WorldWideScience

Sample records for hydraulic control systems

  1. Control rod drive hydraulic system

    International Nuclear Information System (INIS)

    This patent describes a hydraulic system for a control rod drive (CRD). It comprises a variable output-pressure CRD pump; a charging line disposed in flow communication between the CRD pump and the CRD; a purge line disposed in flow communication between the CRD pump and the CRD, and in parallel flow with the charging line; a hydraulic control unit (HCU) disposed in flow communication in the charging line between the isolation valve and the CRD and including in series flow in the charging line an HCU check valve and a normally closed scram valve, and a scram accumulator disposed therebetween for accumulating the scram fluid at the charging pressure during the charging mode; pressurizing means disposed in flow communication with the charging line downstream of the isolation valve and upstream of the scram valve; a pressure sensor operatively connected to the charging line and responsive to the scram pressure; control means operatively connected to the CRD pump, the isolation valve, and the pressure sensor, and being effective for: opening the isolation valve while the scram valve is closed when the scram pressure drops to the minimum scram pressure; and closing the isolation valve while the scram valve is closed when the scram fluid in the charging line and in the scram accumulator reaches the charging pressure

  2. Hydraulically powered dissimilar teleoperated system controller design

    International Nuclear Information System (INIS)

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented

  3. Hydraulic loop: practices using open control systems

    International Nuclear Information System (INIS)

    The Tecnatom Hydraulic Loop is a dynamic training platform. It has been designed with the purpose of improving the work in teams. With this system, the student can obtain a full scope vision of a system. The hydraulic Loop is a part of the Tecnatom Maintenance Centre. The first objective of the hydraulic Loop is the instruction in components, process and process control using open control system. All the personal of an electric power plant can be trained in the Hydraulic Loop with specific courses. The development of a dynamic tool for tests previous to plant installations has been an additional objective of the Hydraulic Loop. The use of this platform is complementary to the use of full-scope simulators in order to debug and to analyse advanced control strategies. (Author)

  4. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed to hinder surges and mechanical fractures. Experimental results verify the performance of the controllers.

  5. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed to...

  6. Highly reliable electro-hydraulic control system

    International Nuclear Information System (INIS)

    The unscheduled shutdown of nuclear power stations disturbs power system, and exerts large influence on power generation cost due to the lowering of capacity ratio; therefore, high reliability is required for the control system of nuclear power stations. Toshiba Corp. has exerted effort to improve the reliability of the control system of power stations, and in this report, the electro-hydraulic control system for the turbines of nuclear power stations is described. The main functions of the electro-hydraulic control system are the control of main steam pressure with steam regulation valves and turbine bypass valves, the control of turbine speed and load, the prevention of turbine overspeed, the protection of turbines and so on. The system is composed of pressure sensors and a speed sensor, the control board containing the electronic circuits for control computation and protective sequence, the oil cylinders, servo valves and opening detectors of the valves for control, a high pressure oil hydraulic machine and piping, the operating panel and so on. The main features are the adoption of tripling intermediate value selection method, the multiplying of protection sensors and the adoption of 2 out of 3 trip logic, the multiplying of power sources, the improvement of the reliability of electronic circuit hardware and oil hydraulic system. (Kako, I.)

  7. Connection of hydraulic flow control system

    International Nuclear Information System (INIS)

    The connection is described of a hydraulic system controling the coolant flow through the assembly of a nuclear reactor. To the hydraulically controlled control device are connected the two branches of the hydraulic system, the filling branch being connected to the primary circuit of the reactor by an open electromagnetic valve and the working branch containing the pressure source of the working liquid being connected to the drainage by a closed electromagnetic valve. A filter may be placed in the filling branch and a pressure gauge in the working branch. The two branches may be connected with a clamp with a stop valve between the control equipment and the electromagnetic valves. Also, the working branch may be linked via a safety valve with the filling branch, this between the control device and the closed electromagnetic valve and between the primary circuit and the open electromagnetic Valve. (B.S.)

  8. Hydraulic Actuator System for Rotor Control

    Science.gov (United States)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  9. TG 220 MW hydraulic control system diagnostics

    International Nuclear Information System (INIS)

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer's factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs

  10. Hydraulic system for driving control rod

    International Nuclear Information System (INIS)

    Purpose: To protect a control rod drive hydraulic system from corrosion and stress corrosion cracking by recirculating in the system the filtrate which has been treated in a coolant cleanup system to bring dissolved oxygen content within certain limits. Constitution: The coolant for a pressure vessel is passed through a coolant cleanup system, regenerative heat exchanger, and nonregenerative heat exchanger to be cooled down to about 500C. Then it is cleaned by a filtrator-desalter, heated again by the regenerative heat exchanger, fed into feed water line, and returned to the pressure vessel. The input line of the control rod drive hydraulic system is connected on the rear of the filtrator-desalter. Part of the coolant having controlled dissolved oxygen content is used in the hydraulic system as filling water, driving water, and cooling water. The reactor return line is connected on the front of the secondary side of the regenerative heat exchanger, so as to relieve the thermal stress applied to the pressure vessel. (Nakamura, S.)

  11. Robust control of hydraulically operated gimbal system

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Taik Dong; Yang, Sang Min [Chungnam National University, Daejeon (Korea, Republic of)

    2007-05-15

    A transmitting antenna operated on the naval vessels can be easily excited by exogenous disturbances such as tidal wave and impact. Gimbal system that supports the antenna needs the controller to maintain the robust performance against various modeling uncertainties and disturbance. PI controller, however, cannot guarantee the reasonable robust performance under these kinds of severe conditions. Thus a robust H {infinity} control scheme is recommended to ensure a specified dynamic response under heavy operating conditions. Gimbal system is simplified as two degree of freedom model that ignores coordinate co-relations of each direction and hydraulic system is modelled linearly. The simulation and experimental results of H {infinity} controller proposed in this paper showed the better responses and stability than those of PI controller.

  12. Robust control of hydraulically operated gimbal system

    International Nuclear Information System (INIS)

    A transmitting antenna operated on the naval vessels can be easily excited by exogenous disturbances such as tidal wave and impact. Gimbal system that supports the antenna needs the controller to maintain the robust performance against various modeling uncertainties and disturbance. PI controller, however, cannot guarantee the reasonable robust performance under these kinds of severe conditions. Thus a robust H ∞ control scheme is recommended to ensure a specified dynamic response under heavy operating conditions. Gimbal system is simplified as two degree of freedom model that ignores coordinate co-relations of each direction and hydraulic system is modelled linearly. The simulation and experimental results of H ∞ controller proposed in this paper showed the better responses and stability than those of PI controller

  13. Pressure control of hydraulic servo system using proportional control valve

    International Nuclear Information System (INIS)

    The purpose of this study is to develop a control scheme for the hydraulic servo system which can rapidly control the pressure in a hydraulic cylinder with very short stroke. Compared with the negligible stroke of the cylinder in the system, the flow gain of the proportional pressure control valve constituting the hydraulic servo system is relatively large and the time delay on the response of the valve is quite long. Therefore, the pressure control system, in this study tends to get unstable during operations. Considering the above mentioned characteristics of the system, a two-degree-of-freedom control scheme, composed of the I-PDD2... feedback compensator and the feedforward controller, is proposed. The reference model scheme is used in deciding the parameters of the controllers. The validity of the proposed control scheme is confirmed through the experiments

  14. Modeling, Simulation and Control of Hydraulic Winch System

    OpenAIRE

    Skjong, Stian

    2014-01-01

    In this thesis a hydraulic low pressure winch system has been modeled using bond graph theory. The hydraulic winch system is assumed to be installed on an offshore vessel affected by environmental forces and disturbances such as waves and currents. The hydraulic system powering the winch consists mainly of two pilot operated 3/3-directional valves controlled by two 4/3-directional valves and a hydraulic motor. The system also includes a pressure relief valve, check valves, pump systems, pipin...

  15. Control issues for a hydraulically powered dissimilar teleoperated system

    International Nuclear Information System (INIS)

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented. (Schilling's Titan II hydraulic manipulators are the slave manipulators and the master manipulators are from the Oak Ridge National Laboratory-developed Advanced Servo Manipulator.)

  16. Control Reconfigurability of Bilinear Hydraulic Drive Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Tahavori, Maryamsadat

    The objective of the methods within the framework of the plug and play process control and particularly fault tolerant control is to establish control techniques which guarantee a certain performance through control reconfiguration at the occurrence of the faults or changes. These methods cannot ......-based analogous counterpart, which has been previously proposed for the linear processes. The control reconfigurability is calculated for the bilinear models of an electro-hydraulic drive to show its relevance to redundant actuating capabilities in the models....

  17. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  18. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    International Nuclear Information System (INIS)

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program

  19. Pressure Control in Hydraulic Power Steering Systems

    OpenAIRE

    DellAmico, Alessandro

    2013-01-01

    There is a clear trend in the vehicle industry to implement more safetyrelated functions, where the focus is on active safety systems and today the steering system is also involved. Steering-related active safety functions can only be realised with a steering system that allows electroniccontrol of either the road wheel angle or the torque required to steer the vehicle, called active steering. The high power requirement of heavy vehicles means they must rely on hydraulic power to assist the d...

  20. Hydraulic system for driving control rods

    International Nuclear Information System (INIS)

    Purpose: To enable safety reactor shut down upon occurrence of an abnormal excess pressure in a hydraulic control unit. Constitution: The actuation pressure for a pressure switch that generates a scram signal is set lower than the release pressure set to a pressure release valve. Thus, if the pressure of nitrogen gas in a nitrogen container increases such as upon exposure of the hydraulic control unit to a high temperature, the pressure switch is actuated at first to generate the scram signal and a scram valve is opened to supply water at high pressure to control rod drives under the driving force of the nitrogen gas at high pressure to rapidly insert the control element into the reactor and shut down it. If the pressure of the nitrogen gas still increases after the scram, the pressure release valve is opened to release the nitrogen gas at high temperature to the atmosphere. Since the scram is attained before the actuation of the pressure release valve, safety reactor shut down can be attained and the hydraulic control unit can be protected. (Sekiya, K.)

  1. A low order adaptive control scheme for hydraulic servo systems

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller; Schmidt, Lasse

    , active gain feedforward shows a slightly improved performance. Computed-Torque Control shows better performance, but requires a well described system for best performance. A novel Adaptive Inverse Dynamics Controller was tested and the performance was found to be similar to that of Computed......This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...... system were constructed and linearized. Controllers are implemented and tested on the manipulator. Pressure feedback was found to greatly improve system stability margins. Passive gain feedforward shows improved tracking performance for small changes in load pressure. For large changes in load pressure...

  2. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  3. Design of Transputer Controllers for Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    The paper deals with how transputers can be applied for fast controllers for hydraulic actuator systems. A general transputer-based control systems including a data acquisition transputer subsystem is presented. An application case: development of a mechatronic test facility with a fast hydraulic...... test robot controlled by a transputer-basec controller is presented. Some experimental path-tracking results with adaptive control algorithms are presented and discussed. The results confirm that transputers have significant advantages for intelligent control of actuator systems and robots for high...

  4. Flow versus pressure control of pumps in mobile hydraulic systems

    OpenAIRE

    Axin, Mikael; Eriksson, Bjrn; Krus, Petter

    2014-01-01

    This work studies an innovative working hydraulic system design for mobile applications, referred to as flow control. The fundamental difference compared to load-sensing systems is that the pump is controlled based on the operators command signals rather than feedback signals from the loads. This control approach enables higher energy efficiency since the pressure difference between pump and load is given by the system resistance rather than a prescribed pump pressure margin. Furthermore, lo...

  5. Electro-hydraulic control systems for use in mineral mining

    Energy Technology Data Exchange (ETDEWEB)

    Kussel, W.; Konig, J.; Reuter, M.

    1988-11-16

    An electro-hydraulic control system for a mineral mining installation which includes a valve unit with a plurality of electromagnetic valves which are electrically actuatable by a remote control unit; wherein the valve unit is connected to a current supply common to all the electromagnetic valves and an electronic actuator is provided which is actuatable by the control unit through a data bus to switch the electromagnetic valves electrically, individually or in groups.

  6. Ringhals 2 steam control system reliability/thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    This paper evaluates the reliability of the proposed Westinghouse Distributed Processing Family (WDPF) control system and compares it to the reliability of the existing mechanical/ hydraulic control system at the Ringhals 2 nuclear power plant. The probabilities of the postulated failures in the existing control system are contrasted to those that would exist for the WDPF enhanced control and protection system. This paper is limited to a discussion about the reliability that relates to failures that have the potential to cause an overpressure in the moisture separator/reheaters (MSRs) of the Ringhals 2 plant. This power plant was built at a time when the requirements (in Sweden) did not include overpressure relief valves in the MSR. When the plant was originally constructed, the mechanical/ hydraulic control system was designed to be, and was used as, a method to prevent an overpressure condition in the MSR. The control system response time was fast enough to close the MSR inlet lines in the event that one or more discharge line valves was closed or failed closed. The authors also include a thermal-hydraulic analysis of some of the postulated (very low probability) secondary-side transients

  7. Seismic analysis of hydraulic control rod driving system

    International Nuclear Information System (INIS)

    A simplified mathematical model was developed for the Hydraulic Control Rod Driving System (HCRDS) of a 200 MW nuclear heating reactor, which incorporated the design of its chamfer-hole step cylinder, to analyze its seismic response characteristics. The control rod motion was analyzed for different sine-wave vibration loadings on platform vibrator. The vibration frequency domain and the minimum acceleration amplitude of the control rod needed to cause the control rod to step to its next setting were compared with the design acceleration amplitude spectrum. The system design was found to be safety within the calculated limits. The safety margin increased with increasing frequency. (author)

  8. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  9. Modification Of Control System For Flow On Hydraulic Rabbit System Facility

    International Nuclear Information System (INIS)

    Had been modification control system on the hydraulic rabbit system facility is installed at floor +8 m in reactor building GA. Siwabessy. On the hydraulic rabbit system is used water for media transfer and media cooling from hot cell to irradiation position or from irradiation position to hot cell. Flow water to sent capsule target about 55 liters/minute. Flow meter type RS No. 185-9926 is installed in hydraulic rabbit system. The flow meters have specification : flow rate 5 to 100 liters/minute, maximum working pressure 10 bar, temperature range 5 to 60 oC and viscosity range 10 to 200 centistokes. The flow meter is installed on the pipe line upper pump of hydraulic rabbit system facility in room no.0626 floor +8 meter reactor building. After the flow meter installed, flow rate on the hydraulic rabbit system can measure direct, flow rate can be adjusted and result same as on the monitor

  10. Inspection operation aid device and method for control rod drives and hydraulic control system

    International Nuclear Information System (INIS)

    The device of the present invention comprises an input/output device for inputting/outputting various data required for evaluation of integrity, a memorizing/storing device, an information processing device and a display device. Friction data as differential pressure signals of driving hydraulic pressures measured upon inspection/test operation of control rod drives and hydraulic pressure control system are taken into the input/output device. A result of processing for friction signal waveform pattern is calculated. The integrity and abnormality of the control rod drives and the hydraulic pressure system are evaluated using a causal relation between the result of the signal processing for obtained waveform patterns and the intelligence/knowledge of behaviors of the control rod devices and the hydraulic pressure control system thereby providing integrity data. Since the friction data can be calculated automatically by signal waveform pattern processing, there is no need to read the data manually by specialists who take part in the inspection and test. As a result, data on evaluation for integrity and abnormality of the control rod drives and the hydraulic pressure control system can be provided rapidly. (N.H.)

  11. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...

  12. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  13. System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James

    2014-09-23

    A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.

  14. Electro Hydraulic Hitch Control

    DEFF Research Database (Denmark)

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.; Conrad, Finn

    2003-01-01

    This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection system for agricultural applications and driving for transportation. During tranport phases, the lack of suspension causes the vehicle to bounce and pitch, and makes it difficalt to control. Many systems h...

  15. Hydraulic system for the drive of control rod

    International Nuclear Information System (INIS)

    Purpose: To remove thermal stress and improve safety by utilizing water discharged a driving device as a part of cooling water for the device upon driving of control rods. Constitution: A water drain valve is wholly closed and a flow stabilization valve is supplied with an amount of water necessary for driving control rods. Upon driving one control rod, an amount of water required for the driving is caused to flow to the relivant hydraulic control unit and the flow rate in the stabilization valve is reduced by an amount required for the driving to keep the flow rate constant in the flow control valve. Since Excess water conventionally returned to the pressure vessel is utilized as cooling water for the driving device of control rods, the pressure vessel nozzle can be saved. Accordingly, the thermal stress in the nozzle portion can be removed to significantly improve the safety. (Seki, T.)

  16. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator is ...

  17. Research of the Electro-hydraulic Servo System Based on RBF Fuzzy Neural Network Controller

    OpenAIRE

    Huaizhong Chen

    2012-01-01

    This article describes the composition and working principle of electro-hydraulic position servo control system, and establishes a systematic mathematical model. This article presents a controller which is based on Fuzzy neural networks for an electro-hydraulic speed governor. The design process of the RBF Fuzzy neural network control is introduced in detail. This controller which combines the advantages of the Fuzzy control and Neutral networks control can get the best PID parameters by self...

  18. Direct Drive Electro-hydraulic Servo Control System Design with Self-Tuning Fuzzy PID Controller

    OpenAIRE

    Wang Yeqin

    2013-01-01

    According to the nonlinear and time-varying uncertainty characteristics of direct drive electro-hydraulic servo control system, a self-tuning fuzzy PID control method with speed change integral and differential ahead optimizing operator is put forward by combining fuzzy inference and traditional PID control in this paper.The rule of fuzzy logic is designed, the membership function of the fuzzy subsets is determined and lookup table method is used to correcte the PID parameters in real-time. F...

  19. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    DEFF Research Database (Denmark)

    Choux, Martin

    detected early and handled. Moreover, the task of controlling electro hydraulic systems for high performance operations is challenging due to the highly nonlinear behaviour of such systems and the large amount of uncertainties present in their models. This thesis focuses on nonlinear adaptive fault...... alarm. The thesis also develops a high performance adaptive nonlinear controller for the hydraulic system which outperforms comparable linear controllers widely used in the industry. Because of the controller adaptivity, uncertainties in the model parameters can be handled. Moreover, a special attention......Fluid power systems have been in use since 1795 with the rst hydraulic press patented by Joseph Bramah and today form the basis of many industries. Electro hydraulic servo systems are uid power systems controlled in closed-loop. They transform reference input signals into a set of movements in...

  20. Study on Control Strategy of Electro-Hydraulic Servo Loading System

    OpenAIRE

    Ju Tian

    2013-01-01

    Since extraneous torque is the key factor to affect the accuracy of electro-hydraulic servo loading system, the forming mechanism of extraneous torque was discussed in this work. And then several design methods of loading system controller based on modern control theory were introduced, such as internal model control, Cerebella model articulation control and adaptive backstepping control.

  1. The hydraulic driving system for control rods on 5 MW district heating reactor (DHR)

    International Nuclear Information System (INIS)

    The hydraulic step driving sysem is used for driving of control rods on the 5 MW DHR. The system is based on a new concept of control rod driving, which is different from electric-magnetic-mechanic driving used for PWR. The reactor coolant (water) is used as actuating medium, pressed by pump, and then injected into hydraulic step cylinders which are set in the reactor vessel. The outer tube of the cylinder will be moving step by step by controlling flow, driving the neutron absorber and controlling nuclear reaction. 5MW DHR is the first reactor in the world, in which the hydraulic driving system was used. Utilization of the system is for getting better safety, reliability and economy. The principle of hydraulic step driving, the design and experimental research of the system are described

  2. Research of the Electro-hydraulic Servo System Based on RBF Fuzzy Neural Network Controller

    Directory of Open Access Journals (Sweden)

    Huaizhong Chen

    2012-09-01

    Full Text Available This article describes the composition and working principle of electro-hydraulic position servo control system, and establishes a systematic mathematical model. This article presents a controller which is based on Fuzzy neural networks for an electro-hydraulic speed governor. The design process of the RBF Fuzzy neural network control is introduced in detail. This controller which combines the advantages of the Fuzzy control and Neutral networks control can get the best PID parameters by self-adjustment on line. The simulation study proves that this control system has a better adaptability and can improve the control effect greatly.

  3. An electro-hydraulic servo control system research for CFETR blanket RH

    International Nuclear Information System (INIS)

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system

  4. An electro-hydraulic servo control system research for CFETR blanket RH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Changqi [Hefei University of Technology, Hefei 230009, Anhui (China); Tang, Hongjun, E-mail: taurustang@126.com [Hefei University of Technology, Hefei 230009, Anhui (China); Qi, Songsong [Hefei University of Technology, Hefei 230009, Anhui (China); Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2014-11-15

    Highlights: We discussed the conceptual design of CFETR blanket RH maintenance system. The mathematical model of electro-hydraulic servo system was calculated. A fuzzy adaptive PD controller was designed based on control theory and experience. The co-simulation models of the system were established with AMESim/Simulink. The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system.

  5. Knowledge-based Adaptive Tracking Control of Electro-hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    1997-01-01

    The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF.......The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF....

  6. Co-Simulation Research of the Mechanical-Hydraulic-Control Coupling System of ITER Tractor

    International Nuclear Information System (INIS)

    The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform.

  7. Optimization for PID Control Parameters on Hydraulic Servo Control System Based on Artificial Bee Colony Optimization Algorithm

    OpenAIRE

    Youxin Luo; Xiaoyi Che; Zhaoguo Chen

    2012-01-01

    PID control is used widely in hydraulic servo control system. The PID control parameters are very important to performance of hydraulic servo control system and how to find rapidly the optimum values of PID control parameters is very difficult problem. Based on Matlab/simulink software and taking the IATE standards of the optimization design as objective function, a global search optimization method, called Artificial Bee Colony Optimization Algorithm was applied for the o...

  8. Experimental study of hydraulic driving system of control rod not engendering rod ejection accident

    International Nuclear Information System (INIS)

    The hydraulic driving system of control rod is a new controlling-equipment in nuclear reactor. Its drive assembly is hydraulic step cylinder. The cylinder can be installed in the pressure vessel and its inner tube is fixed on the bottom block of core. By the experiment for experimental loop (including pressure vessel, hydraulic step cylinder, heater, pump and another devices) and measuring system, the rod position is measured and observed when the pressure vessel loses pressure under high temperature and high pressure. A lot of experimental data and observed results are obtained. The results indicate: The hydraulic driving system of control rod can not engender rod ejection accident when the pressure vessel loses pressure. So, this system has inherent safety feature of not engendering rod ejection

  9. Direct Drive Electro-hydraulic Servo Control System Design with Self-Tuning Fuzzy PID Controller

    Directory of Open Access Journals (Sweden)

    Wang Yeqin

    2013-06-01

    Full Text Available According to the nonlinear and time-varying uncertainty characteristics of direct drive electro-hydraulic servo control system, a self-tuning fuzzy PID control method with speed change integral and differential ahead optimizing operator is put forward by combining fuzzy inference and traditional PID control in this paper.The rule of fuzzy logic is designed, the membership function of the fuzzy subsets is determined and lookup table method is used to correcte the PID parameters in real-time. Finally the simulation is conducted with the typical input signal, such as tracking step, sine etc. The simulation results show that?the self-tuning fuzzy PID control system can effectively improve the dynamic characteristic when the system is out of the range of the operating point compared with the traditional PID control system, there is obvious improvement in the indexes of rapidity, stability and accuracy, and fuzzy self-tuning PID Control is more robust, and more suitable for direct drive electro-hydraulic servo system.

  10. Experimental study of the pressure discharge process for the hydraulic control rod drive system stepped cylinder

    International Nuclear Information System (INIS)

    The pressure discharge process from the stepped cylinder of the Hydraulic Control Rod Drive System (HCRDS) was studied experimentally in the HCRDS experimental loop for the 200 MW Nuclear Heating Reactor (NHR-200). The results showed that the differential pressure between the outside and the inside of the stepped cylinder increased rapidly to the desired value so that the force induced by the differential pressure which pushes the out tube of stepped cylinder was large enough. Therefore, if the hydraulic control rod were jammed, the pressure could push the hydraulic control rod to overcome the frictional resistance to insert the control rod into the reactor core. The experimental results verified that this design would solve the problem of hydraulic control rod jamming during an accident. (author)

  11. RETRAN: a computer code for analyzing the dynamics and control of thermal-hydraulic systems

    International Nuclear Information System (INIS)

    The paper describes the RETRAN thermal-hydraulics transient analysis computer code system and addresses its application toward the solution of process control design and evaluation problems. The basic structure of the code provides the capability to analyze a wide spectrum of problems. This capability ranges from the detailed thermal-hydraulic calculations required to analyze a nuclear power plant loss-of-coolant accident (LOCA) to the analysis of a single instrument response characteristic. The instrumentation response solutions are directly coupled to the thermal hydraulic solutions, thus accounting for feedback responses in the analyses. The advantages of the code lie in the fact that it is a totally digital computer code system, and that any degree of sophistication of either the thermal-hydraulics solution or the control and instrumentation control solution can be modeled through user input

  12. Electro Hydraulic Hitch Control

    DEFF Research Database (Denmark)

    Hansen, M. R.; Andersen, T. O.

    2003-01-01

    This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection system for agricultural applications and driving for transportation. During tranport phases, the lack of suspension causes the vehicle to bounce and pitch, and makes it difficalt to control. Many systems have been proposed to cope with the oscillatory behavior, and different solutions exist. Common for most of the systems are that they operate on the hydrailc actuators generally providing the motive forces for moving the implement and/or attachment, typically a plough. The basic idea and physical working principle are to use the implement, moveable relative to the vehicle, as a damper mass. The paper includes results on the phenomenon mention above on investigation with special focus on agricultucal tractors. For this purpose a mathematical model and its simulation model descibing the performance of the tractor with its mechanical linkages, and an attached implement. The model is in use as the basis for a parameter research study with emphasis on the requirements to the hitch control by use of hydraulic pressure compensated proportional control valve.

  13. Robust Adaptive Backstepping Control Design for a Nonlinear Hydraulic-Mechanical System

    DEFF Research Database (Denmark)

    Choux, Martin; Karimi, Hamid Reza; Hovland, Geir; Hansen, Michael Rygaard; Ottestad, Morten; Blanke, Mogens

    consists of an electrohydraulic servo valve and two hydraulic cylinders. Specifically, by considering a part of the dynamics of the NHM system as a norm-bounded uncertainty, two adaptive controllers are developed based on the backstepping technique that ensure the tracking error signals asymptotically...... converge to zero despite the uncertainties in the system according to the Barbalat lemma. The resulting controllers are able to take into account the interval uncertainties in Coulomb friction parameters and in the internal leakage parameters in the cylinders. Two adaptation laws are obtained by using the......The complex dynamics that characterize hydraulic systems make it difficult for the control design to achieve prescribed goals in an efficient manner. In this paper, we present the design and analysis of a robust nonlinear controller for a nonlinear hydraulic-mechanical (NHM) system. The system...

  14. Robust Adaptive Backstepping Control Design for a Nonlinear Hydraulic-Mechanical System

    DEFF Research Database (Denmark)

    Choux, Martin; Karimi, Hamid Reza

    2009-01-01

    The complex dynamics that characterize hydraulic systems make it difficult for the control design to achieve prescribed goals in an efficient manner. In this paper, we present the design and analysis of a robust nonlinear controller for a nonlinear hydraulic-mechanical (NHM) system. The system consists of an electrohydraulic servo valve and two hydraulic cylinders. Specifically, by considering a part of the dynamics of the NHM system as a norm-bounded uncertainty, two adaptive controllers are developed based on the backstepping technique that ensure the tracking error signals asymptotically converge to zero despite the uncertainties in the system according to the Barbalat lemma. The resulting controllers are able to take into account the interval uncertainties in Coulomb friction parameters and in the internal leakage parameters in the cylinders. Two adaptation laws are obtained by using the Lyapunov functional method and inequality techniques. Simulation results demonstrate the performance and feasibility ofthe proposed method.

  15. Power control units with secondary controlled hydraulic motors - a new concept for application in aircraft high lift systems

    OpenAIRE

    Biedermann, Olaf; Geerling, Gerhard

    1998-01-01

    Today?s high lift systems of civil transport aircraft are driven by Power Control Units using valve controlled constant displacement hydraulic motors. This concept leads to complex valve blocks, attended by high power losses to realise discrete speed control, positioning and pressure maintaining functionality. The concept of secondary controlled hydraulic motors with variable displacement offers reduction in flow consumption without pressure losses and decreases the complexity of the valve bl...

  16. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    DEFF Research Database (Denmark)

    Choux, Martin

    2011-01-01

    Fluid power systems have been in use since 1795 with the rst hydraulic press patented by Joseph Bramah and today form the basis of many industries. Electro hydraulic servo systems are uid power systems controlled in closed-loop. They transform reference input signals into a set of movements in hydraulic actuators (cylinders or motors) by the means of hydraulic uid under pressure. With the development of computing power and control techniques during the last few decades, they are used increasingly in many industrial elds which require high actuation forces within limited space. However, despite numerous attractive properties, hydraulic systems are always subject to potential leakages in their components, friction variation in their hydraulic actuators and deciency in their sensors. These violations of normal behaviour reduce the system performances and can lead to system failure if they are not detected early and handled. Moreover, the task of controlling electro hydraulic systems for high performance operations is challenging due to the highly nonlinear behaviour of such systems and the large amount of uncertainties present in their models. This thesis focuses on nonlinear adaptive fault-tolerant control for a representative electro hydraulic servo controlled motion system. The thesis extends existing models of hydraulic systems by considering more detailed dynamics in the servo valve and in the friction inside the hydraulic cylinder. It identies the model parameters using experimental data from a test bed by analysing both the time response to standard input signals and the variation of the outputs with dierent excitation frequencies. The thesis also presents a model that accurately describes the static and dynamic normal behaviour of the system. Further, in this thesis, a fault detector is designed and implemented on the test bed that successfully diagnoses internal or external leakages, friction variations in the actuator or fault related to pressure sensors. The presented algorithm uses the position and pressure measurements to detect and isolate faults, avoiding missed detection and false alarm. The thesis also develops a high performance adaptive nonlinear controller for the hydraulic system which outperforms comparable linear controllers widely used in the industry. Because of the controller adaptivity, uncertainties in the model parameters can be handled. Moreover, a special attention is given to reduce the complexity of the controller in order to demonstrate its real-time implementation. Finally the thesis combines the techniques developed in fault detection and nonlinear control in order to develop an active fault-tolerant controller for electro hydraulic servo systems. In order to maintain overall service and performances as high as possible when a potential fault occurs, the fault-tolerant controlled system prognoses the fault and changes its controller parameters or structure. The consequences of an unexpected fault are avoided, high availability is ensured and the overall safety in electro hydraulic servo systems is increased.

  17. Control method and system for hydraulic machines employing a dynamic joint motion model

    Science.gov (United States)

    Danko, George (Reno, NV)

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  18. Electro Hydraulic Hitch Control

    DEFF Research Database (Denmark)

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.; Conrad, Finn

    This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection...... for a parameter research study with emphasis on the requirements to the hitch control by use of hydraulic pressure compensated proportional control valve....

  19. Redundant hydraulic secondary flight control systems behavior in failure conditions

    OpenAIRE

    Borello, Lorenzo; Villero, Giuseppe; Dalla Vedova, Matteo Davide Lorenzo

    2013-01-01

    The flight control systems, designed in order to assure the necessary safety level even in failure conditions, are generally characterized by a proper redundant layout. The redundancies must be designed in order to assure an adequate system behavior when some failures are present; in fact an incorrect layout may cause serious shortcomings concerning the response when some component is not operational. Therefore the usual correct design activities request the complete analysis of the system be...

  20. The logic control system of the control rods by hydraulic drive mechanism in the 5 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    The authors describes the function and features of the logic control system to be applied to the control rods by hydraulic drive mechanism in the 5 MW nuclear heating reactor and the technical measures to enhance the availability and reliability of the system. The system coupling with hydraulic control rod drive mechanism consists of a whole control system in order to complete reactivity control of the nuclear reactor, the features of the system are stability, reliability and the high ability of anti-interference. It is successfully used in 5 MW nuclear heating reactor and meets the operational requirements of the reactor

  1. Design and experimental research of hydraulic control rod drive system for 5 MW THR

    International Nuclear Information System (INIS)

    Hydraulic control rod drive system (HCRDS) is a new device of control rod drive which is different from usual electric-magnetic mechanic drive used for water power nuclear reactor. The coolant(water) is used as actuating medium, pumped by canned-pump, then injected into hydraulic step cylinders which are set in the reactor vessel. The outer tube of the step cylinder will be moving step by step by controling of the flow, driving the neutron absorber. 5MW THR is the first reactor in the world in which the hydraulic step drive system was used. Using of the drive system is for getting better safety, reliability and lower cost. In this paper, the design and experimental research of the system are introduced

  2. System and method for controlling engine knock using electro-hydraulic valve actuation

    Science.gov (United States)

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  3. Digital electro-hydraulic control system for nuclear turbine

    International Nuclear Information System (INIS)

    The unit capacity of steam turbines for nuclear power generation is very large, accordingly their unexpected stop disturbs power system, and the lowering of their capacity ratio exerts large influence on power generation cost. Therefore, very high reliability is required for turbine EHC controllers which directly control the turbines for nuclear power generation. In order to meet such requirement, Toshiba Corp. has developed high reliability type analog tripled turbine EHC controllers, and delivered them to No. 3 plant in the Fukushima No. 2 Nuclear Power Station and No. 1 plant in the Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. At present, the trial operation is under way. The development of digital EHC controllers was begun in 1976, and through the digital EHC for a test turbine and that for a small turbine, the digital EHC controllers for the turbines for nuclear power generation were developed. In this paper, the function, constitution, features and maintenance of the digital tripled EHC controllers for the turbines for nuclear power generation, the application of new technology to them, and the confirmation of the control function by simulation are reported. (Kako, I.)

  4. Mechatronic System Design and Intelligent Motion Control of Hydraulic Robots and Machines

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben

    control as well as from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility for a DTU-AAU hydraulic robot ¿Thor¿, and a CNC XY-machine table was implemented. The controller applies digital signal processors (DSPs). The DSP...

  5. Adaptive Backstepping Control of Nonlinear Hydraulic-Mechanical System Including Valve Dynamics

    OpenAIRE

    CHOUX, M.; G. Hovland

    2010-01-01

    The main contribution of the paper is the development of an adaptive backstepping controller for a nonlinear hydraulic-mechanical system considering valve dynamics. The paper also compares the performance of two variants of an adaptive backstepping tracking controller with a simple PI controller. The results show that the backstepping controller considering valve dynamics achieves significantly better tracking performance than the PI controller, while handling uncertain parameters related to ...

  6. The safety feature of hydraulic driving system of control rod for 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    The hydraulic driving system of control rod is used as control rod drive mechanism in 200 MW nuclear heating reactor. Design of this system is based on passive system, integrating drive and guide of control rod. The author analyzes the inherent safety and the design safety of this system, with mechanism of control rod not ejecting when the pressure of pressure vessel is lost, and calculating result of core not exposing when the amount of coolant is drained by broken pipe. The results indicate that this system has good safety feature, and assures reactor safety under any accident conditions, providing important technology support for 200 MW nuclear heating reactor with inherent safety feature

  7. Cascade Controller Including Back-stepping for Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Choux, Martin; Hovland, Geir; Blanke, Mogens

    Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an...

  8. Robust H(?) positional control of 2-DOF robotic arm driven by electro-hydraulic servo system.

    Science.gov (United States)

    Guo, Qing; Yu, Tian; Jiang, Dan

    2015-11-01

    In this paper an H? positional feedback controller is developed to improve the robust performance under structural and parametric uncertainty disturbance in electro-hydraulic servo system (EHSS). The robust control model is described as the linear state-space equation by upper linear fractional transformation. According to the solution of H? sub-optimal control problem, the robust controller is designed and simplified to lower order linear model which is easily realized in EHSS. The simulation and experimental results can validate the robustness of this proposed method. The comparison result with PI control shows that the robust controller is suitable for this EHSS under the critical condition where the desired system bandwidth is higher and the external load of the hydraulic actuator is closed to its limited capability. PMID:26478475

  9. Cascade Controller Including Back-stepping for Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Choux, Martin; Hovland, Geir; Blanke, Mogens

    2012-01-01

    Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an adaptive backstepping tracking controller with earlier results. The new control architecture is analysed and enhanced tracking performance is demonstrated when including the extended friction model. The compl...

  10. Kinematic study on hydraulic control rod driving system for HR-200 heating reactor

    International Nuclear Information System (INIS)

    In order to analyse the performance on the Hydraulic Control Rod Driving System for HR-200 Heating Reactor and the factors affecting its performance and some possible improvements on this system, a method is presented, that is, at first to linearize the two-order nonlinear differential equations by neglecting the multi-powered small quantities or segmenting, then to solve the linearized differential equations by using Laplace transformation. The motion rule of the control rod near the balance position is found and a simple numerical method to calculate the rod's movement on any position is proposed. The theoretical analyses and comparisons with experimental results are conducted. Both the theoretical analyses and the experiments show that with certain structural improvements and parameters change, this Hydraulic Control Rod Driving System will be able to work properly on HR-200. The main factors affecting the system's performance are analyzed and some reasonable improving methods are proposed

  11. Design and development of low speed dynamometer using electro hydraulic servo control system

    International Nuclear Information System (INIS)

    High torque low speed oil hydraulic motors are required to be used in fuelling machine of 500 MWe PHWRs. High torque low speed motors presently available in market are designed for heavy earth moving equipment where high torque at moderately low speed is desired. To test these types of motors, low speed dynamometers are required. An attempt has been made to develop an indigenous low speed dynamometer by electro hydraulic servo control system which can overcome the drawbacks of powder type dynamometer design. (author). 5 refs., 4 figs

  12. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct a...... hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly. A full scale hydraulic yaw test rig is available for experiments and tests. The test rig is presented as well as the system schematics of the hydraulic yaw system....

  13. Hydraulic reactivity control method

    International Nuclear Information System (INIS)

    An extension tube is disposed to each of control rod guide tubes in which a control rod is loaded as it is, an opening/closing valve is disposed to the upper end, and a closed space in common to the entire and a portion of the extension tube is disposed to the upper portion of the valve. Coolants in the closed space is sucked by a pump to cause differential pressure sufficient to float the control rod hydraulically between the lower end of the control rod guide tube and the valve at the upper end of the extension tube by the hydraulic force when the valve is opened. When the opening/closing valve at the upper end of a predetermined extension tube is opened, the control rod in the control rod guide tube connected to the extension tube is elevated hydraulically by the flow between the upper and lower end to insert it to the extension tube thereby making the reactor core to an entirely drawn state. In addition, when the opening/closing valve is closed, the control rod in a predetermined extension tube is lowered by gravitational force by the reduction of the flow rate between the upper and the lower end to make the reactor core to an entire insertion state. Then, an axial neutron flux distribution is not caused, and the design and manufacture of the inner structural members in the reactor core can be facilitated. (N.H.)

  14. USE OF CIRCULATING PUMP WITH DIFFERENT PERFORMANCE CHARACTERISTICS IN WATER HEATING SYSTEMS AND THEIR INFLUENCE ON HYDRAULIC CONTROL SYSTEM / ?????????? ?????????????? ??????? ? ?????????? ???????????????? ? ???????? ???????? ????????? ? ??????? ?? ?? ?????????????? ????? ??????

    Directory of Open Access Journals (Sweden)

    Makhov Leonid Mikhaylovich / ????? ?????? ??????????

    2013-12-01

    Full Text Available The influence of the circulating pumps with different performance characteristics on automatically controlled water heating systems in cooperation with thermostatic valve is estimated. The results of the study of hydraulic control of water heating systems with their application are provided. The conclusions concerning cost-efficiency and effectiveness of operation of various circulating pumps are made / ??????? ??????? ?????????????? ??????? ? ?????????? ???????? ???????????????? ?? ?????????????? ????????????? ?????? ???????? ????????? ? ???????????? ? ??????????????. ????????? ?????????? ???????????? ??????????????? ?????? ?????? ???????? ????????? ??? ?? ??????????. ??????? ?????? ?? ????????????? ? ????????????? ????????????? ??? ??? ???? ?????????????? ???????

  15. Cascade Controller Including Back-stepping for Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Choux, Martin; Hovland, Geir

    2012-01-01

    Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an adaptive backstepping tracking controller with earlier results. The new control architecture is analysed and enhanced tracking performance is demonstrated when including the extended friction model. The complexity of the backstepping procedure is significantly reduced due to the cascade structure. Hence, the proposed control structure is better suited to real-time implementation. 2012 IFAC.

  16. The theoretical model on shutdown process of the control rod hydraulic driving system

    International Nuclear Information System (INIS)

    The experiment loop and the shutdown process of the Control Rod Hydraulic Driving System have been introduced. Also given are the theoretical model and its accurate mathematical description on base of reasonable simplification and hypothesis. The comparison between the result of this model and that of the experiment proves the rationality and feasibility of this model. This model is important for further analysis and improvement

  17. Theoretical model on stepping process of the hydraulic control rod driving system

    International Nuclear Information System (INIS)

    The purpose is to theoretically expound the working mechanism of the new technology of the hydraulic control rod driving system (HCRDS), and also establish the theoretical model for further analysis and research. The working principle of the HCRDS has been introduced, the theoretical model and its mathematical description of the HCRDS's stepping process are also given. The compare between the result of this model and that of the experiment proves the rationality and feasibility of it

  18. Kinematics characters of a hydraulic driving system of control rods under rocking

    International Nuclear Information System (INIS)

    The experimental equipment consist of the test object of the hydraulic driving system of control rod (HDSCR), 6-freedom rocking test plate, measure system and control system, which was used to study kinematic characters of HDSCR under rocking. By using this equipment, several experiments were made when the test object followed the rocking test plate to rock: 1) the control rod lifted or fell step by step; 2) the control rod fast fell by gravity. Also, the experiment of control rod fast falling was made when the test object bending angle was 45 degree. Experimental results indicate: 1) HDSCR has favourable moving reliability and inherent safety when rocking angle is less than 35 degree; 2) the control rod can fall smoothly by gravity when bending angle is 45 degree. This system can be satisfied with ship rocking requirements when it will be appropriately changed. This research will provide experimental basis for HDSCR to be used in the ship power reactors

  19. Thermal hydraulic analysis and control of the HELOKA water cooling system

    International Nuclear Information System (INIS)

    Helium loop Karlsruhe (HELOKA) is a new test facility, in advanced status of design at the Forschungszentrum Karlsruhe, which will be used to test the helium cooled pebble bed (HCPB) breeder blanket for ITER under realistic pressure, temperature and He flow conditions. A redundant water cooling system, built in the 1980s, with a nominal heat load of 7 MW, will be used to remove the heat from the He loop. The paper describes first the thermo-hydraulic analysis performed on the water cooling system and then new feedback and feed-forward control systems for the electric drivers, based on the actual heat load, to increase efficiency and save energy

  20. Dynamic modelling of pressure control system of a 500 MWe PHWR power plant thermal hydraulics aspects

    International Nuclear Information System (INIS)

    A computer code for the dynamic analysis of the proposed 500 MWe Pressurised Heavy Water Reactor is being developed. One of the modules of this code deals with the primary heat transport system pressure control. A thermal hydraulic model of the pressure control system has been developed. This model includes the following : reactor coolant loop, primary circulating pump, Core heat transfer, Feed/bleed with Bleed Condenser and pressure controller. Analysis has been carried out for transients like change in reactor power, leakage from the primary heat transport system and malfunctioning of control system. The mathematical model is presented in the paper along with the results obtained for some of the transients analysed. (author). 6 refs., 6 figs

  1. Experiment study on rod ejection accident of hydraulic control rod driving system

    International Nuclear Information System (INIS)

    The rod ejection experiment has been done in the 1:1 experiment loop of the hydraulic control rod driving system (HCRDS) of the 200 MW nuclear heating reactor (NHR-200). The result indicated that under different experiment conditions, the control rod was not ejected when the pressure vessel of the loop lost pressure. Based on the depressurization accident analysis of the NHR-200, performed at the Institute of Nuclear Energy Technology (INET), Tsinghua University, the depressurization rate of experiment is much higher than that of analysis. Thus, the HCRDS has inherent safety and no hidden trouble of rod ejection when the depressurization accident happens. (author)

  2. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  3. Fault tree analysis of control rod drop caused by failure of hydraulic system of control rod drive

    International Nuclear Information System (INIS)

    Unplanned outage times per year is an important indicator of operation performance for power reactor. The hydraulic system of control rod drives is one of the key systems in a nuclear heating reactor. The unplanned outage will be directly caused by the system failure. The unplanned outage caused by the failure of components in the system will be discussed with the method of fault tree analysis. The issues will be concentrated on the setup of the fault tree, analyzing the probability of topmost event and giving some suggestions on improving the system design based on the fault tree analysis result

  4. Thermal hydraulic system codes

    International Nuclear Information System (INIS)

    A short summary is given on the so called thermal hydraulic system codes. Introducing this topic some elementary information is presented on thermal hydraulic phenomena occurring during accidents. Special attention will be paid to two-phase (gas-liquid) flow behavior and to the calculation of flows like that. The basic models of two-phase flow simulation is shown, and making use of the examples of SMABRE and CATHARE codes the main features of thermal hydraulic system codes are listed, including the basic equations, steps of code validation and verification and the cycle of code development strategy. In the conclusions an attempt will be made on the state-of-art description of the limitations and capabilities of thermal hydraulic codes. (author). 5 refs., 7 figs

  5. Electrokinetic high pressure hydraulic system

    Science.gov (United States)

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  6. Hydraulically centered control rod

    International Nuclear Information System (INIS)

    A control rod suspended to reciprocate in a guide tube of a nuclear fuel assembly has a hydraulic bearing formed at its lower tip. The bearing includes a plurality of discrete pockets on its outer surface into which a flow of liquid is continuously provided. In one embodiment the flow is induced by the pressure head in a downward facing chamber at the end of the bearing. In another embodiment the flow originates outside the guide tube. In both embodiments the flow into the pockets produces pressure differences across the bearing which counteract forces tending to drive the rod against the guide tube wall. Thus contact of the rod against the guide tube is avoided

  7. An energy-saving nonlinear position control strategy for electro-hydraulic servo systems.

    Science.gov (United States)

    Baghestan, Keivan; Rezaei, Seyed Mehdi; Talebi, Heidar Ali; Zareinejad, Mohammad

    2015-11-01

    The electro-hydraulic servo system (EHSS) demonstrates numerous advantages in size and performance compared to other actuation methods. Oftentimes, its utilization in industrial and machinery settings is limited by its inferior efficiency. In this paper, a nonlinear backstepping control algorithm with an energy-saving approach is proposed for position control in the EHSS. To achieve improved efficiency, two control valves including a proportional directional valve (PDV) and a proportional relief valve (PRV) are used to achieve the control objectives. To design the control algorithm, the state space model equations of the system are transformed to their normal form and the control law through the PDV is designed using a backstepping approach for position tracking. Then, another nonlinear set of laws is derived to achieve energy-saving through the PRV input. This control design method, based on the normal form representation, imposes internal dynamics on the closed-loop system. The stability of the internal dynamics is analyzed in special cases of operation. Experimental results verify that both tracking and energy-saving objectives are satisfied for the closed-loop system. PMID:26520165

  8. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    International Nuclear Information System (INIS)

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range.

  9. Thermal hydraulics of the impurity control system for FED/INTOR

    International Nuclear Information System (INIS)

    This paper addresses two important aspects of thermal hydraulics related to the design of the impurity control system (limiter and divertor) of the Fusion Engineering Device (FED) and the International Tokamak Reactor (INTOR). The first part of the paper is devoted to the determination of temperature distributions in various combinations of the coating/structural materials proposed for the limiter/divertor of FED and INTOR. The second part of the paper describes the analysis of the tangential motion of the melt layer under the influence of magnetic force during plasma disruption. The results of both analysis provide inputs to the determination of the life time of the limiter (or divertor) which is the most critical problem for the impurity control system as far as engineering and materials consideration is concerned

  10. On Application of Second Order Sliding Mode Control to Electro-Hydraulic Systems

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole

    2014-01-01

    This paper discusses the application of second order mode controls to hydraulic valve-cylinder drives with a special focus on the limitations resulting from nonlinear dynamic effects in flow control valves. Second order sliding mode algorithms appear highly attractive in the successive implementation of sliding mode control, achieving continuous control inputs, while maintaining the main properties of sliding modes. Under certain model assumptions, some of these controllers may even be applied as output feedback controllers. However, intrinsic nonlinear dynamic effects of hydraulic valves such as slew rates and time delays arising in the amplification stages, limits the applicability of such methods, and may lead to partial losses of robustness and limit cycles. These properties are analyzed and experimentally verified, and compensation methods are proposed. The application of the second order sliding algorithm known as the super twisting controller is considered for output feedback control and compared with conventional first order sliding mode control. The controllers under consideration are applied for position tracking control of a hydraulic valve-cylinder drive exhibiting strong variations in inertia- and gravitational loads. Results demonstrate that the super twisting algorithm may be successfully applied for output feedback control of hydraulic valve-cylinder drives, with modifications guaranteeing robust control performance in a small vicinity of the control target.

  11. Mechatronic System Design and Intelligent Motion Control of Hydraulic Robots and Machines

    DEFF Research Database (Denmark)

    Conrad, Finn; Srensen, Torben

    2003-01-01

    The paper presents an approach and concept to mechatronic system design and intelligent motion control. The Information Technology (IT) offers software and hardware for improvement of R&D Mechatronic Teams to create products and solutions for industrial applications. The latest progress in IT makes integration of an overall design and manufacturing IT- concept feasible and commercially attractive. An IT-tool concept for modelling, simulation and design of mechatronic products and systems is proposed in this paper. It built on results from a Danish mechatronic research program on intelligent motion control as well as from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility for a DTU-AAU hydraulic robot Thor, and a CNC XY-machine table was implemented. The controller applies digital signal processors (DSPs). The DSP controller utilizes the dSPACE System suitable for real-time experimentation, evaluation and validation of control laws and algorithms.

  12. Decoupling Control Research on Test System of Hydraulic Drive Unit of Quadruped Robot Based on Diagonal Matrix Method

    OpenAIRE

    Lingxiao Quan; , Wei Zhang; Bin Yu; Liang Ha

    2013-01-01

    The mathematical model of hydraulic drive unit of quadruped robot was built in this paper. According to the coupling characteristics between position control system and force control system, the decoupling control strategy was realized based on diagonal matrix method in AMESim?. The results of simulation show that using diagonal matrix method can achieve the decoupling control effectively and it can achieve the decoupling control more effectively with the method of not offset pole-zero in th...

  13. Plug & Play Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard

    2012-01-01

    Process Control research program, which the work presented here is a part of. An industrial case study involving a large-scale hydraulic network with non-linear dynamics is studied. The hydraulic network underlies a district heating system, which provides heating water to a number of end-users in a city...

  14. Control rod drive hydraulic device

    International Nuclear Information System (INIS)

    The device of the present invention can reliably prevent a possible erroneous withdrawal of control rod driving mechanism when the pressure of a coolant line is increased by isolation operation of hydraulic control units upon periodical inspection for a BWR type reactor. That is, a coolant line is connected to the downstream of a hydraulic supply device. The coolant line is connected to a hydraulic control unit. A coolant hydraulic detection device and a pressure setting device are disposed to the coolant line. A closing signal line and a returning signal line are disposed, which connect the hydraulic supply device and a flow rate control valve for the hydraulic setting device. In the device of the present invention, even if pressure of supplied coolants is elevated due to isolation of hydraulic control units, the elevation of the hydraulic pressure can be prevented. Accordingly, reliability upon periodical reactor inspection can be improved. Further, the facility is simplified and the installation to an existent facility is easy. (I.S.)

  15. On Application of Second Order Sliding Mode Control to Electro-Hydraulic Systems

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    This paper discusses the application of second order mode controls to hydraulic valve-cylinder drives with a special focus on the limitations resulting from nonlinear dynamic effects in flow control valves. Second order sliding mode algorithms appear highly attractive in the successive implementation of sliding mode control, achieving continuous control inputs, while maintaining the main properties of sliding modes. Under certain model assumptions, some of these controllers may even be applied a...

  16. Development, field testing and implementation of automated hydraulically controlled, variable volume loading systems for reciprocating compressors

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, Dwayne A. [ACI Services, Inc., Cambridge, OH (United States); Slupsky, John [Kvaerner Process Systems, Calgary, Alberta (Canada); Chrisman, Bruce M.; Hurley, Tom J. [Cooper Energy Services, Oklahoma City, OK (United States). Ajax Division

    2003-07-01

    Automated, variable volume unloaders provide the ability to smoothly load/unload reciprocating compressors to maintain ideal operations in ever-changing environments. Potential advantages provided by this load control system include: maximizing unit capacity, optimizing power economy, maintaining low exhaust emissions, and maintaining process suction and discharge pressures. Obstacles foreseen include: reliability, stability, serviceability and automation integration. Results desired include: increased productivity for the compressor and its operators, increased up time, and more stable process control. This presentation covers: system design features with descriptions of how different types of the devices were developed, initial test data, and how they can be effectively operated; three actual-case studies detailing the reasons why automated, hydraulically controlled, variable volume, head-end unloaders were chosen over other types of unloading devices; sophisticated software used in determining the device sizing and predicted performance; mechanical and field considerations; installation, serviceability and operating considerations; device control issues, including PC and PLC considerations; monitoring of actual performance and comparison of such with predicted performance; analysis of mechanical reliability and stability; and preliminary costs versus return on investment analysis. (author)

  17. Hydraulic management in a soil moisture controlled SDI wastewater dispersal system in an Alabama black belt soil

    Science.gov (United States)

    An experimental field moisture controlled subsurface drip irrigation (SDI) system was designed and installed as a field trial in a Vertisol in the Alabama Black Belt region for two years. The system was designed to start hydraulic dosing only when field moisture was below field capacity. Results sho...

  18. Hydraulically driving system for control rod driving mechanism and operation method therefor

    International Nuclear Information System (INIS)

    In the present invention, a water-filling line equipped with a pressure gauge is disposed on the discharge side of a pump of an electromotive type control rod driving mechanism (CRD) to be used in a BWR type reactor. The water filling line is connected to a plurality of hydraulic control units by way of a water filling header. The hydraulic control units have an accumulator for containing water in a pressurized state by a pressurized gas. The accumulator is connected to the CRD by way of a scram valve. An orifice is disposed at the downstream of the pressure gauge of the water filling line. With such a constitution, even when pressurized water supplied from the CRD pump is continuously flown passing through the water filling line upon occurrence of scram of a single hydraulic control unit, the pressure reduction of the filling water line can be mitigated by the resistance of the orifice on the downstream of the pressure gauge of the filling line or using a filling water partitioning valve disposed to a filling water pipeline of the single hydraulic control unit in a slightly opened state. Then, actuation of interlock can reliably be prevented. (I.S.)

  19. Numerical calculation for flow field of servo-tube guided hydraulic control rod driving system

    International Nuclear Information System (INIS)

    A new-style hydraulic control rod driving mechanism was put forward by using servo-tube control elements for the design of control rod driving mechanism. The results of numerical simulation by CFD program Fluent for flow field of hydraulic driving cylinder indicate that the bigger the outer diameter of servo-tube, the smaller the resistance coefficient of variable throttle orifice. The zero position gap of variable throttle orifice could be determined on 0.2 mm in the design. The pressure difference between the upper and nether surfaces of piston was mainly created by the throttle function of fixed throttle orifice. It can be effectively controlled by changing the gap of variable throttle orifice. And the lift force of driving cylinder is able to meet the requirement on the design load. (authors)

  20. Thermo hydraulic analysis and control of the HELOKA water cooling system

    International Nuclear Information System (INIS)

    In the framework of the European Fusion Program, various Helium cooled Test Blanket Modules (TBM), such as the Helium Cooled Pebble Bed (HCPB) blanket, are proposed for tests under reactor relevant experimental conditions in ITER. To qualify the TBM module design for ITER, it is necessary to test full size mock-ups in a helium loop under realistic pressure, temperature and flow conditions. The HCPB mock-ups will be tested at the Helium Loop Karlsruhe (HELOKA) test facility, at present in advanced status of design. As far as possible, HELOKA shall operate with requirements similar to those of the Helium coolant circuit of the TBM modules in ITER. One of the main requirements of the ITER main helium loop is its ancillary water cooling system, hence the need of a Water Cooling System (WCS) for HELOKA. An existing WCS, recently used for the COMET (Core Melt Accidents) experiment, is foreseen for this purpose. The system, designed in the 80's for a heat load of about 7 MW, will be used first for the HELOKA TBM experimental campaign, where the maximum expected heat load does not exceed 5 MW, and later on, for the Test Divertor Modules (TDM). The thermal hydraulic effect has been studied using the system code RELAP5, where the pumps, the heat exchanger (HX), the cooling tower, the valves, the piping, etc., can be modeled and the whole loop can be simulated for steady state, transient accident processes or cyclic operation. In order to improve the efficiency of the system and save energy, it has been proposed to install variable frequency converters for the electric drivers and new feedback controllers. An evaluation of the overall performances of the system with the proposed feedback controllers has been conducted with computer models developed with SIMULINK. At present most of the components have been modeled using manufacturer's data. For some components, technical data are scarce and therefore a comparison with experimental data to validate the models is planned. After the validation based on the experimental data, the code will allow the testing of the control strategies for steady state, transients or cyclic operation and check the possible upgrade of the system to 10 MW (expected heat load for the HELOKA TDM experimental campaign). The control system is being modernized using state of the art hardware and software components. The upgrade also includes additional sensors and a new data acquisition system. (author)

  1. Trends in Modelling, Simulation and Design of Water Hydraulic Systems Motion Control and Open-Ended Solutions

    DEFF Research Database (Denmark)

    Conrad, Finn Technical University of Denmark,

    2006-01-01

    The paper presents and discusses a R&D-view on trends in development and best practise in modelling, simulation and design of both low-pressure and high-pressure tap water hydraulic components and systems for motion control as well as open-ended solutions various industrial applications. The focus is on the advantages using ordinary tap water and the range of application areas are illustrated with examples, in particular within the food processing industry, humidification operations, water mist systems for fire fighting, high water pressure cleaners, water moisturising systems for wood processing, lumber drying process and mobile machines and equipment that operate in environmentally sensitive surroundings. Todays progress in water hydraulics includes electro-water hydraulic proportional valves and servovalves for design of motion control solutions for machines and robots. The remarkable property is that the components operate with pure water from the tap without additives of any kind. Hence water hydraulicstakes the benefit of pure water as fluid being environmentally friendly, easy to clean sanitary design, non-toxic, non-flammable, inexpensive, readily available and easily disposable. The low-pressure tap water hydraulic systems cover up to around 50 bar, and 2-4 kW having a strong potential to compete with pneumatic and electrical solutions in many applications. The high-pressure water hydraulic systems cover typically up to 160 bar pressure from pump and to motors and actuators 140 bar. Recently, dedicated pumps and accessories running with sea-water as fluid are available. A unique solution is to use reverse osmosis to generate drinking water from sea-water, and furthermore for several off-shore applications. Furthermore, tap water hydraulic components of the Nessie family and examples of measured performance characteristics are presented and the trends in industrial applications and need for future are discussed.

  2. Upper hydraulic driving control rod

    International Nuclear Information System (INIS)

    The optimum design of hydraulic driving control rod is performed in order to improve economics of 200 MW heating reactor. In the new plan, hydraulic control rod drive is arranged above the reactor core and the control rod is moved with the pistons. The advantage of this design is to reduce the ratio of water to uranium and neutron absorption, increase diameter and thickness of cylinder and improve the reliability of control rod. The time of dropping rod was analysed by numerical simulation. (authors)

  3. Adaptive Sliding Mode Control for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.; Bech, Michael Møller

    This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback...

  4. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    International Nuclear Information System (INIS)

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1?2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements

  5. Some thermal-hydraulics aspects of the impurity control system for FED/INTOR

    International Nuclear Information System (INIS)

    This paper addresses two important aspects of thermal-hydraulics related to the design of limiter/divertor of Fusion Engineering Device and International Tokamak Reactor. The results of both analyses provide input to the determination of the lifetime of the limiter/divertor which is the most critical engineering problem for the impurity control system. The first part of the paper provides temperature calculations for the limiter and divertor. Steady-state, two-dimensional, temperature distributions are obtained, through the use of the computer code THTB, for the top surface of the limiter or divertor plate and for the leading edge (cylindrical geometry) of the limiter. Results are reported for various combinations of coating and structural materials. Thermal conductivity and coating thickness are found to be the most important parameters for given surface heat flux distributions. At the leading edge, there are two factors competing with each other when the coating material is relatively thick. The radial reduction in heat transfer area tends to increase the temperature while radiative heat transfer losses at high surface temperature tends to decrease the structural temperature. The second part of the paper describes the analysis of the tangential motion of a melt layer during plasma disruption. An analytical solution is developed. The results show that fairly large displacement (about 10 mm) could be reached under nominal conditions. Limitations of this analytical model are discussed and possible improvements are proposed

  6. Hydraulic Motor Driving Variable-Pitch System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2013-11-01

    Full Text Available The present hydraulic variable-pitch mechanism of wind turbine uses three hydraulic cylinders to drive three crank and connecting rod mechanisms respectively; the blades are moved with the cranks. The hydraulic variable-pitch mechanism has complex structure, occupies a lot of space and its maintenance is trouble. In order to make up for the shortcomings of hydraulic cylinder variable-pitch system, the present hydraulic variable-pitch mechanism should be changed as follows: hydraulic motors are used to drive gears; gears drive blades; the electro-hydraulic proportional valves are used to control hydraulic motors. The hydraulic control part and electrical control part of variable-pitch system is redesigned. The new variable-pitch system is called hydraulic motor driving variable-pitch system. The new variable-pitch system meets the control requirements of blade pitch, makes the structure simple and its application effect is perfect.

  7. Modeling, Optimization & Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat

    2014-01-01

    . The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability...... optimization method to solve nonlinear optimal control problems. In the water supply system model, the hydraulic resistance of the valve is estimated by real data and it is considered to be a disturbance. The disturbance in our system is updated every 24 hours based on the amount of water usage by consumers...

  8. Automatic transmission system for automobiles having hydraulic and electronic control systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, T.; Furukawa, T.; Mori, M.

    1987-03-31

    This patent describes an automatic transmission system in an automobile having an engine, a brake, a throttle valve, a shift lever, a clutch, and transmission gears associated with synchromesh systems. The automatic transmission system comprises: (a) a throttle actuator means for actuating the throttle valve; (b) a clutch actuator means for actuating the clutch; (c) a gear selection actuator means for selectively actuating the synchromesh systems to shift the transmission gear; (d) a fluid pressure control unit means for applying working fluid pressures to the gear selection actuator; and (e) an electronic control unit means for transmitting control signals to the throttle actuator means, the clutch actuator means, and the fluid-pressure control unit means. The signals are sent in response to detected signals indicative of a rotational speed of the engine, an operation of the brake, an operative position of the throttle valve, a selected position of the shift lever, a releasing position of the clutch, and a speed of travel of the automobile.

  9. ?????????????? ????????????? ??????????????? ??????? ??????????? ??????-??????? Mathematical modeling of the wheelchair hydraulic system

    Directory of Open Access Journals (Sweden)

    ?. ?. ????????

    2013-01-01

    Full Text Available ? ?????? ???????????? ?????????????? ?????? ??????????????? ???????, ?????????????? ?? ?????????? ??????-???????, ??????? ????????? ?????????? ???? ???????? ???? ??????????? ? ??????????? ?? ???????? ??????????? ??????? ??????????, ? ????? ?? ???????? ???????? ????????. ??????????????? ??????? ??????? ???????????? ???????? ?? ?????????? ???????? ??? ???????? ??????????? ?????? ?? ?????????????? ???????????.The article is offered the mathematical model of hydraulic system mounted on the wheelchair, which one allows to determine the angle of the hydraulic motor shaft rotation, according to velocity of the control levers moving as well as the presser drop. The questions of the specific factors influences on the transients are considered.

  10. Control rod driving hydraulic device

    International Nuclear Information System (INIS)

    In a control rod driving hydraulic device for an improved BWR type reactor, a bypass pipeline is disposed being branched from a scram pipeline, and a control orifice and a throttle valve are interposed to the bypass pipeline for restricting pressure. Upon occurrence of scram, about 1/2 of water quantity flowing from an accumulator of a hydraulic control unit to the lower surface of a piston of control rod drives by way of a scram pipeline is controlled by the restricting orifice and the throttle valve, by which the water is discharged to a pump suction pipeline or other pipelines by way of the bypass pipeline. With such procedures, a function capable of simultaneously conducting scram for two control rod drives can be attained by one hydraulic control unit. Further, an excessive peak pressure generated by a water hammer phenomenon in the scram pipeline or the control rod drives upon occurrence of scram can be reduced. Deformation and failure due to the excessive peak pressure can be prevented, as well as vibrations and degradation of performance of relevant portions can be prevented. (N.H.)

  11. Hydraulic control rod

    International Nuclear Information System (INIS)

    Disclosed is an apparatus for shifting a control rod into and out of a nuclear reactor utilizing as pressure fluid the fluid employed as coolant moderator in the reactor. 2 claims, 10 drawings figures

  12. Hydraulic servo system increases accuracy in fatigue testing

    Science.gov (United States)

    Dixon, G. V.; Kibler, K. S.

    1967-01-01

    Hydraulic servo system increases accuracy in applying fatigue loading to a specimen under test. An error sensing electronic control loop, coupled to the hydraulic proportional closed loop cyclic force generator, provides an accurately controlled peak force to the specimen.

  13. Nonlinear modeling and identification of the electro-hydraulic control system of an excavator arm using BONL model

    Science.gov (United States)

    Yan, Jun; Li, Bo; Guo, Gang; Zeng, Yonghua; Zhang, Meijun

    2013-11-01

    Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters structures. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system monitoring and diagnosis.

  14. Development of a quality management system for borehole investigations. (1) Quality assurance and quality control methodology for hydraulic packer testing

    International Nuclear Information System (INIS)

    A quality assurance and quality control (QA/QC) system for the hydraulic packer tests has been established based on the surface-based investigations at JAEA's underground research laboratories in Mizunami and Horonobe. The established QA/QC system covers field investigations (data acquisition) and data analysis. For the field investigations, the adopted procedure is selection of a test section based on a detail fluid logging and checking with tally list, followed by inspection of test tools such as pressure transducers and shut-in valves, etc., test method selection using a 'sequential hydraulic test' for deciding appropriate method, and finally data quality confirmation by pressure changes and derivatives on a log-log plots during testing. Test event logs should also be described during testing for traceability. For the test data analysis, a quick analysis for rough estimation of hydraulic parameters, and a detailed analysis using type curve and/or numerical analyses are conducted stepwise. The established QA/QC system has been applied to the recent borehole investigations and its efficiency has been confirmed. (author)

  15. 14 CFR 25.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 2010-01-01 false Hydraulic systems. 25.1435 Section 25...Miscellaneous Equipment 25.1435 Hydraulic systems. (a) Element design. Each element of the hydraulic system must be designed...

  16. Hydraulic drives for control rods

    International Nuclear Information System (INIS)

    Purpose: To improve the reliability of control rod drives by keeping the pipeway surface always dried thus to increase the life of the pipeways. Constitution: Water pressurized through a control rod driving water pump is heated to a constant temperature by a temperature adjusting device. The heated pressurized water is flown into a master control device, adjusted its pressure to a level required for each of the operations and sent to each of the hydraulic control units corresponding to control rod drives for the extraction and insertion of the control rods. Such temperature adjustment to the control rods driving water can avoid vapor condensation or the likes on the surface of the pipeways inside and outside of a reactor building due to temperature difference in winter and summer, so that no disadvantageous effects may be exerted on the pipeways. (Furukawa, Y.)

  17. PLC Based Hydraulic Auto Ladle System

    OpenAIRE

    Amogh Tayade; Anuja Chitre

    2014-01-01

    In this paper we have implemented a PLC based Hydraulic Auto Ladle System for Casting Department of Victory Precisions Pvt. Ltd. Chakan, Pune. This project work presents the study and design of PLC based Hydraulic Auto Ladle System. Aluminium pouring is the key process in Casting and Forging industry. Different products are manufactured by the company for automobile sector using aluminium. Programmable Logic Controller (PLC) is used for the automation of pouring process. Au...

  18. Process System Hydraulics

    International Nuclear Information System (INIS)

    An analysis of hydraulic characteristics of the reactor plenum and the geometry of the permanent tube slots indicates the effect of the plenum pressure gradient on flow is substantially less than has been used previously to determine process water flows from cumulative fuel assembly resistances. This report details results of that study

  19. 14 CFR 23.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 23.1435 Section 23.1435... § 23.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each hydraulic system and its elements must withstand, without yielding, the structural loads expected...

  20. 14 CFR 29.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 29.1435 Section 29.1435... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each element of the hydraulic system...

  1. Hydraulic Actuation System with Active Control for the Lateral Suspensions of High Speed Trains

    OpenAIRE

    Gastaldi, Laura; Jacazio, Giovanni

    2013-01-01

    High speed trains normally use actively controlled pneumatic systems to recenter the carbody with respect to the bogie when the train negotiates a curve. Pneumatic systems are used because of their softness, which adds a little contribution to the elastic force generated by the mechanical springs of the lateral suspension system, thereby allowing the neccessary dynamic isolation between carbody and bogie. Howeve, pneumatic systems have the drawbacks of large dimensions and slow response, ofte...

  2. Hydraulic control unit detection method and device

    International Nuclear Information System (INIS)

    The present invention provides detection method and device for ensuring integrity of hydraulic control units of a BWR type power plant and shortening the term for plant periodical inspection. Namely, (1) the integrity of the hydraulic control units is confirmed based on the time required from the input of control rod driving signals to the hydraulic control units to the completion of the control rod operation, (2) the integrity of the hydraulic control units is confirmed based on the driving time per 1 notch of the notches formed on control rods, (3) the above-mentioned integrity is judged by setting the range of the time assumed as integral based on integral data previously measured and determining whether the above-mentioned time is within the predetermined range or not, (4) this operation is conducted during a periodical inspection, and inspection is conducted by disassembling only the hydraulic control unit which is judged to be not integral. (I.S.)

  3. Robust hydraulic position controller by a fuzzy state controller

    International Nuclear Information System (INIS)

    In nuclear industry, one of the most important design considerations of controllers is their robustness. Robustness in this context is defined as the ability of a system to be controlled in a stable way over a wide range of system parameters. Generally the systems to be controlled are linearized, and stability is subsequently proven for this idealized system. By combining classical control theory and fuzzy set theory, a new kind of state controller is proposed and successfully applied to a hydraulic position servo with excellent robustness against variation of system parameters

  4. Transputer Control of Hydraulic Actuators and Robots

    DEFF Research Database (Denmark)

    Conrad, Finn

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real......-time experiments and evaluation of control laws and algorithms is presented. Concepts of intelligent motion control and intelligent hydraulic actuators are proposed. Promising experimental path-tracking results obtained from model-based adaptive control algorithms are presented and discussed....

  5. Design and verification of DNAPL hydraulic containment and control system adjacent to the Fraser River estuary, British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzki, W.; Chorley, D.W.; O' Hara, G. [Golder Associates Ltd., Burnaby, BC (Canada)

    2002-07-01

    A remediation program was underway at a former industrial site along the Fraser River near Vancouver, British Columbia from 1997 to 2002. As part of the remedial activity, a hydraulic containment and control system (HCCS) was designed and built in early 1999 to treat DNAPL (dense non-aqueous liquid phase) and dissolved-phase polycyclic aromatic hydrocarbons (PAHs) which migrated toward and beneath the river bed. The site is underlain by a series of permeable alluvial deposits. The groundwater flow is influenced by tidal fluctuations in the river and seasonal fluctuations in both groundwater and river levels. The HCCS was designed using an analytical model for flow of DNAPL on a sloping interface plus a numerical hydrogeological model called MODFLOW which accounted for the dynamic nature of the groundwater flow. Modelling showed that 5 containment wells pumping at a combined rate of 425 cubic metres per day would be sufficient to reverse the hydraulic gradient and stop the flow of contaminants towards the river. The wells were placed at optimum locations determined by the model. By 1999, 5 containment wells, 3 primary monitoring wells, and 3 DNAPL recovery wells were commissioned. Ongoing monitoring confirms that the HCCS is performing as predicted by the models. 4 refs., 1 tab., 8 figs.

  6. Assessment of the reliability of thermal-hydraulic and neutronics parameters of Ghana research reactor-1 control systems

    International Nuclear Information System (INIS)

    The thermal-hydraulics and neutronics parameters of GHARR-1 control systems were assessed for its reliability after 18 years of operation using the Micro-Computer Closed Loop System (MCCLS) and original control Console (CC). The MCCLS and some components that control the sensitivity and the reading mechanism of the meters on the control systems have been replaced with new ones over the years, due to ageing, repairs and obsolescence. The results show that when reactor is operated at the different power levels the preset neutron fluxes at the control systems is 1.6 times the neutron fluxes obtained using a flux monitor at the inner irradiation site two of the reactor. The average percentage of deviation of fluxes from the actual preset was 36.5% which compares very well with the reactivity decrease of 36.3% after operating the reactor at critical neutron flux of 1.0 × 109n/cm2s. The reactivity regulators were adjusted to increase the core reactivity to 4 mk and the reactor operated at 15kW. The preset neutron flux at the control systems reduced to 1.07 times the Neutron fluxes obtained using a flux monitor at the inner irradiation site 2 of the reactor. The performance of the current micro - amplifiers in the two independent control instrumentations was assessed at an input current of 10µA. The results showed that the flux registered on both the CC and MCCLS varied by a factor of 1.2. The correlation between neutron flux and power, as well as temperature and power at transient state produced almost the same thermal power at about 20% above the rating power of 30 kW but deviated at lower and higher power ratings. The dynamic test through positive reactivity insertion, demonstrate or confirm the inherent safety of the reactor. (au)

  7. Experimental evaluation of control strategies for hydraulic servo robot

    DEFF Research Database (Denmark)

    Bech, Michael Møller; Andersen, Torben Ole; Pedersen, Henrik C.; Schmidt, Lasse

    In this paper different linear and non-linear controllers applied to a hydraulically driven servo robot are evaluated and validated. The task is to make the actuators of the manipulator track a position reference with minimum error. Hydraulic systems are intrinsically non-linear and using linear...

  8. PLC Based Hydraulic Auto Ladle System

    Directory of Open Access Journals (Sweden)

    Amogh Tayade

    2014-03-01

    Full Text Available In this paper we have implemented a PLC based Hydraulic Auto Ladle System for Casting Department of Victory Precisions Pvt. Ltd. Chakan, Pune. This project work presents the study and design of PLC based Hydraulic Auto Ladle System. Aluminium pouring is the key process in Casting and Forging industry. Different products are manufactured by the company for automobile sector using aluminium. Programmable Logic Controller (PLC is used for the automation of pouring process. Automation is done to increase the accuracy and consistency in the quality of the product. Human errors, while pouring the aluminium, which in-turn results in defective production are eliminated by introducing automation.

  9. A study on reliability of electro-hydraulic governor control system for large steam turbine in power plant

    International Nuclear Information System (INIS)

    In this work, the right management procedure for hydraulic power oil will be discussed and suggested. A thermal power plant turbine should respond to the change of load status. However, to satisfy the frequency of alternating current, the revolution per minute should be kept constant. Therefore, by controlling the flow rate of the steam to the turbine, the governor satisfies the load variation without alternating the revolution per minutes of the turbine. To protect the governor, the hydraulic power unit should be managed carefully by controlling the quality and the flow rate of the oil

  10. Precision Force Control for an Electro-Hydraulic Press Machine

    OpenAIRE

    Hong-Ming Chen; Guo-Wei Yang; Chong-Cyuan Liao

    2014-01-01

    This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weak...

  11. Precision Force Control for an Electro-Hydraulic Press Machine

    Directory of Open Access Journals (Sweden)

    Hong-Ming Chen

    2014-08-01

    Full Text Available This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weakness of hydraulic systems is that hydraulic oil is compressible and prone to leaking, and its characteristics can vary with oil temperature, thus making it difficult for a general linear controller to achieve accurate control. Therefore, a fuzzy controller was designed with LabVIEW along with a NI-PCI_6221 interface card and a load cell to control the servo valve flow and the relief valve to control the pressure source. The testing results indicate that accurate force control output of an electro-hydraulic servo press system can be obtained.

  12. 14 CFR 25.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 25.1435 Section 25.1435... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1435 Hydraulic systems. (a) Element design. Each element of the hydraulic system must be designed to: (1) Withstand the proof...

  13. 14 CFR 27.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design. Each hydraulic system and its elements must withstand, without yielding, any structural loads...

  14. Control system for the feed of pressurized fluid in a hydraulic circuit as a function of the state of the locking or unlocking of two mechanical organs

    International Nuclear Information System (INIS)

    The control system comprises two hydraulic cylinders of which rods are integral with the mechanical organs. The piston of the first cylinder separates the chamber of this one in two parts. The piston of the second cylinder separates its chamber in three parts. The inlet chamber of the two cylinders are connected to pressurized fluid feed pipes, and the outlet chambers to a depressurization pipe. According to the position of the piston depending itself on the state of locking or unlocking of the rods, an interconnection pipe and a feed pipe of the pressurized fluid hydraulic circuit communicate with a chamber or another one. The feed of the hydraulic circuit is possible only the two rods are unlocked. The invention applies more particularly to the feed of the control circuit of an emergency seal of the primary pump of a pressurized water nuclear reactor

  15. Transputers in Fluid Power - Design and Applications. Chapter 5 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with results and trends on mechatronics in fluid power and intelligent control of machines and robots. New results are presented concerning transputer-basen distributed control of machines and robots. Experimental results with the DTU mechatronic test facility are presented and discussed. S...

  16. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y.; Hattori, M. Sugisawa, M.; Nishii, M. [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  17. Plug & Play Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Jensen, Tom Nrgaard

    2012-01-01

    Typically, control systems are designedwith little or no consideration for possible changes in the structure of the system process to be controlled. In classic control design, a monolithic approach is taken where structural changes in the system process require the development of a new mathematical model of the system and a subsequent redesign of the control system. This process can be expensive and time consuming. Therefore, an attractive alternative is to design the control system such that it automatically reconfigures whenever structural changes occur. This is the aim of the Plug & Play Process Control research program, which the work presented here is a part of. An industrial case study involving a large-scale hydraulic network with non-linear dynamics is studied. The hydraulic network underlies a district heating system, which provides heating water to a number of end-users in a city district. The case study considers a novel approach to the design of district heating systems in which the diameter of the pipes used in the system is reduced in order to reduce the heat losses in the system, thereby making it profitable to provide district heating to areas with low energy demands. The new structure has the additional benefit that structural changes such as the addition or removal of end-users are easily implementable. In this work, the problem of controlling the pressure drop at the end-users to a constant reference value is considered. This is done by the use of pumps located both at the end-users and at designated places across the network. The control architecture which is used consists of a set of decentralized linear control actions. The control actions use only the measurements obtained locally at each end-user. Both proportional and proportional-integral control actions are considered. Some of the work considers control actions which are constrained to non-negative values only. This is due to the fact that the actuators in this type of system typically consist of centrifugal pumps which are only able to deliver non-negative actuation. Other parts of the work consider control actions which have been quantized. That is, they are restricted to piecewise constant signals taking value in a bounded set. This is done in order to facilitate sending the control signals across a finite bandwidth communication network. This is necessary since the actuators in the system are geographically separated from the logic circuitry implementing the control actions. The results presented here consist of a series of global stability results of the closedloop system using the control actions described above. The stability analysis is complicated by the non-linearities present in the system process. Specifically, global practical output regulation can be shown when using proportional control actions, while global asymptotical output regulation can be shown when using proportional-integral control actions. Since the results are global in the state space, it is concluded that the closed-loop system maintains its stability properties when structural changes are implemented.

  18. Modeling, Optimization & Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat

    2014-01-01

    Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply systems. To have better understanding of water leakage, to control pressure and leakage effectively and for optimal design of water supply system, suitable modeling is an important prerequisite. Therefore a model with the main objective of pressure control and consequently leakage reduction is presented. The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used to check if the network is controllable. Afterward the pressure control problem in water supply systems is formulated as an optimal control problem. The goal is to minimize the power consumption in pumps and also to regulate the pressure drop at the end-users to a desired value. The formulated optimal control problem is non-convex. To solve the nonlinear optimal control problem, first the maximum principle is used. Subsequently the toolbox ICLOCS is used to solve the optimal control problem. In ICLOCS the nonlinear problem solver IPOPT is used. The IPOPT uses the interior point optimization method to solve nonlinear optimal control problems. In the water supply system model, the hydraulic resistance of the valve is estimated by real data and it is considered to be a disturbance. The disturbance in our system is updated every 24 hours based on the amount of water usage by consumers every day. Model Predictive Control can handle disturbances much better compared with the other control strategies. Therefore the pressure control problem is formulated within model predictive control framework. Because of nonlinearity which we have in both cost function and constraints, the model predictive control method could only solve the problem for a short time frame (three hours). Solving model predictive control and optimal control problems for large-scale, nonlinear, non-convex systems generally is not trivial. There are a lot of computational prob-lems and issues such as sensitivity, feasibility and computational burden which one has to face with. To cope with these problems a static approximation is used. The steady state model of water network is derived by removing all dynamics in the system. The problem of pressure management in new system is presented in the form of nonlinear non-convex optimization problem. The toolbox IPOPT is used to solve this optimization problem. Water supply companies are dividing their networks into pressure zones to enable better control of leakages in their networks. Dividing the network into different pressure zones in the optimal way is a non-trivial task. The problem of dividing the pressure zones in an optimal way is studied in the last part of this Ph.D. study. To this end, the problem is formulated as an optimization problem, which minimizes the power consumption in all pumping stations and maintains the pressure at end-users bigger than some specific values. The defined optimization problem is solved for all possible pump positions in the network and an optimal place of an extra pumping station is found.

  19. Condition Monitoring of Hydraulic Systems

    OpenAIRE

    Zhao, Xiaoyu

    2015-01-01

    The purpose of this project is to investigate and propose a system for condition monitoring and analysis of the hydraulic system of a forestry machine based on available on-board oil quality sensor data. The sample machine used was Scorpion King from Ponsse. This machine is equipped with an Icount PDR particle sensor from Parker. A two weeks long field test was conducted by Skogforsk. The data measured by the particle counter was collected, and breaks longer than five minutes were recorded as...

  20. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.

    2003-01-01

    The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial design the procedure attempts to find the optimal topology and the related parameters. The topology considerations comprise the type of hydraulic pump, the employment of knee linkages or not as well as the type of hydraulic actuators. The design variables also include the signals to the proportional valve in a number of predefined load cases as well as the hydraulic and mechanical parameters.

  1. Saving Energy in Construction Machinery using Displacement Control Hydraulics : Concept Realization and Validation

    OpenAIRE

    Heybroek, Kim

    2008-01-01

    In the sector of mobile hydraulics, valve controlled systems are predominant. In these systems the load force and speed are adjusted by control valves. In machines where multiple drives are used in parallel at extremely varying loads the energy efficiency of such systems is often compromised over large working regions. Most valve controlled systems also lack the possibility to recuperate potential energy. A different category of hydraulic systems, called displacement controlled hydraulics are...

  2. Crosshole investigations - Design of the hydraulic testing system

    International Nuclear Information System (INIS)

    Hydraulic testing, especially using sinusoidal signals, is one component of the Crosshole Investigations at the Stripa Mine which will characterise a volume of rock located 360 metres below ground level. This paper describes the equipment which performs the hydraulic tests by creating and measuring signals in isolated sections of two boreholes. The system is computer controlled and some programming information is included

  3. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...... concepts, ranging from a one-to-one copy of the electrical drive (electrical drives replaced by hydraulic dittos), to floating suspension systems mounted on hydraulic cylinders. Rough calculations of size and consequences of the different systems are presented ending up with the final concept for further...

  4. Intelligent PI Fuzzy Control of An Electro-Hydraulic Manipulator

    OpenAIRE

    Ayman A. Aly; Aly S. Abo El-Lail; Kamel A. Shoush; Farhan A. Salem

    2012-01-01

    The development of a fuzzy-logic controller for a class of industrial hydraulic manipulator is described. The main element of the controller is a PI-type fuzzy control technique which utilizes a simple set of membership functions and rules to meet the basic control requirements of such robots. Using the triangle shaped membership function, the position of the servocylinder was successfully controlled. When the system parameter is altered, the control algorithm is shown to be robust and more ...

  5. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    much higher force, torque and power density. One of these areas is the mobile hydraulic area, which generally comprise all type of off-highway machinery, such as construction equipment, agricultural equipment etc. But where hydraulic systems earlier was designed with primary focus on cost, dynamic...... that of electrical machines if operated in the intended and optimal work area, but due to an inappropriate system layout. Most of the power lost in open circuit hydraulic system systems is in this regard in the transmission part, i.e. hoses and fittings, and the valves used to control the system. A...... optimisation procedure, but is extended so the dynamics in the system controlled is also taken into account and so it handles the saturation phenomena that may arise in relation to a hydraulic system, i.e. pressure, flow, power and/or torque saturation. Parts of the pump controller are similar moved to the...

  6. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency, but...... project to develop rules and methods for designing and controlling mobile hydraulic systems in the most energy efficient way, when also considering the operational aspects of the system. The paper first describes the thoughts and ideas behind the project and then focus on an automated approach to design...... the hydraulic power supply in the most energy efficient way, when considering a number of load situations. Finally an example of the approach is shown to prove its validity.}...

  7. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.; Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States); Basher, A.M.H. [South Carolina State Univ., Orangeburg, SC (United States)

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical results are included.

  8. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical results are included

  9. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial...

  10. Modelling and control of a high performance electro-hydraulic test bench

    OpenAIRE

    Xu, Yaozhong

    2013-01-01

    Hydraulic systems are widely applied in industry for position or force control. However, due to hydraulic system nonlinearities, it is difficult to achieve a precise model valid over a large range of frequencies and movements. The work in this dissertation focuses on a high performance hydraulic test bench which involves three main hydraulic components, i.e. two high performance servovalves, a double rod actuator, and a specific intermediate block connecting the servovalves and actuator. This...

  11. Technology and control for hydraulic manipulators

    International Nuclear Information System (INIS)

    Hydraulic manipulators are candidate for fusion reactor maintenance. Their main advantages are their large payload with respect to volume and mass, their reliability and their robustness. However, due to their force control limitations, they are disqualified for precise manipulation and are dangerous for the environment and themselves in case of unexpected collision. CEA, in collaboration with CYBERNETIX and IFREMER has developed the advanced hydraulic robot MAESTRO. Force and hybrid control has been developed in order to avoid the previous problems. Using 'pressure' control servo-valve instead of the standard 'flow' control servo-valve (standard configuration of the MAESTRO) makes a real simplification of the control loop. No more pressure sensors are needed for monitoring the hydraulic joint in force control mode and using this kind of valves makes big safety improvements. The French company IN-LHC, designed and manufactured a prototype of servo-valve that fits the performances and space constraints of the Maestro arm. A characterisation of this new product was made on a mock-up and a set of these prototypes integrated in the Maestro slave-arm. A comparison between the two actuating technologies was made and showed that the performances of the pressure servo-valves make it applicable to general application

  12. Experimental Investigation on the Basic Law of Hydraulic Fracturing After Water Pressure Control Blasting

    Science.gov (United States)

    Huang, Bingxiang; Li, Pengfeng; Ma, Jian; Chen, Shuliang

    2014-07-01

    Because of the advantages of integrating water pressure blasting and hydraulic fracturing, the use of hydraulic fracturing after water pressure control blasting is a method that is used to fully transform the structure of a coal-rock mass by increasing the number and range of hydraulic cracks. An experiment to study hydraulic fracturing after water pressure blasting on cement mortar samples (300 300 300 mm3) was conducted using a large-sized true triaxial hydraulic fracturing experimental system. A traditional hydraulic fracturing experiment was also performed for comparison. The experimental results show that water pressure blasting produces many blasting cracks, and follow-up hydraulic fracturing forces blasting cracks to propagate further and to form numerous multidirectional hydraulic cracks. Four macroscopic main hydraulic cracks in total were noted along the borehole axial and radial directions on the sample surfaces. Axial and radial main failure planes induced by macroscopic main hydraulic cracks split the sample into three big parts. Meanwhile, numerous local hydraulic cracks were formed on the main failure planes, in different directions and of different types. Local hydraulic cracks are mainly of three types: local hydraulic crack bands, local branched hydraulic cracks, and axial layered cracks. Because local hydraulic cracks produce multiple local layered failure planes and lamellar ruptures inside the sample, the integrity of the sample decreases greatly. The formation and propagation process of many multidirectional hydraulic cracks is affected by a combination of water pressure blasting, water pressure of fracturing, and the stress field of the surrounding rock. To a certain degree, the stress field of surrounding rock guides the formation and propagation process of the blasting crack and the follow-up hydraulic crack. Following hydraulic fracturing that has been conducted after water pressure blasting, the integrity of the sample is found to be far lower than after traditional hydraulic fracturing; moreover, both the water injection volume and water injection pressure for hydraulic fracturing after water pressure blasting are much higher than they are for traditional hydraulic fracturing.

  13. Operational simulation of redundant output actuator for multiple hydraulic flight control systems; Taju yuatsu soju keito ni okeru jocho shutsuryoku actuator no sado simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, T. [National Aerospace Laboratory, Tokyo (Japan)

    1997-05-01

    Aircraft control system is multiplexed to enhance reliability. This means to multiplex the system that conveys steering signals to the control surfaces, and it is desired that all the systems will be simultaneously actuated to counter a control surface angular displacement resulting from a failure in one system. Then the failure in one system will be compensated for by the other two systems in the case of a three-system design, which will allow the sustenance of a nearly normal maneuver. When the simultaneous actuation of all the systems are considered, however, one has to be chosen out of two methods; to arrange all the systems in parallel on the control surfaces or to combine the outputs of all the systems into one while they are on their way to the control surfaces. In this report, the latter type, or a redundant output type hydraulic actuator, is discussed. Although the adding operation of this type is in general described by a block diagram which contains a feedback system that is quite complicated, yet, in this report, it is formulated as a problem of torsional vibration of the output axis to enable easy control system designing. 10 refs., 6 figs., 4 tabs.

  14. 49 CFR 570.55 - Hydraulic brake system.

    Science.gov (United States)

    2010-10-01

    ...2010-10-01 2010-10-01 false Hydraulic brake system. 570.55 Section...Than 10,000 Pounds 570.55 Hydraulic brake system. The following requirements apply to vehicles with hydraulic brake systems. (a) Brake...

  15. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section 33...Construction; Turbine Aircraft Engines 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function...

  16. Robust Control of a Hydraulically Actuated Manipulator Using Sliding Mode Control

    DEFF Research Database (Denmark)

    Hansen, Michael Rygaard; Andersen, Torben Ole; Pedersen, Henrik Clemmensen

    This paper presents an approach to robust control called sliding mode control (SMC) applied to the a hydraulic servo system (HSS), consisting of a servo valve controlled symmetrical cylinder. The motivation for applying sliding mode control to hydraulically actuated systems is its robustness...... towards structured (parametric) and unstructured (unmodeled dynamics) uncertainties. A third-order model of the actuated system is used to develop a sliding mode control which is implemented and tested on a simulation model. To avoid measurement of velocity and acceleration a simple first-order model is...... furthermore used to develop a simple sliding mode control (SSMC). The performance of the two controllers are compared and discussed....

  17. Thermal-hydraulic unreliability of passive systems

    International Nuclear Information System (INIS)

    Advanced light water reactor (LWR) like AP600 and the simplified boiling water reactor use passive safety systems for accident prevention and mitigation. Because these systems rely on natural forces for their operation, their unavailability due to hardware failures and human error is significantly smaller than that of active systems. However, the coolant flows predicted to be delivered by these systems can be subject to significant uncertainties, which in turn can lead to a significant uncertainty in the predicted thermal-hydraulic performance of the plant under accident conditions. Because of these uncertainties, there is a probability that an accident sequence for which a best-estimate thermal-hydraulic analysis predicts no core damage (success sequence) may actually lead to core damage. For brevity, this probability will be called thermal-hydraulic unreliability. The assessment of this unreliability for all the success sequences requires very expensive computations. Moreover, the computational cost increases drastically as the required thermal-hydraulic reliability increases. The required computational effort can be greatly reduced if a bounding approach can be used that either eliminates the need to compute thermal-hydraulic unreliabilities, or it leads to the analysis of a few bounding sequences for which the required thermal-hydraulic reliability is relatively small. The objective of this paper is to present such an approach and determine the order of magnitude of the thermal-hydraulic unreliabilities that may have to be computed

  18. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy

    2015-08-01

    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The authors developed the information-measuring system that improves the hydraulic transmission test process by automating and increasing the accuracy of measurements of control parameters. The measurement results are initial data for carrying out further studies to determine the technical condition of the hydraulic transmission UGP750-1200 during the plant post-repair tests. Practical value. The paper proposed the alternate design of microprocessor hydraulic transmission test system for diesel locomotives, which has no analogues in Ukraine. Automated data collection during the tests will allow capturing the fast processes to determine the technical condition of hydraulic transmission.

  19. Analysis of buffering process of control rod hydraulic absorber

    International Nuclear Information System (INIS)

    Control Rod Hydraulic Drive Mechanism(CRHDM) is a newly invented build-in control rod drive mechanism. Hydraulic absorber is the key part of this mechanism, and is used to cushion the control rod when the rod scrams. Thus, it prevents the control rod from being deformed and damaged. In this paper dynamics program ANSYS CFX is used to calculate all kinds of flow conditions in hydraulic absorber to obtain its hydraulic characteristics. Based on the flow resistance coefficients obtained from the simulation results, fluid mass and momentum equations were developed to get the trend of pressure change in the hydraulic cylinder and the displacement of the piston rod during the buffering process of the control rod. The results obtained in this paper indicate that the hydraulic absorber meets the design requirement. The work in this paper will be helpful for the design and optimization of the control rod hydraulic absorber. (author)

  20. 49 CFR 570.55 - Hydraulic brake system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles with hydraulic brake systems. (a) Brake system failure indicator. The hydraulic brake system failure...

  1. Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II

    International Nuclear Information System (INIS)

    Highlights: Multi-objective optimization based fractional order controller is designed for HTRS. NSGAII is improved by iterative chaotic map with infinite collapses (ICMIC) operator. ISE and ITSE are as chosen as objective functions in tuning parameters of HTRS. FOPID controller outperforms the PID controller under various running conditions. Trade-off between speed of reference tracking and damping of oscillation are shown. - Abstract: Fractional-order PID (FOPID) controller is a generalization of traditional PID controller using fractional calculus. Compared to the traditional PID controller, in FOPID controller, the order of derivative portion and integral portion is not integer, which provides more flexibility in achieving control objectives. Design stage of such an FOPID controller consists of determining five parameters, i.e. proportional, integral and derivative gains {Kp, Ki, Kd}, and extra integration and differentiation orders {?,?}, which has a large difference comparing with the conventional PID tuning rules, thus a suitable optimization algorithm is essential to the parameters tuning of FOPID controller. This paper focuses on the design of the FOPID controller using chaotic non-dominated sorting genetic algorithm II (NSGAII) for hydraulic turbine regulating system (HTRS). The parameters chosen of the FOPID controller is formulated as a multi-objective optimization problem, in which the objective functions are composed by the integral of the squared error (ISE) and integral of the time multiplied squared error (ITSE). The chaotic NSGAII algorithm, which is an incorporation of chaotic behaviors into NSGAII, is used as the optimizer to search true Pareto-front of the FOPID controller and designers can implement each of them based on objective functions priority. The designed chaotic NSGAII based FOPID controller procedure is applied to a HTRS system. A comparison study between the optimum integer order PID controller and optimum fractional order PID controller is presented in the paper. The simulation and some experimental results validate the superiority of the fractional order controllers over the integer controllers

  2. Linear Perturbation Adaptive Control of Hydraulically Driven Manipulators

    DEFF Research Database (Denmark)

    Andersen, T.O.; Hansen, M.R.; Conrad, Finn

    A method for synthesis of a robust adaptive scheme for a hydraulically driven manipulator, that takes full advantage of any known system dynamics to simplify the adaptive control problem for the unknown portion of the dynamics is presented. The control method is based on adaptive perturbation...... control.Using the Lyapunov approach, under slowly time-varying assumptions, it is shown that the tracking error and the parameter error remain bounded. This bound is a function of the ideal parameters and a bounded disturbance. The control algorithm decouples and linearizes the manipulator so that each...... joint behaves as an independent second-order system with fixed dynamics....

  3. Linear Perturbation Adaptive Control of Hydraulically Driven Manipulators

    DEFF Research Database (Denmark)

    Andersen, T.O.; Hansen, M.R.

    2004-01-01

    A method for synthesis of a robust adaptive scheme for a hydraulically driven manipulator, that takes full advantage of any known system dynamics to simplify the adaptive control problem for the unknown portion of the dynamics is presented. The control method is based on adaptive perturbation control.Using the Lyapunov approach, under slowly time-varying assumptions, it is shown that the tracking error and the parameter error remain bounded. This bound is a function of the ideal parameters and a bounded disturbance. The control algorithm decouples and linearizes the manipulator so that each joint behaves as an independent second-order system with fixed dynamics.

  4. Dynamic analysis of hydraulic control unit

    International Nuclear Information System (INIS)

    The Hydraulic Control Units (HCU) are required to operate when the required response spectra (RRS) corresponding to dynamic loads of upset and faulted conditions are applied to the HCU's. To demonstrate operability, they are qualified to testing response spectra (TRS). This paper presents a procedure by which the RRS and TRS were generated at the upper HCU connecting locations and also the selected locations. A comparison of the RRS and TRS shows that the RRS are indeed enveloped by the TRS at the mounting locations as well as at the floor. Thus, the use of the HCU test results to qualify the HCU in the actual installation is justified. (orig.)

  5. Computerized hydraulic scanning system for quantitative non destructive examination

    International Nuclear Information System (INIS)

    A hydraulic scanning system with five degrees of freedom is described. It is primarily designed as a universal system for fast and accurate ultrasonic inspection of materials for their internal variation in properties. The whole system is controlled by a minicomputer which also is used for evaluating and presenting of the results of the inspection. (author)

  6. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

    International Nuclear Information System (INIS)

    The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested

  7. Technique of multilevel adjustment calculation of the heat-hydraulic mode of the major heat supply systems with the intermediate control stages

    Science.gov (United States)

    Tokarev, V. V.; Shalaginova, Z. I.

    2016-01-01

    A new technique for heat-hydraulic calculation to organize the normal operating modes of the heat supply systems intended to decide the tasks of planning and mode selecting, which ensures the required thermal loads at adherence of all restrictions on its parameters, is proposed. The main feature of the technique is in the determination of the parameters of throttling devices on the network and inlets into the buildings of consumers taking into account the differentiated corrections to the flow rates on the compensation of the heat losses in the network. The technique involves the decision of the multilevel adjustment calculation task, in which the deviations of the boundary mode parameters (pressure, flow rate, temperature) in place of the decomposition of the heat supply system model on the levels of main and distribution heating networks taking into account the intermediate control stages on the central heat points (CHP) are minimized. At each level, the task of single-level adjustment heat-hydraulic calculation is decided, which is mathematically defined as an optimization task where the internal air temperature deviation is minimized of the required value with the given accuracy a priori. The technique is realized as part of the ANGARA-TS data-computing system and allows developing the adjusting procedures to improve the heat supply quality and availability of heating consumers, determining the minimum necessary values of heads on the sources and pumping stations.

  8. Trends in Modelling, Simulation and Design of Water Hydraulic Systems – Motion Control and Open-Ended Solutions

    DEFF Research Database (Denmark)

    Conrad, Finn

    140 bar. Recently, dedicated pumps and accessories running with sea-water as fluid are available. A unique solution is to use reverse osmosis to generate drinking water from sea-water, and furthermore for several off-shore applications. Furthermore, tap water hydraulic components of the Nessie® family...

  9. Adaptive Sliding Mode Control for Hydraulic Drives : A New Approach

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole

    2013-01-01

    This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCDs). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback. The main target is to overcome problems with linear controllers deteriorating performance due to the inherent nonlinear nature of such systems, without requiring extensive knowledge on system parameters nor advanced control theory. In order to accomplish this task, an integral sliding mode controller employing parameter adaption through a recursive algorithm is presented. This is based on a reduced order model approximation of a VCD with unmatched valve flow- and cylinder asymmetries. Bounds on parameters are obtained despite lack of parameter knowledge, and the proposed controller demonstrates improved position tracking performance and robustness / adaptability compared with a conventional feedforward-PI controller, when subjected to perturbations in supply pressure and coulomb friction.

  10. A Novel Energy Recovery System for Parallel Hybrid Hydraulic Excavator

    OpenAIRE

    Wei Li; Baoyu Cao; Zhencai Zhu; Guoan Chen

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the pro...

  11. Hydraulic Motor Driving Variable-Pitch System for Wind Turbine

    OpenAIRE

    Ye HUANG; JiBao QI

    2013-01-01

    The present hydraulic variable-pitch mechanism of wind turbine uses three hydraulic cylinders to drive three crank and connecting rod mechanisms respectively; the blades are moved with the cranks. The hydraulic variable-pitch mechanism has complex structure, occupies a lot of space and its maintenance is trouble. In order to make up for the shortcomings of hydraulic cylinder variable-pitch system, the present hydraulic variable-pitch mechanism should be changed as follows: hydraulic motors ar...

  12. Fort St. Vrain hydraulic power system study

    International Nuclear Information System (INIS)

    This report prepared for the United States Department of Energy under Contract Number DEAC03-80SF11440, contains the results of the Fort St. Vrain Hydraulic Power System (System 91) engineering study. The major objectives of this study were to evaluate, analyze, and recommend corrective actions to resolve HTGR (High Temperature Gas Cooled Reactor) operational problems and equipment performance problems in the hydraulic power system at the Fort St. Vrain Nuclear Generating Station. The recommended corrective actions for each subject are subdivided where appropriate, into two categories: modifications suggested for implementation at Fort St. Vrain and modifications suggested for consideration in the design of future HTGRs

  13. Hydraulic model of the systemic resistance.

    Czech Academy of Sciences Publication Activity Database

    Leitermann, D.; Prak, Josef; Musil, Jan; Pouek, L.; Konvi?kov, S.

    San Diego : American Society of Biomechanics, 2001, s. 265-266. [Conference of the American Society of Biomechanics. San Diego (US), 08.08.2001-11.08.2001] Grant ostatn: T AV ?R(XC) PP50252 Institutional research plan: CEZ:AV0Z2076919 Keywords : systemic resistance * hydraulic model * cardiovascular system Subject RIV: BK - Fluid Dynamics

  14. Thermal Equilibrium of a Hydraulic Driving System

    Directory of Open Access Journals (Sweden)

    Tarawneh S. Muafag

    2004-01-01

    Full Text Available To put into evidence the consequence of the energetic losses that appears in a hydraulic driving systems and to evaluate how does the system performance and reliability are strongly affected by the temperature increase due-to the flowing fluid, in this study a thermal analysis is presented for improving the possibility of developing a practical and simplified method for establishing the optimum working temperature at any instant time. Focus is on computational methods that to be used for controlling the working temperature around the limit of admissible temperature, if the working temperature exceeds this limit, the fluid properties alteration will occur rapidly and a slow deterioration in the internal working parts of the system is expected, based on the failure rule rate that doubles for every 10?C of a temperature increase. Heat load duration is evaluated for both short and long operation periods, in which thermal equations are introduced to describe the conduction, convection and radiation modes of the heat transfer for the given mode of operation .The main conclusion of this study draws an important attention, that must be taken into account even during the first stages of designing such systems, in order to establish the optimum dimensions for the heat exchanger solution, as a design option when required for reducing the heat load for satisfying the needed working temperature and then keeping the system within the energy balance condition

  15. Water heating system hydraulics. Hydraulik der Wasserheizung

    Energy Technology Data Exchange (ETDEWEB)

    Roos, H.

    1986-01-01

    Based on a minimum of fluid mechanics principles the manual facilitates access to the effects of hydraulic interventions or circuit manipulations in water heating systems. The book is a valuable vehicle for students and practical engineers. The detailed picture- and table-assisted discussion deals with the following subjects: Hydraulic resistors (tubes and pipes, networks, rheostats and single resistors), hydraulic connection methods (parallel and series connection), practical examples (switch-off of double and single tube heating systems, determination of hydraulic series cut-outs), straight-way valves and network (design and dimensioning), pumps as actuators, three-way valves and network (equivalent circuits, installation, working characteristics), interaction of locally separated pumps (example connection), hydraulic connections (characteristics of combined connections, example), overlaps of pumping action and gravitational effects, four-way mixers (purpose), overflow valves, jet pumps and computers. The final chapter is dedicated to the description of the Tichelmann circuit which is characterized by equal circuit lengths, equal pressure drops in straight tubes and reduced flow noises. With 183 figs., 12 tabs..

  16. Analysis of an controller design for an electro-hydraulic servo pressure regulator

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole

    2009-01-01

    Mobile hydraulics is in a transition phase, where electronic sensors and digital signal processors are starting to become standard on a high number of machines, hereby replacing hydraulic pilot lines and oering new possibilities with regard to both control and feasibility. For controlling some of the existing hydraulic components there are, however, still a need for being able to generate a hydraulic pilot pressure, as e.g. almost all open-circuit pumps are hydraulically controlled. The focus of the current paper is therefore on the analysis and controller design an electro-hydraulic servo pressure regulator, which generates a hydraulic LS-pressure based on an electrical reference, hereby synergistically integrating knowledge from all parts of the mechatronics area. The servo pressure regulator is used to generate the LS-signal for a variable displacement pump, and the paper rst presents the considered system and an experimentally veried model of this. A linearized model is then presented, which comprise the basis for a stability and sensitivity analysis of the system. Based on the results of the analysis, a control strategy is designed in combination with optimisation of the mechanical design to generate a controlled leakage ow that aids in stabilising the system. The robustness of the system is then discussed in relation to dierent pilot line volumes and pump dynamics. Finally experimental results are presented, where the performance is compared to that of a similar hydraulic reference system, which has been the basis for the specification of performance requirements.

  17. Evolution of hydraulic system for moving components on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Samaille, F.; Journeaux, J.Y.; Doceul, L.; Giraud, G.; Pasquier, G. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1998-07-01

    Specific diagnostics as Langmuir probe measurement and RF heating systems require fast and accurate displacement of components. This is provided by an active hydraulic system that has been working since 1988 with a high reliability on Tore Supra. At the present time, two LHCD launchers, three ICRH antennae and two fast moving probes are actively moved. Later, for the Tore Supra next step CIEL project (Composants Internes Et Limiteurs) that is planned for the year 2000, the Toroidal Pump Limiter (TPL) positioning and the fast shutters pumping duct will also be actively controlled. This paper describes the design of the present day Tore Supra hydraulic system and the new original hydraulic systems required for the Toroidal Pump Limiter. (author)

  18. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It was molded into a polytechnic institute focusing on engineering in the nationwide restructuring of universities and colleges undertaken in 1952. At present, the university has 14 schools and 56 departments with faculties in science, engineering, humanities, law, medicine, history, philosophy, economics, management, education and art. The University now has over 25 900 students, including 13 100 undergraduates and 12 800 graduate students. As one of China's most renowned universities, Tsinghua has become an important institution for fostering talents and scientific research. The International Association of Hydro-Environment Engineering and Research (IAHR) particularly promotes the advancement and exchange of knowledge through working groups, specialty symposia, congresses, and publications on water resources, river and coastal hydraulics, risk analysis, energy, environment, disaster prevention, and industrial processes. The IAHR Committee on Hydraulic Machinery and Systems deals with the advancement of technology associated with the understanding of steady and unsteady flow characteristics in hydraulic machinery and conduit systems connected to the machinery. The technology elements include the fluid behaviour within machine components, hydro-elastic behaviour of machine components, cavitation and two phase flow in turbines and pumps, hydraulic machine and plant control systems, the use of hydraulic machines to improve water quality, and even considerations to improve fish survival in their passage through hydro plants. The main emphases of the IAHR Committee on Hydraulic Machinery and Systems are to stimulate research and understanding of the technologies associated with hydraulic machinery and to promote interaction between the machine designers, machine users, the academic community, and the community as a whole. Hydraulic machinery is both cost effective and environmentally friendly. The goals of the IAHR Committee on Hydraulic Machinery and Systems are to improve the value of hydraulic machinery to the end user, to the societies, and to improve societies understanding and appreciation of that value. The series of IAHR Symposia on Hydraulic Machinery and Cavitation started with the 1st edition in Nice, France, 1960. For the past decade, all the symposia have focused on an extended portfolio of topics under the name of 'Hydraulic Machinery and Systems', such as the 20th edition in Charlotte, USA, 2000, the 21st in Lausanne, Switzerland, 2002, the 22nd in Stockholm, Sweden, 2004, the 23rd in Yokohama, Japan, 2006, the 24th in Foz do Iguassu, Brasil, 2008, and the 25th in Timisoara, Romania, 2010. The 26th IAHR Symposium on Hydraulic Machinery and Systems brings together more than 250 scientists and researchers from 25 countries, affiliated with universities, technology centers and industrial firms to debate topics related to advanced technologies for hydraulic machinery and systems, which will enhance the sustainable development of water resources and hydropower production. The Scientific Committee has selected 268 papers, out of 430 abstracts submitted, on the following topics: (i) Hydraulic Turbines and Pumps, (ii) Sustainable Hydropower, (iii) Hydraulic Systems, (iv) Advances in Computational and Experimental Techniques, (v) Application in Industries and in Special Conditions, to be presented at the symposium and to be included in the proceedings. All the papers, published in this Volume 15 of IOP Conference Series: Earth and Environmental Science, have been peer reviewed through processes administered by the editors of the 26th IAHR Symposium on Hydraulic Machinery and Systems proceedings, those are Yulin Wu, Zhengwei Wang, Shuhong Liu, Shouqi Yuan, Xingqi Luo and Fujun Wang. We sincerely hope that this edition of the symposium will be a significant step forward in the worldwide efforts to address the present challenges facing the modern Hydraulic Machinery and Systems. Professor Yulin Wu Chairman of the Organizing Committee 26th IAHR Symposium on Hydraulic Machinery and Systems

  19. Hydraulic control rod drive for a nuclear reactor

    International Nuclear Information System (INIS)

    The invention pertains to the desing of a controllable lock for the axial movement of the piston rod of a hydraulic control rod drive. The lock is ineffective during seram and unintentional control rod withdrawal. (UWI)

  20. Geomorphic and hydraulic controls on large-scale riverbank failure on a mixed bedrock-alluvial river system, the River Murray, South Australia: a bathymetric analysis.

    Science.gov (United States)

    De Carli, E.; Hubble, T.

    2014-12-01

    During the peak of the Millennium Drought (1997-2010) pool-levels in the lower River Murray in South Australia dropped 1.5 metres below sea level, resulting in large-scale mass failure of the alluvial banks. The largest of these failures occurred without signs of prior instability at Long Island Marina whereby a 270 metre length of populated and vegetated riverbank collapsed in a series of rotational failures. Analysis of long-reach bathymetric surveys of the river channel revealed a strong relationship between geomorphic and hydraulic controls on channel width and downstream alluvial failure. As the entrenched channel planform meanders within and encroaches upon its bedrock valley confines the channel width is 'pinched' and decreases by up to half, resulting in a deepening thalweg and channel bed incision. The authors posit that flow and shear velocities increase at these geomorphically controlled 'pinch-points' resulting in complex and variable hydraulic patterns such as erosional scour eddies, which act to scour the toe of the slope over-steepening and destabilising the alluvial margins. Analysis of bathymetric datasets between 2009 and 2014 revealed signs of active incision and erosional scour of the channel bed. This is counter to conceptual models which deem the backwater zone of a river to be one of decelerating flow and thus sediment deposition. Complex and variable flow patterns have been observed in other mixed alluvial-bedrock river systems, and signs of active incision observed in the backwater zone of the Mississippi River, United States. The incision and widening of the lower Murray River suggests the channel is in an erosional phase of channel readjustment which has implications for riverbank collapse on the alluvial margins. The prevention of seawater ingress due to barrage construction at the Murray mouth and Southern Ocean confluence, allowed pool-levels to drop significantly during the Millennium Drought reducing lateral confining support to the over-steepened channel margins triggering large-scale riverbank failure.

  1. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  2. Robust force control in a novel electro-hydraulic structure using polytopic uncertainty representation.

    Science.gov (United States)

    Baghestan, K; Rezaei, S M; Talebi, H A; Zareinejad, M

    2014-11-01

    Electro-hydraulic servo systems (EHSS) are used in many industrial applications for position and force control. Force control with a hydraulic actuator is challenging and requires complicated control algorithms used along with high crossover frequency electro-hydraulic valves, even for simple force control tasks. In this paper, a different hydraulic structure is proposed to improve the force tracking quality and increase efficiency in the EHSS. This comes at the cost of a new model with linearization and uncertainty challenges. To address these challenges, a robust H? control design approach is followed to control the proposed EHSS. Model linearization uncertainties are approximated by a polytope and a robust controller is designed to keep the system stable and satisfy the H? performance conditions within this polytope. Experimental results verify that the objectives of the paper are satisfied after using the proposed system. PMID:25160870

  3. Reactor Shutdown Mechanism by Top-mounted Hydraulic System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Haun; Cho, Yeong Garp; Choi, Myoung Hwan; Lee, Jin Haeng; Huh, Hyung; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    There are two types of reactor shutdown mechanisms in HANARO. One is the mechanism driven by a hydraulic system, and the other is driven by a stepping motor. In HANARO, there are four Control Rod Drive Mechanisms (CRDMs) with an individual step motor and four Shutoff (SO) Units with an individual hydraulic system located at the top of reactor pool. The absorber rods in SO units are poised at the top of the core by the hydraulic force during normal operation. The rods of SO units drop by gravity as the first reactor showdown mechanism when a trip is commended by the reactor protection system (RPS). The rods in CRDMs also drop by gravity together as a redundant shutdown mechanism. When a trip is commended by the reactor regulating system (RRS), the absorber rods of CRDM only drop; while the absorber rods of SO units stay at the top of the core by the hydraulic system. The reactivity control mechanisms of in JRTR, one of the new research reactor with plate type fuels, consist of four CRDMs driven by an individual step motor and two second shutdown drive mechanisms (SSDMs) driven by an individual hydraulic system as shown in Fig. 1. The CRDMs act as the first reactor shutdown mechanism and reactor regulating as well. The top-mounted SSDM driven by the hydraulic system for the JRTR is under design in KAERI. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity for the reactor trip. Based on the proven technology of the design, operation and maintenance for HANARO, the SSDM for the JRTR has been optimized by the design improvement from the experience and test. This paper aims for the introduction of the SSDM in the process of the basic design. The major differences of the shutdown mechanisms by the hydraulic system are compared between HANARO and JRTR, and the design features, system, structure and future works are also described

  4. Reactor Shutdown Mechanism by Top-mounted Hydraulic System

    International Nuclear Information System (INIS)

    There are two types of reactor shutdown mechanisms in HANARO. One is the mechanism driven by a hydraulic system, and the other is driven by a stepping motor. In HANARO, there are four Control Rod Drive Mechanisms (CRDMs) with an individual step motor and four Shutoff (SO) Units with an individual hydraulic system located at the top of reactor pool. The absorber rods in SO units are poised at the top of the core by the hydraulic force during normal operation. The rods of SO units drop by gravity as the first reactor showdown mechanism when a trip is commended by the reactor protection system (RPS). The rods in CRDMs also drop by gravity together as a redundant shutdown mechanism. When a trip is commended by the reactor regulating system (RRS), the absorber rods of CRDM only drop; while the absorber rods of SO units stay at the top of the core by the hydraulic system. The reactivity control mechanisms of in JRTR, one of the new research reactor with plate type fuels, consist of four CRDMs driven by an individual step motor and two second shutdown drive mechanisms (SSDMs) driven by an individual hydraulic system as shown in Fig. 1. The CRDMs act as the first reactor shutdown mechanism and reactor regulating as well. The top-mounted SSDM driven by the hydraulic system for the JRTR is under design in KAERI. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity for the reactor trip. Based on the proven technology of the design, operation and maintenance for HANARO, the SSDM for the JRTR has been optimized by the design improvement from the experience and test. This paper aims for the introduction of the SSDM in the process of the basic design. The major differences of the shutdown mechanisms by the hydraulic system are compared between HANARO and JRTR, and the design features, system, structure and future works are also described

  5. Common cause failure analysis of hydraulic scram and control rod systems in the Swedish and Finnish BWR plants

    International Nuclear Information System (INIS)

    The main task of the project included the analysis of the operating experiences at the BWRs of ABB Atom design, comprising 9 units in Sweden and 2 in Finland. International experience and reference information were also surveyed. A reference application was done for the Barsebaeck plant. This pilot study covered all systems which contribute to the reactor shutdown, including also the actuation relays at the interface to the reactor protection system. The Common Load Model was used as the quantification method, which proved to be a practicable approach. This method provides a consistent handling of failure combinatorics and workable extension to evaluate localized dependence between adjacent control rod and drive assemblies (CRDAs). As part of this project, instructions of handbook style were prepared for the CCF analysis of high redundancy systems. The primary focus in the analysis of operating experience was placed on the scram valves and CRDAs. Due to the limited component population, the experiences for the scram valve constitute only a few single failures and some potential but none actual CCF event. These insights are compatible with the generic data for these valves. The experiences for the CRDAs include several single failures, and some actual and many potential CCF events of varying degree of functional impact. Special emphasis was placed to identify any multiple failure or degradation indicating that adjacent rods would be more vulnerable to failure, because such phenomena are far more critical for the scram function as compared to failure of randomly placed rods. 17 refs

  6. Hydraulic device for control rod drives

    International Nuclear Information System (INIS)

    Purpose: To enable to select the volume of nitrogen gases supplied from a nitrogen gas container connected to an accumulator depending on the reactor pressure, etc. Constitution: A scram valve is opened by a scram signal upon reactor scram. In this case, if the reactor pressure is low, nitrogen gases in the first nitrogen container are supplied to an accumulator and high pressure scram water from a hydraulic pressure supply device is supplied to the control rod drives. On the other hand, if the reactor pressure is high, the first and the second nitrogen containers are opened and volume-increased nitrogen gases are supplied to the accumulator. As the result, reactor scram can be conducted with a sufficient margin in which the pressure in the nitrogen container is reduced as the stroke or the time of the control rod is greater to increase the effective energy in the latter half region of the scram where the scram stroke is great. Accordingly, it is possible to improve the safety and the reliability of the reactor core. (Kamimura, M.)

  7. Control of flexible robots with prismatic joints and hydraulic drives

    International Nuclear Information System (INIS)

    The design and control of long-reach, flexible manipulators has been an active research topic for over 20 years. Most of the research to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long-reach systems. One example is the Modified Light Duty Utility Arm (MLDUA) designed and built by Spar Aerospace for Oak Ridge National Laboratory (ORNL). This arm operates in larger, underground waste storage tanks located at ORNL. The size and nature of the tanks require that the robot have a reach of approximately 15 ft and a payload capacity of 250 lb. In order to achieve these criteria, each joint is hydraulically actuated. Furthermore, the robot has a prismatic degree-of-freedom to ease deployment. When fully extended, the robot's first natural frequency is 1.76 Hz. Many of the projected tasks, coupled with the robot's flexibility, present an interesting problem. How will many of the existing flexure control algorithms perform on a hydraulic, long-reach manipulator with prismatic links? To minimize cost and risk of testing these algorithms on the MLDUA, the authors have designed a new test bed that contains many of the same elements. This manuscript described a new hydraulically actuated, long-reach manipulator with a flexible prismatic link at ORNL. Focus is directed toward both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies

  8. A Speed Control Method for Underwater Vehicle under Hydraulic Flexible Traction

    OpenAIRE

    Yin Zhao; Ying-kai Xia; Ying Chen; Guo-Hua Xu

    2015-01-01

    Underwater vehicle speed control methodology method is the focus of research in this study. Driven by a hydraulic flexible traction system, the underwater vehicle advances steadily on underwater guide rails, simulating an underwater environment for the carried device. Considering the influence of steel rope viscoelasticity and the control system traction structure feature, a mathematical model of the underwater vehicle driven by hydraulic flexible traction system is established. A speed contr...

  9. Control rod driving hydraulic pressure device

    International Nuclear Information System (INIS)

    The present invention concerns a control rod driving hydraulic device of a BWR type reactor, and provides an improvement for a means for supplying mechanical seal flashing water of a pump. That is, a mechanical seal flashing pipeline is branched at the downstream of a pressure-reducing orifice and connected to a minimum flow pipeline. With such a constitution, the minimum flow pipeline is connected to a minimum flow pipeline of an auxiliary pump at the downstream of the pressure-reducing orifice and returned to a suction pipeline of the pump. Pressure at the downstream of the pressure-reducing orifice is set, in the orifice, to a pressure required for mechanical seal flashing. Accordingly, the mechanical seal flashing pipeline is connected and a part of minimum flow rate is utilized, thereby enabling to cool mechanical seals. As a result, flow rate of the mechanical flashing water which has been flown out can be saved. The exhaustion amount from the pump can be reduced, to decrease the shaft power and reduce the capacity of the motor. (I.S.)

  10. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which...

  11. Controlling a negative loaded hydraulic cylinder using pressure feedback

    DEFF Research Database (Denmark)

    Hansen, M.R.; Andersen, T.O.

    This paper is concerned with the inherent oscillatory nature of pressure compensated velocity control of a hydraulic cylinder subjected to a negative load and suspended by means of an over-center valve. Initially, a linearized stability analysis of such a hydraulic circuit is carried out clearly...

  12. D2O system and oil hydraulic system of fuelling machine

    International Nuclear Information System (INIS)

    Two of the most important supporting systems in CANDU fuel handling system--D2O supply and control system and oil hydraulic system are described, focusing on design requirements, major function, system structure and the main work flow of the two systems individually so as to briefly and concisely present the two typical CANDU systems

  13. Mathematical Models of Hydraulic Systems, Examples, Analysis.

    Czech Academy of Sciences Publication Activity Database

    Strakraba, Ivan

    Praha : T AV ?R, 2006 - (P?hoda, J.; Kozel, K.), s. 159-162 ISBN 80-85918-98-6. [Conference Topical Problems of Fluid Mechanics 2006. Praha (CZ), 22.02.2006-24.02.2006] R&D Projects: GA ?R(CZ) GA201/05/0005 Institutional research plan: CEZ:AV0Z10190503 Keywords : hydraulic systems * fluid flow * mathematical models Subject RIV: BA - General Mathematics

  14. Hydraulics in heating systems. Hydraulik in Heizanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schlapmann, D. (Buderus Heiztechnik GmbH, Lollar (Germany))

    1993-12-01

    This continuation report describes various possibilities for executing hydraulics in heating systems. The systems described here are: single-boiler system with high-efficiency boiler, multi-boiler system with high-efficiency boilers and Tichelmann connection, serial connection of a high-efficiency boiler with a conventional, dual-fuel boiler for oil and gas, connection of a dual-fuel boiler for oil and gas with an exhaust gas heat exchanger for waste heat utilization, and parallel connection of a dual-fuel boiler for solid fuel and oil with a gas boiler. (BWI)

  15. A hydraulic transient analysis tool for power plant piping systems

    International Nuclear Information System (INIS)

    A hydraulic transient computer simulation procedure is presented which is capable of simulating the waterhammer response of power plant liquid piping systems under a variety of forcing functions. The procedure, which models most current pipeline hardware, is suitable for simulating events such as valve operation, pump start-up and shutdown, and the dynamic action of PID controllers. Application of the procedure in an actual analysis of a condensate polisher and feedwater system is discussed

  16. Dynamics of Hydraulic-Fracturing Controlled Microseismicity

    Science.gov (United States)

    Shapiro, S. A.; Dinske, C.; Rothert, E.

    2006-12-01

    Several dynamic processes related to propagation of hydraulic fracture modify the stress state in rocks and, therefore, they are relevant for triggering of microseismicity. For instance, these are the creation of a new fracture volume, fracturing fluid loss and its infiltration into reservoir rocks as well as diffusion of the injection pressure into the pore space of surrounding rocks and inside the fracture. Using real data, we show that some of these processes can be seen from features of spatio-temporal distributions of the induced microseismicity. Especially, the initial stage of fracture volume opening as well as the back front of the induced seismicity starting to propagate after termination of the fluid injection can be well identified and used for reservoir engineering. We have observed these signatures in many data sets of hydraulic fracturing in tight gas reservoirs. Evaluation of spatio-temporal dynamics of induced microseismicity can contribute to estimate important physical characteristics of hydraulic fractures, e.g., penetration rate of the hydraulic fracture, its permeability as well as the permeability of the reservoir rock. The quality of location of microseismicity is of tremendous importance for such applications. Understanding of fluid-induced seismicity by hydraulic fracturing in boreholes can help us to understand natural fracture processes related to dehydration and degassing phenomena by subduction and faulting.

  17. Dynamic analysis of upper hydraulic drive control rod under vibration conditions

    International Nuclear Information System (INIS)

    The paper studies the dynamic response of the hydraulically driven control rod (HDCR) under vibration conditions. The governing equation of the hydraulic driving system in a non-inertial coordinate system was deduced using a characteristic method. By comparing the analysis with the experiment, the analysis program was validated. It is shown that the response of a hydraulic driving system under a dissimilar vibration load is different. Under the condition of the pulse loading with a higher acceleration and short period, the response amplitude of the control rod mainly depends on the input displacement and increases with its increase. The response amplitude is also related to the loading direction. The pulse loading in a downward direction causes the higher response of HDCR. Under the condition of an ocean wave with a lower acceleration and long period ocean wave, the response amplitude is small, and the hydraulic drive system can keep the control rod stable by self regulating. (author)

  18. Simulation of Dynamics of System with Hydraulic Lines and Linear Hydraulic Motor with Mass Load

    OpenAIRE

    Vaina M.; Hruk L.; Bure?ek A.

    2013-01-01

    This paper deals with the numerical simulation of dynamic properties of the system consisting of hydraulic lines and linear hydraulic motor with a mass load. The mathematical model is created using Matlab SimHydraulics software. Oil bulk modulus, elasticity and volumes of pipes and hoses play a significant role in this case. Mathematical models are verified on experimental equipment. Pressure and position responses during sudden stop of a moving cylinder are measured on this equipment.

  19. Rubber seals for fluid and hydraulic systems

    CERN Document Server

    Chandrasekaran, Chellappa

    2009-01-01

    Rubber Seals for Fluid and Hydraulic Systems is a comprehensive guide to the manufacturing and applications of rubber seals, with essential coverage for industry sectors including aviation, oil drilling and the automotive industry. Fluid leakage costs industry millions of dollars every year. In addition to wasted money, unattended leaks can result in downtime, affect product quality, pollute the environment, and cause injury. Successful sealing involves containment of fluid within a system while excluding the contaminants; the resilience of rubber enables it to be used to achi

  20. Light Water Breeder Reactor movable fuel hydraulic balancing system (LWBR Development Program)

    International Nuclear Information System (INIS)

    Reactivity control in the Light Water Breeder Reactor (LWBR) is obtained by axial positioning of twelve movable fuel assemblies, which thus serve the dual purpose of contributing to reactor power and functioning as neutron economic control elements. A hydraulic technique is used to automatically counterbalance the upward hydraulic force of these elements. Hydraulic balancing is accomplished using the Bypass Inlet Flow (BIF) balancing system, which utilizes the core coolant inlet pressure to develop a downward hydraulic force on the control elements of equal magnitude to the upward hydraulic force caused by axial flow of coolant through the movable control elements. Thus the net force acting on each control element is approximately equal to the weight of the element and acts in a downward direction at all coolant flow rates. This net force adequately accelerates the control element to satisfy automatic insertion requirements. The BIF system also provides for limiting the velocity of downward motion and for decelerating the fuel assembly at the bottom of its stroke. The logic underlying the selection of the BIF system as the appropriate component of the Reactivity Control System to provide control element insertion integrity is discussed, the components comprising the control elements and the BIF piping network used in the Light Water Breeder Reactor are described, and a discussion of the BIF system operation is presented. Descriptions of full-scale hydraulic testing resulting in qualification of the analytical model, and of useful supplementary information acquired from BIF system hydraulic testing are also included as appendices

  1. Proceedings of transient thermal-hydraulics and coupled vessel and piping system responses 1991

    International Nuclear Information System (INIS)

    This book reports on transient thermal-hydraulics and coupled vessel and piping system responses. Topics covered include: nuclear power plant containment designs; analysis of control rods; gate closure of hydraulic turbines; and shock wave solutions for steam water mixtures in piping systems

  2. Hydraulic power take-off for wave energy systems

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    2001-01-01

    Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces to a...

  3. Sliding Control with Chattering Elimination for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.; Bech, Michael Møller

    2012-01-01

    This paper presents the development of a sliding mode control scheme with chattering elimination, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives. The proposed control scheme requires only common data sheet information, no knowledge on load characteri......This paper presents the development of a sliding mode control scheme with chattering elimination, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives. The proposed control scheme requires only common data sheet information, no knowledge on load...

  4. Project calculation of the steering mechanism hydraulic servo control in motor vehicles

    OpenAIRE

    Zoran ?ukan Majki?

    2013-01-01

    Hydraulic servo controls are designed to facilitate rotation in place without providing increased ppower to steering wheels. In the initial design phase, the dimensions required for control systems are usually obtained through the calculation of their load when wheels rotate in place, where the torque is calculated empirically. The starting point in the project calculation is thus to determine the hydraulic power steering torque torsional resistance which is then used to determine the maximum...

  5. Automated Hydraulic System Design and Power Management in Mobile Applications

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    2007-01-01

    Since the first oil crisis in the beginning of the 1970'ties there have been an increasing focus on energy and energy consumption, in the latter years also driven by the climate changes that are taking place. Hydraulic systems have, however, traditionally been characterised by low system efficiency and therefore there is today a shift towards using electric drives as replacement for hydraulic drives. There are, however, a number of different areas, where hydraulic systems offers possibilities that cannot be matched by electric drives, as the hydraulic systems are typically characterised by a much higher force, torque and power density. One of these areas is the mobile hydraulic area, which generally comprise all type of off-highway machinery, such as construction equipment, agricultural equipment etc. But where hydraulic systems earlier was designed with primary focus on cost, dynamic performance and accuracy, energy consumption is becoming an ever more important design parameter. At the same time as the first oil crisis the first hydraulic load sensing (LS) systems also emerged on the market, which, compared to the other systems of the time, offered significant energy saving potentials and which today are found on most medium and high-end mobile hydraulic machinery. Despite the energy saving potentials that these systems posses, compared to the other open-circuit hydraulic system topologies, LS-system may still be subject to very low system efficiencies if not designed correctly. This is typically the case for systems, with highly varying operating conditions and where more work functions (consumers) are operated simultaneously. The low system efficiency is in this regard not necessarily due to low component efficiencies, which often actually have an efficiency comparable to that of electrical machines if operated in the intended and optimal work area, but due to an inappropriate system layout. Most of the power lost in open circuit hydraulic system systems is in this regard in the transmission part, i.e. hoses and fittings, and the valves used to control the system. A large part of the design task is therefore to design the system so these losses may be minimised. The problem with this is that there exist no methods for how to do this, and the design task may generally be a very complex process, which requires substantial prior knowledge and experience. Having designed a systems no methods do either not exist for ensuring that the system designed is actually suited for a given application. Today a change is furthermore happening, where new and more intelligent components, which are electrically controllable, are emerging and more and more sensors are finding their way into the hydraulic machines. This also means that the door is opened for a new range of possibilities with regard to better system utilisation. The latter is both in regard to new functions and facilities, but also with regard to utilising the system in the most energy optimal way, ensuring that all components are working under the most optimal operating conditions. The above in this way constitute the background for the work that is the basis of this report, which deals with how to design and control open-circuit hydraulic systems with multiple consumers to obtain the largest energy utilization, when also considering other design parameters like installation cost, complexity and system performance. The report begins with a presentation and definition of the problem considered and a review of the work that has been made within the area of hydraulic load sensing (LS) systems throughout the last three decades. Through this, the different stability problems that are often encountered in LS-systems are explained along with how they may be avoided. In addition hereto an overview of the work that has been made in relation to electronic load sensing (ELS) systems is presented along with an overview of the other energy efficient system topologies that exist. Finally the first part is completed with an overview of the main contributions from the present work, also

  6. Robust Control of Industrial Hydraulic Cylinder Drives - with Special Reference to Sliding Mode- & Finite-Time Control

    DEFF Research Database (Denmark)

    Schmidt, Lasse

    series produced systems such as presses etc., dedicated controls are often developed. However, the great majority of the hydraulic systems developed, are produced in limited numbers for specialized applications, and here stand alone economically feasible digital controllers with ease-of-use interfaces...... main properties of sliding mode control but with continuous control inputs. The applicability of second order modes has been investigated, and modifications of such controls have been developed based on homogeneity principles in order to provide more suitable controllers for hydraulic systems, than...

  7. Hydraulic Yaw System for Wind Turbines with New Compact Hydraulic Motor Principle

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Mørk; Hansen, Michael Rygaard; Mouritsen, Ole Ø.

    This paper presents a new hydraulic yaw system for wind turbines. The basic component is a new type of hydraulic motor characterized by an extraordinary high specific displacement yielding high output torque in a compact form. The focus in the paper is the volumetric efficiency of the motor, which...

  8. Use of rule based methods for the control of thermal hydraulic calculations

    International Nuclear Information System (INIS)

    In this paper we describe several possibilities for supporting calculations of thermal hydraulic codes like RELAP or TRAC with knowledge bases systems. Special emphasis is put on the intelligent control of the calculation. At first some basic characteristics of knowledge based systems will be presented. Problems in thermal hydraulic calculations on which the use of AI-methods seem to be helpful are discussed next. Subsequently a concept of a knowledge based system for the support of thermal hydraulic calculation is presented. THEX - a prototype of a knowledge based system for monitoring of time rows from thermal hydraulic calculations will be described next. To demonstrate the capabilities of THEX a coupled system including RELAP and techniques available in RSYST was developed (THEXSYST). In the frame of this system results from a RELAP calculation were examined to identify irregularities like undesired peaks or fluctuations

  9. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System.

    Science.gov (United States)

    Ohnishi, Kengo; Saito, Yukio; Oshima, Toru; Higashihara, Takanori

    2013-01-01

    This paper discusses the developments and control strategies of exoskeleton-type robot systems for the application of an upper limb powered orthosis and an attachable power-assist device for care-givers. Hydraulic Bilateral Servo System, which consist of a computer controlled motor, parallel connected hydraulic actuators, position sensors, and pressure sensors, are installed in the system to derive the joint motion of the exoskeleton arm. The types of hydraulic component structure and the control strategy are discussed in relation to the design philosophy and target joints motions. PMID:24110321

  10. Providing Cavitation-Free Operation of Hydraulic Systems under Passing Load in Hydraulic Actuator

    OpenAIRE

    Liliya Salimovna Musina; Dmitry Vladimirovich Tselischev; Vladimir Aleksandrovich Tselischev; Sergey Yurievich Konstantinov; Ramil Salimovich Musalimov

    2014-01-01

    The problems of braking and positioning of hydraulic actuators are an integral part of output speed control in hydro-pneumatic actuators. This article is focused on a hydraulic braking of driven elements of machines and mechanisms which is carried out by devices known as brake valves (counterbalance, load control, over-centre valves). Brake valves are used to exclude overrunning speed under passing loads when the external load direction coincides with the direction of movement (rotation) of t...

  11. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Advani, S.H.; Lee, T.S. [Lehigh Univ., Bethlehem, PA (United States); Moon, H. [Ohio State Univ., Columbus, OH (United States)

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracture toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.

  12. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Advani, S.H.; Lee, T.S. (Lehigh Univ., Bethlehem, PA (United States)); Moon, H. (Ohio State Univ., Columbus, OH (United States))

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracture toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.

  13. Borehole hydraulic coal mining system analysis

    Science.gov (United States)

    Floyd, E. L.

    1977-01-01

    The borehole hydraulic coal mining system accesses the coal seam through a hole drilled in the overburden. The mining device is lowered through the hole into the coal seam where it fragments the coal with high pressure water jets which pump it to the surface as a slurry by a jet pump located in the center of the mining device. The coal slurry is then injected into a pipeline for transport to the preparation plant. The system was analyzed for performance in the thick, shallow coal seams of Wyoming, and the steeply pitching seams of western Colorado. Considered were all the aspects of the mining operation for a 20-year mine life, producing 2,640,000 tons/yr. Effects on the environment and the cost of restoration, as well as concern for health and safety, were studied. Assumptions for design of the mine, the analytical method, and results of the analysis are detailed.

  14. Shock analysis on hydraulic drive control rod during scram

    International Nuclear Information System (INIS)

    Control rod hydraulic drive mechanism (CRHDM) is a new invention of Institute of Nuclear and New Energy Technology of Tsinghua University. The hydraulic absorber buffers the control rod when it scrams. The control rod fast drop impact experiment was conducted and the key parameters of control rod hydraulic buffering performance were obtained. Based on the test results and according to D'Alembert principle, the maximum inertial impact force on the control rod during the fast drop period was applied as equivalent static load force on the control rod. The deformations and stress distributions on the control rod in this worst case were calculated by using finite element software ABAQUS. Calculation results were compared with the experiment results, and it was verified that nonlinear transient dynamics analysis in this problem can be simplified as static analysis. Damage criterion of the control rod fast drop impact process was also given. And it lays foundation for optimal design of the control rod and hydraulic absorber. (authors)

  15. Fundamental Research on Hydraulic Systems Driven by Alternating Flow

    OpenAIRE

    Ioan-Lucian Marcu; Daniel-Vasile Banyai

    2012-01-01

    This paper presents a new approach to rotary hydraulic systems, and the functional principles of rotary hydraulic systems that can work using alternating flows. Hydraulic transmissions using alternating flows are based on bidirectional displacement of a predefined volume of fluid through the connection pipes between the alternating flow, the pressure energy generator and the motor. The paper also presents some considerations regarding the basic calculation formulas, the design and testing pri...

  16. MONITORING INTENSE THE DEFORMED CONDITION HYDRAULIC ENGINEERING CONSTRUCTIONS MELIORATIVE SYSTEMS ?????????? ??????????-???????????????? ????????? ???????????????? ?????????? ????????????? ??????

    Directory of Open Access Journals (Sweden)

    Volosoukhin V. A.

    2012-04-01

    Full Text Available Results of operational monitoring are given is long maintained GTS of meliorative systems with nondestructive control methods. Possibility of use of devices of nondestructive control is especially noted at inspection of hydraulic engineering constructions, on an example of water carrying out channels that allows operatively, without additional damages, to receive an objective assessment of their technical condition. When using this approach, there is a possibility justification of parameters of defects and damages, which is impossible to establish at visual survey. The program complex for modeling of a technical condition of holding channels for calculation of predicted term of their service is also presented

  17. Hydraulic braking system for loads subjected to impacts and vibrations

    International Nuclear Information System (INIS)

    This invention concerns a hydraulic braking system for loads subjected to impacts and vibrations. These double acting telescopic type hydraulic braking systems possess significant drawbacks linked to possibly important hydraulic leaks due to (a) the use of many dynamic seals in such appliances and (b) the effects of the environment of the system on these seals, particularly when employed in nuclear power stations where the seals reach significant temperatures and are subjected to radiation. Under this invention a remedy is suggested to such drawbacks by integrating means to offset automatically the leaks and the accumulation of hydraulic fluid expansions, as well as facilities to show if such leaks have occurred

  18. Solid Waste Operations Complex (SWOC) Facilities Sprinkler System Hydraulic Calculations

    International Nuclear Information System (INIS)

    The attached calculations demonstrate sprinkler system operational water requirements as determined by hydraulic analysis. Hydraulic calculations for the waste storage buildings of the Central Waste Complex (CWC), T Plant, and Waste Receiving and Packaging (WRAP) facility are based upon flow testing performed by Fire Protection Engineers from the Hanford Fire Marshal's office. The calculations received peer review and approval prior to release. The hydraulic analysis program HASS Computer Program' (under license number 1609051210) is used to perform all analyses contained in this document. Hydraulic calculations demonstrate sprinkler system operability based upon each individual system design and available water supply under the most restrictive conditions

  19. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  20. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    International Nuclear Information System (INIS)

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors

  1. System for Continuous Deaeration of Hydraulic Oil

    Science.gov (United States)

    Anderson, Christopher W.

    2006-01-01

    A system for continuous, rapid deaeration of hydraulic oil has been built to replace a prior system that effected deaeration more slowly in a cyclic pressure/ vacuum process. Such systems are needed because (1) hydraulic oil has an affinity for air, typically containing between 10 and 15 volume percent of air and (2) in the original application for which these systems were built, there is a requirement to keep the proportion of dissolved air below 1 volume percent because a greater proportion can lead to pump cavitation and excessive softness in hydraulic-actuator force-versus-displacement characteristics. In addition to overcoming several deficiencies of the prior deaeration system, the present system removes water from the oil. The system (see figure) includes a pump that continuously circulates oil at a rate of 10 gal/min (38 L/min) between an 80-gal (303-L) airless reservoir and a tank containing a vacuum. When the circulation pump is started, oil is pumped, at a pressure of 120 psi (827 kPa), through a venturi tube below the tank with a connection to a stand-pipe in the tank. This action draws oil out of the tank via the standpipe. At the same time, oil is sprayed into the tank in a fine mist, thereby exposing a large amount of oil to the vacuum. When the oil level in the tank falls below the lower of two level switches, a vacuum pump is started, drawing a hard vacuum on the tank through a trap that collects any oil and water entrained in the airflow. When the oil level rises above higher of the two level switches or when the system is shut down, a solenoid valve between the tank and the vacuum pump is closed to prevent suction of oil into the vacuum pump. Critical requirements that the system is designed to satisfy include the following: 1) The circulation pump must have sufficient volume and pressure to operate the venturi tube and spray nozzles. 2) The venturi tube must be sized to empty the tank (except for the oil retained by the standpipe) and maintain a vacuum against the vacuum pump. 3) The tank must be strong enough to withstand atmospheric pressure against the vacuum inside and must have sufficient volume to enable exposure of a sufficiently large amount of sprayed oil to the vacuum. 4) The spray nozzles must be sized to atomize the oil and to ensure that the rate of flow of sprayed oil does not exceed the rate at which the venturi action can empty the tank. 5) The vacuum pump must produce a hard vacuum against the venturi tube and continue to work when it ingests some oil and water. 6) Fittings must be made vacuum tight (by use of O-rings) to prevent leakage of air into the system. The system is fully automatic, and can be allowed to remain in operation with very little monitoring. It is capable of reducing the air content of the oil from 11 to less than 1 volume percent in about 4 hours and to keep the water content below 100 parts per million.

  2. Sliding Control with Chattering Elimination for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.; Bech, Michael Mller

    2012-01-01

    This paper presents the development of a sliding mode control scheme with chattering elimination, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives. The proposed control scheme requires only common data sheet information, no knowledge on load characteristics, and employs piston- and valve spool positions- and load- and supply pressure feedback. The main target is to overcome problems with linear controllers deteriorating performance due to the inherent...

  3. Numerical simulation on a throttle governing system with hydraulic butterfly valves in a marine environment

    Science.gov (United States)

    Wan, Hui-Xiong; Fang, Jun; Huang, Hui

    2010-12-01

    Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve. It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.

  4. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nrgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.KEYWORDS: water, pump, design, vane, gear.

  5. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid...

  6. Structure Parameters Optimization Analysis of Hydraulic Hammer System

    OpenAIRE

    Guoping Yang; Jian Fang

    2012-01-01

    In order to improve the impact performance, the structure of hydraulic hammer should be optimized. In this paper, the ranges of eight vital structure parameters of piston and reversing valve system of hydraulic hammer were selected firstly; and then found the best value of different parameters under experiments with the method of computer optimization and the parametric analysis method provided by ADAMS software. These methods worked and the best design values of parameters of hydraulic hamme...

  7. Analysis of and H? Controller Design For An Electro-Hydraulic Servo Pressure Regulator

    DEFF Research Database (Denmark)

    Stubkier, Sren; Pedersen, Henrik C.

    2011-01-01

    Currently mobile hydraulics is in a transition phase, where electronic sensors and digital signal processors are becoming standard on a high number of machines, hereby replacing hydraulic pilot lines and offering new possibilities with regard to both control and feasibility. As most open-circuit pumps are still hydraulically controlled, there is however still a need for being able to generate a hydraulic pilot pressure. The focus of the current paper is on the analysis and controller design of an electrohydraulic servo pressure regulator, which generates a hydraulic LS-pressure for a variable displacement pump based on an electrical reference. The paper first presents the considered system and an experimentally verified model of this. A linearized model and a stability analysis is then presented, based on which an H?control strategy is selected. A nominal performance and a robustly stable controller are designed and tested in simulation and experimentally. Finally both controllers are compared to the reference system, finding that similar performance may be obtained, but the used FPGA limits the performance.

  8. Hydraulically actuated hexapod robots design, implementation and control

    CERN Document Server

    Nonami, Kenzo; Irawan, Addie; Daud, Mohd Razali

    2014-01-01

    Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likel...

  9. A conceptual model of check dam hydraulics for gully control

    Directory of Open Access Journals (Sweden)

    C. Castillo

    2013-09-01

    Full Text Available There is little information in scientific literature regarding the modifications induced by check dam systems in flow regimes in restored gully reaches, despite it being a crucial issue for the design of conservation measures. Here, we develop a conceptual model to classify flow regimes in straight rectangular channels for initial and dam-filling conditions as well as a method of estimating efficiency in order to provide guidelines for optimal design. The model integrates several previous mathematical approaches for assessing the main processes involved (hydraulic jump HJ, impact flow, gradually varied flows. Its performance was compared with the simulations obtained from IBER, a bi-dimensional hydrodynamic model. The impact of check dam spacing (defined by the geometric factor of influence c on efficiency was explored. Eleven main classifications of flow regimes were identified depending on the element and level of influence. The model produced similar results when compared with IBER, but led to higher estimations of HJ and impact lengths. Total influence guaranteed maximum efficiency and HJ control defining the location of the optimal c. Geometric total influence (c = 1 was a valid criterion for the different stages of the structures in a wide range of situations provided that hydraulic roughness conditions remained high within the gully, e.g. through revegetation. Our total influence criterion involved shorter spacing than that habitually recommended in technical manuals for restoration, but was in line with those values found in spontaneous and stable step-pools systems, which might serve as a reference for man-made interventions.

  10. Acceptance Test Report for 241-SY Pump Cradle Hydraulic System

    International Nuclear Information System (INIS)

    The purpose of this ATP is to verify that hydraulic system/cylinder procured to replace the cable/winch system on the 101-SY Mitigation Pump cradle assembly fulfills its functional requirements for raising and lowering the cradle assembly between 70 and 90 degrees, both with and without pump. A system design review was performed on the 101-SY Cradle Hydraulic System by the vendor before shipping (See WHC-SD-WM-DRR-045, 241-SY-101 Cradle Hydraulic System Design Review). The scope of this plan focuses on verification of the systems ability to rotate the cradle assembly and any load through the required range of motion

  11. Optimisation of Working Areas in Discrete Hydraulic Power Take off-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Hansen, Rico Hjerm; Pedersen, Henrik C.

    Fluid power is the leading technology in Power Take Off(PTO) systems in Wave Energy Converters(WECs), due to the capability of generating high force at low velocity. However, as hydraulic force controlling system may suffer from large energy losses the efficiency of the hydraulic PTO systems may...... of working areas is proposed. This area encoding strategy is investigated and compared to two standard binary encodings, finding that the optimised area coding yields significantly higher energy output....

  12. Turbogas control unit using a hydraulic interface; Control de una unidad turbogas usando una interfase hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Palacios, Ignacio Ramon; Castelo Cuevas, Luis [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: irrp@iie.org.mx; lcastelo@iie.org.mx; Escarcega Navarrete, Luis [Servi-Control Monterrey S.A. de C.V., Monterrey, Nuevo Leon (Mexico)]. E-mail: lescarcega@servicontrol.com

    2010-11-15

    This paper presents the design and implementation of the control system of the Turbo Generator Unit (TGU) GE 5001, placed in Laguna Chavez power generation facility in Gomez Palacio, Dgo., Mexico. This TGU had been operating with an old control system, back to the 70's. The positioning of the control valves was carried out using a complex electro-hydraulic system. For the modernization of the control system, we use latest PLC technology and a current to pressure converter to communicate the PLC with the hydraulic control valves. The new control system helped us to obtain a best response at the start and generation phases, as well as an increase in the availability of the unit. We show the old and the new control architectures besides plot results obtained at the different operation points. [Spanish] En este articulo se presenta la implementacion y diseno del sistema de control de una Unidad Turbogas (UTG) GE-5001 de la Central Turbogas Laguna Chavez de CFE ubicada en Gomez Palacio, Durango, la cual originalmente era controlada mediante un sistema de control con tecnologia de los anos 70's. El posicionamiento de las valvulas de control se realizaba mediante un sistema electro-hidraulico complejo. Para la modernizacion del sistema de control a uno con tecnologia de punta fue necesario utilizar una interfase hidraulica por medio de un convertidor de corriente/presion (I/P) para el posicionamiento de las valvulas originales. Con la modernizacion se mejoro la respuesta del control asi como el incremento de la disponibilidad de la unidad. Se presentan la arquitectura anterior y actual de sistema de control asi como graficas de los resultados obtenidos en diferentes puntos de operacion de la UTG.

  13. Boosted PWM open loop control of hydraulic proportional valves

    International Nuclear Information System (INIS)

    This paper presents an innovative open loop control technique for direct single stage hydraulic proportional valves whose response rate is significantly higher than that obtained by standard open loop control techniques, even comparable to more costly commercial closed loop systems. Different from standard open loop techniques, which provide the coil with a constant current proportional to the target position, the control strategy proposed in this paper employs the peak and hold (P and H) technique, widely used in Diesel engine modern supply systems, to boost the duty cycle value of the pulse width modulation (PWM) signal for a short time, namely during the spool displacement, while maintaining a lower duty cycle for holding the spool in the required opening position. The developed 'boosted PWM' technique only requires a low cost microcontroller, such as a peripheral interface controller (PIC) equipped with a metal oxide semiconductor (MOS) power driver. The PWM parameters are calibrated as a function of the spool displacement so as to maximize the response rate without introducing overshoots: the collected data are stored in the PIC. Different valve opening procedures with step response have been compared to demonstrate the merits of the proposed boosted PWM technique. No overshoots have been registered. Moreover, the proposed method is characterized by a significantly higher response rate with respect to a standard open loop control, which approximately has the same cost. Similar experimental tests show that the proposed boosted PWM technique has a response rate even higher than that provided by the more costly commercial closed loop system mounted on the valve, and it produces no overshoots

  14. Boosted PWM open loop control of hydraulic proportional valves

    Energy Technology Data Exchange (ETDEWEB)

    Amirante, R.; Catalano, L.A. [Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, Via Re David 200, 70125 Bari (Italy); Innone, A. [Universita degli Studi di Foggia, via Napoli, 25 Foggia (Italy)

    2008-08-15

    This paper presents an innovative open loop control technique for direct single stage hydraulic proportional valves whose response rate is significantly higher than that obtained by standard open loop control techniques, even comparable to more costly commercial closed loop systems. Different from standard open loop techniques, which provide the coil with a constant current proportional to the target position, the control strategy proposed in this paper employs the peak and hold (P and H) technique, widely used in Diesel engine modern supply systems, to boost the duty cycle value of the pulse width modulation (PWM) signal for a short time, namely during the spool displacement, while maintaining a lower duty cycle for holding the spool in the required opening position. The developed 'boosted PWM' technique only requires a low cost microcontroller, such as a peripheral interface controller (PIC) equipped with a metal oxide semiconductor (MOS) power driver. The PWM parameters are calibrated as a function of the spool displacement so as to maximize the response rate without introducing overshoots: the collected data are stored in the PIC. Different valve opening procedures with step response have been compared to demonstrate the merits of the proposed boosted PWM technique. No overshoots have been registered. Moreover, the proposed method is characterized by a significantly higher response rate with respect to a standard open loop control, which approximately has the same cost. Similar experimental tests show that the proposed boosted PWM technique has a response rate even higher than that provided by the more costly commercial closed loop system mounted on the valve, and it produces no overshoots. (author)

  15. New requirements for hydraulic control fluids and discharge to sea gives unexpected operational problems

    Energy Technology Data Exchange (ETDEWEB)

    Soerum, Anders

    2006-03-15

    Objective: Replacing existing hydraulic control fluids at all Statoils Subsea Installations to meet the new SFT requirements 1) What makes the change of fluid so sensitive regarding system-operability and long term reliability. Statoil's subsea hydraulic control fluids are basicly water based fluids with approximately 90% water/glycol content, the remaining 10% are additives to contribute to lubricity, general properties and long term stability. Having close to 300 different materials making interactions between each other and the properties of the hydraulic fluid, make any reactions difficult to predict. (chemical/ and galvanic reactions). 2) The consequences of failing in replacing the existing hydraulic fluids could be a full stop in part of Statoils subsea production. Some facts about the hydraulic fluids are presented. The study concludes that the investments of millions NOK and the time and focus from specialists and engineers from the major suppliers (and the oil-industri), have not only contributed to an environmentally better product, but also to a much better understanding of the complexity in the design of more acceptable hydraulic control-fluids. (Author)

  16. Method and apparatus for controlling hydraulic vehicle transmission

    Energy Technology Data Exchange (ETDEWEB)

    Stark, R.A.

    1987-08-04

    This patent describes an improved hydraulic control means for a vehicle transmission including a speed clutch and direction clutches, a hydraulic fluid reservoir, a hydraulic pump connected to the reservoir, a pressure regulator connected to the pump, and manually operable selector valve means connected to the regulator and with the direction clutches for directing hydraulic fluid to the speed clutch and direction clutches in accordance with the direction and speed desired for the vehicle. The improvement comprises: sequence valve means connected to the selector valve means and connected with the clutches, the sequence valve means including a shuttle valve receiving hydraulic fluid from the selector valve means and a spool valve connected with the shuttle valve with the reservoir. With the speed clutch, the shuttle valve connects between the spool valve and direction clutches. The spool valve dumps pressure fluid from the speed clutch into the reservoir for inactivating the speed clutch when in a bleed position and supplies pressure fluid to the speed clutch for actuating the speed clutch when moved to a pressure position; and, the spool valve is moved into the pressure position by pressure fluid in the shuttle valve after one direction clutch is activated and biased into the bleed position by a resilient member.

  17. 1st International Conference on Hydraulic Design in Water Resources Engineering : Channels and Channel Control Structures

    CERN Document Server

    1984-01-01

    The development of water resources has proceeded at an amazing speed around the world in the last few decades. The hydraulic engineer has played his part: in constructing much larger artificial channels than ever before, larger and more sophisticated control structures, and systems of irrigation, drainage and water supply channels in which the flow by its nature is complex and unsteady requiring computer-based techniques at both the design and operation stage. It seemed appropriate to look briefly at some of the developments in hydraulic design resulting from this situation. Hence the idea of the Conference was formed. The Proceedings of the Conference show that hydraulic engineers have been able to acquire a very substantial base of design capability from the experience of the period referred to. The most outstanding development to have occurred is in the combination of physical and mathematical modelling, which in hydraulic engineering has followed a parallel path to that in other branches of engineering sc...

  18. Hydraulic control of an automatic transmission

    Energy Technology Data Exchange (ETDEWEB)

    Oberhausen, A.

    1986-04-01

    Since the energy crysis took place it becomes very important to investigate the whole car concept in respect of fuel economy. As one of the steps Ford Transmission Engineering Cologne developed a new automatic 4-speed lock-up overdrive transmission which is called A4LD. The torque converter will be locked in 3rd and 4th gear. The 4th gear is designed as an overdrive gear with a ratio of 0.75:1 which reduces the engine speed by 25%. This report describes the main control items and the controlling of each gear.

  19. Trends in Design of Water Hydraulics : Motion Control and Open-Ended Solutions

    DEFF Research Database (Denmark)

    Conrad, Finn Technical University of Denmark,

    2005-01-01

    The paper presents and discusses a R&D-view on trends in development and best practise in design of both low-pressure and high-pressure tap water hydraulic components and systems for motion control as well as open-ended solutions various industrial applications. The focus is on the advantages using ordinary tap water and the range of application areas are illustrated with examples, in particular within the food processing industry, humidification operations, water mist systems for fire fighting, high water pressure cleaners, water moisturising systems for wood processing, lumber drying process and mobile machines and equipment that operate in environmentally sensitive surroundings. Todays progress in water hydraulics includes electro-water hydraulic proportional valves and servovalves for design of motion control solutions for machines and robots. The remarkable property is that the components operate with pure water from the tap without additives of any kind. Hence water hydraulics takes the benefit of purewater as fluid being environmentally friendly, easy to clean sanitary design, non-toxic, non-flammable, inexpensive, readily available and easily disposable. The low-pressure tap water hydraulic systems cover up to around 50 bar, and 2-4 kW having a strong potential to compete with pneumatic and electrical solutions in many applications. The high-pressure water hydraulic systems cover typically up to 160 bar pressure from pump and to motors and actuators 140 bar. Recently, dedicated pumps and accessories running with sea-water as fluid are available. A unique solution is to use reverse osmosis to generate drinking water from sea-water, and furthermore for several off-shore applications. Furthermore, tap water hydraulic components of the Nessie family and examples of measured performance characteristics are presented and the trends in industrial applications and need for future are discussed.

  20. Output Feedback Control of Electro-Hydraulic Cylinder Drives using the Twisting Algorithm

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    straight forward extension of the simplest first order sliding controller, that is, a relay controller. Such a controller may be implemented without the knowledge of system time constants etc., as opposed to the surface based first order sliding controllers which has been presented in numerous......This paper discusses the utilization of the so-called twisting algorithm when applied in output feedback position control schemes for electro-hydraulic cylinder drives. The twisting controller was the first second order sliding controller ever introduced, and can structure-wise be considered a...... feedback controller may be successfully applied to hydraulic valve driven cylinder drives, with performance being on the level with a conventional surface based first order sliding mode controller....

  1. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.; Rush, A.

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...

  2. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn

    2002-01-01

    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary performance tests on a 10 ton vehicle.

  3. Is the Faroe Bank Channel a hydraulically-controlled overflow?

    Science.gov (United States)

    Girton, J. B.; Pratt, L. J.; Helfrich, K.; Sutherland, D.; Price, J. F.

    2004-12-01

    The overflow of dense water from the Nordic Seas through the Faroe Bank Channel (FBC) has attributes suggesting hydraulic control, including an asymmetry across the sill reminiscent of flow over a dam. However, because of the influence of the earth's rotation, as well as the presence of continuous gradients in velocity and density, the standard approach of looking for a Froude number (v/? {g'd}) of unity to diagnose criticality is not adequate. Of primary importance is the nature and speed of information-carrying waves---the flow is subcritical if any of these waves can travel upstream, supercritical if no waves can travel upstream, and critical if the fastest waves are arrested by the flow. We present a comparison of several different techniques for assessing the hydraulic criticality of overflows applied to data from a set of velocity and density sections across the FBC. These include: 1) modifications to the (non-rotating) local Froude number to account for shear and stratification in the flow; 2) rotating hydraulic solutions using a constant potential vorticity layer in a channel of parabolic cross-section; and 3) direct computation of shallow water wave speeds from the observed overflow structure, using a newly-developed generalized hydraulic condition and multiple-streamtube approach. Two of these three methods give similar answers, suggesting the location of control to be 60-100 km downstream of the sill and not at the sill itself. We discuss the implications of these results for hydraulic predictions of overflow transport and variability, as well as reasons for the failure of the parabolic model.

  4. Geosiphon(TM) Ground Water Remediation System Hydraulics

    International Nuclear Information System (INIS)

    Two, pilot-scale, GeoSiphon(TM) systems have been installed and tested for the treatment of contaminated ground water at the Savannah River Site (SRS). These systems consisted of an in situ treatment cell located in an area of higher hydraulic head and a siphon connecting the cell to a surface stream at a lower hydraulic head. The siphon induced contaminated ground water flow through a permeable treatment media in the cells and transported the treated water to the discharge points in a surface stream. The hydraulic head available to drive the systems is divided between the head losses associated with the treatment cell and siphon. Six different treatment cell configurations and seven different siphon configurations have been hydraulically evaluated in association with both pilot-scale systems. The results provide valuable guidelines for the design of GeoSiphon systems

  5. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Science.gov (United States)

    2010-10-01

    ...2010-10-01 2010-10-01 false Hydraulic or pneumatic power and control-materials...Materials and Pressure Design 128.240 Hydraulic or pneumatic power and controlmaterials...flanges, and standard valves) for hydraulic or pneumatic power and control...

  6. Design of a Hydraulic Motor System Driven by Compressed Air

    Directory of Open Access Journals (Sweden)

    Jyun-Jhe Yu

    2013-06-01

    Full Text Available This paper presents the design of a highly efficient pneumatic motor system. The air engine is currently the most generally used device to convert potential energy of compressed air into mechanical energy. However, the efficiency of the air engines is too low to provide sufficient operating range for the vehicle. In this study, the energy contained in compressed air/pressurized hydraulic oil is transformed by a hydraulic motor to mechanical energy to enhance the efficiency of using air power. To evaluate the theoretical efficiency, the principle of balance of energy is applied. The theoretical efficiency of converting air into hydraulic energy is found to be a function of pressure; thus, the maximum converting efficiency can be determined. To confirm the theoretical evaluation, a prototype of the pneumatic hydraulic system is built. The experiment verifies that the theoretical evaluation of the system efficiency is reasonable, and that the layout of the system is determined by the results of theoretical evaluation.

  7. Hydraulic Modeling of a Mixed Water Level Control Hydromechanical Gate

    OpenAIRE

    Cassan, Ludovic; Baume, Jean-Pierre; Belaud, Gilles; Litrico, Xavier; Malaterre, Pierre-Olivier; Ribot-Bruno, Jos

    2011-01-01

    This article describes the hydraulic behavior of a mixed water level control hydromechanical gate present in several irrigation canals. The automatic gate is termed "mixed" because it can hold either the upstream water level or the downstream water level constant according to the flow conditions. Such a complex behavior is obtained through a series of side tanks linked by orifices and weirs. No energy supply is needed in this regulation process. The mixed flow gate is analyzed and a mathemati...

  8. Hydraulically supported absorber balls shutdown system for inherently safe LMFBR's

    International Nuclear Information System (INIS)

    A diverse, inherently-actuated control system would be very valuable for Advanced LMFBR's since its use may preclude the consideration of a ''hypothetical core disruptive accident'' as a design basis. An Inherent Shutdown System (ISS) which uses a number of subassemblies, each containing a column of hydraulically supported tantalum balls, is being studied. This system appears to be capable of successfully protecting the public (and the reactor) from low-probability high-consequence events, such as a loss-of-flow or transient-over-power incident with failure of the normal control system (or systems) to scram. A number of columns of small (about 1/4 in. OD) tantalum balls are held above the active core region of a reactor by the reactor coolant flow. These columns automatically fall into the core and shut the reactor down if the coolant flow of the reactor is interrupted by a loss-of-flow event. A thermally-actuated valve within each ISS subassembly enables this system to shut down the reactor during a transient-over-power event. This control system is extremely diverse since it can operate in a severely distorted core and is independent of top shield rotation. Also, it is basically very simple and should be extremely reliable after it is developed

  9. A Frequency Response Approach to Sliding Control Design for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Johansen, Per; Andersen, Torben Ole

    Sliding modes applied in control structures may generally provide for perfect control performance and robustness toward uncertain bounded parameters and disturbances, in the ideal case with infinite actuator bandwidth and switching frequency. However, in the context of physical systems, such...... application of so-called boundary layers are commonly applied, guaranteeing sliding precision in some well-defined vicinity of the control target. Commonly the control target, or sliding manifold, is designed as some desired closed loop dynamics of the controlled plant, utilizing multiple states as feedback....... However, when considering hydraulic cylinder drives, such full state feedback may not be available, and alternative approaches to conventional methods may be considered. This issue is addressed in this paper in regard to tracking control design for valve controlled hydraulic cylinder drives, and a design...

  10. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of the regenerative system.

  11. Study on step-down dynamic process of hydraulic cylinder for control rod hydraulic drive mechanism

    International Nuclear Information System (INIS)

    Hydraulic cylinder (HC) is the key component of the control rod hydraulic drive mechanism(CRHDM). According to the characteristics of HC step-down process,the pressure transients in the HC during step-down process can be divided into two processes, that is, the pressure transients before step-down motion and the pressure transients during step-down motion. Theoretical dynamic pressure models of these two processes were built. And among them,the theoretical dynamic pressure model during HC step-down motion can be combined with the HC step-down kinematics model to establish a complete HC step-down dynamic model. The comparison between the theoretical results and the CRHDM single cylinder experiment shows that,under the experimental loadings, the theoretical dynamic pressure transients during the HC step-down process and the HC step-down displacements agree with the experimental results. The research results have laid the theoretical foundation for the acquisition of the key factors affecting the pressure transients of the HC during step-down process and the step motion time of the CRHDM. (authors)

  12. Modeling and control of a hydraulically actuated flexible-prismatic link robot

    International Nuclear Information System (INIS)

    Most of the research related to flexible link manipulators to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long reach systems. This manuscript describes a new hydraulically actuated, long reach manipulator with a flexible prismatic link at Oak Ridge National Laboratory (ORNL). Focus is directed towards both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies

  13. Contaminant monitoring of hydraulic systems. The need for reliable data

    Energy Technology Data Exchange (ETDEWEB)

    Day, M.J. [Pall Europe Ltd., Portsmouth (United Kingdom)] Rinkinen, J. [Tampere University of Technology, Tampere (Finland)

    1997-12-31

    The need for both reliable operation of hydraulic and lubrication systems and long component lives has focused users to the benefits of controlling the contamination in the hydraulic fluid. Maximum operating (target) levels are being implemented as part of a condition based maintenance regime. If these are exceeded, maintenance effort is directed to correcting the rise in consummation level, and so make optimum use of resources as maintenance effort is only affected when it is necessary to do so. Fundamental to ibis aspect of condition based monitoring is the provision of accurate and reliable data in the shortest possible time. This way, corrective actions can be implemented immediately so minimising the damage to components. On-line monitoring devices are a way of achieving this and are seeing increased use, but some are affected by the condition of the fluid. Hence, there is a potential for giving incorrect data which will waste time and effort by initiating unnecessary corrective actions. A more disturbing aspect is the effect on the user of continual errors. The most likely effect would be a loss of confidence in the technique or even complete rejection of it and hence the potential benefits will be lost. This presentation explains how contaminant monitoring techniques are applied to ensure that the potential benefits of operating with clean fluids is realised. It examines the sources of error and shows how the user can interrogate the data and satisfy himself of its authenticity. (orig.) 14 refs.

  14. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...... turbine structure. Results presented shows fatigue reductions of up to 40% and ultimate load reduction of up to 19%. The ultimate load reduction increases even more when the over load protection system in the hydraulic soft yaw system is introduced and results show how the exact extreme load cut off...... operates. Further it is analyzed how the soft yaw system influence the power production of the turbine. It is shown that the influence is minimal, but at larger yaw errors the effect is possitive. Due to the implemeted functions in the hydraulic soft yaw system such as even load distribution on the pinions...

  15. State of Art of the CAREM-25 Hydraulic Control Rod Drives Feasibility Analysis

    International Nuclear Information System (INIS)

    The proposed design adopted for the control rod drives for the CAREM reactor is based on a hydraulic system.As any innovative device, the design process requires to obtain experimental evidence to identify the most important control parameters and to set their relationship with other design parameters, in order to guarantee its feasibility as a previous step to the design qualification tests at the working conditions at the reactor.This paper features a global evaluation of the analysis performed and experimental results obtained in a low pressure loop, design improvements, limiting phenomena identified and corrective actions analyzed or proposed.The evaluation is based on a repetitivity, sensitivity and scalability study of the control parameters and test conditions, as well as the dynamic response between rod drive and the hydraulic system and features related with the mechanical design.Obtained results show that present system has an adequate response compatible with functional and manufacturing requirements

  16. Robust Non-Chattering Observer Based Sliding Control Concept for Electro-Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    This paper presents an observer-based sliding mode control concept with chattering reduction, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD's). The proposed control concept requires only common data sheet information and no knowledge on load...... extensive knowledge on system parameters nor advanced control theory. In order to accomplish this task, an integral sliding mode controller designed for the control derivative employing state observation is proposed, based on a generalized reduced order model structure of a VCD with unmatched valve ow- and...

  17. A comparison of hydraulic, pneumatic, and electro-mechanical actuators for general aviation flight controls

    Science.gov (United States)

    Roskam, J.; Rice, M.; Eysink, H.

    1979-01-01

    Mathematical models for electromechanical (EM), pneumatic and hydraulic actuations are discussed. It is shown that EM and hydraulic actuators provide better and faster time responses than pneumatic actuators but EM actuators utilizing the recently developed samarium-cobalt technology have significant advantages in terms of size, weight and power requirements. In terms of ease and flexibility of installation EM actuators apparently have several advantages over hydraulic actuators, and cost is a primary reason for the popularity of EM actuation for secondary control function since no additional systems need to be added to the aircraft. While new rare earth magnets are currently in developmental stage, costs are relatively high; but continued research should bring prices down.

  18. Hydraulic external pre-isolator system for LIGO

    International Nuclear Information System (INIS)

    The hydraulic external pre-isolator (HEPI) is the first six degrees of freedom active seismic isolation system implemented at the Laser Interferometer Gravitational Wave Observatory (LIGO). Implementation was first completed at the LIGO Livingston Observatory (LLO) prior to LIGO's fifth science run7, successfully cutting down the disturbance seen by LLO's suspended optics in the two most prominent seismic disturbance bands, the microseism (0.1–0.3 Hz) and the anthropogenic (1–3 Hz) bands, by a factor of a few to tens. The improvement in seismic isolation contributed directly to LLO's much improved duty cycle of 66.7% and LIGO's triple coincident duty cycle of 53%. We report the design, control scheme, and isolation performance of HEPI at LLO in this paper. Aided by this success, funding for incorporating HEPI into the LIGO Hanford Observatory was approved and installation is currently underway. (paper)

  19. A new approach for failure prediction in mobile hydraulic systems

    Energy Technology Data Exchange (ETDEWEB)

    Oppermann, M.

    2007-07-01

    In this work a new approach to set up a condition monitoring (CM) system for mobile hydraulic systems is investigated. This approach focuses on an early detection and allocation of impending failures without modelling the hydraulic system and using a minimum amount on additional sensor information. In a first step critical components of mobile hydraulic systems are specified that may be worthy for diagnostics. Based on a demonstrator machine, a wheel loader, critical sub modules are brought out and possible applicable CM-methods are specified and selected. Two basic methods - the thermodynamic and the structure borne noise method - are investigated and combined. The new CM-approach is experimentally investigated on two different laboratory test rigs by implementing a large number of different artificial faults. The laboratory tests are also used to determine the minimum requirements on system information. Finally the proposed methods are implemented on a mobile off-road vehicle and tested under different operational conditions in-field. (orig.)

  20. Primary system thermal hydraulics of future FBRS

    International Nuclear Information System (INIS)

    As a follow-up to PFBR (Indian Prototype Fast Breeder Reactor), many FBRs of 500 MWe capacity are planned. The focus of these future FBRs is improved economy and enhanced safety. They are envisaged to have a twin-unit concept. Design and construction experiences gained from PFBR project have motivated the centre to achieve an optimized design for future FBRs with significant design changes for many critical components. Some of the design changes include, (i) provision of four primary pipes per primary sodium pump, (ii) inner vessel with single torus lower part, (iii) Roof Slab (RS) with a dome shape supported on Reactor Vault (RV), (iv) machined thick plate rotating plugs, (v) reduced main vessel diameter with narrow-gap cooling baffles and (vi) safety vessel integrated with RV. This paper covers thermal hydraulic design validation of the chosen options with respect to hot and cold pool thermal hydraulics, flow requirement for main vessel cooling, inner vessel temperature distribution, safety analysis of primary pipe rupture event, cold pool transient thermal loads and thermal management of top shield and reactor vault. (author)

  1. Kinetic resistance of hydraulic cylinder for control rod hydraulic drive mechanism in step-down motion process

    International Nuclear Information System (INIS)

    Hydraulic cylinder is the main component of the control rod hydraulic drive mechanism (CRHDM). Step-up and step-down motions are the functions of hydraulic cylinder. The kinetic resistance of hydraulic cylinder during step-down motion is the key parameter in the hydraulic cylinder structure design and step-down analysis. Theoretical analysis of hydraulic cylinder step-down process was carried out to establish the dynamic model of the process. The step-down velocity and acceleration were obtained by combining the step-down dynamic model and the results of the CRHDM single cylinder experiment, which lead to two sets of step-down kinetic resistance models. Comparison of these two models and their calculation results shows that, under the experimental conditions, the displacement curves inferred from these models agree with the experimental data. And in the model based on step-down acceleration the kinetic resistance is the function of inner cylinder's velocity and the hydraulic pressure inside the cylinder, the relationship of the coefficients in the model to the loadings is easy to obtain, so the kinetic resistance model based on step-down acceleration is more applicable to engineering use and extension. (authors)

  2. A Frequency Response Approach to Sliding Control Design for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Johansen, Per

    2014-01-01

    Sliding modes applied in control structures may generally provide for perfect control performance and robustness toward uncertain bounded parameters and disturbances, in the ideal case with infinite actuator bandwidth and switching frequency. However, in the context of physical systems, such performance cannot be realized due to finite actuator bandwidths and switching frequencies, which, in the case of direct application of sliding control terms, may lead to control chattering and high frequency oscillations in the system states. In order to compensate for this undesirable effect, the application of so-called boundary layers are commonly applied, guaranteeing sliding precision in some well-defined vicinity of the control target. Commonly the control target, or sliding manifold, is designed as some desired closed loop dynamics of the controlled plant, utilizing multiple states as feedback. However, when considering hydraulic cylinder drives, such full state feedback may not be available, and alternative approaches to conventional methods may be considered. This issue is addressed in this paper in regard to tracking control design for valve controlled hydraulic cylinder drives, and a design method taking its offset in linear analysis is proposed. The sliding manifold is designed based on a PI controller design, and the resulting controller provides for robustness outside a predefined boundary layer, and performance equivalent to the PI controller within the boundary layer. Results demonstrate improved tracking accuracy of the proposed controller compared the PI controller, and that performance of these controllers is equivalent within the boundary layer.

  3. Analysis on step action of hydraulic control rod driving

    International Nuclear Information System (INIS)

    The step action of the hydraulic control rod driving (HCRD) has been achieved by experiments. The author reveals the action mechanism of the HCRD, gives detail analysis of the relationship among its dynamic feature, the control rod and combined valve performance parameters, and the combined valve operation. The results indicate that the step process of the control rod is affected by output flow pulsation of the combined valve, pressure wave, and heavily damped pressure oscillation that is produced by the step cylinder movement. The performance parameters of the step cylinder limit the flow range in its stationary balanced state and also limit the capability of absorbing flow pulsation and pressure wave in its step process. The performance parameters of the combined valve decide the quantity values of stationary balance, delay balance, flowing pulsation and pressure wave. The relation of both parameters determines the step states of the control rod

  4. Study on the Energy-Regeneration-based Velocity Control of the Hydraulic-Hybrid Vehicle

    OpenAIRE

    SONG Yunpu

    2012-01-01

    This paper simplifies the energy regenerationbased vehicle velocity system of the hydraulichybrid businto a process in which the extension rod of the hydraulic cylinder drives the secondary-element variable delivery pump/motor to change its displacement. This process enables braking of the vehicle and also allows recovery of energy. The stability, energy efficiency and other characteristics of the system are studied based on analysis of mathematical models of the vehicle velocity control. The...

  5. ATHENA: a thermal hydraulic simulation code for space reactor system design and analysis

    International Nuclear Information System (INIS)

    This paper describes the general capabilities available in the Advanced Thermal-Hydraulic Energy Network Analyzer (ATHENA) code and emphasizes those features particularly applicable to space reactor system analysis. This code has been developed as a part of the Department of Energy (DOE) Fusion Safety program for use in safety analysis of magnetic fusion systems. ATHENA is designed for transient thermal hydraulic analysis of systems which contain one or several fluid circuits with thermal interactions. The fluid systems can be either one or two phase and can contain a variety of component types such as pumps, valves, heat pipes, separators, and control systems. The ATHENA code has wide applicability for transient thermal hydraulic analysis and is currently being used for transient system simulation of candidate space reactor concepts

  6. Thermal hydraulic instrumentation system of the HTR-10

    International Nuclear Information System (INIS)

    The 10 MW high temperature gas-cooled reactor--test module (HTR-10) has many different characteristics compared with the pressure water reactor (PWR), such as special fuel elements, core construction, helium coolant and so on. Thus, the design of thermal hydraulic instrumentation system of the HTR-10 is also different from that of a PWR. This paper describes the design criteria and system integrating method of thermal hydraulic instrumentation systems in details. The main thermal instrumentation and devices specially developed for the HTR-10 are also introduced

  7. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic or pneumatic power and control-materials and... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component (such as pipe runs, fittings, flanges, and standard valves) for hydraulic or pneumatic power and...

  8. Hydraulic characterization of a small groundwater flow system in fractured monzonitic gneiss

    International Nuclear Information System (INIS)

    The hydraulic characteristics of a small groundwater flow system active in a 200-m by 150-m by 50-m deep block of fractured monzonitic gneiss located at Chalk River, Ontario have been determined from surface and bore-hole investigations. Surface investigations including air photo lineament analysis, ground and airborne geophysics and fracture mapping were used to define the local and regional fracture system, locate the study site and direct the exploratory drilling program. Subsurface investigations were completed in 17 boreholes and included fracture logging, systematic straddle-packer injection testing, hydraulic interference testing and long-term hydraulic head monitoring. The interference tests and monitoring were conducted in 90 packer-isolated test intervals created by installation of multiple-packer casings in each borehole. Hydraulic interference tests provided detailed information on the equivalent single-fracture aperture and storativity of four major (? 50-m extent) fracture zones and the vertical hydraulic diffusivity of the rock mass of the study site. Fracture logs and injection test data were combined to generate a tensoral representation of hydraulic conductivity for each test interval. The results of the detailed investigations are presented and interpreted to provide a complete three-dimensional description of the groundwater flow system. A gravity-controlled flow system occurs at the Chalk River study site. Groundwater flow in the rock is primarily vertical to a low-hydraulic head, fracture zone at 33 to 50 m depth with a horizontal component of flow determined by surface topography. An impermeable diabase dyke and three additional high-permeability fracture zones are important hydrogeologic features influencing flow at the study site. The results of the investigations also show that characterization of the geometric and hydraulic properties of large structural discontinuities is essential in understanding the flow of fluids in fractured rocks

  9. Optimal Control of Nonlinear Hydraulic Networks in the Presence of Disturbance

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Leth, John-Josef; Kallese, Carsten; Wisniewski, Rafal

    2014-01-01

    Water leakage is an important component of water loss. Many methods have emerged from urban water supply systems for leakage control, but it still remains a challenge in many countries. Pressure management is an effective way to reduce the leakage in a system. It can also reduce the power consumption. To this end, an optimal control strategy is proposed in this paper. In the water supply system model, the hydraulic resistance of the valve is estimated by the real data from a water supply system ...

  10. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Lucas

    2004-10-01

    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.

  11. Modeling and Simulation of Power Coupling System in Hydraulic Hybrid City Bus

    OpenAIRE

    Xunming Li; Jinyu Qu; Wei Wei; Xiangyu Tian

    2014-01-01

    In order to solve the coupling problem of power in Hydraulic Hybrid City Bus (HHB), a hydraulic hybrid power coupling system based on planetary gear transmission principle is proposed in this paper. The system consists of diesel engine, power coupler, hydraulic pump/motor, etc. The realizable operating modes of power coupling system are analyzed in this paper. Under coordination of clutches, the engine driven mode, hydraulic driven mode, hybrid driven mode, hydraulic en...

  12. Neutron kinetics for system thermal-hydraulic codes

    International Nuclear Information System (INIS)

    For many light water reactor (LWR) calculations, it is necessary to use a multidimensional neutron kinetics model coupled to a thermal-hydraulic model in order to obtain satisfactory results. This need coincides with the fact that in recent years there has been considerable research and development in this field with modelers taking advantage of the increase in computing power that has become available. This progress has now led to coupling the core neutron kinetics and thermal-hydraulics calculation to the nuclear steam supply system thermal-hydraulics. This can now be done with very sophisticated models, and the planning of this coupling and the requisite modeling can take advantage of the experience of many code developers in many countries. This paper us one contribution to the planning process for the next generation of system thermal-hydraulic codes. The paper presents the author', conclusions as to what neutron kinetics model and solution algorithms might be implemented, how to initialize the problem, what thermal-hydraulic boundary conditions are needed by the neutron kinetics, and the modeling for cross sections, power generation, and boron transport. In order to justify recommendations, LWR applications are discussed. 3 refs., 2 tabs

  13. REDUCE ON ENERGY HYDRAULIC SHOCK IN LOCK PROTECTION DEVICE OF THE HYDRAULIC SYSTEM OF CONSTRUCTION AND ROAD MACHINES / ???????? ??????? ??????????????? ????? ? ???????? ?????????? ???????????? ???????????-???????? ???????

    Directory of Open Access Journals (Sweden)

    Fomenko Nikolai Aleksandrovich / ??????? ??????? ?????????????

    2015-02-01

    Full Text Available The authors propos technical solution to the reduce on energy hydraulic shock in lock protection device of the hydraulic system of construction and road machines from unauthorized discharge of working fluid in the destruction of the high pressure hoses / ???????????? ??????????? ??????? ???????? ??????? ??????????????? ????? ? ???????? ?????????? ?????? ?????????????? ??????? ???????????-???????? ????? ?? ???????????????????? ??????? ??????? ???????? ??? ?????????? ??????? ???????? ????????

  14. Understanding the Space Shuttle Main Engine Hydraulic Actuation System and Reviewing Its Evolution

    Science.gov (United States)

    McWade, Robert J.; Minor, Robert B.; McNutt, Leslie M.

    2010-01-01

    The complex engine start and thrust control requirements of the Space Shuttle Main Engine (SSME) require unique valve, actuator and control system hardware. The Hydraulic Actuation System (HAS) was designed, developed, and now operates to meet tight engine control requirement limits to assure safe, reliable and correct engine thrust at all times. The actuator is designed to be fail safe and fail operate in the areas where redundancy is important. The HAS has an additional pneumatic operating capability that insures a safe sequential closure of all actuators and propellant valves in the event of the loss of hydraulic system pressure or loss of electrical closed loop control of the actuator. The objective of this paper is to provide a complete description of the actuator s internal operating system, along with its interaction with all SSME system interfaces. Additionally the paper addresses the challenges, problems identified, and corrected, and lessons learned, during the course of the almost 35 years of engine operation.

  15. Modeling, Identification and Control Design for an Electro-Hydraulic Rotator

    OpenAIRE

    Zanhar, Andrej

    2010-01-01

    Robotic manipulators have been introduced in industry as a form of increasing productivity. Today, there exist an interest to enlarge the application of these manipulators to outdoor environments. Forestry cranes used in the forestry industry are a clear example. A long term goal in this industry is the development of autonomous systems to increase the logging efficiency. In this thesis, we consider how to control the rotator of these cranes, which is an electro-hydraulically actuated motor, ...

  16. Optimization of maintenance of turbine electro hydraulic control (EHC)

    International Nuclear Information System (INIS)

    With traditional preventive maintenance, each component of the hydraulic part of the EHC system is checked about every five years. However, with this philosophy, components not checked during shutdown are not guaranteed to function correctly. Maintenance costs are also higher, as part are checked whether they require it or not. availability and reliability of the EHC systems can be improved, and costs cut, as follows - Condition-based checking of critical components whose maintenance cost is high (mainly actuators, pumps and storage batteries). - applying preventive maintenance in zones that act as external barrier (replace gaskets) -Ensuring that maintenance is done correctly and that components function correctly at startup. Correct functioning of components and determination of their condition is based on system diagnosis: leaks prior to shutdown, functioning immediately after shutdown, and a post-maintenance test before start-up (Author)

  17. Mathematical modelling of hydraulic conditions of balancing and control of heating, cooling and dehumidification subsystem in ventilation and air conditioning systems

    Directory of Open Access Journals (Sweden)

    A.P. Rusakov

    2011-01-01

    Full Text Available The goal of these investigations is modeling of processes and studying of influence of quantitative characteristics and parameters in heating and cooling subsystem of ventilation and air conditioning systems at balancing this subsystem by means of various balancing valves and control of three-running valve. Balancing and management processes are considered on an example of the binding water air-heater of ventilation and air conditioning system. Besides, influence of various regime parameters on considered balancing characteristics is studied, as that: difference of pressure in a network of a heat supply, the pressure created by the pump, their parity, various water temperatures, the modes leading to self-oscillations. Result of work is reception of balancing and adjusting characteristics of a considered subsystem in most general view under various working conditions and their further analysis.

  18. Study on the Energy-Regeneration-based Velocity Control of the Hydraulic-Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    SONG Yunpu

    2012-11-01

    Full Text Available This paper simplifies the energy regenerationbased vehicle velocity system of the hydraulichybrid businto a process in which the extension rod of the hydraulic cylinder drives the secondary-element variable delivery pump/motor to change its displacement. This process enables braking of the vehicle and also allows recovery of energy. The stability, energy efficiency and other characteristics of the system are studied based on analysis of mathematical models of the vehicle velocity control. The relevant controller is designed to study effects of the controller on system characteristics. The vehicle velocity control module of the energy regeneration system is stable and able to recovery the inertia energy generated in vehicle braking. After the controller intended to improve response speed is added, system response becomes quicker but energy recovery rate declines.

  19. FOREWORD: The XXV IAHR Symposium on Hydraulic Machinery and Systems marks half a century tradition

    Science.gov (United States)

    Susan-Resiga, Romeo

    2010-05-01

    IAHR75_logoUPT90_logoARFT_logo International Association of Hydro-Environment Engineering and Research'Politehnica' University of TimisoaraRomanian Academy - Timisoara Branch The 25th edition of the IAHR Symposium on Hydraulic Machinery and Systems, held in Timisoara, Romania, 20-24 September 2010, jointly organized by the 'Politehnica' University of Timisoara and the Romanian Academy - Timisoara Branch, marks a half century tradition of these prestigious symposia. However, it is the first time that Romania hosts such a symposium, and for good reasons. The Romanian electrical power system has a total of 20,630 MW installed power, out of which 6,422 MW in hydropower plants. The energy produced in hydropower facilities was in 2008 of 17,105 GWh from a total of 64,772 GWh electrical energy production. Moreover, for the period 2009-2015, new hydropower capacities are going to be developed, with a total of 2,157 MW installed power and an estimated 5,770 GWh/year energy production. Within the same period of time, the refurbishment, modernization and repair programs will increase the actual hydropower production with an estimated 349 GWh/year. The 'Politehnica' University of Timisoara is proud to host the 25th IAHR Symposium on Hydraulic Machinery and Systems, in the year of its 90th anniversary. The 'Politehnica' University of Timisoara is one of the largest and most well-known technical universities from Central and Eastern Europe. It was founded in 1920, a short time after the union into one state of all the Romanian territories, following the end of the First World War, in order to respond to the need engineers felt by the Romanian society at that time, within the economical development framework. During its 90 years of existence, 'Politehnica' University of Timisoara educated over 100,000 engineers, greatly appreciated both in Romania and abroad, for their competence and seriousness. King Ferdinand I of Romania said while visiting the recently established 'Politehnica' of Timisoara in 1923 'It is not the walls that make a school, but the spirit living inside'. A particular trademark of the 'Politehnica' of Timisoara was the continuous effort to answer industrial problems by training the students not only on theoretical aspects but also in design and manufacturing, as well as in laboratory works. Developing modern laboratories, where students can observe and understand first hand the engineering applications along the years a priority for Timisoara 'Politehnica' University. The School of Hydraulic Machinery within the 'Politehnica' University of Timisoara was established in early 1930 by Professor Aurel Barglazan (1905-1960), and further developed by Professor Ioan Anton (born 1924), both members of the Romanian Academy. The Laboratory of Hydraulic Machines from Timisoara (LMHT) started back in 1928 in a small hut, with a test rig for Francis and Kaplan turbines manufactured by J M Voith. LMHT was continuously developed and was officially recognized in 1959 as being one of the leading research and developing laboratories in Romania. It was the foundation of the Romanian efforts of designing and manufacturing hydraulic turbines starting in 1960 at the Resita Machine Building Factory. Under the leadership of Professor Ioan Anton, the Timisoara School in Hydraulic Machinery has focused the basic and development research activities on the following main topics: (i) Turbine Hydrodynamics, (ii) Hydrofoil Cascade Hydrodynamics, (iii) Cavitation in Hydraulic Machines and Equipments, (iv) Scale-up Effects in Hydraulic Machines. With the establishment in the year 2000 of the National Center for Engineering of Systems with Complex Fluids, within the 'Politehnica' University of Timisoara, the research in turbomachinery hydrodynamics and cavitation included high performance computing for flows in hydraulic machines, as well as the development of novel technologies to mitigate the self-induced flow instabilities in hydraulic turbines operated far from the best efficiency regime. The traditional partnership with the Romanian Academy - Timisoara Branch, Laboratory for Hydrodynamics and Cavitation, led to complex projects that combine both basic theoretical developments with advanced experimental investigations leading to practical engineering solutions for modern hydraulic machines. The International Association of Hydro-Environment Engineering and Research (IAHR) celebrates its 75th anniversary this year. IAHR particularly promotes the advancement and exchange of knowledge through working groups, specialty symposia, congresses, and publications on water resources, river and coastal hydraulics, risk analysis, energy, environment, disaster prevention, industrial processes. The IAHR - Committee on Hydraulic Machinery and Systems deals with the advancement of technology associated with the understanding of steady and unsteady flow characteristics in hydraulic machinery and conduit systems connected to the machinery. The technology elements include the fluid behaviour within machine components, hydro-elastic behaviour of machine components, cavitation, and two phase flow in turbines and pumps, hydraulic machine and plant control systems, the use of hydraulic machines to improve water quality, and even considerations to improve fish survival in their passage through hydro plants. The main emphases of the IAHR Committee on Hydraulic Machinery and Systems are to stimulate research and understanding of the technologies associated with hydraulic machinery and to promote interaction between the machine designers, machine users, the academic community, and the community at large. Hydraulic machinery is both cost effective and environmentally responsible. The increasing atmospheric content of carbon dioxide related to pollution from thermal power plants, is one of the most significant threats to our global ecology. The problem is exacerbated by the need for increased energy production in third world countries. This results in rising global temperatures and dramatic changes in climate which may also result in flooding in parts of our globe. Energy conservation together with replacement of coal and oil-fired power plants are, therefore, needed. The development and installation of more efficient hydroelectric power plants which work hand in hand with water storage and flood protection is part of this strategy. Waterpower is the most significant 'renewable resource'. The goals of this IAHR - Committee on Hydraulic Machinery and Systems are to improve the value of hydraulic machinery to the end user and to society and to improve society's understanding and appreciation of that value. The series of IAHR Symposia on Hydraulic Machinery and Cavitation started with the 1st edition in Nice in 1960 in France. Within the past decade, all the symposia were focused on an extended portfolio of topics under the name of 'Hydraulic Machinery and Systems', such as the 20th edition in 2000, Charlotte, USA, the 21st in 2002, Lausanne, Switzerland, the 22nd in 2004, Stockholm, Sweden, the 23rd in 2006, Yokohama, Japan, and the 24th in 2008, Foz do Iguassu, Brasil. The 25th IAHR Symposium on Hydraulic Machinery and Systems brings together more than 150 scientists and researchers from 24 countries, affiliated with universities , technology centres and industry to debate topics related to advanced technologies for hydraulic machinery and systems, which will enhance the sustainable development of water resources and hydropower production. The Scientific Committee has selected 118 papers, out of 238 abstracts submitted, on the following topics: (i) Hydraulic Turbines and Pumps, (ii) Sustainable hydropower, (iii) Hydraulic Systems, (iv) Advances in Computational and Experimental Techniques, (v) Innovative Technology, to be presented at the symposium and to be included in the proceedings. All papers published in this Volume 12 of IOP Conference Series: Earth and Environmental Science have been peer reviewed through processes administered by the editors of the 25th IAHR Symposium on Hydraulic Machinery and Systems proceedings, Professor Romeo Susan-Resiga, Dr Sebastian Muntean and Dr Sandor Bernad. We hope that this anniversary edition of the series of symposia on Hydraulic Machinery and Systems will be a significant step forward in the worldwide efforts to address the present challenges facing the modern hydraulic machines. Professor Romeo Susan-Resiga Chairman of the Organizing Committee 25th IAHR Symposium on Hydraulic Machinery and Systems

  20. WATER ENERGY IN HYDROAMELIORATIVE SYSTEMS USING THE HYDRAULIC TRANSFORMER TYPE A. BARGLAZAN AND THE HYDRAULIC HAMMER (HYDRAULIC PUMP

    Directory of Open Access Journals (Sweden)

    Teodor Eugen Man

    2010-01-01

    Full Text Available This paper presents two examples of exploitation of water energy that can be used in the irrigation field. First of theseexamples is the hydraulic transformer type A. Barglazan used for irrigation, pumped water is taken directly from therivers well, using a hydraulic pump which simultaneously carried out a double transformation in this way: hydraulicenergy into mechanic energy and mechanical energy into hydraulic energy. Technology preparation and devices designwas done in record time, seeing that this constructive solution is more robust, reliable and with improved energyperformance versus the laboratory prototype. The experimental research which was made at 1:1 scale proved theirgood function over time. Another example is the hydraulic hammer (hydraulic pump that uses low-head energy topump water, with a global efficiency of about 10 - 50%. Currently, the new situation of private ownership of landprovides conditions for new pumping microstations to be made where irrigation is necessary and optimal hydrauliclocations exist.

  1. Process instrumentation system for sodium thermo-hydraulic experimental loop

    International Nuclear Information System (INIS)

    The process instrumentation system for liquid sodium thermo-hydraulic experiment provides appropriate methods of measurement and indication. It can be used to inspect main process parameters (temperature, pressure, flow, liquid level, power etc.) and the state of equipment. Function of the system is normal, inspection of instrument is exact and reliable, regulation is sensitive, operation is simple and convenient after installation and adjustment of this system. The result demonstrates an expected purpose of design

  2. The hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron

    International Nuclear Information System (INIS)

    The oil-line structure, control system and their working principles of the hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron are introduced. The six years practice proves that the specification of the system matches the requirements: the oil cylinder maximum stroke of 850 mm, the eight slot positioning dowels repositioning accuracy of +-0.01 mm, the two oil cylinders moving in step accuracy of 5-10 mm. The system is safe, reliable and easy to be operated

  3. The hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron

    CERN Document Server

    Zhao Zhen Lu; Chen Rong Fan; Chu Cheng Jie

    2002-01-01

    The oil-line structure, control system and their working principles of the hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron are introduced. The six years practice proves that the specification of the system matches the requirements: the oil cylinder maximum stroke of 850 mm, the eight slot positioning dowels repositioning accuracy of +-0.01 mm, the two oil cylinders moving in step accuracy of 5-10 mm. The system is safe, reliable and easy to be operated

  4. Recurrent-neural-network-based identification of a cascade hydraulic actuator for closed-loop automotive power transmission control

    International Nuclear Information System (INIS)

    By virtue of its ease of operation compared with its conventional manual counterpart, automatic transmissions are commonly used as automotive power transmission control system in today's passenger cars. In accordance with this trend, research efforts on closed-loop automatic transmission controls have been extensively carried out to improve ride quality and fuel economy. State-of-the-art power transmission control algorithms may have limitations in performance because they rely on the steady-state characteristics of the hydraulic actuator rather than fully exploit its dynamic characteristics. Since the ultimate viability of closed-loop power transmission control is dominated by precise pressure control at the level of hydraulic actuator, closed-loop control can potentially attain superior efficacy in case the hydraulic actuator can be easily incorporated into model-based observer/controller design. In this paper, we propose to use a recurrent neural network (RNN) to establish a nonlinear empirical model of a cascade hydraulic actuator in a passenger car automatic transmission, which has potential to be easily incorporated in designing observers and controllers. Experimental analysis is performed to grasp key system characteristics, based on which a nonlinear system identification procedure is carried out. Extensive experimental validation of the established model suggests that it has superb one-step-ahead prediction capability over appropriate frequency range, making it an attractive approach for model-based observer/controller design applications in automotive systems

  5. Super Twisting Second Order Sliding Mode Control for Position Tracking Control of Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.; Bech, Michael Mller

    2013-01-01

    In this paper a control strategy based on second order sliding modes, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD), is proposed. The main target is to overcome problems with linear controllers deteriorating performance due to the strong nonlinearities characterizing VCD's. The proposed controller requires pressure-, valve- and piston position measurements, and is based on the so-called super twisting algorithm and compensation of controlgain...

  6. Non Linear Modelling and Control of Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    B. Šulc

    2002-01-01

    Full Text Available This paper deals with non-linear modelling and control of a differential hydraulic actuator. The nonlinear state space equations are derived from basic physical laws. They are more powerful than the transfer function in the case of linear models, and they allow the application of an object oriented approach in simulation programs. The effects of all friction forces (static, Coulomb and viscous have been modelled, and many phenomena that are usually neglected are taken into account, e.g., the static term of friction, the leakage between the two chambers and external space. Proportional Differential (PD and Fuzzy Logic Controllers (FLC have been applied in order to make a comparison by means of simulation. Simulation is performed using Matlab/Simulink, and some of the results are compared graphically. FLC is tuned in a such way that it produces a constant control signal close to its maximum (or minimum, where possible. In the case of PD control the occurrence of peaks cannot be avoided. These peaks produce a very high velocity that oversteps the allowed values.

  7. Control Strategies for a simple Point-Absorber Connected to a Hydraulic Power Take-off

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, P.; Lopez, J.; Santos, M.; Villate, J.L.; Ruiz Minguela, P.; Salcedo, F. [Tecnalia-Energia Sede de Robotiker-Tecnalia, Parque Tecnologico, Edificio 202, E-48170, Zamudio (Spain); Falcao, A.F.de O. [IDMEC, Instituto Superior Tecnico, Av. Rovisco Pais, 1, 1049-001, Lisbon (Portugal)

    2009-07-01

    Among the various types of wave energy converters currently being developed, heaving point absorbers are one of the simplest and most promising concepts, possibly due to their ease of deployment and integration in larger arrays structures. A typical efficient energy conversion system for point absorbers is based on hydraulic power take-off (PTO) systems, consisting in a double-acting cylinder and two or more accumulators, reserving fluid at different pressures and linked between them by a hydraulic motor connected to an electric generator. For the purpose of control and modulation of the power output the hydraulic circuit might include a certain number of valves that can set the pressure levels within the accumulators. This paper presents a simple model of a heaving oscillating buoy, represented by a surface-piercing cylinder, extracting power by means of a hydraulic system. The hydrodynamic behaviour of the absorber is modelled through application of the linear water wave theory. Apart from the basic elements listed above, the model of the hydraulic system includes leakages and pressure losses and takes into account the compressibility of the fluid. Also possible extra accumulators are considered in order to improve the performance of the hydraulic system by means of properly controlled valves. The function of these extra accumulators consists in storing and releasing energy to the system when this is desirable for the improvement of the power output. Simulations were carried out through a time-domain approach making use of the Cummins equation and considering regular monochromatic waves and irregular wave-trains. The control of the system is managed by means of control valves whose opening will be depending on the sign of the velocity of the buoy and the pressure levels. Three possible aims were assumed for the control strategies investigated: maximisation of the average power output, stabilisation of the output (in terms of rotational velocity and/or electrical power) and stabilisation of the pressures inside the accumulators (also for survivability of the hydraulic equipment). Different control variables are analysed depending on the wave inputs considered in order to improve the power extraction of the converter: Firstly the torque of the electric generator is considered as a primary way to modify the load of the PTO. Then extra accumulators are used as storing devices to perform a kind of phase control on the buoy. The benefit of this effect will be dependent on the instant of activation of the valves that connect them to the circuit and the influence of possible delays or anticipations will be investigated The results prove that it is possible to achieve a great enhancement of the power extraction with the implementation of these control strategies and that a possible combination of some of them might be beneficial for a better efficiency of the components. Moreover the application of sophisticated strategies could imply a less demanding requirement for specific equipments; such as the case of the electrical generator.

  8. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  9. Aircraft hydraulic power system diagnostic, prognostics and health management

    OpenAIRE

    WANG, JIAN

    2012-01-01

    This Individual Research Project (IRP) is the extension research to the group design project (GDP) work which the author has participated in his Msc programme. The GDP objective is to complete the conceptual design of a 200-seat, flying wing civil airlinerFW-11. The next generation aircraft design demands higher reliability, safety and maintainability. With the development of the vehicle hydraulic system technology, the equipment and systems become more and more complex, their reliability...

  10. The Newest Hydraulic Engineering

    International Nuclear Information System (INIS)

    This book gives descriptions of basic of hydraulic pressure engineering, hydraulic fluid such as properties of hydraulic fluid, kinds of it, kinds and effect of addition, choice and repair of hydraulic fluid, and aeration, characteristic of flow of air current, like throttle, flow between both parallel sides, silting, hydraulic look and squeeze effect, hydraulic oil pump with definition and classification, gear pump vane pump, hydraulic control valve, hydraulic cylinder, hydraulic revolved motor, pressure transmitter, pipe and basic circuit of hydraulics.

  11. Calculation of dynamic hydraulic forces in nuclear plant piping systems

    International Nuclear Information System (INIS)

    A computer code was developed as one of the tools needed for analysis of piping dynamic loading on nuclear power plant high energy piping systems, including reactor safety and relief value upstream and discharge piping systems. The code calculates the transient hydraulic data and dynamic forces within the one-dimensional system, caused by a pipe rupture or sudden value motion, using a fixed space and varying time grid-method of characteristics. Subcooled, superheated, homogeneous two-phase and transition flow regimes are considered. A non-equilibrium effect is also considered in computing the fluid specific volume and fluid local sonic velocity in the two-phase mixture. Various hydraulic components such as a spring loaded or power operated value, enlarger, orifice, pressurized tank, multiple pipe junction (tee), etc. are considered as boundary conditions. Comparisons of calculated results with available experimental data shows a good agreement. (Author)

  12. Mathematical modelling of hydraulic conditions of balancing and control of heating, cooling and dehumidification subsystem in ventilation and air conditioning systems

    Directory of Open Access Journals (Sweden)

    A. G. Sotnikov

    2011-03-01

    Full Text Available The article is the second part of the one published in the Vol. 1, 2011. The aim of this research is processes modelling and investigation of quantity parameters influence on heating and cooling subsystem of VAC systems when balancing that subsystem by various balanced valves and when controlling it by three-way valve. The basic characteristic received and analyzed in model, is balancing-adjusting characteristic (schedule of mixture in knot depending on a combination of many factors: binding, crosspieces, an arrangement of corresponding valves, pressures and other parameters. For reception of the balancing-adjusting characteristic of subsystem in different operating modes its mathematical model was created, methods of processing and generalization of the data were offered. After that calculations in different modes of use of the crosspieces were done, allowed to define all regime parameters at the set positions of balancing and regulating valves, parity of pressures in a network and a pump, design of armature and entry conditions.

  13. Nonlinear stability research on the hydraulic system of double-side rolling shear

    Science.gov (United States)

    Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu

    2015-10-01

    This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.

  14. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Science.gov (United States)

    2010-10-01

    ...false Air brake system and air-over-hydraulic brake subsystem. 570.57 Section...57 Air brake system and air-over-hydraulic brake subsystem. The following requirements...vehicles with air brake and air-over-hydraulic brake systems. Trailer(s)...

  15. Current evaluation of hydraulics to replace the cable force transmission system for body-powered upper-limb prostheses.

    Science.gov (United States)

    LeBlanc, M

    1990-01-01

    Present body-powered upper-limb prostheses use a cable control system employing World War II aircraft technology to transmit force from the body to the prosthesis for operation. The cable and associated hardware are located outside the prosthesis. Because individuals with arm amputations want prostheses that are natural looking with a smooth, soft outer surface, a design and development project was undertaken to replace the cable system with hydraulics located inside the prosthesis. Three different hydraulic transmission systems were built for evaluation, and other possibilities were explored. Results indicate that a hydraulic force transmission system remains an unmet challenge as a practical replacement for the cable system. The author was unable to develop a hydraulic system that meets the necessary dynamic requirements and is acceptable in size and appearance. PMID:10149042

  16. Thermal-hydraulic tests for reactor safety system

    International Nuclear Information System (INIS)

    Tests for the safety depressurization system, Sparger adopted for the Korean next generation reactor, APR1400 are carried out for several geometries with the B and C (Blowdown and Condensation) facility in the condition of high temperature and pressure and with a small test facility in the condition of atmospheric temperature and pressure. Tests for the critical heat flux are performed with the RCS(Reactor Coolant System) facility as well as with the Freon CHF Loop in the condition of high temperature and pressure. The atmospheric temperature and pressure facility is utilized for development of the high standard thermal hydraulic measurement technology. The optical method is developed to measure the local thermal-hydraulic behavior for the single and two-phase boiling phenomena

  17. TMI-2 in-vessel hydraulic systems utilize high water and high boron content fluids

    International Nuclear Information System (INIS)

    Choice of a hydraulic fluid for use in the Three Mile Island Unit 2 (TMI-2) reactor vessel defueling equipment required consideration of the following constraints for the hydraulic fluid given an accidental spill into the reactor coolant system (RCS). The TMI-2 RCS hydraulic fluid utilized in the hydraulic operations utilized a solution composition of 95 wt% water and 5 wt% of the above base fluid. The TMI-2 hydraulic system utilizes pressures up to 3500 psi. The selected hydraulic fluid has been in use since December 1986 with minimal operational difficulties

  18. Pneumatic and Hydraulic Systems in Coal Fluidized Bed Combustor

    OpenAIRE

    Z. O. Opafunso; I. I. Ozigis; Adetunde, I.A

    2009-01-01

    Problem statement: This study designed the pneumatic and hydraulic systems in coal fluidized bed combustor. These are fluidization of silica sand bed material, Air distributor, centrifugal fan, electric motor power drive and surface heat exchanger. Approach: The effects of increased gas velocity on silica sand and the resultant drag force formed the basic equations in fluidization. Air distributor was introduced to achieve pressure drop across the beds. Results: The constructed centrifugal fa...

  19. Optimisation of Working Areas in Discrete Hydraulic Power Take off-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Hansen, Rico Hjerm

    2012-01-01

    Fluid power is the leading technology in Power Take Off(PTO) systems in Wave Energy Converters(WECs), due to the capability of generating high force at low velocity. However, as hydraulic force controlling system may suffer from large energy losses the efficiency of the hydraulic PTO systems may be a limiting factor for wave energy. Therefore, a secondary controlled force system has been proposed as PTO element for WECs. This paper investigates the configuration of a multi-chamber cylinder utilising two common pressure lines. By usage of model based optimisation an optimal number and size of working areas is proposed. This area encoding strategy is investigated and compared to two standard binary encodings, finding that the optimised area coding yields significantly higher energy output.

  20. Hydraulic tests of emergency cooling system: L-Area

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, J H

    1988-01-01

    The delay in L-Area startup provided an opportunity to obtain valuable data on the Emergency Cooling System (ECS) which will permit reactor operation at the highest safe power level. ECS flow is a major input to the FLOOD code which calculates reactor ECS power limits. The FLOOD code assesses the effectiveness of the ECS cooling capacity by modeling the core and plenum hydraulics under accident conditions. Presently, reactor power is not limited by the ECS cooling capacity (power limit). However, the manual calculations of ECS flows had been recently updated to include piping changes (debris strainer, valve changes, pressure release systems) and update fitting losses. Both updates resulted in reduced calculated ECS flows. Upon completion of the current program to update, validate, and document, reactor power may be limited under certain situations by ECS cooling capacity for some present reactor charge designs. A series of special hydraulic tests (Reference 1, 3) were conducted in L-Area using all sources of emergency coolant including the ECS pumps (Reference 2). The tests provided empirical hydraulic data on the ECS piping. These data will be used in computer models of the system as well as manual calculations of ECS flows. The improved modeling and accuracy of the flow calculations will permit reactor operation at the highest safe power level with respect to an ECS power limit.

  1. The development of radiation hardened robot for nuclear facility - Development of embedded controller for hydraulic robot

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Kook; Kim, Jae Kwon [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    We designed and implemented a reliable hierarchical control system for hydraulic robots for nuclear power plant maintenance. In hazardous environments such as nuclear power plants, robot systems or automated equipment should be used instead of human being for maintenance and repair. Such robot should guarantee high reliability in hazardous environments such as high radiation or high temperature. The overall system is composed of three hierarchical subsystems: i) supervisory controller in safe zone for operator interaction with monitoring and commanding and graphic user interface, ii) master controller in semi-hazardous zone for control function, and iii) slave controller in hazardous zone for sensing and actuation. These subsystems are connected with suitable communication channels: a) master-slave communication channel implemented with CAN (Control Area Network) and b) supervisory-master communication with Ethernet. The master and the slave controllers construct a feedback closed-loop control system. In order to improve reliability, the slave controller is duplicated using cold-standby scheme, and master-slave communication channel is also duplicated. The overall system is implemented harmonically, and we obtained fast control interval of 1msec, which is sufficient for high-performance real-time control. 12 refs., 58 figs., 13 tabs. (Author)

  2. Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-

    International Nuclear Information System (INIS)

    The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)

  3. Hydraulic problems in cooling water recirculating systems of nuclear power plants

    International Nuclear Information System (INIS)

    Hydraulic design problems of the structures in the free-surface part of the recirculating system (intake and distribution structure, control weir, cooling tower) are described. The capacity of the cooling system required for realization of once-through cooling, blow-down, recirculation and mixed mode operation is discussed, and experimental and numerical methods of solution are illustrated by means of several representative investigations of existing and planned installations. (orig.)

  4. Neutron kinetics for system thermal-hydraulic codes

    International Nuclear Information System (INIS)

    There is general agreement that for many light water reactor (LWR) calculations for licensing safety analysis, probabilistic risk assessment, operational support, and training, it is necessary to use a multidimensional neutron kinetics model coupled to a thermal-hydraulics model in order to obtain satisfactory results. This need coincides with the fact that in recent years there has been considerable research and development in this field, with modelers taking advantage of the increase in computing power that has become available. This progress has now led to coupling multidimensional neutron kinetics models to the nuclear steam supply system thermal hydraulics. This is not new since some coupled codes have always been available. What is new is that the coupling can now be done with very sophisticated models, and the planning of this coupling and the requisite modeling can take advantage of the experience of many code developers in many countries. The U.S. Nuclear Regulatory Commission and other organizations are in the process of reviewing the state of the art and making recommendations for future development. This paper summarizes one contribution to this review process: a review of the multidimensional neutron kinetics modeling, and ancillary modeling, which would be used in conjunction with system thermal-hydraulic models to perform core dynamics calculations

  5. Design and performance enhancement of hydraulic pressure energy harvesting systems

    Science.gov (United States)

    Skow, Ellen A.; Cunefare, Kenneth A.; Erturk, Alper

    2013-04-01

    Hydraulic pressure ripple energy harvesters generate low-power electricity from off-resonance dynamic pressure excitation of piezoelectric elements. Improvements were made to hydraulic pressure ripple energy harvester prototype performance. Hydraulic systems inherently have a high energy intensity associated with the mean pressure and flow. Accompanying the mean pressure is dynamic pressure ripple, which is caused by the action of pumps and actuators. Pressure ripple is generally a deterministic source with a periodic time-domain behavior conducive to energy harvesting. An energy harvester prototype was designed for generating low-power electricity from pressure ripples. These devices generate low-power electricity from off-resonance dynamic pressure excitation. The power produced per volume of device was increased through decreasing the device size and adding an inductor to the system circuit. The prototype device utilizes a piezoelectric stack with high overall capacitance allowing for inductance matching without using a switching circuit. Initial testing with addition of an inductor produced over 2.1 mW, an increase of 78% as compared to the device without the inductor. Two power output model simulations of a resistive-inductive circuit are analyzed: (1) ideal circuit case and (2) non-ideal circuit case with inductor internal resistance included.

  6. Three Mile Island system thermal-hydraulic analysis using TRAC

    International Nuclear Information System (INIS)

    The Three Mile Island (TMI) nuclear plant was modeled using the Transient Reactor Analysis Code (TRAC) and a preliminary calculation, which simulated the initial part of the accident that occurred on March 28, 1979, was performed. The purpose of this calculation was to provide a better understanding of the system thermal-hydraulic response during the first 3 h of the accident and to evaluate how well TRAC results compared to the overall accident scenario and measured system parameters. The calculated system pressure, loop temperatures, and pressurizer level are all in good agreement with measured data

  7. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  8. Global asymptotic stabilization of large-scale hydraulic networks using positive proportional controls

    DEFF Research Database (Denmark)

    Jensen, Tom Nrgaard; Wisniewski, Rafal

    2014-01-01

    An industrial case study involving a large-scale hydraulic network underlying a district heating system subject to structural changes is considered. The problem of controlling the pressure drop across the so-called end-user valves in the network to a designated vector of reference values under...... directional actuator constraints is addressed. The proposed solution consists of a set of decentralized positively constrained proportional control actions. The results show that the closed-loop system always has a globally asymptotically stable equilibrium point independently on the number of end......-users. Furthermore, by a proper design of controller gains the closed-loop equilibrium point can be designed to belong to an arbitrarily small neighborhood of the desired equilibrium point. Since there exists a globally asymptotically stable equilibrium point independently on the number of end-users in the system...

  9. Role of system characteristics in evolution of pump hydraulic design

    International Nuclear Information System (INIS)

    Primary heat transport (PHT) main circuit provides the means for transferring the heat produced in the fuel by circulating heavy water in the main circuit loop by primary coolant pumps (PCPs). The procurement specification of PCPs for 500 MWe pressurised heavy water reactor (PHWR) was prepared based upon the first order hydraulic analysis of the primary heat transport system and accordingly duty point was fixed. With this specification the manufacturer carried out model testing to arrive at optimum size of the impeller followed by determination of pump characteristics curves using full scale impeller during type testing. The duty point thus obtained was higher than specified necessitating the trimming of impeller. However, in order to make use of available higher duty point from system considerations, the duty point was redefined for production of subsequent pumps within specified tolerances governed by manufacturing limitations. PHT main system sizing (piping and feeders) was carried out based upon pump (delivering maximum flow) characteristics curve. Pressure profiles of PHT system at various operating modes were drawn and corresponding power drawn by motor was calculated. The interfacing of reactor coolant main system with hydraulic characteristics of PCP plays a significant role in establishing the requisite capability and capacity of PHT system in performing its intended functions. Therefore the paper traces the evolution of design parameters for PCP and subsequent generation of pressure profiles commensurate with the changes made in power profile including their impact on feeder sizing. The paper also highlights the scope of interaction between process designer and pump manufacturer in formulating a mutually acceptable and efficient hydraulic performance for PCP. (author). 3 refs., 8 figs., 3 tabs

  10. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall accordingly, dropping by as much as 50,000 tonnes annually.

  11. A device for the hydraulic control of nuclear reactor control rods

    International Nuclear Information System (INIS)

    A device for driving and locking the control rods of a nuclear reactor. This device comprises a hydraulic driving piston mounted in a cylinder provided with a construction for absorbing shocks. The piston is provided, at is extremity, with a locking device adapted to engage a stationary lock, it being possible to control the latter for freeing said piston locking device; with such an arrangement, the control rod is normally maintained in position, and it can be freed only by a positive signal. Moreover, the control rod movements are slowed down, so as to prevent the gripping device from being damaged. This device can be used in the nuclear industry

  12. Hydraulic transient analysis in circulating water pump system

    International Nuclear Information System (INIS)

    The present paper has dealt with the various phenomena associated with the hydraulic transient operation of pump system following the interruption of flow from its steady state with a special reference on the classical sloshing phenomena. The phenomena often encountered in the piping network following the separation of liquid column and the formation of cavity inside the pipe results in reverse transient pressure built up upon subsequent rejoining of separated liquid columns. A computer programme has been developed to predict the transient behaviour of circulating water (CW) pump system considering the various hydrodynamic phenomena involved in the process. (author). 2 refs., 12 figs

  13. Optimising root system hydraulic architectures for water uptake

    Science.gov (United States)

    Meunier, Flicien; Couvreur, Valentin; Draye, Xavier; Javaux, Mathieu

    2015-04-01

    In this study we started from local hydraulic analysis of idealized root systems to develop a mathematical framework necessary for the understanding of global root systems behaviors. The underlying assumption of this study was that the plant is naturally optimised for the water uptake. The root system is thus a pipe network dedicated to the capture and transport of water. The main objective of the present research is to explain the fitness of major types of root architectures to their environment. In a first step, we developed links between local hydraulic properties and macroscopic parameters of (un)branched roots. The outcome of such an approach were functions of apparent conductance of entire root system and uptake distribution along the roots. We compared our development with some allometric scaling laws for the root water uptake: under the same simplifying assumptions we were able to obtain the same results and even to expand them to more physiological cases. Using empirical data of measured root conductance, we were also able to fit extremely well the data-set with this model. In a second stage we used generic architecture parameters and an existent root growth model to generate various types of root systems (from fibrous to tap). We combined both sides (hydraulic and architecture) then to maximize under a volume constraint either apparent conductance of root systems or the soil volume explored by active roots during the plant growth period. This approach has led to the sensitive parameters of the macroscopic parameters (conductance and location of the water uptake) of each single plant selected for this study. Scientific questions such as: "What is the optimal sowing density of a given hydraulic architecture ?" or "Which plant traits can we change to better explore the soil domain ?" can be also addressed with this approach: some potential applications are illustrated. The next (and ultimate phase) will be to validate our conclusions with real architectures data and with a physical model of the water fluxes in the soil-plant continuum.

  14. Hydraulic characterisation of karst systems with man-made tracers

    International Nuclear Information System (INIS)

    Tracer experiments using man-made tracers are common in hydrogeological exploration of groundwater aquifers in karst systems. In the present investigation, a convection-dispersion model (multidispersion model with consideration of several flow paths) and a single-cleft model (consideration of the diffusion between the cleft and the surrounding rock matrix) were used for evaluating tracer experiments in the main hydrological system of the saturated zone of karst systems. In addition to these extended analytical solutions, a numerical transport model was developed for investigating the influence of the transient flow rate on the flow and transport parameters. Comparative evaluations of the model approaches for the evaluation of tracer experiments were made in four different karst systems: Danube-Aach, Paderborn, Slowenia and Lurbach, of which the Danube-Aach system was considered as the most important. The investigation also comprised three supplementary experiments in order to enable a complete hydraulic characterisation of the system. (orig./SR)

  15. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M. (Schenectady, NY)

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  16. Study on Knowledge -based Intelligent Fault Diagnosis of Hydraulic System

    Directory of Open Access Journals (Sweden)

    Xuexia Liu

    2012-12-01

    Full Text Available A general framework of hydraulic fault diagnosis system was studied. It consisted of equipment knowledge bases, real-time databases, fusion reasoning module, knowledge acquisition module and so on. A tree-structure model of fault knowledge was established. Fault nodes knowledge was encapsulated by object-oriented technique. Complete knowledge bases were made including fault bases and diagnosis bases. It could describe the fault positions, the structure of fault, cause-symptom relationships, diagnosis principles and other knowledge. Taking the fault of left and right lifting oil cylinder out of sync for example, the diagnostic results show that the methods were effective.

  17. An adaptive fuzzy dead-zone compensation scheme and its application to electro-hydraulic systems

    Scientific Electronic Library Online (English)

    Wallace M., Bessa; Max S., Dutra; Edwin, Kreuzer.

    2010-03-01

    Full Text Available The dead-zone is one of the most common hard nonlinearities in industrial actuators and its presence may drastically compromise control systems stability and performance. Due to the possibility to express specialist knowledge in an algorithmic manner, fuzzy logic has been largely employed in the las [...] t decades to both control and identification of uncertain dynamical systems. In spite of the simplicity of this heuristic approach, in some situations a more rigorous mathematical treatment of the problem is required. In this work, an adaptive fuzzy controller is proposed for nonlinear systems subject to dead-zone input. The boundedness of all closed-loop signals and the convergence properties of the tracking error are proven using Lyapunov stability theory and Barbalat's lemma. An application of this adaptive fuzzy scheme to an electro-hydraulic servo-system is introduced to illustrate the controller design method. Numerical results are also presented in order to demonstrate the control system performance.

  18. Numerical analysis of a rub-impact rotor-bearing system for hydraulic generating set

    International Nuclear Information System (INIS)

    In this article, vibration characteristics of a rub-impact rotor-bearing system excited by unbalanced magnetic pull (UMP) for hydraulic generating set are investigated. The rubbing model used consists of the radial elastic impact and the tangential Coulomb friction. Through numerical calculation, the excitation current, eccentricity are used as the control parameters, investigating their effect on the rub-impact rotor-bearing system, by bifurcation diagrams, Poincar maps, trajectories, and frequency spectrums. Various nonlinear phenomena, including period-one, period-five, quasi-period and chaotic motions, are induced and the system stability is obviously influenced due to the UMP. In addition, it is found that the large eccentricity that exceeds to a certain extent may lead to the full annular rubbing from the partial rubbing. The results can provide some theoretical references for the safety operation and rub-impact fault diagnosis of the hydraulic generating set.

  19. Analysis of an controller design for an electro-hydraulic servo pressure regulator

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Madsen, A. M.; Dahl, M.; Nielsen, B.K.; Stubkier, Søren

    2009-01-01

    Mobile hydraulics is in a transition phase, where electronic sensors and digital signal processors are starting to become standard on a high number of machines, hereby replacing hydraulic pilot lines and oering new possibilities with regard to both control and feasibility. For controlling some of...... pressure regulator, which generates a hydraulic LS-pressure based on an electrical reference, hereby synergistically integrating knowledge from all parts of the mechatronics area. The servo pressure regulator is used to generate the LS-signal for a variable displacement pump, and the paper rst presents the...

  20. Selection of the 700 MWe PHWR pressuriser level control program through thermal hydraulic transient studies

    International Nuclear Information System (INIS)

    Full text: Conventionally the Pressuriser capacity, heater rating and the liquid level program are the important parameters to be optimized for reliable and trouble free operation of a water cooled nuclear power plants like Pressurised Heavy Water Reactor (PHWR). All these parameters are affected by the volume of the Primary Heat Transport (PHT) system and the corresponding swell/shrinkages anticipated. The magnitude of the swell/shrinkages depend on the rate of change of the PHT system fluid and structural temperatures for various transients. Based on these values the design of the PHT system pressure controller can be optimized. The 700 MWe PHWR PHT system design allows limited boiling towards the end of the coolant channel. The swell/shrinkages due to phase change are of larger magnitude but the pressure variation may be dampened during the two-phase PHT fluid condition with higher compressibility. The transition from single phase to two phase PHT system also needs to be analyzed for all the operational aspects such as the reactivity variation, process dynamics and the performance of the controllers. The secondary system behaviors also affect the PHT system volumetric changes due to thermal coupling. The performance of the selected Steam Generator Pressure Control Program (SGPC) also dictates the design of the PHT system pressure controller. The SGPC controller setting also has a considerable bearing on the performance of the PHT system pressure controller. Constant Boiler Pressure Program (CBPP) has been adopted design for this reactor. This program leads to higher values of shrinkages due to higher temperature difference between the PHT and the SGs. The design basis transient must account for the maximum credible swell/shrinkages anticipated/envisaged. The turbine trip transient and the reactor trip transient can form the basis with appropriate initial condition assumptions. The PHT system Instrumented Relief Valves sizing transient also can considered for the design basis, though this is not an operational event. This paper describes the computer simulation model that has been developed for the upcoming 700 MWe PHWR using internationally renowned, best estimate RELAP5/MOD3.2 code for the thermal hydraulic behavior. The output from these simulation studies is being utilized for performance verification of the PHT system pressure controller and the Pressuriser level control program. Earlier such studies have been performed for the 540 MWe PHWR power plants. The 700 MWe PHWR SGs differs from the earlier SGs in many of the design details. The implication of these details on the thermal hydraulic behavior and the corresponding impact on the design will be discussed. (author)

  1. Hydraulic model study on pump sump configuration for cooling water systems of nuclear power plants

    International Nuclear Information System (INIS)

    Cooling water systems of nuclear power plants play a key role in power plant operation. In particular, the ESWS (Essential Service Water System) supplies seawater as the cooling water to remove heat from the safety-related CCWS (Component Cooling Water System) via the CCW heat exchanger. The amount of cooling water required in a 1000 MW nuclear power plant is more than 50 m3/sec for each unit. Thus, it is important that the intake pumps for the cooling water are designed for proper performance. To ensure the stable pump performance, the water flow into the pump bell mouth should be in uniform and steady conditions. These flow conditions are controlled both by the location of the pump in the sump and the configuration of intake sump structure. In terms of the design, the preliminary configuration of the sump proceeds the hydraulic model study. The preliminary configuration of the sump can be determined using design guides such as HIS (Hydraulic Institute Standards) which has been standardized based on many experiments for sump structures. According to these guides, the dimension of the sump depends primarily on the diameter of pump's bell mouth. Although the preliminary configuration of sump is made using the diameter of the bell mouth, the adequacy of the preliminary configuration should be verified by a hydraulic model study to confirm whether or not the approaching flow meets the required flow condition without swirls, tornadoes and vortices. The hydraulic model study is indispensable tool to determine if the preliminary configuration of the sump is appropriate. If poor flow conditions are indicated, the configuration is revised and / or the flow improving devices are provided in the sump. This technical report focuses on the preliminary configuration of the intake sump structure and the hydraulic model study for the sump. (author)

  2. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Sren

    Horizontal axis wind turbines utilize a yaw system to keep the rotor plane of the wind turbine perpendicular to the main wind direction. If the wind direction changes, the wind turbine follows the direction change by yawing. If the wind turbine does not yaw, there will be a reduction in produced...... energy and an increase in the loading of the wind turbine structure and components. This dissertation examines the hypothesis that there are advantages of basing a yaw system on hydraulic components instead of normal electrical components. This is done through a state of the art analysis followed by a...... self yaw system, which enables the turbine to yaw without any energy input, but simply by utilizing the loading from the wind to turn in the right direction. Further the concept of the over-load protection system is analyzed and found very efficient for lowering the ultimate loading on the wind turbine...

  3. Project calculation of the steering mechanism hydraulic servo control in motor vehicles

    Directory of Open Access Journals (Sweden)

    Zoran ?ukan Majki?

    2013-10-01

    Full Text Available Hydraulic servo controls are designed to facilitate rotation in place without providing increased ppower to steering wheels. In the initial design phase, the dimensions required for control systems are usually obtained through the calculation of their load when wheels rotate in place, where the torque is calculated empirically. The starting point in the project calculation is thus to determine the hydraulic power steering torque torsional resistance which is then used to determine the maximum value of force i.e. the torque on the stering wheel. The calculation of the control system servo control consists of determining the basic parameters, the required pump capacity, the main dimensions of the hub and the pipeline and the conditions for the stability of the system control mechanism. Introduction The aim of the calculation of the steering control system is to determine the basic parameters of its components which ensure the fulfilment of requirements of the control system. Calculations are performed in several stages with a simultaneous detailed constructive analysis of the control system leading to the best variant. At each stage, design and control calculations of the hydraulic servo of the steering mechanism are performed. The design allows the computation to complete the selection of basic dimensions of the amplifer elements, starting from the approved scheme and the basic building loads of approximate values. Calculations control is carried out to clarify the structural solution and to obtain the output characteristics of the control amplifier which are applied in the estimation of potential properties of the structure. Project calculation Baseline data must be sufficiently reliable, ie. must correspond to the construction characteristics of the vehicle design and the control system as well as to service conditions..A proper deterimination of the torque calculation of torsional resistance in wheels is of utmost importance. Moment of resistance to wheel rotation in place The magnitude of the torque required to rotate drive wheels in place, is affected by: 1 load on wheels; 2 coefficient of friction of the tire surface; 3 dimensions and shape of the tire footprint on the surface, as deterimined by the pressure in the tire and its construction; 4 lateral stiffness of the tire; 5 turning radius of drive wheels; 6 angles of inclination of the pin; 7 moment of friction in pins and steering gear mechanism. To achieve the proper torque values of torsional resistance in drive wheels, it is necessary to take into account all these influential factors, as this provides a lower load on the elements in the control system while enabling easier control and reducing the moment of force on the steering wheel. Moment of resistance to rotating drive wheels in place according to Mitin Mitin obtained the coefficient only for one tire so the use of this formula is practically impossible. Moment of resistance to rotating drive wheels in place according to Taborek Moment of resistance to rotating drive wheels in place according to Lisov This formula takes into account the radius of the tire, but does not take into account the pressure and elastic characteristics of tires. Moment of resistance ito rotating drive wheels in place by Litvinov For the calculation by this formula, it is necessary to know the dependence of the tire footprint surface and the load on it. Moment of resistance to rotating drive wheels in place by Gough Experimental studies have shown that this term is very acceptable. Dimensions of the executive hydraulic cylinder The control amplifier must provide that the wheels rotate in place when the force of the driver on the steering wheel is not above 160 200 N in a complete range of the rotation angles from for the inner wheel to for the outer wheel. Reactive and centering elements of the hydraulic servo control The control system without a hydraulic servo control must have one very important characteristic which is to develop the ability of the driver to feel the road configuration, esp

  4. Pneumatic and Hydraulic Systems in Coal Fluidized Bed Combustor

    Directory of Open Access Journals (Sweden)

    Z. O. Opafunso

    2009-01-01

    Full Text Available Problem statement: This study designed the pneumatic and hydraulic systems in coal fluidized bed combustor. These are fluidization of silica sand bed material, Air distributor, centrifugal fan, electric motor power drive and surface heat exchanger. Approach: The effects of increased gas velocity on silica sand and the resultant drag force formed the basic equations in fluidization. Air distributor was introduced to achieve pressure drop across the beds. Results: The constructed centrifugal fan was driven by selected electric motor based on pressure and temperature changes in the reactor. The dimensions of the heat transfer tube were calculated from fluid flow and energy balance equations. The values obtained were as the follows: Fluidization velocity (1.54 m sec-1, gas velocity through orifice (29.52 m sec-1, the fan electric motor (2 KW, 3 ph at 1500 pm, the steam temperature obtained was 160C from water ambient temperature of 30C and tube length 22 m was coiled into levels in the combustor. Conclusion/Recommendation: Precise specifications of pneumatic and hydraulic systems will adequately address the environment concern of coal fired power supply as a method to address epileptic power supply in Nigeria.

  5. IT-Tools Concept for Simulation and Design of Water Hydraulic Mechatronic Test Facilities for Motion Control and Operation in Environmentally Sensitive Application Areas

    DEFF Research Database (Denmark)

    Conrad, Finn; Pobedza, J.; Sobczyk, A.

    2004-01-01

    This paper presents a proposed IT-Tools concept for modeling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. The designed test rigs have tap water hydraulic components of the Danfoss Nessie product family and equipped with a measurement and data acquisition system. Results of the mathematical modeling, simulation and design of the motion control test rigs are presented. Furthermore, the paper presents selected experimental ...

  6. Test Rig Design and Presentation for a Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Sren; Pedersen, Henrik C.; Andersen, Torben Ole

    presents an introduction with the current state of the art and problem description, followed by a system description, where the system is designed and dimensioned. Based on the design, results from the test rig are presented and analyzed. Finally a conclusion summing up the design, model and test results......The design and development of a hydraulic yaw system for multi MWturbines is presented and the concept explained. As part of the development of the new concept a full scale test rig for a 5 MW wind turbine has been designed and constructed. The test rig is presented along with its unique design...... features. The design process is outlined to give insight in the design criteria driving the design. Loads and yaw demands are based on the IEC 61400-1 standard for wind turbine design, and the loads for this examination are extrapolated from the FAST aero elastic design software. The concepts are based on...

  7. Transient Thermal Hydraulic Analyses of Heavy Water System

    International Nuclear Information System (INIS)

    A research reactor core surrounded by a heavy water (D2O) vessel uses heavy water as a reflector. A Heavy Water System (HWS) is installed to remove the heat generated in heavy water and the vessel itself. The HWS is separated from the primary cooling system of the core. Postulated Initiating Events (PIEs) in the HWS are evaluated for safety purposes. In the present study, transient thermal hydraulic analyses of HWS such as loss of heavy water flow owing to a pump failure, dilution of heavy water owing to a pipe rupture inside a pool, heavy water leakage owing to a pipe rupture outside a pool, and loss of heat removal owing to a secondary cooling system failure are analyzed

  8. Reducing leaks in water distribution networks. Controlling pressure by means of automatic hydraulic valves; Reduccion de fugas en redes de distribucion de agua. Control de la presion mediante valvulas hidraulicas automaticas

    Energy Technology Data Exchange (ETDEWEB)

    Singla Font, S.

    2005-07-01

    Any water distribution network, bet it of drinking water or irrigation water, always loses an inevitable amount. One of the main ways to reduce leaks is to optimise the pressure in the network by means of hydraulic valves with different types of control devices. These can be either completely hydraulic or supplemented by electronic systems. (Author)

  9. Nonlinear Model Predictive Control of a Hydraulic Forestry Crane

    OpenAIRE

    Kalmari, Jouko

    2015-01-01

    In forestry, the level of mechanization has increased significantly in recent decades. Modern forest harvesters, used widely in the Nordic countries, are capable of efficiently felling, delimbing and bucking trees. There is also interest in mechanizing other silvicultural tasks to increase the productivity and decrease the demand for labor. Increasing the level of automation in forest machines could be the next logical step. Forest machines are usually equipped with some sort of hydraulic ...

  10. Robust Non-Chattering Observer Based Sliding Control Concept for Electro-Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole

    2013-01-01

    This paper presents an observer-based sliding mode control concept with chattering reduction, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD's). The proposed control concept requires only common data sheet information and no knowledge on load characteristics. Furthermore the proposed scheme only employ pistonand valve spool positions- and pressure feedback, commonly available in industry. The main target is to overcome problems with linear controllers deteriorating performance due to the inherent nonlinear nature of such systems, without requiring extensive knowledge on system parameters nor advanced control theory. In order to accomplish this task, an integral sliding mode controller designed for the control derivative employing state observation is proposed, based on a generalized reduced order model structure of a VCD with unmatched valve ow- and cylinder asymmetries. It is shown that limited attention can be given to bounds on parameter estimates, that chattering is reduced and the number of tuning parameters is reduced to the level seen in conventional PID schemes. Furthermore, simulation results demonstrate a high level of robustness when subjected to strong perturbations in supply pressure and coulomb friction force, and that tracking accuracy may be reduced to the level of noise. Furthermore, the proposed controller tolerates signicant noise levels, while still remaining stable and accurate.

  11. PERFORMANCE OF AN AERIAL VARIABLE-RATE APPLICATION SYSTEM WITH A HYDRAULICALLY POWERED CHEMICAL PUMP AND SPRAY VALVE

    Science.gov (United States)

    The performance was evaluated for a variable-rate system that consisted of a SATLOC M3 with AirTrac software with WAAS corrected DGPS (5 Hz position update) and an AutoCal II automatic flow controller. This system was installed on an Air Tractor 402B equipped with an auxiliary hydraulic package tha...

  12. Thermal Hydraulic Analysis on Containment Filtered Venting System

    International Nuclear Information System (INIS)

    In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary

  13. Thermal Hydraulic Analysis on Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Suk; Park, Tong Kyu; Lee, Doo Yong; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Lee, Sang Won; Kim, Hyeong Taek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary.

  14. Top actuated reactor control system

    International Nuclear Information System (INIS)

    A nuclear reactor control system employing a plurality of low worth absorber elements which can be individually moved between two positions respectively commensurate with full insertion and full retraction. Each absorber element actuator assembly is a top actuated device located entirely within the reactor pressure vessel and utilizing hydraulic pressure to control and monitor absorber element position. Each absorber element is contained in a guide tube which extends through the fuel assembly. (Patent Office Record)

  15. Analysis of Dither in PWM Control on Electro-hydraulic Proportional Valve

    Directory of Open Access Journals (Sweden)

    Guoping LIU

    2013-11-01

    Full Text Available Plus with modulation (PWM is widely used in proporational control systems for it is efficient, flexible and anti-interference. Due to the friction and hysteresis of electromagnet, hysteresis exists when hydraulic valve in steady-state, and hysteresis influences the dynamic characteristics of the valve seriously,the hysteresis can be improved by superimposing dithers with certain frequency and amplitude to the valve coil. Aiming at the character of anti-unloading power driver circuit ,this paper analyzed the parasitic dither which exists in 24V PWM control?besides?the experiment shows that in a high frequency PWM, dither with independent frequency and amplitude can be generated by changing the frequency of the PWM, in this way, the dithers and average current of coil can be adjusted separately by changing PWM frequency and PWM duty cycle.

  16. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Ross [Ocean Power Delivery Ltd, Edinburgh, Scotland (United Kingdom)

    2006-02-01

    The economic viability of a wave energy converter depends largely on its power take-off system. Active control of the power take-off is necessary to maximise power capture across a range of sea-states and can also improve survivability. The high force, low speed regime of wave energy conversion makes it a suitable application for high-pressure hydraulics. This paper describes the hydraulic power take-off system employed in the Pelamis wave energy converter. The process of the system's development is presented, including simulation and laboratory tests at 1/7th and fullscale. Results of efficiency measurements are also presented. (author)

  17. Thermal hydraulic test for core cooling system using steam generators

    International Nuclear Information System (INIS)

    As a candidate of the new concept safety system for the next generation PWR in Japan, the hybrid safety systems, which are combination of the active and the passive safety systems, and passive core cooling system by natural circulation in the reactor coolant loop with horizontal-type steam generators during Loss of Coolant Accidents (LOCAs) are investigated. The passive safety systems are advanced accumulators (ACC), primary-side and secondary-side automatic-depressurization systems (ADS, SADS), and a gravity-driven safety injection system (GDI). The horizontal steam generator design avoids a siphon break caused from the accumulation of non-condensable gases in the tubes by using a vent line in the channel head of the steam generators. This study investigates the passive core cooling characteristics of horizontal-type steam generators under LOCAs. The integrated thermal-hydraulic test has been performed at the Simulation Loop for the Innovative Mitsubishi Simplified PWR (SLIM) test facility. The facility simulates the prototype plant with the volumetric scaling ratio of 1/1000 and the elevation scaling ratio of 1/1. Experimental results show good vent performance of non-condensable gasses. Furthermore, experiments also show that after a large LOCA steady natural circulation in the reactor coolant loop is resumed after the break portion is submerged. Sufficient core cooling for both small and large LOCA was also confirmed. (author)

  18. FONESYS: The FOrum and NEtwork of SYStem Thermal-Hydraulic Codes in Nuclear Reactor Thermal-Hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S.H., E-mail: k175ash@kins.re.kr [Korea Institute of Nuclear Safety (KINS) (Korea, Republic of); Aksan, N., E-mail: nusr.aksan@gmail.com [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Austregesilo, H., E-mail: henrique.austregesilo@grs.de [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) (Germany); Bestion, D., E-mail: dominique.bestion@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Chung, B.D., E-mail: bdchung@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); D’Auria, F., E-mail: f.dauria@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Emonot, P., E-mail: philippe.emonot@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Gandrille, J.L., E-mail: jeanluc.gandrille@areva.com [AREVA NP (France); Hanninen, M., E-mail: markku.hanninen@vtt.fi [VTT Technical Research Centre of Finland (VTT) (Finland); Horvatović, I., E-mail: i.horvatovic@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Kim, K.D., E-mail: kdkim@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); Kovtonyuk, A., E-mail: a.kovtonyuk@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Petruzzi, A., E-mail: a.petruzzi@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy)

    2015-01-15

    Highlights: • We briefly presented the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS). • We presented FONESYS participants and their codes. • We explained FONESYS projects motivation, its main targets and working modalities. • We presented FONESYS position about projects topics and subtopics. - Abstract: The purpose of this article is to present briefly the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS), its participants, the motivation for the project, its main targets and working modalities. System Thermal-Hydraulics (SYS-TH) codes, also as part of the Best Estimate Plus Uncertainty (BEPU) approaches, are expected to achieve a more-and-more relevant role in nuclear reactor technology, safety and design. Namely, the number of code-users can easily be predicted to increase in the countries where nuclear technology is exploited. Thus, the idea of establishing a forum and a network among the code developers and with possible extension to code users has started to have major importance and value. In this framework the FONESYS initiative has been created. The main targets of FONESYS are: • To promote the use of SYS-TH Codes and the application of the BEPU approaches. • To establish acceptable and recognized procedures and thresholds for Verification and Validation (V and V). • To create a common ground for discussing envisaged improvements in various areas, including user-interface, and the connection with other numerical tools, including Computational Fluid Dynamics (CFD) Codes.

  19. FONESYS: The FOrum and NEtwork of SYStem Thermal-Hydraulic Codes in Nuclear Reactor Thermal-Hydraulics

    International Nuclear Information System (INIS)

    Highlights: • We briefly presented the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS). • We presented FONESYS participants and their codes. • We explained FONESYS projects motivation, its main targets and working modalities. • We presented FONESYS position about projects topics and subtopics. - Abstract: The purpose of this article is to present briefly the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS), its participants, the motivation for the project, its main targets and working modalities. System Thermal-Hydraulics (SYS-TH) codes, also as part of the Best Estimate Plus Uncertainty (BEPU) approaches, are expected to achieve a more-and-more relevant role in nuclear reactor technology, safety and design. Namely, the number of code-users can easily be predicted to increase in the countries where nuclear technology is exploited. Thus, the idea of establishing a forum and a network among the code developers and with possible extension to code users has started to have major importance and value. In this framework the FONESYS initiative has been created. The main targets of FONESYS are: • To promote the use of SYS-TH Codes and the application of the BEPU approaches. • To establish acceptable and recognized procedures and thresholds for Verification and Validation (V and V). • To create a common ground for discussing envisaged improvements in various areas, including user-interface, and the connection with other numerical tools, including Computational Fluid Dynamics (CFD) Codes

  20. ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor

    International Nuclear Information System (INIS)

    Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors

  1. ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mazidi, S., E-mail: samirmazidi@gmail.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Meftah, B., E-mail: b_meftah@yahoo.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Belgaid, M., E-mail: belgaidm@yahoo.com [Faculté de Physique, Université Houari Boumediene, USTHB, BP 31, Bab Ezzouar, Alger (Algeria); Letaim, F., E-mail: fletaim@yahoo.fr [Faculté des Sciences et Technologies, Université d’El-oued, PO Box 789, El-oued (Algeria); Halilou, A., E-mail: hal_rane@yahoo.fr [Division Réacteur NUR, Centre de Recherche Nucléaire de Draria, BP 43 Sebala, Draria, Alger (Algeria)

    2015-08-15

    Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors.

  2. Active control system for high speed windmills

    Science.gov (United States)

    Avery, Don E. (45-437 Akimala St., Honolulu, HI 96744)

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  3. Optimal hydraulic design of new-type shaft tubular pumping system

    Science.gov (United States)

    Zhu, H. G.; Zhang, R. T.; Zhou, J. R.

    2012-11-01

    Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG ?-epsilon turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m3/s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.

  4. Optimal hydraulic design of new-type shaft tubular pumping system

    International Nuclear Information System (INIS)

    Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG ?-? turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m3/s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.

  5. Operating Experience Insights into Pipe Failures for Electro-Hydraulic Control and Instrument Air Systems in Nuclear Power Plant. A Topical Report from the Component Operational Experience, Degradation and Ageing Programme

    International Nuclear Information System (INIS)

    Structural integrity of piping systems is important for plant safety and operability. In recognition of this, information on degradation and failure of piping components and systems is collected and evaluated by regulatory agencies, international organisations (e.g. OECD/NEA and IAEA) and industry organisations worldwide to provide systematic feedback for example to reactor regulation and research and development programmes associated with non-destructive examination (NDE) technology, in-service inspection (ISI) programmes, leak-before-break evaluations, risk-informed ISI, and probabilistic safety assessment (PSA) applications involving passive component reliability. Several OECD member countries have agreed to establish the OECD/NEA 'Component Operational Experience, Degradation and Ageing Programme' (CODAP) to encourage multilateral co-operation in the collection and analysis of data relating to degradation and failure of metallic piping and non-piping metallic passive components in commercial nuclear power plants. The scope of the data collection includes service-induced wall thinning, part through-wall cracks, through-wall cracks with and without active leakage, and instances of significant degradation of metallic passive components, including piping pressure boundary integrity. The OECD/NEA Committee on the Safety of Nuclear Installations (CSNI) acts as an umbrella committee of the Project. CODAP is the continuation of the 2002-2011 'OECD/NEA Pipe Failure Data Exchange Project' (OPDE) and the Stress Corrosion Cracking Working Group of the 2006-2010 'OECD/NEA Stress Corrosion Cracking and Cable Ageing Project' (SCAP). OPDE was formally launched in May 2002. Upon completion of the third term (May 2011), the OPDE project was officially closed to be succeeded by CODAP. SCAP was enabled by a voluntary contribution from Japan. It was formally launched in June 2006 and officially closed with an international workshop held in Tokyo in May 2010. The majority of the member organisations of the two projects were the same, often being represented by the same person. In May 2011, thirteen countries signed the CODAP 1. Term Agreement (Canada, Chinese Taipei, Czech Republic, Finland, France, Germany, Japan, Korea (Republic of), Slovak Republic, Spain, Sweden, Switzerland and the United States). The 1. Term work plan includes the preparation of Topical Reports to foster technical co-operation and to deepen the understanding of national differences in ageing management. The Topical Reports constitute CODAP Event Database and Knowledge Base insights reports and as such act as portals for future database application projects and in-depth studies of selected degradation mechanisms. Prepared in 2013 and published as NEA/CSNI/R(2014)6, a first Topical Report addressed flow accelerated corrosion (FAC) of carbon steel and low alloy steel piping. This, the second Topical Report addresses operating experience with electro-hydraulic control (EHC) and instrument air (IA) system piping. Degradation and failure of EHC or IA piping can adversely affect plant operability, and under certain circumstances lead to safety challenges. Both systems consist of significant lengths of small-diameter piping. The typical EHC system piping material is stainless steel; Type 304 or 316. Plants generally use carbon steel, copper, stainless steel, galvanised steel or combinations of two or more material types for IA system piping. The CODAP Topical Report on 'EHC and IA Piping Systems' includes a primer on the environmental and operational factors affecting the structural integrity of respective system, and evaluates service experience data as recorded in the CODAP Event Database. Also included in the report are descriptions of the national EHC and IA ageing management programme approaches and a summary of other information collected in the CODAP Knowledge Base. The report has been prepared by the CODAP Project Review Group, with support from the CODAP Operating Agent and the CODAP Knowledge Base Coordinator. There are 215

  6. Experimental Study on Cartesian-Space PD Control for Hydraulic Manipulator

    Directory of Open Access Journals (Sweden)

    Sang-Uk Chon

    2014-08-01

    Full Text Available This paper presents Cartesian-space PD control of a hydraulic manipulator. The approach based upon Virtual spring-damper hypothesis is composed of virtual spring effects and virtual damper effects in task space. It has been applied to electrically driven robots. This experiment shows the comparison of Cartesian-space control with typical joint-space control in the performance of straight-line motion for the hydraulic manipulator that easily generate movements of manipulator without spending a huge amount of computational cost

  7. Hydraulic Systems with Tap Water versus Bio-oils

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry.......Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry....

  8. Tap Water Hydraulic Systems for Medium Power Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar.......Presentation of new range of developed tap water hydraulic componets and applications for medium power up to 4 kW and 50 bar....

  9. COBRA-SFS, Thermal Hydraulics of Spent Fuel Storage System

    International Nuclear Information System (INIS)

    1 - Description of program or function: COBRA-SFS is used for steady- state and transient thermal-hydraulic analysis of spent fuel storage systems as well as other heat transfer and fluid flow problems. It is designed to predict flow and temperature distributions under a wide range of flow conditions, including mixed and natural convection. Two auxiliary programs, RADX1 and RADGEN, generate blackbody view factors and calculate radiation exchange factors for unconsolidated spent fuel assemblies to be supplied as input to COBRA-SFS. 2 - Method of solution: The thermal-hydraulic analysis is separated into two parts - a flow field solution and an energy solution. COBRA-SFS solves a set of incompressible subchannel equations for mass and momentum conservation in the coolant and energy conservation in the fuel rods, solid structures, and coolant. The RECIRC solution method, a Newton-Raphson technique, is used to iteratively solve these equations. Radiation heat transfer between rod and slab surfaces is modeled using detailed radiation exchange factors, which are calculated from the geometry of the problem and the emissivities of the participating surfaces. The subchannel equations are fully implicit in time. 3 - Restrictions on the complexity of the problem - PARAMETER statements presently impose a maxima of: 50 channel gap connections, 40 channels, 20 fuel rods, 40 slab connections, 1 fuel types, 6 assemblies, 9 fuel rods interacting with a channel, 6 fuel nodes per fuel rod, 4 axial fuel type divisions. By modifying PARAMETER statements, code dimensioning limits can be changed to fit any given problem, limited only by available storage

  10. Global asymptotic stabilization of large-scale hydraulic networks using positive proportional controls

    DEFF Research Database (Denmark)

    Jensen, Tom Nrgaard; Wisniewski, Rafal

    2014-01-01

    An industrial case study involving a large-scale hydraulic network underlying a district heating system subject to structural changes is considered. The problem of controlling the pressure drop across the so-called end-user valves in the network to a designated vector of reference values under directional actuator constraints is addressed. The proposed solution consists of a set of decentralized positively constrained proportional control actions. The results show that the closed-loop system always has a globally asymptotically stable equilibrium point independently on the number of end-users. Furthermore, by a proper design of controller gains the closed-loop equilibrium point can be designed to belong to an arbitrarily small neighborhood of the desired equilibrium point. Since there exists a globally asymptotically stable equilibrium point independently on the number of end-users in the system, it is concluded that structural changes can be implemented without risk of introducing instability. In addition, structural changes can be easily implemented due to the decentralized control architecture.

  11. Hydraulic Performance of a Downstream Controlled Irrigation Canal equipped with Difeerent Offtake Types

    OpenAIRE

    Rijo, Manuel; Arranja, Carina

    2005-01-01

    Regarding canal management modernization, water savings and water delivery quality, the study presents two automatic canal control approaches of the PI (Proportional and Integral) type: the distant and the local downstream control modes. The two PI controllers are defined, tuned and tested using a hydraulic unsteady flow simulation model, particularly suitable for canal control studies. The PI control parameters are tuned using optimization tools. The simulations are done for a Portuguese pro...

  12. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  13. Fault Diagnosis for Nonlinear Hydraulic-Mechanical Drilling Pipe Handling System

    DEFF Research Database (Denmark)

    Choux, Martin; Blanke, Mogens

    Leakage and increased friction are common faults in hydraulic cylinders that can have serious consequences if they are not detected at early stage. In this paper, the design of a fault detector for a nonlinear hydraulic mechanical system is presented. By considering the system in steady state, two...

  14. MULTIFLEX: a FORTRAN-IV Computer Program for analyzing thermal-hydraulic-structure system dynamics

    International Nuclear Information System (INIS)

    MULTIFLEX is a computer code to calculate hydraulic force for structure evaluation during the LOCA type transient. A description is given of the program and the mathematical representation of the thermal-hydraulic system interacting with the mechanical structure system. It also covers recommended modelings, code verification, and the post-processors, LATFORC and FORCE-2

  15. Stabilizing Gap of Pole Electric Arc Furnace Using Smart Hydraulic System

    Directory of Open Access Journals (Sweden)

    Maher Yahya Sallom

    2015-03-01

    Full Text Available Electric arc furnace applications in industry are related to position system of its pole, up and down of pole. The pole should be set the certain gap. These setting are needed to calibrate. It is done manually. In this research will proposed smart hydraulic to make this pole works as intelligent using proportional directional control valve. The output of this research will develop and improve the working of the electric arc furnace. This research requires study and design of the system to achieve the purpose and representation using Automation Studio software (AS, in addition to mathematically analyzed and where they were building a laboratory device similar to the design and conduct experiments to study the system in practice and compared with simulation.Experimental tests show that the performance of electro hydraulic closed loop system (EHCLS for position control is good and the output results are good and acceptable. The practical results and simulation using (AS software are clearly convergence. It was concluded that the possibility of the implementation of this project in industrial processes such as electric arc furnaces to control the distance between the pole and smelting molten material in addition to other applications.

  16. Prosthetic Knee Systems

    Science.gov (United States)

    ... systems pneumatic (using air) and hydraulic (using fluid). Pneumatic control. These systems: compress air as the knee is ... systems are less effective than hydraulic systems. Hydraulic control. These ... pneumatic systems are often used by active amputees. COMPUTERIZED ( ...

  17. Hydraulic-fracturing controlled dynamics of microseismic clouds

    Science.gov (United States)

    Shapiro, S. A.; Dinske, C.; Rothert, E.

    2006-07-01

    Several dynamic processes related to propagation of hydraulic fracture modify the stress state in rocks and, therefore, they are relevant for triggering of microseismicity. For instance, these are the creation of a new fracture volume, fracturing fluid loss and its infiltration into reservoir rocks as well as diffusion of the injection pressure into the pore space of surrounding rocks and inside the fracture. Using real data, we show that some of these processes can be seen from features of spatio-temporal distributions of the induced microseismicity. Especially, the initial stage of fracture volume opening as well as the back front of the induced seismicity starting to propagate after termination of the fluid injection can be well identified and used for reservoir engineering.

  18. Hydraulic manipulator research at ORNL

    International Nuclear Information System (INIS)

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  19. Analysis of core physics and thermal-hydraulics results of control rod withdrawal experiments in the LOFT facility

    International Nuclear Information System (INIS)

    Two anticipated transient experiments simulating an uncontrolled control rod withdrawal event in a pressurized water reactor (PWR) were conducted in the Loss-of-Fluid Test (LOFT) Facility at the Idaho National Engineering Laboratory. The scaled LOFT 50-MW(t) PWR includes most of the principal features of larger commercial PWRs. The experiments tested the ability of reactor analysis codes to accurately calculate core reactor physics and thermal-hydraulic phenomena in an integral reactor system

  20. Evaluation of thermal-hydraulic parameters for different spectral shift control schemes

    International Nuclear Information System (INIS)

    The past decade has seen a steady escalation in light water reactor (LWR) capital costs, to the point where it is no longer assured that LWRs can generate electrical energy cheaper than coal-fired units, particularly in the United States. The objective of this work is to examine ways in which design simplification can be exploited to reduce nuclear power reactor construction and operating costs. The elimination of poison control in pressurized water reactors (PWRs) has been found a suitable subject for investigation. In this analysis, full reactivity control using boiling during operation has been examined. The ramifications of boiling in a PWR clearly involve many aspects of plant design and operation, such that the analysis could serve a prototypic function for subsequent studies on other plant systems. Spectral shift control using boiling-enhanced voids or moderator displacement offers considerable promise for better uranium utilization. However, schemes to implement such modes of control imply severe challenges to a number of practical engineering constraints. Because of this, thermal-hydraulic parameters have been evaluated for a limiting-case SSCR using only moderator control for different control schemes. The NTHAD code has been used in the present work

  1. Thermal hydraulics and mechanics research on fusion blanket system

    International Nuclear Information System (INIS)

    In-vessel components such as Blanket and Divertor in a fusion reactor have a function of exhausting high heat and particle loads in order to maintain the structural soundness of the reactor. In the International Thermonuclear Experimental Reactor called ITER, build by ITER Organization under the framework of collaboration of seven parties including Japan, there are two kinds of blanket systems will be install. One is a shield blanket, which consists of a first wall (FW) and a block module shielding against neutron flux to a vacuum chamber and a superconducting magnet system. The other blanket system is called as a Test Blanket Module (TBM). TBM is a kind of prototype blanket for a fusion power plant and has functions of breeding of tritium (T) and extraction of energy from fusion plasma. TBM consists of FW and T-breeding / neutron (n)-multiplier zone. A concept of TBM developed by JAEA is water-cooled pebble-bed type, which means that FW and other structures are cooled by pressurized high temperature water and T-breeding / n-multiplier zone consists of multiple layers of pebble bed made of T-breeding and n-multiplier material. This paper describes the status of R and Ds on FW and pebble beds from the view of thermo-hydraulics and mechanics. (author)

  2. Development of an Advanced Hydraulic Fracture Mapping System

    Energy Technology Data Exchange (ETDEWEB)

    Norm Warpinski; Steve Wolhart; Larry Griffin; Eric Davis

    2007-01-31

    The project to develop an advanced hydraulic fracture mapping system consisted of both hardware and analysis components in an effort to build, field, and analyze combined data from tiltmeter and microseismic arrays. The hardware sections of the project included: (1) the building of new tiltmeter housings with feedthroughs for use in conjunction with a microseismic array, (2) the development of a means to use separate telemetry systems for the tilt and microseismic arrays, and (3) the selection and fabrication of an accelerometer sensor system to improve signal-to-noise ratios. The analysis sections of the project included a joint inversion for analysis and interpretation of combined tiltmeter and microseismic data and improved methods for extracting slippage planes and other reservoir information from the microseisms. In addition, testing was performed at various steps in the process to assess the data quality and problems/issues that arose during various parts of the project. A prototype array was successfully tested and a full array is now being fabricated for industrial use.

  3. Apu/hydraulic/actuator Subsystem Computer Simulation. Space Shuttle Engineering and Operation Support, Engineering Systems Analysis. [for the space shuttle

    Science.gov (United States)

    1975-01-01

    Major developments are examined which have taken place to date in the analysis of the power and energy demands on the APU/Hydraulic/Actuator Subsystem for space shuttle during the entry-to-touchdown (not including rollout) flight regime. These developments are given in the form of two subroutines which were written for use with the Space Shuttle Functional Simulator. The first subroutine calculates the power and energy demand on each of the three hydraulic systems due to control surface (inboard/outboard elevons, rudder, speedbrake, and body flap) activity. The second subroutine incorporates the R. I. priority rate limiting logic which limits control surface deflection rates as a function of the number of failed hydraulic. Typical results of this analysis are included, and listings of the subroutines are presented in appendicies.

  4. Thermal-Hydraulic Analysis Tasks for ANAV NPPs in Support of Plant Operation and Control

    Directory of Open Access Journals (Sweden)

    L. Batet

    2007-11-01

    Full Text Available Thermal-hydraulic analysis tasks aimed at supporting plant operation and control of nuclear power plants are an important issue for the Asociación Nuclear Ascó-Vandellòs (ANAV. ANAV is the consortium that runs the Ascó power plants (2 units and the Vandellòs-II power plant. The reactors are Westinghouse-design, 3-loop PWRs with an approximate electrical power of 1000 MW. The Technical University of Catalonia (UPC thermal-hydraulic analysis team has jointly worked together with ANAV engineers at different levels in the analysis and improvement of these reactors. This article is an illustration of the usefulness of computational analysis for operational support. The contents presented were operational between 1985 and 2001 and subsequently changed slightly following various organizational adjustments. The paper has two different parts. In the first part, it describes the specific aspects of thermal-hydraulic analysis tasks related to operation and control and, in the second part, it briefly presents the results of three examples of analyses that were performed. All the presented examples are related to actual situations in which the scenarios were studied by analysts using thermal-hydraulic codes and prepared nodalizations. The paper also includes a qualitative evaluation of the benefits obtained by ANAV through thermal-hydraulic analyses aimed at supporting operation and plant control.

  5. Design of an Electro-Hydraulic System Using Neuro-Fuzzy Techniques

    CERN Document Server

    Branco, P J C

    2000-01-01

    Increasing demands in performance and quality make drive systems fundamental parts in the progressive automation of industrial processes. Their conventional models become inappropriate and have limited scope if one requires a precise and fast performance. So, it is important to incorporate learning capabilities into drive systems in such a way that they improve their accuracy in realtime, becoming more autonomous agents with some degree of intelligence. To investigate this challenge, this chapter presents the development of a learning control system that uses neuro-fuzzy techniques in the design of a tracking controller to an experimental electro-hydraulic actuator. We begin the chapter by presenting the neuro-fuzzy modeling process of the actuator. This part surveys the learning algorithm, describes the laboratorial system, and presents the modeling steps as the choice of actuator representative variables, the acquisition of training and testing data sets, and the acquisition of the neuro-fuzzy inverse-model...

  6. A PC code system for calculation of pressure drop in complex hydraulic systems

    International Nuclear Information System (INIS)

    A program complex for calculation of friction factors for straight tubes and channels, hydraulic resistance factors for shaped parts of pipelines, barries, throttles, etc., as well as pressure drop during steam-water flow through a local resistance is described. The complex is adapted for the IBM PC/XT/AT computer and for ones conformant with them in the MS-DOS system, the immediate-access memory is 310 kbit. The performance is organized in an interactive mode and allows a user ignorant in programming to conduct calculations of complex hydraulic systems

  7. Lead coolant test facility systems design, thermal hydraulic analysis and cost estimate

    Energy Technology Data Exchange (ETDEWEB)

    Khericha, Soli, E-mail: slk2@inel.gov [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Harvego, Edwin; Svoboda, John; Evans, Robert [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Dalling, Ryan [ExxonMobil Gas and Power Marketing, Houston, TX 77069 (United States)

    2012-01-15

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed below: Bullet Develop and demonstrate feasibility of submerged heat exchanger. Bullet Develop and demonstrate open-lattice flow in electrically heated core. Bullet Develop and demonstrate chemistry control. Bullet Demonstrate safe operation. Bullet Provision for future testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimated. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 Degree-Sign C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  8. Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Soli Khericha; Edwin Harvego; John Svoboda; Ryan Dalling

    2012-01-01

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstrate Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  9. Lead coolant test facility systems design, thermal hydraulic analysis and cost estimate

    International Nuclear Information System (INIS)

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or leadbismuth eutectic coolant. Based on review of current world lead or leadbismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed below: Develop and demonstrate feasibility of submerged heat exchanger. Develop and demonstrate open-lattice flow in electrically heated core. Develop and demonstrate chemistry control. Demonstrate safe operation. Provision for future testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimated. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  10. Second order sliding control with state dependent gain and its application to a hydraulic drive

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    The application of sliding modes for control of hydraulic drives appear promising due to strong robustness toward plant uncertainties and disturbances. Especially high order sliding modes may be successfully implemented avoiding the discontinuous control seen in first order sliding controls. However, the very feature of switching about the control target may be undesirable due to finite sampling time and actuator dynamics, and may cause oscillating flow line pressures. This paper discusses a sec...

  11. Debris control at hydraulic structures in selected areas of Europe. Interim report No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Wallerstein, N.; Thorne, C.R.

    1995-11-01

    This interim report contains a review of methods for managing floating debris that have been tested, and employed, at hydraulic structures in Europe. The information is taken from papers, site observations and discussions with researchers and engineers at three major European hydraulic research centers: Delft Hydraulics, The Netherlands; The Hydraulics Institute of the Technical University of Munich, Germany; and the Institute of Hydraulics, Hydrology and Glaciology at the Technical University of Zurich, Switzerland. The interim report is divided into four sections covering different types of structure and the various solutions employed. Chapter one examines run-of-river debris detention and diversion devices. Chapter two discusses debris clogging problems at spillways and assess optimum spillway design with regard to passing debris. Chapter three describes the problem of debris collection at a river hydro-electric power station and examines the solutions tested to alleviate the problem. Chapter four reviews trashrack design criteria, raking equipment and rack vibration problems. The purpose of the European element of this project, together with an ongoing investigation of debris management at US structures, is the assessment of the major debris management systems that have been employed at hydraulic structures.

  12. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    International Nuclear Information System (INIS)

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximum aerodynamic efficiency for below rated wind speeds. The experiments with a small horizontal-axis wind turbine rotor, coupled to a hydraulic circuit, were conducted at the Open Jet Facility of the Delft University of Technology. In theory, the placement of a nozzle at the end of the hydraulic circuit causes the pressure and hence the rotor torque to increase quadratically with flow speed and hence rotation speed. The rotor torque is limited by a pressure relief valve. Results from the experiments proved the functionality of this passive speed control concept. By selecting the correct nozzle outlet area the rotor operates at or near the optimum tip speed ratio

  13. Analytical and experimental investigation of chlorine decay in water supply systems under unsteady hydraulic conditions

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Stoianov, Ivan; Graham, Nigel; Karney, Bryan

    2013-01-01

    This paper investigates the impact of the dynamic hydraulic conditions on the kinetics of chlorine decay in water supply systems. A simulation framework has been developed for the scale-adaptive hydraulic and chlorine decay modelling under steady- and unsteady-state flows. An unsteady decay coeff...

  14. Water hydraulic applications in hazardous environments

    International Nuclear Information System (INIS)

    Water hydraulic technology provides several advantages for devices operating in critical environments. Though water hydraulics has traditionally been used in very rough applications, gives recent strong development of components possibility to build more sophisticated applications and devices with similar capacity and control properties than those of oil hydraulics without the disadvantages oil hydraulic systems. In this paper, the basic principles, possibilities and advantages of water hydraulics, some of the most important design considerations and recent developments of water hydraulic technology are presented. Also one interesting application area, ITER fusion reactor remote handling devices, are discussed. (UK)

  15. Water hydraulic applications in hazardous environments

    International Nuclear Information System (INIS)

    Water hydraulic technology provides several advantages for devices operating in critical environment. Though water hydraulics has traditionally been used in very rough applications, gives recent strong development of components possibility to build more sophisticated applications and devices with similar capacity and control properties than those of oil hydraulics without the disadvantages of oil hydraulic systems. In this paper, the basic principles, possibilities and advantages of water hydraulics are highlighted, some of the most important design considerations are presented and recent developments of water hydraulic technology are presented. Also one interesting application area, ITER fusion reactor remote handling devices, are discussed. (Author)

  16. Development of a thermal-hydraulics experimental system for high Tc superconductors cooled by liquid hydrogen

    International Nuclear Information System (INIS)

    A thermal-hydraulics experimental system of liquid hydrogen was developed in order to investigate the forced flow heat transfer characteristics in the various cooling channels for wide ranges of subcoolings, flow velocities, and pressures up to supercritical. A main tank is connected to a sub tank through a hydrogen transfer line with a control valve. A channel heater is located at one end of the transfer line in the main tank. Forced flow through the channel is produced by adjusting the pressure difference between the tanks and the valve opening. The mass flow rate is measured from the weight change of the main tank. For the explosion protection, electrical equipments are covered with a nitrogen gas blanket layer and a remote control system was established. The first cryogenic performance tests confirmed that the experimental system had satisfied with the required performances. The forced convection heat transfer characteristics was successfully measured at the pressure of 0.7 MPa for various flow velocities.

  17. Hydraulic Fracturing Treatment Controls on Induced Microseismicity Attributes

    Science.gov (United States)

    Reyes-Montes, J. M.; Kelly, C.; Huang, J.; Zhao, X.; Young, R. P.

    2014-12-01

    Hydraulic fracturing imposes stress changes in the treated rock through the injection of a mix of fluid and proppant at variable rates and can result in stimulated microseismicity (induced or triggered) with a wide range of magnitudes associated to the opening of new cracks or the mobilisation of pre-existing fractures. Optimizing the treatment is vital for the economic and sustainable development of hydrocarbon reservoir and for the minimization of potential environmental impacts. The analysis of the induced seismicity and of event parameters provide an estimate of the effect of the treatment and the extent of the changes in the rock reservoir properties affecting fluid conductivity. This gives critical feedback for the optimization of the treatment, especially during real-time monitoring. In this study, we correlate microseismic attributes such as the fracture dimensions, event distribution and b-values with the fluid treatment parameters such as the pumping pressure and the slurry rate across different reservoir treatments. Although the microseismic attributes are influenced by many different factors such as the reservoir elastic properties, the stress regime and in-situ fracturing, we consistently observed positive correlations between the slurry rate, plateau treatment pressure and the fracture dimensions. In addition, the variation and systematic deviation of b-value from the natural average of 1.0 gives an insight into the geomechanical behavior of the reservoir. Similar to b-value, another fractal dimension, D-value, indicates the fracture spatial propagation from linear advancement (D=1.0) to planar distribution (D=2.0) to full space occurrence (D=3.0). By merging microseismic events from multiple treatment stages, we statistically analyzed magnitude distribution and spatial and temporal structure of the microseismic cloud induced during the stimulation of a range of different reservoirs with a total population of ~20,000 MS events. Analysis on multiple treatment projects can provide a first order guidance on selecting optimal treatment parameters.

  18. Hydraulic investigations of sediment-water-systems from the Gorleben region

    International Nuclear Information System (INIS)

    Radionuclide migration in sediment-water-systems is determined, in addition to the sorption of the radionuclide, by the physical interactions of the flowing groundwater and granular skeleton of the sediment, which are called the hydraulic properties of the system sediment/water. Hydraulic properties of the system sediment/water which are important for pollutant migration are its permeability, effective porosity, and hydrodynamic dispersion. The results of the hydraulic investigations of sediment-water-systems from the Gorleben region are summarized. (orig./DG)

  19. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    Energy Technology Data Exchange (ETDEWEB)

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  20. Uprated dc power system and thermal-hydraulic facilities at Columbia University. Final report

    International Nuclear Information System (INIS)

    The necessity of carrying out large scale nuclear thermal-hydraulic simulations is increasing. Such experiments call for large power sources, and to meet those requirements the D.C. power system at the Heat Transfer Research Facility of Columbia University has been upgraded to 11.5 MW. The uprated system, its installations, various subsystems, and operations are described. The thermal-hydraulic loops and their auxiliary systems which are supported by the D.C. power system are also described

  1. Hydraulic modeling of a mixed water level control hydro-mechanical gate

    OpenAIRE

    Cassan, L.; Baume, J-P.; Belaud, G.; Litrico, X.; Malaterre, P-O.; Ribot-Bruno, J.

    2011-01-01

    The article describes the hydraulic functioning of a mixed water level control hydromechanical gate present in several irrigation canals. According to the flow conditions, this automatic gate maintains the upstream level close to a target value for low flow, then it controls the downstream level close to a target, and switches back to control the upstream level to avoid overflow. Such a complex behaviour is obtained via a series of side tanks linked by orifices and weirs. We analyze this beha...

  2. Mode-2 hydraulic control of flow over a small ridge on a continental shelf

    Science.gov (United States)

    Gregg, M. C.; Klymak, Jody M.

    2014-11-01

    Some of the most intense turbulence in the ocean occurs in hydraulic jumps formed in the lee of sills where flows are hydraulically controlled, usually by the first internal mode. Observations on the outer Texas-Louisiana continental shelf reveal hydraulic control of internal mode-2 lasting more than 3 h over a 20 m high ridge on the 100 m deep continental shelf. When control began the base of the weakly stratified surface layer bulged upward and downward, a signature of mode-2. As the westward flow producing control was lost, large-amplitude disturbances, initially resembling a bore in the weakly stratified layer, began propagating eastward. Average dissipation rates inferred from density inversions over the ridge were 10-8 and 10-7W kg-1, one to two decades above local background. Corresponding diapycnal diffusivities, K?, were 10-4 to 10-3 m2 s-1. Short-term mixing averages did not evolve systematically with hydraulic control, possibly owing to our inability to observe small overturns in strongly stratified water directly over the ridge. To test the feasibility of our interpretation of the observations, hydrostatic runs with a three-dimensional MITgcm simulated mode-2 control and intense mixing over the ridge below the interface. Details differed from observations, principally because we lacked three-dimensional density fields to initialize the model which was forced with currents observed by a bottom-mounted ADCP several kilometers east of the ridge. Consequently, the model did not capture all flow features around the bank. The principal conclusion is that hydraulic responses to higher modes can dominate flows around even modest bathymetric irregularities.

  3. Experimental study on steady state property of hydraulic drive control rod

    International Nuclear Information System (INIS)

    An amount of experimental study on steady state property of step cylinder for Hydraulic Drive Control Rod has been achieved, the author obtained the flow margin on steady state property of hydraulic step cylinder, and analyzed the relationship between steady state and design parameters of step cylinder. The results is: the design parameters of step cylinder, weight,size of opposite hole et al, determines the flow margin. The maximum and the minimum holding flow in steady state increase by temperature. The holding flow in different step position at same temperature is the same

  4. Hydraulic and thermal performance assessment of cooling water systems at E.I. Hatch Nuclear Plant

    International Nuclear Information System (INIS)

    In July, 1989, the U. S. Nuclear Regulatory Commission issued Generic Letter 89-13, open-quotes Service Water Problems Affecting Safety-Related Equipmentclose quotes. The Generic Letter was issued because of observed operating problems with corrosion, erosion, biological fouling, silting, and protective coating failure in safety-related heat exchangers and associated cooling water piping at several nuclear power plants. The NRC required that utilities with operating nuclear plants establish a plan for comprehensive evaluation of their open cycle Service Water Systems, including: ongoing surveillance and control; testing of safety-related heat exchangers to verify heat transfer capability; inspection and maintenance of piping and water-cooled heat exchangers; confirmation that the service water system is capable of performing its intended function in accordance with the plant design basis; confirmation that maintenance and operating practices, emergency procedures, and training are adequate to ensure that safety-related equipment will perform as intended. As an integral part of the Georgia Power Company response to the Generic Letter, a personal computer-based hydraulic flow model was developed for the Plant Service Water Systems (PSW) on both units of the E. I. Hatch Nuclear Plant (HNP). The Bechtel-developed BALANCE program and PLANTSIM option were selected for this effort. Bechtel's hydraulic network computer program was developed and used successfully for flow balancing at the Limerick Generating Station during initial plant startup. The BALANCE hydraulic network model provides an accurate analytical representation of the Hatch Plant Service Water System on each unit. A summary of program capabilities and modeling assumptions, as well as observations which have been made by comparison of program predictions with test results, is presented here

  5. Monitoring and control of the hydraulic fluid for economical use of shield supports; Ueberwachung und Steuerung der Hydraulikfluessigkeit fuer den wirtschaftlichen Einsatz von Schildausbau

    Energy Technology Data Exchange (ETDEWEB)

    Langefeld, O. [Abt. fuer Maschinelle Betriebsmittel in Bergbau und Geotechnik des Inst. fuer Bergbau, TU Clausthal, Clausthal-Zeilerfeld (Germany); Mozar, A. [Deutsche Steinkohle AG (DSK), Herne (Germany). HFA-Onlinemessung im Servicebereich Technik; Hunfeld, H.H.

    2006-05-29

    For fire protection reasons shield supports in the coal mining industry are operated with water as hydraulic fluid, to which 1.5 to 3% HFA concentrate must be added according to the corrosive property of the water to ensure protection against corrosion, lubrication properties and biostability in the entire hydraulic system. Permanent monitoring of the hydraulic fluid used is necessary to achieve maximum life and low repair costs of the hydraulic components. The hitherto customary monitoring by manual refractometer measurements at the face will no longer be suitable for the economic importance of powered supports. About 25% of the repair costs can be saved by an HFA fluid with an optimum formulation by reducing the damage caused by corrosion. A process refractometer for online measurement and control of the HFA concentration, which has proved its suitability for the mining industry in a trial at the West colliery of DSK, has been developed for the latter. (orig.)

  6. Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator

    Directory of Open Access Journals (Sweden)

    Han Songshan

    2015-02-01

    Full Text Available A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command, but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output (MISO fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators. Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties.

  7. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Kramer, Morten; Vidal, Enrique

    2013-01-01

    The Wavestar Wave Energy Converter (WEC) is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO) system, converting the wave induced motion of the floats into a steady power output to the grid...... pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy...... absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC) is created, allowing near loss free discrete force control. This...

  8. Characterization of Hydraulically Significant Discontinuities in Mudrocks at the Waste Control Specialists (WCS) Site, West Texas

    Science.gov (United States)

    Kuszmaul, J. S.; Holt, R. M.; Powers, D. W.; Beauheim, R.; Pickens, J. F.; grisak, G. E.; Hughes, E.; Cook, S.

    2011-12-01

    Triassic mudrocks of the Dockum Group (Cooper Canyon Formation) host four, below-grade landfills at the Waste Control Specialists (WSC) site in Andrews County, Texas, including: a hazardous waste landfill and three radioactive waste landfills. At many radioactive waste disposal facilities, the long-term performance of the facility may be influenced by the transport of radionuclides through interconnected fracture networks. WCS developed an integrated geologic mapping and hydraulic testing program to evaluate the hydraulic significance of discontinuities within Dockum rocks. At the WCS site, the Dockum consists of mudrocks with sparse siltstone/sandstone interbeds that developed in a semi-arid environment from an ephemeral meandering fluvial system. Sedimentary studies reveal that the mudrocks are ancient floodplain vertisols (soils with swelling clays) and siltstone/sandstone interbeds are fluvial channel deposits that were frequently subaerially exposed. Rock discontinuities, including fractures, were mapped during the excavation of the WCS radioactive waste landfills along vertical faces prepared by the construction contractor. Face locations were selected to insure nearly complete vertical coverage for each landfill. Individual discontinuities were mapped and their strike, dip, length, roughness, curvature, staining, and evidence of displacement were described. In the three radioactive waste disposal landfills, over 1750 discontinuities across 35 excavated faces were mapped and described, where each face was nominally 8 to 10 ft tall and 50 to 100 ft long. On average, the orientation of the discontinuities was horizontal, and no other significant trends were observed. Mapping within the landfill excavations shows that most discontinuities within Dockum rocks are horizontal, concave upward, slickensided surfaces that developed in the depositional environment, as repeated wetting and drying cycles led to shrinking and swelling of floodplain vertisols. Fractures that showed staining (a possible indicator of past or present hydraulic activity) are rare, vertical to near-vertical, and occur mainly in, and adjacent to, mechanically stiff siltstone and sandstone interbeds. No interconnected fracture networks were observed. A series of pressurized air tests were conducted to evaluate fracture interconnectivity at and below the landfill facilities. Three pairs of vertical and three pairs of inclined boreholes were tested at depths ranging from 40 to 215 feet below ground surface. Borehole packers and volume-displacement tools were placed in each borehole to isolate the injection and observation horizons and minimize borehole storage effects, respectively. Injection pressures ranged from 1 to 5 psig. Pressures within the injection boreholes quickly stabilized and slowly decayed due to porous media flow, while no pressure changes occurred in the observation boreholes. These tests confirm the absence of hydrologically significant fracture networks in the subsurface at the WCS site.

  9. Thermal hydraulic performance of naturally aspirated control rod housing assemblies

    International Nuclear Information System (INIS)

    Savannah River Site reactors are comprised of heat generating fuel/target assemblies, control rods which regulate reactor power, and heavy water which acts as the coolant and as a moderator. The fuel/target assemblies are cooled by the downflow of heavy water while the control rods are cooled via upflow. Five control rods are grouped with two safety rods in seven-channel assemblies called septifoils. Under normal operating conditions, the reactor power level, radial shape flux and axial power flux are regulated by the positioning of the control rods. The control rods are solid rods of a lithium-aluminum alloy with an thin aluminum outer sheath. Lithium is a good absorber of neutrons and, thus control rod temperatures rise with reactor power. At conditions of sufficiently high reactor power and degraded coolant flow, the control rods could heat sufficiently to cause a metallurigical failure of the sheath leading to molten material coming in contact with water and the possibility of a steam explosion. An accident has been postulated as part of the analysis involving the safety upgrade of Savannah River Site reactors in which the housing is not seated on the pin. Coolant from the upflow pin would not be directed into the housing but, into the moderator space surrounding the housing. Only naturally aspirated cooling due to buoyancy effects would be available to cool the control rods and the coolant mass flow rate would drop significantly from its nominal value. In this study, the mechanisms and limits of cooling heated rods housed in an unseated septifoil are addressed. Experiments were conducted on a shortened, prototypic housing with electrically heated rods to gain an understanding of the phenomena governing the cooling in such a case and develop data which can be used to evaluate predictive models. These experiments are described, their results discussed, and the predictions of current models is presented

  10. Macrocalibration in the process of hydraulic modelling of water supply systems

    OpenAIRE

    antl, Sao

    2007-01-01

    The thesis presents an integrated approach to hydraulic modelling of water supply systems, which is mostly based on our own research. The starting phase of hydraulic modelling requires appropriate setting up of a geographic information system and preparation of databases of all entities. This is today crucial for efficient management of water supply systems as far as technical as well as economic and legal aspects are concerned. Appropriate management of data on a water supply ...

  11. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  12. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    International Nuclear Information System (INIS)

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author)

  13. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  14. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved

  15. Design and development of water hydraulic pressure compensated flow control valve

    International Nuclear Information System (INIS)

    The Pressure Compensated Flow Control Valves (PCFCVs) are required for maintaining constant flow in a hydraulic circuit as there is fluctuation in supply or return pressure and other resistance on actuators. The water hydraulic PCFCV has been designed which can control the load flow as well as pump pressure. For achieving constant flow requirement, a hydrostate has been designed which maintains a constant differential pressure across a manually settable valve and hence maintain constant flow across the valve. The pump pressure control is achieved by controlling the sensing line pressure of hydrostate with the help of an air piston actuated pilot operated relief valve. The paper discusses conceptual design, mathematical modelling, parameter optimization and design of PCFCV. (author)

  16. Program system for thermal-hydraulic and thermomechanical design of fusion blanket

    International Nuclear Information System (INIS)

    A computer program system THERMECH for THERmoMECchanical and THERmal-Hydraulic design of fusion blanket has been developed. The THERMECH executes blanket design by following processes: 1) preliminary thermal-hydraulic design of blanket by one-dimensional analysis, 2) pre-processing, calculation, modifying and post-processing of two-dimensional thermal-hydraulic and thermomechanical analyses, 3) pre-processing, calculation and post-processing of three-dimensional thermomechanical analysis, 4) calculation of inelastic strain and resultant stress by one-dimensional analysis. This paper presents the outline of the THERMECH program system and the application to JAERI Tokamak Power Reactor

  17. Second Order Sliding Mode Control with Prescribed Convergence Law for Electro-Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.; Bech, Michael Mller

    2013-01-01

    This paper discusses the application of second order sliding modes for position tracking control of electro-hydraulic valve-cylinder drives (VCDs). The target is to introduce increased tracking- and transient performance compared to conventional linear approaches, without extending the number of tuning parameters. The proposed controller utilizes basic component knowledge commonly available from data sheets, as well as pressure-, valve position-, piston position- and velocity measurements. Resu...

  18. Discrete Learning Control with Application to Hydraulic Actuators

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Hansen, Michael R.

    2015-01-01

    In this paper the robustness of a class of learning control algorithms to state disturbances, output noise, and errors in initial conditions is studied. We present a simple learning algorithm and exhibit, via a concise proof, bounds on the asymptotic trajectory errors for the learned input and th...

  19. Hybrid Control System for the ATLAS Facility

    International Nuclear Information System (INIS)

    A thermal-hydraulic integral effect test (IET) loop, advanced thermal-hydraulic test loop for accident simulation (ATLAS), has been constructed in the Korea Atomic Energy Research Institute (KAERI). For the data acquisition and control system, hybrid control system (HCS) was adopted to enhance the integrated performance of demanding process control application for acquiring of experimental data. The whole feature of the data acquisition and control system consists of 1 set of the HCS for headware connection, 1 server station for signal processing schemes, 1 engineering work station (EWS) for control logics, and 3 operator interface station (OPS) for human-machine interface. The total number of signals for the data acquisition and the system control of the atlas facility is up to about 2010 channels, which are distributed in 16 chasses which are installed in 10 cabinets. The main focus of this paper is to present the technical configuration of the HCS of the atlas facility

  20. Use of sensitivity-information for the adaptive simulation of thermo-hydraulic system codes

    International Nuclear Information System (INIS)

    Within the scope of this thesis the development of methods for online-adaptation of dynamical plant simulations of a thermal-hydraulic system code to measurement data is depicted. The described approaches are mainly based on the use of sensitivity-information in different areas: statistical sensitivity measures are used for the identification of the parameters to be adapted and online-sensitivities for the parameter adjustment itself. For the parameter adjustment the method of a ''system-adapted heuristic adaptation with partial separation'' (SAHAT) was developed, which combines certain variants of parameter estimation and control with supporting procedures to solve the basic problems. The applicability of the methods is shown by adaptive simulations of a PKL-III experiment and by selected transients in a nuclear power plant. Finally the main perspectives for the application of a tracking simulator on a system code are identified.

  1. Material fatigue data obtained by card-programmed hydraulic loading system

    Science.gov (United States)

    Davis, W. T.

    1967-01-01

    Fatigue tests using load distributions from actual loading histories encountered in flight are programmed on punched electronic accounting machine cards. With this hydraulic loading system, airframe designers can apply up to 55 load levels to a test specimen.

  2. Hydraulic simulation of the systems of a nuclear power plant for charges calculation in piping

    International Nuclear Information System (INIS)

    This work presents a general description of the methodology used by the ENACE S.A. Fluids Working Group for hydraulics simulation of a nuclear power plant system for the calculation charges in piping. (Author)

  3. Hydraulic Capsule Pipeline Transport System : Technical Charakteristics, Modelling and Applications.

    Czech Academy of Sciences Publication Activity Database

    Berman, V.; Vlask, Pavel

    Wroclaw : Publishers of Agricultural Univeristy of Wroclaw, 2002 - (Sobota, J.; Verhoeven, R.), s. 259-267 ISBN 83-87866-34-2. [International Conference on Transport and Sedimentation of Solid Particles /11./. Ghent (BE), 09.09.2002-12.09.2002] R&D Projects: GA AV ?R IBS2060007 Keywords : hydraulic capsule pipelining * flow parameters calculation * experimental results Subject RIV: BK - Fluid Dynamics

  4. RESEARCH ON HYDRAULIC SERVO AMPLIFIERS USED IN MARINE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Ali BEAZIT

    2010-06-01

    Full Text Available This paper presents numerical simulations for the mecano-hydraulic servoamplifier with a special kind of distributor. This distributor has different covering for the admission and evacuation flow. The purpose of this kind of distributor is to diminuate the high frequency auto-oscillations of the servoamplifier.

  5. RESEARCH ON HYDRAULIC SERVO AMPLIFIERS USED IN MARINE SYSTEMS

    OpenAIRE

    BEAZIT Ali; Gheorghe SAMOILESCU; Sander CALISAL; Adriana SPORIS

    2010-01-01

    This paper presents numerical simulations for the mecano-hydraulic servoamplifier with a special kind of distributor. This distributor has different covering for the admission and evacuation flow. The purpose of this kind of distributor is to diminuate the high frequency auto-oscillations of the servoamplifier.

  6. Electromotive/hydraulic pressure type reactor control rod drives

    International Nuclear Information System (INIS)

    The mechanism of the present invention can detect an abnormality of a shock absorbing mechanism by utilizing a detection mechanism for control rod fuel insertion position upon scram without deteriorating the essential function. That is, a stopper is disposed between upper and lower two structural members of the shock absorbing mechanism for restricting relative movement in the direction of parting both of the structural members. With such a constitution, if the upper structural members should be sticked and a flush spring is kept to be compressed, the lower structural member can not protrude downward relative to the upper structural member by an effect of the stopper. Accordingly, when a piston and a control rod are extracted by an electric motor after completion of scram, although a control rod position signal of a rotation detector is changed, full insertion signal is continued to be saved from a magnetic sensor. Accordingly, if the state of both of the signals is distinguished, abnormalities of the shock absorbing mechanism can be detected. (I.S.)

  7. Effects by sea wave on thermal hydraulics of marine reactor system

    International Nuclear Information System (INIS)

    This paper describes the experiments of the first Japanese nuclear ship 'Mutsu', to investigate the effects of sea wave on the thermal hydraulics of marine reactor system while cruising through various sea conditions. The experimental data were analyzed in time-domain by RETRAN-02/GRAV code. This code was modified so as to simulate the ship motion effect on reactor thermal hydraulics. The data were also analyzed in frequency domain by Blackman-Turkey method for the calculation of the spectrum and response function. The experiments involving ship maneuvering were performed by cruising on different wave heights, as well as wave directions in the northern Pacific ocean. From the experiments, vertical acceleration due to ship motion was found to induce direct variation of water levels in the SGs and the pressurizer. The water level variations were largest in the head wave, but smallest in the following wave. On the other hand, the following wave caused greater variation of the reactor power when the feed back control for the shaft revolution speed was used. Mechanism of response of water levels and reactor power with respect to the external forces are discussed. The response function (gain or phase shift) of reactor power to steam flow variation by the wave during cruising at rough sea condition was found to be roughly that without the work of control rod. (author)

  8. Fault Diagnosis for Nonlinear Hydraulic-Mechanical Drilling Pipe Handling System

    DEFF Research Database (Denmark)

    Choux, Martin; Blanke, Mogens

    2011-01-01

    Leakage and increased friction are common faults in hydraulic cylinders that can have serious consequences if they are not detected at early stage. In this paper, the design of a fault detector for a nonlinear hydraulic mechanical system is presented. By considering the system in steady state, two residual signals are generated and analysed with a composite hypothesis test which accommodates for unknown parameters. The resulting detector is able to detect abrupt changes in leakage or friction gi...

  9. Visual and intelligent transients and accidents analyzer based on thermal-hydraulic system code

    International Nuclear Information System (INIS)

    Full text of publication follows: Many thermal-hydraulic system codes were developed in the past twenty years, such as RELAP5, RETRAN, ATHLET, etc. Because of their general and advanced features in thermal-hydraulic computation, they are widely used in the world to analyze transients and accidents. But there are following disadvantages for most of these original thermal-hydraulic system codes. Firstly, because models are built through input decks, so the input files are complex and non-figurative, and the style of input decks is various for different users and models. Secondly, results are shown in off-line data file form. It is not convenient for analysts who may pay more attention to dynamic parameters trend and changing. Thirdly, there are few interfaces with other program in these original thermal-hydraulic system codes. This restricts the codes expanding. The subject of this paper is to develop a powerful analyzer based on these thermal-hydraulic system codes to analyze transients and accidents more simply, accurately and fleetly. Firstly, modeling is visual and intelligent. Users build the thermalhydraulic system model using component objects according to their needs, and it is not necessary for them to face bald input decks. The style of input decks created automatically by the analyzer is unified and can be accepted easily by other people. Secondly, parameters concerned by analyst can be dynamically communicated to show or even change. Thirdly, the analyzer provide interface with other programs for the thermal-hydraulic system code. Thus parallel computation between thermal-hydraulic system code and other programs become possible. In conclusion, through visual and intelligent method, the analyzer based on general and advanced thermal-hydraulic system codes can be used to analysis transients and accidents more effectively. The main purpose of this paper is to present developmental activities, assessment and application results of the visual and intelligent analyzer. (authors)

  10. Development of semi-active hydraulic damper as active interaction control device to withstand external excitation

    Indian Academy of Sciences (India)

    Ming-Hsiang Shih; Wen-Pei Sung

    2014-02-01

    Semi-automatic control systems have the characteristics of being adaptable and requiring low energy. The objective of this research was to study the performance of an improved DSHD (Displacement Semi-Active Hydraulic Damper) by converting it to AIC (Active Interaction Control Device) with the addition of an accumulator. The prototype was tested using full-scale elements for examining the structural displacement, and typical responses of the interacting interface element developed in this research, the pressure variation of the pressure storage device, and the energy dissipation hysteresis loop when the structure installed with these elements is subjected to external force of various magnitude. The laboratory results confirm that the device developed in this research is capable of applying the energy dissipation characteristics of DSHD so that these elements are appropriate for developing the proposed AIC. The mutual interaction between the subordinate structure and the main structure to be protected is capable of transforming the quake energy applied to the main structure to the subordinate structure so that the objective of minimizing the deformation of main structural can be achieved.

  11. Steam-Hydraulic Turbines Load Frequency Controller Based on Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Ali M. Yousef

    2012-08-01

    Full Text Available This study investigates an application of the fuzzy logic technique for designing the load-frequency control system to damp the frequency and tie line power oscillations due to different load disturbances under the governor deadzones and GRC non-linearity. Integral controller are designed and compared with the proposed fuzzy logic controller. To validate the effectiveness of the proposed controller, two-area load frequency power system is simulated over a wide range of operating conditions and system parameter changes. Further, comparative studies between the conventional PID control and proposed efficient fuzzy logic load frequency control are included on the simulation results. Programs Matlab software are developed for simulation. The digital results prove the power of the present fuzzy load-frequency controller over the conventional. PID controller in terms of fast response with less overshoot and small settling time.

  12. Algorithm for automatic manufacturing control of general hydraulic surface.

    Czech Academy of Sciences Publication Activity Database

    Rssler, Tom; Hrabovsk, Miroslav

    Praha : Faculty of Transportation Sciences CTU, Institute of Theoretical and Applied Mechanics AS CR Czech Society of Mechanics, 2001 - (Jrov, J.; Jirouek, O.; Kult, J.), s. 285-290 ISBN 80-86246-09-4. [International Conference Experimental Stress Analysis 2001 /39./. Tbor (CZ), 04.06.2001-06.06.2001] R&D Projects: GA Mk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : automatic control * error function * trend function * total deviation function Subject RIV: BH - Optics, Masers, Lasers

  13. Nuclear reactor with hydraulic operation of the control rod clusters

    International Nuclear Information System (INIS)

    The reactor comprises a vessel closed by a slab and a core containing fuel assemblies. Two different types of fuel rod clusters are used; the vessel is fitted with an internal structure above the core provided with guide elements for the clusters. The mechanism of the first cluster type is a vertical cylinder fitted with the internal structure of the reactor, which together with a piston encloses operating chambers from which a group of rods is suspended, being part of or forming the actual cluster. The operating chamber is connected to chamber vice pipes and control valve, the pressure in chamber being less than the pressure in the vessel

  14. Hydraulic turbines

    International Nuclear Information System (INIS)

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  15. Experimental assessment of control plug hydraulics in PFBR

    International Nuclear Information System (INIS)

    Control Plug (CP) is an important component in a Liquid Metal Cooled Fast Breeder Reactor (LMFBR). It houses Absorber Rod Drive Mechanisms (ARDM) for controlling the reactor power and shutting down the reactor when there is a requirement. It also houses thermocouples for monitoring the core outlet temperature and safety related component like Failed Fuel Localization Modules (FFLM). CP is a cylindrical porous shell and located vertically right above the core. A portion of sodium flow coming out from the core enters the CP. This sodium flows inside the CP and exits from porous outer shell to finally mix with the hot plenum. High magnitude of sodium cross flow velocity inside the CP may cause Flow Induced Vibration (FIV) to the internal components. Hence it is very important to know the velocity distribution inside the CP. Calculating the velocity distribution inside the CP using computational technique is difficult because the internal geometry of CP is very complex. Therefore experiments have been carried out to measure velocity inside the CP in a large scale (1/4 scale) model of Prototype Fast Breeder Reactor (PFBR) using water as simulant and respecting the appropriate similarity criteria. Finally the model measurements have been extrapolated to prototype condition. (author)

  16. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  17. Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis

    International Nuclear Information System (INIS)

    MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)

  18. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems.

    Science.gov (United States)

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442

  19. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    Science.gov (United States)

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.

  20. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    Science.gov (United States)

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442

  1. Groundwater pollution control : a challenge to hydraulic research

    OpenAIRE

    Kobus, Helmut

    1993-01-01

    Groundwater constitutes a major natural resource for drinking water supply. The serious deterioration of groundwater quality observed in all industrialized and densely populated countries can be considered as an unspectacular, but ubiquitous "man-caused environmental disaster". Groundwater management has to match the increasing demands of drinking water supply (and other uses) with the constraints of the natural groundwater system with respect to both quantity and quality. In this paper, grou...

  2. Hydraulic relationships between shallow groundwater sub-systems discharging to surface water bodies and underlying regional systems

    Energy Technology Data Exchange (ETDEWEB)

    Modica, E.

    1993-01-01

    Hypothetical flow models and a flow simulation of the Upper Rancocas watershed system in New Jersey were used to characterize the boundary zone separating stream sub-system flow and regional flow, and to determine the flow patterns within stream sub-systems. Estimates of flow in three-dimensional aquifer systems consisting of regional and stream sub-system flow regimes were made with numerical flow solutions and particle tracking analysis. Hydraulic parameters that affect stream system flow patterns were systematically modified in order to evaluate cause-and-effect relations and to determine the degree to which parameters can influence flow in the system. Stream sub-system geometry and its flow patterns are largely controlled by the quantity and distribution of stream discharge. The relative amount and location of discharge along a stream channel is in turn affected by variations in anisotropy, aquifer thickness, recharge rates, streambed elevation, and drainage density. The bounding surface' is an interaction zone between the stream sub-system and the adjacent flow system, the form of which is sensitive to system boundaries and hydraulic properties of the aquifer and stream sub-system. Regional flow is restricted in thin aquifer systems. Stream source areas in thin aquifers tend to be more extensive. Thin systems limit the development of flow to remote or major regional sinks that serve as common discharge outlets for the system. Thick aquifers allow for development of deeper flow systems under local stream sub-systems. Streams are line-sinks that induce complex flow patterns in a flow field whereby flow from near and far source areas are drawn into common discharge zones. The age range of groundwater that discharges along the stream varies as a function of distance downstream from the start-of-flow. The highest age ranges occur near the stream terminus.

  3. Thermal-hydraulic characteristics of a combustion engineering system 80 steam generator. Volume 2. Appendix A

    International Nuclear Information System (INIS)

    The Comparative Thermal-Hydraulic Evaluation of Steam Generators program represents an analytical investigation of the thermal-hydraulic characteristics of four PWR steam generators. The analytical tool utilized in this investigation is the CALIPSOS code, a three-dimensional flow distribution code. This report presents the steady state thermal-hydraulic characteristics on the secondary side of a Combustion Engineering System 80 steam generator. Details of the CALIPSOS model with accompanying assumptions, operating parameters, and transport correlations are identified. Comprehensive graphical and numerical results are presented to facilitate the desired comparison with other steam generators analyzed by the same flow distribution code

  4. The hydraulic calculation of FFR's control assembly in steady condition

    International Nuclear Information System (INIS)

    The duct of FFR's control assembly is of hexagonal shape outside and of round shape inside, 7 absorber rods in triangular lattice with wrapped wire for spacer are fixed in a movable round thimble. In order to reduce the flow rate in annular gap, a maze design is used in the both ends of the duct. Except the differential static pressure, the pressure losses in the bundle and maze are the main parts of the total pressure drops in bundle subchannels and gap subchannels respectively. Therefore, the selection of the 4 physical model and its calculation errors are mainly fallen on the final computation precision. This report described the influence of the maze structure parameters, especially the effect of width of the gap on the resistance coefficient, and a current optimum design criteria for the maze was set up. In the calculation of the pressure drop induced by the bundle, three methods including K.Rehme model, E.H.Novendstern model and C.Chiu model were selected, and two codes named HYFC1 and HYFCA were developed. Author considers that the model 3 is more suitable for this structure through analyses and comparison of the results. The main calculation results are given

  5. Performance Test of the Damping System Using a Spring-Hydraulic Damper

    International Nuclear Information System (INIS)

    A control element drive mechanism (CEDM) is a reactor regulating system, which is to insert, withdraw or maintain a control rod containing a neutron absorbing material within a reactor core to control the reactivity of the core. The ball-screw type CEDM for the small and medium research reactor is under development in KAERI. The CEDM is placed at the top of the reactor pressure vessel head, and is connected with the top of the control element assembly located in the reactor core through the extension shaft. The CEDM consists of the pressure vessel, the step motor, the gear and the ball-screw assembly. Also, to reduce the impact force due to the free drop of the movable parts in the emergent situation, a damping system using a spring-hydraulic damper is installed at the top of ball-screw assembly. This paper describes the experimental results to verify the damping performance in case of the emergent drop of the CEDM. The performance tests are performed by using a full-scale structure except the control element assembly, and a displacement after an impact of a guide shaft and the damping system is measured by using a linear variable differential transformer (LVDT). The influence of the drop height on the damping behavior is also estimated on the basis of test results

  6. Summary of the thermal hydraulic design of existing and proposed LANL target systems

    International Nuclear Information System (INIS)

    The thermal hydraulics of three LANL target systems - the existing Lujan Center target, the LRIP target system, and the LPSS target system - are summarized. The existing Lujan Center target system was designed for 80 kW of beam power, while the LRIP target system is designed for 160 kW. The LPSS target is designed for 1 MW of beam power. (author)

  7. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Enrique Vidal

    2013-08-01

    Full Text Available The Wavestar Wave Energy Converter (WEC is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO system, converting the wave induced motion of the floats into a steady power output to the grid. In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC is created, allowing near loss free discrete force control. This paper presents a complete PTO system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical power is achievable for all relevant sea conditions.

  8. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Kramer, Morten

    2013-01-01

    The Wavestar Wave Energy Converter (WEC) is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO) system, converting the wave induced motion of the floats into a steady power output to the grid. In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC) is created, allowing near loss free discrete force control. This paper presents a complete PTO system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical power is achievable for all relevant sea conditions.

  9. Finite-time convergent continuous control design based on sliding mode algorithms with application to a hydraulic drive

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole

    2014-01-01

    Sliding modes impose strong robustness toward parametric plant uncertainties and disturbances and provide for accurate tracking performance in control systems. However, in physical systems the application of sliding modes may give rise to undesirable chattering of the control signal due to actuator dynamics, possible excitation of unmodelled dynamics and structural resonant modes of load systems, etc. This may be avoided by application of smoothing functions imposing boundary layers on the control constraint, or by carrying out the design in relation to the control derivative. However, such boundary layers introduce additional design parameters and actuator dynamics may not allow the desired control accuracy to be reached. In this paper continuous controllers are proposed, with the designs taking their offset in some well-known sliding controllers. The proposed controllers preserve the finite-time convergence properties known from sliding control while at the same time avoiding control chattering, however, on the cost of robustness. Experimental results confirm the announced properties when applied to a hydraulic valve-cylinder drive, and demonstrates superior performance over conventional linear controllers.

  10. Hydraulic characteristics of the N Reactor core and reactor cooling system

    International Nuclear Information System (INIS)

    In conjunction with the NUSAR program, the need was recognized for well substantiated pressure drop correlations for the N Reactor core to support in-depth safety analysis consistent with currently-available technology. Additionally, it was considered desirable to reconfirm the hydraulic characteristics of the reactor coolant system in the light of improved understanding of the hydraulic features of the current reactor fuel loading. The report summarizes the results of laboratory tests and analysis accomplished to meet the above objectives

  11. Improving the Hydraulic Performance of Stormwater Infiltration Systems in Clay Tills

    DEFF Research Database (Denmark)

    Bockhorn, Britta

    2015-01-01

    Many cities of the Northern Hemisphere are covered by low permeable clay tills, which pose a challenge for stormwater infiltration practices. However, clay tills are amongst the most heterogeneous types of sediments and hydraulic conductivities can vary by several orders of magnitude. This PhD study was initiated with the objective to test and evaluate if the hydraulic performance of stormwater infiltration systems can be significantly improved if the site-specific geological heterogeneity is in...

  12. Application of flow network models of SINDA/FLUINT{sup TM} to a nuclear power plant system thermal hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ji Bum [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Jong Woon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUINT{sup TM} has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA). 5 refs., 10 figs. (Author)

  13. Application of flow network models of SINDA/FLUINTTM to a nuclear power plant system thermal hydraulic code

    International Nuclear Information System (INIS)

    In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUINTTM has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA)

  14. The Control System Modeling and The Mechanical Structure Analysis For EMCVT

    OpenAIRE

    Zhang, Lei; Cong, Xiaomei; Hujian Pan; Zuge CAI; Xiumin YANG

    2013-01-01

    The current automotive metallic belt continuously variable transmission (CVT) mostly use hydraulic system to push the cone disc and achieve the speed ratio control. A new Electrical Mechanical Continuously Variable Transmission without hydraulic control (Electrical Mechanical CVT, EMCVT) studied in this paper, uses the rolling screw mechanism to press cone disc, achieves speed regulation through the electronic control mechanism, and abandons the energy-intensive hydraulic system. In this pape...

  15. Hydraulic system with several stages for prestressed bolts and gudgeon pins

    International Nuclear Information System (INIS)

    This invention relates to a hydraulic system to bring bolts and gudgeon pins into a prestressed state so that the nut may be tightened in this position. In the nuclear industry where it is necessary to place a large number of bolts or pins into significant prestress to ensure the closing of reactor vessel closures, several stages each comprising a piston and a cell of analogous configuration have to be superimposed in the same hydraulic stretcher. The description is given of a hydraulic prestressed bolt and gudgeon pin stretcher with several stages in which the deformations of the various components of each stage are significantly equal and of a set of several hydraulic stretchers for simultaneously prestressing multiple bolts and pins as well as the easy and simultaneous handling of this set

  16. Summary and evaluation of available hydraulic property data for the Hanford Site unconfined aquifer system

    International Nuclear Information System (INIS)

    Improving the hydrologic characterization of the Hanford Site unconfined aquifer system is one of the objectives of the Hanford Site Ground-Water Surveillance Project. To help meet this objective, hydraulic property data available for the aquifer have been compiled, mainly from reports published over the past 40 years. Most of the available hydraulic property estimates are based on constant-rate pumping tests of wells. Slug tests have also been conducted at some wells and analyzed to determine hydraulic properties. Other methods that have been used to estimate hydraulic properties of the unconfined aquifer are observations of water-level changes in response to river stage, analysis of ground-water mound formation, tracer tests, and inverse groundwater flow models

  17. Hydraulic design optimization for hollow fibre filter system

    International Nuclear Information System (INIS)

    An analytical model has been developed to describe hydraulic characteristics of a hollow fiber filter (HFF) for the purification of condensate of BWR nuclear power plants. Based on this, a module structure was proposed to minimize pressure drop at the beginning of its operation. The mechanism of iron ion crystallization on the HFF surface was clarified and a countermeasure against it was developed. Taking account of this effect, a simulation code was developed to predict the pressure drop trend in the course of the HFF operation. (author)

  18. Realization of tin freezing point using a loop heat pipe-based hydraulic temperature control technique

    Science.gov (United States)

    Joung, Wukchul; Gam, Kee Sool; Kim, Yong-Gyoo

    2015-10-01

    In this work, the freezing point of tin (Sn FP) was realized by inside nucleation where the supercooling of tin and the reheating of the sample after the nucleation were achieved without extracting the cell from an isothermal apparatus. To this end, a novel hydraulic temperature control technique, which was based on the thermo-hydraulic characteristics of a pressure-controlled loop heat pipe (LHP), was employed to provide a slow cooling of the sample for deep supercooling and fast reheating after nucleation to minimize the amount of initial freeze of the sample. The required temperature controls were achieved by the active pressure control of a control gas inside the compensation chamber of the pressure-controlled LHP, and slow cooling at??-0.05 K min-1 for the deep supercooling of tin and fast heating at 2 K min-1 for reheating the sample after nucleation was attained. Based on this hydraulic temperature control technique, the nucleation of tin was realized at supercooling of around 19 K, and a satisfactorily fast reheating of the sample to the plateau-producing temperature (i.e. 0.5 K below the Sn FP) was achieved without any temperature overshoots of the isothermal region. The inside-nucleated Sn FP showed many desirable features compared to the Sn FP realized by the conventional outside nucleation method. The longer freezing plateaus and the better immersion characteristics of the Sn FP were obtained by inside nucleation, and the measured freezing temperature of the inside-nucleated Sn FP was as much as 0.37 mK higher than the outside-nucleated Sn FP with an expanded uncertainty of 0.19 mK. Details on the experiment are provided and explanations for the observed differences are discussed.

  19. SBC - the electro-hydraulic brake system from Mercedes-Benz; SBC - Die elektrohydraulische Bremse von Mercedes-Benz

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, U.

    2000-07-01

    The electro-hydraulic brake (EHB) is the first generation of future 'Brake-by-Wire' systems for cars. EHB is a new mechatronic brake system, which links adaptive, digital control technology with integrated pressure sensors and high-precision hydraulic valves which are, however, fit for volume production. It permits highly dynamic, individual wheel brake pressure control which provides excellent stability and optimum short braking distances. The 'Brake-by-Wire' interface of the system permits driver-independent brake applications to improve vehicle safety. The system is developed by DaimlerChrysler in co-operation with the system supplier Robert Bosch under the brand name SBC (Sensotronic Brake Control) to series manufacture. (orig.) [German] Die elektrohydraulische Bremse EHB ist die erste Generation kuenftiger 'Brake-by-Wire'-Systeme im PKW. EHB ist ein neues mechatronisches Bremsensystem, das adaptive, digitale Regeltechnik mit integrierter Drucksensorik und hochpraezisen aber grossserienfaehigen Hydraulikventilen verbindet. Es ermoeglicht eine hochdynamische, radindividuelle Bremsdruckregelung fuer hervorragende Stabilitaet und optimal kurze Bremswege. Die 'Brake-by-Wire'-Schnittstelle des Systems gestattet fahrerunabhaengige Bremseneingriffe zur Verbesserung der Fahrzeugsicherheit. Das System wird von DaimlerChrysler in Zusammenarbeit mit dem Systemlieferanten Robert Bosch unter dem Markennamen SBC (Sensotronic Brake Control) zur Serienreife zu entwickeln. (orig.)

  20. Crosshole investigations - Details of the construction and operation of the hydraulic testing system

    International Nuclear Information System (INIS)

    The Crosshole Programme, part of the international Stripa Project is designed to evaluate the effectiveness of various remote-sensing techniques in characterizing a rock mass around a repository. A multidisciplinary approach has been adopted in which various geophysical, mapping and hydrogeological methods are used to determine the location and characteristics of significant features in the rock. The Programme utilises six boreholes drilled in a fan array from the 360 metre level in the Stripa Mine, Sweden. The hydrogeological component of the work uses single and crosshole testing methods, including sinusoidal pressure testing, to locate fractures and characterize groundwater movement within them. Crosshole methods use packers to isolate portions of two boreholes which both intersect a significant feature in the rock mass. Hydraulic signals are generated in one isolated section and received in the other borehole. This report describes the design and operation of the computer-controlled system which automatically performs the hydrogeological tests. (authors)

  1. Crosshole investigations - details of the construction and operation of the hydraulic testing system

    International Nuclear Information System (INIS)

    The Crosshole Programme, part of the international Stripa Project is designed to evaluate the effectiveness of various remote-sensing techniques in characterising a rock mass around a repository. A multidisciplinary approach has been adopted in which various geophysical, mapping and hydrogeological methods are used to determine the location and characteristics of significant features in the rock. The Programme utilises six boreholes drilled in a fan array from the 360 metre level in the Stripa Mine, Sweden. The hydrogeological component of the work uses single and crosshole testing methods, including sinusoidal pressure testing, to locate fractures and characterise groundwater movement within them. Crosshole methods use packers to isolate portions of two boreholes which both intersect a significant feature in the rock mass. Hydraulic signals are generated in one isolated section and received in the other borehole. This report describes the design and operation of the computer-controlled system which automatically performs the hydrogeological tests. (author) 3 refs., 13 figs

  2. Anastomosing reach control on hydraulics and sediment distribution on the Sabie River, South Africa

    Science.gov (United States)

    Entwistle, N.; Heritage, G.; Tooth, S.; Milan, D.

    2015-03-01

    Rivers in the Kruger National Park, South Africa, have variable degrees of bedrock and alluvial influence. Pre-2000 aerial imagery for the Sabie River (catchment area 6320 km2) reveals downstream alternations from alluvial single thread or braided, to bedrock anastomosed or mixed anastomosed channel types, with pool-rapids also present locally. In 2000 and 2012, extreme floods resulted in significant alluvial erosion, widely exposing the underlying bedrock. Since the 2012 flood, aerial LiDAR surveys reveal the strong gradient control exerted by the bedrock and mixed anastomosed channel types, which influences hydraulic conditions and sediment dynamics. Two dimensional hydraulic modelling of moderate floods (channel types, which promotes deposition. During more extreme floods (>3500 m3 s-1), the bedrock or mixed anastomosed channel types are drowned out, resulting in dramatically increased velocities along the entire river and widespread alluvial stripping regardless of initial channel type or location.

  3. Thermal-hydraulic analysis of the Fort St. Vrain modular vault dry store system

    International Nuclear Information System (INIS)

    This paper reports on a passive, natural thermosyphon, air-cooled modular vault dry store (MVDS) system that is being constructed for the storage of nuclear spent fuel for the Fort St. Vrain (FSV) Nuclear Power Station. In support of this FSV-MVDS system, thermal-hydraulic design analyses have been performed. The objective of the analyses is to determine flow and temperature distributions within the system and thus to ensure that the maximum fuel element temperatures shall not exceed specified design limit values under various loading and unloading conditions. This paper presents the method of analysis and discusses the resulting thermal-hydraulic characteristics of the MVDS system

  4. Electro-hydraulic load simulator device for control rod drives of HTRs

    International Nuclear Information System (INIS)

    This article describes the structure and the mode of function of an electro-hydraulic cylinder driving mechanism for the simulation of fuel rod forces during insertion into the pebble bed core of a THTR-type reactor. The force simulation system is necessary for testing and adjusting of the pneumatic driving mechanism of the fuel rods before they are installed in the reactor. (orig.)

  5. Coupled 3D hydrodynamic models for submarine outfalls. Denvironmental hydraulic design and control of multiport diffusers

    OpenAIRE

    Bleninger, Tobias

    2007-01-01

    The book describes the hydraulic design and environmental impact prediction technologies for such installations. Focus are the hydrodynamics approached by computer models. First, a multiport diffuser design program was developed. Second, two model systems for discharge analysis, CORMIX for the near-field and intermediate-field and Delft3D for the far-field were coupled, and third a regulatory procedure is proposed to license and monitor outfall installations.

  6. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction?

    Science.gov (United States)

    Schuldt, Bernhard; Knutzen, Florian; Delzon, Sylvain; Jansen, Steven; Müller-Haubold, Hilmar; Burlett, Régis; Clough, Yann; Leuschner, Christoph

    2016-04-01

    Climate warming will increase the drought exposure of many forests world-wide. It is not well understood how trees adapt their hydraulic architecture to a long-term decrease in water availability. We examined 23 traits characterizing the hydraulic architecture and growth rate of branches and the dependent foliage of mature European beech (Fagus sylvatica) trees along a precipitation gradient (855-594 mm yr(-1) ) on uniform soil. A main goal was to identify traits that are associated with xylem efficiency, safety and growth. Our data demonstrate for the first time a linear increase in embolism resistance with climatic aridity (by 10%) across populations within a species. Simultaneously, vessel diameter declined by 7% and pit membrane thickness (Tm ) increased by 15%. Although specific conductivity did not change, leaf-specific conductivity declined by 40% with decreasing precipitation. Of eight plant traits commonly associated with embolism resistance, only vessel density in combination with pathway redundancy and Tm were related. We did not confirm the widely assumed trade-off between xylem safety and efficiency but obtained evidence in support of a positive relationship between hydraulic efficiency and growth. We conclude that the branch hydraulic system of beech has a distinct adaptive potential to respond to a precipitation reduction as a result of the environmental control of embolism resistance. PMID:26720626

  7. 46 CFR 58.30-10 - Hydraulic fluid.

    Science.gov (United States)

    2010-10-01

    ...2010-10-01 2010-10-01 false Hydraulic fluid. 58.30-10 Section 58...and Control Systems 58.30-10 Hydraulic fluid. (a) The requirements...inspection. (b) The fluid used in hydraulic power transmission systems shall...

  8. Proceedings of the 1991 national conference on hydraulic engineering

    International Nuclear Information System (INIS)

    This book contains the proceedings of the 1991 National Conference of Hydraulic Engineering. The conference was held in conjunction with the International Symposium on Ground Water and a Software Exchange that facilitated exchange of information on recent software developments of interest to hydraulic engineers. Also included in the program were three mini-symposia on the Exclusive Economic Zone, Data Acquisition, and Appropriate Technology. Topics include sedimentation; appropriate technology; exclusive economic zone hydraulics; hydraulic data acquisition and display; innovative hydraulic structures and water quality applications of hydraulic research, including the hydraulics of aerating turbines; wetlands; hydraulic and hydrologic extremes; highway drainage; overtopping protection of dams; spillway design; coastal and estuarine hydraulics; scale models; computation hydraulics; GIS and expert system applications; watershed response to rainfall; probabilistic approaches; and flood control investigations

  9. An expert system for hydraulic excavator and truck selection in surface mining

    Scientific Electronic Library Online (English)

    C., Kirmanli; S.G., Ercelebi.

    2009-12-01

    Full Text Available The purpose of this paper is to develop an expert system for hydraulic excavator and truck selection in surface mining. Hydraulic excavators and trucks are finding increasing applications in mining operations. Hydraulic excavators are extensively used especially when bringing electricity to rural ar [...] eas is difficult and for small-scale mining. This paper describes an expert system, which selects the optimum hydraulic excavator truck configuration such that unit production cost is minimized and technical constraints such as geological, geotechnical and mining constraints are satisfied. The system has four modules: user interface, rules and an methods, databases and output module. The expert system in this study is developed within KappaPC shell. It supports object-orientated technology for the MS Windows environment. The software provides a very useful tool to practitioners, saving time and cost. Equipment selection is a recurring and expensive problem of mine planning and often involves interdisciplinary experts from different fields. It is very difficult and expensive to bring together all these experts. The capabilities of the expert system developed are illustrated in the paper. The software overcomes the difficulties of selecting the proper equipment for surface mining operations, which is very important, and results in substantial savings. Equipment databases for hydraulic excavators with 15-59 yd3 capacities and trucks with 35-360 tons are constructed and these databases are used to select the proper configuration. A case study is carried out for Soma Surface Coal mines in Turkey.

  10. Role of fracture zones in controlling hydraulic head and groundwater flow - experience from Site Characterization Program in Finland

    International Nuclear Information System (INIS)

    The preliminary site investigations for the final disposal of HLW produced by TVO have been carried out during 1987-1992 in five areas. All the areas consist of Precambrian crystallite bedrock. The aim of these studies has been to identify and characterize geological structures, especially fractures and fracture zones with high hydraulic conductivity in order to study groundwater flow phenomena. Measured values of hydraulic head in packed-off sections of the boreholes have produced valuable information about the existence of hydraulically conductive fracture zones and their effects on spatial changes in hydraulic head and groundwater flow. The aim of this paper is to present qualitatively, without numerical simulations, how some main fracture zones control hydraulic head and groundwater flow in Romuvaara investigation area in Kuhmo, Finland

  11. Apparatus for measuring friction of hydraulic control rod drives in nuclear reactors

    International Nuclear Information System (INIS)

    An apparatus is disclosed which measures forces resisting the movement of pistons in a control rod drive mechanism in a nuclear reactor and which includes pressure sensing means and further includes hydraulic circuitry to divert pressurized fluid from a normal operating conduit to a selected shunt conduit containing a valve having a particular fluid control characteristic, said shunt conduit directing the fluid to a selected piston to move said piston and said pressure sensing means measuring the pressure of the fluid during the motion of said piston to give an indication of the force needed to achieve such motion

  12. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  13. Polymer-based micro flow sensor for dynamical flow measurements in hydraulic systems

    International Nuclear Information System (INIS)

    In this paper we present a micro flow sensor from a polymer for dynamical flow measurements in hydraulic systems. The flow sensor is based on the thermal anemometric principle and consists of two micro-structured housing shells from polysulfone (PSU) which form a small fluidic channel with a cross-section of 580 m 400 m. In between there is a thin polyimide membrane supporting three gold track structures forming an electrical heater and two resistive thermometers which allows the detection of the flow direction, too. The complete sensor is inserted into the hydraulic system, but only a small bypass flow is directed through the fluidic channel by means of a special splitting system. Due to its small heat capacity, the sensor is suitable to detect flow pulsations up to about 1200 Hz which allows the sensor to be used for the condition monitoring or preventive maintenance of hydraulic systems.

  14. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  15. OPERATIONAL FAULT DIAGNOSIS IN INDUSTRIAL HYDRAULIC SYSTEMS THROUGH MODELING THE INTERNAL LEAKAGE OF ITS COMPONENTS

    Directory of Open Access Journals (Sweden)

    P. Athanasatos

    2013-01-01

    Full Text Available In this study, a model of a high pressure hydraulic system was developed using the bond graph method to investigate the effect of the internal leakage of its main components (pump, cylinder and 4/2 way valve on the operational characteristics of the system under various loads. All the main aspects of the hydraulic circuit (like the internal leakages, the compressibility of the fluid, the hydraulic pressure drop, the inertia of moving masses and the friction of the spool were taken into consideration. The results of this modeling were compared with the experimental data taken from the literature and from an actual test platform installed in the laboratory. Modeling and experimental data curves correlate very well in form, magnitude and response times for all the system??s main parameters. This proves that the present method can be used to accurately model the response and operation of hydraulic systems and can thus be used for operational fault diagnosis in many cases, especially in simulating fault scenarios when the defective component is not obvious. This is very important in industrial production systems where unpredictable shutdowns of the hydraulic machinery have a considerable negative economic impact on cost.

  16. Step dynamic process of the hydraulically-driven control rod, (II). Theoretical model on step-down process

    International Nuclear Information System (INIS)

    The HCRDS (hydraulic control rod driving system) is a new type of control rod driving system, which is designed by INET (Institute of Nuclear Energy Technology) and has been put into use in 5 MW nuclear heating reactor in Tsinghua University. The purpose of this paper is to theoretically analyze the step-down process of this new technology and establish fundamental basis for further analysis and research. The experimental loop of the HCRDS and the working principle on the step-down process are introduced in this paper. The theoretical model is established on the basis of analysis, simplification and hypothesis. Also given is the accurate mathematical description of this model. The comparison between the results of this model and that of the experiment proves the rationality and feasibility of the model. The selection of the working point is also introduced. (author)

  17. Analysis of core physics and thermal-hydraulics results of control rod withdrawal experiments in the LOFT facility

    International Nuclear Information System (INIS)

    Two anticipated transient experiments simulating an uncontrolled control rod withdrawal event in a pressurized water reactor (PWR) were conducted in the Loss-of-Fluid Test (LOFT) Facility at the Idaho National Engineering Laboratory. The scaled LOFT 50-MW(t) PWR includes most of the principal features of larger commercial PWRs. The experiments tested the ability of reactor analysis codes to accurately calculate core reactor physics and thermal-hydraulic phenomena in an integral reactor system. The initial conditions and scaled operating parameters for the experiments were representative of those expected in a commercial PWR. In both experiments, all four LOFT control rod assemblies were withdrawn at a reactor power of 37.5 MW and a system pressure of 14.8 MPa

  18. Hydraulic design optimization for hollow fiber filter system

    International Nuclear Information System (INIS)

    An analytical model has been developed to describe hydraulic characteristics of a hollow fiber membrane filter (HFF) for condensate purification in BWR power plants. Using this model, a module structure was proposed to minimize pressure drop at the beginning of HFF operation. That is, given flow rate of a module, both dimensions of the inner diameter and the length of a single fiber membrane were designed to have optimal values, giving minimum volume for the module. The mechanism of Fe ion crystallization on HFF surface which determines operation life time was clarified and a countermeasure against it was developed. Precoating of amorphous iron crud effectively inhibited crystallization. Taking account of the crystallization, a simulation code was developed to predict pressure drop trend in the course of HFF operation. (author)

  19. Research and development on the hydraulic design system of the guide vanes of multistage centrifugal pumps

    International Nuclear Information System (INIS)

    To improve the hydraulic design accuracy and efficiency of the guide vanes of the multistage centrifugal pumps, four different-structured guide vanes are investigated, and the design processes of those systems are established. The secondary development platforms of the ObjectArx2000 and the UG/NX OPEN are utilized to develop the hydraulic design systems of the guide vanes. The error triangle method is adopted to calculate the coordinates of the vanes, the profiles of the vanes are constructed by Bezier curves, and then the curves of the flow areas along the flow-path are calculated. Two-dimensional and three-dimensional hydraulic models can be developed by this system.

  20. Design strategy for improving the energy efficiency in series hydraulic/electric synergy system

    International Nuclear Information System (INIS)

    Battery is a vital subsystem in an electric vehicle with regenerative braking system. The energy efficiency of an electric vehicle is improved by storing the regenerated energy in an electric battery, during braking, and reusing it during subsequent acceleration. Battery possesses a relatively poor power density and slow charging of regenerated energy, when compared to hydro-pneumatic accumulators. A series hydraulic/electric synergy system an energy efficient mechatronics system is proposed to overcome the drawbacks in the conventional electric vehicle with regenerative braking. Even though, electric battery provides higher energy density than the accumulator system, optimal sizing of the hydro-pneumatic accumulator and other process parameters in the system to provide better energy density and efficiency. However, a trade-off prevails between the system energy delivered and energy consumed. This gives rise to a multiple objective problem. The proposed multi-objective design optimization procedure based on an evolutionary strategy algorithm maximizes the energy efficiency of the system. The system simulation results after optimization showthat, the optimal system parameters increase the energy efficiency by 3% and hydraulic regeneration efficiency by 17.3%. The suggested design methodology provides a basis for the design of a series hydraulic/electric synergy system as energy efficient and zero emission system. - Highlights: Dynamic analysis of SHESS to investigate energy efficiency. Optimization of system parameters based on multi-objective design strategy. Evaluation of improvements in system energy efficiency and hydraulic regeneration energy. Identification of conditions at which hydraulic regenerative efficiency is maximized for minimum energy consumption. Results confirm advantages of using SHESS

  1. Design and testing of the reactor-internal hydraulic control rod drive for the nuclear heating plant

    International Nuclear Information System (INIS)

    A hydraulically driven control rod is being developed at Kraftwerk Union for integration in the primary system of a small nuclear district heating reactor. An elaborate test program, under way for --3 yr, was initiated with a plexiglass rig to understand the basic principles. A design specification list was prepared, taking reactor boundary conditions and relevant German rules and regulations into account. Subsequently, an atmospheric loop for testing of components at 20 to 900C was erected. The objectives involved optimization of individual components such as a piston/cylinder drive unit, electromagnetic valves, and an ultrasonic position indication system as well as verification of computer codes. Based on the results obtained, full-scale components were designed and fabricated for a prototype test rig, which is currently in operation. Thus far, all atmospheric tests in this rig have been completed. Investigations under reactor temperature and pressure, followed by endurance tests, are under way. All tests to date have shown a reliable functioning of the hydraulic drive, including a novel ultrasonic position indication system

  2. Mechanical Engineering Design Project report: Enabler control systems

    Science.gov (United States)

    Cullen, Christian; Delvecchio, Dave; Scarborough, Alan; Havics, Andrew A.

    1992-01-01

    The Controls Group was assigned the responsibility for designing the Enabler's control system. The requirement for the design was that the control system must provide a simple user interface to control the boom articulation joints, chassis articulation joints, and the wheel drive. The system required controlling hydraulic motors on the Enabler by implementing 8-bit microprocessor boards. In addition, feedback to evaluate positions and velocities must be interfaced to provide the operator with confirmation as well as control.

  3. Thermal-hydraulic stability of a natural circulation system with nuclear feedback

    International Nuclear Information System (INIS)

    The stability of low temperature nuclear heating reactor with various subcoolings of reactor core inlet has been studied by means of simulating experiments. The thermal-hydraulic system and the data acquisition and processing system are presented. Especially, the process of realizing the simulating nuclear feedback is introduced in detail. Finally, the experimental results are discussed in the opinions of nuclear reactor physics and thermal-hydraulics. The conclusion is that the nuclear reactor can operate stably only when the subcooling of reactor core inlet is high enough

  4. Step dynamic process of the hydraulically-driven control rod, 1. Experiment of dynamic process behavior

    International Nuclear Information System (INIS)

    The step dynamic process of the hydraulic control rod (HCR) has been achieved by experiments. This paper reveals the action mechanism of the HCR, gives detailed analyses of the relationship among the dynamic feature, the control rod and combined valve performance parameters, and the combined valve operation. The results indicate that the step process of the control rod is affected by the output flow pulse of the combined valve, pressure wave, and heavily damped pressure oscillation that is produced by the step cylinder movement. The performance parameters of the step cylinder limit the flow range in its stationary balanced state and also limit the capability of absorbing the flow pulse and pressure wave in its step process. The performance parameters of the combined valve determine the quantitative values of stationary balance, delay balance, flow pulse and pressure wave. The relation of both parameters determines the step state of the control rod. (author)

  5. Investigations into the use of water glycol as the hydraulic fluid in a servo system

    International Nuclear Information System (INIS)

    The effects of water glycol on the performance of a hydraulic system and on the life of the system components have been investigated and a guide to the design of systems using water glycol is given. The dynamic performance of the system using water-glycol was compared with that using mineral oil, then the system was endurance tested to determine its service life. (author)

  6. Nonlinear Dynamical Analysis of Hydraulic Turbine Governing Systems with Nonelastic Water Hammer Effect

    OpenAIRE

    Junyi Li; Qijuan Chen

    2014-01-01

    A nonlinear mathematical model for hydroturbine governing system (HTGS) has been proposed. All essential components of HTGS, that is, conduit system, turbine, generator, and hydraulic servo system, are considered in the model. Using the proposed model, the existence and stability of Hopf bifurcation of an example HTGS are investigated. In addition, chaotic characteristics of the system with different system parameters are studied extensively and presented in the form of bifurcation diagrams, ...

  7. Theoretical Analysis and Bench Tests of a Control-Surface Booster Employing a Variable Displacement Hydraulic Pump

    Science.gov (United States)

    Mathews, Charles W.; Kleckner, Harold F.

    1947-01-01

    The NACA is conducting a general investigation of servo-mechanisms for use in powering aircraft control surfaces. This paper presents a theoretical analysis and the results of bench tests of a control-booster system which employs a variable displacement hydraulic pump. The booster is intended for use in a flight investigation to determine the effects of various booster parameters on the handling qualities of airplanes. Such a flight investigation would aid in formulating specific requirements concerning the design of control boosters in general. Results of the theoretical analysis and the bench tests indicate that the subject booster is representative of types which show promise of satisfactory performance. The bench tests showed that the following desirable features were inherent in this booster system: (1) No lost motion or play in any part of the system; (2) no detectable lag between motion of the contra1 stick and control surface; and (3) Good agreement between control displacements and stick-force variations with no hysteresis in the stick-force characteristics. The final design configuration of this booster system showed no tendency to oscillate, overshoot, or have other undesirable transient characteristics common to boosters.

  8. European activities on crosscutting thermal-hydraulic phenomena for innovative nuclear systems

    International Nuclear Information System (INIS)

    Highlights: • This paper serves as a guidance of the special issue. • The technical tasks and methodologies applied to achieve the objectives have been described. • Main results achieved so far are summarized. - Abstract: Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. In Europe, a consortium is established consisting of 24 institutions of universities, research centers and nuclear industries with the main objectives to identify and to perform research activities on important crosscutting thermal-hydraulic issues encountered in various innovative nuclear systems. For this purpose the large-scale integrated research project THINS (Thermal-Hydraulics of Innovative Nuclear Systems) is launched in the 7th Framework Programme FP7 of European Union. The main topics considered in the THINS project are (a) advanced reactor core thermal-hydraulics, (b) single phase mixed convection, (c) single phase turbulence, (d) multiphase flow, and (e) numerical code coupling and qualification. The main objectives of the project are: • Generation of a data base for the development and validation of new models and codes describing the selected crosscutting thermal-hydraulic phenomena. • Development of new physical models and modeling approaches for more accurate description of the crosscutting thermal-hydraulic phenomena. • Improvement of the numerical engineering tools for the design analysis of the innovative nuclear systems. This paper describes the technical tasks and methodologies applied to achieve the objectives. Main results achieved so far are summarized. This paper serves also as a guidance of this special issue

  9. European activities on crosscutting thermal-hydraulic phenomena for innovative nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X., E-mail: xu.cheng@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Batta, A. [Karlsruhe Institute of Technology (KIT) (Germany); Bandini, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Roelofs, F. [Nuclear Research and Consultancy Group (NRG) (Netherlands); Van Tichelen, K. [Studiecentrum voor Kernenergie – Centre d’étude de l’Energie Nucléaire (SCK-CEN) (Belgium); Gerschenfeld, A. [Commissariat à l’Energie Atomique (CEA) (France); Prasser, M. [Paul Scherrer Institute (PSI) (Switzerland); Papukchiev, A. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS) (Germany); Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR) (Germany); Ma, W.M. [Kungliga Tekniska Högskolan (KTH) (Sweden)

    2015-08-15

    Highlights: • This paper serves as a guidance of the special issue. • The technical tasks and methodologies applied to achieve the objectives have been described. • Main results achieved so far are summarized. - Abstract: Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. In Europe, a consortium is established consisting of 24 institutions of universities, research centers and nuclear industries with the main objectives to identify and to perform research activities on important crosscutting thermal-hydraulic issues encountered in various innovative nuclear systems. For this purpose the large-scale integrated research project THINS (Thermal-Hydraulics of Innovative Nuclear Systems) is launched in the 7th Framework Programme FP7 of European Union. The main topics considered in the THINS project are (a) advanced reactor core thermal-hydraulics, (b) single phase mixed convection, (c) single phase turbulence, (d) multiphase flow, and (e) numerical code coupling and qualification. The main objectives of the project are: • Generation of a data base for the development and validation of new models and codes describing the selected crosscutting thermal-hydraulic phenomena. • Development of new physical models and modeling approaches for more accurate description of the crosscutting thermal-hydraulic phenomena. • Improvement of the numerical engineering tools for the design analysis of the innovative nuclear systems. This paper describes the technical tasks and methodologies applied to achieve the objectives. Main results achieved so far are summarized. This paper serves also as a guidance of this special issue.

  10. Open upper plenum of LOF thermal hydraulics and inherent control rod insertion

    International Nuclear Information System (INIS)

    In liquid-metal reactor (LMR) hypothetical transients for which normal scram is postulated not to occur, the thermal expansion of the control rod drivelines (CRDs) as they are washed by the hotter core effluent tends to insert the control assemblies (CAs) further into the core, thereby providing negative reactivity. A number of concepts to enhance the heatup-induced elongation of drivelines is being proposed involving both design features of the drivelines as well as flow control features of the drivelines and the upper internals structure (UIS). Reported here are the results of an analysis in which the COMMIX-1A computer code was used to investigate the three-dimensional thermal-hydraulic behavior in the upper plenum of a 425-MW(t) pool-type LMR during a loss-of-flow (LOF) transient and its influence on the driveline heatup and expansion. The calculations consider an open plenum geometry, which does not incorporate a UIS or CRD shroud tubes such that the drivelines are directly exposed to the multidimensional plenum flow. The objective of the present work is to define reference cases for inherent CRD insertion in which thermal-hydraulic features that might enhance the driveline heatup but, on the other hand, whose effects may be quantitatively sensitive to design details are completely absent

  11. Thermal-hydraulic studies on self actuated shutdown system for Japan Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    The self-actuated shutdown system (SASS), which is selected for Japan Sodium-cooled Fast Reactor (JSFR), is a passive reactor shutdown system utilizing a Curie point electromagnet (CPEM). With CPEM, an excessive fuel outlet temperature rise is sensed and the control rods are released into the core, and the reactor can be shutdown. Therefore it is important for feasibility of SASS to be established by assuring a quick response of CPEM to the coolant temperature rise. In this paper, a device named 'flow collector', which collects flows discharged from six fuel subassemblies surrounding CPEM backup control rods, has been proposed to ensure a shorter response time. Three-dimensional thermal-hydraulic analysis has been performed to evaluate the response time of CPEM with the flow collector, and it is confirmed that the coolant discharged from the fuel subassemblies flows into CPEM with high velocity and the response time of CPEM can be significantly shortened. Based on this analysis, the safety analysis has been carried out, confirming that the maximum temperatures of core and coolant are lower than those imposed by the safety criteria, and feasibility of SASS is assured. (author)

  12. Analysis criteria for control of pipes exposed to thermo-hydraulic loading

    International Nuclear Information System (INIS)

    The objective was to develop criteria and parameters suited for control of stress convergence in piping exposed to thermo-hydraulic loading. A pipe segment model was derived based on an axisymmetric shell formulation and a beam formulation. For the contained fluid an acoustic formulation was used. The implemented FEM-formulation of the pipe segment was verified by comparison with documented analytical solutions. For the pipe structure part Mindlin shell theory was used for verification. Based on the FEM-formulation stress convergence parameters were derived. The derived parameters correspond to the parameter effective modal mass, which is widely used in connection with base motion excited structures. The parameters were derived both for the coupled elasto-acoustic procedure and for the traditional uncoupled 2-step procedure based on derived control volume force signals. In order to control the stress convergence parameters a test model of a piping system was used. Response signals of different section forces and moments were computed for a rapid valve closure load. Convergence of computed response signals were compared to the estimated convergence parameters. The derived convergence parameters are found to be a reliable tool in order to determine an adequate time step and modal base for stress analysis in the pipe. The test computations also show that stress convergence may be achieved by use of a much longer time step and a courser element discretization than a traditional approach, based on the load signal only, will indicate. The convergence of pure axial stresses and shear stresses due to translational forces is slower than for bending moments. However this will not harm fulfilment of stress acceptance criteria in the piping but may be a matter of concern in connection with stress analysis of the pipe supporting structure. A limited study was also performed about the influence of the structural damping value on the dynamic stress response. The coupled formulation, FSI, was used. The influence was found to be weak. The reason for this is the impulse type of loading. It is not found meaningful to study the damping influence when use of the traditional uncoupled 2-step procedure. A possible resonant behaviour of the structural response, when use of such a procedure, is found to be non physical and an effect of applied method only

  13. Study of the performance of four repairing material systems for hydraulic structures of concrete dams

    Directory of Open Access Journals (Sweden)

    Kormann A. C. M.

    2003-01-01

    Full Text Available Four types of repairing materials are studied as function of either a conventional concrete or a reference-concrete (RefC, these are: polymer-modified cement mortar (PMor, steel fiber concrete (SFco, epoxy mortar (EMor and silica fume mortar (SFmo, to be applied in hydraulic structures surfaces subjected to a high velocity water flow. Besides the mechanical requests and wearing resistance of hydraulic concrete dam structures, especially the spillway surfaces, the high solar radiation, the environmental temperature and wet and dry cycles, contribute significantly to the reduction of their lifespan. RefC and the SFco were developed based on a usual concrete mixture used in slabs of spillways. The average RefC mixture used was 1: 1.61: 2.99: 0.376, with Pozzolan-modified Portland cement consumption of 425 kg/m³. EMor and PMor mixtures followed the information given by the manufacturers and lab experience. Tests on concrete samples were carried out in laboratory simulating normally found environmental situations in order to control the mechanical resistance and the aging imposed conditions, such as solar radiation and humidity. Also, physicochemical characterizing tests were made for all used materials. From the analyzed results, two of them presented a higher performance: the EMor and SFmo. SFco presented good adherence to the RefC and good mechanical performance. However, it also presented apparent metal corrosion in humidity tests, being indicated for use, with caution, as an intermediate layer in underwater repairs. In a general classification, considering all tests, including their field applications, the better performance material systems were EMor- SFmo> SFco> PMor.

  14. Instrumentation control system

    International Nuclear Information System (INIS)

    This book explains instrumentation control system, which mentions summary, basic theory, kinds, control device, and design of each instrumentation system. The contents of this book are introduction of instrumentation system, temperature detector, pressure sensor, flow detector, level detector, ingredient detector, signal convert and transmission, instructions, record and control of instrumentation system, PID controller control valve of instrumentation system, instrumentation equipment of water system, instrumentation facility of thermal power plant, examples of advance instrumentation facility and install and design of instrumentation system.

  15. Underwater manipulator's kinematic analysis for sustainable and energy efficient water hydraulics system

    Science.gov (United States)

    Hassan, Siti Nor Habibah; Yusof, Ahmad Anas; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie; Nik, Wan Mohd Norsani Wan

    2015-05-01

    In promoting energy saving and sustainability, this paper presents research development of water hydraulics manipulator test rig for underwater application. Kinematic analysis of the manipulator has been studied in order to identify the workspace of the fabricated manipulator. The workspace is important as it will define the working area suitable to be developed on the test rig, in order to study the effectiveness of using water hydraulics system for underwater manipulation application. Underwater manipulator that has the ability to utilize the surrounding sea water itself as the power and energy carrier should have better advantages over sustainability and performance.

  16. Development of MCATHAS system of coupled neutronics/ thermal-hydraulics in supercritical water reactor

    International Nuclear Information System (INIS)

    The MCATHAS system of coupled neutronics/thermal-hydraulics in the supercritical water reactor is described, which considers the interaction between the obvious axial evolution of material temperature and density and the power distribution. This code is coupled externally. The MCNP code with the library of continuous cross section is used for neutronics analysis. The sub-channel code ATHAS is for thermal-hydraulics analysis and the ORIGEN code for burn-up analysis. The calculation results for the assembly of HPLWR show that the results from this code is reliable. (authors)

  17. Analytical and experimental investigation of chlorine decay in water supply systems under unsteady hydraulic conditions

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Stoianov, Ivan; Graham, Nigel; Karney, Bryan

    2013-01-01

    This paper investigates the impact of the dynamic hydraulic conditions on the kinetics of chlorine decay in water supply systems. A simulation framework has been developed for the scale-adaptive hydraulic and chlorine decay modelling under steady- and unsteady-state flows. An unsteady decay...... experimental data provides new insights for the near real-time modelling and management of water quality as well as highlighting the uncertainty and challenges of accurately modelling the loss of disinfectant in water supply networks....... coefficient is defined which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. By coupling novel instrumentation technologies for continuous hydraulic monitoring and water quality sensors for in-pipe water quality sensing a...

  18. Thermal-hydraulic analysis of spallation target in accelerator driven sub-critical system

    International Nuclear Information System (INIS)

    The spallation target is located in the center of an accelerator driven sub-critical system (ADS), which produces neutron source for nuclear transmutation. Based on the analysis of the thermal-hydraulic demands for spallation target, lead-bismuth eutectic (LBE) was chosen as the spallation target and the coolant for the ADS. MCNP code was used to calculate the deposition heat in the spallation target, and the CFD code FLUENT was employed to calculate the thermal-hydraulic behavior in the spallation target zone. Different design parameters as well as different window shapes were analyzed in order to find their effects to the temperature distribution and velocity distribution, and the suitable design options were found to meet the thermal-hydraulic requirements. (authors)

  19. Practical experience of the main primary system hydraulic tests for Qinshan NPP phase II

    International Nuclear Information System (INIS)

    Initial hydraulic test during commissioning and test renewal during refueling outage were performed once for unit 1 and 2 of Qinshan II respectively, all safety class 1 pressure-retaining components were subjected to 22.8 MPa in initial hydraulic test and 20.6 MPa in test renewal. Based on the practice of the four times successful hydraulic test of the main primary system for Qinshan II, the RCC-M and RSEM requirements related, brief test process and main results etc were introduced, and the differences between initial test and test renewal, as well as the risks, precautions and practical experience were summed up. They will be beneficial for the same kind PWR nuclear power plants. (authors)

  20. Design and analysis of an active optics system for a 4-m telescope mirror combining hydraulic and pneumatic supports

    Science.gov (United States)

    Lousberg, Gregory P.; Moreau, Vincent; Schumacher, Jean-Marc; Piérard, Maxime; Somja, Aude; Gloesener, Pierre; Flebus, Carlo

    2015-09-01

    AMOS has developed a hybrid active optics system that combines hydraulic and pneumatic properties of actuators to support a 4-m primary mirror. The mirror is intended to be used in the Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope) that will be installed by the National Solar Observatory (NSO) atop the Haleakala volcano in Hawaii. The mirror support design is driven by the needs of (1) minimizing the support-induced mirror distortions under telescope operating conditions, (2) shaping the mirror surface to the desired profile, and (3) providing a high stiffness against wind loads. In order to fulfill these requirements, AMOS proposes an innovative support design that consist of 118 axial actuators and 24 lateral actuators. The axial support is based on coupled hydraulic and pneumatic actuators. The hydraulic part is a passive system whose main function is to support the mirror weight with a high stiffness. The pneumatic part is actively controlled so as to compensate for low-order wavefront aberrations that are generated by the mirror support itself or by any other elements in the telescope optical chain. The performances of the support and its adequacy with the requirements are assessed with the help of a comprehensive analysis loop involving finite-element, thermal and optical modellings.

  1. Stability analysis of supercritical water cooled reactor thermal-hydraulic system based on Nyquist criterion

    International Nuclear Information System (INIS)

    Aiming at the simplified model of supercritical water cooled reactor thermal-hydraulic system, small perturbation linearization and Laplace transform method were adopted to linearize the nonlinear thermal-hydraulic system conservation equations. Then the closed-loop system transfer function was deduced. Matlab code was used to analyze and simulate the closed-loop system and obtain the stability boundary map of the closed-loop system, and the effects of reactor core inlet flow velocity, heating length, gravity acceleration and inlet throttling coefficient on the system stability boundary were analyzed finally. The results show that if the reactor core inlet flow rate, the heating section length, and the gravity acceleration increase, the stability of the system will be better, and however the inlet throttling coefficient rarely affects the stability boundary. (authors)

  2. Water hydraulics in ITER divertor maintenance

    International Nuclear Information System (INIS)

    When operating in limited space and with high loads, which is typical for ITER applications, water hydraulics has several advantages compared to other means of power transmission. As a novel technology, water hydraulics includes still some limiting properties, so special solutions are necessary when dealing with systems requiring accurate control. In this paper water hydraulic solution for divertor cassette plasma facing element refurbishment operation is explained. (authors)

  3. Teaching Thermal Hydraulics and Numerical Methods: An Introductory Control Volume Primer

    International Nuclear Information System (INIS)

    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com

  4. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  5. The hydraulics of water heating systems; 3. ed.; Hydraulik der Wasserheizung

    Energy Technology Data Exchange (ETDEWEB)

    Roos, H.

    1995-09-01

    Interventions in the piping systems of water heating systems are required for different reasons. This book discusses the theoretical fundamentals which are needed to understand the hydraulic effects of such interventions by presenting 14 chapters, i.e. 1. hydraulic resistance, 2. hydraulic switching modes, 3. practical examples, 4. straight-way valves and piping systems, 5. pumps as actuators, 6. three-way valves and piping systems, 7. interaction of separate pumps, 8. hydraulic circuits, 9. superimposition of pumps and gravity, 10. four-way mixers, 11. discharge valves, 12. jet pumps, 13. use of computers, and 14. Tichelmann switching. (orig./HW) [Deutsch] In das Rohrleitungsnetz von Wasserheizungsanlagen wird aus verschiedenen Gruenden eingegriffen. Der vorliegende Band bespricht die theoretischen Grundlagen, die zum Verstaendnis der hydraulischen Auswirkungen von Eingriffen in das Netz notwendig sind. Der Band ist unterteilt in 14 Kapitel: 1. Hydraulischer Widerstand, 2. Hydraulische Schaltungsarten, 3. Anwendungsbeispiele, 4. Durchgangsventil und Netz, 5. Pumpen als Stellglieder, 6. Dreiwegventil und Netz, 7. Zusammenwirken oertlich getrennter Pumpen, 8. Hydraulische Schaltungen, 9. Ueberlagerung von Pumpen- und Schwerkraftwirkung, 10. Der Vierwegmischer, 11. Einsatz von Ueberstroemventilen, 12. Einsatz von Strahlpumpen, 13. Computereinsatz, 14. Tichelmannschaltung. (orig./HW)

  6. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    2013-01-01

    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  7. Hydraulic and nutritional feedback controls surface patchiness of biological soil crusts at a post-mining site.

    Science.gov (United States)

    Fischer, Thomas; Gypser, Stella; Subbotina, Maria; Veste, Maik

    2015-04-01

    In a recultivation area located in Brandenburg, Germany, five types of biocrusts (initial BSC1, developed BSC2 and BSC3, mosses, lichens) and non-crusted mineral substrate were sampled on tertiary sand deposited in 1985-1986 to investigate hydrologic properties of crust patches. It was the aim of the study to demonstrate that (I) two types of BSC with alternative nutritional and hydraulic feedback modes co-exist in one area and that (II) these feedback modes are synergic. The sites to sample were selected by expertise, trying to represent mixed sites dominated by mosses, by lichens, and by visually in the field observable surface properties (colour and crust thickness) for the non-crusted substrate and BSC1 to 3. The non-crusted samples contained minor incrustations of the lichen Placynthiella oligotropha, young leaflets of the moss Ceratodon purpureus, as well as very sparsely present individuals of the green algae Ulothrix spec., Zygogonium spec. and Haematococcus spec. The sample BSC1 was not entirely covered with microphytes, crust patches were smooth, and P. oligotropha was observed to develop on residues of C. purpureus and on unspecified organic detritus. BSC2 covered the surface entirely and was dominated by P. oligotropha and by Zygogonium spec. The sample BSC3 consisted of pad-like patches predominantly growing on organic residues. The moss sample was dominated by C. purpureus and Zygogonium spec. growing between the moss stemlets directly on the mineral surface, the lichen sample was dominated by Cladonia subulata with sparsely scattered individuals of C. purpureus. Hierarchical cluster analysis revealed that BSC2 was floristically and chemically most similar to the moss crust, whereas BSC3 was floristically and chemically most similar to the lichen crust. Crust biomass was lowest in the non-crusted substrate, increased to the initial BSC1 and peaked in the developed BSC2, BSC3, the lichens and the mosses. Water infiltration was highest on the substrate, and decreased to BSC2, BSC1 and BSC3. Non-metric multidimensional scaling revealed that the lichens and BSC3 were associated with water soluble nutrients (NO3, NH4, K, Mg, Ca) and with pyrite weathering products (pH, SO4), thus representing a high nutrient low hydraulic feedback mode. The mosses and BSC2 represented a low nutrient high hydraulic feedback mode. These feedback mechanisms were considered as synergic, consisting of run-off generating (low hydraulic) and run-on receiving (high hydraulic) BSC patches. Three scenarios for BSC succession were proposed. (1) Initial BSCs sealed the surface until they reached a successional stage (represented by BSC1) from which the development into either of the feedback modes was triggered, (2) initial heterogeneities of the mineral substrate controlled the development of the feedback mode, and (3) complex interactions between lichens and mosses occurred at later stages of system development. It was concluded that, irrespective of successional pathways, two synergic feedback mechanisms contributed to the generation of self-organized surface patchiness. Such small-scale microsite differentiation with different BSCs has important implications for the vegetation in post-mining sites. Reference Fischer, T., Gypser, S., Subbotina, M., Veste, M. (2014) Synergic hydraulic and nutritional feedback mechanisms control surface patchiness of biological soil crusts on tertiary sands at a post-mining site. Journal of Hydrology and Hydromechanics 62(4):293-302

  8. Thermal-hydraulic effects of transition to improved System 80TM fuel

    International Nuclear Information System (INIS)

    ABB CE's improved System 80TM PWR fuel design includes GUARDIAN debris-resistant features and laser-welded Zircaloy grids. The GUARDIAN features include an Inconel grid with debris-filtering features located just above the Lower End Fitting, and a solid fuel rod bottom end cap that extends above the filtering features. Tests and analyses were done to establish the impact of these design improvements on fuel assembly hydraulic performance. Further analysis was done to determine the mixed core thermal-hydraulic performance as the transition is made over two fuel cycles to a full core of the improved System 80TM fuel. Results confirm that the Thermal-Hydraulic (T-H) effects of the reduction in hydraulic resistance between the improved and resident fuel due to the laser-welded Zircaloy grids offsets the effects of the increased resistance GUARDIAN grid. Therefore, the mechanically improved System 80TM fuel can be implemented with no net impact on Departure from Nucleate Boiling (DNB) margin in transition cores. (author)

  9. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    International Nuclear Information System (INIS)

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  10. Hydraulic analysis of the emergency core cooling system of the RP-10 reactor

    International Nuclear Information System (INIS)

    This work shows calculation for the hydraulic analysis of the Emergency Core Cooling System (ECCS) of the RP-10 Reactor. This analysis is necessary for the design of such system. According to calculation results shown in the graphics, a pipe line of two inches of nominal diameter should be selected for such system and a maximum flow of 5 m3/h should be reached

  11. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. O' Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  12. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R. (Wixom, MI)

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  13. Reliability of thermal-hydraulic passive safety systems

    International Nuclear Information System (INIS)

    The scholar will be informed of reliability concepts applied to passive system adopted for nuclear reactors. Namely, for classical components and systems the failure concept is associated with malfunction of breaking of hardware. In the case of passive systems the failure is associated with phenomena. A method for studying the reliability of passive systems is discussed and is applied. The paper deals with the description of the REPAS (Reliability Evaluation of Passive Safety System) methodology developed by University of Pisa (UNIPI) and with results from its application. The general objective of the REPAS methodology is to characterize the performance of a passive system in order to increase the confidence toward its operation and to compare the performances of active and passive systems and the performances of different passive systems

  14. Chapter 13. Industrial Application of Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    Design and application of modern pure tap water components and systems in industries, in particular food processing industry.......Design and application of modern pure tap water components and systems in industries, in particular food processing industry....

  15. Theoretic analysis for static characteristic of servo-tube guided hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    The analysis and calculation of static characteristic were carried out for servo tube guided hydraulic control rod driving mechanism. The static holding flow rate and its variation law with temperature were acquired. The results indicate that the static holding flow rate needed is very small in steady working range of variable throttle orifice. The liquid density decreases with the increase of temperature, and then the static holding flow rate increases accordingly. In inclining condition, the range of static holding flow rate is augmented and the holding characteristic of control rod is more stable. Therefore, the resistance ability to perturbation is much stronger and is conformable to the criterion of nautical nuclear power device. (authors)

  16. RE-1000 free-piston Stirling engine hydraulic output system description

    Science.gov (United States)

    Schreiber, Jeffrey G.; Geng, Steven M.

    1987-01-01

    The NASA Lewis Research Center was involved in free-piston Stirling engine research since 1976. Most of the work performed in-house was related to characterization of the RE-1000 engine. The data collected from the RE-1000 tests were intended to provide a data base for the validation of Stirling cycle simulations. The RE-1000 was originally build with a dashpot load system which did not convert the output of the engine into useful power, but was merely used as a load for the engine to work against during testing. As part of the interagency program between NASA Lewis and the Oak Ridge National Laboratory, (ORNL), the RE-1000 was converted into a configuration that produces useable hydraulic power. A goal of the hydraulic output conversion effort was to retain the same thermodynamic cycle that existed with the dashpot loaded engine. It was required that the design must provide a hermetic seal between the hydraulic fluid and the working gas of the engine. The design was completed and the hardware was fabricated. The RE-1000 was modified in 1985 to the hydraulic output configuration. The early part of the RE-1000 hydraulic output program consisted of modifying hardware and software to allow the engine to run at steady-state conditions. A complete description of the engine is presented in sufficient detail so that the device can be simulated on a computer. Tables are presented showing the masses of the oscillating components and key dimensions needed for modeling purposes. Graphs are used to indicate the spring rate of the diaphragms used to separate the helium of the working and bounce space from the hydraulic fluid.

  17. Control system design method

    Science.gov (United States)

    Wilson, David G. (Tijeras, NM); Robinett, III, Rush D. (Tijeras, NM)

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  18. Magnetohydrodynamic control of current-carrying fluid flow in hydraulic branching

    International Nuclear Information System (INIS)

    Magnetodynamic installations with principle of operation, which is based on interaction between induced A.C. and alternating excitation field, are widespread in metallurgy for transportation of liquid metal. One unexplored mode of operation of these installations is asymmetric mode, which gives a possibility to redistribute current-carrying fluid flow in zone of hydraulic branching. Asymmetric modes of operation of these installations are widely used in metallurgy and in foundry at independent control of two liquid metal flows, which are gone out from one reservoir, e.g. portion pouring of metal from a furnace and continuous metal stirring in furnace's bath. In this work, numerical investigation of electromagnetic and hydrodynamic processes in working zone of the magnetodynamic installations has been carried out. Typical patterns of distribution of electromagnetic forces, velocities and pressures have been obtained for different relations between current phases and excitation field phases such that differential pressure in hydraulic canals reaches in maximum value. Results of the numerical investigation are in a good agreement with results of the experiments carried out under laboratory condition for transparent fluid and molten gallium

  19. Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions

    Science.gov (United States)

    Trauth, Nico; Schmidt, Christian; Vieweg, Michael; Oswald, Sascha E.; Fleckenstein, Jan H.

    2015-04-01

    Hyporheic exchange transports solutes into the subsurface where they can undergo biogeochemical transformations, affecting fluvial water quality and ecology. A three-dimensional numerical model of a natural in-stream gravel bar (20 m 6 m) is presented. Multiple steady state streamflow is simulated with a computational fluid dynamics code that is sequentially coupled to a reactive transport groundwater model via the hydraulic head distribution at the streambed. Ambient groundwater flow is considered by scenarios of neutral, gaining, and losing conditions. The transformation of oxygen, nitrate, and dissolved organic carbon by aerobic respiration and denitrification in the hyporheic zone are modeled, as is the denitrification of groundwater-borne nitrate when mixed with stream-sourced carbon. In contrast to fully submerged structures, hyporheic exchange flux decreases with increasing stream discharge, due to decreasing hydraulic head gradients across the partially submerged structure. Hyporheic residence time distributions are skewed in the log-space with medians of up to 8 h and shift to symmetric distributions with increasing level of submergence. Solute turnover is mainly controlled by residence times and the extent of the hyporheic exchange flow, which defines the potential reaction area. Although streamflow is the primary driver of hyporheic exchange, its impact on hyporheic exchange flux, residence times, and solute turnover is small, as these quantities exponentially decrease under losing and gaining conditions. Hence, highest reaction potential exists under neutral conditions, when the capacity for denitrification in the partially submerged structure can be orders of magnitude higher than in fully submerged structures.

  20. GCFR plant control system

    International Nuclear Information System (INIS)

    A plant control system is being designed for a gas-cooled fast breeder reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. The load control portion of the plant control system provides stable automatic (closed-loop) control of the plant over the 25% to 100% load range. Simulation results are presented to demonstrate load control system performance. The results show that the plant is controllable at full load with the control system structure selected, but gain scheduling is required to achieve desired performance over the load range