WorldWideScience

Sample records for hydraulic control systems

  1. Hydraulically powered dissimilar teleoperated system controller design

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented

  2. Towards Autonomous Control of Hydraulic Actuator Systems

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed...

  3. Towards Autonomous Control of Hydraulic Actuator Systems

    Hansen, Poul Erik; Conrad, Finn

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed to...

  4. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    O. M. Pshinko; A. V. Krasnyuk; O. V. Hromova

    2015-01-01

    Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings) based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canon...

  5. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    O. M. Pshinko; KRASNYUK A.V.; O. V. Hromova

    2015-01-01

    Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings) based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic-viscous-plastic bodies. The system of canon...

  6. TG 220 MW hydraulic control system diagnostics

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer's factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs

  7. A low order adaptive control scheme for hydraulic servo systems

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller;

    2015-01-01

    This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...

  8. Underwater hydraulic shock shovel control system

    LIU He-ping; LUO A-ni; XIAO Hai-yan

    2008-01-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel.This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems.A new type of control system's mathematical model was built and analyzed according to those principles.Since the initial control system's response time could not fulfill the design requirements,a PID controller was added to the control system.System response time was still slower than required,so a neural network was added to nonlinearly regulate the proportional element,integral element and derivative element coefficients of the PID controller.After these improvements to the control system,system parameters fulfilled the design requirements.The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can't satisfy a shovel's requirements,so advanced and normal control methods were combined to improve the control system,bringing good results.

  9. Simulation of dynamics of hydraulic system with proportional control valve

    Bureček Adam; Hružík Lumír; Vašina Martin

    2016-01-01

    Dynamics of a hydraulic system is influenced by several parameters, in this case mainly by proportional control valve, oil bulk modulus, oil viscosity, mass load etc. This paper will be focused on experimental measurement and mathematical simulation of dynamics of a hydraulic system with proportional control valve, linear hydraulic cylinder and mass load. The measurement is performed on experimental equipment that enables realization of dynamic processes of the hydraulic system. Linear hydrau...

  10. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  11. Control issues for a hydraulically powered dissimilar teleoperated system

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented. (Schilling's Titan II hydraulic manipulators are the slave manipulators and the master manipulators are from the Oak Ridge National Laboratory-developed Advanced Servo Manipulator.)

  12. Control issues for a hydraulically powered dissimilar teleoperated system

    Jansen, J.F.; Kress, R.L.

    1995-12-31

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented. (Schilling`s Titan II hydraulic manipulators are the slave manipulators and the master manipulators are from the Oak Ridge National Laboratory-developed Advanced Servo Manipulator.)

  13. Control Reconfigurability of Bilinear Hydraulic Drive Systems

    Shaker, Hamid Reza; Tahavori, Maryamsadat

    2011-01-01

    The objective of the methods within the framework of the plug and play process control and particularly fault tolerant control is to establish control techniques which guarantee a certain performance through control reconfiguration at the occurrence of the faults or changes. These methods cannot ......-based analogous counterpart, which has been previously proposed for the linear processes. The control reconfigurability is calculated for the bilinear models of an electro-hydraulic drive to show its relevance to redundant actuating capabilities in the models....

  14. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  15. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program

  16. Simulation of dynamics of hydraulic system with proportional control valve

    Bureček Adam

    2016-01-01

    Full Text Available Dynamics of a hydraulic system is influenced by several parameters, in this case mainly by proportional control valve, oil bulk modulus, oil viscosity, mass load etc. This paper will be focused on experimental measurement and mathematical simulation of dynamics of a hydraulic system with proportional control valve, linear hydraulic cylinder and mass load. The measurement is performed on experimental equipment that enables realization of dynamic processes of the hydraulic system. Linear hydraulic cylinder with mass load is equipped with position sensor of piston. The movement control of piston rod is ensured by the proportional control valve. The equipment enables to test an influence of parameter settings of regulator of the proportional control valve on position and pressure system responses. The piston position is recorded by magnetostrictive sensor that is located in drilled piston rod side of the linear hydraulic cylinder. Pressures are measured by piezoresistive sensors on the piston side and the piston rod side of the hydraulic cylinder. The measurement is performed during movement of the piston rod with mass load to the required position. There is realized and verified a mathematical model using Matlab SimHydraulics software for this hydraulic system.

  17. Simulation of dynamics of hydraulic system with proportional control valve

    Bureček, Adam; Hružík, Lumír; Vašina, Martin

    2016-03-01

    Dynamics of a hydraulic system is influenced by several parameters, in this case mainly by proportional control valve, oil bulk modulus, oil viscosity, mass load etc. This paper will be focused on experimental measurement and mathematical simulation of dynamics of a hydraulic system with proportional control valve, linear hydraulic cylinder and mass load. The measurement is performed on experimental equipment that enables realization of dynamic processes of the hydraulic system. Linear hydraulic cylinder with mass load is equipped with position sensor of piston. The movement control of piston rod is ensured by the proportional control valve. The equipment enables to test an influence of parameter settings of regulator of the proportional control valve on position and pressure system responses. The piston position is recorded by magnetostrictive sensor that is located in drilled piston rod side of the linear hydraulic cylinder. Pressures are measured by piezoresistive sensors on the piston side and the piston rod side of the hydraulic cylinder. The measurement is performed during movement of the piston rod with mass load to the required position. There is realized and verified a mathematical model using Matlab SimHydraulics software for this hydraulic system.

  18. Herion Servo techniques with electronic control systems in hydraulic systems

    Ehrath, M.

    1981-01-01

    A description of an electro-hydraulic control circuit for the fuel pump and the injection valve of a large diesel engine is presented. Pressures of 500-1000 bar must be controlled in diesel engines. The newly-developed electronically controlled injection system uses quick-action control valves, a further developed version of the high-response valves. Electronically controlled ignition systems offer the following advantages: improved fuel-air ratio and better combustion; improved injection parameters within the total load range of the engine, better adaption to changing operational and environmental conditions and to changing fuel quality, fewer and less complicated components, and increased operational safety.

  19. Adaptive Non-linear Control of Hydraulic Actuator Systems

    Hansen, Poul Erik; Conrad, Finn

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  20. Adaptive Non-linear Control of Hydraulic Actuator Systems

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  1. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    Choux, Martin; Blanke, Mogens; Hovland, Geir

    2011-01-01

    Fluid power systems have been in use since 1795 with the rst hydraulic press patented by Joseph Bramah and today form the basis of many industries. Electro hydraulic servo systems are uid power systems controlled in closed-loop. They transform reference input signals into a set of movements in hydraulic actuators (cylinders or motors) by the means of hydraulic uid under pressure. With the development of computing power and control techniques during the last few decades, they are used increasi...

  2. HYDRAULIC SERVO CONTROL MECHANISM

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  3. Hydraulic engine valve actuation system including independent feedback control

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  4. Hydraulic-Ball (HY-Ball) Control System

    The Hy-Ball control system consists of a large number of small tubes vertically penetrating the active core region; the tubes contain movable poison elements (either spherical or cylindrical), which are hydraulically lifted upward from within the active core region to increase core reactivity. Reactor water is the actuating fluid. Hy-Ball columns occupy fuel-element lattice positions in a homogeneous fuel-element configuration. This configuration, with finely subdivided control elements, practically eliminates local water-hole power peaking and provides good control of the radial power distribution. By limitation of the amount of reactivity controlled by a single Hy-Ball column assembly to 0.1% or less, it is unnecessary to operate the poison elements in any position other than either the fully-inserted or fully-withdrawn positions. Elimination of intermediate positions results in simplicity of the system and avoids the inherent axial power perturbation resulting from partially inserted control elements. Physics studies indicate that up to about 40% more power can be obtained from a Hy-Ball-controlled core than from a core with conventional control rods. Tests simulating all reactor operating conditions except radiation are being performed for evaluation of costs, operational characteristics and long-term reliability effects. (author)

  5. Modification Of Control System For Flow On Hydraulic Rabbit System Facility

    Had been modification control system on the hydraulic rabbit system facility is installed at floor +8 m in reactor building GA. Siwabessy. On the hydraulic rabbit system is used water for media transfer and media cooling from hot cell to irradiation position or from irradiation position to hot cell. Flow water to sent capsule target about 55 liters/minute. Flow meter type RS No. 185-9926 is installed in hydraulic rabbit system. The flow meters have specification : flow rate 5 to 100 liters/minute, maximum working pressure 10 bar, temperature range 5 to 60 oC and viscosity range 10 to 200 centistokes. The flow meter is installed on the pipe line upper pump of hydraulic rabbit system facility in room no.0626 floor +8 meter reactor building. After the flow meter installed, flow rate on the hydraulic rabbit system can measure direct, flow rate can be adjusted and result same as on the monitor

  6. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    Choux, Martin

    Fluid power systems have been in use since 1795 with the rst hydraulic press patented by Joseph Bramah and today form the basis of many industries. Electro hydraulic servo systems are uid power systems controlled in closed-loop. They transform reference input signals into a set of movements in...... detected early and handled. Moreover, the task of controlling electro hydraulic systems for high performance operations is challenging due to the highly nonlinear behaviour of such systems and the large amount of uncertainties present in their models. This thesis focuses on nonlinear adaptive fault......-tolerant control for a representative electro hydraulic servo controlled motion system. The thesis extends existing models of hydraulic systems by considering more detailed dynamics in the servo valve and in the friction inside the hydraulic cylinder. It identies the model parameters using experimental data from a...

  7. Robust Adaptive Backstepping Control Design for a Nonlinear Hydraulic-Mechanical System

    Choux, Martin; Karimi, Hamid Reza; Hovland, Geir; Hansen, Michael Rygaard; Ottestad, Morten; Blanke, Mogens

    The complex dynamics that characterize hydraulic systems make it difficult for the control design to achieve prescribed goals in an efficient manner. In this paper, we present the design and analysis of a robust nonlinear controller for a nonlinear hydraulic-mechanical (NHM) system. The system co...

  8. Active disturbance rejection control for hydraulic width control system for rough mill

    2007-01-01

    The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this paper to deal with the nonlinear problem of hydraulic servo system in order to preserve fast response and small overshoot of control system. The active disturbance rejection (ADR) controller is composed of nonlinear tracking differentiator (TD), extended state observer (ESO) and nonlinear feedback (NF) law. An example of the hydraulic edger system case study is investigated to show the effectiveness and robustness of the proposed nonlinear controller, especially, in the circumstance of foreign disturbance and working condition variation,compared with classic PI controller.

  9. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...... applications and the environmental benefits are in focus, in particular in the food processing industry and in fire-fighting systems....

  10. Research on Simulation of Giant Forging Hydraulic Press Decoupling Control for Synchronous Control System

    Xinliang Liu; Yingjian Deng; Zhongwei Liu

    2013-01-01

    A giant forging hydraulic press active synchronous control system is a mutually-coupled multi-input and multi-output system. To solve the elimination of the multi-channel interference, a multiple-input and multiple-output mathematical model center on active-beam is established; multi-channel synchronous decoupling control strategy is studied. The simulation results show that: the system eliminates the role of strong interference between multi-channel accesses to very good inhibitory effect of...

  11. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    2005-01-01

    Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...

  12. HYDRAULIC ACTIVE GUIDE ROLLER SYSTEM FOR HIGH-SPEED ELEVATOR BASED ON FUZZY CONTROLLER

    FENG Yonghui; ZHANG Jianwu

    2007-01-01

    Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance.

  13. Adaptive Control System of Hydraulic Pressure Based on The Mathematical Modeling

    Pilipenko, A. V.; Pilipenko, A. P.; Kanatnikov, N. V.

    2016-04-01

    In this paper, the authors highlight the problem of replacing an old heavy industrial equipment, and offer the replacement of obsolete control systems on the modern adaptive control system, which takes into account changes in the hydraulic system of the press and compensates them with a corrective action. The proposed system can reduce a water hammer and thereby increase the durability of the hydraulic system and tools.

  14. Research on Simulation of Giant Forging Hydraulic Press Decoupling Control for Synchronous Control System

    Xinliang Liu

    2013-06-01

    Full Text Available A giant forging hydraulic press active synchronous control system is a mutually-coupled multi-input and multi-output system. To solve the elimination of the multi-channel interference, a multiple-input and multiple-output mathematical model center on active-beam is established; multi-channel synchronous decoupling control strategy is studied. The simulation results show that: the system eliminates the role of strong interference between multi-channel accesses to very good inhibitory effect of synchronization error, eliminating the system's external disturbance on the synchronization precision control impact.

  15. Study on Control Strategy of Electro-Hydraulic Servo Loading System

    Ju Tian

    2013-09-01

    Full Text Available Since extraneous torque is the key factor to affect the accuracy of electro-hydraulic servo loading system, the forming mechanism of extraneous torque was discussed in this work. And then several design methods of loading system controller based on modern control theory were introduced, such as internal model control, Cerebella model articulation control and adaptive backstepping control.

  16. Study on Control Strategy of Electro-Hydraulic Servo Loading System

    Ju Tian

    2013-01-01

    Since extraneous torque is the key factor to affect the accuracy of electro-hydraulic servo loading system, the forming mechanism of extraneous torque was discussed in this work. And then several design methods of loading system controller based on modern control theory were introduced, such as internal model control, Cerebella model articulation control and adaptive backstepping control.

  17. An electro-hydraulic servo control system research for CFETR blanket RH

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system

  18. An electro-hydraulic servo control system research for CFETR blanket RH

    Chen, Changqi [Hefei University of Technology, Hefei 230009, Anhui (China); Tang, Hongjun, E-mail: taurustang@126.com [Hefei University of Technology, Hefei 230009, Anhui (China); Qi, Songsong [Hefei University of Technology, Hefei 230009, Anhui (China); Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2014-11-15

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system.

  19. Knowledge-based Adaptive Tracking Control of Electro-hydraulic Actuator Systems

    Hansen, Poul Erik

    1997-01-01

    The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF.......The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF....

  20. Co-Simulation Research of the Mechanical-Hydraulic-Control Coupling System of ITER Tractor

    The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform.

  1. Design of Transputer Controllers for Hydraulic Actuator Systems

    Conrad, Finn

    1996-01-01

    test robot controlled by a transputer-basec controller is presented. Some experimental path-tracking results with adaptive control algorithms are presented and discussed. The results confirm that transputers have significant advantages for intelligent control of actuator systems and robots for high...

  2. Electro Hydraulic Hitch Control

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.;

    2003-01-01

    This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection...... for a parameter research study with emphasis on the requirements to the hitch control by use of hydraulic pressure compensated proportional control valve....

  3. Control method and system for hydraulic machines employing a dynamic joint motion model

    Danko, George

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  4. Thermal-hydraulic characteristics of the RBMK control and protection system channels

    The thermal-hydraulic characteristics of the RBMK-1000 control and protection system channel with rod cluster control have been calculated under different operational disturbance regimes. It has been shown that the temperature of the rod cluster control structural materials increases considerably if loss of coolant occurs. The critical element is the sleeve made of CAB1 aluminum alloy

  5. Redundant hydraulic secondary flight control systems behavior in failure conditions

    Borello, Lorenzo; Villero, Giuseppe; Dalla Vedova, Matteo Davide Lorenzo

    2013-01-01

    The flight control systems, designed in order to assure the necessary safety level even in failure conditions, are generally characterized by a proper redundant layout. The redundancies must be designed in order to assure an adequate system behavior when some failures are present; in fact an incorrect layout may cause serious shortcomings concerning the response when some component is not operational. Therefore the usual correct design activities request the complete analysis of the system be...

  6. System and method for controlling engine knock using electro-hydraulic valve actuation

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  7. Digital electro-hydraulic control system for nuclear turbine

    The unit capacity of steam turbines for nuclear power generation is very large, accordingly their unexpected stop disturbs power system, and the lowering of their capacity ratio exerts large influence on power generation cost. Therefore, very high reliability is required for turbine EHC controllers which directly control the turbines for nuclear power generation. In order to meet such requirement, Toshiba Corp. has developed high reliability type analog tripled turbine EHC controllers, and delivered them to No. 3 plant in the Fukushima No. 2 Nuclear Power Station and No. 1 plant in the Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. At present, the trial operation is under way. The development of digital EHC controllers was begun in 1976, and through the digital EHC for a test turbine and that for a small turbine, the digital EHC controllers for the turbines for nuclear power generation were developed. In this paper, the function, constitution, features and maintenance of the digital tripled EHC controllers for the turbines for nuclear power generation, the application of new technology to them, and the confirmation of the control function by simulation are reported. (Kako, I.)

  8. Backstepping Adaptive Controller of Electro-Hydraulic Servo System of Continuous Rotary Motor

    XiaoJing Wang; ChangFu Xian; CaoLei Wan; JinBao Zhao; LiWei Xiu; AnCai Yu

    2014-01-01

    In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance, the design method of backstepping adaptive controller is put forward. The mathematical model of electro-hydraulic servo system of continuous rotary motor is established, and the whole system is decomposed into several lower order subsystems, and the virtual control signal is designed for each subsystem from the final subsystem with motor angular displacement to the subsystem with system control input voltage. Based on Lyapunov method and the backstepping theory, an adaptive backstepping controller is designed with the changed parameters adaptive law. It is proved that the system reaches the global asymptotic stability, and the system tracking error asymptotically tends to zero. The simulation results show that the backstepping adaptive controller based on the adaptive law of the changed parameters can improve the performance of continuous rotary motor, and the proposed control strategy is feasible.

  9. Adaptive Backstepping Control of Nonlinear Hydraulic-Mechanical System Including Valve Dynamics

    M. Choux

    2010-01-01

    Full Text Available The main contribution of the paper is the development of an adaptive backstepping controller for a nonlinear hydraulic-mechanical system considering valve dynamics. The paper also compares the performance of two variants of an adaptive backstepping tracking controller with a simple PI controller. The results show that the backstepping controller considering valve dynamics achieves significantly better tracking performance than the PI controller, while handling uncertain parameters related to internal leakage, friction, the orifice equation and oil characteristics.

  10. Submarine hydraulic control analysis

    Bower, Michael J.

    1980-01-01

    Approved for public release; distribution unlimited A mathematical model was developed to include line effects in the submarine hydraulic system dynamic performance analysis. The project was undertaken in an effort to demonstrate the necessity of coupling the entire hydraulic power network for an accurate analysis of any of the subsystems rather than the current practice of treating a component loop as an isolated system. It was intended that the line model could be co...

  11. STUDY ON THE CONTROL SYSTEM OF HYDRAULIC MOMENT-ADJUSTED BRAKE FOR DOWNWARD BELT CONVEYOR

    孟国营; 徐志强; 霍森; 方佳雨

    1997-01-01

    Having analyzed the drawbacks on the design of control system of hydraulic momentadjusted brake system, the author presents a closed loop control system in the process of start and braking of the conveyer. On the basis of the concept of the critical time and the critical acceleration and its deductions, the working mode of the conveyer can be identified and controlled in feedback, furthermore, thus realize the process of soft start. In the deceleration process, the author points out the problems that exist in the present control system and sets forward the control process that acted by the combined function of brake moment of motor and the drag torque of hydraulic brake at the beginning of deceleration, it will further improved reliability of conveyor system.

  12. Cascade Controller Including Back-stepping for Hydraulic-Mechanical Systems

    Choux, Martin; Hovland, Geir; Blanke, Mogens

    Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an...

  13. PI-type Iterative Learning Control for Nonlinear Electro-hydraulic Servo Vibrating System

    LUO Xiaohui; ZHU Yuquan; HU Junhua

    2009-01-01

    For the electro-hydraulic servo vibrating system(ESVS) with the characteristics of non-linearity and repeating motion, a novel method, PI-type iterative learning control(ILC), is proposed on the basis of traditional PID control. By using memory ability of computer, the method keeps last time's tracking error of the system and then applies the error information to the next time's control process. At the same time, a forgetting factor and a D-type learning law of feedforward fuzzy-inferring referenced displacement error under the optimal objective are employed to enhance the systemic robustness and tracking accuracy. The results of simulation and test reveal that the algorithm has a trait of high repeating precision, and could restrain the influence of nonlinear factors like leaking, external disturbance, aerated oil, etc. Compared with traditional PID control, it could better meet the requirement of nonlinear electro-hydraulic servo vibrating system.

  14. Electro Hydraulic Hitch Control

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.;

    2003-01-01

    This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection...

  15. Controls of Hydraulic Wind Turbine

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  16. Design and development of low speed dynamometer using electro hydraulic servo control system

    High torque low speed oil hydraulic motors are required to be used in fuelling machine of 500 MWe PHWRs. High torque low speed motors presently available in market are designed for heavy earth moving equipment where high torque at moderately low speed is desired. To test these types of motors, low speed dynamometers are required. An attempt has been made to develop an indigenous low speed dynamometer by electro hydraulic servo control system which can overcome the drawbacks of powder type dynamometer design. (author). 5 refs., 4 figs

  17. Hydraulic Yaw System

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...... a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly. A full scale hydraulic yaw test rig is available for experiments and tests. The test rig is presented as well as the system schematics of the hydraulic yaw system....

  18. NUMERICAL MODELING OF MULTICYLINDER ELECTRO-HYDRAULIC SYSTEM AND CONTROLLER DESIGN FOR SHOCK TEST MACHINE

    CHU Deying; ZHANG Zhiyi; WANG Gongxian; HUA Hongxing

    2007-01-01

    A high fidelity dynamic model of a high-energy hydraulically-actuated shock test machine for heavy weight devices is presented to satisfy the newly-built shock resistance standard and simulate the actual underwater explosion environments in laboratory as well as increase the testing capability of shock test machine. In order to produce the required negative shock pulse in the given time duration, four hydraulic actuators are utilized. The model is then used to formulate an advanced feedforward controller for the system to produce the required negative waveform and to address the motion synchronization of the four cylinders. The model provides a safe and easily controllable way to perform a "virtual testing" before starting potentially destructive tests on specimen and to predict performance of the system. Simulation results have demonstrated the effectiveness of the controller.

  19. Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization

    Yong-gang PENG; Jun WANG; Wei WEI

    2014-01-01

    In view of the high energy consumption and low response speed of the traditional hydraulic system for an injection molding machine, a servo motor driven constant pump hydraulic system is designed for a precision injection molding process, which uses a servo motor, a constant pump, and a pressure sensor, instead of a common motor, a constant pump, a pressure pro-portion valve, and a flow proportion valve. A model predictive control strategy based on neurodynamic optimization is proposed to control this new hydraulic system in the injection molding process. Simulation results showed that this control method has good control precision and quick response.

  20. DERIVATION AND INTEGRAL SLIDING MODE VARIABLE STRUCTURE CONTROL OF HYDRAULIC VELOCITY TRACKING SYSTEM

    Wei Jianhua; Guan Cheng

    2005-01-01

    The velocity tracking control of a hydraulic servo system is studied. Since the dynamics of the system are highly nonlinear and have large extent of model uncertainties, such as big changes in load and parameters, a derivation and integral sliding mode variable structure control scheme (DI-SVSC) is proposed. An integral controller is introduced to avoid the assumption that the derivative of desired signal must be known in conventional sliding mode variable structure control, a nonlinear derivation controller is used to weaken the chattering of system. The design method of switching function in integral sliding mode control, nonlinear derivation coefficient and controllers of DI-SVSC is presented respectively. Simulation shows that the control approach is of nice robustness and improves velocity tracking accuracy considerably.

  1. Status quo of applications of new control theories for hydraulic control systems; Shinseigyo riron no yuatsu eno oyo no genjo

    Yokota, S. [Tokyo Institute of Technology, Tokyo (Japan)

    2000-05-15

    This paper describes application of a new control theory to hydraulics. The modern control theory has become applied to hydraulics since about the 1940's, and optimal polarity arrangement by using the status feedback and adaptive control represented by MRAC have emerged. Thereafter, the robust control comes on stage as a fusion of the status space method and the frequency zone theory. For the application thereof, much discussions were given on adaptive control represented by MRAC in order to cover large variation in system parameters in hydraulic control. Since variable parameters are included, there are problems of identification of safety limit, and time delay. Fuzzy control allowing the mathematical model of the subject system to be unclear and neural net control are expanding their applications because of their easiness of handling. The robust control has also begun being applied partly, which is regarded useful for servos. Design freedom is high because target followability and stability are designed separately. However, reliable introduction of two-freedom degree control system such as H{sub {infinity}} control is indispensable. The paper also describes the single adaptive control (SAC) and the sliding mode control (SMC). (NEDO)

  2. Deterministic Control Strategy for a Hybrid Hydraulic System with Intermediate Pressure Line

    Dengler, Peter; Geimer, Marcus; Dombrowski, René von

    2012-01-01

    The paper introduces a new hydraulic system for mobile machines based on a constant pressure system with the aim to increase the efficiency of actuation of hydraulic cylinders. Using a third pressure level located between high pressure and tank pressure called intermediate pressure the system enables additional pressure potentials from high pressure to intermediate pressure and from intermediate pressure to tank pressure. This reduces throttle losses at hydraulic cylinders when driven at low ...

  3. Hybrid Robust Control Law with Disturbance Observer for High-Frequency Response Electro-Hydraulic Servo Loading System

    Zhiqing Sheng; Yunhua Li

    2016-01-01

    Addressing the simulating issue of the helicopter-manipulating booster aerodynamic load with high-frequency dynamic load superimposed on a large static load, this paper studies the design of the robust controller for the electro-hydraulic loading system to realize the simulation of this kind of load. Firstly, the equivalent linear model of the electro-hydraulic loading system under assumed parameter uncertainty is established. Then, a hybrid control scheme is proposed for the loading system. ...

  4. Mechatronic System Design and Intelligent Motion Control of Hydraulic Robots and Machines

    Conrad, Finn; Sørensen, Torben

    control as well as from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility for a DTU-AAU hydraulic robot ¿Thor¿, and a CNC XY-machine table was implemented. The controller applies digital signal processors (DSPs). The DSP......The paper presents an approach and concept to mechatronic system design and intelligent motion control. The Information Technology (IT) offers software and hardware for improvement of R&D Mechatronic Teams to create products and solutions for industrial applications. The latest progress in IT makes...... controller utilizes the dSPACE System suitable for real-time experimentation, evaluation and validation of control laws and algorithms....

  5. Proportional-integral-derivative control of nonlinear half-car electro-hydraulic suspension systems

    John E.D.EKORU; Jimoh O.PEDRO

    2013-01-01

    This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS).This method uses an inner PID hydraulic actuator force control loop,in combination with an outer PID suspension travel control loop,to control a nonlinear half-car AVSS.Robustness to model uncertainty in the form of variation in suspension damping is tested,comparing performance of the AVSS with a passive vehicle suspension system (PVSS),with similar model parameters.Spectral analysis of suspension system model output data,obtained by performing a road input disturbance frequency sweep,provides frequency response plots for both nonlinear vehicle suspension systems and time domain vehicle responses to a sinusoidal road input disturbance on a smooth road.The results show the greater robustness of the AVSS over the PVSS to parametric uncertainty in the frequency and time domains.

  6. Parameter-dependent vibration-attenuation controller design for electro-hydraulic actuated linear structural systems

    Weng, Falu; Mao, Weijie

    2012-03-01

    The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closedloop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller.

  7. Dynamic modelling of pressure control system of a 500 MWe PHWR power plant thermal hydraulics aspects

    A computer code for the dynamic analysis of the proposed 500 MWe Pressurised Heavy Water Reactor is being developed. One of the modules of this code deals with the primary heat transport system pressure control. A thermal hydraulic model of the pressure control system has been developed. This model includes the following : reactor coolant loop, primary circulating pump, Core heat transfer, Feed/bleed with Bleed Condenser and pressure controller. Analysis has been carried out for transients like change in reactor power, leakage from the primary heat transport system and malfunctioning of control system. The mathematical model is presented in the paper along with the results obtained for some of the transients analysed. (author). 6 refs., 6 figs

  8. Water Hydraulic Systems

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  9. Mechatronic System Design and Intelligent Motion Control of Hydraulic Robots and Machines

    Conrad, Finn; Sørensen, Torben

    2003-01-01

    The paper presents an approach and concept to mechatronic system design and intelligent motion control. The Information Technology (IT) offers software and hardware for improvement of R&D Mechatronic Teams to create products and solutions for industrial applications. The latest progress in IT makes...... integration of an overall design and manufacturing IT- concept feasible and commercially attractive. An IT-tool concept for modelling, simulation and design of mechatronic products and systems is proposed in this paper. It built on results from a Danish mechatronic research program on intelligent motion...... control as well as from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility for a DTU-AAU hydraulic robot ¿Thor¿, and a CNC XY-machine table was implemented. The controller applies digital signal processors (DSPs). The DSP...

  10. Multimodel Robust Control for Hydraulic Turbine

    Jakub Osuský; Stanislav Števo

    2014-01-01

    The paper deals with the multimodel and robust control system design and their combination based on M-Δ structure. Controller design will be done in the frequency domain with nominal performance specified by phase margin. Hydraulic turbine model is analyzed as system with unstructured uncertainty, and robust stability condition is included in controller design. Multimodel and robust control approaches are presented in detail on hydraulic turbine model. Control design approaches are compared a...

  11. A vision-based tool for the control of hydraulic structures in sewer systems

    Nguyen, L.; Sage, D.; Kayal, S.; Jeanbourquin, D.; Rossi, L.

    2009-04-01

    monitoring software has the following requirements: visual analysis of particular hydraulic behavior, automatic vision-based flow measurements, automatic alarm system for particular events (overflows, risk of flooding, etc), database for data management (images, events, measurements, etc.), ability to be controlled remotely. The software is implemented in modular server/client architecture under LabVIEW development system. We have conducted conclusive in situ tests in various sewers configurations (CSOs, storm-water sewerage, WWTP); they have shown the ability of the HydroPix to perform accurate monitoring of hydraulic structures. Visual information demonstrated a better understanding of the flow behavior in complex and difficult environment.

  12. An energy-saving nonlinear position control strategy for electro-hydraulic servo systems.

    Baghestan, Keivan; Rezaei, Seyed Mehdi; Talebi, Heidar Ali; Zareinejad, Mohammad

    2015-11-01

    The electro-hydraulic servo system (EHSS) demonstrates numerous advantages in size and performance compared to other actuation methods. Oftentimes, its utilization in industrial and machinery settings is limited by its inferior efficiency. In this paper, a nonlinear backstepping control algorithm with an energy-saving approach is proposed for position control in the EHSS. To achieve improved efficiency, two control valves including a proportional directional valve (PDV) and a proportional relief valve (PRV) are used to achieve the control objectives. To design the control algorithm, the state space model equations of the system are transformed to their normal form and the control law through the PDV is designed using a backstepping approach for position tracking. Then, another nonlinear set of laws is derived to achieve energy-saving through the PRV input. This control design method, based on the normal form representation, imposes internal dynamics on the closed-loop system. The stability of the internal dynamics is analyzed in special cases of operation. Experimental results verify that both tracking and energy-saving objectives are satisfied for the closed-loop system. PMID:26520165

  13. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range.

  14. Plug & Play Control of Hydraulic Networks

    Jensen, Tom Nørgaard

    2012-01-01

    Process Control research program, which the work presented here is a part of. An industrial case study involving a large-scale hydraulic network with non-linear dynamics is studied. The hydraulic network underlies a district heating system, which provides heating water to a number of end-users in a city...

  15. HERION hydraulics in turbine control

    Weise, H.

    1978-01-01

    Recent findings in the hydraulic control of turbine functions by means of HERION valves, using the example of a pumped storage plant. Description and picture of the pumped storage power plant 'Rodund II' of the Vorarlberger Illwerke. Drawing and circuit diagram of the pump turbine. Practice of the NG 10 hydraulic magnetic multiway valves with electrical quitting of switching point for pilot control of relay valves in pump or turbine operation. Picture of the VOTH switch cabinet with integrated hydraulic control valves and location of the HEROIN control inside the switch cabinet.

  16. Pneumatic actuator with hydraulic control

    Everett, Hobart R., Jr.

    1992-11-01

    The present invention provides a pneumatically powered actuator having hydraulic control for both locking and controlling the velocity of an output rod without any sponginess. The invention includes a double-acting pneumatic actuator having a bore, a piston slidably engaged within the bore, and a control rod connected to the piston. The double-acting pneumatic actuator is mounted to a frame. A first double-acting hydraulic actuator having a bore, a piston slidably engaged within the bore, and a follower rod mounted to the piston is mounted to the frame such that the follower rod is fixedly connected to the control rod. The maximum translation of the piston within the bore of the first double-acting hydraulic actuator provides a volumetric displacement V1. The present invention also includes a second double-acting hydraulic actuator having a bore, a piston slidably engaged within the bore, and an output rod mounted to the piston. The maximum translation of the piston within the bore of the second double-acting hydraulic actuator provides a volumetric displacement V2, where V2=V1. A pair of fluid ports in each of the first and second double-acting hydraulic cylinders are operably connected by fluid conduits, one of which includes a valve circuit which may be used to control the velocity of the output rod or to lock the output rod in a static position by regulating the flow of hydraulic fluid between the double-acting cylinders.

  17. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system

    Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong

    2016-05-01

    Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this

  18. Hydraulic management in a soil moisture controlled SDI wastewater dispersal system in an Alabama black belt soil

    An experimental field moisture controlled subsurface drip irrigation (SDI) system was designed and installed as a field trial in a Vertisol in the Alabama Black Belt region for two years. The system was designed to start hydraulic dosing only when field moisture was below field capacity. Results sho...

  19. Trends in Modelling, Simulation and Design of Water Hydraulic Systems – Motion Control and Open-Ended Solutions

    Conrad, Finn

    2006-01-01

    The paper presents and discusses a R&D-view on trends in development and best practise in modelling, simulation and design of both low-pressure and high-pressure tap water hydraulic components and systems for motion control as well as open-ended solutions various industrial applications. The focus...... is on the advantages using ordinary tap water and the range of application areas are illustrated with examples, in particular within the food processing industry, humidification operations, water mist systems for fire fighting, high water pressure cleaners, water moisturising systems for wood...... processing, lumber drying process and mobile machines and equipment that operate in environmentally sensitive surroundings. Today’s progress in water hydraulics includes electro-water hydraulic proportional valves and servovalves for design of motion control solutions for machines and robots. The remarkable...

  20. Hybrid Robust Control Law with Disturbance Observer for High-Frequency Response Electro-Hydraulic Servo Loading System

    Zhiqing Sheng

    2016-04-01

    Full Text Available Addressing the simulating issue of the helicopter-manipulating booster aerodynamic load with high-frequency dynamic load superimposed on a large static load, this paper studies the design of the robust controller for the electro-hydraulic loading system to realize the simulation of this kind of load. Firstly, the equivalent linear model of the electro-hydraulic loading system under assumed parameter uncertainty is established. Then, a hybrid control scheme is proposed for the loading system. This control scheme consists of a constant velocity feed-forward compensator, a robust inner loop compensator based on disturbance observer and a robust outer loop feedback controller. The constant velocity compensator eliminates most of the extraneous force at first, and then the double-loop cascade composition control strategy is employed to design the compensated system. The disturbance observer–based inner loop compensator further restrains the disturbances including the remaining extraneous force, and makes the actual plant tracking a nominal model approximately in a certain frequency range. The robust outer loop controller achieves the desired force-tracking performance, and guarantees system robustness in the high frequency region. The optimized low-pass filter Q(s is designed by using the H∞ mixed sensitivity optimization method. The simulation results show that the proposed hybrid control scheme and controller can effectively suppress the extraneous force and improve the robustness of the electro-hydraulic loading system.

  1. Numerical calculation for flow field of servo-tube guided hydraulic control rod driving system

    A new-style hydraulic control rod driving mechanism was put forward by using servo-tube control elements for the design of control rod driving mechanism. The results of numerical simulation by CFD program Fluent for flow field of hydraulic driving cylinder indicate that the bigger the outer diameter of servo-tube, the smaller the resistance coefficient of variable throttle orifice. The zero position gap of variable throttle orifice could be determined on 0.2 mm in the design. The pressure difference between the upper and nether surfaces of piston was mainly created by the throttle function of fixed throttle orifice. It can be effectively controlled by changing the gap of variable throttle orifice. And the lift force of driving cylinder is able to meet the requirement on the design load. (authors)

  2. Multimodel Robust Control for Hydraulic Turbine

    Jakub Osuský

    2014-01-01

    Full Text Available The paper deals with the multimodel and robust control system design and their combination based on M-Δ structure. Controller design will be done in the frequency domain with nominal performance specified by phase margin. Hydraulic turbine model is analyzed as system with unstructured uncertainty, and robust stability condition is included in controller design. Multimodel and robust control approaches are presented in detail on hydraulic turbine model. Control design approaches are compared and used for derivation of new approaches which combine advantages of both.

  3. Adaptive Sliding Mode Control for Hydraulic Drives

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.;

    2013-01-01

    This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback...

  4. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1→2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements

  5. On Application of Second Order Sliding Mode Control to Electro-Hydraulic Systems

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    as slew rates and time delays arising in the amplification stages, limits the applicability of such methods, and may lead to partial losses of robustness and limit cycles. These properties are analyzed and experimentally verified, and compensation methods are proposed. The application of the second...... variations in inertia- and gravitational loads. Results demonstrate that the super twisting algorithm may be successfully applied for output feedback control of hydraulic valve-cylinder drives, with modifications guaranteeing robust control performance in a small vicinity of the control target....

  6. Hydraulic Motor Driving Variable-Pitch System for Wind Turbine

    Ye HUANG

    2013-11-01

    Full Text Available The present hydraulic variable-pitch mechanism of wind turbine uses three hydraulic cylinders to drive three crank and connecting rod mechanisms respectively; the blades are moved with the cranks. The hydraulic variable-pitch mechanism has complex structure, occupies a lot of space and its maintenance is trouble. In order to make up for the shortcomings of hydraulic cylinder variable-pitch system, the present hydraulic variable-pitch mechanism should be changed as follows: hydraulic motors are used to drive gears; gears drive blades; the electro-hydraulic proportional valves are used to control hydraulic motors. The hydraulic control part and electrical control part of variable-pitch system is redesigned. The new variable-pitch system is called hydraulic motor driving variable-pitch system. The new variable-pitch system meets the control requirements of blade pitch, makes the structure simple and its application effect is perfect.    

  7. Modeling, Optimization & Control of Hydraulic Networks

    Tahavori, Maryamsadat

    2014-01-01

    . The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used...... to solve nonlinear optimal control problems. In the water supply system model, the hydraulic resistance of the valve is estimated by real data and it is considered to be a disturbance. The disturbance in our system is updated every 24 hours based on the amount of water usage by consumers every day. Model...

  8. Use of PID and Iterative Learning Controls on Improving Intra-Oral Hydraulic Loading System of Dental Implants

    Huang, Yi-Cheng; Chan, Manuel; Hsin, Yi-Ping; Ko, Ching-Chang

    This study presents the control design and tests of an intra-oral hydraulic system for quantitatively loading of a dental implant. The computer-controlled system was developed and employed for better pressure error compensation by PID (proportional-integral-derivative) control and point-to-point iterative learning algorithm. In vitro experiments showed that implant loading is precisely controlled (error 3%) for 0.5Hz loading without air inclusion, and reasonably performed (errorvivo animal studies for better understanding of how bone responds to implant loading. Quantitative information derived from this biomechanical model will add to improved designs of dental implants.

  9. 液压机构液压系统的气体污染与控制%Air Contamination Control of Hydraulic System for Hydraulic Mechanism

    邹高鹏

    2011-01-01

    针对液压机构液压系统气体污染的危害问题,介绍了高压断路器液压机构的工作原理,分析了液压系统气体污染产生的途径,重点论述了气体污染对系统运行的危害——造成渗漏油、动作时间不稳定、气蚀等现象,最后提出了防范气体污染的措施,主要从结构设计和整体布置上避免气体的存留,并采取抽真空或加装排气阀的方法进行排气处理,有效控制液压系统的气体污染.%The working principle of hydraulic mechanism for high voltage circuit breaker is introduced, and the source of air contamination in hydraulic system is analyzed. The harms of the air contamination to the circuit breaker are emphatically discussed, including oil leakage, unstable action time, and cavitation. Moreover, the methods for preventing air contamination are proposed, such as avoiding the air retention through improvement of structure design and whole layout, and exhausting the air by vacuum pump or exhaust valve, for the purpose of controlling air contamination effectively.

  10. Development of a quality management system for borehole investigations. (1) Quality assurance and quality control methodology for hydraulic packer testing

    A quality assurance and quality control (QA/QC) system for the hydraulic packer tests has been established based on the surface-based investigations at JAEA's underground research laboratories in Mizunami and Horonobe. The established QA/QC system covers field investigations (data acquisition) and data analysis. For the field investigations, the adopted procedure is selection of a test section based on a detail fluid logging and checking with tally list, followed by inspection of test tools such as pressure transducers and shut-in valves, etc., test method selection using a 'sequential hydraulic test' for deciding appropriate method, and finally data quality confirmation by pressure changes and derivatives on a log-log plots during testing. Test event logs should also be described during testing for traceability. For the test data analysis, a quick analysis for rough estimation of hydraulic parameters, and a detailed analysis using type curve and/or numerical analyses are conducted stepwise. The established QA/QC system has been applied to the recent borehole investigations and its efficiency has been confirmed. (author)

  11. PLC Based Hydraulic Auto Ladle System

    Amogh Tayade; Anuja Chitre

    2014-01-01

    In this paper we have implemented a PLC based Hydraulic Auto Ladle System for Casting Department of Victory Precisions Pvt. Ltd. Chakan, Pune. This project work presents the study and design of PLC based Hydraulic Auto Ladle System. Aluminium pouring is the key process in Casting and Forging industry. Different products are manufactured by the company for automobile sector using aluminium. Programmable Logic Controller (PLC) is used for the automation of pouring process. Au...

  12. Research on the Hydraulic Control System for Wet DCT%湿式DCT液压控制系统研究

    钟圆; 阴晓峰; 廖志明; 韩林森

    2012-01-01

    针对湿式双离合器自动变速器(dual clutch transmission,DCT)在换挡过程中与离合器压力控制相关的问题,建立了湿式DCT离合器压力控制系统模型;根据双离合器的工作状态,提出了DCT换挡过程中离合器压力控制策略,并设计了离合器压力模糊控制算法;利用MATLAB/Simulink搭建了控制系统仿真模型,并通过升、降挡过程的仿真,得到了冲击度和滑摩功的仿真曲线,验证了液压系统模型的正确性和控制算法的有效性.%According to the related problems of controlling pressure of a clutch during the shift process of wet DCT , the model of the hydraulic control system for wet DCT is designed. In establishing the control strategy of cluth pressure of DCT based on the state of clutches, the fuzzy control algorithm of the oil pressure of the clutch is designed. The simulation model of the control system is built u-sing MATLAB/Simulink and the simulation curve of shift jerk and friction work is set up, and proved correctness of the models of hydraulic control system and the validity of the control algorithm through the simulation of the upshift and downshift process.

  13. 14 CFR 23.1435 - Hydraulic systems.

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 23.1435 Section 23.1435... § 23.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each hydraulic system and its elements must withstand, without yielding, the structural loads expected...

  14. 14 CFR 29.1435 - Hydraulic systems.

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 29.1435 Section 29.1435... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each element of the hydraulic system...

  15. Mathematical model of electric hydraulic and powered support control system at a plough mining face

    ZHANG Wei; HAN Xiao; SUN Jing-jing

    2008-01-01

    Given the actual working of a fully mechanized plough at a mining face, we have proposed a formula for running con-straints between powered supports and a coal plough under assumed geological conditions of the coal face and, on this basis, estab-lished an automatic control model of powered supports for the coal plough face. We introduced the working principle of the pow-ered support control system of the plough at the mining face. We established three advanced characteristics of this control system: response speed, reliability and easy maintenance of the system. As well, we briefly introduced, the principal function of primary and subordinate controllers and the realization of the communication system by a Single Bus. Ten controllers were constructed and tested in our laboratorium. The results show that the control model is practical and meets actual conditions. It provides a theoretical basis for designing a computer control system for a powered support system of a plough at a mining face.

  16. Experimental evaluation of control strategies for hydraulic servo robot

    Bech, Michael Møller; Andersen, Torben Ole; Pedersen, Henrik C.;

    2013-01-01

    In this paper different linear and non-linear controllers applied to a hydraulically driven servo robot are evaluated and validated. The task is to make the actuators of the manipulator track a position reference with minimum error. Hydraulic systems are intrinsically non-linear and using linear...... in industrial servo drives. The different controllers are compared and evaluated from simulation and experimental results....

  17. Transputer Control of Hydraulic Actuators and Robots

    Conrad, Finn

    1996-01-01

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real......-time experiments and evaluation of control laws and algorithms is presented. Concepts of intelligent motion control and intelligent hydraulic actuators are proposed. Promising experimental path-tracking results obtained from model-based adaptive control algorithms are presented and discussed....

  18. System of Controlling the Reliability of Hydraulic Machinery in Oil and Gas Facilities

    Zemenkova, M. Yu; Zemenkov, Yu D.; Pimnev, A. L.; Kurushina, E. V.

    2016-04-01

    Under current conditions of operating hazardous production facilities and the level of environmental regulations, a crucial issue is evaluation and control of technological machinery reliability in hydrocarbon transportation. The authors have developed methodologies and a complex of models and algorithms aimed at creating a support system for control decision-making. It is based on the concepts of the reliability theory and regulatory requirements on technological machinery operation. A mathematical complex has been developed for predicting technical state changes and reliability in order to improve the decision-making efficiency concerning the necessity of preventive maintenance. The example is fundamental statements on reliability evaluation using fluctuation analysis.

  19. Assessment of the reliability of thermal-hydraulic and neutronics parameters of Ghana research reactor-1 control systems

    The thermal-hydraulics and neutronics parameters of GHARR-1 control systems were assessed for its reliability after 18 years of operation using the Micro-Computer Closed Loop System (MCCLS) and original control Console (CC). The MCCLS and some components that control the sensitivity and the reading mechanism of the meters on the control systems have been replaced with new ones over the years, due to ageing, repairs and obsolescence. The results show that when reactor is operated at the different power levels the preset neutron fluxes at the control systems is 1.6 times the neutron fluxes obtained using a flux monitor at the inner irradiation site two of the reactor. The average percentage of deviation of fluxes from the actual preset was 36.5% which compares very well with the reactivity decrease of 36.3% after operating the reactor at critical neutron flux of 1.0 × 109n/cm2s. The reactivity regulators were adjusted to increase the core reactivity to 4 mk and the reactor operated at 15kW. The preset neutron flux at the control systems reduced to 1.07 times the Neutron fluxes obtained using a flux monitor at the inner irradiation site 2 of the reactor. The performance of the current micro - amplifiers in the two independent control instrumentations was assessed at an input current of 10µA. The results showed that the flux registered on both the CC and MCCLS varied by a factor of 1.2. The correlation between neutron flux and power, as well as temperature and power at transient state produced almost the same thermal power at about 20% above the rating power of 30 kW but deviated at lower and higher power ratings. The dynamic test through positive reactivity insertion, demonstrate or confirm the inherent safety of the reactor. (au)

  20. Study on New Electro-hydraulic Proportional Control System of Fast Forging Hydraulic Press%快锻液压机新型电液比例控制系统研究

    赵静一; 曹文熬; 王彪

    2011-01-01

    Electro-hydraulic proportional control system was widely used in fast forging hydraulic press.The new electro-hydraulic proportional control system by using three-way cartridge valve was presented, and its mathematical model and simulation model were built.The new control system was compared with control system mount of high pressure unloading valve separately.The results show that control performance is even better for system controlled by three-way cartridge valve, without mount of high pressure unloading valve separately, and manufacturing cost and energy are saved by using accumulator as auxiliary power source.%电液比例控制系统在快锻液压机中的应用日益广泛.提出采用三通插装阀的新型电液比例控制系统的方案,建立其数学模型和仿真模型并与单独设置高压卸荷阀的控制系统进行对比.结果表明:系统用三通比例插装阀控制,无需单独设置高压卸荷阀,控制性能更好,并用蓄能器作辅助动力源,起到节约制造成本和节能的效果.

  1. 集成式电子液压制动系统鲁棒性液压力控制%Robustness Hydraulic Pressure Control System of Integrated-electro-hydraulic Brake System

    余卓平; 徐松云; 熊璐; 广学令

    2015-01-01

    A robustness control system is presented to fulfill the requirements of hydraulic pressure control of integrated-electro- hydraulic brake system. Based on the analysis of chararistics of system it is found that integrated-electro-hydraulic brake system is a nonlinear time-varying system. It is affected by ambient temperature, humidity, load disturbance and other uncertain factors and oscillation occurs. In order to solve these problems the control system of I-EHB is required to have a good adaptation for external uncertain disturbance. Using Taguchi method which is modified according to the system a robustness hydraulic pressure control system for integrated-electro-hydraulic brake system is formed. Using the test rig this robustness control system is tested. Results show that this robustness control system responded rapidly and has a good robustness. In 500 experiments the system keeps in stability. Hence a new method for the control system design of nonlinear time-varying system is found. By using this method the output of system is insensitive to external disturbance, the robustness of system is improved and the performance of system is optimized.%面向汽车集成式电子液压制动系统需求,设计一种鲁棒性液压力控制系统。基于系统特性分析发现,集成式电子液压制动系统为非线性时变系统,其工作受到温度、湿度、载荷扰动等多重不确定因素的影响,容易产生振荡的现象。因此要求液压力控制系统对外界不确定的扰动有较强的适应性,同时满足指标要求。利用基于系统改进的田口方法,提出一种集成式电子液压制动系统鲁棒性液压力控制方法。建立相关试验平台并利用该方法实现液压力鲁棒性控制。试验结果表明,所设计的鲁棒性液压力控制方法鲁棒性强,响应迅速,在500次试验内均保持稳健。因此,研究为非线性时变控制系统设计找到了一个新的设计方法,运

  2. A study on reliability of electro-hydraulic governor control system for large steam turbine in power plant

    In this work, the right management procedure for hydraulic power oil will be discussed and suggested. A thermal power plant turbine should respond to the change of load status. However, to satisfy the frequency of alternating current, the revolution per minute should be kept constant. Therefore, by controlling the flow rate of the steam to the turbine, the governor satisfies the load variation without alternating the revolution per minutes of the turbine. To protect the governor, the hydraulic power unit should be managed carefully by controlling the quality and the flow rate of the oil

  3. Design of Spinning Forming Hydraulic Press's Hydraulics and Control System%旋压成形液压机液压系统及控制系统的设计

    李卫民; 丛树阳

    2011-01-01

    After careful analyzing the work of the hydrostatic press,the design project was determined,hydraulic schematic diagram of hydraulic spinning press was formulated,and pupm stations of the hydraulic system was designed.Using CAD technology designed integrated valves of the hydraulic system.The control system was based on the movement sequence of hydraulic system and the principle of automatic control.Through using the PLC and touch screen joint programming,PLC program development simulation software,the use of man-machine interface configuration software for configuration and programming and PLC and human-machine interface technology of communication,the key issuse of determining and selection of components and technical parameters in hydraulic system of the hydraulic spinning machine have been solved,as well as to the design of automatic control procedures and the control procedures and the control design of man-machine interface.%通过对旋压液压机的工况的分析,确定了设计方案,制定了完成旋压加工的旋压液压机液压原理图,设计了液压系统的液压泵站,采用CAD技术设计了集成式液压系统的集成块阀组;其控制系统是以液压系统的动作顺序和自动控制原理为基础,采用PLC和触摸屏联合编程技术、PLC程序开发软件编程模拟、人机界面运用组态软件进行组态和编程、PLC和人机界面的通讯等技术,解决了旋压液压机液压系统中各部件技术参数的确定与选用、自动控制程序的设计、人机界面的控制设计等关键问题.

  4. Precision Force Control for an Electro-Hydraulic Press Machine

    Hong-Ming Chen; Guo-Wei Yang; Chong-Cyuan Liao

    2014-01-01

    This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weak...

  5. Precision Force Control for an Electro-Hydraulic Press Machine

    Hong-Ming Chen

    2014-08-01

    Full Text Available This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weakness of hydraulic systems is that hydraulic oil is compressible and prone to leaking, and its characteristics can vary with oil temperature, thus making it difficult for a general linear controller to achieve accurate control. Therefore, a fuzzy controller was designed with LabVIEW along with a NI-PCI_6221 interface card and a load cell to control the servo valve flow and the relief valve to control the pressure source. The testing results indicate that accurate force control output of an electro-hydraulic servo press system can be obtained.

  6. 14 CFR 25.1435 - Hydraulic systems.

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 25.1435 Section 25.1435... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1435 Hydraulic systems. (a) Element design. Each element of the hydraulic system must be designed to: (1) Withstand the proof...

  7. 14 CFR 27.1435 - Hydraulic systems.

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design. Each hydraulic system and its elements must withstand, without yielding, any structural loads...

  8. A Robust Adaptive Hydraulic Power Generation System for Jet Engines

    Ronco, Pierantonio; Sorli, Massimo; Mornacchi, Andrea; Jacazio, Giovanni

    2013-01-01

    The paper presents an innovative hydraulic power generation system able to enhance performance, reliability and survivability of hydraulic systems used in military jet engines, as well as to allow a valuable power saving. This is obtained by a hydraulic power generation system architecture that uses variable pressure, smart control, emergency power source and suitable health management procedures. A key issue is to obtain all these functions while reducing to a minimum the number of additiona...

  9. Motion Planning Based Coordinated Control for Hydraulic Excavators

    GAO Yingjie; JIN Yanchao; ZHANG Qin

    2009-01-01

    Hydraulic excavator is one type of the most widely applied construction equipment for various applications mainly because of its versatility and mobility. Among the tasks performed by a hydraulic excavator, repeatable level digging or flat surface finishing may take a large percentage. Using automated functions to perform such repeatable and tedious jobs will not only greatly increase the overall productivity but more importantly also improve the operation safety. For the purpose of investigating the technology without loss of generality, this research is conducted to create a coordinate control method for the boom, arm and bucket cylinders on a hydraulic excavator to perform accurate and effective works. On the basis of the kinematic analysis of the excavator linkage system, the tip trajectory of the end-effector can be determined in terms of three hydraulic cylinders coordinated motion with a visualized method. The coordination of those hydraulic cylinders is realized by controlling three electro-hydranlic proportional valves coordinately. Therefore,the complex control algorithm of a hydraulic excavator can be simplified into coordinated motion control of three individual systems.This coordinate control algorithm was validated on a wheeled hydraulic excavator, and the validation results indicated that this developed control method could satisfaetorily accomplish the auto-digging function for level digging or flat surface finishing.

  10. Control system for the feed of pressurized fluid in a hydraulic circuit as a function of the state of the locking or unlocking of two mechanical organs

    The control system comprises two hydraulic cylinders of which rods are integral with the mechanical organs. The piston of the first cylinder separates the chamber of this one in two parts. The piston of the second cylinder separates its chamber in three parts. The inlet chamber of the two cylinders are connected to pressurized fluid feed pipes, and the outlet chambers to a depressurization pipe. According to the position of the piston depending itself on the state of locking or unlocking of the rods, an interconnection pipe and a feed pipe of the pressurized fluid hydraulic circuit communicate with a chamber or another one. The feed of the hydraulic circuit is possible only the two rods are unlocked. The invention applies more particularly to the feed of the control circuit of an emergency seal of the primary pump of a pressurized water nuclear reactor

  11. Transputers in Fluid Power - Design and Applications. Chapter 5 in Advances in Hydraulic Control Systems

    Conrad, Finn

    Deals with results and trends on mechatronics in fluid power and intelligent control of machines and robots. New results are presented concerning transputer-basen distributed control of machines and robots. Experimental results with the DTU mechatronic test facility are presented and discussed...

  12. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Konishi, Y.; Hattori, M. Sugisawa, M.; Nishii, M. [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  13. Design, analysis and control of hydraulic soft yaw system for 5MW wind turbine

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2012-01-01

    As wind turbines increase in size and the demands for lifetime also increases, new methods of load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and wereby dampen the loads to the system. This paper presents work done on dampening of these loads...

  14. Saving Energy in Construction Machinery using Displacement Control Hydraulics : Concept Realization and Validation

    Heybroek, Kim

    2008-01-01

    In the sector of mobile hydraulics, valve controlled systems are predominant. In these systems the load force and speed are adjusted by control valves. In machines where multiple drives are used in parallel at extremely varying loads the energy efficiency of such systems is often compromised over large working regions. Most valve controlled systems also lack the possibility to recuperate potential energy. A different category of hydraulic systems, called displacement controlled hydraulics are...

  15. Discussion on Methods of Proportional Pressure Control in Hydraulic System of Hydraulic Press%液压机液压系统比例压力控制方法探讨

    李贵闪; 翟华

    2011-01-01

    Three methods of proportional pressure control on hydraulic presses were introduced and compared, which were open-loop control, closed-loop control based on PID and PID control with addition of initial signals. Results of comparison showe that the closed-loop control algorithm which is added with initial signals has many advantages such as simple control structure, easy debugging operations, stable system and high precision, and etc. The requirements of this hydraulic press on pressure control can be fully satisfied.%介绍了液压机比例压力控制的3种方法,即开环控制、基于PID的闭环控制、加入初始信号的PID控制.并对3种控制方法进行了比较.结果表明:采取的加入初始信号的闭环控制算法具有控制结构简单、调试方便、系统稳定、精度高等优点,完全满足该液压机对压力控制的要求.

  16. Concept Evaluation for Hydraulic Yaw System

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...... concepts, ranging from a one-to-one copy of the electrical drive (electrical drives replaced by hydraulic dittos), to floating suspension systems mounted on hydraulic cylinders. Rough calculations of size and consequences of the different systems are presented ending up with the final concept for further...

  17. Crone control of a nonlinear hydraulic actuator

    Pommier-Budinger, Valérie; Sabatier, Jocelyn; Lanusse, Patrick; Oustaloup, Alain

    2002-01-01

    The CRONE control (fractional robust control) of a hydraulic actuator whose dynamic model is nonlinear is presented. An input-output linearization under diffeomorphism and feedback is first achieved for the nominal plant. The relevance of this linearization when the parameters of the plant vary is then analyzed using the Volterra input-output representation in the frequency domain. CRONE control based on complex fractional differentiation is finally applied to control the velocity of the inpu...

  18. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    Pedersen, Henrik Clemmensen

    2004-01-01

    Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency...... in a project to develop rules and methods for designing and controlling mobile hydraulic systems in the most energy efficient way, when also considering the operational aspects of the system. The paper first describes the thoughts and ideas behind the project and then focus on an automated approach to design...... the hydraulic power supply in the most energy efficient way, when considering a number of load situations. Finally an example of the approach is shown to prove its validity.}...

  19. Nonlinear Adaptive Robust Force Control of Hydraulic Load Simulator

    YAO Jianyong; JIAO Zongxia; YAO Bin; SHANG Yaoxing; DONG Wenbin

    2012-01-01

    This paper deals with the high performance force control of hydraulic load samulator.Many prevtous works for hydraultc force control are based on their linearization equations,but hydraulic inherent nonlinear properties and uncertainties make the conventional feedback proportional-integral-derivative control not yield to high-performance requirements.In this paper,a nonlinear system model is derived and linear parameterization is made for adaptive control.Then a discontinuous projection-based nonlinear adaptive robust force controller is developed for hydraulic load simulator.The proposed controller constructs an asymptotically stable adaptive controller and adaptation laws,which can compensate for the system nonlinearities and uncertain parameters.Meanwhile a well-designed robust controller is also developed to cope with the hydraulic system uncertain nonlinearities.The controller achieves a guaranteed transient performance and final tracking accuracy in the presence of both parametric uncertainties and uncertain nonlinearities; in the absence of uncertain nonlinearities,the scheme also achieves asymptotic tracking performance.Simulation and experiment comparative results are obtained to verify the high-performance nature of the proposed control strategy and the tracking accuracy is greatly improved.

  20. 数控车床液压卡盘夹紧控制系统的研究%Research of CNC lathe chuck clamping hydraulic control system

    张文亭

    2014-01-01

    主要研究数控车床液压卡盘夹紧控制系统,建立了动力卡盘的夹紧力和转速之间的关系模型,分析了基于供油压力随速度变化的夹紧力补偿,设计了动力卡盘的夹紧控制系统的油路,通过试验验证了采用液压压力补偿的卡盘控制系统具有较好的高速性能。%This paper studies the CNC lathe chuck clamping hydraulic control system, established the model of the relationship between a power chuck clamping force and speed, analysis of the speed change based on the oil pressure with a clamping force compensation, designed chuck clamping force control system hydraulic circuit, verified by experiment using a pressure compensated hydraulic chuck control system has good high speed performance.

  1. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.; Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States); Basher, A.M.H. [South Carolina State Univ., Orangeburg, SC (United States)

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  2. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  3. HYBRID CONTROL OF HYDRAULIC PRESS MACHINE BASED ON ROBUST CONTROL

    FANG Yu; YANG Jian; CHAI Xiaodong

    2008-01-01

    A robust control algorithm is proposed to focus on the non-linearity and variables of the hydraulic press machine with the proportional valve. The proposed robust controller does not need to design stable compensator in advance, which is simple in design and has large scope of uncertainty applications. The feedback gains of the proposed robust controller are small, so it is easily implemented in engineering applications. The theoretical and experimental research on the position and speed control of the hydraulic press machine is carried out. The control requirements of the hydraulic press machine during the working process are met in the position and speed at the same time. Experimental results show that the proposed controller has better robustness subject to load variables and adaptability of parameter variations of the hydraulic press machine with the proportional valve.

  4. Advanced Control Strategies for Mobile Hydraulic Applications

    Cristofori, Davide

    2013-01-01

    Mobile hydraulic machines are affected by numerous undesired dynamics, mainly discontinuous motion and vibrations. Over the years, many methods have been developed to limit the extent of those undesired dynamics and improve controllability and safety of operation of the machine. However, in most of the cases, today's methods do not significantly differ from those developed in a time when electronic controllers were slower and less reliable than they are today. This dissertation addresses t...

  5. 金属带式CVT钢带轴向跑偏电液控制系统的仿真%Simulation of Electro- hydraulic Control System of Controling the Belt Axial - misalignment for Metal V- belt CVT

    臧发业; 张玉波

    2009-01-01

    On the basis of the analysis of the belt misalignment of the metal V - belt CVT, the reason of the belt misalignment is discussed. In order to control the misalignment, an electro - hydraulic control system is designed. After analyzing the structure and principle of the electro - hydraulic control system, the mathematical model of the electrohydraulic control system is established. Being varieties of the working situation of car and the non - linearity of the electro - hydraulic control system, a fuzzy PID algorithm is adopted. Then the performance simulation of the electro - hydraulic control system is conducted. The simulation results showe that the electro - hydraulic control system and the fuzzy controller with parameter self adjustment could not only control ratio, which has a higher accuracy of the stable state and a stronger robust of the driving condition, but also eliminate the belt misalignment.%通过对金属带式无级变速器传动钢带轴向跑偏的分析,阐述了产生钢带中心线轴向偏移的原因,为控制传动钢带的轴向跑偏,设计了一种新型的电液伺服控制系统,阐述了其工作原理,建立了该系统的数学模型.由于系统具有非线性及工况运行的复杂性,采用模糊控制算法,然后对系统的控制性能进行仿真研究,仿真结果表明,所设计的电液伺服控制系统能实现对速比的跟踪控制,稳态精度较高,可消除金属带式CVT传动钢带的轴向跑偏.

  6. Modeling and parameter estimation for hydraulic system of excavator's arm

    HE Qing-hua; HAO Peng; ZHANG Da-qing

    2008-01-01

    A retrofitted electro-bydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV)system, taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it,a force equilibrium equation and a continuous equation of hydraulic cylinder were set up.Based On the flow equation of electro-hydraulic proportional valve, the pressure passing through the valve and the difference of pressure were tested and analyzed.The results show that the difference of pressure does not change with load, and it approximates to 2.0 MPa. And then, assume the flow across the valve is directly proportional to spool displacement andis not influenced by load, a simplified model of electro-hydraulic system was put forward. At the same time, by analyzing the structure and load-bearing of boom instrument, and combining moment equivalent equation of manipulator with rotating law, the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally, the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the stepcurrent. Based on the experiment curve, the flow gain coefficient of valve is identified as 2.825×10-4m3/(s·A)and the model is verified.

  7. Simulation and control of an electro-hydraulic actuated clutch

    Balau, Andreea-Elena; Caruntu, Constantin-Florin; Lazar, Corneliu

    2011-08-01

    The basic function of any type of automotive transmission is to transfer the engine torque to the vehicle with the desired ratio smoothly and efficiently and the most common control devices inside the transmission are clutches and hydraulic pistons. The automatic control of the clutch engagement plays a crucial role in Automatic Manual Transmission (AMT) vehicles, being seen as an increasingly important enabling technology for the automotive industry. It has a major role in automatic gear shifting and traction control for improved safety, drivability and comfort and, at the same time, for fuel economy. In this paper, a model for a wet clutch actuated by an electro-hydraulic valve used by Volkswagen for automatic transmissions is presented. Starting from the developed model, a simulator was implemented in Matlab/Simulink and the model was validated against data obtained from a test-bench provided by Continental Automotive Romania, which includes the Volkswagen wet clutch actuated by the electro-hydraulic valve. Then, a predictive control strategy is applied to the model of the electro-hydraulic actuated clutch with the aims of controlling the clutch piston displacement and decreasing the influence of the network-induced delays on the control performances. The simulation results obtained with the proposed method are compared with the ones obtained with different networked controllers and it is shown that the strategy proposed in this paper can indeed improve the performances of the control system.

  8. Intelligent PI Fuzzy Control of An Electro-Hydraulic Manipulator

    Ayman A. Aly

    2012-06-01

    Full Text Available The development of a fuzzy-logic controller for a class of industrial hydraulic manipulator is described. The main element of the controller is a PI-type fuzzy control technique which utilizes a simple set of membership functions and rules to meet the basic control requirements of such robots. Using the triangle shaped membership function, the position of the servocylinder was successfully controlled. When the system parameter is altered, the control algorithm is shown to be robust and more faster compared to the traditional PID controller. The robustness and tracking ability of the controller were demonstrated through simulations.

  9. Model Reference PID Control of an Electro-hydraulic Drive

    Ayman A. Aly

    2012-01-01

    Hydraulic cranes are inherently nonlinear and contain components exhibiting strong friction, saturation, variable inertia mechanical loads, etc. The characteristics of these non-linear components are usually not known exactly as structure or parameters. For these reasons, tuning of the traditional PID controller parameters to control this system for the required performance faces a strong challenge. In this paper a new approach to design an adaptive PID control has the ability to solve the co...

  10. Thermal-hydraulic unreliability of passive systems

    Advanced light water reactor designs like AP600 and the simplified boiling water reactor (SBWR) use passive safety systems for accident prevention and mitigation. Because these systems rely on natural forces for their operation, their unavailability due to hardware failures and human error is significantly smaller than that of active systems. However, the coolant flows predicted to be delivered by these systems can be subject to significant uncertainties, which in turn can lead to a significant uncertainty in the predicted thermal-hydraulic performance of the plant under accident conditions. Because of these uncertainties, there is a probability that an accident sequence for which a best estimate thermal-hydraulic analysis predicts no core damage (success sequence) may actually lead to core damage. For brevity, this probability will be called thermal-hydraulic unreliability. The assessment of this unreliability for all the success sequences requires very expensive computations. Moreover, the computational cost increases drastically as the required thermal-hydraulic reliability increases. The required computational effort can be greatly reduced if a bounding approach can be used that either eliminates the need to compute thermal-hydraulic unreliabilities, or it leads to the analysis of a few bounding sequences for which the required thermal-hydraulic reliability is relatively small. The objective of this paper is to present such an approach and determine the order of magnitude of the thermal-hydraulic unreliabilities that may have to be computed

  11. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    I. V. Zhukovytskyy

    2015-08-01

    authors developed the information-measuring system that improves the hydraulic transmission test process by automating and increasing the accuracy of measurements of control parameters. The measurement results are initial data for carrying out further studies to determine the technical condition of the hydraulic transmission UGP750-1200 during the plant post-repair tests. Practical value. The paper proposed the alternate design of microprocessor hydraulic transmission test system for diesel locomotives, which has no analogues in Ukraine. Automated data collection during the tests will allow capturing the fast processes to determine the technical condition of hydraulic transmission.

  12. 49 CFR 570.55 - Hydraulic brake system.

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles with hydraulic brake systems. (a) Brake system failure indicator. The hydraulic brake system failure...

  13. Analysis of buffering process of control rod hydraulic absorber

    Control Rod Hydraulic Drive Mechanism(CRHDM) is a newly invented build-in control rod drive mechanism. Hydraulic absorber is the key part of this mechanism, and is used to cushion the control rod when the rod scrams. Thus, it prevents the control rod from being deformed and damaged. In this paper dynamics program ANSYS CFX is used to calculate all kinds of flow conditions in hydraulic absorber to obtain its hydraulic characteristics. Based on the flow resistance coefficients obtained from the simulation results, fluid mass and momentum equations were developed to get the trend of pressure change in the hydraulic cylinder and the displacement of the piston rod during the buffering process of the control rod. The results obtained in this paper indicate that the hydraulic absorber meets the design requirement. The work in this paper will be helpful for the design and optimization of the control rod hydraulic absorber. (author)

  14. Research on Electro-hydraulic Servo Control System with Force-feedback%基于力觉反馈的电液伺服系统设计

    曹清华

    2011-01-01

    借鉴电机驱动主从随动控制系统的研究方法,并根据液压系统的特殊性,对电液伺服遥操作主从机械人的力觉临场感进行分析.综合对称型双向伺服控制系统和力直接反馈型双向伺服控制系统的优点,以从端受力形成力反馈控制量的增益,位置误差和位置误差的变化率形成力反馈控制量,提出改进的对称型控制算法,即力-位置综合型双向伺服控制算法.实验结果验证了该方法的有效性和实用性.%Referring to the researching methods of master-slave control system of electromotor drive, considering the particularity of hydraulic system, the force telepresence of master-slave robot with electro-hydraulic servo remote operation was analyzed.After integrating the advantages of symmetric master-slave servo control system and force feedback directly master-slave control system, the improved symmetric control algorithm, named force-position integrated master-slave servo control algorithm was developed, in which the gain of force-feedback signal was formulated by slave force and force-feedback signal was formed by position error and its difference.The experimental results verify the method is efficient and practical.

  15. Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II

    Highlights: • Multi-objective optimization based fractional order controller is designed for HTRS. • NSGAII is improved by iterative chaotic map with infinite collapses (ICMIC) operator. • ISE and ITSE are as chosen as objective functions in tuning parameters of HTRS. • FOPID controller outperforms the PID controller under various running conditions. • Trade-off between speed of reference tracking and damping of oscillation are shown. - Abstract: Fractional-order PID (FOPID) controller is a generalization of traditional PID controller using fractional calculus. Compared to the traditional PID controller, in FOPID controller, the order of derivative portion and integral portion is not integer, which provides more flexibility in achieving control objectives. Design stage of such an FOPID controller consists of determining five parameters, i.e. proportional, integral and derivative gains {Kp, Ki, Kd}, and extra integration and differentiation orders {λ,μ}, which has a large difference comparing with the conventional PID tuning rules, thus a suitable optimization algorithm is essential to the parameters tuning of FOPID controller. This paper focuses on the design of the FOPID controller using chaotic non-dominated sorting genetic algorithm II (NSGAII) for hydraulic turbine regulating system (HTRS). The parameters chosen of the FOPID controller is formulated as a multi-objective optimization problem, in which the objective functions are composed by the integral of the squared error (ISE) and integral of the time multiplied squared error (ITSE). The chaotic NSGAII algorithm, which is an incorporation of chaotic behaviors into NSGAII, is used as the optimizer to search true Pareto-front of the FOPID controller and designers can implement each of them based on objective functions priority. The designed chaotic NSGAII based FOPID controller procedure is applied to a HTRS system. A comparison study between the optimum integer order PID controller and optimum

  16. Computerized hydraulic scanning system for quantitative non destructive examination

    A hydraulic scanning system with five degrees of freedom is described. It is primarily designed as a universal system for fast and accurate ultrasonic inspection of materials for their internal variation in properties. The whole system is controlled by a minicomputer which also is used for evaluating and presenting of the results of the inspection. (author)

  17. Linear Perturbation Adaptive Control of Hydraulically Driven Manipulators

    Andersen, T.O.; Hansen, M.R.; Conrad, Finn

    2004-01-01

    A method for synthesis of a robust adaptive scheme for a hydraulically driven manipulator, that takes full advantage of any known system dynamics to simplify the adaptive control problem for the unknown portion of the dynamics is presented. The control method is based on adaptive perturbation...... control.Using the Lyapunov approach, under slowly time-varying assumptions, it is shown that the tracking error and the parameter error remain bounded. This bound is a function of the ideal parameters and a bounded disturbance. The control algorithm decouples and linearizes the manipulator so that each...... joint behaves as an independent second-order system with fixed dynamics....

  18. Technique of multilevel adjustment calculation of the heat-hydraulic mode of the major heat supply systems with the intermediate control stages

    Tokarev, V. V.; Shalaginova, Z. I.

    2016-01-01

    A new technique for heat-hydraulic calculation to organize the normal operating modes of the heat supply systems intended to decide the tasks of planning and mode selecting, which ensures the required thermal loads at adherence of all restrictions on its parameters, is proposed. The main feature of the technique is in the determination of the parameters of throttling devices on the network and inlets into the buildings of consumers taking into account the differentiated corrections to the flow rates on the compensation of the heat losses in the network. The technique involves the decision of the multilevel adjustment calculation task, in which the deviations of the boundary mode parameters (pressure, flow rate, temperature) in place of the decomposition of the heat supply system model on the levels of main and distribution heating networks taking into account the intermediate control stages on the central heat points (CHP) are minimized. At each level, the task of single-level adjustment heat-hydraulic calculation is decided, which is mathematically defined as an optimization task where the internal air temperature deviation is minimized of the required value with the given accuracy a priori. The technique is realized as part of the ANGARA-TS data-computing system and allows developing the adjusting procedures to improve the heat supply quality and availability of heating consumers, determining the minimum necessary values of heads on the sources and pumping stations.

  19. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    Stubkier, Søren

    energy and an increase in the loading of the wind turbine structure and components. This dissertation examines the hypothesis that there are advantages of basing a yaw system on hydraulic components instead of normal electrical components. This is done through a state of the art analysis followed...... in the wind turbine yaw system along with minor reductions in the blades and main shaft. Optimization of the damping and stiffness of the hydraulic soft yaw system have been conducted and an optimum found for load reduction. Linear control algorithms for control of damping pressure peaks have been developed...... and tested in simulations with success. To verify the results of the new hydraulic soft yaw concept a novel friction model for including coulomb in the yaw system is developed and implemented in the FAST aeroelastic code from NREL in order to include friction phenomena. A cosimulation interface between...

  20. Hydraulic Motor Driving Variable-Pitch System for Wind Turbine

    Huang, Ye; JiBao QI

    2013-01-01

    The present hydraulic variable-pitch mechanism of wind turbine uses three hydraulic cylinders to drive three crank and connecting rod mechanisms respectively; the blades are moved with the cranks. The hydraulic variable-pitch mechanism has complex structure, occupies a lot of space and its maintenance is trouble. In order to make up for the shortcomings of hydraulic cylinder variable-pitch system, the present hydraulic variable-pitch mechanism should be changed as follows: hydraulic motors ar...

  1. The hydraulic capacity of deteriorating sewer systems.

    Pollert, J; Ugarelli, R; Saegrov, S; Schilling, W; Di Federico, V

    2005-01-01

    Sewer and wastewater systems suffer from insufficient capacity, construction flaws and pipe deterioration. Consequences are structural failures, local floods, surface erosion and pollution of receiving waters bodies. European cities spend in the order of five billion Euro per year for wastewater network rehabilitation. This amount is estimated to increase due to network ageing. The project CARE-S (Computer Aided RE-habilitation of Sewer Networks) deals with sewer and storm water networks. The final project goal is to develop integrated software, which provides the most cost-efficient system of maintenance, repair and rehabilitation of sewer networks. Decisions on investments in rehabilitation often have to be made with uncertain information about the structural condition and the hydraulic performance of a sewer system. Because of this, decision-making involves considerable risks. This paper presents the results of research focused on the study of hydraulic effects caused by failures due to temporal decline of sewer systems. Hydraulic simulations are usually carried out by running commercial models that apply, as input, default values of parameters that strongly influence results. Using CCTV inspections information as dataset to catalogue principal types of failures affecting pipes, a 3D model was used to evaluate their hydraulic consequences. The translation of failures effects in parameters values producing the same hydraulic conditions caused by failures was carried out through the comparison of laboratory experiences and 3D simulations results. Those parameters could be the input of 1D commercial models instead of the default values commonly inserted. PMID:16477988

  2. Fort St. Vrain hydraulic power system study

    This report prepared for the United States Department of Energy under Contract Number DEAC03-80SF11440, contains the results of the Fort St. Vrain Hydraulic Power System (System 91) engineering study. The major objectives of this study were to evaluate, analyze, and recommend corrective actions to resolve HTGR (High Temperature Gas Cooled Reactor) operational problems and equipment performance problems in the hydraulic power system at the Fort St. Vrain Nuclear Generating Station. The recommended corrective actions for each subject are subdivided where appropriate, into two categories: modifications suggested for implementation at Fort St. Vrain and modifications suggested for consideration in the design of future HTGRs

  3. Control System on a Wind Turbine : Evaluation of Control Strategies for a Wind Turbine with Hydraulic Drive Train by Means of Aeroelastic Analysis

    Frøyd, Lars

    2009-01-01

    The evolution of wind turbines are going towards floating offshore structures. To improve the stability of these turbines, the weight of the nacelle should be as low as possible. The company ChapDrive has developed a hydraulic drive train that gives the ability to move the generator to the base of the tower and to replace the traditional gearbox. To test the system, ChapDrive has constructed a prototype turbine which is located at Valsneset.This thesis describes the combined aero-elastic and...

  4. Linear Perturbation Adaptive Control of Hydraulically Driven Manipulators

    Andersen, T.O.; Hansen, M.R.; Conrad, Finn

    control.Using the Lyapunov approach, under slowly time-varying assumptions, it is shown that the tracking error and the parameter error remain bounded. This bound is a function of the ideal parameters and a bounded disturbance. The control algorithm decouples and linearizes the manipulator so that each......A method for synthesis of a robust adaptive scheme for a hydraulically driven manipulator, that takes full advantage of any known system dynamics to simplify the adaptive control problem for the unknown portion of the dynamics is presented. The control method is based on adaptive perturbation...

  5. Hydraulic model of the systemic resistance

    Leitermann, D.; Pražák, Josef; Musil, Jan; Poušek, L.; Konvičková, S.

    San Diego: American Society of Biomechanics, 2001, s. 265-266. [Conference of the American Society of Biomechanics. San Diego (US), 08.08.2001-11.08.2001] Grant ostatní: ÚT AV ČR(XC) PP50252 Institutional research plan: CEZ:AV0Z2076919 Keywords : systemic resistance * hydraulic model * cardiovascular system Subject RIV: BK - Fluid Dynamics

  6. Oil Hydraulic Press Control Characteristics with Open Variable Pump controlled System%开式变量泵控油压机系统控制特性研究

    宋豫; 孔祥东; 姚静; 王卓

    2016-01-01

    In order to solve the problems of high energy consumption for huge free forging hyG draulic press,an open variable pump�controlled hydraulic system for oil hydraulic press was proposed. Firstly,combined with ADAMS and AMESim,a co�simulation platform of open variable pump�conG trolled hydraulic press system was built,and aiming at typical work modes,regular forging and fast forging,the control characteristics were studied by simulations.Secondly,based on 600kN forging hydraulic press experimental platform,control characteristics for the open variable pump�controlled hydraulic press with regular forging and fast forging was verified respectively by experiments,and compared with the simulation results.The simulation and experimental results approve that the open variable pump�controlled hydraulic press system can meet the technical requirements.For regular forging,it has a good performance about manipulation,low impact and stability.For fast forging, when the forging frequency is up to 80 times per minute,the position control accuracy is less than 1 mm.%为解决大功率自由锻造油压机高能耗的问题,设计了一种开式变量泵控油压机系统.采用ADAMS和AMESim建立了开式变量泵控油压机系统联合仿真平台,对其常锻工况和快锻工况的控制特性进行了仿真研究.基于600kN锻造油压机实验平台,对其常锻工况和快锻工况的控制特性进行了验证,并将验证结果与仿真结果进行了对比.研究结果表明:开式变量泵控油压机系统能够满足技术要求,即常锻时操控性好,卸压无冲击,运行平稳;快锻(锻造频次80次/min)时,位置控制精度小于1 mm.

  7. Nonelastomeric Rod Seals for Advanced Hydraulic Systems

    Hady, W. F.; Waterman, A. W.

    1976-01-01

    Advanced high temperature hydraulic system rod sealing requirements can be met by using seals made of nonelastomeric (plastic) materials in applications where elastomers do not have adequate life. Exploratory seal designs were optimized for advanced applications using machinable polyimide materials. These seals demonstrated equivalent flight hour lives of 12,500 at 350 F and 9,875 at 400 F in advanced hydraulic system simulation. Successful operation was also attained under simulated space shuttle applications; 96 reentry thermal cycles and 1,438 hours of vacuum storage. Tests of less expensive molded plastic seals indicated a need for improved materials to provide equivalent performance to the machined seals.

  8. Efficient hydraulic properties of root systems

    Bechmann, Marcel; Schneider, Christoph; Carminati, Andrea; Hildebrandt, Anke

    2013-04-01

    Understanding the mechanisms of ecosystem root water uptake (RWU) is paramount for parameterizing hydrological models. With the increase in computational power it is possible to calculate RWU explicitly up to the single plant scale using physical models. However, application of these models for increasing our understanding of ecosystem root water uptake is hindered by the deficit in knowledge about the detailed hydraulic parameter distribution within root systems. However, those physical models may help us to identify efficient parameterizations and to describe the influence of these hydraulic parameters on RWU profiles. In this research, we investigated the combined influence of root hydraulic parameters and different root topologies on shaping efficient root water uptake. First, we use a conceptual model of simple branching structures to understand the influence of branching location and transitions in root hydraulic properties on the RWU patterns in typical sub root structures. Second, we apply a physical model called "aRoot" to test our conclusions on complex root system architectures of single plants. aRoot calculates the distribution of xylem potential within arbitrary root geometries to satisfy a given water demand depending on the available water in the soil. Redistribution of water within the bulk soil is calculated using the Richards equation. We analyzed results using a measure of uptake efficiency, which describes the effort necessary for transpiration. Simulations with the conceptual model showed that total transpiration in sub root structures is independent of root hydraulic properties over a wide range of hydraulic parameters. On the other hand efficiency of root water uptake depends crucially on distribution hydraulic parameters in line with root topology. At the same time, these parameters shape strongly the distribution of RWU along the roots, and its evolution in time, thus leading to variable individual root water uptake profiles. Calculating

  9. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    was molded into a polytechnic institute focusing on engineering in the nationwide restructuring of universities and colleges undertaken in 1952. At present, the university has 14 schools and 56 departments with faculties in science, engineering, humanities, law, medicine, history, philosophy, economics, management, education and art. The University now has over 25 900 students, including 13 100 undergraduates and 12 800 graduate students. As one of China's most renowned universities, Tsinghua has become an important institution for fostering talents and scientific research. The International Association of Hydro-Environment Engineering and Research (IAHR) particularly promotes the advancement and exchange of knowledge through working groups, specialty symposia, congresses, and publications on water resources, river and coastal hydraulics, risk analysis, energy, environment, disaster prevention, and industrial processes. The IAHR Committee on Hydraulic Machinery and Systems deals with the advancement of technology associated with the understanding of steady and unsteady flow characteristics in hydraulic machinery and conduit systems connected to the machinery. The technology elements include the fluid behaviour within machine components, hydro-elastic behaviour of machine components, cavitation and two phase flow in turbines and pumps, hydraulic machine and plant control systems, the use of hydraulic machines to improve water quality, and even considerations to improve fish survival in their passage through hydro plants. The main emphases of the IAHR Committee on Hydraulic Machinery and Systems are to stimulate research and understanding of the technologies associated with hydraulic machinery and to promote interaction between the machine designers, machine users, the academic community, and the community as a whole. Hydraulic machinery is both cost effective and environmentally friendly. The goals of the IAHR Committee on Hydraulic Machinery and Systems are to improve

  10. Tracking control of the hydraulically actuated flexible manipulator

    The remediation of single-shell radioactive waste storage tanks is one of the urgent tasks of the Department of Energy that challenge state-of-the-art equipment and methods. The use of long-reach manipulators is being seriously considered for this remediation task. Because high payload capacity and high length-to-cross-section ratio requirements, these long-reach manipulator systems are expected to use hydraulic actuators and to exhibit significant structural flexibility. The controller has been designed to compensate for the hydraulic actuator dynamics by using a load-compensated velocity feedforward loop and to increase the bandwidth by using a pressure feed backloop. Shaping filter techniques have been applied as a feedforward controller to avoid structural vibrations during operation. Among various types of shaping filter methods investigated an approach, referred to as a ''feedforward simulation filter'' that uses embedded simulation, has been presented

  11. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    was molded into a polytechnic institute focusing on engineering in the nationwide restructuring of universities and colleges undertaken in 1952. At present, the university has 14 schools and 56 departments with faculties in science, engineering, humanities, law, medicine, history, philosophy, economics, management, education and art. The University now has over 25 900 students, including 13 100 undergraduates and 12 800 graduate students. As one of China's most renowned universities, Tsinghua has become an important institution for fostering talents and scientific research. The International Association of Hydro-Environment Engineering and Research (IAHR) particularly promotes the advancement and exchange of knowledge through working groups, specialty symposia, congresses, and publications on water resources, river and coastal hydraulics, risk analysis, energy, environment, disaster prevention, and industrial processes. The IAHR Committee on Hydraulic Machinery and Systems deals with the advancement of technology associated with the understanding of steady and unsteady flow characteristics in hydraulic machinery and conduit systems connected to the machinery. The technology elements include the fluid behaviour within machine components, hydro-elastic behaviour of machine components, cavitation and two phase flow in turbines and pumps, hydraulic machine and plant control systems, the use of hydraulic machines to improve water quality, and even considerations to improve fish survival in their passage through hydro plants. The main emphases of the IAHR Committee on Hydraulic Machinery and Systems are to stimulate research and understanding of the technologies associated with hydraulic machinery and to promote interaction between the machine designers, machine users, the academic community, and the community as a whole. Hydraulic machinery is both cost effective and environmentally friendly. The goals of the IAHR Committee on Hydraulic Machinery and Systems are to improve

  12. 铝合金游艇液压系统的设计%Design of the Hydraulic Control System of Aluminum Alloy Yacht

    凌勇坚; 李安定; 张良华; 姜宝东; 方文炜

    2013-01-01

    This paper describes the design of a new aluminium alloy yacht used water sightseeing and sailing in the waters of Taihu. It focuses on introducing the design principle and characteristic of the hydraulic control system of the aluminum boat propeller and the winch, and the alloy yacht’s the actual use conditions and social value.%  叙述了一种用于水上观光游览、航行于太湖水域的新款式铝合金游艇的设计,重点介绍了该铝艇螺旋桨液压控制系统、绞盘机液压控制系统两大部分的设计原理和特点,以及完工后的该艇实际使用情况和社会价值。

  13. Hydraulics.

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  14. Control system for forging hydraulic press group based on field control network%基于现场控制网络的锻造液压机组控制系统

    陈柏金; 黄树槐; 孙茂; 魏运华

    2001-01-01

    This paper analyzes the characteristics of forging hydraulic press group,proposes the CNC system of field control network composed of personal computer and PLC,and describes its hardware and software designs. The CNC system has been successfully applied in the 8MN fast forging hydraulic press group.%通过分析锻造液压机的工作特点,提出由计算机和PLC组成现场控制网络的锻造液压机组计算机控制系统体系结构,并对它的硬件和软件设计作了详细的论述,该系统已成功地应用于8MN快速锻造液压机中。

  15. A Hydraulic Blowdown Servo System For Launch Vehicle

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  16. Modeling of a Hydraulic Braking System

    Lundin, Christopher

    2015-01-01

    The objective of this thesis is to derive an analytical model representing a reduced form of a mine hoist hydraulic braking system. Based primarily on fluid mechanical and mechanical physical modeling, along with a number of simplifying assumptions, the analytical model will be derived and expressed in the form of a system of differential equations including a set of static functions. The obtained model will be suitable for basic simulation and analysis of system dynamics, with the aim to cap...

  17. 电液比例位置控制系统Fuzzy-PID控制的应用%Application of Fuzzy-PID Control for Electro-hydraulic Proportional Position Control System

    刘保杰; 强宝民

    2012-01-01

    For the problem of real-time performance and severe time-variable of a electro-hydraulic proportional valve for cylin-der position control system,a new type of PID algorithm was suggested. The fuzzy control combined the algorithm formed fuzzy-PID control, and the application of these algorithm on electro-hydraulic proportional position control system was researched. The tracking effects on sine signals were compared conventional PID control with fuzzy-PID control though defferent experimental conditions. The results show that the fuzzy-PID control have better accuracy and stability than the conventional PID control.%针对电液比例阀控缸位置控制系统实时性能差和具有严重时变性的特点,设计了一种新型PID控制算法,并将该算法与模糊控制相结合构成Fuzzy-PID控制,对其在电液比例位置控制系统上的应用进行研究.通过实验比较不同工况下该系统Fuzzy-PID控制和常规PID控制对正弦信号的跟踪效果.结果表明:Fuzzy-PID控制比常规PID控制具有更好的精度和稳定性.

  18. The dynamic running law study on driving system of hydraulic winder

    彭佑多; 刘德顺; 郭迎福; 张永忠; 文西芹

    2002-01-01

    Dynamic running law of the hydraulic driving system decides the hoisting cage velocity curve in a hoisting cycle and is decided by the characteristic of the hydraulic driving system and by the operating speed of hoist driver. The paper studies the dynamic running law of hydraulic driving system, analyses the influence of driver operating speed on the dynamic running characteristic, and points out the reasonable driver operating speed to control the dynamic stress in rope and to reduce the oscillation of rope system.

  19. 大型船舶调距桨液压系统温度控制分析*%Thermal Analysis of Hydraulic System for Controllable Pitch Propeller in Large-scale Shipping

    2013-01-01

    This paper analyzes the thermal problems about the hydraulic system for a controllable pitch propeller in the condition of high flow and introduces the thermal-dynamic properties of the hydraulic system for controllable pitch propeller. Applying the average oil temperature method, this paper evaluates the balanced temperature of the hydraulic system. And then the thermal-hydraulic model is established to analyze the thermal-dynamic properties of the hydraulic system in different conditions by using AMESim engineering software.%  针对船舶调距桨液压系统大流量下的温度控制问题,分析了船舶调距桨液压系统热力学特性,采用平均油温法估算液压系统平衡温度,建立了某船舶调距桨液压系统温度计算模型,得到了在不同海水冷却端流量、海水冷却端温度以及环境温度等情况下液压系统的温升规律,为系统设计提供理论依据。

  20. Common cause failure analysis of hydraulic scram and control rod systems in the Swedish and Finnish BWR plants

    The main task of the project included the analysis of the operating experiences at the BWRs of ABB Atom design, comprising 9 units in Sweden and 2 in Finland. International experience and reference information were also surveyed. A reference application was done for the Barsebaeck plant. This pilot study covered all systems which contribute to the reactor shutdown, including also the actuation relays at the interface to the reactor protection system. The Common Load Model was used as the quantification method, which proved to be a practicable approach. This method provides a consistent handling of failure combinatorics and workable extension to evaluate localized dependence between adjacent control rod and drive assemblies (CRDAs). As part of this project, instructions of handbook style were prepared for the CCF analysis of high redundancy systems. The primary focus in the analysis of operating experience was placed on the scram valves and CRDAs. Due to the limited component population, the experiences for the scram valve constitute only a few single failures and some potential but none actual CCF event. These insights are compatible with the generic data for these valves. The experiences for the CRDAs include several single failures, and some actual and many potential CCF events of varying degree of functional impact. Special emphasis was placed to identify any multiple failure or degradation indicating that adjacent rods would be more vulnerable to failure, because such phenomena are far more critical for the scram function as compared to failure of randomly placed rods. 17 refs

  1. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  2. Control of flexible robots with prismatic joints and hydraulic drives

    Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States); Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.

    1997-03-01

    The design and control of long-reach, flexible manipulators has been an active research topic for over 20 years. Most of the research to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long-reach systems. One example is the Modified Light Duty Utility Arm (MLDUA) designed and built by Spar Aerospace for Oak Ridge National Laboratory (ORNL). This arm operates in larger, underground waste storage tanks located at ORNL. The size and nature of the tanks require that the robot have a reach of approximately 15 ft and a payload capacity of 250 lb. In order to achieve these criteria, each joint is hydraulically actuated. Furthermore, the robot has a prismatic degree-of-freedom to ease deployment. When fully extended, the robot`s first natural frequency is 1.76 Hz. Many of the projected tasks, coupled with the robot`s flexibility, present an interesting problem. How will many of the existing flexure control algorithms perform on a hydraulic, long-reach manipulator with prismatic links? To minimize cost and risk of testing these algorithms on the MLDUA, the authors have designed a new test bed that contains many of the same elements. This manuscript described a new hydraulically actuated, long-reach manipulator with a flexible prismatic link at ORNL. Focus is directed toward both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies.

  3. Control rod driving hydraulic pressure device

    The present invention concerns a control rod driving hydraulic device of a BWR type reactor, and provides an improvement for a means for supplying mechanical seal flashing water of a pump. That is, a mechanical seal flashing pipeline is branched at the downstream of a pressure-reducing orifice and connected to a minimum flow pipeline. With such a constitution, the minimum flow pipeline is connected to a minimum flow pipeline of an auxiliary pump at the downstream of the pressure-reducing orifice and returned to a suction pipeline of the pump. Pressure at the downstream of the pressure-reducing orifice is set, in the orifice, to a pressure required for mechanical seal flashing. Accordingly, the mechanical seal flashing pipeline is connected and a part of minimum flow rate is utilized, thereby enabling to cool mechanical seals. As a result, flow rate of the mechanical flashing water which has been flown out can be saved. The exhaustion amount from the pump can be reduced, to decrease the shaft power and reduce the capacity of the motor. (I.S.)

  4. 14 CFR 33.72 - Hydraulic actuating systems.

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which...

  5. COMPUTATIONAL FLOW RATE FEEDBACK AND CONTROL METHOD IN HYDRAULIC ELEVATORS

    Xu Bing; Ma Jien; Lin Jianjie

    2005-01-01

    The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments are carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out.

  6. Controlling a negative loaded hydraulic cylinder using pressure feedback

    Hansen, M.R.; Andersen, T.O.

    2010-01-01

    This paper is concerned with the inherent oscillatory nature of pressure compensated velocity control of a hydraulic cylinder subjected to a negative load and suspended by means of an over-center valve. Initially, a linearized stability analysis of such a hydraulic circuit is carried out clearly...

  7. Mathematical Models of Hydraulic Systems, Examples, Analysis

    Straškraba, Ivan

    Praha : ÚT AV ČR, 2006 - (Příhoda, J.; Kozel, K.), s. 159-162 ISBN 80-85918-98-6. [Conference Topical Problems of Fluid Mechanics 2006. Praha (CZ), 22.02.2006-24.02.2006] R&D Projects: GA ČR(CZ) GA201/05/0005 Institutional research plan: CEZ:AV0Z10190503 Keywords : hydraulic systems * fluid flow * mathematical models Subject RIV: BA - General Mathematics

  8. Compartment Electro-hydraulic Control System Design of Television Rebroadcast Carriage%电视转播车侧拉厢电液控制系统设计

    何刘宇; 纪文明; 刘洪波; 卢绍伟

    2016-01-01

    采用双油缸加齿轮齿条同步机构的方式实现了电视转播车侧拉厢的伸出和收回动作,与以往采用传统的双电动推杆实现拉厢伸收功能的方式相比,提高了两侧驱动机构的同步性.为了提高电液系统的智能化和容错性能,设计了手动按钮、遥控器、平板电脑触摸屏三种操作方式.增加了车体倾角自动检测功能以确保拉厢在水平度较好的情况下展收,设计了压力超限超时系统自动停机功能,以保护系统.通过采用集成化的油源设计并采用EPEC控制器将电液控制系统与整车的集中控制系统连接,使平板电脑可以检测电液系统状态并操控电液系统运行,降低了系统的操控复杂性,提高了系统的自动化程度.%The two cylinders with the synchronization machine of gears and racks were used to make the carriage stretch and withdraw. Compared with the shape of two electric handspikes, this form advanced the synchronization performance. For improving the intelligent and abide errors abilities, the button, remote device and Pad all could be used to manipulate it. Furthermore, if the pressure exceeded the limit, the system will stop automatically to protect the motor. The electric-hydraulic system controller (EPEC 2024) was connected with the cen-tralized control system of the vehicle, so the pad could detect electric-hydraulic states conveniently. The complexity was decreased and the automatic degree was increased.

  9. RESEARCH OF THE DYNAMIC CHARACTERISTICS ON A NEW HYDRAULIC SYSTEM OF ELECTRO-HYDRAULIC HAMMER

    2001-01-01

    A new typed hydraulic system of electro-hydraulic hammer is researched and developed.By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed. The experimental research which is emphasized on the blowing stroke is also performed. It is proved from the result of simulation and experiment that this new hydraulic system possesses such advantages as simplification of structure,flexibleness of operation and reliability of working. Especially it possesses better dynamic characteristics.

  10. Designing of electro hydraulic CVT ratio optimal control system%电液式无级变速器速比最优控制系统设计

    王成; 李冰怡

    2011-01-01

    A iming at the complicated structure and the lower reliability of the traditional electro hydraulic CVT ratio control system,a CVT ratio optimal control system is designed.The generally proportion valve is replaced with the PWM high speed on-off valve, and a mathematical model of PWM valve is built taking the magnetic characteristics of the valve into consideration. Then the CVT ratio control system is simplified to build a mathematical model of control cylinder for PWM valve.By applying optimal controls parameter of quadratic form theory of the discrete system,an optimal controller is designed.The simulation experiments for starting up and accelerating and decelerating are made under Matlab,which results show that the steady and the dynamic characteristics of the designed CVT ratio optimal control system are good with safeguarding of the effective track of the real ratio to the object ratio.%针对传统电液式CVT速比控制系统存在的结构复杂、可靠性低等缺点,设计了CVT速比最优控制系统.采用PWM高速开关数字阀代替传统比例阀,建立了考虑电磁特性的PWM开关阀数学模型.简化CVT速比液压系统,建立了PWM阀控缸数学模型.应用离散系统二次型最优控制理论优化控制参数,设计了最优控制器.在Matlab环境下进行了起步加速、减速工况的CVT速比控制仿真试验.试验结果表明,所设计的CVT速比最优控制系统的稳态特性和动态特性良好,能够保证实际速比对目标速比的有效跟踪.

  11. Modeling and control for hydraulic transmission of unmanned ground vehicle

    王岩; 张泽; 秦绪情

    2014-01-01

    Variable pump driving variable motor (VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle (UGV). VPDVM is a dual-input single-output nonlinear system with coupling, which is difficult to control. High pressure automatic variables bang-bang (HABB) was proposed to achieve the desired motor speed. First, the VPDVM nonlinear mathematic model was introduced, then linearized by feedback linearization theory, and the zero-dynamic stability was proved. The HABB control algorithm was proposed for VPDVM, in which the variable motor was controlled by high pressure automatic variables (HA) and the variable pump was controlled by bang-bang. Finally, simulation of VPDVM controlled by HABB was developed. Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed, load and pump speed.

  12. D2O system and oil hydraulic system of fuelling machine

    Two of the most important supporting systems in CANDU fuel handling system--D2O supply and control system and oil hydraulic system are described, focusing on design requirements, major function, system structure and the main work flow of the two systems individually so as to briefly and concisely present the two typical CANDU systems

  13. 往复式液压隔膜泵系统流量脉动控制分析研究%Research on Flow Pulsation Control of Reciprocating Hydraulic-driven Diaphragm Pump System

    孙婉婷; 唐秀丽

    2015-01-01

    对往复式液压隔膜泵系统流量脉动的控制将会直接影响流体输送的稳定性.本文分析了往复式液压隔膜泵动力学运动规律,研究了系统流量脉动的成因,设计了往复式液压隔膜泵流量脉动消减系统并构建了试验系统,分析了往复式液压隔膜泵流量脉动消减系统主要参数元素对于流量脉动控制的影响作用,试验表明往复式液压隔膜泵系统流量脉动可以得到有效控制.%In order to transport stable fluid, to control the flow pulsation of reciprocating hydraulic-driven diaphragm pump is important. This paper analyses the motion law of reciprocating hydraulic-driven diaphragm pump and studies the cause of flow pulsation. The flow control system and experiment system for reciprocating hydraulic-driven diaphragm pump are designed. The main parameters of control system affect the flow pulsation is researched, it shows that the flow pulsation of reciprocating hydraulic-driven diaphragm pump will be effectively controlled.

  14. Simulation of dynamics of system with hydraulic lines and linear hydraulic motor with mass load

    Vašina M.; Hružík L.; Bureček A.

    2013-01-01

    This paper deals with the numerical simulation of dynamic properties of the system consisting of hydraulic lines and linear hydraulic motor with a mass load. The mathematical model is created using Matlab SimHydraulics software. Oil bulk modulus, elasticity and volumes of pipes and hoses play a significant role in this case. Mathematical models are verified on experimental equipment. Pressure and position responses during sudden stop of a moving cylinder are measured on this equipment. © Owne...

  15. 基于PCI的多缸液压伺服控制系统的设计%Design of Control System for Multi-cylinder Hydraulic Press Based on PCI

    张凯; 吴爱国

    2013-01-01

    The multi-cylinder hydraulic press process feature requirements and its control method were analyzed,the multi-cyl-inder hydraulic servo control system based on PCI was proposed.And the software,hardware and its PC monitoring interface of the multi-cylinder hydraulic press were designed and analyzed in detail.It achieved a controllable slider arbitrary rate and run curve.The research achievement provides a reference for the design of the control system in multi-cylinder hydraulic press.%分析了多缸液压机工艺特征要求和其控制方法,提出了基于PCI的多缸液压伺服控制系统.并对系统相关软硬件及其上位机监控界面进行了详细设计和分析.可实现对液压机位置、速度和液压缸内压力的实时监测,以及对伺服阀的控制.进而实现了对滑块任意速率和运行曲线的控制.该设计可为多缸液压伺服控制系统设计提供较好的参考.

  16. Design of Hydraulic Control System for Injection Molding Machine Based on PLC%基于PLC的注塑机液压系统的控制设计

    李青虹; 吴龙

    2011-01-01

    The working principle about hydraulic system of injection molding machine and the working requirement are introduced,then the electrical control system including hardware and program based on the PLC is designed.The programming way of Start-Retention-Stop Electric Circuit to modular programming is employed.After drawing sequential function chart,modularized programming is achieved by using PLC programming components,therefore the program is concise,simple debugging,easy to modify,and has strong versatility,which is suitable for any type of PLC.The finding shows that:the modified electrical control system can greatly improve the production precision,working performance,maintenance and stability of injection molding machine,improve the quality and production efficiency of the products.%通过分析注塑机液压系统的工作过程,设计了基于PLC的电气控制系统,设计包括硬件和软件设计.采用先进的顺序控制设计法进行程序设计,在画出顺序功能图SFC的基础上,利用通用的PLC编程元件及起保停电路的编程方式进行模块化编程,程序具有简洁明了、调试简单、修改容易、通用性强的优点,适用于任意型号的PLC.实践表明:采用PLC改造的电气控制系统大大提高了注塑机的工作性能和稳定性,提升了注塑产品的质量和生产效率,且系统维护方便.

  17. General Predictive Control of Electro-hydraulic Position Servo System of Precise Straightening Press%精校机电液位置伺服系统的广义预测控制

    陈永新; 柯尊忠; 伍德林

    2011-01-01

    The discrete mathematical modal of electro-hydraulic position servo system for precise straightening press was built.A method of general predictive control of the electro-hydraulic position servo system of the precise straightening press was presented by applying theory of general predictive control.The simulation result shows that control precision and tracking performance of the system are improved greatly.%建立精密校直液压机(精校机)电液位置伺服系统离散数学模型,将广义预测控制理论应用于精校机电液位置伺服系统中,提出精校机电液位置伺服系统的广义预测控制方法.仿真结果表明,系统的跟踪性能良好、控制精度提高.

  18. Hydraulic power take-off for wave energy systems

    Christensen, Georg Kronborg

    2001-01-01

    Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces...

  19. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    ZHUKOVYTSKYY I.V.; KLIUSHNYK I.A.; OCHKASOV O.B.; KORENIYK R.O.

    2015-01-01

    Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of...

  20. Sliding Control with Chattering Elimination for Hydraulic Drives

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.;

    2012-01-01

    This paper presents the development of a sliding mode control scheme with chattering elimination, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives. The proposed control scheme requires only common data sheet information, no knowledge on load characteri......This paper presents the development of a sliding mode control scheme with chattering elimination, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives. The proposed control scheme requires only common data sheet information, no knowledge on load...

  1. Hydraulic Yaw System for Wind Turbines with New Compact Hydraulic Motor Principle

    Sørensen, Rasmus Mørk; Hansen, Michael Rygaard; Mouritsen, Ole Ø.

    2011-01-01

    This paper presents a new hydraulic yaw system for wind turbines. The basic component is a new type of hydraulic motor characterized by an extraordinary high specific displacement yielding high output torque in a compact form. The focus in the paper is the volumetric efficiency of the motor, which...

  2. Thermal-hydraulic modeling and analysis of hydraulic system by pseudo-bond graph

    胡均平; 李科军

    2015-01-01

    To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.

  3. Research and Design of Test-Bed for Electro-Hydraulic Servo Control System%电液伺服控制系统测试试验台的研究与设计

    李锋; 李超; 魏列江; 冯永保

    2013-01-01

    According to the testing requirements of electro-hydraulic servo control system, combined with the characteristics and functional requirements of weapon system, by applying some main theories and technologies include modern control theory, computer aided test and modular design, a test-bed for electro-hydraulic servo control system is designed, and the overall design scheme of the test-bed is given. Meanwhile, the hydraulic servo system and the structure of software and hardware for the measurement and control system are introduced, besides, the expansibility and subsequent development function of the test-bed are discussed%根据电液伺服控制系统测试试验的要求,结合武器系统自身的特点和功能需求,应用现代控制理论、计算机辅助测试技术、模块化设计等理论与技术,设计出了一套电液伺服控制系统测试试验台,给出了该试验台的总体设计方案,介绍了液压伺服系统原理与测控系统的软、硬件构成,并探讨了试验台的扩展性及后续开发功能.

  4. Remote Control of Hydraulic Equipment for Unexploded Ordnance Remediation

    Terwelp, Christopher Rome

    2003-01-01

    Automation of hydraulic earth moving and construction equipment is of prime economic and social importance in todayâ s marketplace. A human operator can be replaced or augmented with a robotic system when the job is too dull, dirty or dangerous. There are a myriad of applications in both Government and Industry that could benefit from augmenting or replacing an operator of hydraulic equipment with an intelligent robotic system. A specific important situation is the removal of unexplode...

  5. A Hydraulic Transfer System for Producing Radioisotopes

    Research reactors are constructed mainly for producing radioisotopes, neutron beams and neutron irradiation research and so on. The research reactors generally have two separate area; one is the reactor area and the other is the radioisotopes (RI) production area. After various irradiation objects are irradiated in the reactor located in the reactor area, they are transferred to the RI production building for post-processing. The Hydraulic Transfer System (HTS) is one of RI production and utilization facilities of a research reactor. The HTS is for irradiating targets in the reactor core, and targets are transferred through pipes by hydraulic force. A similar system can be seen in other research reactor such as FRM II, JMTR, HFIR, etc. There are two parallel open-loops used to irradiate targets, and the HTS will circulate pool water to load/unload targets into/from the irradiation tubes and cool targets during irradiation. This paper contains the introduction and operation of the HTS. The HTS permits instantaneous irradiation activity during the reactor operation. It contributes to the RI production and utilization for public welfare, industrial applications and research areas

  6. A Hydraulic Transfer System for Producing Radioisotopes

    Jeong, Joonho; Lee, Sangjin; Lee, Chungyoung; Lee, Jongmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Research reactors are constructed mainly for producing radioisotopes, neutron beams and neutron irradiation research and so on. The research reactors generally have two separate area; one is the reactor area and the other is the radioisotopes (RI) production area. After various irradiation objects are irradiated in the reactor located in the reactor area, they are transferred to the RI production building for post-processing. The Hydraulic Transfer System (HTS) is one of RI production and utilization facilities of a research reactor. The HTS is for irradiating targets in the reactor core, and targets are transferred through pipes by hydraulic force. A similar system can be seen in other research reactor such as FRM II, JMTR, HFIR, etc. There are two parallel open-loops used to irradiate targets, and the HTS will circulate pool water to load/unload targets into/from the irradiation tubes and cool targets during irradiation. This paper contains the introduction and operation of the HTS. The HTS permits instantaneous irradiation activity during the reactor operation. It contributes to the RI production and utilization for public welfare, industrial applications and research areas.

  7. Parametric adaptive estimation and backstepping control of electro-hydraulic actuator with decayed memory filter.

    Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan

    2016-05-01

    Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm. PMID:26920086

  8. Design and Realize of Electro-hydraulic Servo System of Direct Drive Volume Control%直驱式容积控制电液伺服系统设计与实现

    樊生文; 郑凯元; 王泽庭; 牛元泰

    2013-01-01

    Electro-hydraulic servo system of direct drive volume control based on permanent magnet synchronous motor combines the advantages of AC servo technology,has a broad market prospect.Realized permanent magnet servo system speed loop,current loop control based on double closed loop vector control,and ultimately realized the position loop control of the electro-hydraulic system.Developed a 5000 N· m valve control electro-hydraulic servo system for a coke plant.Position loop parameters adaptive method was proposed to improve valve control system's response speed and steady-state accuracy.Experimental results show that the valve control system based on permanent magnet synchronous motor running reliable,fast and have good control accuracy.%基于永磁同步电机的直驱式容积控制电液伺服系统融合了交流伺服技术的优势,具有广阔的市场前景.基于双闭环矢量控制算法实现了永磁同步伺服系统的转速环、电流环控制,最终实现了电液系统的位置环控制.研制了1台用于焦炭厂的5000 N·m阀门控制电液伺服系统.提出了位置环参数自适应的方法,有效地改善了阀门响应速度和稳态精度.实验结果表明,基于永磁同步电机设计的阀门控制系统运行可靠、快速性好,控制精度高.

  9. Position and torque tracking: series elastic actuation versus model-based-controlled hydraulic actuation.

    Otten, Alexander; van Vuuren, Wieke; Stienen, Arno; van Asseldonk, Edwin; Schouten, Alfred; van der Kooij, Herman

    2011-01-01

    Robotics used for diagnostic measurements on, e.g. stroke survivors, require actuators that are both stiff and compliant. Stiffness is required for identification purposes, and compliance to compensate for the robots dynamics, so that the subject can move freely while using the robot. A hydraulic actuator can act as a position (stiff) or a torque (compliant) actuator. The drawback of a hydraulic actuator is that it behaves nonlinear. This article examines two methods for controlling a nonlinear hydraulic actuator. The first method that is often applied uses an elastic element (i.e. spring) connected in series with the hydraulic actuator so that the torque can be measured as the deflection of the spring. This torque measurement is used for proportional integral control. The second method of control uses the inverse of the model of the actuator as a linearizing controller. Both methods are compared using simulation results. The controller designed for the series elastic hydraulic actuator is faster to implement, but only shows good performance for the working range for which the controller is designed due to the systems nonlinear behavior. The elastic element is a limiting factor when designing a position controller due to its low torsional stiffness. The model-based controller linearizes the nonlinear system and shows good performance when used for torque and position control. Implementing the model-based controller does require building and validating of the detailed model. PMID:22275654

  10. 25/17MN双动厚板冲压液压机的电气控制系统%Electric control system of 25/17MN double motion hydraulic press punching thick plate

    谭利红

    2001-01-01

    Electric control system of 25/17MN double motion hydraulic press punching thick plate and parameters operation manner have been introduced with analysis of graphic interface reality.%介绍了25/17MN双动厚板冲压液压机的电气控制系统及其系统中的参数处理方式,并对图形界面的实时性进行了分析。

  11. Modeling and Simulation for Giant Forging Hydraulic Press Synchronous Control System%巨型模锻液压机同步控制系统建模及仿真

    刘忠伟; 邓英剑

    2014-01-01

    In order to improve the rapid response of a giant die forging hydraulic press synchronous control system,based on 300 MN die forging hydraulic press,the synchronous control system was re-designed according to the characteristics of 800 MN die forging hydraulic press,and based on hydraulic theory and dynamics theory,a model of the synchronization control system was jointly established when moving beam run.On the basis of that,two kind of schemes were compared through simula-tions,the simulation results show that the new design of 800 MN synchronous control system response characteristics is substantially improved,the response speed and dynamic and static precision are of a large improvement.%为了提高巨型模锻液压机同步控制系统的快速响应性,在300 MN 模锻液压机的基础上,针对800 MN 模锻液压机的特点重新设计了同步控制系统,并基于液压基础理论和动力学理论,联合建立了活动横梁运行时同步控制系统的整体数学模型。将原方案和现有方案进行了对比仿真,结果表明:新设计的800 MN 同步控制系统的响应特性较原方案的响应特性有较大幅度的改善,响应速度和动静态精度均有较大提高。

  12. An approach for second order control with finite time convergence for electro-hydraulic drives

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    Being a second order sliding algorithm, the super twisting algorithm is highly attractive for application in control of hydraulic drives and mechanical systems in general, as it utilizes only the control error while driving the control error as well as its derivative to zero for properly chosen...

  13. Hydraulic braking system for loads subjected to impacts and vibrations

    This invention concerns a hydraulic braking system for loads subjected to impacts and vibrations. These double acting telescopic type hydraulic braking systems possess significant drawbacks linked to possibly important hydraulic leaks due to (a) the use of many dynamic seals in such appliances and (b) the effects of the environment of the system on these seals, particularly when employed in nuclear power stations where the seals reach significant temperatures and are subjected to radiation. Under this invention a remedy is suggested to such drawbacks by integrating means to offset automatically the leaks and the accumulation of hydraulic fluid expansions, as well as facilities to show if such leaks have occurred

  14. System for Continuous Deaeration of Hydraulic Oil

    Anderson, Christopher W.

    2006-01-01

    A system for continuous, rapid deaeration of hydraulic oil has been built to replace a prior system that effected deaeration more slowly in a cyclic pressure/ vacuum process. Such systems are needed because (1) hydraulic oil has an affinity for air, typically containing between 10 and 15 volume percent of air and (2) in the original application for which these systems were built, there is a requirement to keep the proportion of dissolved air below 1 volume percent because a greater proportion can lead to pump cavitation and excessive softness in hydraulic-actuator force-versus-displacement characteristics. In addition to overcoming several deficiencies of the prior deaeration system, the present system removes water from the oil. The system (see figure) includes a pump that continuously circulates oil at a rate of 10 gal/min (38 L/min) between an 80-gal (303-L) airless reservoir and a tank containing a vacuum. When the circulation pump is started, oil is pumped, at a pressure of 120 psi (827 kPa), through a venturi tube below the tank with a connection to a stand-pipe in the tank. This action draws oil out of the tank via the standpipe. At the same time, oil is sprayed into the tank in a fine mist, thereby exposing a large amount of oil to the vacuum. When the oil level in the tank falls below the lower of two level switches, a vacuum pump is started, drawing a hard vacuum on the tank through a trap that collects any oil and water entrained in the airflow. When the oil level rises above higher of the two level switches or when the system is shut down, a solenoid valve between the tank and the vacuum pump is closed to prevent suction of oil into the vacuum pump. Critical requirements that the system is designed to satisfy include the following: 1) The circulation pump must have sufficient volume and pressure to operate the venturi tube and spray nozzles. 2) The venturi tube must be sized to empty the tank (except for the oil retained by the standpipe) and maintain a

  15. Parameter Designing for Heave Compensation Hydraulic System Installed in Deepwater

    Zhao Teng

    2013-01-01

    Full Text Available The function diagram of active heave compensation hydraulic system has been given, besides, the mathematics model for the principal hydraulic components of the compensation system has been built, and the input-output relation between components has been made clear. Aimed at compensating work capacity for the system, design and research on parameters as the bearing pressure, the initial state and the maximum flow of hydraulic cylinder, accumulator and other principal components have been made separately, and standardized design has been accomplished in accordance with relevant standards. Furthermore, calculus and verification for the capacity of the hydraulic system in different working stages have been made in order to calculate the pressure lose of the system and provide objective data for the hardware system design of the hydraulic components of the heave compensation system.

  16. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors

  17. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  18. Design of Pumps for Water Hydraulic Systems

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid...

  19. Design of Pumps for Water Hydraulic Systems

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  20. 基于压力控制的泥水盾构碎石机液压系统分析%Hydraulic System Analysis of Mixshield Stone Crusher Based on Pressure Control

    杨书勤

    2012-01-01

    Stone crusher as teeth of mixshield,whose performance determines the process of mixshield construction.This passage will analyze the hydraulic system of stone crusher from the perspectives of the principle of pump,the running of control system,the function of component,and the methods of trouble shooting based on the hydraulic system of one product's stone crusher and the results will guide the skilled builder to find out fault and remove trouble.Also the results can offer some help to technician who researches on electro-hydraulic control.%碎石机作为泥水盾构机的牙齿,其性能的好坏关乎盾构的施工进度的快慢。以某产品的碎石机液压系统为基础,从泵的工作原理、控制系统的运行、元器件的功用及该系统的故障及诊断方法对碎石机的液压系统进行分析,从而指导施工技术人员对液压系统的故障进行诊断、排查和处理,其相关结果可为从事电液控制技术的人员提供借鉴。

  1. High precise control method for a new type of piezoelectric electro-hydraulic servo valve

    2007-01-01

    A new type of piezoelectric electro-hydraulic servo valve system was proposed. And then multilayer piezoelectric actuator based on new piezoelectric ceramic material was used as the electricity-machine converter of the proposed piezoelectric electro-hydraulic servo valve. The proposed piezoelectric electro-hydraulic servo valve has ascendant performance compared with conventional ones. But the system is of high nonlinearity and uncertainty, it cannot achieve favorable control performance by conventional control method. To develop an efficient way to control piezoelectric electro-hydraulic servo valve system, a high-precise fuzzy control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with Preisach hysteresis nonlinear model and a feedback loop with high-precise fuzzy control. Experimental results show that the hysteresis loop and the maximum output hysteresis by the PID control method are 4.22%and 2.11 μm, respectively; the hysteresis loop and the maximum output hysteresis by the proposed control method respectively are 0.74% and 0.37 μm, respectively; the maximum tracking error by the PID control method for sine wave reference signal is about 5.02%, the maximum tracking error by the proposed control method for sine wave reference signal is about 0.85%.

  2. Dynamic extending nonlinear H∞ control and its application to hydraulic turbine governor

    MEI; ShengWei; GUI; XiaoYang; SHEN; Chen; LU; Qiang

    2007-01-01

    There exists a large class of nonlinear systems with uncertainties, such as hydraulic turbine governors, whose robust control problem is hard to solve by means of the existing robust control approaches. For this class of systems, this work presents a dynamic extending H∞ controller via both differential geometry and H∞ theory. Furthermore, based on differential game theory, it has been verified that the proposed control strategy has robustness in the sense that the disturbance can be attenuated effectively because the L2-gain from the disturbance input to the regulation output signal could be reduced to any given level. Thirdly, a robust control strategy for hydraulic turbine governor is designed according to the proposed extending H∞ control method, and has been developed into a real control equipment. Finally the field experiments are carried out which show clearly that the developed control equipment can enhance transient stability of power systems more effectively than the conventional controller.

  3. Hydraulically actuated hexapod robots design, implementation and control

    Nonami, Kenzo; Irawan, Addie; Daud, Mohd Razali

    2014-01-01

    Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likel...

  4. A conceptual model of check dam hydraulics for gully control

    C. Castillo

    2013-09-01

    Full Text Available There is little information in scientific literature regarding the modifications induced by check dam systems in flow regimes in restored gully reaches, despite it being a crucial issue for the design of conservation measures. Here, we develop a conceptual model to classify flow regimes in straight rectangular channels for initial and dam-filling conditions as well as a method of estimating efficiency in order to provide guidelines for optimal design. The model integrates several previous mathematical approaches for assessing the main processes involved (hydraulic jump HJ, impact flow, gradually varied flows. Its performance was compared with the simulations obtained from IBER, a bi-dimensional hydrodynamic model. The impact of check dam spacing (defined by the geometric factor of influence c on efficiency was explored. Eleven main classifications of flow regimes were identified depending on the element and level of influence. The model produced similar results when compared with IBER, but led to higher estimations of HJ and impact lengths. Total influence guaranteed maximum efficiency and HJ control defining the location of the optimal c. Geometric total influence (c = 1 was a valid criterion for the different stages of the structures in a wide range of situations provided that hydraulic roughness conditions remained high within the gully, e.g. through revegetation. Our total influence criterion involved shorter spacing than that habitually recommended in technical manuals for restoration, but was in line with those values found in spontaneous and stable step-pools systems, which might serve as a reference for man-made interventions.

  5. Boosted PWM open loop control of hydraulic proportional valves

    This paper presents an innovative open loop control technique for direct single stage hydraulic proportional valves whose response rate is significantly higher than that obtained by standard open loop control techniques, even comparable to more costly commercial closed loop systems. Different from standard open loop techniques, which provide the coil with a constant current proportional to the target position, the control strategy proposed in this paper employs the peak and hold (P and H) technique, widely used in Diesel engine modern supply systems, to boost the duty cycle value of the pulse width modulation (PWM) signal for a short time, namely during the spool displacement, while maintaining a lower duty cycle for holding the spool in the required opening position. The developed 'boosted PWM' technique only requires a low cost microcontroller, such as a peripheral interface controller (PIC) equipped with a metal oxide semiconductor (MOS) power driver. The PWM parameters are calibrated as a function of the spool displacement so as to maximize the response rate without introducing overshoots: the collected data are stored in the PIC. Different valve opening procedures with step response have been compared to demonstrate the merits of the proposed boosted PWM technique. No overshoots have been registered. Moreover, the proposed method is characterized by a significantly higher response rate with respect to a standard open loop control, which approximately has the same cost. Similar experimental tests show that the proposed boosted PWM technique has a response rate even higher than that provided by the more costly commercial closed loop system mounted on the valve, and it produces no overshoots

  6. Turbogas control unit using a hydraulic interface; Control de una unidad turbogas usando una interfase hidraulica

    Ramirez Palacios, Ignacio Ramon; Castelo Cuevas, Luis [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: irrp@iie.org.mx; lcastelo@iie.org.mx; Escarcega Navarrete, Luis [Servi-Control Monterrey S.A. de C.V., Monterrey, Nuevo Leon (Mexico)]. E-mail: lescarcega@servicontrol.com

    2010-11-15

    This paper presents the design and implementation of the control system of the Turbo Generator Unit (TGU) GE 5001, placed in Laguna Chavez power generation facility in Gomez Palacio, Dgo., Mexico. This TGU had been operating with an old control system, back to the 70's. The positioning of the control valves was carried out using a complex electro-hydraulic system. For the modernization of the control system, we use latest PLC technology and a current to pressure converter to communicate the PLC with the hydraulic control valves. The new control system helped us to obtain a best response at the start and generation phases, as well as an increase in the availability of the unit. We show the old and the new control architectures besides plot results obtained at the different operation points. [Spanish] En este articulo se presenta la implementacion y diseno del sistema de control de una Unidad Turbogas (UTG) GE-5001 de la Central Turbogas Laguna Chavez de CFE ubicada en Gomez Palacio, Durango, la cual originalmente era controlada mediante un sistema de control con tecnologia de los anos 70's. El posicionamiento de las valvulas de control se realizaba mediante un sistema electro-hidraulico complejo. Para la modernizacion del sistema de control a uno con tecnologia de punta fue necesario utilizar una interfase hidraulica por medio de un convertidor de corriente/presion (I/P) para el posicionamiento de las valvulas originales. Con la modernizacion se mejoro la respuesta del control asi como el incremento de la disponibilidad de la unidad. Se presentan la arquitectura anterior y actual de sistema de control asi como graficas de los resultados obtenidos en diferentes puntos de operacion de la UTG.

  7. Research on control system with hydraulic teaching test-bed based on PLC and touch screen%基于PLC与触摸屏实现液压教学实验台控制系统的研究

    金英姬

    2012-01-01

    以高职院校液压教学实验台为载体,开发设计液压实验台触摸屏人机界面控制系统,系统以DeltaDVP-EH型PLC为技术平台,DOP-A系列触摸屏为操作界面,建立与实验台人机界面控制系统,针对QCS003型液压实验台实现手动及自动控制,安全可靠、操作方便、自动化程度高,可完成高职院校机电一体化专业电气液压、PLC液压和自动控制、“教—学—做”为一体的行动导向项目教学的实训任务,保证了教学实验设备技术的先进性,有较高的应用价值.%Taking vocational colleges' teaching test-bed as a carrier, this paper introduces developing and designing the touch screen control system with hydraulic teaching test-bed, having man-machine interface. In order to establish that control system, the system takes Delta DVP-EH-PLC as technology platform, and DOP-A series of touch screen as the interface. Because the QCS003 test-bed can realize manual and automatic control, be safe and reliable, operate easily, and have high-level automation, the practical training tasks with mechanical and electrical integration, vocational colleges' electrical hydraulic control) PLC hydraulic and automatic control, and teaching-learning-action-oriented project as one can be completed to ensure the teaching experiment having advanced features and higher application value.

  8. 1st International Conference on Hydraulic Design in Water Resources Engineering : Channels and Channel Control Structures

    1984-01-01

    The development of water resources has proceeded at an amazing speed around the world in the last few decades. The hydraulic engineer has played his part: in constructing much larger artificial channels than ever before, larger and more sophisticated control structures, and systems of irrigation, drainage and water supply channels in which the flow by its nature is complex and unsteady requiring computer-based techniques at both the design and operation stage. It seemed appropriate to look briefly at some of the developments in hydraulic design resulting from this situation. Hence the idea of the Conference was formed. The Proceedings of the Conference show that hydraulic engineers have been able to acquire a very substantial base of design capability from the experience of the period referred to. The most outstanding development to have occurred is in the combination of physical and mathematical modelling, which in hydraulic engineering has followed a parallel path to that in other branches of engineering sc...

  9. Hydraulic control of an automatic transmission

    Oberhausen, A.

    1986-04-01

    Since the energy crysis took place it becomes very important to investigate the whole car concept in respect of fuel economy. As one of the steps Ford Transmission Engineering Cologne developed a new automatic 4-speed lock-up overdrive transmission which is called A4LD. The torque converter will be locked in 3rd and 4th gear. The 4th gear is designed as an overdrive gear with a ratio of 0.75:1 which reduces the engine speed by 25%. This report describes the main control items and the controlling of each gear.

  10. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    Stecki, J. S.; Conrad, Finn; Matheson, P.;

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...

  11. The research on control rod insertion of a boiling water reactor with water hydraulic drive

    This thesis reports on the hydraulic driving system, powered by an accumulator. This drive system is mainly used for the drive of control rods of nuclear reactors. In case of strong earthquakes, control rods are set in gaps between fuel assemblies to scram nuclear reactors. Characteristics of the system have not been analyzed. The analysis of this system is necessary in order to present the designs that are intended to be a variety of situations. So we developed the model of the hydraulic control rod driving system. The model that we have created is able to reproduce the actual driving. Also, there is a load on the system by an earthquake. This load is caused by the contact of the deformed fuel assembly and control rod. This load model is obtained by solving the equation of motion of the beam. (author)

  12. Reliability modeling of hydraulic system of drum shearer machine

    SEYED HADI Hoseinie; MOHAMMAD Ataie; REZA Khalookakaei; UDAY Kumar

    2011-01-01

    The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine.In this paper,the reliability of the hydraulic system of a drum shearer was analyzed.A case study was done in the Tabas Coal Mine in Iran for failure data collection.The results of the statistical analysis show that the time between failures (TBF)data of this system followed the 3-parameters Weibull distribution.There is about a 54% chance that the hydraulic system of the drum shearer will not fail for the first 50 h of operation.The developed model shows that the reliability of the hydraulic system reduces to a zero value after approximately 1 650 hours of operation.The failure rate of this system decreases when time increases.Therefore,corrective maintenance(run-to-failure)was selected as the best maintenance strategy for it.

  13. Geosiphon(TM) Ground Water Remediation System Hydraulics

    Two, pilot-scale, GeoSiphon(TM) systems have been installed and tested for the treatment of contaminated ground water at the Savannah River Site (SRS). These systems consisted of an in situ treatment cell located in an area of higher hydraulic head and a siphon connecting the cell to a surface stream at a lower hydraulic head. The siphon induced contaminated ground water flow through a permeable treatment media in the cells and transported the treated water to the discharge points in a surface stream. The hydraulic head available to drive the systems is divided between the head losses associated with the treatment cell and siphon. Six different treatment cell configurations and seven different siphon configurations have been hydraulically evaluated in association with both pilot-scale systems. The results provide valuable guidelines for the design of GeoSiphon systems

  14. Chaos in a Hydraulic Control Valve

    Hayashi, S.; Hayase, T.; Kurahashi, T.

    1997-08-01

    In this paper we have studied the instability and chaos occurring in a pilot-type poppet valve circuit. The system consists of a poppet valve, an upstream plenum chamber, a supply pipeline and an orifice inserted between the pelnum and the pipeline. Although the poppet valve rests on the seat stably for a supply pressure lower than the cracking pressure, the circuit becomes unstable for an initial disturbance beyond a critical value and develops a self-excited vibration. In this unstable region, chaotic vibration appears at the period-doubling bifurcation. We have investigated the stability of the circuit and the chaotic phenomenon numerically, and elucidated it by power spectra, a bifurcation diagram and Lyapunov exponent calculations, showing that the phenomenon follows the Feigenbaum route to chaos.Copyright 1997 Academic Press Limited

  15. Combustion waves in hydraulically resisted systems.

    Brailovsky, I; Kagan, L; Sivashinsky, G

    2012-02-13

    The effects of hydraulic resistance on the burning of confined/obstacle-laden gaseous and gas-permeable solid explosives are discussed on the basis of recent research. Hydraulic resistance is found to induce a new powerful mechanism for the reaction spread (diffusion of pressure) allowing for both fast subsonic as well as supersonic propagation. Hydraulic resistance appears to be of relevance also for the multiplicity of detonation regimes as well as for the transitions from slow conductive to fast convective, choked or detonative burning. A quasi-one-dimensional Fanno-type model for premixed gas combustion in an obstructed channel open at the ignition end is discussed. It is shown that, similar to the closed-end case studied earlier, the hydraulic resistance causes a gradual precompression and preheating of the unburned gas adjacent to the advancing deflagration, which leads (after an extended induction period) to a localized autoignition that triggers an abrupt transition from deflagrative to detonative combustion. In line with the experimental observations, the ignition at the open end greatly encumbers the transition (compared with the closed-end case), and the deflagration practically does not accelerate up to the very transition point. Shchelkin's effect, that ignition at a small distance from the closed end of a tube facilitates the transition, is described. PMID:22213662

  16. Information and telecommunication system for monitoring of hydraulic engineering structures

    Pavlycheva, Nadezhda K.; Akhmetgaleeva, Railia R.; Muslimov, Eduard R.; Murav'eva, Elena V.; Peplov, Artem A.; Sibgatulina, Dina S.

    2016-03-01

    In this article, we present the information and telecommunications system that allows to carry out real-time monitoring of the quality and quantity of hydraulic engineering structures in order to reduce the risk of emergencies caused by environmental damage.

  17. Design of the Electro-hydraulic Proportional Control System of Coconut Picking Machine%椰果采摘机的电液比例控制系统设计

    余兴禄

    2012-01-01

    In view of the defaults of general pressure valve controlled coconut picking machine, such as complex operation, less flexible, fuzz-y positioning and high damage rate of coconuts, a new picking machine with the electro-hydraulic proportional control system was designed. In order to reduce the production costs and facilitate operation, the machine was open-loop controlled with digital computer program and electro-hydraulic proportional control valve, it could successfully complete all kinds of coconut picking operations in a stable and precise way.%针对采用普通压力阀多级压力控制系统的椰果采摘机的操作复杂、自由度低、定位模糊和椰果损伤率较高等缺点,设计了一种采用电液比例控制系统的椰果采摘机.同时为了降低生产成本、便于操作,采用了计算机数字程序与电液比例调速阀进行开环控制.该机能够准确可靠地完成椰果采摘作业的各种动作,其动作稳定性好,定位准确,可达到较理想的操作效果.

  18. 基于MC9S12DG256的汽车ABS液压控制系统设计%Design of vehicle ABS hydraulic control system based on Mcgs12DG256

    张搏; 安悦

    2012-01-01

    Through the deep analysis of the structure principle and the working characteristics of vehicle ABS system, design a vehicle ABS hydraulic control system based on the microcontroller Freescale company production MC9S12DG256, based on the adjustment of brake pressure control, makes the braking process more smoothly, to improve ABS system hydraulic brake precision and reliability, has very extensive application prospect.%通过对汽车ABS系统的结构原理及工作特点的深入分析,设计了基于Freescale公司生产的MC9S12DG256微处理器的汽车ABS液压控制系统,通过对制动压力的调节控制,使得制动过程更加的平稳,提高了ABS系统液压制动精度和可靠性,具有非常广泛的应用前景。

  19. ELECTRO-HYDRAULIC SERVO SYSTEM IN THE CENTRIFUGE FIELD

    Dong Longlei; Yan Guirong; Li Ronglin

    2004-01-01

    The mechanical characteristics of the electro-hydraulic servo system in the centrifuge field are analyzed.The hydraulic pressure law in the centrifuge field indicates the existence of the centrifuge hydraulic pressure.The mechanical characteristics of the slide-valve and the dual nozzle flapper valve are studied,and it is found that the centrifuge field can not only increase the driving force or moment of the function units,but also decrease the stability of the components.Finally by applying Gauss minimum constraint principle,the dynamic model of the electro-hydraulic vibrator in the centrifuge field is established,and the mechanical restriction of the system is also presented.The study will be helpful for the realization of the combined vibration and centrifuge test system.

  20. More efficient fluid power systems using variable displacement hydraulic motors

    Biedermann, Olaf; Engelhardt, Jörg; Geerling, Gerhard

    1998-01-01

    The approach and landing phase is dimensioning for today’s aircraft fluid power systems. In this flight phase, large hydraulic consumers (flaps/slats, landing gear) have to be operated while the available hydraulic power reaches it’s minimum due to the reduced engine speed. During most of the flight the installed resources exceed the hydraulic power requirements by far; resulting in a low overall-efficiency. This paper presents an approach to increase the efficiency of today’s fluid power sys...

  1. State of the art-hydraulic yaw systems for wind turbines

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole;

    2011-01-01

    mounted with a reduction gear. This paper presents state-of-the art within; hydraulic yaw system design and control of yaw systems in general. Primary focus on the advantages and disadvantages of using a hydraulic system for controlling the yaw of a wind turbine with a soft yaw concept.......This paper addresses the yawing systems of Horizontal Axis Wind Turbines (HAWT’s). HAWT’s represents close to all of the commercial large wind turbines sold today and must be considered state-of-the art within wind turbine technology. Two choices exists when considering components for the active...

  2. Experimental-based Modelling and Simulation of Water Hydraulic Mechatronics Test Facilities for Motion Control and Operation in Environmental Sensitive Applications` Areas

    Conrad, Finn; Pobedza, J.; Sobczyk, A.

    2003-01-01

    The paper presents experimental-based modelling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. The contributions includes results from on-going research projects on fluid power and mechatronics based on tap water hydraulic...... test rig facilities powered by environmental friendly water hydraulic servo actuator system. Test rigs with measurement and data acquisition system were designed and build up with tap water hydraulic components of the Danfoss Nessie® product family. This paper presents selected experimental and...... identifying test results for a water hydraulic system....

  3. Oil Film Compensation Control of Hydraulic AGC System in Tandem Cold Rolling Mill%冷连轧机液压AGC系统油膜补偿控制

    孙孟辉; 王益群

    2011-01-01

    Since the request to the quality of cold rolling sheet strips is higher, the hydraulic AGC ( Automatic Gauge Control) has become the indispensable means which improves the product precision of cold rolling strips. However, to the tandem cold rolling mill which backup roll adopts the oil film bearing, the thickness of oil film changes with different rolling force and rolling velocity, which influences the exit thickness of strips and brings the thickness deviation. Especially for the tandem cold rolling mill, the accumulative deviation of every stand enlarges more the deviation of steel product. The oil film compensation model, which adapted to the practical control, was regressed from the data measured from production locale, aiming at one 5-stand tandem cold rolling mill as object. The control strategy was brought forward, which adapted to the distributed computer control. All of them were applied in the practical rolling process for compensation of changes in thickness of oil film. The experimental result indicates that length of out-toler-ance and value of out-tolerance between head and tail of steel product are reduced notably.%由于对冷轧薄板质量要求的提高,液压AGC已经成为提高冷轧带钢成品精度必不可少的手段.然而对于支撑辊采用油膜轴承的冷连轧机来说,其轴承油膜厚度随着轧制力和轧制速度的变化而变化,这将影响轧件的轧出厚度,造成厚差.尤其对冷连轧机,各机架的累积误差会使成品带的超差更加严重.以某五机架冷连轧机为研究对象,由生产现场实测数据回归出适合于实际控制的油膜补偿模型,提出适合于分布式计算机控制的控制策略,并将其应用于实际轧制过程中对油膜厚度变化进行补偿.实验结果表明:加入油膜补偿控制后,成品带钢厚差带头带尾超差段有较为显著的减少,且超差值也有所降低.

  4. The Design of PLC Control System for Multistage CNC Hydraulic Press%基于多工位数控油压机的PLC控制系统设计

    冯美英

    2015-01-01

    多工位数控油压机的PLC控制系统如果设计不合理的话,很容易发生伺服电机无法启动、定位精度不高等问题。文章对某企业的多工位数控油压机的PLC控制系统进行设计,并对以上常见问题提出了相应的解决措施,给出实际解决的方案。经过调试和实践,这一解决方案是可行的。%If the design of PLC control system for multistage CNC hydraulic press is not reasonable,it will easy to result in that servo motor unable to start,the positioning accuracy is not high.This article discusses the design of PLC control system for multistage CNC hydraulic press for a company,puts forward the corresponding measures to the more common and gives practical solutions.After debugging and practice,the solution to this practical is feasible.

  5. Modeling and control of a hydraulically actuated flexible-prismatic link robot

    Most of the research related to flexible link manipulators to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long reach systems. This manuscript describes a new hydraulically actuated, long reach manipulator with a flexible prismatic link at Oak Ridge National Laboratory (ORNL). Focus is directed towards both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies

  6. Modeling and control of a hydraulically actuated flexible-prismatic link robot

    Love, L.; Kress, R.; Jansen, J.

    1996-12-01

    Most of the research related to flexible link manipulators to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long reach systems. This manuscript describes a new hydraulically actuated, long reach manipulator with a flexible prismatic link at Oak Ridge National Laboratory (ORNL). Focus is directed towards both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies.

  7. Contaminant monitoring of hydraulic systems. The need for reliable data

    Day, M.J. [Pall Europe Ltd., Portsmouth (United Kingdom)] Rinkinen, J. [Tampere University of Technology, Tampere (Finland)

    1997-12-31

    The need for both reliable operation of hydraulic and lubrication systems and long component lives has focused users to the benefits of controlling the contamination in the hydraulic fluid. Maximum operating (target) levels are being implemented as part of a condition based maintenance regime. If these are exceeded, maintenance effort is directed to correcting the rise in consummation level, and so make optimum use of resources as maintenance effort is only affected when it is necessary to do so. Fundamental to ibis aspect of condition based monitoring is the provision of accurate and reliable data in the shortest possible time. This way, corrective actions can be implemented immediately so minimising the damage to components. On-line monitoring devices are a way of achieving this and are seeing increased use, but some are affected by the condition of the fluid. Hence, there is a potential for giving incorrect data which will waste time and effort by initiating unnecessary corrective actions. A more disturbing aspect is the effect on the user of continual errors. The most likely effect would be a loss of confidence in the technique or even complete rejection of it and hence the potential benefits will be lost. This presentation explains how contaminant monitoring techniques are applied to ensure that the potential benefits of operating with clean fluids is realised. It examines the sources of error and shows how the user can interrogate the data and satisfy himself of its authenticity. (orig.) 14 refs.

  8. RELIABILITY-BASED DESIGN AND ANALYSIS ON HYDRAULIC SYSTEM FOR SYNTHETIC RUBBER PRESS

    Yao Chengyu; Zhao Jingyi

    2005-01-01

    To overcome the design limitations of traditional hydraulic control system for synthetic rubber press and such faults as high fault rate, low reliability, high energy-consuming and which always led to shutting down of post-treatment product line for synthetic rubber, brand-new hydraulic system combining with PC control and two-way cartridge valves for the press is developed, whose reliability is analyzed, reliability model of the hydraulic system for the press is established by analyzing processing steps, and reliability simulation of each step and the whole system is carried out by software MATLAB, which is verified through reliability test. The fixed time test has proved not that theory analysis is sound, but the system has characteristics of reasonable design and high reliability,and can lower the required power supply and operational energy cost.

  9. Development of realistic thermal-hydraulic system analysis codes ; development of thermal hydraulic test requirements for multidimensional flow modeling

    Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)

    2002-03-01

    This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)

  10. Research on Computer Control of Process Optimization Level in Hydraulic AGC System of Cold Rolling Mill%冷带轧机液压AGC系统过程优化级计算机控制

    孙孟辉; 王益群

    2015-01-01

    冷带轧机的轧制过程是较为复杂的物理过程,因此液压AGC(Automatic Gauge Control)系统对冷带轧机成品带钢的厚度精度起着重要的作用。针对300可逆冷带轧机,进行了过程优化级计算机控制的研究,开发出了液压AGC系统的过程优化级计算机控制系统。液压AGC系统的过程优化级计算机控制,可以实现轧制规程的计算、过程控制级所需设定值的设定、轧制过程数据的采集以及人机界面的显示等功能。同时,进行了轧制试验。%Rolling process of the cold rolling mill is a complicated physical process, so the hydraulic AGC system is very important to the thickness precision of strips of cold rolling mill. In this paper, the computer control of process optimization level was researched, and the computer control system of process optimization level was developed, aiming at 300 reverse cold rolling mill. By the computer control of process optimization level of the hydraulic AGC, it can realize the calculation of rolling schedule, the set of setting value needed by the process control level, the data acquisition of rolling process and the display of human-computer interface. At the same time, the rolling experiment was carried out, and the experiment result implied that it could eliminate the thickness error of strips effectively, adopting the provided computer control's strategy of the process optimization level.

  11. State of Art of the CAREM-25 Hydraulic Control Rod Drives Feasibility Analysis

    The proposed design adopted for the control rod drives for the CAREM reactor is based on a hydraulic system.As any innovative device, the design process requires to obtain experimental evidence to identify the most important control parameters and to set their relationship with other design parameters, in order to guarantee its feasibility as a previous step to the design qualification tests at the working conditions at the reactor.This paper features a global evaluation of the analysis performed and experimental results obtained in a low pressure loop, design improvements, limiting phenomena identified and corrective actions analyzed or proposed.The evaluation is based on a repetitivity, sensitivity and scalability study of the control parameters and test conditions, as well as the dynamic response between rod drive and the hydraulic system and features related with the mechanical design.Obtained results show that present system has an adequate response compatible with functional and manufacturing requirements

  12. Hydraulic External Pre-Isolator System for LIGO

    Wen, S; Mason, K; Giaime, J; Abbott, R; Kern, J; O'Reilly, B; Bork, R; Hammond, M; Hardham, C; Lantz, B; Hua, W; Coyne, D; Traylor, G; Overmier, H; Evans, T; Hanson, J; Spjeld, O; Macinnis, M; Mailand, K; Sellers, D; Carter, K; Sarin, P

    2013-01-01

    The Hydraulic External Pre-Isolator (HEPI) is the first 6 degrees of freedom active seismic isolation system implemented at the Laser Interferometer Gravitational Wave Observatory (LIGO). Implementation was first completed at the LIGO Livingston Observatory (LLO) prior to LIGO's 5th science run, successfully cutting down the disturbance seen by LLO's suspended optics in the two most prominent seismic disturbance bands, the microseism (0.1-0.3Hz) and the anthropogenic (1-3Hz) bands, by a factor of a few to tens. The improvement in seismic isolation contributed directly to LLO's much improved duty cycle of 66.7% and LIGO's triple coincident duty cycle of 53%. We report the design, control scheme, and isolation performance of HEPI at LLO in this paper. Aided with this success, funding for incorporating HEPI into the LIGO Hanford Observatory was approved and installation is currently underway.

  13. Hydraulic external pre-isolator system for LIGO

    The hydraulic external pre-isolator (HEPI) is the first six degrees of freedom active seismic isolation system implemented at the Laser Interferometer Gravitational Wave Observatory (LIGO). Implementation was first completed at the LIGO Livingston Observatory (LLO) prior to LIGO's fifth science run7, successfully cutting down the disturbance seen by LLO's suspended optics in the two most prominent seismic disturbance bands, the microseism (0.1–0.3 Hz) and the anthropogenic (1–3 Hz) bands, by a factor of a few to tens. The improvement in seismic isolation contributed directly to LLO's much improved duty cycle of 66.7% and LIGO's triple coincident duty cycle of 53%. We report the design, control scheme, and isolation performance of HEPI at LLO in this paper. Aided by this success, funding for incorporating HEPI into the LIGO Hanford Observatory was approved and installation is currently underway. (paper)

  14. Application of multi-sensor information fusion technology on fault diagnosis of hydraulic system

    The structural layers and methods of multi-sensor information fusion technology are analysed, and its application in fault diagnosis of hydraulic system is discussed. Aiming at hydraulic system, a model of hydraulic fault diagnosis system based on multi-sensor information fusion technology is presented. Choosing and implementing the method of information fusion reasonably, the model can fuse and calculate various fault characteristic parameters in hydraulic system effectively and provide more valuable result for fault diagnosis of hydraulic system.

  15. Project calculation of the steering mechanism hydraulic servo control in motor vehicles

    Zoran Đukan Majkić

    2013-10-01

    Full Text Available Hydraulic servo controls are designed to facilitate rotation in place without providing increased ppower to steering wheels. In the initial design phase, the dimensions required for control systems are usually obtained through the calculation of their load when wheels rotate in place, where the torque is calculated empirically. The starting point in the project calculation is thus to determine the hydraulic power steering torque torsional resistance which is then used to determine the maximum value of force i.e. the torque on the stering wheel. The calculation of the control system servo control consists of determining the basic parameters, the required pump capacity, the main dimensions of the hub and the  pipeline and the conditions for the stability of the system control mechanism. Introduction The aim of the calculation of the steering control system is to determine the basic parameters of its components which ensure the fulfilment of requirements of the control system. Calculations are performed in several stages with a simultaneous  detailed constructive analysis of the control system leading to the best variant. At each stage, design and control calculations of the hydraulic servo of the steering mechanism are performed. The design allows the computation to complete the selection of basic dimensions of the amplifer elements, starting from the approved scheme and the basic building loads of approximate values. Calculations control is carried out to clarify the structural solution and to obtain the output characteristics of the control amplifier which are applied in the  estimation of  potential properties of the structure. Project calculation Baseline data must be sufficiently reliable, ie. must correspond to the construction characteristics of the vehicle design and the control system as well as to service conditions..A proper deterimination of the torque calculation of torsional resistance in wheels is of utmost importance. Moment of

  16. Automated Hydraulic System Design and Power Management in Mobile Applications

    Pedersen, Henrik Clemmensen

    method this used to design a number of test systems as validation of the method. The systems that are designed in this relation is respectively the power supply for a tractor, an example system that is considered a benchmark case and finally the working hydraulics for a forklift truck. For the first...

  17. Analysis of and H∞ Controller Design For An Electro-Hydraulic Servo Pressure Regulator

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole;

    2011-01-01

    Currently mobile hydraulics is in a transition phase, where electronic sensors and digital signal processors are becoming standard on a high number of machines, hereby replacing hydraulic pilot lines and offering new possibilities with regard to both control and feasibility. As most open......-circuit pumps are still hydraulically controlled, there is however still a need for being able to generate a hydraulic pilot pressure. The focus of the current paper is on the analysis and controller design of an electrohydraulic servo pressure regulator, which generates a hydraulic LS-pressure for a variable...

  18. Hardware Design of Controller for Electro-hydraulic Servo System Based on PLC%基于PLC的电液伺服系统控制器硬件设计

    赵欣

    2013-01-01

      目前,PLC在电液伺服控制系统中的应用越来越普遍。本文以S7-300为核心,介绍了根据系统的控制要求,计算和选择PLC的CPU、输入、输出及电源等模块的方法。最终得到了一套符合控制要求的硬件系统。%At present, PLC is used more and more generally in Electro-hydraulic Servo System. As the core of S7-300 in this article, introduced select and calculate methods of CPU module, input module, output module, power module and so on. Finally, select a suit of hard-system, which fit standard of control.

  19. Design on Control System of Hydraulic Press with Intelligent Loading Based on VB & PLC%基于VB与PLC的智能加载液压机控制系统设计

    喻文清; 毛卫平; 张聪华

    2012-01-01

    设计一种基于VB6.O与三菱MELSEC-Q系列PLC的智能加载液压机控制系统,介绍了该系统的硬件组成和软件设计.实践结果表明,该系统具有比较好的实时性和可靠性.%The control system of hydraulic press with intelligent loading was designed based on VB6.0 & MELSEC-Q series of Mitsubishi PLC. Its hardware constitution and software design were introduced. The system was applied in a plant. The result shows it has good real-time performance and reliability.

  20. Contribution on Control Strategies of Flow-On-Demand Hydraulic Circuits

    Scherer, Martin; Geimer, Marcus [Hrsg.; Weiß, Björn

    2013-01-01

    The development of an innovative flow-on-demand electrohydraulic system for mobile forestry cranes is described in the present paper. To overcome functional principle related weaknesses of conventional hydraulic-mechanical Load-Sensing systems, this work breaks up the control pressure difference related dependence of the delivered oil flow. Rather the swiveling angle of the displacement pump is calculated by summing up the single consumer oil flows corresponding to the velocity requests of th...

  1. Application of Fuzzy Clustering in Modeling of a Water Hydraulics System

    Zhou, Jianjun; Kroszynski, Uri

    2000-01-01

    This article presents a case study of applying fuzzy modeling techniques for a water hydraulics system. The obtained model is intended to provide a basis for model-based control of the system. Fuzzy clustering is used for classifying measured input-output data points into partitions. The fuzzy...

  2. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic or pneumatic power and control-materials and... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component (such as pipe runs, fittings, flanges, and standard valves) for hydraulic or pneumatic power and...

  3. Architecture, Control and NVH Development of Digital Hydraulics for Off-Highway Vehicle Applications

    Yuan, QingHui; Jogada, Aaron

    2016-01-01

    Digital hydraulics is one of promising technologies having a huge potential to significantly improve energy efficiency in the fluid power industry. In this paper, we present a digital hydraulics solution for mobile market with a large ammount of energy usage by hydraulic components and systems. Specifically, a novel hydraulic architecture, Multiplex Digital Valve (MDV) system that employs digital valves to meet multiple service pressure/flow requirement in off highway vehicles, is introduced....

  4. Hydraulic characterization of a small groundwater flow system in fractured monzonitic gneiss

    The hydraulic characteristics of a small groundwater flow system active in a 200-m by 150-m by 50-m deep block of fractured monzonitic gneiss located at Chalk River, Ontario have been determined from surface and bore-hole investigations. Surface investigations including air photo lineament analysis, ground and airborne geophysics and fracture mapping were used to define the local and regional fracture system, locate the study site and direct the exploratory drilling program. Subsurface investigations were completed in 17 boreholes and included fracture logging, systematic straddle-packer injection testing, hydraulic interference testing and long-term hydraulic head monitoring. The interference tests and monitoring were conducted in 90 packer-isolated test intervals created by installation of multiple-packer casings in each borehole. Hydraulic interference tests provided detailed information on the equivalent single-fracture aperture and storativity of four major (≥ 50-m extent) fracture zones and the vertical hydraulic diffusivity of the rock mass of the study site. Fracture logs and injection test data were combined to generate a tensoral representation of hydraulic conductivity for each test interval. The results of the detailed investigations are presented and interpreted to provide a complete three-dimensional description of the groundwater flow system. A gravity-controlled flow system occurs at the Chalk River study site. Groundwater flow in the rock is primarily vertical to a low-hydraulic head, fracture zone at 33 to 50 m depth with a horizontal component of flow determined by surface topography. An impermeable diabase dyke and three additional high-permeability fracture zones are important hydrogeologic features influencing flow at the study site. The results of the investigations also show that characterization of the geometric and hydraulic properties of large structural discontinuities is essential in understanding the flow of fluids in fractured rocks

  5. Super Twisting Second Order Sliding Mode Control for Position Tracking Control of Hydraulic Drives

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.;

    2013-01-01

    In this paper a control strategy based on second order sliding modes, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD), is proposed. The main target is to overcome problems with linear controllers deteriorating performance due to the strong...

  6. WATER ENERGY IN HYDROAMELIORATIVE SYSTEMS USING THE HYDRAULIC TRANSFORMER TYPE A. BARGLAZAN AND THE HYDRAULIC HAMMER (HYDRAULIC PUMP)

    Teodor Eugen Man; Laura Constantinescu; Dima Attila Blenesi

    2010-01-01

    This paper presents two examples of exploitation of water energy that can be used in the irrigation field. First of theseexamples is the hydraulic transformer type A. Barglazan used for irrigation, pumped water is taken directly from theriver’s well, using a hydraulic pump which simultaneously carried out a double transformation in this way: hydraulicenergy into mechanic energy and mechanical energy into hydraulic energy. Technology preparation and devices designwas done in record time, seein...

  7. The study on measures to improve the reliability of the hydraulic systems of shearers

    袁辉; 徐龙江; 田大宝; 赵燕玲

    2001-01-01

    The authors indicate that the failure of hydraulic systems of shearers can drop greatly, its' reliability and service life can be increased by the use of a field oil contamination analyser and filter device to control the oil contamination of the hydraulic systems of shearers. Experimental provement of silting-theory contamination analyser are carried out. The filter effect of portable hydraulic driving oil-filter model YLJ-21 is examinationed in laboratory and field experiment. From January to August 1992, on-site experimental research using a silting-theory contamination analyser and oil-filter model YLJ-21 to control the oil contamination was carried out in the Datong Coat Mining Bureau.

  8. Research on One Borehole Hydraulic Coal Mining System

    XIA, Bairu; ZENG, Xiping; MAO, Zhixin

    The Borehole Hydraulic Coal Mining System (BHCMS) causes fragmentation of coal seams and removes coal slump through a drilled hole using high-pressure water jet. Then the mixture of coal and water as slurry are driven out of the borehole by hydraulic or air-lifting method, and are separated at the surface. This paper presents a case study of hydraulic borehole coal mining. The three key techniques of the BHCMS, namely, hydraulic lift of jet pump, air lift, and water jet disintegration are discussed and analyzed in this paper based on theoretical analysis and field experiments. Some useful findings have been obtained: (1) The design of jet pump, air lift system, and water jet has to be integrated appropriately in order to improve mining efficiency and coal recovery rate, and to decrease energy consumption. The design of hydraulic lift jet pump must meet the requirement of the minimum floating speed of coal particles. The optimization of nondimensional parameters and prevention of cavitation have to be considered in the design; (2) With regard to selecting the nozzle types of jet pump, center nozzle or annular nozzle can be selected according to the size of the removed particles; (3) Through air-lift and back pressure, the water head can be decreased to improve the lift capacity of jet pump and decrease the power loss. The air lift has great limitation if it is used solely to extract coal, but if it is employed in conjunction with jet pump, the lift capacity of jet pump can be increased greatly; (4) With water jets, the air lift can improve the fragmentation radius and capacity. The main factors that affect the effect of water jet are the submergible status of jet, jet pressure, and flowrate. The ideal jet of the monitor in the borehole hydraulic coal-mining system is a nonsubmergible free jet. Through air lift, the nonsubmergible free jet can be set up in the mining hole.

  9. Hydraulic Resistance and Capacitance in the Soil—Plant System

    SHAOMING-AN; L.P.SIMMONDS

    1991-01-01

    In this paper,the hydraulic resistances and capacitances were evaluated.based on the development of non-linear model of water flow in the soil-plant system and the simulating experiment work.The results show that the mean hydraulic resistance in the soil-plant system is 6.79×109 MPa·S·m-3;the mean hydraulic capacitance in the system is 5.2×10-7m3·MPa-1.In the components of hydraulic capacitance in the system,the capacitance in soil (81.8×10-6m3·MPa-1)is the biggest and its variability with soil water potential is extremely strong,the capacitance in plant (5.3×10-7m3·MPa-1) is much smaller than that in soil,and the capacitance in shoots (15.5×10-7m3·MPa-1) is bigger than that in roots (8.4×10-7m3·MPa-1).An interesting result is that the capacitance in plant is almost equivalent to that in the soil-plant system.

  10. Understanding the Space Shuttle Main Engine Hydraulic Actuation System and Reviewing Its Evolution

    McWade, Robert J.; Minor, Robert B.; McNutt, Leslie M.

    2010-01-01

    The complex engine start and thrust control requirements of the Space Shuttle Main Engine (SSME) require unique valve, actuator and control system hardware. The Hydraulic Actuation System (HAS) was designed, developed, and now operates to meet tight engine control requirement limits to assure safe, reliable and correct engine thrust at all times. The actuator is designed to be fail safe and fail operate in the areas where redundancy is important. The HAS has an additional pneumatic operating capability that insures a safe sequential closure of all actuators and propellant valves in the event of the loss of hydraulic system pressure or loss of electrical closed loop control of the actuator. The objective of this paper is to provide a complete description of the actuator s internal operating system, along with its interaction with all SSME system interfaces. Additionally the paper addresses the challenges, problems identified, and corrected, and lessons learned, during the course of the almost 35 years of engine operation.

  11. Modeling, Identification and Control Design for an Electro-Hydraulic Rotator

    Zanhar, Andrej

    2010-01-01

    Robotic manipulators have been introduced in industry as a form of increasing productivity. Today, there exist an interest to enlarge the application of these manipulators to outdoor environments. Forestry cranes used in the forestry industry are a clear example. A long term goal in this industry is the development of autonomous systems to increase the logging efficiency. In this thesis, we consider how to control the rotator of these cranes, which is an electro-hydraulically actuated motor, ...

  12. Analysis of Dither in PWM Control on Electro-hydraulic Proportional Valve

    Liu, Guoping; Wuxing XIA; Qi, Dawei; Ronghua HU

    2013-01-01

    Plus with modulation (PWM) is widely used in proporational control systems for it is efficient, flexible and anti-interference. Due to the friction and hysteresis of electromagnet, hysteresis exists when hydraulic valve in steady-state, and hysteresis influences the dynamic characteristics of the valve seriously,the hysteresis can be improved by superimposing dithers with certain frequency and amplitude to the valve coil. Aiming at the character of anti-unloading power driver circuit ,this pa...

  13. Electromechanical actuator concept for the controlled and direct actuation of a hydraulic main stage

    Ermert, Markus

    2016-01-01

    Hydraulic main stages for off highway machines have usually electromagnetic driven pilot valves. You rarely find stepper motor driven pilot systems that are directly positioning the main spool in the sectional control valve. The presented concept shows the development of an actuator in a unique setup to fulfill the requirements of most off- highway applications. Precise positioning, strength, speed and fail safe requirements were the main goals of the concept. The concept has a two phase BLDC...

  14. 泵控电液混合驱动系统在板料折弯机上的应用研发%The application and exploration of pump-control electro-hydraulic driving system in press brake for sheet metal

    李振光; 汪立新; 温峰虎; 雷斌华; 茅问宇

    2013-01-01

    The electric and hydraulic principles of the pump-control electro-hydraulic driving system have been introduced in the text, as well as the advantages of pump-control press brake comparing with the conventional one. It is pointed out that the application of pump-control electro-hydraulic driving system is more widely, which has a broad marketing prospect.%介绍了泵控电液混合驱动系统的电气原理、液压原理,以及与传统折弯机相比泵控折弯机的诸多优点,指出泵控电液混合驱动系统的应用将越来越广泛,具有广阔的市场前景.

  15. Scheme Design for the Giant Forging Hydraulic Press Active Synchronous Control System%巨型模锻液压机主动同步控制方案的设计

    刘忠伟

    2012-01-01

    The synchronous control system is the essential device to the giant forging hydraulic press. Its synchronization control performance will directly determine product quality. The main causes of working cylinder asynchronism and its effect on synchronous control performance were analyzed. According to the practical problems of synchronous control application, an active synchronism control scheme was proposed based on multi-point driver.%同步控制系统是巨型模锻液压机上必备的关键装置,其同步控制性能的好坏将直接决定产品的质量.在分析主工作缸不同步的成因及对同步控制性能影响的基础上,根据巨型模锻液压机同步控制的实际应用问题,提出一种基于多点驱动的主动同步控制方案.

  16. Test Rig Design and Presentation for a Hydraulic Yaw System

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    The design and development of a hydraulic yaw system for multi MWturbines is presented and the concept explained. As part of the development of the new concept a full scale test rig for a 5 MW wind turbine has been designed and constructed. The test rig is presented along with its unique design...

  17. WATER ENERGY IN HYDROAMELIORATIVE SYSTEMS USING THE HYDRAULIC TRANSFORMER TYPE A. BARGLAZAN AND THE HYDRAULIC HAMMER (HYDRAULIC PUMP

    Teodor Eugen Man

    2010-01-01

    Full Text Available This paper presents two examples of exploitation of water energy that can be used in the irrigation field. First of theseexamples is the hydraulic transformer type A. Barglazan used for irrigation, pumped water is taken directly from theriver’s well, using a hydraulic pump which simultaneously carried out a double transformation in this way: hydraulicenergy into mechanic energy and mechanical energy into hydraulic energy. Technology preparation and devices designwas done in record time, seeing that this constructive solution is more robust, reliable and with improved energyperformance versus the laboratory prototype. The experimental research which was made at 1:1 scale proved theirgood function over time. Another example is the hydraulic hammer (hydraulic pump that uses low-head energy topump water, with a global efficiency of about 10 - 50%. Currently, the new situation of private ownership of landprovides conditions for new pumping microstations to be made where irrigation is necessary and optimal hydrauliclocations exist.

  18. Full equations utilities (FEQUTL) model for the approximation of hydraulic characteristics of open channels and control structures during unsteady flow

    Franz, Delbert D.; Melching, Charles S.

    1997-01-01

    The Full EQuations UTiLities (FEQUTL) model is a computer program for computation of tables that list the hydraulic characteristics of open channels and control structures as a function of upstream and downstream depths; these tables facilitate the simulation of unsteady flow in a stream system with the Full Equations (FEQ) model. Simulation of unsteady flow requires many iterations for each time period computed. Thus, computation of hydraulic characteristics during the simulations is impractical, and preparation of function tables and application of table look-up procedures facilitates simulation of unsteady flow. Three general types of function tables are computed: one-dimensional tables that relate hydraulic characteristics to upstream flow depth, two-dimensional tables that relate flow through control structures to upstream and downstream flow depth, and three-dimensional tables that relate flow through gated structures to upstream and downstream flow depth and gate setting. For open-channel reaches, six types of one-dimensional function tables contain different combinations of the top width of flow, area, first moment of area with respect to the water surface, conveyance, flux coefficients, and correction coefficients for channel curvilinearity. For hydraulic control structures, one type of one-dimensional function table contains relations between flow and upstream depth, and two types of two-dimensional function tables contain relations among flow and upstream and downstream flow depths. For hydraulic control structures with gates, a three-dimensional function table lists the system of two-dimensional tables that contain the relations among flow and upstream and downstream flow depths that correspond to different gate openings. Hydraulic control structures for which function tables containing flow relations are prepared in FEQUTL include expansions, contractions, bridges, culverts, embankments, weirs, closed conduits (circular, rectangular, and pipe

  19. FOREWORD: The XXV IAHR Symposium on Hydraulic Machinery and Systems marks half a century tradition

    Susan-Resiga, Romeo

    2010-05-01

    far from the best efficiency regime. The traditional partnership with the Romanian Academy - Timisoara Branch, Laboratory for Hydrodynamics and Cavitation, led to complex projects that combine both basic theoretical developments with advanced experimental investigations leading to practical engineering solutions for modern hydraulic machines. The International Association of Hydro-Environment Engineering and Research (IAHR) celebrates its 75th anniversary this year. IAHR particularly promotes the advancement and exchange of knowledge through working groups, specialty symposia, congresses, and publications on water resources, river and coastal hydraulics, risk analysis, energy, environment, disaster prevention, industrial processes. The IAHR - Committee on Hydraulic Machinery and Systems deals with the advancement of technology associated with the understanding of steady and unsteady flow characteristics in hydraulic machinery and conduit systems connected to the machinery. The technology elements include the fluid behaviour within machine components, hydro-elastic behaviour of machine components, cavitation, and two phase flow in turbines and pumps, hydraulic machine and plant control systems, the use of hydraulic machines to improve water quality, and even considerations to improve fish survival in their passage through hydro plants. The main emphases of the IAHR Committee on Hydraulic Machinery and Systems are to stimulate research and understanding of the technologies associated with hydraulic machinery and to promote interaction between the machine designers, machine users, the academic community, and the community at large. Hydraulic machinery is both cost effective and environmentally responsible. The increasing atmospheric content of carbon dioxide related to pollution from thermal power plants, is one of the most significant threats to our global ecology. The problem is exacerbated by the need for increased energy production in third world countries. This

  20. Research on MEMS sensor in hydraulic system flow detection

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  1. The hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron

    The oil-line structure, control system and their working principles of the hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron are introduced. The six years practice proves that the specification of the system matches the requirements: the oil cylinder maximum stroke of 850 mm, the eight slot positioning dowels repositioning accuracy of +-0.01 mm, the two oil cylinders moving in step accuracy of 5-10 mm. The system is safe, reliable and easy to be operated

  2. Recurrent-neural-network-based identification of a cascade hydraulic actuator for closed-loop automotive power transmission control

    By virtue of its ease of operation compared with its conventional manual counterpart, automatic transmissions are commonly used as automotive power transmission control system in today's passenger cars. In accordance with this trend, research efforts on closed-loop automatic transmission controls have been extensively carried out to improve ride quality and fuel economy. State-of-the-art power transmission control algorithms may have limitations in performance because they rely on the steady-state characteristics of the hydraulic actuator rather than fully exploit its dynamic characteristics. Since the ultimate viability of closed-loop power transmission control is dominated by precise pressure control at the level of hydraulic actuator, closed-loop control can potentially attain superior efficacy in case the hydraulic actuator can be easily incorporated into model-based observer/controller design. In this paper, we propose to use a recurrent neural network (RNN) to establish a nonlinear empirical model of a cascade hydraulic actuator in a passenger car automatic transmission, which has potential to be easily incorporated in designing observers and controllers. Experimental analysis is performed to grasp key system characteristics, based on which a nonlinear system identification procedure is carried out. Extensive experimental validation of the established model suggests that it has superb one-step-ahead prediction capability over appropriate frequency range, making it an attractive approach for model-based observer/controller design applications in automotive systems

  3. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  4. Aircraft hydraulic power system diagnostic, prognostics and health management

    Wang, Jian

    2012-01-01

    This Individual Research Project (IRP) is the extension research to the group design project (GDP) work which the author has participated in his Msc programme. The GDP objective is to complete the conceptual design of a 200-seat, flying wing civil airliner—FW-11. The next generation aircraft design demands higher reliability, safety and maintainability. With the development of the vehicle hydraulic system technology, the equipment and systems become more and more complex, their reliability...

  5. 大型液压设备四角调平控制系统的研究与应用%Research and application of four corners leveling control system in large NC hydraulic equipment

    陈庆华

    2011-01-01

    At present, the demand for the working table of large hydraulic equipment becomes larger and larger, and the precision requirement is getting higher and higher in China,especially for the precision of four corners leveling. Although only few countries have the ability to design and manufacture the hydraulic equipment that can meet the requirements, the cost is much expensive. By applying multi-axis synchronization technology together with hydraulic proportional servo control technology, the four corners leveling precision of YT71S - 3500 FRP hydraulic press is controlled to 0. 05 mm or less. This technology reaches the international advanced level, brings it to the end for the situation that high end hydraulic equipment mainly depends on import, and enhances the competitiveness of domestic large hydraulic press in the international market.%目前国内对大型液压设备的工作台面要求越来越大,精度要求越来越高,尤其是四角调平精度,现在只有极少数国家有能力设计制造能够满足要求的液压设备,但费用比较高.文中通过多轴同步控制技术和液压比例伺服控制技术相结合,使YT71S-3500玻璃钢液压机的四角调平精度控制在0.05mm以内,达到了国际先进水平,结束了高端液压设备完全依靠进口的局面,增强了国产大型液压设备在国际市场的竞争力.

  6. OPTIMUM DESIGN AND NON-LINEAR MODEL OF POWERPLANT HYDRAULIC MOUNT SYSTEM

    Shi Wenku; Min Haitao; Dang Zhaolong

    2003-01-01

    6-DOF non-linear mechanics model of powerplant hydraulic mount system is established. Optimum design of the powerplant hydraulic mount system is made with the hydraulic mount parameters as variables and with uncoupling of energy, rational disposition of nature frequency and minimum of reactive force at mount's location as objective functions. And based on the optimum design, software named ODPHMS (optimum design of powerplant hydraulic mount system) used in powerplant mount system optimum design is developed.

  7. Hydraulic Fracturing for Enhanced Geothermal Systems

    Rongved, Mats

    2015-01-01

    Finding new energy sources to provide base load electricity supply on a global scale is of increasing importance. Enhanced Geothermal Systems (EGS) has been identified as capable of playing an important role in the future of the energy market. The normally overlooked energy source has a great resource base, but faces challenges in order to become a serious energy alternative on a global scale. The main focus of this thesis is to investigate the properties demanded of effective fracture netwo...

  8. New method to improve dynamic stiffness of electro-hydraulic servo systems

    Bai, Yanhong; Quan, Long

    2013-09-01

    Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.

  9. Mathematical modelling of hydraulic conditions of balancing and control of heating, cooling and dehumidification subsystem in ventilation and air conditioning systems

    A. G. Sotnikov

    2011-03-01

    Full Text Available The article is the second part of the one published in the Vol. 1, 2011. The aim of this research is processes modelling and investigation of quantity parameters influence on heating and cooling subsystem of VAC systems when balancing that subsystem by various balanced valves and when controlling it by three-way valve. The basic characteristic received and analyzed in model, is balancing-adjusting characteristic (schedule of mixture in knot depending on a combination of many factors: binding, crosspieces, an arrangement of corresponding valves, pressures and other parameters. For reception of the balancing-adjusting characteristic of subsystem in different operating modes its mathematical model was created, methods of processing and generalization of the data were offered. After that calculations in different modes of use of the crosspieces were done, allowed to define all regime parameters at the set positions of balancing and regulating valves, parity of pressures in a network and a pump, design of armature and entry conditions.

  10. Nonlinear stability research on the hydraulic system of double-side rolling shear

    Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu

    2015-10-01

    This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.

  11. Thermal-hydraulic tests for reactor safety system

    Tests for the safety depressurization system, Sparger adopted for the Korean next generation reactor, APR1400 are carried out for several geometries with the B and C (Blowdown and Condensation) facility in the condition of high temperature and pressure and with a small test facility in the condition of atmospheric temperature and pressure. Tests for the critical heat flux are performed with the RCS(Reactor Coolant System) facility as well as with the Freon CHF Loop in the condition of high temperature and pressure. The atmospheric temperature and pressure facility is utilized for development of the high standard thermal hydraulic measurement technology. The optical method is developed to measure the local thermal-hydraulic behavior for the single and two-phase boiling phenomena

  12. Effects of turbine's selection on hydraulic transients in the long pressurized water conveyance system

    For a hydropower station with longer water conveyance system, an optimum turbine's selection will be beneficial to its reliable and stable operation. Different optional turbines will result in possible differences of the hydraulic characteristics in the hydromechanical system, and have different effects on the hydraulic transients' analysis and control. Therefore, the premise for turbine's selection is to fully understand the properties of the optional turbines and their effects on the hydraulic transients. After a brief introduction of the simulation models for hydraulic transients' computation and stability analysis, the effects of hydraulic turbine's characteristics at different operating points on the hydro-mechanical system's free vibration analysis were theoretically investigated with the hydraulic impedance analysis of the hydraulic turbine. For a hydropower station with long water conveyance system, based on the detailed hydraulic transients' computation respectively for two different optional turbines, the effects of the turbine's selection on hydraulic transients were analyzed. Furthermore, considering different operating conditions for each turbine and the similar operating conditions for these two turbines, free vibration analysis was comprehensively carried out to reveal the effects of turbine's impedance on system's vibration characteristics. The results indicate that, respectively with two different turbines, most of the controlling parameters under the worst cases have marginal difference, and few shows obvious differences; the turbine's impedances under different operating conditions have less effect on the natural angular frequencies; different turbine's characteristics and different operating points have obvious effects on system's vibration stability; for the similar operating conditions of these two turbines, system's vibration characteristics are basically consistent with

  13. The self-learning controller of hydraulic oil temperature monitor system based on genetic algorithm%基于遗传算法的液压油温监控系统自学习控制器设计

    金克勤; 胡旭晓

    2001-01-01

    On the basis of introduction of the hydraulic oil temperaturemonitor system for NC machine tools, a single chip microcomputer controller with self-learning ability based on genetic algorithm is developed in this paper. Not only detecting the sample target function and revising all parameters in real time, but also the ability to memory because of adding an information library to the genetic algorithm, the controller can quickly get optimal parameters.%在介绍数控机床液压油温监控系统的基础上,设计了以单片机为核心的基于遗传算法的自学习控制器。此控制器,一方面实时检测样本的指标函数值,并根据遗传算法自动调整参数;另一方面,增加了一个信息库,使遗传算法具有记忆功能,从而提高获得最优参数的速度。

  14. Pneumatic and Hydraulic Systems in Coal Fluidized Bed Combustor

    Z. O. Opafunso; I. I. Ozigis; I.A. Adetunde

    2009-01-01

    Problem statement: This study designed the pneumatic and hydraulic systems in coal fluidized bed combustor. These are fluidization of silica sand bed material, Air distributor, centrifugal fan, electric motor power drive and surface heat exchanger. Approach: The effects of increased gas velocity on silica sand and the resultant drag force formed the basic equations in fluidization. Air distributor was introduced to achieve pressure drop across the beds. Results: The constructed centrifugal fa...

  15. A novel high-temperature and high-pressure hydraulic pump based on mononeuron control

    Linhui ZHAO; Xin FANG

    2009-01-01

    Based on structures and characteristics of traditional hydraulic pumps, this paper proposes a novel high-temperature and high-pressure hydraulic pump (HHHP) that can work under 150℃ and 28MPa to overcome problems of traditional high-temperature plun-ger pumps. The HHHP is designed with the structure of mechanical division and double cylinder parallel. The control signals of two cylinders are two separate triangle waveforms with 90℃ phase difference. Because the output waveforms of two cylinders have the same characteristics as the control signals, the HHHP can obtain a stable output after two separate waveforms are superposed. A mono-neuron self-adaptive PID control algorithm is also improved by modifying parameters K and η. Two improved controllers are used to control the two cylinders,respectively, making two displacements of plungers match each other. Therefore, reduced fluctuations and stable pressure output is obtained. Besides simulation, tests on the built prototype test system are carried out to verify the performance of HHHP. Results show that the improved control approach can limit fluctuations to a lower level and the HHHP system attains good outputs under different signal periods and different pressures.

  16. 基于电磁离合器的重型车辆节能型电控液压转向系统%Energy-saving electronically controlled hydraulic steering system for heavy-duty vehicles based on electromagnetic clutch

    江浩斌; 徐哲; 唐斌; 耿国庆

    2014-01-01

    为降低重型车辆液压转向系统(HPS)的能耗,改善高速工况转向驾驶员路感、提出一种节能型电磁离合器电控液压转向系统(E-ECHPS),该系统采用电磁离合器控制转向泵转矩和转速。运用有限元分析法,建立电磁离合器主、副电机仿真模型,研究主、副电机的动力特性;研究电磁离合器功率输入输出的关系,分析该E-ECHPS的节能性;对E-ECHPS转向工况下的助力性能和直行工况下的能耗进行了仿真分析。结果表明:在转向工况,电磁离合器的输出转矩随车速增大而减小;在直行工况,在车速为10、40、80 km/h的时段内,该E-ECHPS的总能耗相比HPS减少71%。该E-ECHPS可实现随车速可变的助力特性,并具有明显优于HPS的节能性。%An energy-saving Electromagnetic clutch Electronical y Control ed Hydraulic Power Steering System (E-ECHPS) was proposed with an electromagnetic clutch to control the steering pump for reducing the energy consumption of hydraulic power steering system (HPS) and improve driver’s feel on high speed road for heavy-duty vehicles. FEA (ifnite-element analysis) models were established to investigate the dynamical characteristic curves of main and vice motor in electromagnetic clutch. Based on power changes in electromagnetic clutch, an energy-saving of the E-ECHPS was analyzed. Energy dissipation and assist characteristic of the E-ECHPS under steering situation and straight road condition were simulated. The results show that electromagnetic clutch torque decreases with vehicle speeds increase under steering situation;the E-ECHPS saves energy consumption more than 71%compared to HPS in the time interval with the vehicle speeds of 10, 40, 80 km/h under straight road condition. The results indicate that the E-ECHPS can realize the variable assist characteristic and have signiifcantly better energy efifciency than that of the HPS.

  17. Influence of hydraulics and control of thermal storage in solar assisted heat pump combisystems

    Poppi, Stefano; Bales, Chris

    2014-01-01

    This paper studies the influence of hydraulics and control of thermal storage in systems combined with solar thermal and heat pump for the production of warm water and space heating in dwellings. A reference air source heat pump system with flat plate collectors connected to a combistore was defined and modeled together with the IEA SHC Task 44 / HPP Annex 38 (T44A38) “Solar and Heat Pump Systems” boundary conditions of Strasbourg climate and SFH45 building. Three and four pipe connections as...

  18. Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-

    The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)

  19. 挖掘机器人电液比例位置自调整模糊PID控制技术研究%Research on Self-Tuning Fuzzy PID Control for Electro-Hydraulic Proportion Positional Control System of Robotic Excavator

    骆云志; 张春华; 王钤

    2014-01-01

    A method of electro-hydraulic proportional position control based on fuzzy PID self-tuning control strategy is designed, in the light of the problem of servo control precision because of the hysteresis, uncertainty and nonlinearity of work devices and hydraulic system of the robotic excavator. Introduce the structure of electro-hydraulic proportional positional control system and the principle of fuzzy self-tuning PID controller parameters, forms the fuzzy PID control rule table. It also introduces a method of midpoint down fusion fuzzy inference and defuzzification techniques. Simulating and experimental results indicate the method has good robustness and meets technology requirements.%针对挖掘机器人工作装置液压系统存在滞后、不确定性和非线性,不能实现有效精确控制的问题,设计一种基于模糊PID的电液比例位置自调整控制策略。介绍了电液比例位置控制系统组成和自调整模糊PID控制器原理,建立了控制规则表,采用中点向下融合法进行模糊推理和去模糊化处理。仿真与实验验证结果表明:该控制方法具有很好的鲁棒性,控制效果满足技术要求。

  20. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  1. Study on Dynamical Simulation of Railway Vehicle Bogie Parameters Test-bench Electro-hydraulic Servo System

    Lan, Zhikun; Su, Jian; Xu, Guan; Cao, Xiaoning

    Dynamical mathematical model was established for accurately positioning, fast response and real-time tracing of electro-hydraulic servo control system in railway vehicle bog ie parameters test system with elastic load. The model could precisely control the output of position and force of the hydraulic cylinders. Induction method was proposed in the paper. Dynamical simulation verified the mathematical model by SIMULINK software. Meanwhile the key factors affecting the dynamical characteristics of the system were discussed in detail. Through the simulation results, high precision is obtained in application and the need of real-time control on the railway vehicle bogie parameters test-bench is realized.

  2. Application research on hydraulic coke cutting monitoring system based on optical fiber sensing technology

    Zhong, Dong; Tong, Xinglin

    2014-06-01

    With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system, the optical fiber acoustic emission sensor has been applied in the hydraulic coke cutting monitoring system for the first time, researching the monitoring signal of the optical fiber acoustic emission sensor in the system. The actual test results show that using the acoustic emission sensor in the hydraulic coke cutting monitoring system can get the real-time and accurate hydraulic coke cutting state and the effective realization of hydraulic coke cutting automatic monitoring in the Wuhan Branch of Sinopec.

  3. Global asymptotic stabilization of large-scale hydraulic networks using positive proportional controls

    Jensen, Tom Nørgaard; Wisniewski, Rafal

    2014-01-01

    directional actuator constraints is addressed. The proposed solution consists of a set of decentralized positively constrained proportional control actions. The results show that the closed-loop system always has a globally asymptotically stable equilibrium point independently on the number of end......An industrial case study involving a large-scale hydraulic network underlying a district heating system subject to structural changes is considered. The problem of controlling the pressure drop across the so-called end-user valves in the network to a designated vector of reference values under......-users. Furthermore, by a proper design of controller gains the closed-loop equilibrium point can be designed to belong to an arbitrarily small neighborhood of the desired equilibrium point. Since there exists a globally asymptotically stable equilibrium point independently on the number of end-users in the system...

  4. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  5. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind......, fatigue and ultimate load reduction and backlash compensation it is possible to increase the number of yaw activations without compromising the lifetime of the components. By increasing the number of activations, the average yaw error may be lowered and hence the energy production raised below rated wind...

  6. Reduction of System Inherent Pressure Losses at Pressure Compensators of Hydraulic Load Sensing Systems

    Siebert, Jan; Geimer, Marcus [Hrsg.

    2016-01-01

    In spite of their high technical maturity, load sensing systems (LS) have system-inherent energy losses that are largely due to the operation of parallel actuators with different loads at the same pressure level. Hereby, the pressure compensators of the system are crucial. So far, excessive hydraulic energy has been throttled at these compensators and been discharged as heat via the oil. The research project “Reduction of System Inherent Pressure Losses at Pressure Compensators of Hydraulic L...

  7. Design of Diaphragm Fracture Alarming Control System for Hydraulic Driven Diaphragm Pump%液压驱动隔膜泵隔膜破裂报警系统设计

    张洪生; 张宏利; 郭绍波; 张新国; 刘运昌

    2011-01-01

    Diaphragm pump which are used in petroleum, metallurgy, electrical power and some other industries , can't be used after diaphragm fracture and the normal production is affected. Aiming at the problem, a new design scheme about diaphragm fracture alarming control system was put forward, taking three single functional cylinders hydraulic driven diaphragm pump as research object.The scheme was that : If one diaphragm was broken, alarming signals could be sent out and the corresponding hydraulic cylinder was stopped after the staff conformed; If two or more diaphragms were broken, alarming signals could also be sent out at the time of pump stopping working. Using the logic control functions of FX2-64MR PLC produced by Mitsubishi company, programs for diaphragm fracture alarming were designed to achieve the functions, such as real-time alarming for diaphragm fracture, amounting the numbers of breaking diaphragms, stopping alarming, rearrangement of two hydraulic cylinders' work phases, stopping of pump, determination and adjustment of material pulp output. The field test shows that the new design scheme can guarantee diaphragm pump working normally under the condition of one diaphragm broken. It is an effective method.%针对目前石油、冶金、电力等行业中常用的隔膜泵存在的隔膜破裂后不能继续工作、影响正常生产的问题,以三缸单作用液压驱动隔膜泵为研究对象,提出一种新的隔膜破裂报警系统设计方案:当单个隔膜破裂时,系统可以发出报警信号,经工作人员确认后相应的液压缸停止工作,而其他两液压缸可以继续工作;两个或两个以上隔膜破裂时,系统发出报警信号的同时隔膜泵停止运转.基于PLC的逻辑控制功能,利用三菱FX2-64MR型PLC对这种隔膜破裂报警方案进行了程序设计,可实现隔膜破裂实时报警、隔膜破裂个数检测、停止报警、两液压缸工作相位调整、隔膜泵自动停机及料浆输出量测定和

  8. Thermal-hydraulics of lead bismuth for accelerator driven systems

    Full text of publication follows: Lead bismuth has been selected as one of the most suitable coolants to be used in accelerator driven systems (ADS) for transmutation of minor actinides. It serves both, as a target material of the spallation source to balance the neutron economy, and as a coolant with high thermal inertia to provide a safe and reliable heat transfer to the secondary power cycle. With the aim to develop the required technologies to enable the later design of such ADS systems, the Karlsruhe Lead bismuth LAboratory KALLA, consisting of three test loops, has been built and set into operation at the Forschungszentrum Karlsruhe since 2000, keeping more than 45 t of PbBi in operation at temperatures up to 550 deg. C. The test program includes oxygen control systems, heat flux simulation tools, electro-magnetic and mechanical pump technologies, heat transfer and flow measurements, reliability and corrosion tests. In a first test campaign, a technology loop called THESYS was built to develop measurement technologies for the acquisition of scalar quantities, like pressures, temperatures, concentrations, and flow rates, as well as velocity fields, which are required for both operational and scientific purposes. THESYS also allowed to perform generic turbulent heat transfer experiments necessary to provide liquid metal adapted turbulent heat transfer models for ADS design analyses. The second loop, the thermalhydraulic loop THEADES with an installed power of 2.5 MW, has been built to conduct prototypical component experiments for beam windows (e.g. MEGAPIE or MYHRRA) or fuel rod configurations. First test results will be reported. The experimental team is supported by a numerical team who studied the thermal hydraulics of the tested components in order to enable a later transfer of the results to industrial systems. Three different types of codes are being improved: lumped parameter codes (e.g. ATHLET) to perform system analyses for lead bismuth in loops

  9. Developing a Tool Point Control Scheme for a Hydraulic Crane Using Interactive Real-time Dynamic Simulation

    Pedersen, Mikkel Melters; Hansen, Michael Rygaard; Ballebye, Morten

    2010-01-01

    This paper describes the implementation of an interactive real-time dynamic simulation model of a hydraulic crane. The user input to the model is given continuously via joystick and output is presented continuously in a 3D animation. Using this simulation model, a tool point control scheme is...... developed for the specific crane, considering the saturation phenomena of the system and practical implementation....

  10. Prosthetic Knee Systems

    ... of fluid control systems — pneumatic (using air) and hydraulic (using fluid). Pneumatic control. These systems: compress air ... control than friction systems are less effective than hydraulic systems. Hydraulic control. These systems: use liquid (usually ...

  11. Method for use of hydraulically or electrically controlled solenoids under failed on conditions

    Bolenbaugh, Jonathan M.; Naqi, Syed

    2014-07-08

    A method to operate a clutch device in an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and at least one electric machine includes, in response to a failure condition detected within a flow control device configured to facilitate flow of hydraulic fluid for operating the clutch device, selectively preventing the flow of hydraulic fluid from entering the flow control device and feeding the clutch device. Synchronization of the clutch device is initiated when the clutch device is intended for activation, and only if the clutch device is synchronized, the flow of hydraulic fluid is selectively permitted to enter the flow control device to activate the clutch device.

  12. Design of A Hydraulic Power Take-off System for the Wave Energy Device with An Inverse Pendulum

    张大海; 李伟; 赵海涛; 鲍经纬; 林勇刚

    2014-01-01

    This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.

  13. Design of a hydraulic power take-off system for the wave energy device with an inverse pendulum

    Zhang, Da-hai; Li, Wei; Zhao, Hai-tao; Bao, Jing-wei; Lin, Yong-gang

    2014-04-01

    This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.

  14. A device for the hydraulic control of nuclear reactor control rods

    A device for driving and locking the control rods of a nuclear reactor. This device comprises a hydraulic driving piston mounted in a cylinder provided with a construction for absorbing shocks. The piston is provided, at is extremity, with a locking device adapted to engage a stationary lock, it being possible to control the latter for freeing said piston locking device; with such an arrangement, the control rod is normally maintained in position, and it can be freed only by a positive signal. Moreover, the control rod movements are slowed down, so as to prevent the gripping device from being damaged. This device can be used in the nuclear industry

  15. Optimising root system hydraulic architectures for water uptake

    Meunier, Félicien; Couvreur, Valentin; Draye, Xavier; Javaux, Mathieu

    2015-04-01

    In this study we started from local hydraulic analysis of idealized root systems to develop a mathematical framework necessary for the understanding of global root systems behaviors. The underlying assumption of this study was that the plant is naturally optimised for the water uptake. The root system is thus a pipe network dedicated to the capture and transport of water. The main objective of the present research is to explain the fitness of major types of root architectures to their environment. In a first step, we developed links between local hydraulic properties and macroscopic parameters of (un)branched roots. The outcome of such an approach were functions of apparent conductance of entire root system and uptake distribution along the roots. We compared our development with some allometric scaling laws for the root water uptake: under the same simplifying assumptions we were able to obtain the same results and even to expand them to more physiological cases. Using empirical data of measured root conductance, we were also able to fit extremely well the data-set with this model. In a second stage we used generic architecture parameters and an existent root growth model to generate various types of root systems (from fibrous to tap). We combined both sides (hydraulic and architecture) then to maximize under a volume constraint either apparent conductance of root systems or the soil volume explored by active roots during the plant growth period. This approach has led to the sensitive parameters of the macroscopic parameters (conductance and location of the water uptake) of each single plant selected for this study. Scientific questions such as: "What is the optimal sowing density of a given hydraulic architecture ?" or "Which plant traits can we change to better explore the soil domain ?" can be also addressed with this approach: some potential applications are illustrated. The next (and ultimate phase) will be to validate our conclusions with real architectures

  16. Hydraulic characterisation of karst systems with man-made tracers

    Tracer experiments using man-made tracers are common in hydrogeological exploration of groundwater aquifers in karst systems. In the present investigation, a convection-dispersion model (multidispersion model with consideration of several flow paths) and a single-cleft model (consideration of the diffusion between the cleft and the surrounding rock matrix) were used for evaluating tracer experiments in the main hydrological system of the saturated zone of karst systems. In addition to these extended analytical solutions, a numerical transport model was developed for investigating the influence of the transient flow rate on the flow and transport parameters. Comparative evaluations of the model approaches for the evaluation of tracer experiments were made in four different karst systems: Danube-Aach, Paderborn, Slowenia and Lurbach, of which the Danube-Aach system was considered as the most important. The investigation also comprised three supplementary experiments in order to enable a complete hydraulic characterisation of the system. (orig./SR)

  17. STUDY OF A FAULT DIAGNOSIS EXPERT SYSTEM FOR SYNTHETIC MINING SYSTEM HYDRAULIC SUPPORT

    Han Yilun

    2000-01-01

    Fault diagnosis expert system for hydraulic support is studied.The system is achieved by Turbo-prolong Language, it summaries the experience of the domain expert and sets up a fault tree, knowledge base is developed by a productive rule.According to the feature of diagnosis, the system selects forward non-determination inferring and limited depth-first search strategy.It can accomplish expert diagnosis of more than 50 kinds faults in hydraulic support.

  18. Thermal and hydraulic analyses of the System 81 cold traps

    Kim, K.

    1977-06-15

    Thermal and hydraulic analyses of the System 81 Type I and II cold traps were completed except for thermal transients analysis. Results are evaluated, discussed, and reported. Analytical models were developed to determine the physical dimensions of the cold traps and to predict the performance. The FFTF cold trap crystallizer performances were simulated using the thermal model. This simulation shows that the analytical model developed predicts reasonably conservative temperatures. Pressure drop and sodium residence time calculations indicate that the present design will meet the requirements specified in the E-Specification. Steady state temperature data for the critical regions were generated to assess the magnitude of the thermal stress.

  19. Study on Knowledge -based Intelligent Fault Diagnosis of Hydraulic System

    Xuexia Liu

    2012-12-01

    Full Text Available A general framework of hydraulic fault diagnosis system was studied. It consisted of equipment knowledge bases, real-time databases, fusion reasoning module, knowledge acquisition module and so on. A tree-structure model of fault knowledge was established. Fault nodes knowledge was encapsulated by object-oriented technique. Complete knowledge bases were made including fault bases and diagnosis bases. It could describe the fault positions, the structure of fault, cause-symptom relationships, diagnosis principles and other knowledge. Taking the fault of left and right lifting oil cylinder out of sync for example, the diagnostic results show that the methods were effective.

  20. Toward Supervisory-Level Control for the Energy Consumption and Performance Optimization of Displacement-Controlled Hydraulic Hybrid Machines

    Busquets, Enrique; Ivantysynova, Monika

    2016-01-01

    Environmental awareness, production costs and operating expenses have provided a large incentive for the investigation of novel and more efficient fluid power technologies for decades. In the earth-moving sector, hydraulic hybrids have emerged as a highly efficient and affordable choice for the next generation hydraulic systems. Displacementcontrolled (DC) actuation has demonstrated that, when coupled with hydraulic hybrids, the engine power can be downsized by up to 50% leading to substantia...

  1. Analysis of an controller design for an electro-hydraulic servo pressure regulator

    Pedersen, Henrik C.; Andersen, Torben Ole; Madsen, A. M.;

    2009-01-01

    Mobile hydraulics is in a transition phase, where electronic sensors and digital signal processors are starting to become standard on a high number of machines, hereby replacing hydraulic pilot lines and oering new possibilities with regard to both control and feasibility. For controlling some...... regulator, which generates a hydraulic LS-pressure based on an electrical reference, hereby synergistically integrating knowledge from all parts of the mechatronics area. The servo pressure regulator is used to generate the LS-signal for a variable displacement pump, and the paper rst presents...

  2. Selection of the 700 MWe PHWR pressuriser level control program through thermal hydraulic transient studies

    design basis, though this is not an operational event. This paper describes the computer simulation model that has been developed for the upcoming 700 MWe PHWR using internationally renowned, best estimate RELAP5/MOD3.2 code for the thermal hydraulic behavior. The output from these simulation studies is being utilized for performance verification of the PHT system pressure controller and the Pressuriser level control program. Earlier such studies have been performed for the 540 MWe PHWR power plants. The 700 MWe PHWR SGs differs from the earlier SGs in many of the design details. The implication of these details on the thermal hydraulic behavior and the corresponding impact on the design will be discussed. (author)

  3. Conceptual Design of a Hydraulic Valve Train System

    J. Pohl

    2001-01-01

    Full Text Available Variable valve train systems have been brought into focus during recent years as a means to decrease fuel consumption in tomorrow's combustion engines. In this paper an integrated approach, called simulation driven experiments, is utilised in order to aid the development of such highly dynamic systems. Through the use of systematic design methodology, a number of feasible concepts are developed. Critical components are subsequently identified using simulation. In this approach, component behaviour is simulated and validated by measurements on prototype components. These models are unified with complete system models of hydraulically actuated valve trains. In the case of the valve trains systems studied here component models could be validated using comparably simple test set-ups. These models enable the determination of non-critical design parameters in an optimal sense. This results in a number of optimised concepts facilitating an impartial functional concept selection.

  4. Pneumatic and Hydraulic Systems in Coal Fluidized Bed Combustor

    Z. O. Opafunso

    2009-01-01

    Full Text Available Problem statement: This study designed the pneumatic and hydraulic systems in coal fluidized bed combustor. These are fluidization of silica sand bed material, Air distributor, centrifugal fan, electric motor power drive and surface heat exchanger. Approach: The effects of increased gas velocity on silica sand and the resultant drag force formed the basic equations in fluidization. Air distributor was introduced to achieve pressure drop across the beds. Results: The constructed centrifugal fan was driven by selected electric motor based on pressure and temperature changes in the reactor. The dimensions of the heat transfer tube were calculated from fluid flow and energy balance equations. The values obtained were as the follows: Fluidization velocity (1.54 m sec-­1, gas velocity through orifice (29.52 m sec-1, the fan electric motor (2 KW, 3 ph at 1500 pm, the steam temperature obtained was 160°C from water ambient temperature of 30°C and tube length 22 m was coiled into levels in the combustor. Conclusion/Recommendation: Precise specifications of pneumatic and hydraulic systems will adequately address the environment concern of coal fired power supply as a method to address epileptic power supply in Nigeria.

  5. Effects of shifting time on pressure impact in hydraulic systems

    ZHU Zhen-cai; CHEN Guo-an

    2005-01-01

    The limitations in existing measures for absorbing pressure impact in hydraulic systems were summarized in this paper. Based on the forming principle of the oil in a hydrostatic closed pressure chamber, the underlying reasons of the pressure impact were analyzed theoretically, the intrinsic laws that the extent of the pressure impact in hydraulic oil lines are affected by some factors, such as oil elastic modulus, oil line's geometrical volume, and changing rate of oil volume versus time etc, were discussed. Experimental investigations into pressure impact in all pressure chambers because of shifting were conducted under different working conditions by employing a special experimental system. The effects of shifting time on pressure impact were studied. A new concept with universal meaning, i.e. optimal shifting time, and its characterizing parameter and the methods of shifting at optimal shifting time were also proposed. The results show that shifting time lag △t is of rationality and maneuverablility. The higher the working pressure, the shorter the shifting time.

  6. Development of brake assist system. Summary of hydraulic brake assist system; Brake assist system no kaihatsu. Ekiatsushiki brake assist system no gaiyo

    Hara, M.; Ota, M.; Shimizu, S. [Toyota, Motor Corp., Aichi (Japan)

    1997-10-01

    We have already developed vacuum-booster-type Brake Assist System that supplies additional braking power when panic braking is recognized. We are convinced that the expansion of Brake Assist System will become more important issue in the future. Therefore we have developed hydraulic Brake Assist System with increasing its controllability and reducing its discomfort. This system have a brake pressure sensor to detect emergency braking operation and an antilock device to supply additional braking power. 8 refs., 11 figs.

  7. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    Hansen, Rico Hjerm; Kramer, Morten; Vidal, Enrique

    2013-01-01

    pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy......The Wavestar Wave Energy Converter (WEC) is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO) system, converting the wave induced motion of the floats into a steady power output to the grid....... In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored...

  8. Variants of Secondary Control with Power Recovery for Loading Hydraulic Driving Device

    QI Xiaoye

    2015-01-01

    Current high power load simulators are generally incapable of obtalning both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and those with high dynamic performance typically have low energy efficiency. In this paper, the variants of secondary control (VSC) with power recovery are developed to solve this problem for loading hydraulic driving devices that operate under variable pressure, unlike classical secondary control (CSC) that operates in constant pressure network. Hydrostatic secondary control units are used as the loading components, by which the absorbed mechanical power from the tested device is converted into hydraulic power and then fed back into the tested system through 4 types of feedback passages (FPs). The loading subsystem can operate in constant pressure network, controlled variable pressure network, or the same variable pressure network as that of the tested device by using different FPs. The 4 types of systems are defined, and their key techniques are analyzed, including work principle, simulating the work state of original tested device, static operation points, loading performance, energy efficiency, and control strategy, etc. The important technical merits of the 4 schemes are compared, and 3 of the schemes are selected, designed, simulated using AMESim and evaluated. The researching results show that the investigated systems can simulate the given loads effectively, realize the work conditions of the tested device, and furthermore attaln a high power recovery efficiency that ranges from 0.54 to 0.85, even though the 3 schemes have different loading performances and energy efficiencies. This paper proposes several loading schemes that can achieve both high dynamic performance and high power recovery efficiency.

  9. Vadose zone monitoring strategies to control water flux dynamics and changes in soil hydraulic properties.

    Valdes-Abellan, Javier; Jiménez-Martínez, Joaquin; Candela, Lucila

    2013-04-01

    For monitoring the vadose zone, different strategies can be chosen, depending on the objectives and scale of observation. The effects of non-conventional water use on the vadose zone might produce impacts in porous media which could lead to changes in soil hydraulic properties, among others. Controlling these possible effects requires an accurate monitoring strategy that controls the volumetric water content, θ, and soil pressure, h, along the studied profile. According to the available literature, different monitoring systems have been carried out independently, however less attention has received comparative studies between different techniques. An experimental plot of 9x5 m2 was set with automatic and non-automatic sensors to control θ and h up to 1.5m depth. The non-automatic system consisted of ten Jet Fill tensiometers at 30, 45, 60, 90 and 120 cm (Soil Moisture®) and a polycarbonate access tube of 44 mm (i.d) for soil moisture measurements with a TRIME FM TDR portable probe (IMKO®). Vertical installation was carefully performed; measurements with this system were manual, twice a week for θ and three times per week for h. The automatic system composed of five 5TE sensors (Decagon Devices®) installed at 20, 40, 60, 90 and 120 cm for θ measurements and one MPS1 sensor (Decagon Devices®) at 60 cm depth for h. Installation took place laterally in a 40-50 cm length hole bored in a side of a trench that was excavated. All automatic sensors hourly recorded and stored in a data-logger. Boundary conditions were controlled with a volume-meter and with a meteorological station. ET was modelled with Penman-Monteith equation. Soil characterization include bulk density, gravimetric water content, grain size distribution, saturated hydraulic conductivity and soil water retention curves determined following laboratory standards. Soil mineralogy was determined by X-Ray difractometry. Unsaturated soil hydraulic parameters were model-fitted through SWRC-fit code and

  10. Experimental validation of microseismic emissions from a controlled hydraulic fracture in a synthetic layered medium

    Roundtree, Russell

    A controlled hydraulic fracture experiment was performed on two medium sized (11" x 11" x 15") synthetic layered blocks of low permeability, low porosity Lyons sandstone sandwiched between cement. The purpose of the research was to better understand and characterize the fracture evolution as the fracture tip impinged upon the layer boundaries between the well bonded layers. It is also one of the first documented uses of passive microseismic used in a laboratory environment to characterize hydraulic fracturing. A relatively low viscosity fluid of 1000 centipoise, compared to properly scaled previous work (Casas 2005, and Athavale 2007), was pumped at a constant rate of 10 mL/minute through a steel cased hole landed and isolated in the sandstone layer. Efforts were made to contain the hydraulic fracture within the confines of the rock specimen to retain the created hydraulic fracture geometry. Two identical samples and treatment schedules were created and differed only in the monitoring system used to characterize the microseismic activity during the fracture treatment. The first block had eight embedded P-wave transducers placed in the sandstone layer to record the passive microseismic emissions and localize the location and time of the acoustic event. The second block had six compressional wave transducers and twelve shear wave transducers embedded in the sandstone layer of the block. The intention was to record and process the seismic data using conventional P-wave to S-wave difference timing techniques well known in industry. While this goal ultimately not possible due to the geometry of the receiver placements and the limitations of the Vallene acquisition processing software, the data received and the events localized from the 18 transducer test were of much higher numbers and quality than on the eight transducer test. This experiment proved conclusively that passive seismic emission recording can yield positive results in the laboratory. Just as in the field

  11. Electromechanical propellant control system actuator

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  12. Thermal Hydraulic Analysis on Containment Filtered Venting System

    Bang, Young Suk; Park, Tong Kyu; Lee, Doo Yong; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Lee, Sang Won; Kim, Hyeong Taek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary.

  13. Real-time neural network-based self-tuning control of a nonlinear electro-hydraulic servomotor

    Canelon, J.I.; Ortega, A.G. [Univ. del Zulia, Maracaibo, Zulia (Venezuela, Bolivarian Republic of). School of Electrical Engineering; Shieh, L.S. [Houston Univ., Houston, TX (United States). Dept. of Electrical and Computer Engineering; Bastidas, J.I. [Univ. del Zulia, Maracaibo, Zulia (Venezuela, Bolivarian Republic of). School of Mechanical Engineering; Zhang, Y.; Akujuobi, C.M. [Prairie View A and M Univ., Prairie View, TX (United States). Center of Excellence for Communication Systems Technology Research and Dept. of Engineering Technology

    2010-08-13

    For high power applications, hydraulic actuators offer many advantages over electromagnetic actuators, including higher torque/mass ratios; smaller control gains; excellent torque capability; filtered high frequency noise; better heat transfer characteristics; smaller size; higher speed of response of the servomechanism; cheaper hardware; and higher reliability. Therefore, any application that requires a large force applied smoothly by an actuator is a candidate for hydraulic power. Examples of such applications include vehicle steering and braking systems; roll mills; drilling rigs; heavy duty crane and presses; and industrial robots and actuators for aircraft control surfaces such as ailerons and flaps. It is extremely important to create effective control strategies for hydraulic systems. This paper outlined the real-time implementation of a neural network-based approach, for self-tuning control of the angular position of a nonlinear electro-hydraulic servomotor. Using an online training algorithm, a neural network autoregressive moving-average model with exogenous input (ARMAX) model of the system was identified and continuously updated and an optimal linear ARMAX model was determined. The paper briefly depicted the neural network-based self-tuning control approach and a description of the experimental equipment (hardware and software) was presented including the implementation details. The experimental results were discussed and conclusions were summarized. It was found that the approach proved to be very effective in the control of this fast dynamics system, outperforming a fine tuned PI controller. Therefore, although the self-tuning approach was computationally demanding, it was feasible for real-time implementation. 22 refs., 6 figs.

  14. Scaling in nuclear reactor system thermal-hydraulics

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  15. Scaling in nuclear reactor system thermal-hydraulics

    D' Auria, F., E-mail: dauria@ing.unipi.i [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy); Galassi, G.M. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)

    2010-10-15

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  16. Regulation and hydraulic design of highway stormwater drainage system

    Žibret, Marko

    2006-01-01

    The present work handles treatment of storm water from highways and its cleaning facilities hydraulic design according to Slovenian and German guidelines and directives. First part contains basic data that we have to take into consideration in order to achieve good hydraulic design for cleaning facilities. Road and highway categorization and their typical features in Slovenia and Germany are also written as basics for runoff hydraulic design. Following, most of the storm water cleaning facili...

  17. FONESYS: The FOrum and NEtwork of SYStem Thermal-Hydraulic Codes in Nuclear Reactor Thermal-Hydraulics

    Ahn, S.H., E-mail: k175ash@kins.re.kr [Korea Institute of Nuclear Safety (KINS) (Korea, Republic of); Aksan, N., E-mail: nusr.aksan@gmail.com [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Austregesilo, H., E-mail: henrique.austregesilo@grs.de [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) (Germany); Bestion, D., E-mail: dominique.bestion@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Chung, B.D., E-mail: bdchung@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); D’Auria, F., E-mail: f.dauria@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Emonot, P., E-mail: philippe.emonot@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Gandrille, J.L., E-mail: jeanluc.gandrille@areva.com [AREVA NP (France); Hanninen, M., E-mail: markku.hanninen@vtt.fi [VTT Technical Research Centre of Finland (VTT) (Finland); Horvatović, I., E-mail: i.horvatovic@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Kim, K.D., E-mail: kdkim@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); Kovtonyuk, A., E-mail: a.kovtonyuk@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Petruzzi, A., E-mail: a.petruzzi@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy)

    2015-01-15

    Highlights: • We briefly presented the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS). • We presented FONESYS participants and their codes. • We explained FONESYS projects motivation, its main targets and working modalities. • We presented FONESYS position about projects topics and subtopics. - Abstract: The purpose of this article is to present briefly the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS), its participants, the motivation for the project, its main targets and working modalities. System Thermal-Hydraulics (SYS-TH) codes, also as part of the Best Estimate Plus Uncertainty (BEPU) approaches, are expected to achieve a more-and-more relevant role in nuclear reactor technology, safety and design. Namely, the number of code-users can easily be predicted to increase in the countries where nuclear technology is exploited. Thus, the idea of establishing a forum and a network among the code developers and with possible extension to code users has started to have major importance and value. In this framework the FONESYS initiative has been created. The main targets of FONESYS are: • To promote the use of SYS-TH Codes and the application of the BEPU approaches. • To establish acceptable and recognized procedures and thresholds for Verification and Validation (V and V). • To create a common ground for discussing envisaged improvements in various areas, including user-interface, and the connection with other numerical tools, including Computational Fluid Dynamics (CFD) Codes.

  18. FONESYS: The FOrum and NEtwork of SYStem Thermal-Hydraulic Codes in Nuclear Reactor Thermal-Hydraulics

    Highlights: • We briefly presented the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS). • We presented FONESYS participants and their codes. • We explained FONESYS projects motivation, its main targets and working modalities. • We presented FONESYS position about projects topics and subtopics. - Abstract: The purpose of this article is to present briefly the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS), its participants, the motivation for the project, its main targets and working modalities. System Thermal-Hydraulics (SYS-TH) codes, also as part of the Best Estimate Plus Uncertainty (BEPU) approaches, are expected to achieve a more-and-more relevant role in nuclear reactor technology, safety and design. Namely, the number of code-users can easily be predicted to increase in the countries where nuclear technology is exploited. Thus, the idea of establishing a forum and a network among the code developers and with possible extension to code users has started to have major importance and value. In this framework the FONESYS initiative has been created. The main targets of FONESYS are: • To promote the use of SYS-TH Codes and the application of the BEPU approaches. • To establish acceptable and recognized procedures and thresholds for Verification and Validation (V and V). • To create a common ground for discussing envisaged improvements in various areas, including user-interface, and the connection with other numerical tools, including Computational Fluid Dynamics (CFD) Codes

  19. Hydraulic Modeling of Novel Combined Nozzle for Pool Scrubbing System

    The particles are collected in the scrubbing liquid. Knowing that the particle is removed from the gas stream mainly by scrubbing phenomena, the filtration efficiency can be enhanced by enlarging the contact area between the scrubbing water and the gas/particle mixture (e.g. break the bulk of gas flow into fine bubbles) or by enlarging the contact time of them (e. g. increase the water pool depth). In this study, the novel design of the combined nozzle has been developed to minimize the size of the filtration system and to ensure the filtration efficiency over the wide range of operating conditions. The hydraulic simulation has been conducted to investigate the flow behavior inside of the nozzle prior to evaluate the filtering efficiency. The proto-typical combined nozzle has been modeling in CFD and simulated for different conditions. Preliminary CFD simulation is conducted to examine the effects of key features and the flow behaviors inside the combined nozzle

  20. ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor

    Mazidi, S., E-mail: samirmazidi@gmail.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Meftah, B., E-mail: b_meftah@yahoo.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Belgaid, M., E-mail: belgaidm@yahoo.com [Faculté de Physique, Université Houari Boumediene, USTHB, BP 31, Bab Ezzouar, Alger (Algeria); Letaim, F., E-mail: fletaim@yahoo.fr [Faculté des Sciences et Technologies, Université d’El-oued, PO Box 789, El-oued (Algeria); Halilou, A., E-mail: hal_rane@yahoo.fr [Division Réacteur NUR, Centre de Recherche Nucléaire de Draria, BP 43 Sebala, Draria, Alger (Algeria)

    2015-08-15

    Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors.

  1. ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor

    Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors

  2. Hydraulic Systems with Tap Water versus Bio-oils

    Conrad, Finn

    1997-01-01

    Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry.......Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry....

  3. Tap Water Hydraulic Systems for Medium Power Applications

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar.......Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar....

  4. Borehole Heat Exchanger Systems: Hydraulic Conductivity and Frost-Resistance of Backfill Materials

    Anbergen, Hauke; Sass, Ingo

    2016-04-01

    constant radial stress boundary conditions (sigma 2 = sigma 3 = constant) • radial freezing from inside out, following the in-situ freezing direction The results differ substantially from prior test procedures (such as standardized frost tests for concrete or soft soils). Concentric frost-induced cracking was observed. The cracking pattern is in good agreement with cryostatic suction processes and frost heave in fine grained soils. The hydraulic conductivity of the system depends on the composition of the grout. With the developed testing device (and procedure) a unified and independent assessment and quality control becomes feasible. Adequate materials for advanced shallow geothermal systems can be clearly identified.

  5. Fault Diagnosis for Nonlinear Hydraulic-Mechanical Drilling Pipe Handling System

    Choux, Martin; Blanke, Mogens

    2011-01-01

    Leakage and increased friction are common faults in hydraulic cylinders that can have serious consequences if they are not detected at early stage. In this paper, the design of a fault detector for a nonlinear hydraulic mechanical system is presented. By considering the system in steady state, two...

  6. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  7. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    Wenke Wang; Zhenxue Dai; Yaqian Zhao; Junting Li; Lei Duan; Zhoufeng Wang; Lin Zhu

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tes...

  8. Hydraulic analysis of water supply system Šmartno ob Paki

    Stropnik, Petra

    2006-01-01

    The subject of the Graduation Project is the hydraulics of the Šmartno ob Paki water supply system. The primary focus is on the analysis of pressure and flow conditions using the appropriate software tools, and the optimisation of the existing situation. The Graduation Project features a theoretical and a practical part. The theoretical part includes all the bases required for hydraulic modelling, and the calculations and analysis of hydraulic conditions, while the practical part involves the...

  9. Hydraulic manipulator research at ORNL

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  10. Hydraulic manipulator research at ORNL

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  11. Hyperbaric Pressure Control System

    Berg, Brian; Skjørten, Anders; Nicolaysen, Jonas; Skarseth, Thor Ove; Carlstedt, Jonas

    2015-01-01

    The requirement specification for the project where changed from delivery of a fully working product to contain only the design of this system due to long lead times on some of the high-pressure hydraulic parts. Three of the students where already working for FMC before project start, where two of them had experience with hydraulic Subsea Systems. Our project model where changed during the project. We started out with a Waterfall model and ended up with an Evolutionary model

  12. Research on the rationality of transmission system for fast forging hydraulic press%快锻液压机传动系统合理性的探讨

    陈超; 范淑琴; 赵升吨; 崔敏超; 韩晓兰

    2016-01-01

    The research status of fast forging hydraulic press at home and abroad was introduced, and deficiencies of the fast forging press in the domestic development were pointed out. The structures and principles of valve controlled hydraulic transmission system, pump con-trolled hydraulic transmission system and servo hydraulic transmission system were analyzed, and the advantages and disadvantages of these three kinds of hydraulic transmission system were pointed out on the above basis. Compared with valve controlled hydraulic transmis-sion system and pump controlled hydraulic transmission system, servo hydraulic transmission system has the advantages of good servo per-formance, low cost, high processing quality and precision. Servo hydraulic transmission system is very suitable for fast forging hydraulic press. Finally, the characteristics of three different hydraulic transmission systems were summarized, and servo hydraulic transmission sys-tem was regarded as the main trend of development in fast forging hydraulic drive system.%首先介绍了快锻液压机的国内外研究现状,指出了国内快锻液压机发展的不足。又分别分析了阀控液压传动系统、泵控液压传动系统和伺服液压传动系统的结构和原理,并以此为基础指出了3种液压传动系统的优缺点。相比于阀控液压传动系统和泵控液压传动系统,伺服液压传动系统具有伺服性能好、成本低、加工质量和精度高等优点。伺服液压系统非常适合应用于快锻液压机。最后总结了3种不同的液压传动系统的特点,指出伺服液压传动系统将成为快锻液压机传动系统的主要发展趋势。

  13. Robust Control for Static Loading of Electro-hydraulic Load Simulator with Friction Compensation

    YAO Jianyong; JIAO Zongxia; YAO Bin

    2012-01-01

    Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation.Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems.The tracking performance of the static loading is studied in this paper.Firstly,the nonlinear mathematical models of the hydraulic load simulator are derived,and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance.Considering the effect of the friction,a LuGre model based friction compensation is synthesized,in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded.The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter.Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy.The tracking performance is summarized by a derived theorem.Experimental results are also obtained to verify the high performance nature of the proposed control strategy.

  14. Stabilizing Gap of Pole Electric Arc Furnace Using Smart Hydraulic System

    Maher Yahya Sallom

    2015-03-01

    Full Text Available Electric arc furnace applications in industry are related to position system of its pole, up and down of pole. The pole should be set the certain gap. These setting are needed to calibrate. It is done manually. In this research will proposed smart hydraulic to make this pole works as intelligent using proportional directional control valve. The output of this research will develop and improve the working of the electric arc furnace. This research requires study and design of the system to achieve the purpose and representation using Automation Studio software (AS, in addition to mathematically analyzed and where they were building a laboratory device similar to the design and conduct experiments to study the system in practice and compared with simulation.Experimental tests show that the performance of electro hydraulic closed loop system (EHCLS for position control is good and the output results are good and acceptable. The practical results and simulation using (AS software are clearly convergence. It was concluded that the possibility of the implementation of this project in industrial processes such as electric arc furnaces to control the distance between the pole and smelting molten material in addition to other applications.

  15. Thermal hydraulics and mechanics research on fusion blanket system

    In-vessel components such as Blanket and Divertor in a fusion reactor have a function of exhausting high heat and particle loads in order to maintain the structural soundness of the reactor. In the International Thermonuclear Experimental Reactor called ITER, build by ITER Organization under the framework of collaboration of seven parties including Japan, there are two kinds of blanket systems will be install. One is a shield blanket, which consists of a first wall (FW) and a block module shielding against neutron flux to a vacuum chamber and a superconducting magnet system. The other blanket system is called as a Test Blanket Module (TBM). TBM is a kind of prototype blanket for a fusion power plant and has functions of breeding of tritium (T) and extraction of energy from fusion plasma. TBM consists of FW and T-breeding / neutron (n)-multiplier zone. A concept of TBM developed by JAEA is water-cooled pebble-bed type, which means that FW and other structures are cooled by pressurized high temperature water and T-breeding / n-multiplier zone consists of multiple layers of pebble bed made of T-breeding and n-multiplier material. This paper describes the status of R and Ds on FW and pebble beds from the view of thermo-hydraulics and mechanics. (author)

  16. Apu/hydraulic/actuator Subsystem Computer Simulation. Space Shuttle Engineering and Operation Support, Engineering Systems Analysis. [for the space shuttle

    1975-01-01

    Major developments are examined which have taken place to date in the analysis of the power and energy demands on the APU/Hydraulic/Actuator Subsystem for space shuttle during the entry-to-touchdown (not including rollout) flight regime. These developments are given in the form of two subroutines which were written for use with the Space Shuttle Functional Simulator. The first subroutine calculates the power and energy demand on each of the three hydraulic systems due to control surface (inboard/outboard elevons, rudder, speedbrake, and body flap) activity. The second subroutine incorporates the R. I. priority rate limiting logic which limits control surface deflection rates as a function of the number of failed hydraulic. Typical results of this analysis are included, and listings of the subroutines are presented in appendicies.

  17. The research of the evaluation system for the sealability of hydraulic supports and jacks' seals

    ZHANG Xi; LIU Jie; WANG Zong-yong; LIU Hong-peng

    2011-01-01

    In order to enhance the sealing quality and assemble efficiency of hydraulic supports, the evaluation system for the sealability of the hydraulic support and jack's seals was established through the testing and experimenting technology in respects, such as seals' dimensions, reasonable amounts of compression, sealability, life, resistance to pressure, etc. Through life detecting test of the seal, found the longest life seal ring under the same conditions, and through the reciprocating test of the hydraulic support, found the most appropriate amount of interference between the groove and the seal ring, thus, to decrease the leakage and extend the life span of the hydraulic support.

  18. Thermal-Hydraulic Analysis Tasks for ANAV NPPs in Support of Plant Operation and Control

    L. Batet

    2007-11-01

    Full Text Available Thermal-hydraulic analysis tasks aimed at supporting plant operation and control of nuclear power plants are an important issue for the Asociación Nuclear Ascó-Vandellòs (ANAV. ANAV is the consortium that runs the Ascó power plants (2 units and the Vandellòs-II power plant. The reactors are Westinghouse-design, 3-loop PWRs with an approximate electrical power of 1000 MW. The Technical University of Catalonia (UPC thermal-hydraulic analysis team has jointly worked together with ANAV engineers at different levels in the analysis and improvement of these reactors. This article is an illustration of the usefulness of computational analysis for operational support. The contents presented were operational between 1985 and 2001 and subsequently changed slightly following various organizational adjustments. The paper has two different parts. In the first part, it describes the specific aspects of thermal-hydraulic analysis tasks related to operation and control and, in the second part, it briefly presents the results of three examples of analyses that were performed. All the presented examples are related to actual situations in which the scenarios were studied by analysts using thermal-hydraulic codes and prepared nodalizations. The paper also includes a qualitative evaluation of the benefits obtained by ANAV through thermal-hydraulic analyses aimed at supporting operation and plant control.

  19. Second order sliding control with state dependent gain and its application to a hydraulic drive

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    . However, the very feature of switching about the control target may be undesirable due to finite sampling time and actuator dynamics, and may cause oscillating flow line pressures. This paper discusses a second order sliding controller based on the so-called prescribed convergence algorithm, when used for...... parameters, and finite time convergence properties are considered via homogeneity reasoning. Results demonstrate improved control operation compared to the basic algorithm when implemented for position tracking control of a hydraulic drive....

  20. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    Diepeveen, N. F. B.; Jarquin-Laguna, A.

    2014-12-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximum aerodynamic efficiency for below rated wind speeds. The experiments with a small horizontal-axis wind turbine rotor, coupled to a hydraulic circuit, were conducted at the Open Jet Facility of the Delft University of Technology. In theory, the placement of a nozzle at the end of the hydraulic circuit causes the pressure and hence the rotor torque to increase quadratically with flow speed and hence rotation speed. The rotor torque is limited by a pressure relief valve. Results from the experiments proved the functionality of this passive speed control concept. By selecting the correct nozzle outlet area the rotor operates at or near the optimum tip speed ratio.

  1. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximum aerodynamic efficiency for below rated wind speeds. The experiments with a small horizontal-axis wind turbine rotor, coupled to a hydraulic circuit, were conducted at the Open Jet Facility of the Delft University of Technology. In theory, the placement of a nozzle at the end of the hydraulic circuit causes the pressure and hence the rotor torque to increase quadratically with flow speed and hence rotation speed. The rotor torque is limited by a pressure relief valve. Results from the experiments proved the functionality of this passive speed control concept. By selecting the correct nozzle outlet area the rotor operates at or near the optimum tip speed ratio

  2. Force Control Strategies in Hydraulically Actuated Legged Robots

    Hector Montes

    2016-03-01

    Full Text Available In this contribution, several strategies of force control have been proposed to be implemented and evaluated in ROBOCLIMBER, a quadruped robot of large dimensions. A first group of strategies proposed in this paper is based on impedance control, which is intended to adapt the foot-ground contact forces according to the experimentally specified damping ratio and the undamped natural frequency. A second control strategy of interest for many practical cases is called the parallel force/position control, which has one inner loop position control and two external control loops, one of force and another of position. A third group of control strategies is the posture stabilization for ROBOCLIMBER using the feedback of the ZMP calculation and the position of its legs. Finally, a control strategy for the control of a quasi-static gait using ZMP feedback is proposed and tested by simulation.

  3. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  4. Thermal hydraulics of accelerator driven system windowless targets

    Bruno ePanella

    2015-07-01

    Full Text Available The study of the fluid dynamics of the windowless spallation target of an Accelerator Driven System (ADS is presented. Several target mockup configurations have been investigated: the first one was a symmetrical target, that was made by two concentric cylinders, the other configurations are not symmetrical. In the experiments water has been used as hydraulic equivalent to lead-bismuth eutectic fluid. The experiments have been carried out at room temperature and flow rate up to 24 kg/s. The fluid velocity components have been measured by an ultrasound technique. The velocity field of the liquid within the target region either for the approximately axial-symmetrical configuration or for the not symmetrical ones as a function of the flow rate and the initial liquid level is presented. A comparison of experimental data with the prediction of the finite volume FLUENT code is also presented. Moreover the results of a 2D-3D numerical analysis that investigates the effect on the steady state thermal and flow fields due to the insertion of guide vanes in the windowless target unit of the EFIT project ADS nuclear reactor are presented, by analysing both the cold flow case (absence of power generation and the hot flow case (nominal power generation inside the target unit.

  5. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  6. ADAPTIVE FEED-FORWARD COMPENSATOR FOR HARMONIC CANCELLATION IN ELECTRO- HYDRAULIC SERVO SYSTEM

    YAO Jianjun; WANG Liquan; JIANG Hongzhou; WU Zhenshun; HAN Junwei

    2008-01-01

    Since the dead zone phenomenon occurs in electro-hydraulic servo system, the output of the system corresponding to a sinusoidal input contains higher harmonic besides the fundamental input, which causes harmonic distortion of the output signal. The method for harmonic cancellation based on adaptive filter is proposed. The task is accomplished by generating reference signals with frequency that should be eliminated from the output. The reference inputs are weighted by the adaptive filter in such a way that it closely matches the harmonic. The output of the adaptive filter is a harmonic replica and is injected to the fundamental signal such that the output harmonic is cancelled leaving the desired signal alone, and the total harmonic distortion (THD) is greatly reduced. The weights of filter are adjusted on-line according to the control error by using least-mean-square (LMS) algorithm. Simulation results performed with a hydraulic system demonstrate the efficiency and validity of the proposed adaptive feed-forward compensator (AFC) control scheme.

  7. Design and Simulation of Hydraulic System of Press Machine%压力机液压系统的设计与仿真

    宋晓美; 韩亮

    2014-01-01

    For the problems of the vibration and noise common to hydraulic system of press,the hydraulic and control system applied in the actual production is designed.The principle of the hydraulic system is analyzed and the hydraulic circuit and electric control circuit of the system is simulated by FluidSIM software.%针对压力机液压系统常见的振动及噪声问题,设计了应用于生产实际的压力机液压及控制系统,分析了液压系统原理,并利用FluidSIM软件对该系统的液压回路及电气控制回路进行仿真。

  8. Incorporating Artificial Neural Networks in the dynamic thermal-hydraulic model of a controlled cryogenic circuit

    Carli, S.; Bonifetto, R.; Savoldi, L.; Zanino, R.

    2015-09-01

    A model based on Artificial Neural Networks (ANNs) is developed for the heated line portion of a cryogenic circuit, where supercritical helium (SHe) flows and that also includes a cold circulator, valves, pipes/cryolines and heat exchangers between the main loop and a saturated liquid helium (LHe) bath. The heated line mimics the heat load coming from the superconducting magnets to their cryogenic cooling circuits during the operation of a tokamak fusion reactor. An ANN is trained, using the output from simulations of the circuit performed with the 4C thermal-hydraulic (TH) code, to reproduce the dynamic behavior of the heated line, including for the first time also scenarios where different types of controls act on the circuit. The ANN is then implemented in the 4C circuit model as a new component, which substitutes the original 4C heated line model. For different operational scenarios and control strategies, a good agreement is shown between the simplified ANN model results and the original 4C results, as well as with experimental data from the HELIOS facility confirming the suitability of this new approach which, extended to an entire magnet systems, can lead to real-time control of the cooling loops and fast assessment of control strategies for heat load smoothing to the cryoplant.

  9. Resource-Saving Technique of Hydraulic Calculation of Distributing Gas-Systems

    A. Y. Savastsiyonak

    2014-01-01

    It is possible to consider a hydraulic calculation technique of distributing gas-systems as a combination of factors that influence on the cost of construction and maintenance of gas-distributing system. The paper contains proposal of a new specification of economic distribution of calculated pressure differential in the system sections; optimum initial flow distribution from the point of view of reliability and economy and taking into account linkage of system rings.The program of hydraulic ...

  10. Second Order Sliding Mode Control with Prescribed Convergence Law for Electro-Hydraulic Drives

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.;

    2013-01-01

    This paper discusses the application of second order sliding modes for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The target is to introduce increased tracking- and transient performance compared to conventional linear approaches, without extending the number of...... tuning parameters. The proposed controller utilizes basic component knowledge commonly available from data sheets, as well as pressure-, valve position-, piston position- and velocity measurements. Results demonstrate improved position tracking- and transient performance, compared to a linear control...

  11. Hydraulic and thermal performance assessment of cooling water systems at E.I. Hatch Nuclear Plant

    In July, 1989, the U. S. Nuclear Regulatory Commission issued Generic Letter 89-13, open-quotes Service Water Problems Affecting Safety-Related Equipmentclose quotes. The Generic Letter was issued because of observed operating problems with corrosion, erosion, biological fouling, silting, and protective coating failure in safety-related heat exchangers and associated cooling water piping at several nuclear power plants. The NRC required that utilities with operating nuclear plants establish a plan for comprehensive evaluation of their open cycle Service Water Systems, including: ongoing surveillance and control; testing of safety-related heat exchangers to verify heat transfer capability; inspection and maintenance of piping and water-cooled heat exchangers; confirmation that the service water system is capable of performing its intended function in accordance with the plant design basis; confirmation that maintenance and operating practices, emergency procedures, and training are adequate to ensure that safety-related equipment will perform as intended. As an integral part of the Georgia Power Company response to the Generic Letter, a personal computer-based hydraulic flow model was developed for the Plant Service Water Systems (PSW) on both units of the E. I. Hatch Nuclear Plant (HNP). The Bechtel-developed BALANCE program and PLANTSIM option were selected for this effort. Bechtel's hydraulic network computer program was developed and used successfully for flow balancing at the Limerick Generating Station during initial plant startup. The BALANCE hydraulic network model provides an accurate analytical representation of the Hatch Plant Service Water System on each unit. A summary of program capabilities and modeling assumptions, as well as observations which have been made by comparison of program predictions with test results, is presented here

  12. METHODOLOGY FOR PARAMETER CALCULATION OF DISK BRAKE MECHANISMS WITH HYDRAULIC CONTROL

    O. S. Rukteshel

    2014-11-01

    Full Text Available The paper describes a new methodology for a parameter calculation of a disk brake mechanism with hydraulic control that allows to determine a value of hysteresis losses in a brake at the design stage with high accuracy. A complex analysis for obtaining qualitative and quantitative evaluation of design brake parameter influence on hysteresis value in it is presented in the paper.

  13. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximu

  14. Chapter 2. Mode-switching in Hydraulic Actuator Systems - An Experiment

    Andersen, Torben Ole; Conrad, Finn; Ravn, Anders P.;

    1996-01-01

    Experiments with mode-switching adaptive control of actuators to drive a hydraulic test robot.The research is a cooperation with IT, DTU within the IMCIA Research Programme supported by the Danish Technical Research Council, STVF.......Experiments with mode-switching adaptive control of actuators to drive a hydraulic test robot.The research is a cooperation with IT, DTU within the IMCIA Research Programme supported by the Danish Technical Research Council, STVF....

  15. Simulation research on hydraulic transformer system fault of 300 MN die forging hydraulic press%300MN模锻液压机液压变压系统故障仿真研究

    刘石梅; 谭建平; 陈晖

    2011-01-01

    In order to analyze the fault of hydraulic transformer which failed to work in long-stroke pressurizing because of its too long return time, a simulation model about hydraulic transformer system of 300 MN forging hydraulic press was established based on AMESim software. The influence of opening height of drain valves and pressure of liquidfilled tank on the return time of hydraulic transformer was simulated quantitatively. The condition, which would result in fault, was obtained and used to analyze the actual fault. The result shows that the fault can be eliminated through reducing the space between the cam plunger and drain valve stem by 4. 6 mm.Keywords: die forging hydraulic press; hydraulic transformer; simulationDesign and manufacture of multi-transfer hydraulic press with resistant-bias loading and synchronization mechanismAbstract: Multi-transfer hydraulic press, a kind of hydraulic equipment with the compact structure and high-efficiency,is widely used in sheet metal shaping and forming operations in the developed countries. To the problem appeared in multi-transfer hydraulic press, such as the wide table, serious bias loading and high-precision forming etc., a four-column multi-transfer hydraulic press developed for the forming of auto parts and components was designed and introduced. Through the research and analysis to the mainframe structure style and closed loop electric-hydraulic control system, the stationary motion performances as well as the integrated performances of equipment were improved and the resistant-bias loading capacity was enhanced in order to meet the high accuracy and compaction requirements.%针对300 MN模锻液压机实际生产中存在的变压器回程时间过长而无法长行程加压故障,基于AMESim软件建立了变压系统的仿真模型并进行了故障仿真,定量地得到了变压器操纵分配器排水阀开启度与充液罐压力对回程时间的影响规律.推导出变压器发生无法长行程加压故

  16. Control rod drive system

    The present invention concerns an electromotive driving-type control rod driving system of a BWR type reactor, for which sliding resistance (friction) test can be performed of a movable portion of the control rod driving mechanisms. Namely, a hydraulic pressure control unit has following constitutions in addition to a conventional constitution as a sliding resistance test performing function. (1) A restricting valve is disposed downstream of the scram valve of scram pipelines to control flow rate and pressure of pressurized water flown in the pipelines. (2) A pressure gauge detects a pressure between the scram valve and the restricting valve. (3) A flow meter detects the flow rate of pipelines controlled by the restricting valve. (4) A recording pressure detector detects the pressure at the downstream of the restricting valve. (5) The recording device is attached when the sliding resistant test is performed for tracing the pressure measured by the pressure detection device. Further, the scram valve sends electric signals to a central operation chamber when it is fully closed. The central operation chamber has a function of fully opening the restricting valve by way of the electric signals. (I.S.)

  17. Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator

    Han Songshan

    2015-02-01

    Full Text Available A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command, but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output (MISO fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators. Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties.

  18. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author)

  19. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  20. Parameters Matching and Control Method of Hydraulic Hybrid Vehicles with Secondary Regulation Technology

    SUN Hui; JIANG Jihai; WANG Xin

    2009-01-01

    Hydraulic hybrid vehicles (HHV) with secondary regulation technology has the potential of improving fuel economy by operating the engine in the optimum efficiency range and making use of regenerative braking. Hydrostatic transmission technology has the advantage of higher power density and the ability to accept the high rates and high frequencies of charging and discharging, both of which are not favorable for batteries, but the lower energy density requires special power matching design and control strategy to coordinate all the powertrain components in an optimal manner. A multi-objective optimization method is proposed to distinguish the components size values of HHV by considering the requirements of driving cycles and technology aspects. The regenerative braking strategy and energy control strategy based on the optimized HHV is proposed to recovery the braking energy and distribute the regenerated braking energy. Simulation results show that by taking the optimized configuration of HHV, adopting the regenerative braking strategy and energy control strategy are helpful to improve the system efficiency and fuel economy of HHV under urban driving cycles.

  1. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  2. Tractor Hydraulics. A Teaching Reference.

    American Association for Vocational Instructional Materials, Athens, GA.

    The manual was developed to help provide a better understanding of how and why hydraulic principles serve the purposes of weight reduction, increase of physical effort, and more precise control to machines of all types. The four components that are necessary to have a workable hydraulic system--a reservoir, a pump, a valve, and a motor (cylinder)…

  3. Experimental Study of a Small Scale Hydraulic System for Mechanical Wind Energy Conversion into Heat

    Tadas Zdankus

    2016-07-01

    Full Text Available Significant potential for reducing thermal energy consumption in buildings of moderate and cold climate countries lies within wind energy utilisation. Unlike solar irradiation, character of wind speeds in Central and Northern Europe correspond to the actual thermal energy demand in buildings. However, mechanical wind energy undergoes transformation into electrical energy before being actually used as thermal energy in most wind energy applications. The study presented in this paper deals with hydraulic systems, designed for small-scale applications to eliminate the intermediate energy transformation as it converts mechanical wind energy into heat directly. The prototype unit containing a pump, flow control valve, oil tank and piping was developed and tested under laboratory conditions. Results of the experiments showed that the prototype system is highly efficient and adjustable to a broad wind velocity range by modifying the definite hydraulic system resistance. Development of such small-scale replicable units has the potential to promote “bottom-up” solutions for the transition to a zero carbon society.

  4. Discrete Learning Control with Application to Hydraulic Actuators

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Hansen, Michael R.

    2015-01-01

    In this paper the robustness of a class of learning control algorithms to state disturbances, output noise, and errors in initial conditions is studied. We present a simple learning algorithm and exhibit, via a concise proof, bounds on the asymptotic trajectory errors for the learned input and th...

  5. Hydraulic simulation of the systems of a nuclear power plant for charges calculation in piping

    This work presents a general description of the methodology used by the ENACE S.A. Fluids Working Group for hydraulics simulation of a nuclear power plant system for the calculation charges in piping. (Author)

  6. Use of sensitivity-information for the adaptive simulation of thermo-hydraulic system codes

    Within the scope of this thesis the development of methods for online-adaptation of dynamical plant simulations of a thermal-hydraulic system code to measurement data is depicted. The described approaches are mainly based on the use of sensitivity-information in different areas: statistical sensitivity measures are used for the identification of the parameters to be adapted and online-sensitivities for the parameter adjustment itself. For the parameter adjustment the method of a ''system-adapted heuristic adaptation with partial separation'' (SAHAT) was developed, which combines certain variants of parameter estimation and control with supporting procedures to solve the basic problems. The applicability of the methods is shown by adaptive simulations of a PKL-III experiment and by selected transients in a nuclear power plant. Finally the main perspectives for the application of a tracking simulator on a system code are identified.

  7. Optimal hydraulic design of new-type shaft tubular pumping system

    Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG κ-ε turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m3/s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.

  8. Teleoperated Control of Hydraulic Equipment for Hazardous Material Handling

    Fleming, Michael Ryals

    2003-01-01

    Traditionally, teleoperation has been an expensive and lengthy process. This thesis shows that by incorporating off-the-shelf technology into a modular design, teleoperation can be developed rapidly and inexpensively. Within six months and a hardware cost of $20k, a group of Virginia Tech students and faculty converted a Case CX-160 excavator to teleoperated control. With full wireless functionality of the excavator's six degrees-of-freedom, ignition, and remote cameras at 3000 ft., the te...

  9. Effects by sea wave on thermal hydraulics of marine reactor system

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yao, Toshiaki; Inoue, Kimio

    1995-08-01

    This paper describes the experiments of the first Japanese nuclear ship `Mutsu`, to investigate the effects of sea wave on the thermal hydraulics of marine reactor system while cruising through various sea conditions. The experimental data were analyzed in time-domain by RETRAN-02/GRAV code. This code was modified so as to simulate the ship motion effect on reactor thermal hydraulics. The data were also analyzed in frequency domain by Blackman-Turkey method for the calculation of the spectrum and response function. The experiments involving ship maneuvering were performed by cruising on different wave heights, as well as wave directions in the northern Pacific ocean. From the experiments, vertical acceleration due to ship motion was found to induce direct variation of water levels in the SGs and the pressurizer. The water level variations were largest in the head wave, but smallest in the following wave. On the other hand, the following wave caused greater variation of the reactor power when the feed back control for the shaft revolution speed was used. Mechanism of response of water levels and reactor power with respect to the external forces are discussed. The response function (gain or phase shift) of reactor power to steam flow variation by the wave during cruising at rough sea condition was found to be roughly that without the work of control rod. (author).

  10. Visual and intelligent transients and accidents analyzer based on thermal-hydraulic system code

    Full text of publication follows: Many thermal-hydraulic system codes were developed in the past twenty years, such as RELAP5, RETRAN, ATHLET, etc. Because of their general and advanced features in thermal-hydraulic computation, they are widely used in the world to analyze transients and accidents. But there are following disadvantages for most of these original thermal-hydraulic system codes. Firstly, because models are built through input decks, so the input files are complex and non-figurative, and the style of input decks is various for different users and models. Secondly, results are shown in off-line data file form. It is not convenient for analysts who may pay more attention to dynamic parameters trend and changing. Thirdly, there are few interfaces with other program in these original thermal-hydraulic system codes. This restricts the codes expanding. The subject of this paper is to develop a powerful analyzer based on these thermal-hydraulic system codes to analyze transients and accidents more simply, accurately and fleetly. Firstly, modeling is visual and intelligent. Users build the thermalhydraulic system model using component objects according to their needs, and it is not necessary for them to face bald input decks. The style of input decks created automatically by the analyzer is unified and can be accepted easily by other people. Secondly, parameters concerned by analyst can be dynamically communicated to show or even change. Thirdly, the analyzer provide interface with other programs for the thermal-hydraulic system code. Thus parallel computation between thermal-hydraulic system code and other programs become possible. In conclusion, through visual and intelligent method, the analyzer based on general and advanced thermal-hydraulic system codes can be used to analysis transients and accidents more effectively. The main purpose of this paper is to present developmental activities, assessment and application results of the visual and intelligent

  11. Experience with subsea well control systems

    Coltharp, E.D.; Coffelt, D.E.

    1981-01-01

    Since 1969, Conoco Inc. has installed ten offshore wells and one land test of subsea completion systems. These wells consist of four single zone oil wells plus one water injection well with Thru Flowline (TFL) pumpdown capability and three single zone gas wells plus three dual zone gas wells utilizing the ''Plain Jane'' wellheads without TFL capability. The control systems for these wells have varied from an electro-hydraulic sequential system to a straight discrete hydraulic system. This paper deals with the design, installation, and operational problems encountered and the remedial procedures taken to solve the problems to date.

  12. 电液控制系统用电磁铁的动态特性研究%Research on the Dynamic Characteristics of Electromagnet Used in Hydraulic Control System

    夏文秘

    2015-01-01

    Taking an electromagnet usage as the studying object, according to the classical design theory, a intrinsic safety type electromagnet used in hydraulic system was designed. MAXWELL was used to make dynamic simulation to the electromagnet. An experimental platform was set up to do dynamic characteristic test. The experimental results are in good agreement with the simulation results, so the electromagnet performance is better, but still needed to improve.%通过分析电磁铁的使用状况,依据经典设计理论设计出一款电液系统用本质安全型电磁铁,利用MAXWELL对所设计电磁铁进行了动态特性仿真,并搭建实验平台进行了动态特性试验。试验结果与仿真结果吻合,电磁铁性能较好,但仍存在需改进的问题。

  13. Hydraulic resistance partitioning between shoot and root system and plant water status of Haloxyolon ammodendron growing at sites of contrasting soil texture

    2010-01-01

    Hydraulic resistance components and water relations were studied on Haloxyolon ammoden-dron,a small xeric tree,growing at sites significantly differed in soil texture.Soil water content,leaf water potential(ψl),xylem water potential(ψx),root water potential(ψroot),leaf transpiration rate(TR) and stomatal conductance(gs) were measured at the two sites during the growing season of 2005 and 2006.Leaf spe-cific hydraulic resistance(Rplant) during the whole growing season,hydraulic resistance of plants(Rp),shoots(Rshoot) and roots(Rroot) in the August of both years were calculated and expressed on leaf area basis.The results showed the proportion of the hydraulic resistance of the aerial part(Rshoot) to the Rp was the same to the proportion of the hydraulic resistance of the soil part(Rroot) to the Rp,indicating that both parts were equivalent important to plant water hydraulic system from soil to leaf.Positive significant corre-lations were found between Rp and Rroot,suggesting that root hydraulics resistance was a major determinant of plant hydraulic resistance(Rp) and transpiration rate.The integrated effect of stomatal control,hy-draulic regulation and morphology adjustment enabled plants at heavy soil site surviving the extreme water deficit period.

  14. Development of semi-active hydraulic damper as active interaction control device to withstand external excitation

    Ming-Hsiang Shih; Wen-Pei Sung

    2014-02-01

    Semi-automatic control systems have the characteristics of being adaptable and requiring low energy. The objective of this research was to study the performance of an improved DSHD (Displacement Semi-Active Hydraulic Damper) by converting it to AIC (Active Interaction Control Device) with the addition of an accumulator. The prototype was tested using full-scale elements for examining the structural displacement, and typical responses of the interacting interface element developed in this research, the pressure variation of the pressure storage device, and the energy dissipation hysteresis loop when the structure installed with these elements is subjected to external force of various magnitude. The laboratory results confirm that the device developed in this research is capable of applying the energy dissipation characteristics of DSHD so that these elements are appropriate for developing the proposed AIC. The mutual interaction between the subordinate structure and the main structure to be protected is capable of transforming the quake energy applied to the main structure to the subordinate structure so that the objective of minimizing the deformation of main structural can be achieved.

  15. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.

  16. How far can various control options take us in terms of increased hydraulic capacity under wet weather conditions?

    Sharma, Anitha Kumari; Guildal, T.; Thomsen, H. A. R.; Mikkelsen, Peter Steen

    Many modelling studies have demonstrated that the hydraulic capacity of the WWTP can be improved by introducing various real time control options, however few studies have demonstrated how effective these controls are in the real world.......Many modelling studies have demonstrated that the hydraulic capacity of the WWTP can be improved by introducing various real time control options, however few studies have demonstrated how effective these controls are in the real world....

  17. PLC程序控制研配液压机的结构设计%Structure Design of Bedding-in Hydraulic Press Controlled by PLC Program

    刘泽民; 付丽; 敖茜; 李慧

    2014-01-01

    The design scheme of bedding-in hydraulic press controlled by PLC was introduced. The bedding-in process,struc-ture,hydraulic system and PLC control process of the bedding-in hydraulic press were analyzed. The program significantly improves the control precision and production efficiency.%介绍了应用PLC技术的研配液压机的设计方案,对该机的研配过程、结构、液压系统和PLC控制过程进行了分析和说明。该方案的提出显著提高了控制精度和生产效率。

  18. Groundwater pollution control : a challenge to hydraulic research

    Kobus, Helmut

    1993-01-01

    Groundwater constitutes a major natural resource for drinking water supply. The serious deterioration of groundwater quality observed in all industrialized and densely populated countries can be considered as an unspectacular, but ubiquitous "man-caused environmental disaster". Groundwater management has to match the increasing demands of drinking water supply (and other uses) with the constraints of the natural groundwater system with respect to both quantity and quality. In this paper, grou...

  19. FORCE FEEDBACK MODEL OF ELECTRO-HYDRAULIC SERVO TELE-OPERATION ROBOT BASED ON VELOCITY CONTROL

    2008-01-01

    The tele-operation robotic system which consists of an excavator as the construction robot, and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas. In order to accomplish a precise task, the operator needs to feel a realistic sense of task force brought about from a feedback force between the fork glove of slave robot and unfamiliar environment. A novel force feedback model is proposed based on velocity control of cylinder to determine environment force acting" on fork glove. Namely, the feedback force is formed by the error of displacement of joystick with velocity and driving force of piston, and the gain is calculated by the driving force and threshold of driving force of hydraulic cylinder. Moreover, the variable gain improved algorithm is developed to overcome the defect for grasping soft object. Experimental results for fork glove freedom of robotic system are provided to demonstrate the developed algorithm is available for grasping soft object.

  20. Hybrid Control System for the ATLAS Facility

    A thermal-hydraulic integral effect test (IET) loop, advanced thermal-hydraulic test loop for accident simulation (ATLAS), has been constructed in the Korea Atomic Energy Research Institute (KAERI). For the data acquisition and control system, hybrid control system (HCS) was adopted to enhance the integrated performance of demanding process control application for acquiring of experimental data. The whole feature of the data acquisition and control system consists of 1 set of the HCS for headware connection, 1 server station for signal processing schemes, 1 engineering work station (EWS) for control logics, and 3 operator interface station (OPS) for human-machine interface. The total number of signals for the data acquisition and the system control of the atlas facility is up to about 2010 channels, which are distributed in 16 chasses which are installed in 10 cabinets. The main focus of this paper is to present the technical configuration of the HCS of the atlas facility

  1. Manufacturing Facility To Open Aluminium Capsule Cupusing in Hydraulic Rabbit System

    Long time capsule was using in hydraulic rabbit system RSG-GAS is made from polyethylene. This capsule has short time irradiation (maximum 1 hour). For target was needed long irradiation, we use new capsule made from aluminium. Capsule aluminium is consisting of capsule body and capsule cup. Because aluminium capsule has higher activity than polyethylene capsule, so to open this capsule must be doing in the hot cell rabbit. For opening capsule cup needed new facility. Main component of this this facility are support for motor, support for weight, DC motor with low speed about rpm, rod and weight, 2 clamps and control system. Position of this facility is horizontal. To operating this facility one of clamp handle capsule body and the other clamp handle capsule cup. Using DC motor, the capsule body is turned and capsule cup out from body

  2. Directional hydraulic fracturing to control hard-roof rockburst in coal mines

    Fan Jun; Dou Linming; He Hu; Du Taotao; Zhang Shibin; Gui Bing; Sun Xinglin

    2012-01-01

    Hard roof is the main factor that induces rock-burst.In view of the present obvious weakness of control measures for hard roof rockburst in domestic collieries,the mechanism and field application of directional hydraulic fracturing technology for rock-burst prevention have been investigated in this paper using theoretical analysis and numerical simulation.The results show that the weighting span of the main roof and the released kinetic energy as well as the total elastic energy decreased greatly after the directional fracturing of hard roof with the mining progression,thereby reducing the rockburst hazard degree to coal body.The directional hydraulic fracturing technology was carried out in 6305 working face of Jisan Coal Mine to prevent rockburst.Field practices have proved that this technology is much simpler and safer to operate with better prevention effect compared with blasting.By optimizing the operation procedures and developing a new technology of automated high-pressure delivery pipe,the maximum fracturing radius now reaches more than 9 m and the borehole depth exceeds 20 m.Additionally,drilling cutting method was applied to monitor the stress of the coal mass before and after the fracturing,and the drill cuttings dropped significantly which indicates that the burst prevention effect of directional hydraulic fracturing technology is very remarkable.The research results of this paper have laid a theoretical and practical foundation for the widespread application of the directional hydraulic fracturing technology in China.

  3. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    Enrique Vidal

    2013-08-01

    Full Text Available The Wavestar Wave Energy Converter (WEC is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO system, converting the wave induced motion of the floats into a steady power output to the grid. In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC is created, allowing near loss free discrete force control. This paper presents a complete PTO system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical power is achievable for all relevant sea conditions.

  4. Resource-Saving Technique of Hydraulic Calculation of Distributing Gas-Systems

    A. Y. Savastsiyonak

    2007-01-01

    Full Text Available It is possible to consider a hydraulic calculation technique of distributing gas-systems as a combination of factors that influence on the cost of construction and maintenance of gas-distributing system. The paper contains proposal of a new specification of economic distribution of calculated pressure differential in the system sections; optimum initial flow distribution from the point of view of reliability and economy and taking into account linkage of system rings.The program of hydraulic calculation of low-pressure distributing gas-systems has been developed. While calculating combined systems consisting of steel and polyethylene gas lines reduction in discounted expenses constitutes up to 4 %.

  5. Hydraulic characteristics of the N Reactor core and reactor cooling system

    In conjunction with the NUSAR program, the need was recognized for well substantiated pressure drop correlations for the N Reactor core to support in-depth safety analysis consistent with currently-available technology. Additionally, it was considered desirable to reconfirm the hydraulic characteristics of the reactor coolant system in the light of improved understanding of the hydraulic features of the current reactor fuel loading. The report summarizes the results of laboratory tests and analysis accomplished to meet the above objectives

  6. A hydraulic test stand for demonstrating the operation of Eaton’s energy recovery system (ERS)

    Wang, Meng; Danzl, Per; Mahulkar, Vishal; Piyabongkarn, Damrongrit (Neng); Brenner, Paul

    2016-01-01

    Fuel cost represents a significant operating expense for owners and fleet managers of hydraulic off-highway vehicles. Further, the upcoming Tier IV compliance for off-highway applications will create further expense for after-treatment and cooling. Solutions that help address these factors motivate fleet operators to consider and pursue more fuelefficient hydraulic energy recovery systems. Electrical hybridization schemes are typically complex, expensive, and often do not satisfy customer pay...

  7. Application of flow network models of SINDA/FLUINT{sup TM} to a nuclear power plant system thermal hydraulic code

    Chung, Ji Bum [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Jong Woon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUINT{sup TM} has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA). 5 refs., 10 figs. (Author)

  8. Complexity Management to design and produce customerspecific hydraulic controls for mobile applications

    Krüßmann, Martin; Tischler, Karin

    2016-01-01

    Complexity management is the key to success for mobile machinery where the variety of customers and applications requires individual solutions. This paper presents the way Bosch Rexroth supports each OEM with hydraulic controls – from specification and conception towards application and production. It gives examples how platforms and processes are optimized according to the customer needs. The demand for flexible, short-term deliveries is met by an agile production with the technologies of In...

  9. Comparison between InfoWorks hydraulic results and a physical model of an urban drainage system.

    Rubinato, Matteo; Shucksmith, James; Saul, Adrian J; Shepherd, Will

    2013-01-01

    Urban drainage systems are frequently analysed using hydraulic modelling software packages such as InfoWorks CS or MIKE-Urban. The use of such modelling tools allows the evaluation of sewer capacity and the likelihood and impact of pluvial flood events. Models can also be used to plan major investments such as increasing storage capacity or the implementation of sustainable urban drainage systems. In spite of their widespread use, when applied to flooding the results of hydraulic models are rarely compared with field or laboratory (i.e. physical modelling) data. This is largely due to the time and expense required to collect reliable empirical data sets. This paper describes a laboratory facility which will enable an urban flood model to be verified and generic approaches to be built. Results are presented from the first phase of testing, which compares the sub-surface hydraulic performance of a physical scale model of a sewer network in Yorkshire, UK, with downscaled results from a calibrated 1D InfoWorks hydraulic model of the site. A variety of real rainfall events measured in the catchment over a period of 15 months (April 2008-June 2009) have been both hydraulically modelled and reproduced in the physical model. In most cases a comparison of flow hydrographs generated in both hydraulic and physical models shows good agreement in terms of velocities which pass through the system. PMID:23863430

  10. Guiding-controlling technology of coal seam hydraulic fracturing fractures extension

    Zhai Cheng; Li Min; Sun Chen; Zhang Jianguo; Yang Wei; Li Quangui

    2012-01-01

    Aiming at the uncontrollable problem of extension direction of coal seam hydraulic fracturing,this study analyzed the course of fractures variation around the boreholes in process of hydraulic fracturing,and carried out the numerical simulations to investigate the effect of artificial predetermined fractures on stress distribution around fractured holes.The simulation results show that partial coal mass occurs relatively strong shear failure and forms weak surfaces,and then fractures extended along the desired direction while predetermined fractures changed stress distribution.Directional fracturing makes the fractures link up and the pressure on coal mass is relieved within fractured regions.Combining deep hole controlling blasting with hydraulic fracturing was proposed to realize the extension guiding-controlling technology of coal seam fractures.Industrial experiments prove that this technology can avoid local stress concentration and dramatically widen the pressure relief scope of deep hole controlling blasting.The permeability of fractured coal seam increased significantly,and gas extraction was greatly improved.Besides,regional pressure relief and permeability increase was achieved in this study.

  11. Application of Multi-cylinders Synchronization Hydraulic Servo Control in the Coil-Press%多缸同步液压伺服控制系统在线圈压床的应用

    陈彪; 姜新生

    2011-01-01

    介绍了多缸同步液压伺服控制系统在线圈压床中的组成、控制原理,及在线圈压床中的实际应用效果.%The components of multi-cylinders synchronization hydraulic servo control in the coil-press and controlled theory of hydraulic servo control system were introduced. Its infect of actual used in the coil-press was presented.

  12. Plant hydraulic controls over ecosystem responses to climate-enhanced disturbances

    Mackay, D. S.; Ewers, B. E.; Reed, D. E.; Pendall, E.; McDowell, N. G.

    2012-12-01

    Climate-enhanced disturbances such as drought and insect infestation range in severity, contributing minor to severe stress to forests including forest mortality. While neither form of disturbance has been unambiguously implicated as a mechanism of mortality, both induce changes in water, carbon, and nutrient cycling that are key to understanding forest ecosystem response to, and recovery from, disturbance. Each disturbance type has different biophysical, ecohydrological, and biogeochemical signatures that potentially complicate interpretation and development of theory. Plant hydraulic function is arguably a unifying control over these responses to disturbance because it regulates stomatal conductance, leaf biochemistry, carbon (C) uptake and utilization, and nutrient cycling. We demonstrated this idea by focusing on water and C, including non-structural (NSC), resources, and nitrogen (N) uptake across a spectrum of forest ecosystems (e.g., northern temperate mixed forests, lodgepole pine forests in the Rocky Mountains, and pinon pine - juniper woodlands in New Mexico) using the Terrestrial Regional Ecosystem Exchange Simulator (TREES). TREES is grounded in the biophysics of water movement through soil and plants, respectively via hydraulic conductivity of the soil and cavitation of xylem. It combines this dynamic plant hydraulic conductance with canopy biochemical controls over photosynthesis, and the dynamics of structural and non-structural carbon through a carbon budget that responds to plant hydraulic status. As such, the model can be used to develop testable hypotheses on a multitude of disturbance and recovery responses including xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, respiration, and allocation to defense compounds. For each of the ecosystems we constrained and evaluated the model with allometry, sap flux and/or eddy covariance data, leaf gas exchange measurements, and vulnerability to cavitation data

  13. Robust Non-Chattering Observer Based Sliding Control Concept for Electro-Hydraulic Drives

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    This paper presents an observer-based sliding mode control concept with chattering reduction, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD's). The proposed control concept requires only common data sheet information and no knowledge on load...... cylinder asymmetries. It is shown that limited attention can be given to bounds on parameter estimates, that chattering is reduced and the number of tuning parameters is reduced to the level seen in conventional PID schemes. Furthermore, simulation results demonstrate a high level of robustness when...

  14. Summary and evaluation of available hydraulic property data for the Hanford Site unconfined aquifer system

    Improving the hydrologic characterization of the Hanford Site unconfined aquifer system is one of the objectives of the Hanford Site Ground-Water Surveillance Project. To help meet this objective, hydraulic property data available for the aquifer have been compiled, mainly from reports published over the past 40 years. Most of the available hydraulic property estimates are based on constant-rate pumping tests of wells. Slug tests have also been conducted at some wells and analyzed to determine hydraulic properties. Other methods that have been used to estimate hydraulic properties of the unconfined aquifer are observations of water-level changes in response to river stage, analysis of ground-water mound formation, tracer tests, and inverse groundwater flow models

  15. Determination and discussion hydraulic retention time in membrane bioreactor system

    2002-01-01

    Based on the microorganism kinetic model, the formulafor computing hydraulic retention time in a membrane bioreactorsystem (MBR) is derived. With considering HRT as an evaluationindex a combinational approach was used to discuss factors whichhave an effect on MBR. As a result, the influencing factors werelisted in order from strength to weakness as: maximum specificremoval rate K, saturation constant Ks, maintenance coefficient m,Moreover, the formula was simplified, whose parameters wereexperimentally determined in petrochemical wastewater treatment. The simplified formula is (=1.1((1/(-1)(Ks+S)/KX0, forpetrochemical wastewater treatment K and Ks equaled 0.185 and154.2, respectively.

  16. Modelling and Control of a Complementary Energy Recuperation System for Mobile Working Machines

    Hugo, Anton; Pettersson, Karl; Heybroek, Kim; Krus, Petter

    2013-01-01

    The concept of hybrid technologies for mobile working machines has gained increased attention in recent years. This paper deals with a parallel hybrid system for energy recuperation based on a two-machine hydraulic transformer. The system can be connected hydraulically to an existing hydraulic circuit as a complementary add-on system. The linear analysis of the system visualises the control difficulties coming from a low inertia, slow control dynamics of the machines and the non-linear stick-...

  17. Crosshole investigations - Details of the construction and operation of the hydraulic testing system

    The Crosshole Programme, part of the international Stripa Project is designed to evaluate the effectiveness of various remote-sensing techniques in characterizing a rock mass around a repository. A multidisciplinary approach has been adopted in which various geophysical, mapping and hydrogeological methods are used to determine the location and characteristics of significant features in the rock. The Programme utilises six boreholes drilled in a fan array from the 360 metre level in the Stripa Mine, Sweden. The hydrogeological component of the work uses single and crosshole testing methods, including sinusoidal pressure testing, to locate fractures and characterize groundwater movement within them. Crosshole methods use packers to isolate portions of two boreholes which both intersect a significant feature in the rock mass. Hydraulic signals are generated in one isolated section and received in the other borehole. This report describes the design and operation of the computer-controlled system which automatically performs the hydrogeological tests. (authors)

  18. ADAPTIVE HARMONIC CANCELLATION APPLIED IN ELECTRO-HYDRAULIC SERVO SYSTEM WITH ANN

    Yao Jianjun; Wu Zhenshun; Han Junwei; Yue Donghai

    2004-01-01

    The method for harmonic cancellation based on artificial neural network (ANN) is proposed. The task is accomplished by generating reference signal with frequency that should be eliminated from the output. The reference input is weighted by the ANN in such a way that it closely matches the harmonic. The weighted reference signal is added to the fundamental signal such that the output harmonic is cancelled leaving the desired signal alone. The weights of ANN are adjusted by output harmonic, which is isolated by a bandpass filter. The above concept is used as a basis for the development of adaptive harmonic cancellation (AHC) algorithm. Simulation results performed with a hydraulic system demonstrate the efficiency and validity of the proposed AHC control scheme.

  19. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  20. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction?

    Schuldt, Bernhard; Knutzen, Florian; Delzon, Sylvain; Jansen, Steven; Müller-Haubold, Hilmar; Burlett, Régis; Clough, Yann; Leuschner, Christoph

    2016-04-01

    Climate warming will increase the drought exposure of many forests world-wide. It is not well understood how trees adapt their hydraulic architecture to a long-term decrease in water availability. We examined 23 traits characterizing the hydraulic architecture and growth rate of branches and the dependent foliage of mature European beech (Fagus sylvatica) trees along a precipitation gradient (855-594 mm yr(-1) ) on uniform soil. A main goal was to identify traits that are associated with xylem efficiency, safety and growth. Our data demonstrate for the first time a linear increase in embolism resistance with climatic aridity (by 10%) across populations within a species. Simultaneously, vessel diameter declined by 7% and pit membrane thickness (Tm ) increased by 15%. Although specific conductivity did not change, leaf-specific conductivity declined by 40% with decreasing precipitation. Of eight plant traits commonly associated with embolism resistance, only vessel density in combination with pathway redundancy and Tm were related. We did not confirm the widely assumed trade-off between xylem safety and efficiency but obtained evidence in support of a positive relationship between hydraulic efficiency and growth. We conclude that the branch hydraulic system of beech has a distinct adaptive potential to respond to a precipitation reduction as a result of the environmental control of embolism resistance. PMID:26720626

  1. OPERATIONAL FAULT DIAGNOSIS IN INDUSTRIAL HYDRAULIC SYSTEMS THROUGH MODELING THE INTERNAL LEAKAGE OF ITS COMPONENTS

    P. Athanasatos

    2013-01-01

    Full Text Available In this study, a model of a high pressure hydraulic system was developed using the bond graph method to investigate the effect of the internal leakage of its main components (pump, cylinder and 4/2 way valve on the operational characteristics of the system under various loads. All the main aspects of the hydraulic circuit (like the internal leakages, the compressibility of the fluid, the hydraulic pressure drop, the inertia of moving masses and the friction of the spool were taken into consideration. The results of this modeling were compared with the experimental data taken from the literature and from an actual test platform installed in the laboratory. Modeling and experimental data curves correlate very well in form, magnitude and response times for all the system’s main parameters. This proves that the present method can be used to accurately model the response and operation of hydraulic systems and can thus be used for operational fault diagnosis in many cases, especially in simulating fault scenarios when the defective component is not obvious. This is very important in industrial production systems where unpredictable shutdowns of the hydraulic machinery have a considerable negative economic impact on cost.

  2. Design, Optimization and Analysis of Hydraulic Soft Yaw System for 5 MW Wind Turbine

    Stubkier, Søren; Pedersen, Henrik C.

    2011-01-01

    reduction in fatigue and extreme loads to the yaw system and rotor shaft are possible, when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. The duty cycles, based on the...

  3. Role of fracture zones in controlling hydraulic head and groundwater flow - experience from Site Characterization Program in Finland

    The preliminary site investigations for the final disposal of HLW produced by TVO have been carried out during 1987-1992 in five areas. All the areas consist of Precambrian crystallite bedrock. The aim of these studies has been to identify and characterize geological structures, especially fractures and fracture zones with high hydraulic conductivity in order to study groundwater flow phenomena. Measured values of hydraulic head in packed-off sections of the boreholes have produced valuable information about the existence of hydraulically conductive fracture zones and their effects on spatial changes in hydraulic head and groundwater flow. The aim of this paper is to present qualitatively, without numerical simulations, how some main fracture zones control hydraulic head and groundwater flow in Romuvaara investigation area in Kuhmo, Finland

  4. Final design of a free-piston hydraulic advanced Stirling conversion system

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  5. Final design of a free-piston hydraulic advanced Stirling conversion system

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  6. Development study on hydraulic three-dimensional seismic isolation system applied to advanced nuclear power plant. Development study on hydraulic rocking suppression system

    Three-dimensional (3D) seismic isolation devices have been developed for the base isolation system of the Fast Breeder Reactor (FBR) that is an advanced nuclear reactor power plant building. The developed seismic isolation system consists of the hydraulic type vertical springs with rocking suppression mechanism and the laminated rubber bearings for horizontal direction. The isolation performances, i.e. natural period, damping, and rocking-suppression, have already been evaluated by the technical feasibility study and performance tests on a system which consists of down-sized devices on the shaking table, but in the seismic simulation on the real size building with this system, high hydraulic pressure was generated by rocking-suppression device under an extremely large seismic motion. In this paper, it is reported the frictional characteristics on high hydraulic pressure condition from the experiments on the 1/2 size of real device. To improve the damping performance of rocking-suppression, the orifice was added to the cylinder. At first the linear seismic simulation model of the real size system was constructed and damping coefficient was optimized by using that linear model. Finally, the detailed nonlinear simulation model was constructed, and time history analysis under simultaneous horizontal and vertical seismic motion was carried out, and the damping performance of rocking-suppression device was verified. (author)

  7. Program control of edge pressing system for sheet metal forming hydraulic press%薄板成形液压机压边系统的程序控制

    魏湘; 陆红; 李秀珠

    2013-01-01

    A programmable hydraulic deep drawing edge pressing design has been introduced in the text. By regulating the output pressure of four-corner edge pressing cylinder via program, the reasonable flowing deformation has been occurred to the plastic sheet metal. Thus in this way, the hydraulic press realizes the follow-up regulation of the deep drawing technology. It suits for the manufacture of the modern automotive and aviation industry sheet metal. It can improve the deep drawing technology greatly.%介绍了一种可编程的液压拉深压边设计.以程序调控四角压边缸的输出压力,使塑性金属板料进行合理“流变”,从而赋予液压机实现拉深成形工艺的随动调控.

  8. Hydraulic design optimization for hollow fiber filter system

    An analytical model has been developed to describe hydraulic characteristics of a hollow fiber membrane filter (HFF) for condensate purification in BWR power plants. Using this model, a module structure was proposed to minimize pressure drop at the beginning of HFF operation. That is, given flow rate of a module, both dimensions of the inner diameter and the length of a single fiber membrane were designed to have optimal values, giving minimum volume for the module. The mechanism of Fe ion crystallization on HFF surface which determines operation life time was clarified and a countermeasure against it was developed. Precoating of amorphous iron crud effectively inhibited crystallization. Taking account of the crystallization, a simulation code was developed to predict pressure drop trend in the course of HFF operation. (author)

  9. Step dynamic process of the hydraulically-driven control rod, (II). Theoretical model on step-down process

    The HCRDS (hydraulic control rod driving system) is a new type of control rod driving system, which is designed by INET (Institute of Nuclear Energy Technology) and has been put into use in 5 MW nuclear heating reactor in Tsinghua University. The purpose of this paper is to theoretically analyze the step-down process of this new technology and establish fundamental basis for further analysis and research. The experimental loop of the HCRDS and the working principle on the step-down process are introduced in this paper. The theoretical model is established on the basis of analysis, simplification and hypothesis. Also given is the accurate mathematical description of this model. The comparison between the results of this model and that of the experiment proves the rationality and feasibility of the model. The selection of the working point is also introduced. (author)

  10. Improving the Hydraulic Performance of Stormwater Infiltration Systems in Clay Tills

    Bockhorn, Britta

    Many cities of the Northern Hemisphere are covered by low permeable clay tills, which pose a challenge for stormwater infiltration practices. However, clay tills are amongst the most heterogeneous types of sediments and hydraulic conductivities can vary by several orders of magnitude. This Ph......D study was initiated with the objective to test and evaluate if the hydraulic performance of stormwater infiltration systems can be significantly improved if the site-specific geological heterogeneity is incorporated into the design and siting of such systems. The assessment is based on different field...... investigations on two typical Danish clay till sites, and one modeling study with the integrated surface water and groundwater model HydroGeoSphere. The saturated hydraulic conductivity (Ksat) is the most critical soil physical parameter when it comes to sizing stormwater infiltration systems. In the first study...

  11. Design strategy for improving the energy efficiency in series hydraulic/electric synergy system

    Battery is a vital subsystem in an electric vehicle with regenerative braking system. The energy efficiency of an electric vehicle is improved by storing the regenerated energy in an electric battery, during braking, and reusing it during subsequent acceleration. Battery possesses a relatively poor power density and slow charging of regenerated energy, when compared to hydro-pneumatic accumulators. A series hydraulic/electric synergy system – an energy efficient mechatronics system is proposed to overcome the drawbacks in the conventional electric vehicle with regenerative braking. Even though, electric battery provides higher energy density than the accumulator system, optimal sizing of the hydro-pneumatic accumulator and other process parameters in the system to provide better energy density and efficiency. However, a trade-off prevails between the system energy delivered and energy consumed. This gives rise to a multiple objective problem. The proposed multi-objective design optimization procedure based on an evolutionary strategy algorithm maximizes the energy efficiency of the system. The system simulation results after optimization show that, the optimal system parameters increase the energy efficiency by 3% and hydraulic regeneration efficiency by 17.3%. The suggested design methodology provides a basis for the design of a series hydraulic/electric synergy system as energy efficient and zero emission system. - Highlights: • Dynamic analysis of SHESS to investigate energy efficiency. • Optimization of system parameters based on multi-objective design strategy. • Evaluation of improvements in system energy efficiency and hydraulic regeneration energy. • Identification of conditions at which hydraulic regenerative efficiency is maximized for minimum energy consumption. • Results confirm advantages of using SHESS

  12. Upper and Middle Tiete River Basin dam-hydraulic system, travel time and temperature modeling

    Devkota, Bishnu; Imberger, Jörg

    2012-12-01

    SummaryTiete River System in the State of Sao Paolo, Brazil is characterized by complex hydraulics and operational problems due to series of dams and point and diffuse inflows along the river. A one dimension Lagrangian river model was developed and applied to the 313 km reach of the Upper and Middle Tiete River Basin from the Penha Dam to the head water of Bara Bonita Reservoir, a stretch of river that includes six small to medium size dams (3.4-22 m high) including the Pirapora Reservoir and 26 inflows into the river (11 tributaries, 9 diffuse source areas, and discharges of 4 cities stormwater and 2 wastewater treatment plants. The conservative tracer transport and temperature model that accounts for the short and long wave radiation and heat transfers at the free surface was included and solved using the Crank-Nicholson scheme. The time variable catchment input to the model was the simulated output of the external hydrological model called Runoff Load Model which results were provided by CETESB. The numerical treatment of series of dams and spillway (that included uncontrolled overflow spillway, gate-controlled ogee spillway; and underflow gates and tunnels) and parameterisation of hydraulic jumps are described. Special attention was focused on the high spatial and temporal variation of flows in Tiete River Basin, a result of the large variation in catchment inflows and channel geometry due to dams and reservoirs along the river. Predicted and measured spatial and seasonal variation of flow and temperature profiles along the river show good agreement. The simulated travel time of conservative tracer is compared against the CETESB's 1982 and 1984 field study data in a 254 km reach of the Middle Tiete River that again shows good agreement. Being Lagrangian in construction, this new model is computationally efficient making it an ideal tool for long term simulation for water resource planning, management and operation decision making in a large and complex river

  13. Permeability Enhancement in Enhanced Geothermal System as a result of Hydraulic Fracturing and Jacking

    Jalali, Mohammadreza; Klepikova, Maria; Fisch, Hansruedi; Amann, Florian; Loew, Simon

    2016-04-01

    A decameter-scale in-situ hydraulic stimulation and circulation (ISC) experiment has been initiated by the newly-founded Swiss Competence Centre for Energy Research - Supply of Electricity (SCCER-SoE) at Nagra's Grimsel Test Site (GTS) as a part of the work-package WP1 of the Deep Underground Laboratory (DUG-Lab) initiative. The experiment area is situated in the southern part of the GTS in a low fracture density volume of the Grimsel granodiorite. The hydraulic properties of the granitic rock mass are supposed to be similar to those expected in the crystalline basement of the alpine foreland where deep enhanced geothermal systems might be developed in future. The main objectives of the multi-disciplinary experiment are to provide a high resolution pre- and post-stimulation characterization of fracture permeability and connectivity, to investigate patterns of preferential flow paths, to describe the pressure propagation during the stimulation phases and to evaluate the efficiency of the fracture-matrix heat exchanger. A comprehensive test & monitoring layout including a fair number of boreholes instrumented with a variety of sensors (e.g. pressure, strain, displacement, temperature, and seismic sensors) is designed to collect detailed data during multiple hydraulic stimulation runs. The diffusion of fluid pressure is expected to be governed mainly by the properties and geometry of the existent fracture network. The hydraulic transmissivity of fractures are in the range of 10‑7 to 10‑9 m2/s whereas the matrix rock has a very low hydraulic conductivity (K ˜ 10‑12 m/s). As part of the stress measurement campaign during the pre-stimulation phase of the ISC experiment, a series of hydraulic fracturing (HF) and hydraulic tests in pre-existing fractures (HTPF) were conducted. The tests were accompanied by micro-seismic monitoring within several observation boreholes to investigate the initiation and propagation of the induced fractures. Together with results from

  14. Analysis of the flow dynamics in the multiloop thermal-hydraulic system

    The method for identification of the closed loops in the thermal-hydraulics system is described. The mathematical models, previously developed for the single loop system, have been extended to treat multiloop pipelines. The configuration of the network is practically deliberate. The model has been tested by the simulation of the asymmetric transient in the two loop PWR. (author)

  15. Volume-controlled hydrologic property measurements in triaxial systems

    Olsen, Harold W.; Willden, Arthur T.; Kiusalaas, Nicholas J.; Nelson, Karl R.; Poeter, Eileen P.

    1994-01-01

    New capabilities for hydrologic property measurements in triaxial systems include: (1) volume-controlled and simultaneous measurements of hydraulic conductivity and one-dimensional consolidation (or specific storage) of a saturated test specimen; and (2) volume-controlled measurements of hydraulic conductivity, matric potential, and the variation of these properties with the moisture content of an unsaturated test specimen. Data on saturated kaolinite demonstrate simultaneous hydraulic-conductivity and one-dimensional consolidation tests with continuous monitoring of both vertical and horizontal effective stresses. Data on well-graded silty sand demonstrate the feasibility of concurrent constant-flow hydraulic conductivity and mattic potential measurements, and the variation of these properties with moisture content, for undisturbed and unsaturated specimens mounted in triaxial cells. Refinements needed to realize the full potential of these capabilities include a more rigid triaxial cell to minimize compliance, and an improved technique for measuring hydraulic-head differences within an unsaturated test specimen.

  16. Speed-variable Switched Differential Pump System for Direct Operation of Hydraulic Cylinders

    Schmidt, Lasse; Roemer, Daniel Beck; Pedersen, Henrik Clemmensen;

    2015-01-01

    Efforts to overcome the inherent loss of energy due to throttling in valve driven hydraulic systems are many, and various approaches have been proposed by research communities as well as the industry. Recently, a so-called speed-variable differential pump was proposed for direct drive of hydraulic...... may seriously influence the dynamics and hence the performance during operation. This paper presents an analysis of these properties, and a redesign of the hydraulic system concept is proposed. Here the area- and displacement ratios are deliberately mismatched, causing inherent pressure build-up or...... cavitation in the return chamber, depending on the direction of motion. In order to avoid cavitation, a third gear pump is introduced, which provides a flow in the relevant cylinder chamber in one direction of motion, while operating in idle mode in the opposite motion direction. Together with two 2/2 way...

  17. European activities on crosscutting thermal-hydraulic phenomena for innovative nuclear systems

    Highlights: • This paper serves as a guidance of the special issue. • The technical tasks and methodologies applied to achieve the objectives have been described. • Main results achieved so far are summarized. - Abstract: Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. In Europe, a consortium is established consisting of 24 institutions of universities, research centers and nuclear industries with the main objectives to identify and to perform research activities on important crosscutting thermal-hydraulic issues encountered in various innovative nuclear systems. For this purpose the large-scale integrated research project THINS (Thermal-Hydraulics of Innovative Nuclear Systems) is launched in the 7th Framework Programme FP7 of European Union. The main topics considered in the THINS project are (a) advanced reactor core thermal-hydraulics, (b) single phase mixed convection, (c) single phase turbulence, (d) multiphase flow, and (e) numerical code coupling and qualification. The main objectives of the project are: • Generation of a data base for the development and validation of new models and codes describing the selected crosscutting thermal-hydraulic phenomena. • Development of new physical models and modeling approaches for more accurate description of the crosscutting thermal-hydraulic phenomena. • Improvement of the numerical engineering tools for the design analysis of the innovative nuclear systems. This paper describes the technical tasks and methodologies applied to achieve the objectives. Main results achieved so far are summarized. This paper serves also as a guidance of this special issue

  18. European activities on crosscutting thermal-hydraulic phenomena for innovative nuclear systems

    Cheng, X., E-mail: xu.cheng@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Batta, A. [Karlsruhe Institute of Technology (KIT) (Germany); Bandini, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Roelofs, F. [Nuclear Research and Consultancy Group (NRG) (Netherlands); Van Tichelen, K. [Studiecentrum voor Kernenergie – Centre d’étude de l’Energie Nucléaire (SCK-CEN) (Belgium); Gerschenfeld, A. [Commissariat à l’Energie Atomique (CEA) (France); Prasser, M. [Paul Scherrer Institute (PSI) (Switzerland); Papukchiev, A. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS) (Germany); Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR) (Germany); Ma, W.M. [Kungliga Tekniska Högskolan (KTH) (Sweden)

    2015-08-15

    Highlights: • This paper serves as a guidance of the special issue. • The technical tasks and methodologies applied to achieve the objectives have been described. • Main results achieved so far are summarized. - Abstract: Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. In Europe, a consortium is established consisting of 24 institutions of universities, research centers and nuclear industries with the main objectives to identify and to perform research activities on important crosscutting thermal-hydraulic issues encountered in various innovative nuclear systems. For this purpose the large-scale integrated research project THINS (Thermal-Hydraulics of Innovative Nuclear Systems) is launched in the 7th Framework Programme FP7 of European Union. The main topics considered in the THINS project are (a) advanced reactor core thermal-hydraulics, (b) single phase mixed convection, (c) single phase turbulence, (d) multiphase flow, and (e) numerical code coupling and qualification. The main objectives of the project are: • Generation of a data base for the development and validation of new models and codes describing the selected crosscutting thermal-hydraulic phenomena. • Development of new physical models and modeling approaches for more accurate description of the crosscutting thermal-hydraulic phenomena. • Improvement of the numerical engineering tools for the design analysis of the innovative nuclear systems. This paper describes the technical tasks and methodologies applied to achieve the objectives. Main results achieved so far are summarized. This paper serves also as a guidance of this special issue.

  19. Thermal-hydraulic studies on self actuated shutdown system for Japan Sodium-cooled Fast Reactor

    The self-actuated shutdown system (SASS), which is selected for Japan Sodium-cooled Fast Reactor (JSFR), is a passive reactor shutdown system utilizing a Curie point electromagnet (CPEM). With CPEM, an excessive fuel outlet temperature rise is sensed and the control rods are released into the core, and the reactor can be shutdown. Therefore it is important for feasibility of SASS to be established by assuring a quick response of CPEM to the coolant temperature rise. In this paper, a device named 'flow collector', which collects flows discharged from six fuel subassemblies surrounding CPEM backup control rods, has been proposed to ensure a shorter response time. Three-dimensional thermal-hydraulic analysis has been performed to evaluate the response time of CPEM with the flow collector, and it is confirmed that the coolant discharged from the fuel subassemblies flows into CPEM with high velocity and the response time of CPEM can be significantly shortened. Based on this analysis, the safety analysis has been carried out, confirming that the maximum temperatures of core and coolant are lower than those imposed by the safety criteria, and feasibility of SASS is assured. (author)

  20. Study of the performance of four repairing material systems for hydraulic structures of concrete dams

    Kormann A. C. M.

    2003-01-01

    Full Text Available Four types of repairing materials are studied as function of either a conventional concrete or a reference-concrete (RefC, these are: polymer-modified cement mortar (PMor, steel fiber concrete (SFco, epoxy mortar (EMor and silica fume mortar (SFmo, to be applied in hydraulic structures surfaces subjected to a high velocity water flow. Besides the mechanical requests and wearing resistance of hydraulic concrete dam structures, especially the spillway surfaces, the high solar radiation, the environmental temperature and wet and dry cycles, contribute significantly to the reduction of their lifespan. RefC and the SFco were developed based on a usual concrete mixture used in slabs of spillways. The average RefC mixture used was 1: 1.61: 2.99: 0.376, with Pozzolan-modified Portland cement consumption of 425 kg/m³. EMor and PMor mixtures followed the information given by the manufacturers and lab experience. Tests on concrete samples were carried out in laboratory simulating normally found environmental situations in order to control the mechanical resistance and the aging imposed conditions, such as solar radiation and humidity. Also, physicochemical characterizing tests were made for all used materials. From the analyzed results, two of them presented a higher performance: the EMor and SFmo. SFco presented good adherence to the RefC and good mechanical performance. However, it also presented apparent metal corrosion in humidity tests, being indicated for use, with caution, as an intermediate layer in underwater repairs. In a general classification, considering all tests, including their field applications, the better performance material systems were EMor- SFmo> SFco> PMor.

  1. 力伺服波浪补偿吊机的液压系统研究%Design of Hydraulic System for Force-servo Wave Compensation Crane

    周明健; 王幼民

    2016-01-01

    波浪补偿吊机大多数采用速度伺服液压控制系统来减少海上风浪的影响,而对力伺服液压控制系统的研究较少,因此对力伺服波浪补偿吊机的液压系统研究具有重要的意义。明确力伺服波浪补偿起吊机的技术要求,分析执行元件的工作状况,确定执行元件的主要参数;制定出符合实际工况的波浪补偿吊机的液压系统原理图,通过参数计算确定液压系统元件的型号;并对力伺服波浪补偿吊机的液压系统性能进行验算,判断其液压系统设计是否合理,进而改进和完善液压系统。%Speed servo hydraulic control system is widely used in wave compensation crane to reduce the impact of sea-wave. Study on hydraulic control system of force-servo wave compensation crane is less, so the study on the force-servo wave compensation crane hydraulic system has important significance.Force-servo hydraulic system design requirements were cleared, the working condi-tions of the actuators was analyzed, the main parameters of the actuators were defined.Then the hydraulic system principle diagram was developed, components selection of the hydraulic system was done through parameter calculation.The force-servo wave compensation crane hydraulic system performance was checked to judge whether its hydraulic system design was reasonable, then the hydraulic sys-tem could be improved and perfected.

  2. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system.

    Endut, Azizah; Jusoh, A; Ali, N; Wan Nik, W B; Hassan, A

    2010-03-01

    The growths of the African catfish (Clarias gariepinus) and water spinach (Ipomoea aquatica) were evaluated in recirculation aquaponic system (RAS). Fish production performance, plant growth and nutrient removal were measured and their dependence on hydraulic loading rate (HLR) was assessed. Fish production did not differ significantly between hydraulic loading rates. In contrast to the fish production, the water spinach yield was significantly higher in the lower hydraulic loading rate. Fish production, plant growth and percentage nutrient removal were highest at hydraulic loading rate of 1.28 m/day. The ratio of fish to plant production has been calculated to balance nutrient generation from fish with nutrient removal by plants and the optimum ratio was 15-42 gram of fish feed/m(2) of plant growing area. Each unit in RAS was evaluated in terms of oxygen demand. Using specified feeding regime, mass balance equations were applied to quantify the waste discharges from rearing tanks and treatment units. The waste discharged was found to be strongly dependent on hydraulic loading rate. PMID:19819130

  3. Mechanical Engineering Design Project report: Enabler control systems

    Cullen, Christian; Delvecchio, Dave; Scarborough, Alan; Havics, Andrew A.

    1992-01-01

    The Controls Group was assigned the responsibility for designing the Enabler's control system. The requirement for the design was that the control system must provide a simple user interface to control the boom articulation joints, chassis articulation joints, and the wheel drive. The system required controlling hydraulic motors on the Enabler by implementing 8-bit microprocessor boards. In addition, feedback to evaluate positions and velocities must be interfaced to provide the operator with confirmation as well as control.

  4. HYDRAULIC UNITS FOR DRIVING SYSTEMS OF RUNNING EQUIPMENT IN ROAD CONSTRUCTION MACHINERY

    A. Ja. Kotlobai

    2016-02-01

    Full Text Available Operational efficiency of multi-functional road construction machines depends on number of working bodies which are simultaneously performing technological operations. Systems for propulsion pto to the running equipment drive and active working bodies of road construction machines are developing in the way of using three-axis hydraulic drives. When designing a hydraulic system for road construction machinery dividing of power flow from propulsion to the running equipment drive and active working bodies is considered as rather essential problem. Leading companies do not pay attention to the development of flow divider designs, preferring to produce more expensive multi-flow pumps. One of the ways to increase efficiency of multi-functional road construction machinery is an implementation of running equipment hydraulic driving system based on a mono-aggregate pump unit which consists of a pump and a volumetric divider of power fluid flow. A principle of volumetric division and summing-up of power fluid flows, technical realization and methodology for calculation of key parameters of discrete flow distributors has been developed on the basis of discrete hydraulics regulations. The paper presents results of mathematical modeling of hydraulic systems equipped with the discrete flow distributor. Analysis of a dual-motor hydraulic drive operation has shown the following results: a discrete flow distributor ensures independent load mode of the current consumer circuit operation from the load mode of the second consumer circuit within a wide range of loads; rational value of working fluid flow discretization parameter is the following value interval k = 4–6, maximum value of parameter efficiency is reached when an angular velocity of a distributor rotor coincides with the angular velocity of a pump shaft; discrete flow distributor provides a possibility to change parameters of hydraulic flow feeding in consumers’ pressure lines within a wide range

  5. Comparison for the interfacial and wall friction models in thermal-hydraulic system analysis codes

    Hwang, Moon Kyu; Park, Jee Won; Chung, Bub Dong; Kim, Soo Hyung; Kim, See Dal

    2007-07-15

    The average equations employed in the current thermal hydraulic analysis codes need to be closed with the appropriate models and correlations to specify the interphase phenomena along with fluid/structure interactions. This includes both thermal and mechanical interactions. Among the closure laws, an interfacial and wall frictions, which are included in the momentum equations, not only affect pressure drops along the fluid flow, but also have great effects for the numerical stability of the codes. In this study, the interfacial and wall frictions are reviewed for the commonly applied thermal-hydraulic system analysis codes, i.e. RELAP5-3D, MARS-3D, TRAC-M, and CATHARE.

  6. Comparison for the interfacial and wall friction models in thermal-hydraulic system analysis codes

    The average equations employed in the current thermal hydraulic analysis codes need to be closed with the appropriate models and correlations to specify the interphase phenomena along with fluid/structure interactions. This includes both thermal and mechanical interactions. Among the closure laws, an interfacial and wall frictions, which are included in the momentum equations, not only affect pressure drops along the fluid flow, but also have great effects for the numerical stability of the codes. In this study, the interfacial and wall frictions are reviewed for the commonly applied thermal-hydraulic system analysis codes, i.e. RELAP5-3D, MARS-3D, TRAC-M, and CATHARE

  7. A practical nonlinear robust control approach of electro-hydraulic load simulator

    Wang Chengwen

    2014-06-01

    Full Text Available This paper studies a nonlinear robust control algorithm of the electro-hydraulic load simulator (EHLS. The tracking performance of the EHLS is mainly limited by the actuator’s motion disturbance, flow nonlinearity, and friction, etc. The developed controller is developed based on the nonlinear motion loading model. The problems of the actuator’s disturbance and flow nonlinearity are considered. To address the friction problem, the friction model of the loading motor is identified experimentally. The friction disturbance is compensated using the obtained friction model. Therefore, this paper considers the main three factors comprehensively. The developed algorithm is easy to apply since the controller can be obtained just with one step back-stepping design. The stability of the developed algorithm is proven via Lyapunov analysis. Both co-simulation and experiments are performed to verify the effectiveness of this method.

  8. A practical nonlinear robust control approach of electro-hydraulic load simulator

    Wang Chengwen; Jiao Zongxia; Wu Shuai; Shang Yaoxing

    2014-01-01

    This paper studies a nonlinear robust control algorithm of the electro-hydraulic load simulator (EHLS). The tracking performance of the EHLS is mainly limited by the actuator’s motion disturbance, flow nonlinearity, and friction, etc. The developed controller is developed based on the nonlinear motion loading model. The problems of the actuator’s disturbance and flow nonlinearity are considered. To address the friction problem, the friction model of the loading motor is identified experimentally. The friction disturbance is compensated using the obtained friction model. Therefore, this paper considers the main three factors comprehensively. The devel-oped algorithm is easy to apply since the controller can be obtained just with one step back-stepping design. The stability of the developed algorithm is proven via Lyapunov analysis. Both co-simula-tion and experiments are performed to verify the effectiveness of this method.

  9. Effect of Propellant Feed System Coupling and Hydraulic Parameters on Analysis of Chugging

    Wood, Don J.; Dorsch, Robert G.

    1967-01-01

    A digital distributed parameter model was used to study the effects of propellant-feed- system coupling and various hydraulic parameters on the analytical prediction of chugging instabilities. Coupling between the combustion chamber and feed system was controlled by varying the compliance of the injector-dome region. The coupling with the feed system above the pump was varied by changing the amount of cavitation compliance at the pump inlet. The stability limits and chugging frequencies proved to be strongly dependent on the degree of feed-system coupling. The maximum stability condition occurred with intermediate coupling. Under conditions of a high degree of feed-system-combustor coupling, the stability limits and chugging frequencies were primarily dependent on the feed-system characteristics; the responses were characterized by beating patterns. For the system analyzed, the pump suction line had little effect on the stability limits or chugging frequencies. Beating, present under the condition of near zero injector -dome compliance, was eliminated when the suction line was decoupled by employing a sufficiently high value of pump-inlet compliance. Under conditions of maximum feed-system coupling, the magnitude and distribution of line losses in the discharge line had a significant effect on the stability limits but had negligible effect on the chugging frequency and beating characteristics. Also, the length of the discharge line greatly affected the stability limits, chugging frequency, and beating characteristics. The length of the suction line, however, had little effect on the stability limits and chugging frequency but did influence the beating pattern. A resistive-shunt device attached to the pump discharge line to suppress chugging was investigated. The analysis showed that the device was effective under conditions of high feed-system coupling.

  10. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  11. Discussion on sealing performance required in disposal system. Hydraulic analysis of tunnel intersections

    The sealing performance of a repository must be considered in the safety assessment of the geological disposal system of the high-level radioactive waste. NUMO and JNC established 'Technical Commission on Sealing Technology of Repository' based on the cooperation agreement. The objectives of this commission are to present the concept on the sealing performance required in the disposal system and to develop the direction for future R and D programme for design requirements of closure components (backfilling material, clay plug, etc.) in the presented concept. In the first phase of this commission, the current status of domestic and international sealing technologies were reviewed; and repository components and repository environments were summarized subsequently, the hydraulic analysis of tunnel intersections, where a main tunnel and a disposal tunnel in a disposal panel meet, were performed, considering components in and around the engineered barrier system (EBS). Since all tunnels are connected in the underground facility, understanding the hydraulic behaviour of tunnel intersections is an important issue to estimate migration of radionuclides from the EBS and to evaluate the required sealing performance in the disposal system. In the analytical results, it was found that the direction of hydraulic gradient, hydraulic conductivities of concrete and backfilling materials and the position of clay plug had impact on flow condition around the EBS. (author)

  12. O-ring tube fittings form leakproof seal in hydraulic systems

    1966-01-01

    Leakproof fittings for hydraulic systems are designed to be welded to the ends of the tubing to be joined and mated to form a seal with one o-ring at the joint. Since the fittings are coupled at only one joint, they tend to be more reliable than standard fittings coupled at two joints.

  13. Modeling of thermal-hydraulic processes in passive heat removal systems for fast sodium cooled reactors

    The processes of heat removal in passive decay heat removal systems in a BN-1200 reactor are discussed. The analysis of the assumptions and limitations of one-dimensional equations for unsteady natural convection in closed circuits are performed. Integrated models of hydraulic processes that ensure the removal of residual heat in the BN-type reactor are developed

  14. Hydraulics and pneumatics a technician's and engineer's guide

    Parr, Andrew

    1991-01-01

    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  15. Hydraulic and nutritional feedback controls surface patchiness of biological soil crusts at a post-mining site.

    Fischer, Thomas; Gypser, Stella; Subbotina, Maria; Veste, Maik

    2015-04-01

    , and decreased to BSC2, BSC1 and BSC3. Non-metric multidimensional scaling revealed that the lichens and BSC3 were associated with water soluble nutrients (NO3, NH4, K, Mg, Ca) and with pyrite weathering products (pH, SO4), thus representing a high nutrient low hydraulic feedback mode. The mosses and BSC2 represented a low nutrient high hydraulic feedback mode. These feedback mechanisms were considered as synergic, consisting of run-off generating (low hydraulic) and run-on receiving (high hydraulic) BSC patches. Three scenarios for BSC succession were proposed. (1) Initial BSCs sealed the surface until they reached a successional stage (represented by BSC1) from which the development into either of the feedback modes was triggered, (2) initial heterogeneities of the mineral substrate controlled the development of the feedback mode, and (3) complex interactions between lichens and mosses occurred at later stages of system development. It was concluded that, irrespective of successional pathways, two synergic feedback mechanisms contributed to the generation of self-organized surface patchiness. Such small-scale microsite differentiation with different BSCs has important implications for the vegetation in post-mining sites. Reference Fischer, T., Gypser, S., Subbotina, M., Veste, M. (2014) Synergic hydraulic and nutritional feedback mechanisms control surface patchiness of biological soil crusts on tertiary sands at a post-mining site. Journal of Hydrology and Hydromechanics 62(4):293-302

  16. Thermal-hydraulic effects of transition to improved System 80TM fuel

    ABB CE's improved System 80TM PWR fuel design includes GUARDIAN debris-resistant features and laser-welded Zircaloy grids. The GUARDIAN features include an Inconel grid with debris-filtering features located just above the Lower End Fitting, and a solid fuel rod bottom end cap that extends above the filtering features. Tests and analyses were done to establish the impact of these design improvements on fuel assembly hydraulic performance. Further analysis was done to determine the mixed core thermal-hydraulic performance as the transition is made over two fuel cycles to a full core of the improved System 80TM fuel. Results confirm that the Thermal-Hydraulic (T-H) effects of the reduction in hydraulic resistance between the improved and resident fuel due to the laser-welded Zircaloy grids offsets the effects of the increased resistance GUARDIAN grid. Therefore, the mechanically improved System 80TM fuel can be implemented with no net impact on Departure from Nucleate Boiling (DNB) margin in transition cores. (author)

  17. Hydraulic analysis of the emergency core cooling system of the RP-10 reactor

    This work shows calculation for the hydraulic analysis of the Emergency Core Cooling System (ECCS) of the RP-10 Reactor. This analysis is necessary for the design of such system. According to calculation results shown in the graphics, a pipe line of two inches of nominal diameter should be selected for such system and a maximum flow of 5 m3/h should be reached

  18. Hardware-in-the-loop of Simulation for a Hydraulic Antilock Brake System

    Ayman A. Aly

    2013-01-01

    Hardware-In-the-Loop (HIL) of simulation policy is used as a rapid and economical tool for developing automotive systems effectively and for dangerous situations tests such as extreme road conditions or high travelling speeds. A method for building a HIL of simulation a hydraulic Antilock Braking System (ABS) based on MATLAB/Simulink is presented in this paper. The system is implemented for research purposes as well as for the application in educational process. It can help the user heighteni...

  19. Reliability of thermal-hydraulic passive safety systems

    The scholar will be informed of reliability concepts applied to passive system adopted for nuclear reactors. Namely, for classical components and systems the failure concept is associated with malfunction of breaking of hardware. In the case of passive systems the failure is associated with phenomena. A method for studying the reliability of passive systems is discussed and is applied. The paper deals with the description of the REPAS (Reliability Evaluation of Passive Safety System) methodology developed by University of Pisa (UNIPI) and with results from its application. The general objective of the REPAS methodology is to characterize the performance of a passive system in order to increase the confidence toward its operation and to compare the performances of active and passive systems and the performances of different passive systems

  20. The Thermal Hydraulic Test of the MEGAPIE Cooling System and System Code Validation

    The MEGAPIE project undertaking in Paul Scherrer Institute (PSI) aims at design, building, operating and decommissioning a 1 MW liquid-metal spallation target. The design and manufacturing phases are almost finished. The target and the required ancillary systems were installed on a test facility called MEGAPIE Integral Test Stand (MITS). The cooling system is among the ancillary systems being tested. A series of thermal hydraulic tests were conducted for testing the main functions of the cooling system. These tests were focused on obtaining data about the system's stability, cooling capacity, and the transient responses. The consistency of the data was checked by comparing the heat balance between the input and output power of each heat exchanger (HEX) in the system. The main flow in the target can only be determined by the thermal balance because the built in flow meter did not work properly. The steady state pump speed, flow rates, and overall heat transfer coefficients (OHTC) of the whole cooling system were measured and analyzed for characterization of the system. Those results were used to refine numerical model of the system. A special version of RELAP5/Mod3.2.2 implemented with the fluid properties of LBE was used for the simulation study. Two cases of 'beam trip' transients were simulated and compared with test results. The agreements were good in both cases and the main features of the transients were captured by the RELAP5. This was the first step of validating RELAP5 model. (authors)

  1. 超低速在液压系统中的实现%Implementation of Super-low Speed in Hydraulic System

    张强; 吴伟; 田维

    2013-01-01

    The optimization of the hydraulic cylinder seal selection, strict implementation of the project's quality requirements, the use of volume / throttle control mode and other measures were used to achieve super-low speed control requirements for an oil extrusion press hydraulic system. It provides basis for solving ordinary hydraulic cylinder low speed creep phenomenon.%通过对液压油缸密封的优化选型、严格工程实施的质量要求、采用容积/节流调速控制方式等措施,实现了对某油挤压机液压系统的超低速控制要求,为解决目前普通液压油缸在一定低速下的爬行现象提供了依据.

  2. Instrumentation control system

    This book explains instrumentation control system, which mentions summary, basic theory, kinds, control device, and design of each instrumentation system. The contents of this book are introduction of instrumentation system, temperature detector, pressure sensor, flow detector, level detector, ingredient detector, signal convert and transmission, instructions, record and control of instrumentation system, PID controller control valve of instrumentation system, instrumentation equipment of water system, instrumentation facility of thermal power plant, examples of advance instrumentation facility and install and design of instrumentation system.

  3. 10MN/16MN数控高性能拉深液压机液压系统研究%Study on hydraulic system of 10MN/16MN high performance deep-drawing hydraulic press

    叶臻; 王晋抚

    2013-01-01

    介绍了提高双动拉深液压机高性能的关键液压技术.分析了影响液压机快速平稳运行和压边滑块四角调平的原因,并对其液压回路分别进行了研究.解决了双动液压机速度慢和精度低等技术难题,有效提高了生产频率和综合性能.%The key technology for improving the high performance of deep-drawing hydraulic press has been introduced in the text. The reasons for influence of fast and smooth running of hydraulic press and four corners leveling control system for blank slider have been analyzed, and the hydraulic loops have been studied. Finally, the technical problems such as slow speed and low accuracy of double action hydraulic press have been solved, which effectively raise the production rate and comprehensive performance.

  4. Understanding regional and local scale hydraulic processes controlling recharge through drift

    Cuthbert, M. O.; Mackay, R.; Lawrence, A. R.; Peach, D.

    2003-04-01

    The estimation of groundwater recharge is a fundamental component of any water resources appraisal or aquifer vulnerability study. Although methods for evaluating the distribution of potential recharge leaving the soil zone are relatively well developed, the recharge signal to the underlying aquifer can be significantly modified in the presence of superficial drift deposits. Current mapping of the drift does not often provide representations of drift distribution and structure suitable for understanding the hydraulics of the subsurface flow system. The current research seeks to develop new understanding of the processes contributing to recharge in heterogeneous drift sequences, their characterisation in models and their parameterisation through field experiments. Surface and downhole geophysical sampling through regional to micro scales will be integrated with textural measurements and hydraulic monitoring to characterise drift deposits in parts of the Tern catchment (Shropshire, UK) and gain insight into the relationship between flow behaviour and geological structure. Fieldwork will then culminate in a series of flow and tracer tests at a well characterised site with continuous monitoring including the use of recently developed 4-D resistivity imaging methods to monitor the movement of natural and applied waters through the drift. Conceptual and numerical models will be used throughout the project to test ideas and drive the experimental designs. The study aims to assess the relative importance of hydraulic processes at a range of scales and, by back analysis, the degree of sophistication required in fieldwork to construct a useful model of flow patterns within the drift. The potential usefulness of various surface and downhole geophysical techniques within drift and unsaturated zone studies will be critically assessed.

  5. A Hydraulic Motor-Alternator System for Ocean-Submersible Vehicles

    Aintablian, Harry O.; Valdez, Thomas I.; Jones, Jack A.

    2012-01-01

    An ocean-submersible vehicle has been developed at JPL that moves back and forth between sea level and a depth of a few hundred meters. A liquid volumetric change at a pressure of 70 bars is created by means of thermal phase change. During vehicle ascent, the phase-change material (PCM) is melted by the circulation of warm water and thus pressure is increased. During vehicle descent, the PCM is cooled resulting in reduced pressure. This pressure change is used to generate electric power by means of a hydraulic pump that drives a permanent magnet (PM) alternator. The output energy of the alternator is stored in a rechargeable battery that powers an on-board computer, instrumentation and other peripherals.The focus of this paper is the performance evaluation of a specific hydraulic motor-alternator system. Experimental and theoretical efficiency data of the hydraulic motor and the alternator are presented. The results are used to evaluate the optimization of the hydraulic motor-alternator system. The integrated submersible vehicle was successfully operated in the Pacific Ocean near Hawaii. A brief overview of the actual test results is presented.

  6. Comparative hydraulics of two fishery research circular tanks and recommendations for control of experimental bias

    Odeh, M.; Schrock, R.M.; Gannam, A.

    2003-01-01

    Hydraulic characteristics inside two research circular tanks (1.5-m and 1.2-m diameter) with the same volume of water were studied to understand how they might affect experimental bias by influencing the behavior and development of juvenile fish. Water velocities inside each tank were documented extensively and flow behavior studied. Surface inflow to the 1.5-m tank created a highly turbulent and aerated surface, and produced unevenly distributed velocities within the tank. A low-flow velocity, or "dead" zone, persisted just upstream of the surface inflow. A single submerged nozzle in the 1.2-m tank created uniform flow and did not cause undue turbulence or introduce air. Flow behavior in the 1.5-m tank is believed to have negatively affected the feeding behavior and physiological development of a group of juvenile fall chinook salmon, Oncorhynchus tshawytscha. A new inflow nozzle design provided comparable flow behavior regardless of tank size and water depth. Maintaining similar hydraulic conditions inside tanks used for various biological purposes, including fish research, would minimize experimental bias caused by differences in flow behavior. Other sources of experimental bias are discussed and recommendations given for reporting and control of experimental conditions in fishery research tank experiments.

  7. Finite-time convergent continuous control design based on sliding mode algorithms with application to a hydraulic drive

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    -time convergence properties known from sliding control while at the same time avoiding control chattering, however, on the cost of robustness. Experimental results confirm the announced properties when applied to a hydraulic valve-cylinder drive, and demonstrates superior performance over conventional linear...

  8. Thermal-hydraulic system study of a high pressure, high temperature helium loop using RELAP5-3D code

    Highlights: ► A thermal-hydraulic system analysis for a high pressure, high temperature helium loop has been investigated. ► The loop belongs to the Helium Loop Karlsruhe (HELOKA) facility, which contains the European Helium Cooled Pebble Beds Test Blanket Module (HCPB TBM) as the test module. ► The loop including all components has been modeled using the system code REALP5-3D, and the main control strategy has been implemented as well. ► With this model, the loop dynamics in conditions relevant for blanket module operation have been demonstrated. - Abstract: The thermal-hydraulic system analysis for the Helium Loop Karlsruhe (HELOKA) facility, a high pressure, high temperature experimental helium loop having the European Helium Cooled Pebble Beds Test Blanket Module (HCPB TBM) as the test module, was investigated. Using the system code REALP5-3D, all components in the loop are modeled as well as the main control strategy. With this model, the loop dynamics in conditions relevant for blanket module operation are simulated and analyzed.

  9. Seismic Proofing Capability of the Accumulated Semiactive Hydraulic Damper as an Active Interaction Control Device with Predictive Control

    Ming-Hsiang Shih

    2016-01-01

    Full Text Available The intensity of natural disasters has increased recently, causing buildings’ damages which need to be reinforced to prevent their destruction. To improve the seismic proofing capability of Accumulated Semiactive Hydraulic Damper, it is converted to an Active Interaction Control device and synchronous control and predictive control methods are proposed. The full-scale shaking table test is used to test and verify the seismic proofing capability of the proposed AIC with these control methods. This study examines the shock absorption of test structure under excitation by external forces, influences of prediction time, stiffness of the auxiliary structure, synchronous switching, and asynchronous switching on the control effects, and the influence of control locations of test structure on the control effects of the proposed AIC. Test results show that, for the proposed AIC with synchronous control and predictive control of 0.10~0.13 seconds, the displacement reduction ratios are greater than 71%, the average acceleration reduction ratios are, respectively, 36.2% and 36.9%, at the 1st and 2nd floors, and the average base shear reduction ratio is 29.6%. The proposed AIC with suitable stiffeners for the auxiliary structure at each floor with synchronous control and predictive control provide high reliability and practicability for seismic proofing of buildings.

  10. The hydraulic geometry of narrow and deep channels; evidence for flow optimisation and controlled peatland growth

    Nanson, Rachel A.; Nanson, Gerald C.; Huang, He Qing

    2010-04-01

    At-a-station and bankfull hydraulic geometry analyses of peatland channels at Barrington Tops, New South Wales, Australia, reveal adjustments in self-forming channels in the absence of sediment load. Using Rhodes ternary diagram, comparisons are made with hydraulic geometry data from self-forming channels carrying bedload in alluvial settings elsewhere. Despite constraints on channel depths caused at some locations by the restricted thickness of peat, most stations have cohesive, near-vertical, well-vegetated banks, and width/depth (w/d) ratios of ∼ 2 that are optimal for sediment-free flow. Because banks are strong, resist erosion and can stand nearly vertical, and depth is sometimes constrained, adjustments to discharge are accommodated largely by changes in velocity. These findings are consistent with the model of maximum flow efficiency and the overarching least action principle in open channels. The bankfull depth of freely adjusting laterally active channels in clastic alluvium is well known to be related to the thickness of floodplain alluvium and a similar condition appears to apply to these swamps that grow in situ and are formed almost entirely of organic matter. The thickness of peat in these swamps rarely exceeds that required to form a bankfull channel of optimum w/d ratio for the transport of sediment-free water. Swamp vegetation is highly dependent on proximity to the water table. To maintain a swamp-channel and associated floodplain system, the channels must flow with sufficient water much of the time; they not only offer an efficient morphology for flow but do so in a way that enables bankfull conditions to occur many times a year. They also prevent the swamp from growing above a level linked to the depth of the channel. Once the channel attains the most efficient cross section, further growth of the swamp vertically is restricted by enhanced flow velocities and limited flow depths. This means that the volume of peat in such swamps is determined

  11. FEEDBACK LINEARISATION APPLIED ON A HYDRAULIC

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik C.;

    2005-01-01

    Generally most hydraulic systems are intrensically non-linear, why applying linear control techniques typically results in conservatively dimensioned controllers to obtain stable performance. Non-linear control techniques have the potential of overcoming these problems, and in this paper the focus...... is on developing and applying several different feedback linearisation (FL) controllers to the individual servo actuators in a hydraulically driven servo robot to evaluate and compare their possiblities and limitations. This is done based on both simulation and experimental results....

  12. FEEDBACK LINEARISATION APPLIED ON A HYDRAULIC

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik C.; Conrad, Finn

    Generally most hydraulic systems are intrensically non-linear, why applying linear control techniques typically results in conservatively dimensioned controllers to obtain stable performance. Non-linear control techniques have the potential of overcoming these problems, and in this paper the focus...... is on developing and applying several different feedback linearisation (FL) controllers to the individual servo actuators in a hydraulically driven servo robot to evaluate and compare their possiblities and limitations. This is done based on both simulation and experimental results....

  13. Modeling with AFT Fathom of hydraulic systems. Application to the Asco nuclear power station

    This paper gives an overview of the simulation of hydraulic systems with program AFT Fathom, describing practical applications carried out in NPP Asco. The results of the simulation are used to determine the behavior certain systems under hardly reproducible scenarios in reality, such as emergency and accident situations. In this sense, are presented real-life examples carried out in C. N. disgust and shown how the simulation puts in the hands of engineers valuable information for decision-making.

  14. Advanced model structures applied to system identification of a servo- hydraulic test rig

    P. Czop

    2010-07-01

    Full Text Available Purpose: This paper deals with a method for the parametric system identification of a nonlinear system to obtain its parametric representation using a linear transfer function. Such representation is applicable in off-line profile correction methods minimizing the error between a reference input signal and a signal performed by the test rig. In turn, a test signal can be perfectly tracked by a servo-hydraulic test rig. This is the requirement in massive production where short test sequences are repeated to validate the products.Design/methodology/approach: A numerical and experimental case studies are presented in the paper. The numerical study presents a system identification process of a nonlinear system consisting of a linear transfer function and a nonlinear output component, being a static function. The experimental study presents a system identification process of a nonlinear system which is a servo-hydraulic test rig. The simulation data has been used to illustrate the feasibility study of the proposed approach, while the experimental data have been used to validate advanced model structures under operational conditions.Findings: The advanced model structures confirmed their better performance by means of the model fit in the time domain.Research limitations/implications: The method applies to analysis of such mechanical and hydraulic systems for which measurements are corrupted by residual harmonic disturbances resulting from system nonlinearities.Practical implications: The advanced model structures are intended to be used as inverse models in off-line signal profile correction.Originality/value: The results state the foundation for the off-line parametric error cancellation method which aims in improving tracking of load signals on servo-hydraulic test rigs.

  15. Precision digital control systems

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  16. Handbook of hydraulic fluid technology

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  17. Simulation and communication analysis of the monitoring system for hydraulic support pressure based on CAN bus

    Jin, Huawei; Luo, Ming; Zhang, Xin; Wang, Wei

    2016-01-01

    In order to realize online real-time monitoring of the hydraulic bracket support, improve the existing communication system, and improve the reliability of data transmission, this paper set up the communication simulation system and platform to simulate the coal mine communication based CAN bus. Based on the design and analysis of system hardware and software, this paper completed the construction of the whole hardware and the debugging of communication system. The debug end can communicate simulate by the CAN protocol simulation device, and realized the work of the entire communication system. Experiments showed that the monitoring system can work reliably.

  18. Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures

    Alessandro Petruzzi

    2008-01-01

    Full Text Available In the last four decades, large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Whereas the first system codes, developed at the beginning of the 1970s, utilized the homogenous equilibrium model with three balance equations to describe the two-phase flow, nowadays the more advanced system codes are based on the so-called “two-fluid model” with separation of the water and vapor phases, resulting in systems with at least six balance equations. The wide experimental campaign, constituted by the integral and separate effect tests, conducted under the umbrella of the OECD/CSNI was at the basis of the development and validation of the thermal-hydraulic system codes by which they have reached the present high degree of maturity. However, notwithstanding the huge amounts of financial and human resources invested, the results predicted by the code are still affected by errors whose origins can be attributed to several reasons as model deficiencies, approximations in the numerical solution, nodalization effects, and imperfect knowledge of boundary and initial conditions. In this context, the existence of qualified procedures for a consistent application of qualified thermal-hydraulic system code is necessary and implies the drawing up of specific criteria through which the code-user, the nodalization, and finally the transient results are qualified.

  19. Thermal-Hydraulic System Codes in Nuclear Reactor Safety and Qualification Procedures

    In the last four decades, large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Whereas the first system codes, developed at the beginning of the 1970s, utilized the homogenous equilibrium model with three balance equations to describe the two-phase flow, nowadays the more advanced system codes are based on the so-called two-fluid model with separation of the water and vapor phases, resulting in systems with at least six balance equations. The wide experimental campaign, constituted by the integral and separate effect tests, conducted under the umbrella of the OECD/CSNI was at the basis of the development and validation of the thermal-hydraulic system codes by which they have reached the present high degree of maturity. However, notwithstanding the huge amounts of financial and human resources invested, the results predicted by the code are still affected by errors whose origins can be attributed to several reasons as model deficiencies, approximations in the numerical solution, nodalization effects, and imperfect knowledge of boundary and initial conditions. In this context, the existence of qualified procedures for a consistent application of qualified thermal-hydraulic system code is necessary and implies the drawing up of specific criteria through which the code-user, the nodalization, and finally the transient results are qualified

  20. Thermal-hydraulics of a steam discharge system

    Shim, Yoon Sub; Yoo, Keun Jong; Kim, Yun Sik; Lee, Ki Yung; Wooi Myung Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Physical characteristics of the steam discharge system of PWR, which consists of valves, piping, steam sparger, and steam accommodating tank, have been analyzed and the analysis system has been set up for development of the analysis and design methodology for the system. The work was the results of the final year research in the planned research period of three years. Analysis has been made for the characteristics of rapid transient and steady flow in the piping, bubble behavior and wall pressure oscillation in a large and open tank, steam condensation, thermal mixing performance in a pool, and small and hermetically sealed tank performance. Based on the analysis results, experimental requirements for the development provided. Finally, for the further work in developing KNGR, the implementing approach related to this work has been purposed. 42 figs, 2 tabs, 29 refs. (Author).

  1. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data

  2. Gas monitoring and control for upper corner of longwall based on hydraulic driver

    Lian, Hongzhen; Kou, Ziming

    2006-11-01

    In the mine pit using the "U" ventilation systems, there is serious gas accumulating phenomenon nearby upper corner. If not effectively in time, the serious coal mine security accident will exist because of the gas ultra to limit. Through analysis to the gas accumulation reason and the distribution rule nearby upper corner, the situation is understood that the wind speed is extremely low near upper corner region and some parts is at eddy flow status; Using the practical and economical real-time monitoring system, accumulative gas can be scattered through the air flow perturbation of hydraulic blower. This method could reduce partial gas concentration of upper corner in order to meet the coal mine security production requirements

  3. Hydraulic characterization of an activated sludge reactor with recycling system by tracer experiment and analytical models.

    Sánchez, F; Viedma, A; Kaiser, A S

    2016-09-15

    Fluid dynamic behaviour plays an important role in wastewater treatment. An efficient treatment requires the inexistence of certain hydraulic problems such as dead zones or short-circuiting flows. Residence time distribution (RTD) analysis is an excellent technique for detecting these inefficiencies. However, many wastewater treatment installations include water or sludge recycling systems, which prevent us from carrying out a conventional tracer pulse experiment to obtain the RTD curve of the installation. This paper develops an RTD analysis of an activated sludge reactor with recycling system. A tracer experiment in the reactor is carried out. Three analytical models, derived from the conventional pulse model, are proposed to obtain the RTD curve of the reactor. An analysis of the results is made, studying which model is the most suitable for each situation. This paper is useful to analyse the hydraulic efficiency of reactors with recycling systems. PMID:27288672

  4. Thermal hydraulic issues of containment filtered venting system for a long operating time

    Na, Young Su; Ha, Kwang Soon; Park, Rae Joon; Park, Jong Hwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Song Won [Nuclear Safety Evaluation, Daejeon (Korea, Republic of)

    2014-12-15

    This study investigated the thermal hydraulic issues in the Containment Filtered Venting System (CFVS) for a long operating time using the MELCOR computer code. The modeling of the CFVS, including the models for pool scrubbing and the filter, was added to the input file for the OPR-1000, and a Station Blackout (SBO) was chosen as an accident scenario. Although depressurization in the containment building as a primary objective of the CFVS was successful, the decontamination feature by scrubbing and filtering in the CFVS for a long operating time could fail by the continuous evaporation of the scrubbing solution. After the operation of the CFVS, the atmosphere temperature in the CFVS became slightly above the water saturation temperature owing to the release of an amount of steam with high temperature from the containment building to the scrubbing solution. Reduced pipe diameters at the inlet and outlet of the CFVS vessel mitigated the evaporation of scrubbing water by controlling the amount of high-temperature steam and the water saturation temperature.

  5. 挤缝机液压系统设计%Design of Squeeze Machine Hydraulic System

    邹炳燕; 陈宽; 杨中力; 钱逸秋; 左维

    2015-01-01

    为了提高割缝筛管防砂效果,介绍了割缝筛管新型复合缝腔———台阶缝。根据台阶缝生产加工工艺要求,设计了满足台阶缝新加工工艺的生产设备———挤缝机及其液压系统。与以往的复合缝腔加工工艺比较,降低了生产成本,提高了加工效率。%In order to improve the effect of slotting screen sand control, the slotted sieve tube new composite joint cavity step seam was introduced . According to the step seam production process requirements, squeeze machine and its hydraulic system were de⁃signed which met the new processing production equipment. Comparing with previous composite joint cavity processing technology, the production cost is reduced and the processing efficiency is improved.

  6. 综采工作面液压支架集控系统设计研究%Design of hydraulic support system for hydraulic support in fully mechanized mining face

    唐鹏

    2015-01-01

    In view of the present stage of our country's domestic hydraulic support control system has the problem of poor real-time, low reliability and low degree of automation. This paper designs the hydraulic support system of hydraulic support in the fully mechanized working face, and introduces the hardware and software design of the system. The system has high real-time performance, stable communication, high degree of integration, and can meet the requirements of the establishment of high efifciency fully mechanized coal face.%针对现阶段我国的国产液压支架控制系统有实时性差、可靠性低、自动化程度较低等问题,设计了综采工作面液压支架集控系统,该文介绍了该系统硬件组成与软件设计,分析了液压支架集控的实现过程。该系统实时性高,通信稳定,集控程度高,能满足建立高产高效综采工作面的要求。

  7. Improvements to the measurement of electrically controlled hydraulic pumps' flow/pressure characteristics

    To increase the measurement accuracy, and also to automate the measurement operation, we modify the electrically controlled hydraulic pumps' (ECHPs') flow/pressure performance characteristic description and improve the test method in existent standards. According to ECHPs' working principle, we divide ECHPs' operation into two models: constant flow operating mode (CFOM) and constant pressure operating mode (CPOM). A direct drive servo-proportional control valve (DDV) is used to load the test pump. In the CFOM, we change the pressure load at a constant rate by driving the DDV's displacement with nonlinear feedback and a proportional–integral (PI) controller. In the CPOM, we take advantage of the DDV's inherent linearity between its input signal and output flow, and change the flow load at a constant rate by using open-loop spool displacement control. A mathematic model is built for the derivation of a stable condition and the analysis of steady-state pressure tracking error. The theoretical analysis shows that the feedback linearization and PI controller with negative proportional and integral gains are able to track a slope pressure load command with a desired rate. The test results also show that the mathematical model is valid and the proposed method can improve the measurement accuracy remarkably

  8. Development and verification of a thermo-hydraulic simulation code for systems transient in 'Monju' (COPD code)

    Large system simulation codes are needed for design and safety analysis. A thermal-hydraulic simulation code for systems transient in ''Monju'' (COPD code) was developed and verified with experimental data from an experimental LMFBR ''Joyo'', 50 MWt steam generator test facility and scaled test sections of reactor vessel plenum. This paper summarizes numerical models of this code and their verifications with experimental data. Especially, a simplified analytical model to predict the transient behavior in a reactor vessel plenum is presented in detail, since this behavior has an important effect that must be taken into account in a plant thermal transient, while the reactor is tripped. The COPD is applied to design and safety analysis in ''Monju'' as follows ; (1) Safety analysis with regard to core cooling in anticipated incidents. (2) Plant thermo-hydraulic analysis for setting the design condition in thermal stress analysis and evaluation of components and pipings. (3) Control performance analysis on plant operation for design and evaluation of plant control system. Each of the above analyses requires different predictions of plant response to be analyzed. Therefore, appropriate models and input data are used in the design and evaluation according to the purpose of the analysis. This code was developed and verified under a contract with PNC. (author)

  9. Control system design method

    Wilson, David G.; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  10. Staged cost optimization of urban storm drainage systems based on hydraulic performance in a changing environment

    M. Maharjan

    2009-04-01

    Full Text Available Urban flooding causes large economic losses, property damage and loss of lives. The impact of environmental changes, mainly urbanization and climatic change, leads to increased runoff and peak flows which the drainage system must be able to cope with to reduce potential damage and inconvenience. Allowing for detention storage to compliment the conveyance capacity of the drainage system network is one of the approaches to reduce urban floods. Contemporary practice is to design systems against stationary environmental forcings – including design rainfall, landuse, etc. Due to the rapid change in the climate- and the urban environment, this approach is no longer appropriate, and explicit consideration of gradual changes during the life-time of the drainage system is warranted. In this paper, a staged cost optimization tool based on the hydraulic performance of the drainage system is presented. A one dimensional hydraulic model is used for hydraulic evaluation of the network together with a genetic algorithm based optimization tool to determine optimal intervention timings and responses over the analysis period. The model was applied in a case study area in the city of Porto Alegre, Brazil. It was concluded that considerable financial savings and/or additional level of flood-safety can be achieved by approaching the design problem as a staged plan rather than one-off scheme.

  11. Staged cost optimization of urban storm drainage systems based on hydraulic performance in a changing environment

    M. Maharjan

    2008-06-01

    Full Text Available Urban flooding causes large economic losses, property damage and loss of lives. The impact of environmental changes mainly, the urbanization and the climatic change leads to increased runoff and increased peak flows which the drainage system must be able to cope with to overcome possible damage and inconveniences caused by the induced flooding. Allowing for detention storage to compliment the capacity of the drainage system network is one of the approaches to reduce urban floods. The traditional practice was to design systems against stationary environmental forcings – including design rainfall, landuse, etc. Due to the rapid change in climate-environment, this approach is no longer economically viable and safe, and explicit consideration of changes that gradually take place during the life-time of the drainage system is warranted. In this paper, a staged cost optimization tool based on the hydraulic performance of the drainage system is presented. A one dimensional hydraulic model is used for hydraulic evaluation of the network together with a genetic algorithm based optimization tool to determine optimal intervention timings and amounts throughout the lifespan of the drainage network. The model was applied in a case study area in the city of Porto Alegre, Brazil. It was concluded that considerable financial savings and/or additional level of flood-safety can be achieved by approaching the design problem as a staged plan rather than one-off scheme.

  12. Thermal Hydraulic numerical analysis of Fusion superconducting magnet systems

    Kholia, Akshat

    2013-01-01

    In the present scenario, the International Thermonuclear Experimental Reactor (ITER) is in progress and efforts are being made to extend ITER to DEMOnstration Power plant (DEMO) with the purpose to harness the fusion energy for peaceful and constructive purposes. ITER uses the sueperconducting magnet systems for trapping and maneuvering plasma inside the giant tokamak machines. Superconductivity only entails under the critical conditions of temperature, magnetic field and current density. If ...

  13. GCFR plant control system

    A plant control system is being designed for a gas-cooled fast breeder reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. The load control portion of the plant control system provides stable automatic (closed-loop) control of the plant over the 25% to 100% load range. Simulation results are presented to demonstrate load control system performance. The results show that the plant is controllable at full load with the control system structure selected, but gain scheduling is required to achieve desired performance over the load range

  14. Quarter Car Active Suspension System Control Using PID Controller tuned by PSO

    Wissam H. Al-Mutar

    2015-01-01

    The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compa...

  15. Thermal-Hydraulic Feedback Module for BGCore System

    The need for accurate fuel management modeling in Generation IV (LFR, HTGR, etc) reactors has motivated the development of a new and comprehensive code (the BGCore system) for core analysis of advanced reactors. This effort is justified since there are currently no high fidelity codes, which are capable of performing for different types of advanced reactors calculations. Reliable modeling of the core performance requires an adequate modeling of a wide range of physical processes, such as fuel depletion and the temperature distribution in the main core components

  16. Optimal design of the positions of the hoops for a hydraulic pipelines system

    Highlights: ► The parametric model of the hydraulic pipelines system is constructed by ANASYS. ► The above parametric model can be called by MATLAB. ► An optimization model for the positions of the hoops is established. ► An optimization for the positions of the hoops is performed. - Abstract: This paper focuses on decreasing the vibration and improving the dynamics performances for a hydraulic pipelines system. The parametric model of the hydraulic pipelines system under the random excitations is constructed and the dynamics characteristics are obtained by the finite element analysis, then an optimization model is presented to reduce the vibration by rationally designing the positions of the hoops in the pipelines system. The dimensions determining the locations of the hoops are defined as design variables, and the dynamics performances, such as the maximum displacement, the maximum axial stress, the maximum shear stress, the maximum axial strain, the maximum hoop strain, the maximum shear strain and the failure probability of the first passage are regarded as nonlinear constraints whereas the failure probability of cumulative fatigue damage is viewed as an optimization objective. The results show that the dynamics performances of the hydraulic pipelines system are distinctly improved by the optimization procedure, such as, the maximum displacement and velocity are reduced by 67.5% and 58.6%, respectively, and the maximum axial stress and strain are both decreased by 61.5% while the maximum shear stress and strain are reduced by 66.1%, and the failure probability of the first passage and cumulative fatigue damage are allayed by more than 99%, etc.

  17. Real time seismic traffic light systems for hydraulic stimulations in deep geothermal systems

    Wegler, Ulrich; Vasterling, Margarete; Dinske, Carsten; Becker, Jan

    2015-04-01

    In order to mitigate the risk associated with induced seismicity caused by hydraulic stimulations in deep geothermal systems so called traffic light systems (risk management plans) are used. These systems consist of a local seismic monitoring and an estimate of the current seismic hazard based on observed induced seismicity. The current hazard is compared to threshold values. Measures to reduce the seismic hazard (e.g. reducing the flow rate) specified in the risk management plan are taken, if thresholds are exceeded. Standard traffic light systems use the largest recorded magnitude or peak ground velocity to estimate current seismic hazard caused by induced earthquakes. We developed a real time technique that computes the probability of exceedance for an undesired magnitude using a statistical analysis of recorded micro-seismicity. Based on the in real time generated earthquake catalogue, we compute the magnitude of completeness, the b-value of the Gutenberg-Richter law, and the so-called seismogenic index. These three quantities are updated in real time, if more induced earthquakes are detected. Using the flow rate of the hydraulic stimulation, which we assume to be recorded in real time as well, we calculate the expected seismicity for the next hours. In particular, we compute the probability of exceedance for a predefined critical magnitude. The value is permanently updated and compared to predefined threshold values of the traffic light system. Additionally to the scenario of a continued stimulation with the current flow rate, we also consider the case of an immediate shut-in. For this scenario the probability of exceedance is computed using a modified Omori law. The developed algorithm is implemented in the real-time earthquake monitoring software SeisComP3 including a graphical user interface. So far the traffic light algorithm has only been tested in playback mode simulating a real time scenario. For example, using data of the Basel Deep Heat Mining project

  18. Scaling philosophy and system description of AHWR Thermal-Hydraulic Test Facility (ATTF)

    The Advanced Heavy Water Reactor (AHWR) being designed in India is a 920 MWth pressure tube type boiling light water cooled and heavy water moderated reactor. AHWR Thermal Hydraulic Test Facility (ATTF), a scaled experimental facility that simulates the thermal-hydraulic behaviour of main heat transport system and ECCS, is designed. The objectives of the facility are to obtain thermal margin (CHF) and the parallel channel stability behaviour Global scaling is based on Power to Volume ratio. This philosophy is based on maintaining the same pressure, temperature with same working fluid. Main advantage of this scaling approach is that it preserves the time scales which are very crucial for the simulation of transient and accident conditions to assess the performance of safety systems. All of the Main Heat Transport (MHT) and Emergency Core Cooling System (ECCS) components are scaled down on the basis of power to volume scaling. ATTF contains two full power channels in comparison with 452 channels of AHWR then the scaling ratio is 226. Therefore the volumes of the components in natural circulation path (MHT) are scaled down by 226. Different local phenomenon like Critical Heat Flux (CHF), Flashing, Geysering etc which affects the performance of the system are scaled down appropriately. GDCS injection, feed water flow etc are simulated as boundary flow scaling approach. This 3-level approach simulates almost all the thermal hydraulics phenomenon of the prototype in the model, with the appropriate scale of the model to the prototype. (author)

  19. Development of CFD Analysis Methodology of Hydraulic Load Evaluation in POSRV Piping System

    APR1400 has been improved as an advanced light water reactor that adopts new technology's. One of major technologies is IRWST(In-containment Refueling Water Storage Tank) placed inside containment. In order to adjust the new technology when POSRV(Pilot Operated Safety Relief Valve) is opened, POSRV-IRWST linked line must be kept safe. Theoretical solution and experimental data are needed for structure integrity, but proven data are insufficient from the viewpoint of hydrodynamics. The hydrodynamic flow analysis and the thermodynamic behavior analysis should be performed by using CFD. The objective of this study is to develop the CFD analysis methodology of hydraulic load evaluation in IRWST piping system. This method is a basic hydraulic load evaluation in POSRV piping system. Also, this will help to analyze fluid-structural interface and to predict special phenomena. Therefore, that can be used as a basis to the most suitable design

  20. An approach to validation of coupled CFD and system thermal-hydraulics codes

    This paper discusses the development of approach and experimental facility for the validation of coupled Computational Fluid Dynamics (CFD) and System Thermal Hydraulics (STH) codes. The validation of a coupled code requires experiments which feature two way feedback between the component (CFD sub-domain) and the system (STH sub-domain). We present results of CFD analysis that are used in the development of a flexible design for the TALL-3D experimental facility. The facility consists of a lead-bismuth thermal-hydraulic loop operating in forced and natural circulation regimes with a heated pool-type 3D test section. The goal of the design is to achieve a feedback between mixing and stratification phenomena in the 3D tests section and forced / natural circulation flow conditions in the loop. Finally, we discuss the development of an experimental validation matrix for validation of coupled STH and CFD codes that considers the key physical phenomena of interest. (author)

  1. ADAPTIVE CONTROLLER AND ITS APPLICATION IN FORCE SYSTEM OF ASYMMETRIC CYLINDER CONTROLLED BY SYMMETRIC VALVE

    2007-01-01

    Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model reference adaptive controller is designed using equilibrium point stability theory and output error equation polynomial. The reference model is selected in such a way that it meets the system dynamic performance. Hardware configuration of asymmetric cylinder controlled by asymmetric valve hydraulic system is replaced by intelligent control algorithm, thus the cost is lowered and easy to application. Simulation results demonstrate that the proposed adaptive control sheme has good adaptive ability and well solves asymmetric dynamic performance problem. The designed adaptive controller is fairly robust to load disturbance and system parameter variation.

  2. A flight simulator control system using electric torque motors

    Musick, R. O.; Wagner, C. A.

    1975-01-01

    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  3. Control Configuration Selection for Multivariable Descriptor Systems

    Shaker, Hamid Reza; Stoustrup, Jakob

    2012-01-01

    Control configuration selection is the procedure of choosing the appropriate input and output pairs for the design of SISO (or block) controllers. This step is an important prerequisite for a successful industrial control strategy. In industrial practices it is often the case that the system, which...... systems, hydraulic systems to heat transfer, and chemical processes. The focus of this paper is on the problem of control configuration selection for multivariable descriptor systems. A gramian-based interaction measure for control configuration selection of such processes is described in this paper....... The proposed MIMO interaction measure is the extension of its gramian-based analogous counterpart, which has been proposed for the input–output pairing as well as for the controller architecture selection of the processes with the standard state-space form. The main advantage of this interaction measure...

  4. An experimental study of the dual-loop control of electro-hydraulic load simulator (EHLS)

    Wang Chengwen; Jiao Zongxia; Wu Shuai; Shang Yaoxing

    2013-01-01

    This paper investigates motion coupling disturbance (the so called surplus torque) in the hardware-in-the-loop (HIL) experiments. The‘‘velocity synchronization scheme’’ was proposed by Jiao for an electro-hydraulic load simulator (EHLS) in 2004. In some situations, however, the scheme is limited in the implementation for certain reasons, as is the case when the actuator’s valve signal is not available or it is seriously polluted by noise. To solve these problems, a ‘‘dual-loop scheme’’ is developed for EHLS. The dual-loop scheme is a combination of a torque loop and a position synchronization loop. The role of the position synchronization loop is to decouple the motion disturbance caused by the actuator system. To verify the feasibility and effectiveness of the proposed scheme, extensive simulations are performed using AMESim. Then, the performance of the developed method is validated by experiments.

  5. Utilization of a hydraulic barrier to control migration of a uranium plume

    A uranium plume emanating from the U.S. Department of Energy's Fernald Environmental Management Project (FEMP) in Fernald, Ohio had migrated off site and the leading edge of the plume had already mixed with an organic and inorganic plume emanating from two industries south of the FEMP. A method was needed to prevent the further southern migration of the plume, minimize any impacts to the geometry, concentrations, distribution or flow patterns of the organic and inorganic plumes emanating from the off-site industries, while meeting the ultimate cleanup goals for the FEMP. This paper discusses the use of a hydraulic barrier created to meet these goals by pumping a five well recovery system and the problems associated with the disposition of over 2 million gallons per day of water with low concentrations of uranium

  6. Internal Control System

    Pavésková, Ivana

    2009-01-01

    This thesis is focused on internal control system. The aim of this thesis is to analyse the development and elements of internal control system, and then demonstrate the possible form of the internal control system in practice. The thesis is divided into two parts -- theoretical and practical. The beginning of the theoretical part is devoted to characteristics of internal controls and their relation to internal control, attention is also paid to economic crimes which the internal control syst...

  7. Porteau: An Object-Oriented programming hydraulic toolkit for water distribution system analysis

    Piller, O.; D. Gilbert; Haddane, K.; Sabatié, S.

    2011-01-01

    International audience Several computer tools exist for Water Distribution Systems Analysis. The most well known of which Epanet will not be maintained in the near future. To remedy this, open source development projects have recently been proposed. Cemagref have developed the Porteau software, with several tools. They have decided to make their software open and freely available. In this paper, we present our experience to design a hydraulic toolkit for Water Distribution Analysis which c...

  8. Effects of hedgerow systems on soil moisture and unsaturated hydraulics conductivity measured by the Libardi method

    S. Prijono; M . T . S . Laksmana; D . Suprayogo

    2016-01-01

    The hedgerow systems are the agroforestry practices suggesting any positive impacts and negative impacts on soil characteristics. This study evaluated the effects of hedgerows on the unsaturated hydraulic conductivity of soil with the Libardi method approach. This study was conducted in North Lampung for 3 months on the hedgerow plots of Peltophorum dassyrachis (P), Gliricidia sepium (G), and without hedgerow plot (K), with four replications. Each plot was watered as much as 150 liters of wa...

  9. Modeling and Simulation of Hybrid Solar Photovoltaic, Wind turbine and Hydraulic Power System

    Sami, S.; D. Icaza

    2015-01-01

    This paper presents the modeling and simulation of the energy conversion equations describing the total power generated by a hybrid system of solar photovoltaic, wind turbine and hydraulic turbine. To validate this simulation model, the aforementioned equations were coded with MATLAB V13.2, compared to experimental data. The model is intended to be used as an optimization and design tool. A block diagram approach was used during the simulation with MATLAB. The model predicted results compared...

  10. Beneficial effects on water management of simple hydraulic structures in wetland systems: the Vallevecchia case study, Italy.

    Carrer, G M; Bonato, M; Smania, D; Barausse, A; Comis, C; Palmeri, L

    2011-01-01

    Conflicting water uses in coastal zones demand integrated approaches to achieve sustainable water resources management, protecting water quality while allowing those human activities which rely upon aquatic ecosystem services to thrive. This case study shows that the creation and simple management of hydraulic structures within constructed wetlands can markedly reduce the non-point pollution from agriculture and, simultaneously, benefit agricultural activities, particularly during hot and dry periods. The Vallevecchia wetland system is based on a reclaimed 900 ha-large drainage basin in Northern Italy, where droughts recently impacted agriculture causing water scarcity and saltwater intrusion. Rainwater and drained water are recirculated inside the system to limit saltwater intrusion, provide irrigation water during dry periods and reduce the agricultural nutrient loads discharged into the bordering, eutrophic Adriatic Sea. Monitoring (2003-2009) of water quality and flows highlights that the construction (ended in 2005) of a gated spillway to control the outflow, and of a 200,000 m3 basin for water storage, dramatically increased the removal of nutrients within the system. Strikingly, this improvement was achieved with a minimal management effort, e.g., each year the storage basin was filled once: a simple management of the hydraulic structures would greatly enhance the system efficiency, and store more water to irrigate and limit saltwater intrusion. PMID:22053478

  11. Friction compensation for low velocity control of hydraulic flight motion simulator: A simple adaptive robust approach

    Yao Jianyong; Jiao Zongxia; Han Songshan

    2013-01-01

    Low-velocity tracking capability is a key performance of flight motion simulator (FMS),which is mainly affected by the nonlinear friction force.Though many compensation schemes with ad hoc friction models have been proposed,this paper deals with low-velocity control without friction model,since it is easy to be implemented in practice.Firstly,a nonlinear model of the FMS middle frame,which is driven by a hydraulic rotary actuator,is built.Noting that in the low velocity region,the unmodeled friction force is mainly characterized by a changing-slowly part,thus a simple adaptive law can be employed to learn this changing-slowly part and compensate it.To guarantee the boundedness of adaptation process,a discontinuous projection is utilized and then a robust scheme is proposed.The controller achieves a prescribed output tracking transient performance and final tracking accuracy in general while obtaining asymptotic output tracking in the absence of modeling errors.In addition,a saturated projection adaptive scheme is proposed to improve the globally learning capability when the velocity becomes large,which might make the previous proposed projection-based adaptive law be unstable.Theoretical and extensive experimental results are obtained to verify the high-performance nature of the proposed adaptive robust control strategy.

  12. Environmentally Friendly, Rheoreversible, Hydraulic-fracturing Fluids for Enhanced Geothermal Systems

    Shao, Hongbo; Kabilan, Senthil; Stephens, Sean A.; Suresh, Niraj; Beck, Anthon NR; Varga, Tamas; Martin, Paul F.; Kuprat, Andrew P.; Jung, Hun Bok; Um, Wooyong; Bonneville, Alain; Heldebrant, David J.; Carroll, KC; Moore, Joseph; Fernandez, Carlos A.

    2015-07-01

    Cost-effective creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the feasibility of enhanced geothermal systems (EGS). Current reservoir stimulation entails adverse environmental impacts and substantial economic costs due to the utilization of large volumes of water “doped” with chemicals including rheology modifiers, scale and corrosion inhibitors, biocides, friction reducers among others where, typically, little or no information of composition and toxicity is disclosed. An environmentally benign, CO2-activated, rheoreversible fracturing fluid has recently been developed that significantly enhances rock permeability at effective stress significantly lower than current technology. We evaluate the potential of this novel fracturing fluid for application on geothermal sites under different chemical and geomechanical conditions, by performing laboratory-scale fracturing experiments with different rock sources under different confining pressures, temperatures, and pH environments. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable Polyallylamine (PAA) represent a highly versatile fracturing fluid technology. This fracturing fluid creates/propagates fracture networks through highly impermeable crystalline rock at significantly lower effective stress as compared to control experiments where no PAA was present, and permeability enhancement was significantly increased for PAA compared to conventional hydraulic fracturing controls. This was evident in all experiments, including variable rock source/type, operation pressure and temperature (over the entire range for EGS applications), as well as over a wide range of formation-water pH values. This versatile novel fracturing fluid technology represents a great alternative to industrially available fracturing fluids for cost-effective and competitive geothermal energy production.

  13. Thermal hydraulic aspects of steam drum level control philosophy for the natural circulation based heavy water reactor

    From safety considerations advanced nuclear reactors rely more and more on passive systems such as natural circulation for primary heat removal. A natural circulation based water reactor is relatively larger in size so as to reduce flow losses and channel type for proper flow distribution. From the size of steam drum considerations it has to be multi loop but has a common inlet header. Normally the turbine follows the reactor. This paper addresses the thermal hydraulic aspects of the steam drum pressure and level control philosophy for a four drum, natural circulation based, channel type boiling water advanced reactor. Three philosophies may be followed for drum control viz. individual drum control, one control drum approach and an average of all the four drums. For drum pressure control, the steam flow to the turbine is be regulated. A single point pressure control is better than individual drum pressure control. This is discussed in the paper. But the control point has to be at a place down steam the point where all steam line from individual drum meet. This may lead to different pressure in all the four drums depending on the power produced in the respective loops. The difference in pressure cannot be removed even if the four drums are directly connected through pipes. Also the pressure control scheme with/without interconnection is discussed. For level, the control of individual drum may not be normally possible because of common inlet header. As the frictional pressure drops in the large diameter downcomers are small as compared to elevation pressure drops, the level in all the steam drum tend to equalize. Consequently a single representative drum level may be chosen as a control variable for controlling level in all the four drums. But in case, where all the four loops are producing different powers and single point pressure control is effective, the scheme may not work satisfactorily. the level in a drum may depend on the power produced in the loop

  14. Thermal-hydraulic design concept of the solid-target system of spallation neutron source

    In relation to thermal-hydraulic design of the N-Arena solid-target system of the JHF project, heat transfer experiments were performed to obtain experimental data systematically on heat transfer coefficient and CHF for vertical upward and horizontal flows in a thin rectangular channel simulating a coolant channel of the proposed spallation neutron source. Thermal-hydraulic correlations which can be used for design calculations were proposed based on the obtained data. Finally tentative results of feasibility study on maximum beam power which could be attained with a solid target were presented. The result indicated that the condition for the onset of nucleate boiling is the most significant limiting factor to the maximum beam power. (author)

  15. Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures

    Alessandro Petruzzi; Francesco D'Auria

    2008-01-01

    In the last four decades, large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Whereas the first system codes, developed at the beginning of the 1970s, utilized the homogenous equilibrium model with three balance equations to describe the two-phase flow, nowadays the more advanced system codes are based on the so-called “two-fluid model” with separation of the water and vapor phases, resulti...

  16. Technique of analysis and error detection for thermo-hydraulic system data

    Statistical techniques based on estimation theory were developed for the analysis of steady-state data from thermo-hydraulic systems, which could be either experimental loops or operating power plants. The method seeks to resolve errors in the component heat balances which describe the system, to obtain system parameter estimates which are more accurate than the raw data, and to flag possible faulty sensors. Sample results are given for the analysis of test data from the Sodium Loop Safety Faciltiy (SLSF) P3 experiment

  17. Study on Wireless Network Communication in Stage Hydraulic Monitoring System Based on Internet of Things

    Yue Dong; Hui Ren; Jianghui Dong; Liping Wang

    2015-01-01

    A novel stage hydraulic monitoring system based on Internet of Things (IoT) is proposed in this paper. Compared with the traditional wired system, the proposed system is a flexible working method and can save the cost. Furthermore, it has the low power consumption, high safety, and large scale network. The real-time pressure and flow data can be collected by using the nodes in ZigBee network. The fault detection and diagnosis process was used in this study, which was facilitated by measuring ...

  18. Software Tool for Automated Failure Modes and Effects Analysis (FMEA) of Hydraulic Systems

    Stecki, J. S.; Conrad, Finn; Oh, B.

    2002-01-01

    management techniques and a vast array of computer aided techniques are applied during design and testing stages. The paper present and discusses the research and development of a software tool for automated failure mode and effects analysis - FMEA - of hydraulic systems. The paper explains the underlying......Offshore, marine,aircraft and other complex engineering systems operate in harsh environmental and operational conditions and must meet stringent requirements of reliability, safety and maintability. To reduce the hight costs of development of new systems in these fields improved the design...

  19. Adaptive shared control system

    Sanders, David

    2009-01-01

    A control system to aid mobility is presented that is intended to assist living independently and that provides physical guidance. The system has two levels: a human machine interface and an adaptive shared controller.

  20. Resolution of thermal-hydraulic safety and licensing issues for the system 80+{sup {trademark}} design

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E. [ABB-Combustion Engineering, Windsor, CT (United States)] [and others

    1995-09-01

    The System 80+{sup {trademark}} Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC`s new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs.