaluation process to the principal pollutants at SRP: radionuclides, toxic chemicals, and carcinogenic compounds. An extensive technical data base from the fields of radiation health physics, toxicology, and environmental sciences is required to accomplish this task. The origin and meaning of this data base is summarized for each class of contaminant and parameter values provided for use in numerical analysis of risk. The process of risk assessment is associated with uncertainties, a fact which is frequently stated in the technical literature addressing this subject. A review of risk assessment uncertainties and the limitations of predictive risk assessment are summarized. Risk estimators for each class of contaminants at the SRP have been tabulated for radionuclides, toxic chemicals, and carcinogens from the technical literature. Estimation of human health risk is not an additive process for radiation effects and chemical carcinogenesis since their respective dosimetric models are distinctly different even though the induction of cancer is reported to be the common end result. It is recommended in this report that risk estimation for radionuclides and chemical carcinogens should be tabulated separately and this recommendation has been applied in all environmental information documentation published by the Savannah River Laboratory. Impacts due to toxic chemicals in the biosphere should also be estimated as a separate entity since toxic chemical risk estimators are uniquely different and do not reflect the probability of a detrimental health effect. 23 refs., 4 figs., 13 tabs

  17. The benefits of applied research to hydropower development

    Applied research at hydraulic laboratories traditionally has involved the physical modelling of hydraulic structures. In recent years, the physical modelling expertise of many hydraulic laboratories has been expanded into other areas, such as computer simulation and field studies. Recent basic research has also provided predictive techniques which provide insight into potential problems and are useful tools in evaluating whether or not a model study should be done. Advancements in computer technology have provided the tools necessary for making great strides in the area of stochastic hydrology and for studying its impact on selection of more representative design flows, fluid flow computations and their impact on hydromachine and hydraulic structure design, and the optimization of reservoir operation to achieve the best possible use of the water at hydropower facilities. This paper discusses some of the more recent applied research conducted and its impact on the hydropower community

  18. Some data on Hydropower (onshore and offshore). Potential, Costs, Impacts

    Hydropower generation seems worldwide the most attractive renewable energy by its cost of about 3 cents per KWh and its flexibility. But it will be limited under 10.000 TWh/year with a capacity increased to 3.000 GW and a lakes area increased to 500.000 km2. Pump storage plants may be the best solution for the necessary storage associated with wind and power which will be used for a large part of the world energy needs. The corresponding extra cost for storage will be in the range of 2 cents per KWh of intermittent energy. The necessary P.S.P. capacity in 2050 may be 3.000 GW occupying 30.000 km2 most out of rivers. As for generation, the P.S.P. may be used at least one century. Directly or indirectly, Hydropower will be an essential part of the future world energy. (author)

  19. Renovation and uprating of seven hydropower plants in Java

    The Indonesian Power Authority is planning to renovate and uprate seven hydropower stations in Java to expand plant life expectancy, ensure operating safety and reliability, and increase power and generation within economical limits. The power plants were constructed in the early 1920s and extended between 1945 and 1950. Their capacities vary between 4 and 20 MW. For the renovation project, Colenco Power Consulting Ltd. is acting as a consultant to PLN. In February 1990, Colenco inspected all seven power plants. The results of the inspections served as the basis for the development of renovation plans for each of the seven hydropower plants. To determine the cost of the proposed renovation plans, appraisers had to determine a method for comparing the value of an existing plant to that of a renovated one. The two different evaluation methods used for these comparisons are the focus of this paper

  20. Imersuaq - Hydropower potential in Greenland; Imersuaq - Vandkraftpotentiale i Groenland

    Egede Boeggild, C.; Ahlstroem, A.P. [Danmark og Groenlands Geologiske Undersoegelse (GEUS), Copenhagen (Denmark); Tvis Knudsen, N. [Aarhus Univ., Geologisk Inst., Aarhus (Denmark)

    2001-07-01

    The project aims at a more precise estimate of the contribution from the icesheet to hydropower potentials, based on the largest bassin in Western Greenland 'Tasersiaq', situated between the cities of Maniitsoq and Kangerlussuaq. New methods are applied: 1) Detailed mapping of the icemargin using radar measurements from satellite. 2) Airborne radio-echo soundings, precisely estimating the ice thickness and bedrock topography. 3)Accurate determination of the aircraft's position by means of GPS and laser altimetry of the aircraft altitude above the ice. Furthermore, fully automatic climate stations on the surface provides in situ climate data for calculation of the snowmelt. The insight gained from combining the extensive data set with the broad range of expertise available within the project, is to be condensed into a strong scientific tool, which can be applied when the prospects for new hydropower plants in Greenland has to be assessed. (LN)

  1. Impacts of alternative Great Lakes regulation plans on hydropower production

    Hydropower production is evaluated for two alternative regulation measures developed under the recent International Joint Commission Great Lakes Water Levels Reference. Measure 1.18 included a new control structure to regulate outflows from Lake Erie, while measure 1.21 was a revision of the current regulation plans for lakes Superior and Ontario. A negative impact to the entire hydropower system was calculated to range between US$11.9 and US$20.9 million/year under measure 1.18, while measure 1.21 had a positive impact in the range of US$1 to US$3 million/year. Considering the impacts to all interests, the Reference Study Board recommended no further consideration be given to measure 1.18, but that a measure similar to 1.21 should be implemented. (author). 34 refs., 9 tabs., 2 figs

  2. Environmental certification for small hydropower plants; Umweltzertifizierung Kleinwasserkraftwerke

    Truffer, B.; Meier, W.; Vollenweider, S. [Eidgenoessische Anstalt fuer Wasserversorgung, Abwasserreinigung und Gewaesserschutz (EAWAG), Kastanienbaum (Switzerland); Seiler, B.; Dettli, R. [Econcept AG, Zuerich (Switzerland)

    2001-07-01

    This report for the Swiss Federal Institute for Environmental Science and Technology describes product-differentiation options for small hydropower plant in Switzerland and proposes a form of differentiation based on ecological characteristics as a promising market strategy. The labels created in various countries to assure customers of the environmental compatibility of 'green' power production are looked at. In particular, the implications for small hydropower plant associated with the Swiss green power labelling procedure introduced by the Association for the Promotion of Environmentally Sound Electricity (VUE) are discussed. The report proposes a simplified procedure for these small power stations and presents a sample calculation for the overall costs of certification. The report is rounded off with four detailed case studies in which the necessary upgrades to the plant and associated costs are discussed in detail.

  3. The 'Pontareuse' small hydropower station in Boudry, Switzerland

    This illustrated report for the Swiss Federal Office of Energy (SFOE) describes work done in 2007 on the preliminary project for a small hydropower project to be realised in Boudry, Switzerland. The goal of this project is to take advantage of the hydro power of the river Areuse using an existing artificial weir which has been built and renovated as part of several river corrections in the past. Three variants for the construction of the proposed hydropower installation with a maximum projected power rating of 391 kilowatts are presented in detail. Options for the realisation of a fish pass to enable fish to pass the weir are also discussed. Figures are presented on the financial viability of the project which, although low, could however become interesting when the expected tariff changes in connection with the new Swiss legislation on electrical energy supply are considered

  4. MODELING IMPACT OF CLIMATE CHANGE IN HYDROPOWER PROJECTS' FEASIBILITY VALUATION

    Ronny Araya SUAREZ

    2012-01-01

    In this paper a case study is presented to propose an alternative mechanism to include the impact of climate change into the hydropower projects' feasibility valuation. We start from independent engineer historical energy generation simulations, therefore applying mixing unconditional disturbance and extreme value theory, a new path that satisfy a return level specification is created. New path is used to analyze the effect of extreme events on the internal rate of return of the project. This...

  5. The trend of small hydropower development in China

    The paper makes an analysis of the status quo and existing issues of small hydropower (SHP) in China and based on the logistic growth curve model forecasts the installed capacity of SHP and cost of newly built SHP in the future. It also explores the opportunity of the clean development mechanism (CDM) in SHP projects and puts forward suggestions and recommendations on enhancing the SHP market competitiveness. (author)

  6. Numerical simulations of hydraulic transients in hydropower plant Jajce II

    Škifić, Jerko; Radošević, Adrijana; Brajković, Đani; Družeta, Siniša; Čavrak, Marko

    2013-01-01

    Hydraulic transients in hydropower plant Jajce II (Bosnia and Herzegovina) were simulated with 1D unsteady pipe flow model. High accuracy of the model was accomplished with the use of non-conservative formulation of an unsteady pipe flow model incorporating a modified instantaneous acceleration-based unsteady friction model and second order flux limited numerical scheme. In order to apply the model, complex dual surge tank geometry needed to be represented with a unified surge tank. The numer...

  7. Peak Operation of Cascaded Hydropower Plants Serving Multiple Provinces

    Jianjian Shen

    2015-10-01

    Full Text Available The bulk hydropower transmission via trans-provincial and trans-regional power networks in China provides great operational flexibility to dispatch power resources between multiple power grids. This is very beneficial to alleviate the tremendous peak load pressure of most provincial power grids. This study places the focus on peak operations of cascaded hydropower plants serving multiple provinces under a regional connected AC/DC network. The objective is to respond to peak loads of multiple provincial power grids simultaneously. A two-stage search method is developed for this problem. In the first stage, a load reconstruction strategy is proposed to combine multiple load curves of power grids into a total load curve. The purpose is to deal with different load features in load magnitudes, peaks and valleys. A mutative-scale optimization method is then used to determine the generation schedules of hydropower plants. In the second stage, an exterior point search method is established to allocate the generation among multiple receiving power grids. This method produces an initial solution using the load shedding algorithm, and further improves it by iteratively coordinating the generation among different power grids. The proposed method was implemented to the operations of cascaded hydropower plants on Xin-Fu River and another on Hongshui River. The optimization results in two cases satisfied the peak demands of receiving provincial power grids. Moreover, the maximum load difference between peak and valley decreased 12.67% and 11.32% in Shanghai Power Grid (SHPG and Zhejiang Power Grid (ZJPG, exceeding by 4.85% and 6.72% those of the current operational method, respectively. The advantage of the proposed method in alleviating peak-shaving pressure is demonstrated.

  8. Hydraulic transient events in hydropower plants with installed Francis turbines.

    Mazij, Jernej

    2009-01-01

    Hydraulic transient events are the result of time related changes of hydrodinamical quantities in a hydraulic passage system. Treatise of transient events is essential to ensure safe operation of the hydropower plant, and for suitable design of turbine components and related hydromechanical equipment. Causes of transient events and their characteristics in different hydraulic passage systems are presented in this work. Basic system of water hammer equation was derived, consisting of the momen...

  9. Capacity addition through hydropower - a need of the time

    Electric power is one of the key infrastructure for the growth of any economy. Indian electric sector has made tremendous growth paving the way for overall development of the country. The target is of electrifying all villages by 2007 and providing power to households by 2012. Hydropower has several advantages over other forms of commercial power. Besides being inexhaustible, it is pollution free and non-inflationary in character

  10. Nonlinear Predictive Control of a Hydropower System Model

    Runfan Zhang; Diyi Chen; Xiaoyi Ma

    2015-01-01

    A six-dimensional nonlinear hydropower system controlled by a nonlinear predictive control method is presented in this paper. In terms of the nonlinear predictive control method; the performance index with terminal penalty function is selected. A simple method to find an appropriate terminal penalty function is introduced and its effectiveness is proved. The input-to-state-stability of the controlled system is proved by using the Lyapunov function. Subsequently a six-dimensional model of the ...

  11. Control of Water Content and Retention in Hydropower Plant Cascades

    Gullhamn, Esbjörn

    2004-01-01

    The discharge through a river hydropower plant must be controlled such that the water level at a pre-specified point close to the facility is kept within given bounds. The controllers used today have a somewhat demanding tuning and often create too much amplified, unnatural discharge variations resulting in unsatisfactory control performance.This will affect both surrounding nature and imposing problems for river navigation. This thesis will present a new type of controller called Override Se...

  12. Expert system for hydropower stations developed in Volve Knowledge Tools

    Timberlid, Erlend

    2008-01-01

    Despite the fact that hydropower stations are equipped with the latest technology in both regulation and remote control, it is not enough to replace the traditional machine expert. The machine expert was a person stationed in the power plant. He had the responsibility for the running and maintenance of the station. This person’s experience and human senses made him crucial for the surveillance of the station. Since the machine expert has now been replaced by electronics and newer technology, ...

  13. Challenges in developing sustainable hydropower in Lao PDR

    Sari Jusi

    2011-01-01

    Purpose – The purpose of this paper is to analyse social and environmental sustainability considerations developed in Lao People's Democratic Republic (Lao PDR) and to identify problems and challenges related to sustainable hydropower planning and development. Design/methodology/approach – The paper is leaning on empirical analysis based on analysing primary and secondary data and information; official government documents and relevant literature, a series of workshops of the Future Resource ...

  14. The economic value of short-term regulated hydropower production

    The economic value of short-term regulation of hydropower depends on the marginal price of electricity. A systematic method to estimate the revenue from short-term regulated hydropower production has been developed. It can thus be used to compare the cost of different restrictions and constraints imposed on the regulation practice. Constraints on water level or discharge variations in the river can be imposed e.g because of environmental reasons. In this method the total hydropower production of the river is optimized. Input to the model consists of the amount of available water, the marginal price of production, price elasticity and the given constraints. The following constraints can be applied: maximum and minimum discharge at each power plant, maximum and minimum reservoir levels at each power plant, maximum variation of tailwaters at each power plant during the period of interest, maximum change of discharge per time unit and the minimum spinning reserves of the system. Output data comprises power output, discharge and water levels (head) at each power plant, and the calculated revenue based on produced power and the given marginal price of production. The method has two basic components: an optimization algorithm and a river simulation algorithm. The optimization algorithm is based on a quadratic cost function and a linear model. The model has been applied to Oulujoki River in Northern Finland. There are seven hydropower plants along the river, it is over 100 km long and it is extensively used for peak power production. Two typical weeks were simulated with different restrictions set on water level variation and available amount of water

  15. Short-term hydropower production planning by stochastic programming

    Fleten, Stein-Erik; Kristoffersen, Trine

    2008-01-01

    -term production planning a matter of spatial distribution among the reservoirs of the plant. Day-ahead market prices and reservoir inflows are, however, uncertain beyond the current operation day and water must be allocated among the reservoirs in order to strike a balance between current profits and expected...... future profits. A demonstration is presented with data from a Norwegian hydropower producer and the Nordic power market at Nord Pool....

  16. Hydropower landscapes and tourism development in the Pyrenees

    Rodriguez, Jean-François

    2012-01-01

    Since the development of hydroelectric power at the end of the 19th century, most of the high mountain valleys in the Pyrenees have been equipped with hydropower facilities (dams, water intake structures, aqueducts, penstocks, access routes, etc.). Thus, today many landscapes in the Pyrenees bear witness to the exploitation of this renewable resource. But in the classical imaginary world, these mountain areas are seen as the archetype of the beautiful natural landscape, in accordance with aes...

  17. Impact of Hydropower Projects on Economic Growth of AJK.

    Atiq-ur-Rehman, Atiq-ur-Rehman; Anis, Hafsa

    2008-01-01

    According to official estimates, territory of Azad Jammu & Kashmir has a potential to generate about 4600 MW of hydroelectricity, the cheapest source of energy. Total deficit in energy Pakistan is facing these days is about 5000 MW. So, only AJK can fulfill more than 90% of deficit of now demanded energy for entire country. Beside this direct and explicit advantage of hydropower projects to power sector, these projects may be extremely useful in improving many economic and social indicators a...

  18. Assessing residual hydropower potential of the La Plata Basin accounting for future user demands

    Popescu, I.; L. Brandimarte; M. S. U. Perera; M. Peviani

    2012-01-01

    La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), which have fast growing economies in South America. These countries need energy for their sustainable development; hence, hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB), and it analyses the maximum and residual hydropower potential of the basin for a h...

  19. Assessing residual hydropower potential of the La Plata Basin accounting for future user demands

    Popescu, I.; L. Brandimarte; M. S. U. Perera; M. Peviani

    2012-01-01

    La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), which have fast growing economies in South America. These countries need energy for their sustainable development; hence, hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB), and it analyses the maximum and residual hydropower potential of th...

  20. Decision-making model for risk management of cascade hydropower stations

    2008-01-01

    In a medium-term electricity market,in order to reduce the risks of price and inflow uncertainties, the cascade hydropower stations may use the options contract with electricity supply companies. A profit-based model for risk management of cascade hydropower stations in the medium-term electricity market is presented. The objective function is profit maximization of cascade hydropower stations. In order to avoid the risks of price and inflow uncertainties, two different risk-aversion constraints: a minimum ...

  1. The political ecology of hydropower development in Guatemala: Actors, power and spaces

    Hirsch, Cecilie Karina von

    2010-01-01

    In this study I analyse the human and environmental interactions in the hydropower sector in Guatemala, with en emphasis on actors, spaces and power relations, using a political ecology framework. The local and civil society agency and participation in decision making about hydropower development has been explored through the various invited, claimed, and transformed spaces. Guatemala is a relevant case because of its potential for hydropower development; it is also a country with a high perc...

  2. The facilitation of mini and small hydropower through institutional mechanisms for development

    Crettenand, Nicolas; Hemund, Carol

    2010-01-01

    Mini and small hydropower is a renewable, clean and efficient resource for the production of mechanical and electrical power. By offsetting thermal generation, it can be a leading technology in climate change mitigation and sustainable development. Small hydropower plants combine the advantages of hydropower and decentralised power generation. There are limited environmental costs, marginal costs for the electricity transport, minor need for expensive maintenance and independence from importe...

  3. Assessing residual hydropower potential of the La Plata Basin accounting for future user demands

    Popescu, I.; L. Brandimarte; Perera, M. S. U.; M. Peviani

    2012-01-01

    La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), which are having fast growing economies in South America. These countries need energy for their sustainable development; hence hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB) and makes an analysis of the maximum and residual hydropower potential of t...

  4. Finding Multiple Optimal Solutions to Optimal Load Distribution Problem in Hydropower Plant

    Xinhao Jiang; Ximing Cai; Pan Liu; Tri-Dung Nguyen

    2012-01-01

    Optimal load distribution (OLD) among generator units of a hydropower plant is a vital task for hydropower generation scheduling and management. Traditional optimization methods for solving this problem focus on finding a single optimal solution. However, many practical constraints on hydropower plant operation are very difficult, if not impossible, to be modeled, and the optimal solution found by those models might be of limited practical uses. This motivates us to find multiple optimal solu...

  5. A GIS based assessment of hydropower potential in Hornád basin

    �ofia Kuzevičová; Marcela Gerge�ová; Štefan Kuzevič

    2013-01-01

    The issue of efficient use of hydropower, ones of the available renewable resources is currently in the process of sustainable development of each country, often addressing the issue. Incite multiple aspects. It is now seen just growing interest in exploiting the potential of hydropower. On the basis of active efforts are developed to map the total quantity of usability hydropower at basin level in Slovakia. GIS as a powerful and sophisticated tool for processing spatially localized informati...

  6. Dispatch Method for Independently Owned Hydropower Plants in the Same River Flow

    Slavko Krajcar; Ivan Rajšl; Perica Ilak; Marko Delimar

    2012-01-01

    This paper proposes a coexistence model for two independent companies both operating hydropower plants in the same river flow, based on a case study of the Cetina river basin in Croatia. Companies are participants of the day-ahead electricity market. The incumbent company owns the existing hydropower plants and holds concessions for the water. The new company decides to build a pump storage hydropower plant that uses one of the existing reservoirs as its lower reservoir. Meeting reservoir wat...

  7. Bridging the Information Gap: Remote Sensing and Micro Hydropower Feasibility in Data-Scarce Regions

    Muller, Marc Francois

    2015-01-01

    Access to electricity remains an impediment to development in many parts of the world, particularly in rural areas with low population densities and prohibitive grid extension costs. In that context, community-scale run-of-river hydropower – micro-hydropower – is an attrac- tive local power generation option, particularly in mountainous regions, where appropriate slope and runoff conditions occur. Despite their promise, micro hydropower programs have generally failed to have a significant imp...

  8. When and how to activate large new hydropower reservoirs

    Geressu, Robel; Harou, Julien

    2016-04-01

    Water resources system planners are increasingly required to address multiple long and short-term management objectives and the trade-offs these imply. Expansion planning in hydropower reservoir systems, where assets either temporarily or permanently reduce each other's performance, is a complex and potentially conflictual task requiring attention to multiple impacts. This paper proposes a multi-criteria scheduling approach considering many objectives and their associated uncertainties. The method considers the coordination and flexibility of reservoir operation in different expansion stages. The impact of abstraction (i.e., during filling of new reservoirs) and regulation of inflows by upstream reservoirs, is represented by simultaneously optimizing the storage size of reservoirs. Sensitivity analysis of performance given financial uncertainty and hydrological variability reveals which expansion schedules are robust to a wide range of future conditions. This informs how alternative designs compare in multiple performance dimensions and can serve stakeholders with differing attitudes towards risk and opportunity. The method is applied to proposed Blue Nile hydropower reservoirs to find efficient new dam activation schedules considering energy revenues, downstream release requirements, and energy generation during reservoir filling periods. Results take the form of Pareto-optimal trade-offs where each point on the curve or surface represents asset choices, size, activation date, and filling period reservoir operating rules. The results help explore the complex planning and management issues involved in the Blue Nile and demonstrate a possible approach to negotiate the design, filling and coordinated use of hydropower reservoirs.

  9. Sustainability of hydropower as source of renewable and clean energy

    Luis, J.; Sidek, L. M.; Desa, M. N. M.; Julien, P. Y.

    2013-06-01

    Hydroelectric energy has been in recent times placed as an important future source of renewable and clean energy. The advantage of hydropower as a renewable energy is that it produces negligible amounts of greenhouse gases, it stores large amounts of electricity at low cost and it can be adjusted to meet consumer demand. This noble vision however is becoming more challenging due to rapid urbanization development and increasing human activities surrounding the catchment area. Numerous studies have shown that there are several contributing factors that lead towards the loss of live storage in reservoir, namely geology, ground slopes, climate, drainage density and human activities. Sediment deposition in the reservoir particularly for hydroelectric purposes has several major concerns due to the reduced water storage volume which includes increase in the risk of flooding downstream which directly effects the safety of human population and properties, contributes to economic losses not only in revenue for power generation but also large capital and maintenance cost for reservoir restorations works. In the event of functional loss of capabilities of a hydropower reservoir as a result of sedimentation or siltation could lead to both economical and environmental impact. The objective of this paper is aimed present the importance of hydropower as a source of renewable and clean energy in the national energy mix and the increasing challenges of sustainability.

  10. Small hydropower plants in the region of Mariovo (Macedonia)

    In this paper the results of an initial Pre-feasibility study within the framework of the PHARE Programme for Cross Border Cooperation between Republic of Macedonia and Republic of Greece. In this study we have looked at the existing research originating from three sources. The Strategies for Economic Development of Republic of Macedonia, the Development Plans of the Electric Power Company of Macedonia as well as the existing technical documentation and studies on a level of idea projects for specific location for small hydropower plants in Mariovo region. Furthermore, analysis and evaluation of this documentation is included. Research done in this region has produced evidence of numerous potential locations for small hydropower plants (total of 46) generating power between 58 kW and 4900 kW, discharging between 0,082 m3/s and 30 m3/s with a head between 6 m and 208 m for which we have detailed data. Furthermore, in the paper we pay attention to the enormous and so far unrealised hydro energetic power which could be utilised by constructing small hydropower plants in Republic of Macedonia. specifically in the Mariovo region. (Original)

  11. Hydropower generation and storage, transmission constraints and market power

    We study hydropower generation and storage in the presence of uncertainty about future inflows, market power and limited transmission capacity to neighboring regions. Within our simple two-period model, market power leads to too little storage. The monopolist finds it profitable to produce more than the competitive amount in the first period and thereby stores little water in the first of two periods in order to become import constrained in the second period. In addition, little storage reduces the probability of becoming export constrained in the second period, even if the second period exhibits large inflow. Empirical findings for an area in the western part of Norway with only hydropower and high ownership concentration at the supply side, fit well to our theoretical model. We apply a numerical model to examine various policies to reduce the inefficiencies created by the local monopoly. Transmission investments have two effects. First, the export possibilities in the first period increase. More export leads to lower storage in the first period. Second, larger import capacity reduces the market power problem in the second period. The two opposite effects of transmission investments in a case with market power may be unique to hydropower systems. Introducing financial transmission rights enhance the market power of the monopolist in our model. Price caps in both or in the second period only, reduce the strategic value of water storage. (Author)

  12. Fuzzy multiobjective models for optimal operation of a hydropower system

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  13. Sustainability of hydropower as source of renewable and clean energy

    Hydroelectric energy has been in recent times placed as an important future source of renewable and clean energy. The advantage of hydropower as a renewable energy is that it produces negligible amounts of greenhouse gases, it stores large amounts of electricity at low cost and it can be adjusted to meet consumer demand. This noble vision however is becoming more challenging due to rapid urbanization development and increasing human activities surrounding the catchment area. Numerous studies have shown that there are several contributing factors that lead towards the loss of live storage in reservoir, namely geology, ground slopes, climate, drainage density and human activities. Sediment deposition in the reservoir particularly for hydroelectric purposes has several major concerns due to the reduced water storage volume which includes increase in the risk of flooding downstream which directly effects the safety of human population and properties, contributes to economic losses not only in revenue for power generation but also large capital and maintenance cost for reservoir restorations works. In the event of functional loss of capabilities of a hydropower reservoir as a result of sedimentation or siltation could lead to both economical and environmental impact. The objective of this paper is aimed present the importance of hydropower as a source of renewable and clean energy in the national energy mix and the increasing challenges of sustainability.

  14. Harnessing the hydropower potential in Africa: What should be the place and role of Grand Inga hydropower project?

    Fall, Latsoucabe

    2010-09-15

    Harnessing Africa's huge hydropower potential should be made a priority for the sustainable development of the Continent. Particularly, Grand Inga hydropower project in DRC, due to its gigantic size (40,000 MW) and favourable natural characteristics, could be 'Africa's flagship Project of the 21st Century' offering enormous comparative advantages and opportunities for the benefits of the entire African Continent. Nevertheless, to make it a feasible and palpable 'Model Project', capable of producing clean and affordable energy, the paper tries to respond to key questions on the several daunting challenges to address for its sustainable, cost-effective and timely development and operation.

  15. Development of methodological support of the automated hydropower potential calculation using geographic information systems

    N.V. Badenko

    2013-10-01

    Full Text Available The latest large-scale researches of hydropower potential of large and medium size rivers in Russia were conducted in 1940–1980 years. Nowadays updating of hydropower potential data (including not only large, but also minor and medium rivers is carried out. This paper is dedicated to the development and approbation of methodology and GIS-based tools for calculating hydropower potential of rivers, located in Russian Federation. The list of initial data and information sources used in research were described. The approaches and GIS-tools described in present paper allow executing an assessment of hydropower potential of the rivers in a short time on large areas.

  16. Development and Prospect of Installation Technology of Electrical and Mechanical Equipment in Hydropower Construction

    Fu Yuanchu

    2005-01-01

    The hydropower installed capacity in China exceeded 100 GW by the end of 2004. With the develop-ment of hydropower construction cause, the contingents of electrical and mechanical installation also grew steadily.The installation and debugging techniques made great strides in aspects of different conventional hydrogeneratorsets, reversible pumped-storage units and their rotor spiders, runners, bearings, penstocks as well as controlequipment, such as computerized governors, intelligent monitoring devices. Major technical innovations werebrought about in the electrical and mechanical installation. For an arduous task to construct hydropower projectsof over 50 GW confronts hydropower installation enterprises at the beginning of 21 st century, the installationtechnologies will certainly develop around the projects.

  17. Evaluation of neutron flux parameters in irradiation sites of research reactor using the Westcott-formalism for the k0 neutron activation analysis method

    Kasban, H.; Hamid, Ashraf

    2015-12-01

    Instrumental Neutron Activation Analysis using k0 (k0-INAA) method has been used to determine a number of elements in sediment samples collected from El-Manzala Lake in Egypt. k0-INAA according to Westcott's formalism has been implemented using the complete irradiation kit of the fast pneumatic rabbit and some selected manually loaded irradiation sites for short and long irradiation at Egypt Second Research Reactor (ETRR-2). Zr-Au and Co sets as neutron flux monitors are used to determine the neutron flux parameters (f and α) in each irradiation sites. Two reference materials IAEA Soil-7 samples have been inserted and implemented for data validation and an internal monostandard multi monitor used (k0 based IM-NAA). It was given a good agreement between the experimental analyzed values and that obtained of the certified values. The major and trace elements in the sediment samples have been evaluated with the use of Co as an internal and Au as an external monostandard comparators. The concentrations of the elements (Cr, Mn and Zn) in the sediment samples of the present work are discussed regarding to those obtained from other sites.

  18. Perspectives for hydropower stations in Switzerland: long-term competitiveness and possibilities for improvement

    This first general study - which has the character of a preliminary study - examines the questions if the liberalisation of the electricity market will have a negative effect on the competitiveness of hydropower in the long-term and what measures can be taken against such effects. Long-term competitiveness is defined as the ability of a business in this sector to make investments in renewal in the long-term, i.e. after its concessions have expired. The three main aims of the study are: 1. Assessment of the long-term competitiveness of the sector and identification of the factors which could either have a negative effect on it or improve it, 2. Analysis of cost structures and presentation of measures through which the long-term competitiveness of the sector can be reinforced, 3. Presentation of possible political measures to be taken in this business area in order to improve the long-term competitiveness of hydropower stations. The study identifies the most important factors that determine future competitiveness as being the market prices for electricity and capital costs (depreciation and interest on own and borrowed capital). Further, water fees, taxes and regulations concerning residual water flow can be of great importance for investment decisions, in particular for those enterprises that operate close to their profitability limits. The results of the analysis indicate that, in the future, a considerable number of enterprises must be reckoned with that will refrain from renewing their plant. Such outcomes depend, of course, on developments in electricity market prices, specific investment costs, rates of interest and other economic, political, and legal conditions. Making a prognosis about the development of such parameters is linked with a high degree of uncertainty. By means of sensitivity calculations and the definition of various scenarios, attempts are made to take these uncertainties into account . Finally, the study makes reference to the fact that

  19. Calculating Hamiltonian parameters for Yb3+ in a low-symmetry lattice site, and fitting the structure and levels of Yb3+ :RETaO4 (RE =Gd, Y, and Sc)

    Zhang Qing-Li; Ning Kai-Jie; Ding Li-Hua; Liu Wen-Peng; Sun Dun-Lu; Jiang Hai-He; Yin Shao-Tang

    2013-01-01

    An iterative method is used to find the values of the Hamiltonian parameters for Yb3+ in a given low-symmetry crystalline site.Samples of Yb3+∶RETaO4 (RE =Gd,Y,and Sc) were prepared and their structures were determined.Based on the obtained structural data,their orbital-spin parameters and crystal field parameters were fitted by the superposition model (SM).Using the crystal field parameters obtained by the SM fitting as the initial parameters,the Hamiltonian parameters were fitted iteratively.The calculated and experimental energy levels for Yb3+ ∶RETaO4 are consistent,and the maximal mean-root-square deviation is only 2.84 cm-1,indicating that the method is effective to determine the Hamiltonian parameters of Yb3+ in low-symmetry crystalline sites.

  20. LAND AND WATER USE CHARACTERISTICS AND HUMAN HEALTH INPUT PARAMETERS FOR USE IN ENVIRONMENTAL DOSIMETRY AND RISK ASSESSMENTS AT THE SAVANNAH RIVER SITE

    Jannik, T.; Karapatakis, D.; Lee, P.; Farfan, E.

    2010-08-06

    Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) Regulatory Guides. Within the regulatory guides, default values are provided for many of the dose model parameters but the use of site-specific values by the applicant is encouraged. A detailed survey of land and water use parameters was conducted in 1991 and is being updated here. These parameters include local characteristics of meat, milk and vegetable production; river recreational activities; and meat, milk and vegetable consumption rates as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors to be used in human health exposure calculations at SRS are documented. Based on comparisons to the 2009 SRS environmental compliance doses, the following effects are expected in future SRS compliance dose calculations: (1) Aquatic all-pathway maximally exposed individual doses may go up about 10 percent due to changes in the aquatic bioaccumulation factors; (2) Aquatic all-pathway collective doses may go up about 5 percent due to changes in the aquatic bioaccumulation factors that offset the reduction in average individual water consumption rates; (3) Irrigation pathway doses to the maximally exposed individual may go up about 40 percent due to increases in the element-specific transfer factors; (4) Irrigation pathway collective doses may go down about 50 percent due to changes in food productivity and production within the 50-mile radius of SRS; (5) Air pathway doses to the maximally exposed individual may go down about 10 percent due to the changes in food productivity in the SRS area and to the changes in element-specific transfer factors; and (6

  1. Land And Water Use Characteristics And Human Health Input Parameters For Use In Environmental Dosimetry And Risk Assessments At The Savannah River Site

    Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) Regulatory Guides. Within the regulatory guides, default values are provided for many of the dose model parameters but the use of site-specific values by the applicant is encouraged. A detailed survey of land and water use parameters was conducted in 1991 and is being updated here. These parameters include local characteristics of meat, milk and vegetable production; river recreational activities; and meat, milk and vegetable consumption rates as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors to be used in human health exposure calculations at SRS are documented. Based on comparisons to the 2009 SRS environmental compliance doses, the following effects are expected in future SRS compliance dose calculations: (1) Aquatic all-pathway maximally exposed individual doses may go up about 10 percent due to changes in the aquatic bioaccumulation factors; (2) Aquatic all-pathway collective doses may go up about 5 percent due to changes in the aquatic bioaccumulation factors that offset the reduction in average individual water consumption rates; (3) Irrigation pathway doses to the maximally exposed individual may go up about 40 percent due to increases in the element-specific transfer factors; (4) Irrigation pathway collective doses may go down about 50 percent due to changes in food productivity and production within the 50-mile radius of SRS; (5) Air pathway doses to the maximally exposed individual may go down about 10 percent due to the changes in food productivity in the SRS area and to the changes in element-specific transfer factors; and (6

  2. Exporting dams: China's hydropower industry goes global.

    McDonald, Kristen; Bosshard, Peter; Brewer, Nicole

    2009-07-01

    In line with China's "going out" strategy, China's dam industry has in recent years significantly expanded its involvement in overseas markets. The Chinese Export-Import Bank and other Chinese financial institutions, state-owned enterprises, and private firms are now involved in at least 93 major dam projects overseas. The Chinese government sees the new global role played by China's dam industry as a "win-win" situation for China and host countries involved. But evidence from project sites such as the Merowe Dam in Sudan demonstrates that these dams have unrecognized social and environmental costs for host communities. Chinese dam builders have yet to adopt internationally accepted social and environmental standards for large infrastructure development that can assure these costs are adequately taken into account. But the Chinese government is becoming increasingly aware of the challenge and the necessity of promoting environmentally and socially sound investments overseas. PMID:18992986

  3. Improving inflow forecasting into hydropower reservoirs through a complementary modelling framework

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2014-10-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead-time is considered within the day-ahead (Elspot) market of the Nordic exchange market. We present here a new approach for issuing hourly reservoir inflow forecasts that aims to improve on existing forecasting models that are in place operationally, without needing to modify the pre-existing approach, but instead formulating an additive or complementary model that is independent and captures the structure the existing model may be missing. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. The procedure presented comprises an error model added on top of an un-alterable constant parameter conceptual model, the models being demonstrated with reference to the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead-times up to 17 h. Season based evaluations indicated that the improvement in inflow forecasts varies across seasons and inflow forecasts in autumn and spring are less successful with the 95% prediction interval bracketing less than 95% of the observations for lead-times beyond 17 h.

  4. Improving inflow forecasting into hydropower reservoirs through a complementary modelling framework

    A. S. Gragne

    2014-10-01

    Full Text Available Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead-time is considered within the day-ahead (Elspot market of the Nordic exchange market. We present here a new approach for issuing hourly reservoir inflow forecasts that aims to improve on existing forecasting models that are in place operationally, without needing to modify the pre-existing approach, but instead formulating an additive or complementary model that is independent and captures the structure the existing model may be missing. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. The procedure presented comprises an error model added on top of an un-alterable constant parameter conceptual model, the models being demonstrated with reference to the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead-times up to 17 h. Season based evaluations indicated that the improvement in inflow forecasts varies across seasons and inflow forecasts in autumn and spring are less successful with the 95% prediction interval bracketing less than 95% of the observations for lead-times beyond 17 h.

  5. Assessment of diffusion parameters of new passive samplers using optical chemical sensor for on-site measuring formaldehyde in indoor air: experimental and numerical studies.

    Vignau-Laulhere, Jane; Mocho, Pierre; Plaisance, Hervé; Raulin, Katarzyna; Desauziers, Valérie

    2016-03-01

    New passive samplers using a sensor consisting of a sol-gel matrix entrapping Fluoral-P as sampling media were developed for the determination of formaldehyde in indoor air. The reaction between Fluoral-P and formaldehyde produces a colored compound which is quantified on-site by means of a simple optical reading module. The advantages of this sensor are selectivity, low cost, ppb level limit of detection, and on-site direct measurement. In the development process, it is necessary to determine the sampling rate, a key parameter that cannot be directly assessed in the case of diffusive samplers using optical chemical sensor. In this study, a methodology combining experimental tests and numerical modeling is proposed and applied at five different radial diffusive samplers equipped with the same optical chemical sensor to assess the sampled material flows and sampling rates. These radial diffusive samplers differ in the internal volume of the sampler (18.97 and 6.14 cm(3)), the position of sensor inside the sampler (in front and offset of 1.2 cm above the membrane) and the width of the diffusion slot (1.4 and 5.9 mm). The influences of these three parameters (internal volume, position of sensor inside the sampler, and width of the diffusion slot) were assessed and discussed with regard to the formaldehyde sampling rate and water uptake by sensor (potential interference of measure). Numerical simulations based on Fick's laws are in agreement with the experimental results and provide to estimate the effective diffusion coefficient of formaldehyde through the membrane (3.50 × 10(-6) m(2) s(-1)). Conversion factors between the sensor response, sampled formaldehyde mass and sampling rate were also assessed. PMID:26847188

  6. Application of GSO for Load Allocation between Hydropower Units and Its Model Analysis based on Multi-objective

    Liying Wang; Linming Zhao; Hongyan Yan

    2012-01-01

    The optimum load distribution between the hydropower units is an effective measure for reducing the total water rate and increasing the energy output of a hydropower station, and it is becoming a more interesting studying topic. In order to increase the economic benefit of the station, a multi-objective optimization model of load allocation between hydropower units is established in accordance with the characteristics and particularity of the hydropower station, and the minimum water rate of ...

  7. Development of a methodology for estimation of Technical Hydropower potential in Iceland using high resolution Hydrological Modeling

    Tinna Þórarinsdóttir 1985

    2012-01-01

    Large portion of the total energy consumption in Iceland originates from hydropower. The last estimation of the hydropower potential was conducted thirty years ago, in 1981. Since then, there have been major technical developments that call for a renewal of estimation of hydropower potential. The main objective of this study is develop a methodology that can be used for calculating and mapping of technical hydropower potential in Iceland, using current technology and data available at the Ice...

  8. Simultaneous Estimation of Earthquake Source Parameters and Site Response from Inversion of Strong Motion Network Data in Kachchh Seismic Zone, Gujarat, India

    Dutta, U.; Mandal, P.

    2010-12-01

    Inversion of horizontal components of S-wave spectral data in the frequency range 0.1-10.0 Hz has been carried out to estimate simultaneously the source spectra of 38 aftershocks (Mw 2.93-5.32) of the 2001 Bhuj earthquake (Mw 7.7) and site response at 18 strong motion sites in the Kachchh Seismic Zone, Gujarat, India. The spatial variation of site response (SR) in the region has been studied by averaging the SR values obtained from the inversion in two frequency bands; 0.2-1.8 Hz and 3.0-7.0 Hz, respectively. In 0.2-1.8 Hz frequency band, the high SR values are observed in the southern part of the Kachchh Mainland Fault that had suffered extensively during the 2001 Bhuj Earthquake. However, for 3.0-7.0 Hz band, the area of Jurassic and Quaternary Formations show predominantly high SR. The source spectral data obtained from the inversion were used to estimate various source parameters namely, the seismic moment, stress drop, corner frequency and radius of source rupture by using an iterative least squares inversion approach based on the Marquardt-Levenberg algorithm. It has been observed that the seismic moment and radius of rupture from 38 aftershocks vary between 3.1x10^{13} to 2.0x10^{17} Nm and 226 to 889 m, respectively. The stress drop values from these aftershocks are found to vary from 0.11 to 7.44 MPa. A significant scatter of stress drop values has been noticed in case of larger aftershocks while for smaller magnitude events, it varies proportionally with the seismic moment. The regression analysis between seismic moment and radius of rupture indicates a break in linear scaling around 10^{15.3} Nm. The seismic moment of these aftershocks found to be proportional to the corner frequency, which is consistent for earthquakes with such short rupture length.

  9. Technical and economic qualities of hydropower in comparison with other forms of electricity production

    By comparing ecological and technical aspects of hydropower with other forms of electricity production, we are able to assess its potential in terms of economic added value. The most obvious benefits of hydropower are its storage capability, high level of efficiency, ease of control and provision of reactive power. An assessment of the technical qualities of hydropower encompasses today's power generation and capacity, as well as the interaction with the power transmission network in both normal operation and in the case of disturbances. The benefits of hydropower versus other forms of electricity production are as follows: an energy production with the highest level of electrical efficiency (between 80% and 90%); advantage of energy production via water storage systems; excellent tradability thanks to ready availability upon demand; ideally suited for use for bridging discrepancies between purchased volume and demand thanks to high efficiency at partial load; thanks to its ready availability, hydropower can be used to quickly restore power following major damage to, or disturbances in, the electricity transmission network; provision of reactive power. Hydropower offers the following economic benefits: in an open market, services provided by hydropower plants are compensated directly; higher energy prices have to be paid for load compensation; energy production from storage systems may be utilised like a call option; hydropower plants produce electricity from a renewable energy source, which makes it more easily marketable. (author)

  10. Assessing residual hydropower potential of the La Plata Basin accounting for future user demands

    I. Popescu

    2012-04-01

    Full Text Available La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay, which are having fast growing economies in South America. These countries need energy for their sustainable development; hence hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB and makes an analysis of the maximum and residual hydropower potential of the basin for a horizon of 30 yr (i.e. year 2040. Current hydropower production is estimated based on historic available data while future energy production is deduced from the maximum available water in the catchment, whereas electricity demand is assessed by correlating existing electricity demand with the estimated population growth and economic development. The maximum and residual hydropower potential of the basin, were assessed for the mean annual flows of the present hydrological regime (1970–2000 and topographical characteristics of the area.

    Computations were performed using an integrated GIS environment called Vapidro-Aste released by the Research on Energy System (Italy. The residual hydropower potential of the basin is computed considering that first the water supply needs for population, industry and agriculture are served and than hydropower energy is produced. The calculated hydropower production is found to be approximately half of the estimated electricity demand, which shows that there is a need to look for other sources of energy in the future.

  11. "Fish Friendly" Hydropower Turbine Development and Deployment. Alden Turbine Preliminary Engineering and Model Testing

    Dixon, D. [Electric Power Research Institute, Palo Alto, CA (United States)

    2011-10-01

    This report presents the results of a collaborative research project funded by the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and hydropower industry partners with the objective of completing the remaining developmental engineering required for a “fish-friendly” hydropower turbine called the Alden turbine.

  12. 75 FR 8321 - Coastal Hydropower LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    2010-02-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Project No. 13619-000 Coastal Hydropower LLC; Notice of Preliminary Permit... February 18, 2010. On November 5, 2009, Coastal Hydropower LLC filed an application for a...

  13. 78 FR 79433 - Mahoning Hydropower, LLC, Ohio, Notice of Availability of Environmental Assessment

    2013-12-30

    ... Commission's (Commission or FERC) regulations, 18 CFR part 380 (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed Mahoning Hydropower, LLC's application for a license to construct, operate... Energy Regulatory Commission Mahoning Hydropower, LLC, Ohio, Notice of Availability of...

  14. 75 FR 40801 - Wilkesboro Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To...

    2010-07-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Wilkesboro Hydropower, LLC; Notice of Application Accepted for Filing and...: Wilkesboro Hydroelectric Company, LLC. e. Name of Project: W. Kerr Scott Hydropower Project. f. Location:...

  15. 75 FR 62516 - Northern Illinois Hydropower, LLC; Notice of Application Ready for Environmental Analysis and...

    2010-10-12

    ... Energy Regulatory Commission Northern Illinois Hydropower, LLC; Notice of Application Ready for....: 12626-002. c. Date filed: March 31, 2009. d. Applicant: Northern Illinois Hydropower, LLC. e. Name of... Power Act, 16 U.S.C. 791 (a)-825(r). h. Applicant Contact: Damon Zdunich, Northern Illinois...

  16. 77 FR 27451 - Boott Hydropower, Inc.; Notice of Section 106 Consultation Meeting

    2012-05-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Boott Hydropower, Inc.; Notice of Section 106 Consultation Meeting On May 24... Preservation Officer, the Advisory Council on Historic Preservation, Boott Hydropower, Inc., and any...

  17. 77 FR 51551 - Proposed Renewal of Information Collection: Alternatives Process in Hydropower Licensing

    2012-08-24

    ... comments on the collection of information was published on May 22, 2012 (77 FR 30308). No comments were... Office of the Secretary Proposed Renewal of Information Collection: Alternatives Process in Hydropower... information for Alternatives Process in Hydropower Licensing. This collection request has been forwarded...

  18. 77 FR 4290 - Conway Ranch Hydropower Project; Notice of Preliminary Permit Application Accepted for Filing and...

    2012-01-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Conway Ranch Hydropower Project; Notice of Preliminary Permit Application... the Federal Power Act (FPA), proposing to study the feasibility of the Conway Ranch Hydropower...

  19. Valuing trade-offs of river ecosystem services in large hydropower development in Tibet, China

    Yu, B.; Xu, L.

    2015-12-01

    Hydropower development can be considered as a kind of trade-offs of ecosystem services generated by human activity for their economic and energy demand, because it can increase some river ecosystem services but decrease others. In this context, an ecosystem service trade-off framework in hydropower development was proposed in this paper. It aims to identify the ecological cost of river ecosystem and serve for the ecological compensation during hydropower development, for the hydropower services cannot completely replace the regulating services of river ecosystem. The valuing trade-offs framework was integrated by the influenced ecosystem services identification and ecosystem services valuation, through ecological monitoring and ecological economic methods, respectively. With a case study of Pondo hydropower project in Tibet, China, the valuing trade-offs of river ecosystem services in large hydropower development was illustrated. The typical ecological factors including water, sediment and soil were analyzed in this study to identify the altered river ecosystem services by Pondo hydropower project. Through the field monitoring and valuation, the results showed that the Lhasa River ecosystem services value could be changed annually by Pondo hydropower project with the increment of 5.7E+8CNY, and decrement of 5.1E+7CNY. The ecological compensation for river ecosystem should be focus on water and soil conservation, reservoir dredging and tributaries habitat protection.

  20. Assessing residual hydropower potential of the La Plata Basin accounting for future user demands

    Popescu, I.; Brandimarte, L.; Perera, M. S. U.; Peviani, M.

    2012-08-01

    La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), which have fast growing economies in South America. These countries need energy for their sustainable development; hence, hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB), and it analyses the maximum and residual hydropower potential of the basin for a horizon of 30 yr (i.e. year 2040). Current hydropower production is estimated based on historical available data, while future energy production is deduced from the available water in the catchment (estimated based on measured hydrographs of the past years), whereas electricity demand is assessed by correlating existing electricity demand with the estimated population growth and economic development. The maximum and residual hydropower potential of the basin were assessed for the mean annual flows of the present hydrological regime (1970-2000) and topographical characteristics of the area. Computations were performed using an integrated GIS environment called VAPIDRO-ASTE released by the Research on Energy System (Italy). The residual hydropower potential of the basin is computed considering first that the water supply needs for population, industry and agriculture are served, and then hydropower energy is produced. The calculated hydropower production is found to be approximately half of the estimated electricity demand, which shows that there is a need to look for other sources of energy in the future.

  1. Assessing residual hydropower potential of the La Plata Basin accounting for future user demands

    I. Popescu

    2012-08-01

    Full Text Available La Plata Basin is shared by five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay, which have fast growing economies in South America. These countries need energy for their sustainable development; hence, hydropower can play a very important role as a renewable clean source of energy. This paper presents an analysis of the current hydropower production and electricity demand in La Plata Basin (LPB, and it analyses the maximum and residual hydropower potential of the basin for a horizon of 30 yr (i.e. year 2040. Current hydropower production is estimated based on historical available data, while future energy production is deduced from the available water in the catchment (estimated based on measured hydrographs of the past years, whereas electricity demand is assessed by correlating existing electricity demand with the estimated population growth and economic development. The maximum and residual hydropower potential of the basin were assessed for the mean annual flows of the present hydrological regime (1970–2000 and topographical characteristics of the area.

    Computations were performed using an integrated GIS environment called VAPIDRO-ASTE released by the Research on Energy System (Italy. The residual hydropower potential of the basin is computed considering first that the water supply needs for population, industry and agriculture are served, and then hydropower energy is produced. The calculated hydropower production is found to be approximately half of the estimated electricity demand, which shows that there is a need to look for other sources of energy in the future.

  2. 78 FR 62322 - Hydropower Regulatory Efficiency Act of 2013; Notice of Rescheduled Two-Year Licensing Process...

    2013-10-16

    ... Energy Regulatory Commission Hydropower Regulatory Efficiency Act of 2013; Notice of Rescheduled Two-Year... issuance of a license for hydropower development at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the Hydropower Regulatory Efficiency Act of 2013. The...

  3. 75 FR 51451 - Erie Boulevard Hydropower, L.P.; Notice of Intent To File License Application, Filing of Pre...

    2010-08-20

    ... Energy Regulatory Commission Erie Boulevard Hydropower, L.P.; Notice of Intent To File License..., 2010. d. Submitted By: Erie Boulevard Hydropower, L.P. e. Name of Project: Chasm Hydroelectric Project....gov . j. Erie Boulevard Hydropower, L.P. (Erie) filed its request to use the Traditional...

  4. 76 FR 4097 - Erie Boulevard Hydropower, L.P.; Notice of Application Tendered for Filing With the Commission...

    2011-01-24

    ... Energy Regulatory Commission Erie Boulevard Hydropower, L.P.; Notice of Application Tendered for Filing... Hydropower, L.P. e. Name of Project: Oswegatchie River Hydroelectric Project. f. Location: The existing multi... Contact: Jon Elmer, Erie Boulevard Hydropower, L.P, 800 Starbuck Ave., Suite 802, Watertown, New...

  5. 75 FR 45106 - Great River Hydropower, LLC; Notice of Application Tendered for Filing With the Commission and...

    2010-08-02

    ... Energy Regulatory Commission Great River Hydropower, LLC; Notice of Application Tendered for Filing With...: Great River Hydropower, LLC. e. Name of Project: Upper Mississippi River Lock & Dam No. 21 Hydroelectric...' Lock & Dam No. 21, and would consist of the following facilities: (1) A new hydropower...

  6. 77 FR 6552 - Mahoning Hydropower, LLC; Notice of Intent To File License Application, Filing of Pre-Application...

    2012-02-08

    ... Energy Regulatory Commission Mahoning Hydropower, LLC; Notice of Intent To File License Application.... b. Project No.: P-13954-001. c. Date Filed: December 7, 2011. d. Submitted By: Mahoning Hydropower.... Potential Applicant Contact: Anthony Marra, Mahoning Hydropower, LLC, 11365 Normandy Lane, Chagrin Falls,...

  7. 76 FR 2359 - Great River Hydropower, LLC; Notice of Application Accepted for Filing and Soliciting Motions To...

    2011-01-13

    ... Federal Energy Regulatory Commission Great River Hydropower, LLC; Notice of Application Accepted for...: Great River Hydropower, LLC. e. Name of Project: Upper Mississippi River Lock & Dam No. 21 Hydroelectric... following facilities: (1) A new 796-foot-long by 46-foot-wide by 25-foot-high concrete hydropower...

  8. 77 FR 75628 - STS Hydropower, Ltd., Dan River, Inc., and City of Danville, VA; Notice of Application for...

    2012-12-21

    ... Energy Regulatory Commission STS Hydropower, Ltd., Dan River, Inc., and City of Danville, VA; Notice of..., 2012, Jeoffrey L. Burtch, as Chapter 7 Bankruptcy Trustee for Dan River, Inc. and STS Hydropower, Ltd... the license for the Schoolfield Hydroelectric Project from Dan River, Inc. and STS Hydropower, Ltd....

  9. Hydrological assessment for mini hydropower potential at Sungai Pahang - Temerloh

    Sg Pahang at Temerloh was considered for assessment of hydropower potential using hydrological analysis method and hydrological model. The available data related to topography, soil, land use, weather and discharge pertaining to the study catchment were used to characterize the catchment. The characterization was required for water resources hence hydropower assessment. The hydrology of the study catchment was simulated through the model. This hydrological study is required due to the proposed mini hydroelectric power plant at Pulau Temerloh. It is essential to evaluate the existing river flow characteristic and to model the environmental flow assessment of the river. Two rainfalll stations, JPS Temerloh and Pintu Kawalan Paya Kertam Station are selected to develop the Rainfall Intensity Duration frequency (RIDF) Curve to determine the rainfall intensity of the area. Daily river flow were recorded at Sg Pahang at Temerloh and Sg Pahang at Lubok Paku were used to develop the Flow Duration Curve (FDC) to study the characteristic of Sungai Pahang flow. The 7 days low flow with 10 years return period (7Q10 low flow) was obtained using both Gumbel Method and Log Pearson Type III Method. The results from FDC shows that 50% percentage of time the Sg Pahang - Temerloh is exceeded over a historical period is 400 m3/s and 50% percentage of time the Sg Pahang - Lubok Paku is exceeded over a historical period is 650 m3/s. The required environmental flow are set to be 7Q10 low flow which is 64.215 m3/s for Sg Pahang at Temerloh and 79.24 m3/s for Sg Pahang at Lubok Paku. The results show the water resources are abundant and hence boost the mini hydropower potentiality at Sg Pahang.

  10. Hydrological assessment for mini hydropower potential at Sungai Pahang @ Temerloh

    Sidek, L. M.; Zaki, A. Z. A.; Mustaffa, Z.; Ibrahim, M. I. H.; Muda, Z. C.; Thiruchelvam, S.; Basri, H.

    2013-06-01

    Sg Pahang at Temerloh was considered for assessment of hydropower potential using hydrological analysis method and hydrological model. The available data related to topography, soil, land use, weather and discharge pertaining to the study catchment were used to characterize the catchment. The characterization was required for water resources hence hydropower assessment. The hydrology of the study catchment was simulated through the model. This hydrological study is required due to the proposed mini hydroelectric power plant at Pulau Temerloh. It is essential to evaluate the existing river flow characteristic and to model the environmental flow assessment of the river. Two rainfalll stations, JPS Temerloh and Pintu Kawalan Paya Kertam Station are selected to develop the Rainfall Intensity Duration frequency (RIDF) Curve to determine the rainfall intensity of the area. Daily river flow were recorded at Sg Pahang at Temerloh and Sg Pahang at Lubok Paku were used to develop the Flow Duration Curve (FDC) to study the characteristic of Sungai Pahang flow. The 7 days low flow with 10 years return period (7Q10 low flow) was obtained using both Gumbel Method and Log Pearson Type III Method. The results from FDC shows that 50% percentage of time the Sg Pahang @ Temerloh is exceeded over a historical period is 400 m3/s and 50% percentage of time the Sg Pahang @ Lubok Paku is exceeded over a historical period is 650 m3/s. The required environmental flow are set to be 7Q10 low flow which is 64.215 m3/s for Sg Pahang at Temerloh and 79.24 m3/s for Sg Pahang at Lubok Paku. The results show the water resources are abundant and hence boost the mini hydropower potentiality at Sg Pahang.

  11. National hydroelectric power resources study. Preliminary inventory of hydropower resources. Volume 4. Lake Central region

    None

    1979-07-01

    The estimates of existing, incremental and the undeveloped hydropower potential for all states in the various regions of the country are presented. In the Lake Central region, the maximum physical potential for all sites exceeds 26,000 MW with an estimated average annual energy of more than 75,000 GWH. By comparison, these values represent about 5% of both the total potential capacity and hydroelectric energy estimated for the entire US. Of the total capacity estimated for the region, 2600 MW has been installed. The remainder (23,600 MW) is the maximum which could be developed by upgrading and expanding existing projects (15,800 MW), and by installing new hydroelectric power capacity at all potentially feasible, undeveloped sites (7800 MW). Small-scale facilities account for some 24% of the region's total installed capacity, but another 900 MW could be added to these and other small water-resource projects. In addition, 900 MW could be installed at potentially feasible, undeveloped small-scale sites. The small-scale resource varies considerably, with the states of Michigan and Wisconsin having the largest potential for incremental development at existing projects in the Lake Central region. This Lake Central region is composed of Minnesota, Wisconsin, Michigan, Ohio, Indiana, Illinois, Kentucky, Missouri, and Iowa.

  12. National hydroelectric power resources study. Preliminary inventory of hydropower resources. Volume 2. Pacific Southwest region

    None

    1979-07-01

    The estimates of existing, incremental, and the undeveloped hydropower potential for all states in the various regions of the country are presented. In the Pacific Southwest region, the maximum physical potential for all sites exceeds 33,000 MW of capacity with an estimated average annual energy greater than 85,000 GWH. By comparison, these values represent about 6% of the total potential capacity and hydroelectric energy generation estimated for the entire US. Of the total capacity estimated for the region, 9900 MW has been installed. The remainder (23,200 MW) is the maximum which could be developed by upgrading and expanding existing projects (6000 MW) and by installing new hydroelectric power capacity at all potentially feasible, undeveloped sites (17,200 MW). Small-scale facilities account for less than 4% of the region's total installed capacity, but another 600 MW could be added to these and other small water resource projects. In addition, 600 MW could be installed at potentially feasible, undeveloped small-scale sites. The small-scale resource varies considerably, with the states of California and Utah having the largest potential for incremental development at existing projects in the Pacific Southwest region. States comprising the Southwest are Arizona, California, Hawaii, Nevada, and Utah.

  13. Design of a Surge Tank Throttle for Tonstad Hydropower Plant

    Gomsrud, Daniel

    2015-01-01

    The objective of this thesis has been to evaluate the effect of throttling the surge tanks at Tonstad Hydropower Plant, by the means of one-dimensional numerical modelling in the program LVTrans. The background of the thesis is problems with the amplitude of mass oscillations in the surge tanks at Tonstad, causing restrictions on operation, due to the fear of drawing the surge tank water level down to a level where air enters the sand trap and initiates free surface flow. The numerical mod...

  14. Assessment of the Effects of Climate Change on Federal Hydropower

    Sale, Michael J. [M.J. Sale and Associates, Hanson, MA (United States); Shih-Chieh, Kao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ashfaq, Moetasim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kaiser, Dale P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez, Rocio [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Webb, Cindy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wei, Yaxing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-10-01

    As directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities. This Oak Ridge National Laboratory report, referred to as the “9505 Assessment,” describes the technical basis for the report to Congress that was called for in the SECURE Water Act.

  15. DOE Hydropower Program Annual Report for FY 2003

    Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL)

    2004-02-01

    This report describes the progress of the R&D conducted in FY 2003 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Testing of the Alden/NREC pilot scale runner, and Improved Mitigation Practices); (2) Supporting Research and Testing (Biological Design Criteria, Computer and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Wind/Hydro Integration Studies and Technical Support and Outreach); and (4) Engineering and Analysis (Innovative Technology Characterization).

  16. Decision making algorithms for hydro-power plant location

    Majumder, Mrinmoy

    2013-01-01

    The present study has attempted to apply the advantage of neuro-genetic algorithms for optimal decision making in maximum utilization of natural resources. Hydro-power is one of the inexpensive, but a reliable source of alternative energy which is foreseen as the possible answer to the present crisis in the energy sector. However, the major problem related to hydro-energy is its dependency on location. An ideal location can produce maximum energy with minimum loss. Besides, such power-plant also requires substantial amount of land which is a precious resource nowadays due to the rapid and unco

  17. Wind power pumped storage system for hydropower plants

    Árni Vignir Pálmason 1963

    2010-01-01

    In this thesis, an idea to use a wind pumped storage system to pump water from a lower reservoir to an upper reservoir and use it to reduce the construction size of a new reservoir or to increase electricity production in a hydropower plant, is presented. Instead of using a wind turbine to produce electricity to drive the pumps, a shaft is proposed to connect the wind turbine and the pumps. A profitability assessment is performed for the reservoir reduction and the electricity production. A w...

  18. Effects of Climate Change on Federal Hydropower. Report to Congress

    None

    2013-08-01

    This is a formal Department of Energy report to Congress. It outlines the findings of an assessment directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities.

  19. DOE Hydropower Program biennial report 1996-1997 (with an updated annotated bibliography)

    Rinehart, B.N.; Francfort, J.E.; Sommers, G.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States)

    1997-06-01

    This report, the latest in a series of biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1996 and 1997. The report discusses the activities in the six areas of the hydropower program: advanced hydropower turbine systems; environmental research; hydropower research and development; renewable Indian energy resources; resource assessment; and technology transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering and Environmental Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

  20. Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.;

    2015-01-01

    Hybrid photovoltaic (PV) -battery-hydropower microgrids can be considered to enhance electricity accessibility and availability in remote areas. However, the coexistence of different renewable energy sources with different inertias and control strategies may affect system stability. In this paper......, a hierarchical controller for hybrid PV-battery-hydropower microgrid is proposed in order to achieve the parallel operation of hydropower and PV-battery system with different rates, and to guarantee power sharing performance among PV voltage controlled inverters, while the required power to...... hydropower-based local grid is supplied. In this case, the PV-battery system will operate as a PQ bus to inject the desired active and reactive powers to local grid, while the hydropower station will act as a slack bus which maintains its voltage amplitude and frequency. An integrated small-signal state...