WorldWideScience

Sample records for human intestinal transit

  1. Relationship between postprandial motor activity in the human small intestine and the gastrointestinal transit of food

    Profiles for gastric emptying and colonic filling were determined in 20 normal volunteers by means of a gamma camera and dedicated minicomputer after ingestion of a radiolabeled solid meal. These were compared with intraluminal pressure activity, recorded simultaneously from three sites (each separated by 50 cm) in the small intestine by infusion manometry. Recordings were continued for at least 8 h or until all the radioactivity appeared in the colon. Colonic filling was approximately linear, occurring at an average rate of 16% of the meal residues per hour. There were significant inverse correlations (p less than 0.01) between the pressure activity in the proximal jejunum during the first 3 h after ingestion and the times taken for 50% and 80% of the meal residues to enter the colon, and direct correlations between total small intestinal pressure activity and the half-time for gastric emptying. Phase III of the interdigestive migrating motor complex appeared between 3 and 9 h after ingestion (when between 15% and 80% of the meal remained in the small intestine), but did not necessarily migrate to the next recording site until much later. The time of appearance of phase III in the proximal jejunum was directly correlated with the half-time for gastric emptying (p less than 0.05) and with the intraluminal pressure activity recorded at that site during the first 3 h after food ingestion (p less than 0.01). The time at which 80% of the meal residues had entered the colon was significantly shorter in 6 subjects, in whom a postprandial activity front appeared to migrate throughout the small bowel, compared with 13 subjects, in whom this did not occur (5.0 +/- 0.5 h vs. 7.0 +/- 0.4 h, p less than 0.01). These studies have shown that gastrointestinal transit of a solid meal is related to both fed and fasted intraluminal pressure activity in the small intestine

  2. Shiga Toxin Interaction with Human Intestinal Epithelium

    Stephanie Schüller

    2011-01-01

    After ingestion via contaminated food or water, enterohaemorrhagic E. coli colonises the intestinal mucosa and produces Shiga toxins (Stx). No Stx-specific secretion system has been described so far, and it is assumed that Stx are released into the gut lumen after bacterial lysis. Human intestinal epithelium does not express the Stx receptor Gb3 or other Stx binding sites, and it remains unknown how Stx cross the intestinal epithelial barrier and gain access to the systemic circulation. This ...

  3. Radioimmunoassay of human intestinal alkaline phosphatase

    A new method of radioimmunoassay using the double antibody method for human intestinal alkaline phosphatase (ALP) was first elaborated. The following results were obtained: 1) In this system, the optimal antibody concentration is 10,000 times the dilution of the original anti-serum, and the optimal assay range is 0.5 to 25 ng. Enzymatic activity of 1 ng intestinal ALP is 4.1 King-Armstrong units. 2) In this system, the sera including intestinal ALP are divided to two groups. One group shows a dose response curve similar to that of purified intestinal ALP, and the other shows a lesser one. This reason is not clear. Hepatic ALP, osseous ALP and placental ALP in the sera show no response in this system. 3) In this system, the B/T value of 50 μg of purified human placental ALP is almost equal to 1 ng of purified human intestinal ALP. Similarly, the B/T value of 50 μg of purified human intestinal ALP is equal to almost 5 ng of purified human placental ALP. This shows that cross-reaction exists between intestinal and placental ALPs at high concentrations. (J.P.N.)

  4. Accurate measurement of intestinal transit in the rat

    A new method for quantifying intestinal transit was evaluated by comparison with two other popular techniques. The distribution of radiochromium (51Cr) throughout the small intestine of rats previously treated with saline (1.0 ml/kg s.c.), capsaicin (10 mg/kg s.c.), hexamethonium (20 mg/kg i.p.), D-ala2-met-enkephalinamide (1.0 microgram i.c.v.), or neostigmine (0.1 mg/kg i.p.) was quantified by (1) measuring the most distal intestinal segment reached by chromium, (2) calculating the slope produced by linear regression analysis on cumulative percent chromium that had passed through each segment, and (3) determining the geometric center of the distribution of chromium throughout the small intestine. It was concluded that the geometric center methods for quantifying intestinal transit provides the most sensitive and reliable measure of intestinal transit. Less sensitive techniques often fail to detect important effects of drugs on intestinal transit

  5. Accurate measurement of intestinal transit in the rat

    Miller, M.S.; Galligan, J.J.; Burks, T.F.

    1981-11-01

    A new method for quantifying intestinal transit was evaluated by comparison with two other popular techniques. The distribution of radiochromium (51Cr) throughout the small intestine of rats previously treated with saline (1.0 ml/kg s.c.), capsaicin (10 mg/kg s.c.), hexamethonium (20 mg/kg i.p.), D-ala2-met-enkephalinamide (1.0 microgram i.c.v.), or neostigmine (0.1 mg/kg i.p.) was quantified by (1) measuring the most distal intestinal segment reached by chromium, (2) calculating the slope produced by linear regression analysis on cumulative percent chromium that had passed through each segment, and (3) determining the geometric center of the distribution of chromium throughout the small intestine. It was concluded that the geometric center methods for quantifying intestinal transit provides the most sensitive and reliable measure of intestinal transit. Less sensitive techniques often fail to detect important effects of drugs on intestinal transit.

  6. Shiga Toxin Interaction with Human Intestinal Epithelium

    Stephanie Schüller

    2011-06-01

    Full Text Available After ingestion via contaminated food or water, enterohaemorrhagic E. coli colonises the intestinal mucosa and produces Shiga toxins (Stx. No Stx-specific secretion system has been described so far, and it is assumed that Stx are released into the gut lumen after bacterial lysis. Human intestinal epithelium does not express the Stx receptor Gb3 or other Stx binding sites, and it remains unknown how Stx cross the intestinal epithelial barrier and gain access to the systemic circulation. This review summarises current knowledge about the influence of the intestinal environment on Stx production and release, Stx interaction with intestinal epithelial cells and intracellular uptake, and toxin translocation into underlying tissues. Furthermore, it highlights gaps in understanding that need to be addressed by future research.

  7. Tipping elements in the human intestinal ecosystem

    Lahti, L.; Salojarvi, J.; Salonen, A.; Scheffer, M.; De Vos

    2014-01-01

    The microbial communities living in the human intestine can have profound impact on our well-being and health. However, we have limited understanding of the mechanisms that control this complex ecosystem. Here, based on a deep phylogenetic analysis of the intestinal microbiota in a thousand western adults, we identify groups of bacteria that exhibit robust bistable abundance distributions. These bacteria are either abundant or nearly absent in most individuals, and exhibit decreased temporal ...

  8. Acquired macrolide resistance in the human intestinal strain Lactobacillus rhamnosus E41 associated with a transition mutation in 23S rRNA genes

    Flórez García, Ana Belén; Ladero Losada, Víctor Manuel; Álvarez Martín, Pablo; Ammor, Mohammed Salim; Álvarez González, Miguel Ángel; Mayo Pérez, Baltasar

    2007-01-01

    Restriction fragment length polymorphism and DNA sequencing of polymerase chain reaction (PCR) products showed that a Lactobacillus rhamnosus strain of human origin resistant to macrolides, from which no resistance determinants have been detected by specific PCR and microarray screening, contained a heterozygous A → G transition mutation at position 2058 (Escherichia coli numbering) of its 23S rRNA genes.

  9. A deconvolution technique for processing small intestinal transit data

    Brinch, K. [Department of Clinical Physiology and Nuclear Medicine, Glostrup Hospital, University Hospital of Copenhagen (Denmark); Larsson, H.B.W. [Danish Research Center of Magnetic Resonance, Hvidovre Hospital, University Hospital of Copenhagen (Denmark); Madsen, J.L. [Department of Clinical Physiology and Nuclear Medicine, Hvidovre Hospital, University Hospital of Copenhagen (Denmark)

    1999-03-01

    The deconvolution technique can be used to compute small intestinal impulse response curves from scintigraphic data. Previously suggested approaches, however, are sensitive to noise from the data. We investigated whether deconvolution based on a new simple iterative convolving technique can be recommended. Eight healthy volunteers ingested a meal that contained indium-111 diethylene triamine penta-acetic acid labelled water and technetium-99m stannous colloid labelled omelette. Imaging was performed at 30-min intervals until all radioactivity was located in the colon. A Fermi function=(1+e{sup -{alpha}{beta}})/(1+e{sup (t-{alpha}){beta}}) was chosen to characterize the small intestinal impulse response function. By changing only two parameters, {alpha} and {beta}, it is possible to obtain configurations from nearly a square function to nearly a monoexponential function. Small intestinal input function was obtained from the gastric emptying curve and convolved with the Fermi function. The sum of least squares was used to find {alpha} and {beta} yielding the best fit of the convolved curve to the oberved small intestinal time-activity curve. Finally, a small intestinal mean transit time was calculated from the Fermi function referred to. In all cases, we found an excellent fit of the convolved curve to the observed small intestinal time-activity curve, that is the Fermi function reflected the small intestinal impulse response curve. Small intestinal mean transit time of liquid marker (median 2.02 h) was significantly shorter than that of solid marker (median 2.99 h; P<0.02). The iterative convolving technique seems to be an attractive alternative to ordinary approaches for the processing of small intestinal transit data. (orig.) With 2 figs., 13 refs.

  10. A deconvolution technique for processing small intestinal transit data

    The deconvolution technique can be used to compute small intestinal impulse response curves from scintigraphic data. Previously suggested approaches, however, are sensitive to noise from the data. We investigated whether deconvolution based on a new simple iterative convolving technique can be recommended. Eight healthy volunteers ingested a meal that contained indium-111 diethylene triamine penta-acetic acid labelled water and technetium-99m stannous colloid labelled omelette. Imaging was performed at 30-min intervals until all radioactivity was located in the colon. A Fermi function=(1+e-αβ)/(1+e(t-α)β) was chosen to characterize the small intestinal impulse response function. By changing only two parameters, α and β, it is possible to obtain configurations from nearly a square function to nearly a monoexponential function. Small intestinal input function was obtained from the gastric emptying curve and convolved with the Fermi function. The sum of least squares was used to find α and β yielding the best fit of the convolved curve to the observed small intestinal time-activity curve. Finally, a small intestinal mean transit time was calculated from the Fermi function referred to. In all cases, we found an excellent fit of the convolved curve to the observed small intestinal time-activity curve, that is the Fermi function reflected the small intestinal impulse response curve. Small intestinal mean transit time of liquid marker (median 2.02 h) was significantly shorter than that of solid marker (median 2.99 h; P<0.02). The iterative convolving technique seems to be an attractive alternative to ordinary approaches for the processing of small intestinal transit data. (orig.)

  11. Icariin Metabolism by Human Intestinal Microflora.

    Wu, Hailong; Kim, Mihyang; Han, Jaehong

    2016-01-01

    Icariin is a major bioactive compound of Epimedii Herba, a traditional oriental medicine exhibiting anti-cancer, anti-inflammatory and anti-osteoporosis activities. Recently, the estrogenic activities of icariin drew significant attention, but the published scientific data seemed not to be so consistent. To provide fundamental information for the study of the icaritin metabolism, the biotransformation of icariin by the human intestinal bacteria is reported for the first time. Together with human intestinal microflora, the three bacteria Streptococcus sp. MRG-ICA-B, Enterococcus sp. MRG-ICA-E, and Blautia sp. MRG-PMF-1 isolated from human intestine were reacted with icariin under anaerobic conditions. The metabolites including icariside II, icaritin, and desmethylicaritin, but not icariside I, were produced. The MRG-ICA-B and E strains hydrolyzed only the glucose moiety of icariin, and icariside II was the only metabolite. However, the MRG-PMF-1 strain metabolized icariin further to desmethylicaritin via icariside II and icaritin. From the results, along with the icariin metabolism by human microflora, it was evident that most icariin is quickly transformed to icariside II before absorption in the human intestine. We propose the pharmacokinetics of icariin should focus on metabolites such as icariside II, icaritin and desmethylicaritin to explain the discrepancy between the in vitro bioassay and pharmacological effects. PMID:27589718

  12. Faecalibacterium prausnitzii and human intestinal health

    Miquel, S.; Martin, R.; Rossi, O.; Bermudez-Humaran, L.G.; Chatel, J.M.; Sokol, H.; Thomas, M.; Wells, J.M.; Langella, P.

    2013-01-01

    Faecalibacterium prausnitzii is the most abundant bacterium in the human intestinal microbiota of healthy adults, representing more than 5% of the total bacterial population. Over the past five years, an increasing number of studies have clearly described the importance of this highly metabolically

  13. Intestinal transit of solid and liquid components of a meal in health.

    Malagelada, J R; Robertson, J S; Brown, M L; Remington, M; Duenes, J A; Thomforde, G M; Carryer, P W

    1984-12-01

    The aim of this study was to test the hypothesis that, under physiologic conditions, the human small bowel discriminates between the solid and aqueous components of chyme, that is, that in a fashion analogous to the stomach, the intestine would allow the liquid fraction to progress at a faster rate than solid particles. To evaluate this hypothesis, we took advantage of a gamma-emitting solid marker, 131I-fiber, previously developed in our laboratory, that is recognized by the stomach as a solid and that is emptied at a slower rate than liquid markers. Thus, 131I-fiber enters the intestine during feeding at a slower rate than a liquid marker, being eventually excreted in the feces physically and chemically unchanged. We also developed a mathematical method to calculate the intestinal transit spectrum based on scintigraphic data obtained from 6 healthy individuals who ingested 131I-fiber and technetium 99m (99mTc)-diethylenetriaminepentaacetic acid (DTPA)-water with a meal. The results disprove the hypothesis by showing that whereas 131I-fiber, as expected, leaves the stomach at a much slower rate than 99mTc-DTPA-water, both markers progress along the small bowel separately but at similar speeds. Our method for measuring intestinal transit provides a more comprehensive quantification of chyme transit in the human small bowel than earlier methods and should prove a useful technique for further noninvasive studies of transit after feeding. PMID:6092195

  14. Intestinal transit of solid and liquid components of a meal in health

    Malagelada, J.R.; Robertson, J.S.; Brown, M.L.; Remington, M.; Duenes, J.A.; Thomforde, G.M.; Carryer, P.W.

    1984-12-01

    The aim of this study was to test the hypothesis that, under physiologic conditions, the human small bowel discriminates between the solid and aqueous components of chyme, that is, that in a fashion analogous to the stomach, the intestine would allow the liquid fraction to progress at a faster rate than solid particles. To evaluate this hypothesis, the authors took advantage of a gamma-emitting solid marker, /sup 131/I-fiber, previously developed in their laboratory, that is recognized by the stomach as a solid and that is emptied at a slower rate than liquid markers. Thus, /sup 131/I-fiber enters the intestine during feeding at a slower rate than a liquid marker, being eventually excreted in the feces physically and chemically unchanged. We also developed a mathematical method was also developed to calculate the intestinal transit spectrum based on scintigraphic data obtained from 6 healthy individuals who ingested /sup 131/I-fiber and technetium /sup 99m/ (/sup 99m/Tc)-diethylenetriaminepentaacetic acid (DTPA)-water with a meal. The results disprove the hypothesis by showing that whereas /sup 131/I-fiber, as expected, leaves the stomach at a much slower rate than /sup 99m/Tc-DTPA-water, both markers progress along the small bowel separately but at similar speeds. This method for measuring intestinal transit provides a more comprehensive quantification of chyme transit in the human small bowel than earlier methods and should prove a useful technique for further noninvasive studies of transit after feeding.

  15. Intestinal transit of solid and liquid components of a meal in health

    The aim of this study was to test the hypothesis that, under physiologic conditions, the human small bowel discriminates between the solid and aqueous components of chyme, that is, that in a fashion analogous to the stomach, the intestine would allow the liquid fraction to progress at a faster rate than solid particles. To evaluate this hypothesis, the authors took advantage of a gamma-emitting solid marker, 131I-fiber, previously developed in their laboratory, that is recognized by the stomach as a solid and that is emptied at a slower rate than liquid markers. Thus, 131I-fiber enters the intestine during feeding at a slower rate than a liquid marker, being eventually excreted in the feces physically and chemically unchanged. We also developed a mathematical method was also developed to calculate the intestinal transit spectrum based on scintigraphic data obtained from 6 healthy individuals who ingested 131I-fiber and technetium /sup 99m/ (/sup 99m/Tc)-diethylenetriaminepentaacetic acid (DTPA)-water with a meal. The results disprove the hypothesis by showing that whereas 131I-fiber, as expected, leaves the stomach at a much slower rate than /sup 99m/Tc-DTPA-water, both markers progress along the small bowel separately but at similar speeds. This method for measuring intestinal transit provides a more comprehensive quantification of chyme transit in the human small bowel than earlier methods and should prove a useful technique for further noninvasive studies of transit after feeding

  16. Cholesterol esterase activity of human intestinal mucosa

    It has been suggested that cholesterol absorption in humans is dependent on bile acid pool composition and that expansion of the cholic acid pool size is followed by an increase of the absorption values. Similar observations were reported in rats. In the present study, therefore, the authors investigated some general properties of human intestinal cholesterol esterase, with particular emphasis on the effect of bile acids on this enzymatic activity. Twenty-nine segments of small intestine were taken during operations; the enzymatic activity was studied by using mucosal homogenate as a source of enzyme and oleic acid, cholesterol, and 14C-labeled cholesterol as substrates. The time-activity relationship was linear within the first two hours; optimal pH for esterification ranged between 5 and 6.2. There was little difference between the esterifying activity of the jejunal and ileal mucosa. Esterification of cholesterol was observed with all the investigated fatty acids but was maximal with oleic acid. Bile acids did not affect cholesterol esterase activity when present in the incubation mixture at 0.1 and 1.0 mM; the enzymatic activity, however, was significantly inhibited when bile acids were added at 20 mM. In conclusion, this study has shown that the human intestinal mucosa possesses a cholesterol esterase activity; at variance with the rat, however, the human enzyme does not seem to be stimulated by trihydroxy bile acids

  17. Compartmentalization of Aquaporins in the Human Intestine

    Rajendram V. Rajnarayanan

    2008-06-01

    Full Text Available Improper localization of water channel proteins called aquaporins (AQP induce mucosal injury which is implicated in Crohn’s disease and ulcerative colitis. The amino acid sequences of AQP3 and AQP10 are 79% similar and belong to the mammalian aquaglyceroporin subfamily. AQP10 is localized on the apical compartment of the intestinal epithelium called the glycocalyx while AQP3 is selectively targeted to the basolateral membrane. Despite the high sequence similarity and evolutionary relatedness, the molecular mechanism involved in the polarity, selective targeting and function of AQP3 and AQP10 in the intestine is largely unknown. Our hypothesis is that the differential polarity and selective targeting of AQP3 and AQP10 in the intestinal epithelial cells is influenced by amino acid signal motifs. We performed sequence and structural alignments to determine differences in signals for localization and posttranslational glycosylation. The basolateral sorting motif “YRLL” is present in AQP3 but absent in AQP10; while Nglycosylation signals are present in AQP10 but absent in AQP3. Furthermore, the C-terminal region of AQP3 is longer compared to AQP10. The sequence and structural differences between AQP3 and AQP10 provide insights into the differential compartmentalization and function of these two aquaporins commonly expressed in human intestines.

  18. Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium.

    Nicholas Lahar

    Full Text Available The intestinal crypt-niche interaction is thought to be essential to the function, maintenance, and proliferation of progenitor stem cells found at the bases of intestinal crypts. These stem cells are constantly renewing the intestinal epithelium by sending differentiated cells from the base of the crypts of Lieberkühn to the villus tips where they slough off into the intestinal lumen. The intestinal niche consists of various cell types, extracellular matrix, and growth factors and surrounds the intestinal progenitor cells. There have recently been advances in the understanding of the interactions that regulate the behavior of the intestinal epithelium and there is great interest in methods for isolating and expanding viable intestinal epithelium. However, there is no method to maintain primary human small intestinal epithelium in culture over a prolonged period of time. Similarly no method has been published that describes isolation and support of human intestinal epithelium in an in vivo model. We describe a technique to isolate and maintain human small intestinal epithelium in vitro from surgical specimens. We also describe a novel method to maintain human intestinal epithelium subcutaneously in a mouse model for a prolonged period of time. Our methods require various growth factors and the intimate interaction between intestinal sub-epithelial myofibroblasts (ISEMFs and the intestinal epithelial cells to support the epithelial in vitro and in vivo growth. Absence of these myofibroblasts precluded successful maintenance of epithelial cell formation and proliferation beyond just a few days, even in the presence of supportive growth factors. We believe that the methods described here can be used to explore the molecular basis of human intestinal stem cell support, maintenance, and growth.

  19. Increased intestinal marker absorption due to regional permeability changes and decreased intestinal transit during sepsis in the rat

    The intestinal barrier properties are impaired during inflammation and sepsis, but the mechanisms behind this are unknown and were therefore investigated during experimental sepsis in rats. The different-sized intestinal absorption markers 51Cr-labeled ethylenediaminetetraacetic acid (EDTA) and ovalbumin were gavaged to rats made septic by intra-abdominal bacterial implantation and to sham-operated rats. Regional tissue permeability was measured in diffusion chambers, and intestinal transit was evaluated by intestinal accumulation of gavaged 51Cr-EDTA. In comparison with the sham-operated rats, septic rats had higher 51Cr-EDTA levels in blood and urine and showed a prolonged intestinal transit. Septic rats also had a lower tissue permeability to both markers in the small intestines but higher permeability to ovalbumin in the colon. Rats receiving morphine to decrease intestinal motility showed similar changes, with a decreased intestinal transit and increased marker absorption. Thr results suggest that the increased intestinal absorption during sepsis was due to regional permeability changes and prolonged intestinal transit. 38 refs., 4 figs., 2 tabs

  20. Intestinal transit and bacterial translocation in obstructive pancreatitis.

    Moody, F G; Haley-Russell, D; Muncy, D M

    1995-08-01

    Pancreatic infection from gut-derived bacteria has emerged as the major cause of death in necrotizing pancreatitis. Bacterial overgrowth of indigenous enteric organisms as a consequence of guts stasis (ileus) represents a potential initial event in this process. The present study was designed to examine the interrelationships between intestinal transit, enteric bacteriology, and the translocation of bacteria from the gut lumen to mesenteric lymph nodes and splanchnic viscera during experimentally induced acute pancreatitis. Male rats underwent pancreaticobiliary duct ligation (PBDL) or sham surgery and were sacrificed after 24, 48, or 96 hr. Severity of pancreatitis was assessed with histology, tissue water content, and amylase and lipase levels. Intestinal transit was measured with fluorescent tracers. Blood, mesenteric lymph nodes (MLNs), splanchnic organs, and gut luminal contents were subjected to bacteriologic analysis. PBDL was followed by biochemical and histologic evidence of progressive pancreatic injury at each time interval. Enteric bacteria within the gut and in adjacent MLNs increased as intestinal transit decreased after PBDL-induced pancreatic inflammation. Surprisingly, all parameters returned to control levels by 96 hr in spite of progression of pancreatic inflammation. PMID:7648983

  1. Alternative Functional In Vitro Models of Human Intestinal Epithelia

    Amanda L Kauffman

    2013-07-01

    Full Text Available Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We sought to evaluate and compare two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs and induced pluripotent stem cell (iPSC-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, our previously described 3-dimensional intestinal organogenesis method was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.

  2. Farewell to Animal Testing: Innovations on Human Intestinal Microphysiological Systems

    Tae Hyun Kang

    2016-06-01

    Full Text Available The human intestine is a dynamic organ where the complex host-microbe interactions that orchestrate intestinal homeostasis occur. Major contributing factors associated with intestinal health and diseases include metabolically-active gut microbiota, intestinal epithelium, immune components, and rhythmical bowel movement known as peristalsis. Human intestinal disease models have been developed; however, a considerable number of existing models often fail to reproducibly predict human intestinal pathophysiology in response to biological and chemical perturbations or clinical interventions. Intestinal organoid models have provided promising cytodifferentiation and regeneration, but the lack of luminal flow and physical bowel movements seriously hamper mimicking complex host-microbe crosstalk. Here, we discuss recent advances of human intestinal microphysiological systems, such as the biomimetic human “Gut-on-a-Chip” that can employ key intestinal components, such as villus epithelium, gut microbiota, and immune components under peristalsis-like motions and flow, to reconstitute the transmural 3D lumen-capillary tissue interface. By encompassing cutting-edge tools in microfluidics, tissue engineering, and clinical microbiology, gut-on-a-chip has been leveraged not only to recapitulate organ-level intestinal functions, but also emulate the pathophysiology of intestinal disorders, such as chronic inflammation. Finally, we provide potential perspectives of the next generation microphysiological systems as a personalized platform to validate the efficacy, safety, metabolism, and therapeutic responses of new drug compounds in the preclinical stage.

  3. [Comparative study of 2 methods of measuring intestinal transit time].

    Vidal-Neira, L; León-Barúa, R

    1981-01-01

    In 20 healthy volunteers, intestinal transit times, obtained following a simple method, recently described, in which a small liquid-containing rubber bag is used as a marker, were compared with the times obtained following, simultaneously, another method, already universally accepted, in which small barium-impregnated pellets are used as markers. The intestinal transit determined with the rubber bag (TTI-B) (14.1 - 79.2 hours; mean +/- s.d.: 42.4 +/- 20.7 hours) were significantly shorter than the times determined with the plastic pellets (TTI) (26.4 - 88.1 hours; mean +/- s.d.: 60.2 +/- 25.5 hours (P less than 0.001). But, TTI-B and TTI correlate closely (r: + 0.86), and, furthermore, TTI-B results may be converted to TTI results with the help of a simple regression equation: TTI (in minutes) = 831 + 1.09 TTI-B (in minutes). After analyzing what has been observed in the present work and in previous works, it was concluded that the new method to measure intestinal transient time using the small rubber bag is reliable and simple, and that it may help to better understand what happens in some important gastrointestinal problems. PMID:7342626

  4. Human intestinal microbial metabolism of naringin.

    Zou, Wei; Luo, Yulong; Liu, Menghua; Chen, Si; Wang, Sheng; Nie, Yichu; Cheng, Guohua; Su, Weiwei; Zhang, Kejian

    2015-09-01

    Naringin, a major flavonoid in citrus fruits, has been proved to be a promising antitussive candidate. It undertakes complicated metabolism. In this study, human intestinal microbial metabolism of naringin was studied in vitro. Six persons' fecal water, which have intestinal microbial enzyme, were used in the first experiment. Naringin was metabolized by fecal water into naringenin. Subsequently, 3-(4-hydroxyphenyl)propionic acid (4-HPPA) was produced with naringenin degradation by a person's fecal water. However, 4-HPPA was not detected after naringenin degradation by the other 5 subjects' fecal water and the reason might be that the degrading velocity of 4-HPPA exceeded the producing velocity. To confirm the difference in degrading 4-HPPA among human feces, 22 healthy persons' feces were used for incubation. In this second experiment, 15 persons' feces could degrade 4-HPPA, but the other 7 subjects' could not. Human feces showed different ability of degrading 4-HPPA, and there are no gender differences. These results may be helpful for explaining findings in pharmacological and toxicological studies and are groundwork for clinical studies. PMID:24935725

  5. A Revised Model for Dosimetry in the Human Small Intestine

    John Poston; Nasir U. Bhuiyan; R. Alex Redd; Neil Parham; Jennifer Watson

    2005-02-28

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents.

  6. A Revised Model for Dosimetry in the Human Small Intestine

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents

  7. Nutrient regulation of human intestinal sugar transporter (SGLT1) expression.

    Dyer, J; Hosie, K B; Shirazi-Beechey, S P

    1997-01-01

    BACKGROUND: The activity of most intestinal nutrient transporters is adaptively regulated by the type and amounts of nutrients entering the intestinal lumen. The concentration and activity of the intestinal Na+/glucose cotransporter (SGLT1) are regulated by dietary sugars in most animal species. The activity and abundance of SGLT1 in biopsy specimens removed from human jejunal regions exposed to, and having limited access to, luminal nutrients have been measured and compared. AIMS: To study t...

  8. Human placental alkaline phosphatase in liver and intestine

    Three distinct forms of human alkaline phosphatase, presumably isozymes, are known, each apparently associated with a specific tissue. These are placental, intestinal, and liver (kidney and bone). The authors have used a specific immunoassay and HPLC to show that placental alkaline phosphatase is also present in extracts of liver and intestine in appreciable amounts

  9. Extensive Intestinal Resection Triggers Behavioral Adaptation, Intestinal Remodeling and Microbiota Transition in Short Bowel Syndrome

    Camille Mayeur

    2016-03-01

    Full Text Available Extensive resection of small bowel often leads to short bowel syndrome (SBS. SBS patients develop clinical mal-absorption and dehydration relative to the reduction of absorptive area, acceleration of gastrointestinal transit time and modifications of the gastrointestinal intra-luminal environment. As a consequence of severe mal-absorption, patients require parenteral nutrition (PN. In adults, the overall adaptation following intestinal resection includes spontaneous and complex compensatory processes such as hyperphagia, mucosal remodeling of the remaining part of the intestine and major modifications of the microbiota. SBS patients, with colon in continuity, harbor a specific fecal microbiota that we called “lactobiota” because it is enriched in the Lactobacillus/Leuconostoc group and depleted in anaerobic micro-organisms (especially Clostridium and Bacteroides. In some patients, the lactobiota-driven fermentative activities lead to an accumulation of fecal d/l-lactates and an increased risk of d-encephalopathy. Better knowledge of clinical parameters and lactobiota characteristics has made it possible to stratify patients and define group at risk for d-encephalopathy crises.

  10. Intestinal fructose transport and malabsorption in humans.

    Jones, Hilary F; Butler, Ross N; Brooks, Doug A

    2011-02-01

    Fructose is a hexose sugar that is being increasingly consumed in its monosaccharide form. Patients who exhibit fructose malabsorption can present with gastrointestinal symptoms that include chronic diarrhea and abdominal pain. However, with no clearly established gastrointestinal mechanism for fructose malabsorption, patient analysis by the proxy of a breath hydrogen test (BHT) is controversial. The major transporter for fructose in intestinal epithelial cells is thought to be the facilitative transporter GLUT5. Consistent with a facilitative transport system, we show here by analysis of past studies on healthy adults that there is a significant relationship between fructose malabsorption and fructose dose (r = 0.86, P fructose malabsorption with age have been observed in human infants, and this may parallel the developmental regulation of GLUT5 expression. Moreover, a GLUT5 knockout mouse has displayed the hallmarks associated with profound fructose malabsorption. Fructose malabsorption appears to be partially modulated by the amount of glucose ingested. Although solvent drag and passive diffusion have been proposed to explain the effect of glucose on fructose malabsorption, this could possibly be a result of the facilitative transporter GLUT2. GLUT5 and GLUT2 mRNA have been shown to be rapidly upregulated by the presence of fructose and GLUT2 mRNA is also upregulated by glucose, but in humans the distribution and role of GLUT2 in the brush border membrane are yet to be definitively decided. Understanding the relative roles of these transporters in humans will be crucial for establishing a mechanistic basis for fructose malabsorption in gastrointestinal patients. PMID:21148401

  11. Cholinergic mediation of small intestinal transit in the rat

    It has been reported that small intestinal transit (SIT) in the rat is not cholinergically mediated. The geometric mean of a marker may be a more powerful method for SIT studies. Therefore, it was their goal to evaluate the effect of muscarinic blockade in normal and prostaglandin E2 (PGE2)-enhanced SIT using this method. Male, food-fasted rats (190 to 240 g) were first dosed subcutaneously with atropine. 30 min after the atropine the rats received an oral dose of PGE2 at 5.0 mg/kg. 5 min after PGE2, a 51Cr-labeled marker was dosed intraduodenally, and a 25 min transit period followed. The results are: (1) 5.0 mg/kg of PGE2 significantly stimulates the geometric mean of the marker in agreement with previous findings and (2) atropine is inhibitory at doses as low as 0.20 mg/kg for basal SIT and 0.10 mg/kg for PGE2-stimulated SIT. This indicates (1) the rat has cholinergically mediated SIT, and (2) cholinergic activation may be important for PGE2 effects on SIT in the rat

  12. Apoptosis of human intestinal epithelial cells after bacterial invasion.

    Kim, J. M.; Eckmann, L; Savidge, T. C.; Lowe, D C; Witthöft, T; Kagnoff, M F

    1998-01-01

    Epithelial cells that line the human intestinal mucosa are the initial site of host invasion by bacterial pathogens. The studies herein define apoptosis as a new category of intestinal epithelial cell response to bacterial infection. Human colon epithelial cells are shown to undergo apoptosis following infection with invasive enteric pathogens, such as Salmonella or enteroinvasive Escherichia coli. In contrast to the rapid onset of apoptosis seen after bacterial infection of mouse monocyte-ma...

  13. Distribution of vasoactive intestinal polypeptide and substance P receptors in human colon and small intestine

    Vasoactive intestinal polypeptide (VIP) and substance P are found in neurons in the lamina propria and submucosa and muscularis propria of human small intestine and colon. VIP receptors coupled to adenylate cyclase are present on epithelial, smooth muscle, and mononuclear cells. This study analyzes the distribution of [125I]VIP binding and [125I]substance P in human colon and small intestine using autoradiographic techniques. [125I]VIP binding was present in high density in the mucosal layer of colon and small intestine. [125I]VIP binding was not significantly greater than nonspecific binding in smooth muscle layers or the lymphoid follicles. In contrast, [125I]substance P binding was present in high density over the colonic muscle but was not present over the mucosal layer. In human colon cancer, [125I]VIP grain density over the malignant tissue was only slightly higher than background. These autoradiographic studies of [125I]VIP binding indicate that the highest density of VIP receptors was found in the small intestine and superficial colonic mucosa, whereas the density of substance P receptors was highest over the smooth muscle layers. These findings suggest a mismatch between immunochemical content of the peptide and autoradiographic density of the receptor

  14. Drug Transport and Metabolism in Rat and Human Intestine

    Berggren, Sofia

    2006-01-01

    One of the aims of this thesis was to investigate the involvement of efflux proteins, such as the P-glycoprotein (Pgp), in the drug transport in different regions of the rat and the human intestine. The intestinal extrusion of intracellularly formed CYP3A4 metabolites, including whether this extrusion might be mediated by Pgp, was also studied. The model drugs used were local anaesthetics (LA), which have been evaluated for inflammatory bowel disease, such as ropivacaine, lidocaine and bupiva...

  15. Prostacyclin inhibits gastric emptying and small-intestinal transit in rats and dogs

    Prostacyclin (PGI2) antagonizes 16,16-dimethyl prostaglandin E2-induced diarrhea in rats, presumably by inhibiting the fluid accumulation of ''enteropooling'' in the small intestine. The effect of PGI2 on gastric emptying, small intestinal transit, and colonic transit was examined in rats and dogs to determine if interference with propulsion might also contribute to the antidiarrheal properties of this compound. Rats implanted with chronic duodenal cannulas were given subcutaneous PGI2 (0.1-1000 microgram/kg) followed 10 min later by intragastric 2Cr and a visually detectable duodenal transit marker. Forty-five minutes later, the animals were killed. Subcutaneous PGI2 inhibited gastric emptying maximally at 10 micrograms/kg. Small-intestinal transit was significantly decreased at 50 micrograms/kg and almost completely suppressed at 1.0 mg/kg. Subcutaneous naloxone (0.5 mg/kg) given 10 min before and 20 min after subcutaneous PGI2 administration did not block PGI2's effects. Intravenous or oral PGI2, had none of these effects. Small intestinal transit was only decreased by PGI2 infusion, suggesting that this parameter was more sensitive to a sustained blood level than gastric emptying. Hourly injections of subcutaneous PGI2 (0.5 mg/kg) had no effect on rat colonic transit measured over a 3-h period after deposition of the transit marker through a colonic cannula in a manner similar to that described for small-intestinal transit above. Small-intestinal transit was also measured in dogs given a barium suspension through a chronic duodenal cannula. In vehicle-treated dogs, barium reached the cecal area in an average of 2.8 h after instillation. In PGI2-treated dogs, barium never reached the cecum in the 5-h examination period. Thus, PGI2 inhibits gastric emptying in rat and small-intestinal transit in rat and dog but has no effect on rat colonic transit

  16. Major transitions in human evolution.

    Foley, Robert A; Martin, Lawrence; Mirazón Lahr, Marta; Stringer, Chris

    2016-07-01

    Evolutionary problems are often considered in terms of 'origins', and research in human evolution seen as a search for human origins. However, evolution, including human evolution, is a process of transitions from one state to another, and so questions are best put in terms of understanding the nature of those transitions. This paper discusses how the contributions to the themed issue 'Major transitions in human evolution' throw light on the pattern of change in hominin evolution. Four questions are addressed: (1) Is there a major divide between early (australopithecine) and later (Homo) evolution? (2) Does the pattern of change fit a model of short transformations, or gradual evolution? (3) Why is the role of Africa so prominent? (4) How are different aspects of adaptation-genes, phenotypes and behaviour-integrated across the transitions? The importance of developing technologies and approaches and the enduring role of fieldwork are emphasized.This article is part of the themed issue 'Major transitions in human evolution'. PMID:27298461

  17. Induction of metabolism and transport in human intestine : Validation of precision-cut slices as a tool to study induction of drug metabolism in human intestine in vitro

    van de Kerkhof, Esther; De Graaf, Inge A. M.; Ungell, Anna-Lena B.; Groothuis, Geny M. M.

    2008-01-01

    Induction of drug enzyme activity in the intestine can strongly determine plasma levels of drugs. It is therefore important to predict drug-drug interactions in human intestine in vitro. We evaluated the applicability of human intestinal precision-cut slices for induction studies in vitro. Morpholog

  18. Reprogramming of the human intestinal epigenome by surgical tissue transposition

    Lay, Fides D.; Triche, Timothy J.; Tsai, Yvonne C.; Su, Sheng-Fang; Martin, Sue Ellen; Daneshmand, Siamak; Skinner, Eila C.; Liang, Gangning; Chihara, Yoshitomo; Jones, Peter A.

    2014-01-01

    Extracellular cues play critical roles in the establishment of the epigenome during development and may also contribute to epigenetic perturbations found in disease states. The direct role of the local tissue environment on the post-development human epigenome, however, remains unclear due to limitations in studies of human subjects. Here, we use an isogenic human ileal neobladder surgical model and compare global DNA methylation levels of intestinal epithelial cells pre- and post-neobladder construction using the Infinium HumanMethylation450 BeadChip. Our study is the first to quantify the effect of environmental cues on the human epigenome and show that the local tissue environment directly modulates DNA methylation patterns in normal differentiated cells in vivo. In the neobladder, the intestinal epithelial cells lose their tissue-specific epigenetic landscape in a time-dependent manner following the tissue’s exposure to a bladder environment. We find that de novo methylation of many intestine-specific enhancers occurs at the rate of 0.41% per month (P < 0.01, Pearson = 0.71), while demethylation of primarily non-intestine-specific transcribed regions occurs at the rate of −0.37% per month (P < 0.01, Pearson = −0.57). The dynamic resetting of the DNA methylome in the neobladder not only implicates local environmental cues in the shaping and maintenance of the epigenome but also illustrates an unexpected cross-talk between the epigenome and the cellular environment. PMID:24515120

  19. Dietary protein absorption of the small intestine in human neonates

    Schaart, Maaike W.; de Bruijn, Adrianus C. J. M.; Tibboel, Dick; Renes, Ingrid B.; van Goudoever, Johannes B.

    2007-01-01

    Background: The intestine plays a key role in the absorption of dietary proteins, which determines growth of human neonates. Bowel resection in the neonatal period brings loss of absorptive and protective surface and may consequently lead to malabsorption of dietary nutrients. However, there are no

  20. Molecular Epidemiology of Human Intestinal Amoebas in Iran

    M Rezaian

    2012-09-01

    Full Text Available Many microscopic-based epidemiological surveys on the prevalence of human intestinal pathogenic and non-pathogenic protozoa including intestinal amoeba performed in Iran show a high prevalence of human intestinal amoeba in different parts of Iran. Such epidemiological studies on amoebiasis are confusing, mainly due to recently appreciated distinction between the Entamoeba histolytica, E. dispar and E. moshkovskii. Differential diagnosis can be done by some methods such as PCR-based methods, monoclonal antibodies and the analysis of isoenzyme typing, however the molecular study of these protozoa in Iran is low. Based on molecular studies, it seems that E. dispar is predominant species especially in the central and northern areas of Iran and amoebiasis due to E. histolytica is a rare infection in the country. It is suggested that infection with E. moshkovskii may be common among Iranians. Considering the importance of molecular epidemiology of amoeba in Iran and also the current data, the present study reviews the data currently available on the molecular distribution of intestinal human amoeba in Iran.

  1. Slow intestinal transit: a motor disorder contributing to cholesterol gallstone formation in the ground squirrel.

    Xu, Q W; Scott, R B; Tan, D T; Shaffer, E A

    1996-06-01

    Impaired gallbladder motility is an established factor in cholesterol gallstone formation. We assessed whether altered small intestinal smooth muscle contractility with slow transit might potentiate gallstone formation by further impeding enterohepatic cycling of bile acids. Ground squirrels were fed a 1% or a trace (controls) cholesterol diet. Small intestinal transit was evaluated from 51Cr distribution in conscious, fasted animals 20 minutes after infusion into the proximal jejunum. Small intestinal and gallbladder smooth muscle contractility was determined in vitro. Biliary lipid secretion was measured from the cannulated common duct and the bile salt pool size calculated by isotope dilution. Gas-liquid chromatography (GLC) assessed bile salt profile. In animals on the 1% cholesterol diet, aboral transit was significantly delayed, the maximal contractile response to bethanechol was markedly increased (P <.05) with no change in median effective concentration in either circular or longitudinal muscle strips from both the jejunum and ileum, and the gallbladder contractile responses to bethanechol and cholecystokinin (CCK) were decreased. Cholesterol saturation index and the fraction of deoxycholic acid in the pool doubled, whereas the total bile salt pool size remained unchanged in cholesterol-fed animals. In this model, a high-cholesterol diet is associated with altered small intestinal smooth muscle contractility and prolonged small intestinal transit, in addition to diminished gallbladder contractility. The resulting sluggish enterohepatic cycling of bile salts, associated with expanded deoxycholate pool, contributes to cholesterol gallstone formation. PMID:8675191

  2. Infant intestinal Enterococcus faecalis down-regulates inflammatory responses in human intestinal cell lines

    Shugui Wang; Lydia Hui Mei Ng; Wai Ling Chow; Yuan Kun Lee

    2008-01-01

    AIM:To investigate the ability of Lactic acid bacteria (LAB)to modulate inflammatory reaction in human intestinal celllines(Caco-2,HT-29 and HCT 116).Different strains of LAB isolatedfrom new born infants and fermented milk,together withthestrains obtained from culture collectionsweretested.METHODS:LABs were treated with human intestinal cell lines.ELISA was used to detect IL-8 and TGF-β protein secretion.Cytokines and Toll like receptors (TLRs) gene expression were assessed using RT-PCR.Conditional medium,sonicated bacteria and UV killed bacteria were used to find the effecter molecules on the bacteria.Carbohydrate oxidation and protein digestion were applied to figure out the molecules'residues.Adhesion assays were further carried out.RESULTS:It was found that Enterococcus faecalis is the main immune modulator among the LABs by downregulation of IL-8 secretion and upregulation of TGF-β.Strikingly,the effect was only observed in four strains of E.faecalis out of the 27 isolated and tested.This implies strain dependent immunomodulation in the host.In addition,E.faecalis may regulate inflammatory responses through TLR3,TLR4,TLR9 and TRAF6.Carbohydrates on the bacterial cell surface are involved in both its adhesion to intestinal cells and regulation of inflammatory responses in the host.CONCLUSION:These data provide a case for the modulation of intestinal mucosal immunity in which specific strains of E.faecalis have uniquely evolved to maintain colonic homeostasis and regulate inflammatoryresponses.

  3. Ricin crosses polarized human intestinal cells and intestines of ricin-gavaged mice without evident damage and then disseminates to mouse kidneys.

    Alyssa D Flora

    Full Text Available Ricin is a potent toxin found in the beans of Ricinus communis and is often lethal for animals and humans when aerosolized or injected and causes significant morbidity and occasional death when ingested. Ricin has been proposed as a bioweapon because of its lethal properties, environmental stability, and accessibility. In oral intoxication, the process by which the toxin transits across intestinal mucosa is not completely understood. To address this question, we assessed the impact of ricin on the gastrointestinal tract and organs of mice after dissemination of toxin from the gut. We first showed that ricin adhered in a specific pattern to human small bowel intestinal sections, the site within the mouse gut in which a variable degree of damage has been reported by others. We then monitored the movement of ricin across polarized human HCT-8 intestinal monolayers grown in transwell inserts and in HCT-8 cell organoids. We observed that, in both systems, ricin trafficked through the cells without apparent damage until 24 hours post intoxication. We delivered a lethal dose of purified fluorescently-labeled ricin to mice by oral gavage and followed transit of the toxin from the gastrointestinal tracts to the internal organs by in vivo imaging of whole animals over time and ex vivo imaging of organs at various time points. In addition, we harvested organs from unlabeled ricin-gavaged mice and assessed them for the presence of ricin and for histological damage. Finally, we compared serum chemistry values from buffer-treated versus ricin-intoxicated animals. We conclude that ricin transverses human intestinal cells and mouse intestinal cells in situ prior to any indication of enterocyte damage and that ricin rapidly reaches the kidneys of intoxicated mice. We also propose that mice intoxicated orally with ricin likely die from distributive shock.

  4. Are Human Intestinal Eukaryotes Beneficial or Commensals?

    Lukeš, Julius; Stensvold, C.R.; Jirků-Pomajbíková, Kateřina; Parfrey, L.W.

    2015-01-01

    Roč. 11, č. 8 (2015), e1005039. E-ISSN 1553-7374 R&D Projects: GA ČR GAP305/12/2261 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : human gut microbiota * Blastocystis * infection * diversity * parasites * impact Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.057, year: 2013

  5. Broad-spectrum antimicrobial activity of human intestinal defensin 5.

    Porter, E M; van Dam, E; Valore, E V; Ganz, T

    1997-01-01

    Defensins are antibiotic peptides expressed in human and animal myeloid and epithelial cells. Due to the limited availability of natural peptides, the properties of human epithelial defensins have not been studied. We assayed the microbicidal activity of recombinant human intestinal defensin 5 (rHD-5) in the presence of salt (O to 150 mM NaCl) with varied pH (pH 5.5 to pH 8.5) and trypsin (25 and 250 microg/ml). rHD-5 exhibits microbicidal activity against Listeria monocytogenes, Escherichia ...

  6. Metabolism of green tea catechins in the human small intestine

    Schantz, Markus; Erk, Thomas; Richling, Elke

    2010-01-01

    Abstract Numerous studies have shown that green tea polyphenols can be degraded in the colon, and there is abundant knowledge about the metabolites of these substances that appear in urine and plasma after green tea ingestion. However, there is very little information on the extent and nature of intestinal degradation of green tea catechins in humans. Therefore, the aim of this study presented here was to examine in detail the microbial metabolism and chemical stability of these po...

  7. Multiscale analysis of the murine intestine for modeling human diseases

    Lyons, Jesse; Herring, Charles A; Banerjee, Amrita; Simmons, Alan J.; Ken S. Lau

    2015-01-01

    When functioning properly, the intestine is one of the key interfaces between the human body and its environment. It is responsible for extracting nutrients from our food and excreting our waste products. It provides an environment for a host of healthful microbes and serves as a first defense against pathogenic ones. These processes require tight homeostatic controls, which are provided by the interactions of a complex mix of epithelial, stromal, neural and immune cells, as well as the resid...

  8. Selective Growth Responses of Human Intestinal Bacteria to Araliaceae Extracts

    Ahn, Y-J.; Kim, M-J; Yamamoto, T.; Fujisawa, T; Mitsuoka, T.

    2011-01-01

    The growth responses of a variety of human intestinal bacteria to extracts of Panax ginseng and five other oriental medicinal Araliaceae were evaluated in vitro. The extracts enhanced the growth of Bifidobacterium breve and B. longum in media with or without carbon sources, suggesting that bifidus factor(s) might be involved in the phenomenon. This effect was most pronounced with water extract of P. ginseng, the growth of 27 bifidobacteria strains belonging to B. adolescentis, B. longum, B. b...

  9. An iterative workflow for mining the human intestinal metaproteome.

    Beauvallet Christian; Galan Pilar; Boeren Sjef; de Been Mark; Doré Joël; Juste Catherine; Kolmeder Carolin; Rooijers Koos; de Vos Willem M; Schaap Peter J

    2011-01-01

    Abstract Background Peptide spectrum matching (PSM) is the standard method in shotgun proteomics data analysis. It relies on the availability of an accurate and complete sample proteome that is used to make interpretation of the spectra feasible. Although this procedure has proven to be effective in many proteomics studies, the approach has limitations when applied on complex samples of microbial communities, such as those found in the human intestinal tract. Metagenome studies have indicated...

  10. An iterative workflow for mining the human intestinal metaproteome

    Rooijers, K.; Kolmeder, C.; Juste, C; Doré, J.; Been, de, M.W.H.J.; Boeren, S.; Galan, P; Vos, de, N.M.; Schaap, P.J.; Beauvallet, C.

    2011-01-01

    Background - Peptide spectrum matching (PSM) is the standard method in shotgun proteomics data analysis. It relies on the availability of an accurate and complete sample proteome that is used to make interpretation of the spectra feasible. Although this procedure has proven to be effective in many proteomics studies, the approach has limitations when applied on complex samples of microbial communities, such as those found in the human intestinal tract. Metagenome studies have indicated that t...

  11. Molecular characterisation of non-absorptive and absorptive enterocytes in human small intestine

    Gassler, N; Newrzella, D; Böhm, C; Lyer, S; Li, L; Sorgenfrei, O; van Laer, L; Sido, B; Mollenhauer, J; Poustka, A; Schirmacher, P; Gretz, N

    2006-01-01

    BACKGROUND AND AIMS: Perturbation of differentiation of the crypt-villus axis of the human small intestine is associated with several intestinal disorders of clinical importance. At present, differentiation of small intestinal enterocytes in the crypt-villus axis is not well characterised. SUBJECTS...... about the physiology of the crypt-villus architecture in human small intestine and provide new insights into pathophysiological phenomena, such as villus atrophy, which is clinically important....

  12. Effect of intestinal transit on the formation of cholesterol gallstones in hamsters

    Ying Fan; Shuo-Dong Wu; Bei-Bei Fu

    2007-01-01

    BACKGROUND: The effect of "intestinal transit" has become a new ifeld of interest in the study of the pathogenesis of cholesterol gallstones. This study was undertaken to further test this notion and ascertain the relationship between impaired intestinal transit function and cholesterol gallstones. METHODS: A total of 64 hamsters were divided into 2 groups, experimental and control. Each was subdivided into 4 subgroups for sacriifce at different time. A high-cholesterol diet and a standard diet were fed to each group. The geometric center, which represents the intestinal transit function was calculated. RESULTS: The growth of all hamsters was normal. Cholesterol gallstones were found in 2 hamsters at the end of the 4th week. The geometric center values for the experimental and control groups were 2.3891±0.3923 vs. 2.7730±0.5283, at the end of week 3;1.8148±0.4312 vs. 3.2294±1.1613 at week 4;1.8451±0.3700 vs. 2.9075±0.3756 at week 5;and 1.8025±0.3413 vs. 3.0920±0.5622 at week 6. CONCLUSION: A high cholesterol diet can signiifcantly reduce the intestinal transit function and facilitate the formation of cholesterol gallstones.

  13. Rates of intestinal absorption of molybdenum in humans

    The intestinal absorption of molybdenum in healthy human volunteers has been measured by simultaneous oral and intravenous administration of the stable isotopes 95Mo and 96Mo, and the results were analysed using the convolution integral technique. The results showed that molybdenum ingested in liquid form was rapidly and totally absorbed into the circulation under ordinary intake regimes. The rates and extent of absorption were lower for composite meals, and also for increasing levels of administration. This information can be helpful in the application of the new ICRP model of the human alimentary tract

  14. Rates of intestinal absorption of molybdenum in humans

    Giussani, Augusto [Dipartimento di Fisica, Universita degli Studi di Milano, and INFN, Sezione di Milano, via Celoria 16, 20133 Milan (Italy)]. E-mail: augusto.giussani@gsf.de; Arogunjo, Adeseye M. [Department of Physics, Federal University of Technology, P.M.B. 704, Akure, Ondo State (Nigeria); Claire Cantone, Marie [Dipartimento di Fisica, Universita degli Studi di Milano, and INFN, Sezione di Milano, via Celoria 16, 20133 Milan (Italy); Tavola, Federico [Dipartimento di Fisica, Universita degli Studi di Milano, and INFN, Sezione di Milano, via Celoria 16, 20133 Milan (Italy); Veronese, Ivan [Dipartimento di Fisica, Universita degli Studi di Milano, and INFN, Sezione di Milano, via Celoria 16, 20133 Milan (Italy)

    2006-06-15

    The intestinal absorption of molybdenum in healthy human volunteers has been measured by simultaneous oral and intravenous administration of the stable isotopes {sup 95}Mo and {sup 96}Mo, and the results were analysed using the convolution integral technique. The results showed that molybdenum ingested in liquid form was rapidly and totally absorbed into the circulation under ordinary intake regimes. The rates and extent of absorption were lower for composite meals, and also for increasing levels of administration. This information can be helpful in the application of the new ICRP model of the human alimentary tract.

  15. An iterative workflow for mining the human intestinal metaproteome

    Beauvallet Christian

    2011-01-01

    Full Text Available Abstract Background Peptide spectrum matching (PSM is the standard method in shotgun proteomics data analysis. It relies on the availability of an accurate and complete sample proteome that is used to make interpretation of the spectra feasible. Although this procedure has proven to be effective in many proteomics studies, the approach has limitations when applied on complex samples of microbial communities, such as those found in the human intestinal tract. Metagenome studies have indicated that the human intestinal microbiome contains over 100 times more genes than the human genome and it has been estimated that this ecosystem contains over 5000 bacterial species. The genomes of the vast majority of these species have not yet been sequenced and hence their proteomes remain unknown. To enable data analysis of shotgun proteomics data using PSM, and circumvent the lack of a defined matched metaproteome, an iterative workflow was developed that is based on a synthetic metaproteome and the developing metagenomic databases that are both representative for but not necessarily originating from the sample of interest. Results Two human fecal samples for which metagenomic data had been collected, were analyzed for their metaproteome using liquid chromatography-mass spectrometry and used to benchmark the developed iterative workflow to other methods. The results show that the developed method is able to detect over 3,000 peptides per fecal sample from the spectral data by circumventing the lack of a defined proteome without naive translation of matched metagenomes and cross-species peptide identification. Conclusions The developed iterative workflow achieved an approximate two-fold increase in the amount of identified spectra at a false discovery rate of 1% and can be applied in metaproteomic studies of the human intestinal tract or other complex ecosystems.

  16. Survivability of Kudoa septempunctata in human intestinal conditions.

    Ohnishi, Takahiro; Fujiwara, Marina; Tomaru, Akiko; Yoshinari, Tomoya; Sugita-Konishi, Yoshiko

    2016-06-01

    To elucidate whether Kudoa septempunctata was able to live in the human intestine, we assessed viability of K. septempunctata sporoplasms under conditions that mimicked human and ragworm digestive tracts. To study the effect of osmotic pressure on viability, sporoplasms were incubated in 0.9 or 3.4 % sodium chloride solutions, which roughly corresponded to the osmotic pressure in human or ragworm tissues, respectively. While viability in 3.4 % sodium chloride did not change after 72 h, it dropped to 21 % in 0.9 % sodium chloride. To study the effect of temperature on viability, sporoplasms were incubated at 37, 15, or 25 °C, which were representative of human, winter ragworm, or summer ragworm temperatures, respectively. Viability decreased sharply to 8.4 % after 48 h at 37 °C, but remained essentially unchanged at 15 and 25 °C. In addition, sporoplasms showed strong susceptibility to bile. These results indicate that K. septempunctata could not live in the human intestine for a long time. PMID:27038250

  17. Human intestinal mucus proteins isolated by transanal irrigation and proctosigmoidoscopy

    Paola Andrea Gómez Buitrago

    2015-10-01

    Full Text Available Human intestinal mucus essentially consistsof a network of Mucin2 glycoproteinsembedded in many lower molecularweight proteins. This paper contributes tothe proteomic study of human intestinalmucus by comparing two sample collectionmethods (transanal irrigation and brushcytology during proctosigmoidoscopy andanalysis techniques (electrophoresis anddigestion in solution. The entire samplecollection and treatment process is explained,including protein extraction, digestion anddesalination and peptide characterisationusing a nanoAcquity UPLC chromatographcoupled to an HDMS spectrometer equippedwith a nanoESI source. Collecting mucus viatransanal irrigation provided a larger samplevolume and protein concentration from asingle patient. The proctosigmoidoscopysample could be analysed via digestion insolution after depleting albumin. The analysisindicates that a simple mucus lysis methodcan evaluate the electrophoresis and digestionin solution techniques. Studying humanintestinal mucus complexes is importantbecause they perform two essential survivalfunctions for humans as the first biochemicaland physical defences for the gastrointestinaltract and a habitat for intestinal microbiota,which are primarily hosted in the colon andexceeds the human genetic information andcell number 100- and 10-fold (1.

  18. Gastric emptying, small intestinal transit and fecal output in dystrophic (mdx) mice.

    Mulè, Flavia; Amato, Antonella; Serio, Rosa

    2010-01-01

    Duchenne muscular dystrophy (DMD), which results from deficiency in dystrophin, a sarcolemma protein of skeletal, cardiac and smooth muscle, is characterized by progressive striated muscle degeneration, but various gastrointestinal clinical manifestations have been observed. The aim was to evaluate the possible impact of the dystrophin loss on the gastrointestinal propulsion in mdx mice (animal model for DMD). The gastric emptying of a carboxymethyl cellulose/phenol red dye non-nutrient meal was not significantly different at 20 min from gavaging between wild-type and mdx mice. The intestinal transit and the fecal output were significantly decreased in mdx versus normal animals, although the length of the intestine was similar in both animals. The present results provide evidence for motor intestinal alterations in mdx mice in in vivo conditions. PMID:19784719

  19. Functional Characterization of Cholera Toxin Inhibitors Using Human Intestinal Organoids.

    Zomer-van Ommen, Domenique D; Pukin, Aliaksei V; Fu, Ou; Quarles van Ufford, Linda H C; Janssens, Hettie M; Beekman, Jeffrey M; Pieters, Roland J

    2016-07-28

    Preclinical drug testing in primary human cell models that recapitulate disease can significantly reduce animal experimentation and time-to-the-clinic. We used intestinal organoids to quantitatively study the potency of multivalent cholera toxin inhibitors. The method enabled the determination of IC50 values over a wide range of potencies (15 pM to 9 mM). The results indicate for the first time that an organoid-based swelling assay is a useful preclinical method to evaluate inhibitor potencies of drugs that target pathogen-derived toxins. PMID:27347611

  20. Vasoactive intestinal peptide signaling axis in human leukemia

    Glenn; Paul; Dorsam; Keith; Benton; Jarrett; Failing; Sandeep; Batra

    2011-01-01

    The vasoactive intestinal peptide (VIP) signaling axis constitutes a master "communication coordinator" between cells of the nervous and immune systems.To date,VIP and its two main receptors expressed in T lymphocytes,vasoactive intestinal peptide receptor (VPAC)1 and VPAC2,mediate critical cellular functions regulating adaptive immunity,including arresting CD4 T cells in G 1 of the cell cycle,protection from apoptosis and a potent chemotactic recruiter of T cells to the mucosa associated lymphoid compartment of the gastrointestinal tissues.Since the discovery of VIP in 1970,followed by the cloning of VPAC1 and VPAC2 in the early 1990s,this signaling axis has been associated with common human cancers,including leukemia.This review highlights the present day knowledge of the VIP ligand and its receptor expression profile in T cell leukemia and cell lines.Also,there will be a discussion describing how the anti-leukemic DNA binding transcription factor,Ikaros,regulates VIP receptor expression in primary human CD4 T lymphocytes and T cell lymphoblastic cell lines (e.g.Hut-78).Lastly,future goals will be mentioned that are expected to uncover the role of how the VIP signaling axis contributes to human leukemogenesis,and to establish whether the VIP receptor signature expressed by leukemic blasts can provide therapeutic and/or diagnostic information.

  1. Transgenic Expression of Human Lysophosphatidic Acid Receptor LPA2 in Mouse Intestinal Epithelial Cells Induces Intestinal Dysplasia.

    Michihiro Yoshida

    Full Text Available Lysophosphatidic acid (LPA acts on LPA2 receptor to mediate multiple pathological effects that are associated with tumorigenesis. The absence of LPA2 attenuates tumor progression in rodent models of colorectal cancer, but whether overexpression of LPA2 alone can lead to malignant transformation in the intestinal tract has not been studied. In this study, we expressed human LPA2 in intestinal epithelial cells (IECs under control of the villin promoter. Less than 4% of F1-generation mice had germline transmission of transgenic (TG human LPA2; as such only 3 F1 mice out of 72 genotyped had TG expression. These TG mice appeared anemic with hematochezia and died shortly after birth. TG mice were smaller in size compared with the wild type mouse of the same age and sex. Morphological analysis showed that TG LPA2 colon had hyper-proliferation of IECs resulting in increased colonic crypt depth. Surprisingly, TG small intestine had villus blunting and decreased IEC proliferation and dysplasia. In both intestine and colon, TG expression of LPA2 compromised the terminal epithelial differentiation, consistent with epithelial dysplasia. Furthermore, we showed that epithelial dysplasia was observed in founder mouse intestine, correlating LPA2 overexpression with epithelial dysplasia. The current study demonstrates that overexpression of LPA2 alone can lead to intestinal dysplasia.

  2. Nonsteroidal antiinflammatory drug-induced intestinal inflammation in humans

    Bjarnason, I.; Zanelli, G.; Smith, T.; Prouse, P.; Williams, P.; Smethurst, P.; Delacey, G.; Gumpel, M.J.; Levi, A.J.

    1987-09-01

    This study examines the effects of nonsteroidal antiinflammatory drugs on the small intestine in humans. Using an /sup 111/In-leukocyte technique in patients with rheumatoid arthritis (n = 90) and osteoarthritis (n = 7), it appears that nonsteroidal antiinflammatory drugs cause small intestinal inflammation in two-thirds of patients on long-term treatment and on discontinuation, the inflammation may persist for up to 16 mo. The prevalence and magnitude of the intestinal inflammation was unrelated to the type and dose of nonsteroidal drugs and previous or concomitant second-line drug treatment. There was a significant inverse correlation (r = -0.29, p less than 0.05) between fecal /sup 111/In excretion and hemoglobin levels in patients treated with nonsteroidal antiinflammatory drugs. The kinetics of fecal indium 111 excretion in patients treated with nonsteroidal antiinflammatory drugs was almost identical to that of patients with small bowel Crohn's disease. Eighteen patients on nonsteroidal antiinflammatory drugs underwent a radiologic examination of the small bowel and 3 were found to have asymptomatic ileal disease with ulceration and strictures. Nineteen patients on nonsteroidal antiinflammatory drugs, 20 healthy controls, and 13 patients with Crohn's ileitis underwent a dual radioisotopic ileal function test with tauro 23 (/sup 75/Se) selena-25-homocholic acid and cobalt 58-labeled cyanocobalamine. On day 4, more than half of the patients with rheumatoid arthritis had evidence of bile acid malabsorption, but the ileal dysfunction was much milder than seen in patients with Crohn's ileitis.

  3. Cell dedifferentiation and epithelial to mesenchymal transitions during intestinal regeneration in H. glaberrima

    Rivera-Cruz Angélica

    2011-10-01

    Full Text Available Abstract Background Determining the type and source of cells involved in regenerative processes has been one of the most important goals of researchers in the field of regeneration biology. We have previously used several cellular markers to characterize the cells involved in the regeneration of the intestine in the sea cucumber Holothuria glaberrima. Results We have now obtained a monoclonal antibody that labels the mesothelium; the outer layer of the gut wall composed of peritoneocytes and myocytes. Using this antibody we studied the role of this tissue layer in the early stages of intestinal regeneration. We have now shown that the mesothelial cells of the mesentery, specifically the muscle component, undergo dedifferentiation from very early on in the regeneration process. Cell proliferation, on the other hand, increases much later, and mainly takes place in the mesothelium or coelomic epithelium of the regenerating intestinal rudiment. Moreover, we have found that the formation of the intestinal rudiment involves a novel regenerative mechanism where epithelial cells ingress into the connective tissue and acquire mesenchymal phenotypes. Conclusions Our results strongly suggest that the dedifferentiating mesothelium provides the initial source of cells for the formation of the intestinal rudiment. At later stages, cell proliferation supplies additional cells necessary for the increase in size of the regenerate. Our data also shows that the mechanism of epithelial to mesenchymal transition provides many of the connective tissue cells found in the regenerating intestine. These results present some new and important information as to the cellular basis of organ regeneration and in particular to the process of regeneration of visceral organs.

  4. INTESTINAL VIROME AND NORMAL MICROFLORA OF HUMAN: FEATURES OF INTERACTION

    Bobyr V.V.

    2015-05-01

    Full Text Available Summary: Intestinal bacteria defend the host organism and narrow pathogenic bacterial colonization. However, the microbiome effect to enteric viruses is unexplored largely as well as role of microbiota in the pathogenesis of viral infections in general. This review focuses on precisely these issues. Keywords: microbiome, virome, normal microflora, enteric viruses, contagiousness. In this review article, facts about viral persistence in the human gut are summarized. It is described the role of viral populations during health and diseases. After analyzing of the literary facts it was concluded that the gastrointestinal tract is an environment for one from the most complex microbial ecosystems, which requires of more deeper study of its composition, role in physiological processes, as well as the dynamics of changes under influence of the environment. Normal microflora performs a different important functions providing the physiological homeostasis of the human body, including, in particular, an important role in the human metabolic processes, supporting of homeostasis, limiting of colonization by infectious bacteria. The multifactorial significance of the normal gastrointestinal microflora can be divided into immunological, structural and metabolic functions. At the same time, interaction between intestinal microflora and enteric viruses has not been studied largely. In recent years, much attention is paid to study of viruses-bacteria associations, and it is possible, obtained results should change our understanding of microbiota role in the systematic pathogenesis of the diseases with viral etiology. In contrast to the well-known benefits of normal microflora to the host, the viruses can use intestinal microflora as a trigger for replication at the optimal region. Recent studies give a reason for assumption that depletion of normal microflora with antibiotics can determining the antiviral effect. Thus, the role of commensal bacteria in viral

  5. Intestinal microbiota in human health and disease: the impact of probiotics

    Gerritsen, J.; Smidt, H.; Rijkers, G.T.; Vos

    2011-01-01

    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the present state of the art on the intestinal microbiota with specific attention for the application of high-throughput functional microbiomic approaches to determine the contribution of the intestin...

  6. Effect of nonabsorbed amounts of a fructose-sorbitol mixture on small intestinal transit in healthy volunteers

    Madsen, Jan L; Linnet, Jan; Rumessen, Jüri J

    2006-01-01

    Although malabsorption of small amounts of fructose-sorbitol mixtures occurs frequently in healthy humans, insights into their effects on gastrointestinal motility are poor. The present study addresses the hypothesis that malabsorption of a fructose-sorbitol challenge changes the small intestinal...... solution. Breath hydrogen and methane concentrations and gastrointestinal progress of the radiolabeled marker were followed for the next 6-hr period. Malabsorption of small amounts of the fructose-sorbitol mixture was evident in all subjects. The area under the gastric radioactivity-time curve after...... than after ingestion of glucose (P = 0.0128). In healthy humans, malabsorption of small amounts of a fructose-sorbitol mixture accelerates small bowel transit....

  7. Common occurrence of antibacterial agents in human intestinal microbiota

    Fatima eDrissi

    2015-05-01

    Full Text Available Laboratory experiments have revealed many active mechanisms by which bacteria can inhibit the growth of other organisms. Bacteriocins are a diverse group of natural ribosomally-synthesized antimicrobial peptides produced by a wide range of bacteria and which seem to play an important role in mediating competition within bacterial communities. In this study, we have identified and established the structural classification of putative bacteriocins encoded by 317 microbial genomes in the human intestine. On the basis of homologies to available bacteriocin sequences, mainly from lactic acid bacteria, we report the widespread occurrence of bacteriocins across the gut microbiota: 175 bacteriocins were found to be encoded in Firmicutes, 79 in Proteobacteria, 34 in Bacteroidetes and 25 in Actinobacteria. Bacteriocins from gut bacteria displayed wide differences among phyla with regard to class distribution, net positive charge, hydrophobicity and secondary structure, but the α-helix was the most abundant structure. The peptide structures and physiochemical properties of bacteriocins produced by the most abundant bacteria in the gut, the Firmicutes and the Bacteroidetes, seem to ensure low antibiotic activity and participate in permanent intestinal host defence against the proliferation of harmful bacteria. Meanwhile, the potentially harmful bacteria, including the Proteobacteria, displayed highly effective bacteriocins, probably supporting the virulent character of diseases. These findings highlight the eventual role played by bacteriocins in gut microbial competition and their potential place in antibiotic therapy.

  8. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    Moore, Aimee M.; Munck, Christian; Sommer, Morten Otto Alexander;

    2011-01-01

    of this microbial community, its recalcitrance to standard cultivation, and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique, used for decades to study environmental...... microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host....... Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex...

  9. Effect of pregnancy on intestinal transit: comparison of results using radioactive and non-radioactive test meals

    Studies were performed to determine the effect of pregnancy on both gastrointestinal transit and small intestinal transit. Gastrointestinal transit was examined by determining the leading edge of distribution within the small intestine of a charcoal marker placed directly into the stomach. Intestinal transit was evaluated by quantifying the distribution of a radiolabelled marker placed dirrectly into the duodenum. The distribution of the marker was determined (1) by calculating the slope of the distribution curve and (2) by calculating the geometric center of distribution of the radioisotope. In all studies the data from animals in either the second or third trimester of pregnancy were compared with the results obtained from non-pregnant females. The results confirm previous observations that gastrointestinal transit is reduced during the latter stages of pregnancy. This can be explained, at least in part, by a decreased intestinal transit. The data also suggest that analysis of the geometric center of distribution provides a more sensitive and reliable measure of intestinal transit than does analysis of the slope of the distribution curve

  10. Quantitative prediction of intestinal metabolism in humans from a simplified intestinal availability model and empirical scaling factor.

    Kadono, Keitaro; Akabane, Takafumi; Tabata, Kenji; Gato, Katsuhiko; Terashita, Shigeyuki; Teramura, Toshio

    2010-07-01

    This study aimed to establish a practical and convenient method of predicting intestinal availability (F(g)) in humans for highly permeable compounds at the drug discovery stage, with a focus on CYP3A4-mediated metabolism. We constructed a "simplified F(g) model," described using only metabolic parameters, assuming that passive diffusion is dominant when permeability is high and that the effect of transporters in epithelial cells is negligible. Five substrates for CYP3A4 (alprazolam, amlodipine, clonazepam, midazolam, and nifedipine) and four for both CYP3A4 and P-glycoprotein (P-gp) (nicardipine, quinidine, tacrolimus, and verapamil) were used as model compounds. Observed fraction of drug absorbed (F(a)F(g)) values for these compounds were calculated from in vivo pharmacokinetic (PK) parameters, whereas in vitro intestinal intrinsic clearance (CL(int,intestine)) was determined using human intestinal microsomes. The CL(int,intestine) for the model compounds corrected with that of midazolam was defined as CL(m,index) and incorporated into a simplified F(g) model with empirical scaling factor. Regardless of whether the compound was a P-gp substrate, the F(a)F(g) could be reasonably fitted by the simplified F(g) model, and the value of the empirical scaling factor was well estimated. These results suggest that the effects of P-gp on F(a) and F(g) are substantially minor, at least in the case of highly permeable compounds. Furthermore, liver intrinsic clearance (CL(int,liver)) can be used as a surrogate index of intestinal metabolism based on the relationship between CL(int,liver) and CL(m,index). F(g) can be easily predicted using a simplified F(g) model with the empirical scaling factor, enabling more confident selection of drug candidates with desirable PK profiles in humans. PMID:20354105

  11. Direct In Vivo Human Intestinal Permeability (Peff ) Determined with Different Clinical Perfusion and Intubation Methods.

    Dahlgren, David; Roos, Carl; Sjögren, Erik; Lennernäs, Hans

    2015-09-01

    Regional in vivo human intestinal effective permeability (Peff ) is calculated by measuring the disappearance rate of substances during intestinal perfusion. Peff is the most relevant parameter in the prediction of rate and extent of drug absorption from all parts of the intestine. Today, human intestinal perfusions are not performed on a routine basis in drug development. Therefore, it would be beneficial to increase the accuracy of the in vitro and in silico tools used to evaluate the intestinal Peff of novel drugs. This review compiles historical Peff data from 273 individual measurements of 80 substances from 61 studies performed in all parts of the human intestinal tract. These substances include: drugs, monosaccharaides, amino acids, dipeptides, vitamins, steroids, bile acids, ions, fatty acids, and water. The review also discusses the determination and prediction of Peff using in vitro and in silico methods such as quantitative structure-activity relationship, Caco-2, Ussing chamber, animal intestinal perfusion, and physiologically based pharmacokinetic (PBPK) modeling. Finally, we briefly outline how to acquire accurate human intestinal Peff data by deconvolution of plasma concentration-time profiles following regional intestinal bolus dosing. PMID:25410736

  12. Tracking the cell hierarchy in the human intestine using biochemical signatures derived by mid-infrared microspectroscopy.

    Walsh, Michael J; Hammiche, Azzedine; Fellous, Tariq G; Nicholson, James M; Cotte, Marine; Susini, Jean; Fullwood, Nigel J; Martin-Hirsch, Pierre L; Alison, Malcolm R; Martin, Francis L

    2009-07-01

    Markers of gastrointestinal (GI) stem cells remain elusive. We employed synchrotron Fourier-transform infrared (FTIR) microspectroscopy to derive mid-infrared (IR) spectra along the length of human GI crypts. Tissue sections (10-μm thick) were floated onto BaF2 windows and image maps were acquired of small intestine and large bowel crypts in transmission mode with an aperture of ≤10 μm×10 μm. Counting upwards in a step-size (≤10 μm) fashion from the crypt base, IR spectra were extracted from the image maps and each spectrum corresponding to a particular location was identified. Spectra were analyzed using principal component analysis plus linear discriminant analysis. Compared to putative crypt base columnar/Paneth cells, those assigned as label-retaining cells were chemically more similar to putative large bowel stem cells and, the small intestine transit-amplifying cells were closest to large bowel transit-amplifying cells; interestingly, the base of small intestine crypts was the most chemically-distinct. This study suggests that in the complex cell lineage of human GI crypts, chemical similarities as revealed by FTIR microspectroscopy between regions putatively assigned as stem cell, transit-amplifying and terminally-differentiated facilitates identification of cell function. PMID:19393589

  13. Microbial Eco-Physiology of the human intestinal tract: a flow cytometric approach

    Amor, Ben, K.

    2004-01-01

    This thesis describes a multifaceted approach to further enhance our view of the complex human intestinal microbial ecosystem. This approach combines me advantages of flow cyrometry (FCM), a single cell and high-throughput technology, and molecular techniques that have proven themselves to be invaluabIe tools in studying the microbial diversity and structure of the intestinal microbiota. The ultimate aim was to relate the genetic biodiversity of the intestinal microbiota with their in situ ph...

  14. TNFalpha regulates sugar transporters in the human intestinal epithelial cell line Caco-2

    Barrenetxe, J; Barber, A; Lostao, M P; Rodriguez-Yoldi, M.J. (M.J.); Gascon, S. (S.); Sanchez, O.

    2013-01-01

    PURPOSE: During intestinal inflammation TNFα levels are increased and as a consequence malabsorption of nutrients may occur. We have previously demonstrated that TNFα inhibits galactose, fructose and leucine intestinal absorption in animal models. In continuation with our work, the purpose of the present study was to investigate in the human intestinal epithelial cell line Caco-2, the effect of TNFα on sugar transport and to identify the intracellular mechanisms involved. METHODS: ...

  15. Effects of casoxin 4 on morphine inhibition of small animal intestinal contractility and gut transit in the mouse

    Glen S Patten

    2011-02-01

    Full Text Available Glen S Patten1,2, Richard J Head1, Mahinda Y Abeywardena1,21CSIRO Preventative Health National Research Flagship, Adelaide, Australia; 2CSIRO Food and Nutritional Sciences, Adelaide, AustraliaBackground and aims: Chronic opioid analgesia has the debilitating side-effect of constipation in human patients. The major aims of this study were to: 1 characterize the opioid-specific antagonism of morphine-induced inhibition of electrically driven contraction of the small intestine of mice, rats, and guinea pigs; and 2 test if the oral delivery of small milk-derived opioid antagonist peptides could block morphine-induced inhibition of intestinal transit in mice.Methods: Mouse, rat, and guinea pig intact ileal sections were electrically stimulated to contract and inhibited with morphine in vitro. Morphine inhibition was then blocked by opioid subtype antagonists in the mouse and guinea pig. Using a polymeric dye, Poly R-478, the opioid antagonists casoxin 4 and lactoferroxin A were tested orally for blocking activity of morphine inhibition of gut transit in vivo by single or double gavage techniques.Results: The guinea pig tissue was more sensitive to morphine inhibition compared with the mouse or the rat (IC50 [half maximal inhibitory concentration] values as nmol/L ± SEM were 34 ± 3, 230 ± 13, and 310 ± 14 respectively (P < 0.01. The inhibitory influence of opioid agonists (IC50 in electrically driven ileal mouse preparations were DADLE ([D-Ala2, D-Leu5]-enkephalin ≥ met-enkephalin ≥ dynorphin A ≥ DAMGO ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin > morphine > morphiceptin as nmol/L 13.9, 17.3, 19.5, 23.3, 230, and 403 respectively. The mouse demonstrated predominantly Κ- and δ-opioid receptor activity with a smaller µ-opioid receptor component. Both mouse and guinea pig tissue were sensitive to casoxin 4 antagonism of morphine inhibition of contraction. In contrast to naloxone, relatively high oral doses of the µ-opioid receptor antagonists

  16. Innovative methods to study human intestinal drug metabolism in vitro : Precision-cut slices compared with Ussing chamber preparations

    van de Kerkhof, Esther G.; Ungell, Anna-Lena B.; Sjoberg, Asa K.; de Jager, Marina H.; Hilgendorf, Constanze; de Graaf, Inge A. M.; Groothuis, Geny M. M.

    2006-01-01

    Predictive in vitro methods to investigate drug metabolism in the human intestine using intact tissue are of high importance. Therefore, we studied the metabolic activity of human small intestinal and colon slices and compared it with the metabolic activity of the same human intestinal segments usin

  17. Scintigraphic Small Intestinal Transit Time and Defaecography in Patients with J-Pouch

    Mie Dilling Kjaer

    2015-10-01

    Full Text Available Objective methods for examination of pouch function are warranted for a better understanding of the functional result and treatment of dysfunction. The objective of this study was to evaluate the results of scintigraphic intestinal transit time and defaecography compared to the results of pouch function, mucosal condition and a questionnaire on quality of life (QoL. This cross-sectional study included 21 patients. Scintigraphic transit time and defaecography was determined with the use of Tc-99m. Pouch function was assessed by number of bowel movements, pouch volume, and continence. Pouch mucosal condition was evaluated by endoscopy and histology. Median transit time was 189 min (105–365. Median ejection fraction at defaecography (EF was 49% (3–77 and 62% (17–98 after first and second defecation. Median pouch volume was 223 mL (100–360. A median daily stool frequency of nine (4–25 was reported and three (14% patients suffered from daytime incontinence. No patients had symptomatic or endoscopic pouchitis; however, the histology showed unspecific inflammation in 19 (90% patients. There was no correlation between transit time, evacuation fraction (EF and pouch function in univariate analysis. However, we found a high body mass index (BMI and a low bowel movement frequency to be associated with a longer transit time by multivariate analysis. Scintigraphic determination of transit time and defaecography are feasible methods in patients with ileal pouch anal anastomosis, but the clinical relevance is yet doubtful.

  18. Inhibition of gastric emptying and intestinal transit in anesthetized rats by a Tityus serrulatus scorpion toxin

    L.E.A. Troncon; A.A. Santos; V.L. Garbacio; M. Secaf; A.V. Verceze; Cunha-Melo, J R

    2000-01-01

    The effects of a fraction (T1) of Tityus serrulatus scorpion venom prepared by gel filtration on gastric emptying and small intestinal transit were investigated in male Wistar rats. Fasted animals were anesthetized with urethane, submitted to tracheal intubation and right jugular vein cannulation. Scorpion toxin (250 µg/kg) or saline was injected iv and 1 h later a bolus of saline (1.0 ml/100 g) labeled with 99m technetium-phytate (10 MBq) was administered by gavage. After 15 min, animals wer...

  19. Human intestinal dendritic cells as controllers of mucosal immunity

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  20. Distribution of the IgG Fc Receptor, FcRn, in the Human Fetal Intestine

    Shah, Uzma; Dickinson, Bonny L.; Blumberg, Richard S.; Simister, Neil E.; Lencer, Wayne I.; Walker, W. Allan

    2003-01-01

    The intestinal Fc receptor, FcRn, functions in the maternofetal transfer of gamma globulin (IgG) in the neonatal rodent. In humans, most of this transfer is presumed to occur in utero via the placenta. Although the fetus swallows amniotic fluid that contains immunoglobulin, it is unknown whether this transfer also occurs via the fetal intestine. A human FcRn has been identified in the syncytiotrophoblast that mediates the maternofetal transfer of antibody. It has also been identified in human...

  1. Formation and blood supply of the large intestine in human neonates

    Haina N.I.

    2008-01-01

    Full Text Available A study of the large intestine has been carried out on 24 specimens of human newborns. It has been established that the form and size of the neonates large intestine demonstrated a sidnificant individual variability. The hepatic and splenic flexures of the colon had different relations with the inferior border of the liver and spleen.

  2. High-throughput analysis of the impact of antibiotics on the human intestinal microbiota composition

    Ladirat, S.E.; Schols, H.A.; Nauta, A.; Schoterman, M.H.C.; Keijser, B.J.F.; Montijn, R.C.; Gruppen, H.; Schuren, F.H.J.

    2013-01-01

    Antibiotic treatments can lead to a disruption of the human microbiota. In this in-vitro study, the impact of antibiotics on adult intestinal microbiota was monitored in a new high-throughput approach: a fermentation screening-platform was coupled with a phylogenetic microarray analysis (Intestinal-

  3. Apical Gene Transfer into Quiescent Human and Canine Polarized Intestinal Epithelial Cells by Lentivirus Vectors

    Seppen, Jurgen; Barry, Simon C.; Klinkspoor, J. Henriette; Katen, Louis J.; Lee, Sum P; Garcia, J. Victor; Osborne, William R. A.

    2000-01-01

    Intestinal epithelial cells secrete a protective luminal mucus barrier inhibiting viral gene transfer. Quiescent, polarized monolayers of primary epithelial cells from dog gallbladder and human colon are efficiently transduced through the apical mucus side by lentivirus vectors, suggesting their application to intestinal gene therapy.

  4. The scintigraphic determination of small intestinal transit time in patients with irritable bowel syndrome

    Marano, A.R.; Caride, V.J.; Shah, R.V.; Prokop, E.K.; Troncale, F.J.; McCallum, R.W.

    1984-01-01

    Diffuse disturbance in gastrointestinal motility may be present in patients with irritable bowel syndrome (IBS). To further investigate small intestinal motility in IBS patients small intestinal transit time (SITT) was determined and related to the symptom status. 11 female patients with IBS (mean age 29 years) were divided into those whose predominate symptom was diarrhea (N=6), and those with only constipation (N=5). All subjects ingested an isosmotic solution of lactulose (10 gm in 150cc of water) labeled with 99m-Tc-DTPA (Sn). The patient was studied supine under a 25 inch gamma camera with data collected at 1 frame per minute for 180 minutes or until activity appeared in the ascending colon. Regions of interest were selected over the cecum and ascending colon. The time of first appearance of radioactivity in the region of the cecum was taken as the small intestinal transit time. SITT in the 5 normal females was 98.7 +- 13 min (mean +- SEM). SITT in the IBS patients with diarrhea, 67.3 +- 7 min was significantly faster (p< 0.08). SITT in the constipated IBS patients, 126 +- 12 min, was slower than normals and significantly different from diarrhea patients (p< 0.001). These studies show that IBS patients with diarrhea have significantly faster SITT than normals while constipated IBS patients have significantly slower SITT than the diarrhea subgroup. Further, this study emphasizes the need to study the various symptomatic subgroups of IBs patients independently and indicates a possible role for abnormal SITT in the pathogenesis of IBS.

  5. Clinical features of human intestinal capillariasis in Taiwan

    Ming-Jong Bair; Kao-Pin Hwang; Tsang-En Wang; Tai-Cherng Liou; Shee-Chan Lin; Chin-Roa Kao; Tao-Yeuan Wang; Kwok-Kuen Pang

    2004-01-01

    Human intestinal capillariasis is a rare parasitosis that was first recognized in the Philippines in the 1960 s. Parasitosis is a life threatening disease and has been reported from Thailand, Japan, South of Taiwan (Kaoh-Siung), Korea,Tran, Egypt, Italy and Spain. Its clinical symptoms are characterized by chronic diarrhea, abdominal pain,borborygmus, marked weight loss, protein and electrolyte loss and cachexia. Capillariasis may be fatal if early treatment is not given. We reported 14 cases living in rural areas of Taiwan. Three cases had histories of travelling to Thailand. They might have been infected in Thailand while stayed there. Two cases had the diet of raw freshwater fish before. Three cases received emergency laparotomy due to peritonitis and two cases were found of enteritis cystica profunda. According to the route of transmission,freshwater and brackish-water fish may act as the intermediate host of the parasite. The most simple and convenient method of diagnosing capillariasis is stool examination. Two cases were diagnosed by histology.Mebendazole or albendezole 200 mg orally twice a day for 20-30 d is the treatment of choice. All the patients were cured, and relapses were not observed within 12 mo.

  6. Production of human intestinal trefoil factor in Pichia pastoris

    SUN Yong; PENG Xi; Lü Shang-jun; ZHANG Yong; WANG Shi-liang

    2006-01-01

    Objective:To construct a Pichia pastoris (P. Pastoris) expression vector of human intestinal trefoil factor (hITF) and study its expression and purification procedures. Methods:hITF gene encoding mature peptide was modified with a polyhistidine tag sequence at the N-terminal, and then inserted into the P. Pastoris expression vector pGAPZαA at the ownstream of the α-mating factor signal. After gene sequencing, the recombinant pGAPZαA-hITF was transformed into the P. Pastoris strain X-33 with lithium chloride. rhITF was induced to constitutively express in shake flask, and then analyzed with Tricine SDS-PAGE and Western blotting. The obtained rhITF was isolated from the cultured supernatants y ammonium sulfate precipitation, Ni-NTA affinity chromatography, and ultrafiltration. Results:The correctness and integrity of rhITF were identified by restriction digestion and gene sequencing. rhITF was successfully expressed to 50 mg/L as a secretive protein. After purification, the purity was above 95%.Tricine SDS-PAGE and Western-blot analysis howed that rhITF presented as a single band with a molecular weight of 10 kDa, a little larger than 7 879 Da as assayed by mass spectrometry analysis. Conclusion:hITF P. Pastoris expression vector is successfully constructed and rhITF is expressed in P. Pastoris at commercially relevant level. This research lays foundation for the further functional tudying of hITF.

  7. Permeability of rhynchophylline across human intestinal cell in vitro.

    Ma, Bo; Wang, Jing; Sun, Jing; Li, Ming; Xu, Huibo; Sun, Guibo; Sun, Xiaobo

    2014-01-01

    Rhynchophylline (Rhy) is the major component of Uncaria species, which is used in Chinese traditional medicine for the treatment of central nervous system disorders. However, its oral bioavailability has not been known. This study aims to investigate the intestinal permeability and related mechanisms of Rhy using cultured human epithelial Caco-2 cells. The cytotoxicity of Rhy on Caco-2 cells was evaluated with MTT assay. The effect of Rhy on the integrity of Caco-2 cell monolayer was assayed with transepithelial electrical resistance. The permeability of Rhy across cell monolayer was assayed by measuring Rhy quantity in received side with HPLC. The effect of Rhy on the expression of P-glycoprotein and MDR1 was detected with Western blot and flow cytometry, respectively. In the concentration of Rhy, which did not produce toxicity on cell viability and integrity of Caco-2 cell monolayer, Rhy crossed the monolayer with velocity 2.76~5.57×10^-6 cm/sec and 10.68~15.66×10^-6 cm/sec from apical to basolateral side and from basolateral to apical side, respectively. The permeability of Rhy was increased by verapamil, a P-glycoprotein inhibitor, or rhodamine123, a P-glycoprotein substrate. Rhy revealed an induction effect on P-glycoprotein expression in Caco-2 cells. These results demonstrate the low permeability of Rhy in intro, and suggest that P-glycoprotein may underlie the mechanism. PMID:24966905

  8. Human Rights and Transitional Societies: Contemporary Challenges

    Hansen, Thomas Obel

    2008-01-01

    This paper will assess how alternative approaches to transitional justice have the potential for overcoming tensions in between human rights standards. A rule in international law prescribing that states have a duty to prosecute gross human rights violations has emerged. Accordingly, transitional...... societies are said to have an obligation to apply criminal justice in dealing with such past violations. In Rwanda, the transitional government decided to prosecute the perpetrators of the 1994 genocide. As a result of widespread participation in the genocide and a devastated legal sector, difficulties in...... respecting the rights of the accused arose. A group of paralegals known as the "Corps of Judicial Defenders" was thus relied upon as to provide legal assistance for genocide suspects, but also for civil parties. This paper describes the work of these paralegals relating to the transitional trials, and, more...

  9. Characterization of intracellular pteroylpolyglutamate hydrolase (PPH) from human intestinal mucosa

    Wang, T.T.Y.; Chandler, C.J.; Halsted, C.H.

    1986-03-01

    There are two forms of pteroylpolyglutamate hydrolase (PPH) in the human intestinal mucosa, one in the brush border membrane and the other intracellular; brush border PPH is an exopeptidase with optimal activity at pH 6.5 and a requirement for zinc. The presence study characterized human intracellular PPH and compared its properties to those of brush border PPH. Intracellular PPH was purified 30-fold. The enzyme had a MW of 75,000 by gel filtration, was optimally active at pH 4.5, and had an isoelectric point at pH 8.0. In contrast to brush border PPH, intracellular PPH was unstable at increasing temperatures, was unaffected by dialysis against chelating agents and showed no requirement for Zn/sup 2 +/. Using PteGlu/sub 2/(/sup 14/C)Glu as substrate, they demonstrated a K/sub m/ of 1.2 ..mu..M and increasing affinity for folates with longer glutamate chains. Intracellular PPH required the complete folic acid (PteGlu) moiety and a ..gamma..-glutamyl linkage for activity. Using ion exchange chromatography and an HPLC method to determine the hydrolytic products of the reaction, they found intracellular PPH could cleave both internal and terminal ..gamma..-glutamyl linkages, with PteGlu as an end product. After subcellular fractionation of the mucosa, PPH was found in the lysosomes. In summary, the distinct characteristics of brush border and intracellular PPH suggest that the two hydrolases serve different roles in folate metabolism.

  10. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium

    Alistair eWalsham; Donald eMacKenzie; Vivienne eCook; Simon eWemyss-Holden; Claire eHews; Nathalie eJuge; Stephanie eSchüller

    2016-01-01

    Enteropathogenic E. coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small ...

  11. Direct In Vivo Human Intestinal Permeability (P-eff) Determined with Different Clinical Perfusion and Intubation Methods

    Dahlgren, David; Roos, Carl; Sjögren, Erik; Lennernäs, Hans

    2015-01-01

    Regional in vivo human intestinal effective permeability (P-eff) is calculated by measuring the disappearance rate of substances during intestinal perfusion. P-eff is the most relevant parameter in the prediction of rate and extent of drug absorption from all parts of the intestine. Today, human intestinal perfusions are not performed on a routine basis in drug development. Therefore, it would be beneficial to increase the accuracy of the in vitro and in silico tools used to evaluate the inte...

  12. Biovolatilization of metal(loid)s by intestinal microorganisms in the simulator of the human intestinal microbial ecosystem.

    Diaz-Bone, Roland A; van de Wiele, Tom R

    2009-07-15

    Methylation and hydrogenation of metal(loid)s by microorganisms are widespread and well-known processes in the environment by which mobility and in most cases toxicity are significantly enhanced in comparison to inorganic species. The human gut contains highly diverse and active microbiocenosis, yet little is known about the occurrence and importance of microbial metal(loid) methylation and hydrogenation. In this study, an in vitro gastrointestinal model, the Simulator of the Human Intestinal Microbial Ecosystem (SHIME),was used for investigating volatilization of metal(loid)s by intestinal microbiota. Suspensions from different compartments of the SHIME system analogous to different parts of the human intestinal tract were incubated with different concentrations of inorganic Ge, As, Se, Sn, Sb, Te, Hg, Pb, and Bi and analyzed by gas chromatography and inductively coupled plasma mass spectrometry (GC-ICP-MS). Significant volatilization was found for Se, As, and Te (maximal hourly production rates relative to the amount spiked; 0.6, 2, and 9 ng/mg/h, respectively). In addition, volatile species of Sb and Bi were detected. The occurrence of AsH3 and (CH3)2Te was toxicologically important. Furthermore, mixed Se/S and mixed As/S metabolites were detected in significant amounts in the gas phase of the incubation experiments of which two metabolites, (CH3)2AsSSCH3 and CH3As(SCH3)2, are described for the first time in environmental matrices. The toxicology of these species is unknown. These data show that the intestinal microbiota may increase the mobility of metal(loid)s, suggesting a significant modulation of their toxicity. Our research warrants further studies to investigate the extent of this process as well as the availability of metal(loid)s from different sources for microbial transformations. PMID:19708349

  13. Decreased gastric emptying and gastrointestinal and intestinal transits of liquid after complete spinal cord transection in awake rats

    Gondim F. de-A.A.

    1998-01-01

    Full Text Available We studied the effect of complete spinal cord transection (SCT on gastric emptying (GE and on gastrointestinal (GI and intestinal transits of liquid in awake rats using the phenol red method. Male Wistar rats (N = 65 weighing 180-200 g were fasted for 24 h and complete SCT was performed between C7 and T1 vertebrae after a careful midline dorsal incision. GE and GI and intestinal transits were measured 15 min, 6 h or 24 h after recovery from anesthesia. A test meal (0.5 mg/ml phenol red in 5% glucose solution was administered intragastrically (1.5 ml and the animals were sacrificed by an iv thiopental overdose 10 min later to evaluate GE and GI transit. For intestinal transit measurements, 1 ml of the test meal was administered into the proximal duodenum through a cannula inserted into a gastric fistula. GE was inhibited (P<0.05 by 34.3, 23.4 and 22.7%, respectively, at 15 min, 6 h and 24 h after SCT. GI transit was inhibited (P<0.05 by 42.5, 19.8 and 18.4%, respectively, at 15 min, 6 h and 24 h after SCT. Intestinal transit was also inhibited (P<0.05 by 48.8, 47.2 and 40.1%, respectively, at 15 min, 6 h and 24 h after SCT. Mean arterial pressure was significantly decreased (P<0.05 by 48.5, 46.8 and 41.5%, respectively, at 15 min, 6 h and 24 h after SCT. In summary, our report describes a decreased GE and GI and intestinal transits in awake rats within the first 24 h after high SCT.

  14. Development and validation of a new dynamic computer-controlled model of the human stomach and small intestine.

    Guerra, Aurélie; Denis, Sylvain; le Goff, Olivier; Sicardi, Vincent; François, Olivier; Yao, Anne-Françoise; Garrait, Ghislain; Manzi, Aimé Pacifique; Beyssac, Eric; Alric, Monique; Blanquet-Diot, Stéphanie

    2016-06-01

    For ethical, regulatory, and economic reasons, in vitro human digestion models are increasingly used as an alternative to in vivo assays. This study aims to present the new Engineered Stomach and small INtestine (ESIN) model and its validation for pharmaceutical applications. This dynamic computer-controlled system reproduces, according to in vivo data, the complex physiology of the human stomach and small intestine, including pH, transit times, chyme mixing, digestive secretions, and passive absorption of digestion products. Its innovative design allows a progressive meal intake and the differential gastric emptying of solids and liquids. The pharmaceutical behavior of two model drugs (paracetamol immediate release form and theophylline sustained release tablet) was studied in ESIN during liquid digestion. The results were compared to those found with a classical compendial method (paddle apparatus) and in human volunteers. Paracetamol and theophylline tablets showed similar absorption profiles in ESIN and in healthy subjects. For theophylline, a level A in vitro-in vivo correlation could be established between the results obtained in ESIN and in humans. Interestingly, using a pharmaceutical basket, the swelling and erosion of the theophylline sustained release form was followed during transit throughout ESIN. ESIN emerges as a relevant tool for pharmaceutical studies but once further validated may find many other applications in nutritional, toxicological, and microbiological fields. Biotechnol. Bioeng. 2016;113: 1325-1335. © 2015 Wiley Periodicals, Inc. PMID:26616643

  15. Scintigraphic determination of the effect of metoclopramide and morphine on small intestinal transit time

    Prokop, E.K.; Caride, V.J.; Winchenbach, K.; Troncale, F.J.; McCallum, R.W.

    1988-01-01

    To determine if a scintigraphic method could detect pharmacologic changes in small intestinal transit time (SITT), 10 male volunteers were studied at baseline and after intravenously administered metoclopramide (10 mg) and morphine (8 mg). Five of these volunteers were studied with the hydrogen breath test method for comparison. For each of the scintigraphic studies, the volunteers were positioned supine under a large-field-of-view gamma camera after ingesting an isosmotic lactulose solution containing 99mtechnetium-diethylenetriaminepentaacetic acid (DTPA). Data were collected and stored in a computer. Both gastric emptying and SITT were determined. SITT was 81 +/- 11 min (mean +/- S.E.M.; N = 10) during baseline studies, was decreased significantly to 50 +/- 6 min (N = 10; P less than 0.01) after metoclopramide, and was increased significantly to 161 +/- 15 min (N = 8; P less than 0.01) after morphine. Baseline mean values were 86.3 +/- 15 min (N = 15) for the hydrogen breath tests, 47 +/- 8 min (N = 5) for metoclopramide, and 183 +/- 16 min (N = 5) for morphine. For gastric emptying, there was no significant difference in percentage emptying at 1 hr for baseline and metochopramide (82 +/- 5% vs. 88 +/- 4%). Morphine prolonged gastric emptying at 1 hr to 63 +/- 8%. We conclude that the scintigraphic method for measuring SITT permits accurate investigation of the pharmacologic effects on intestinal motility and, in addition, may be a useful research and clinical method for SITT determination.

  16. Slow intestinal transit contributes to elevate urinary p-cresol level in Italian autistic children.

    Gabriele, Stefano; Sacco, Roberto; Altieri, Laura; Neri, Cristina; Urbani, Andrea; Bravaccio, Carmela; Riccio, Maria Pia; Iovene, Maria Rosaria; Bombace, Francesca; De Magistris, Laura; Persico, Antonio M

    2016-07-01

    The uremic toxin p-cresol (4-methylphenol) is either of environmental origin or can be synthetized from tyrosine by cresol-producing bacteria present in the gut lumen. Elevated p-cresol amounts have been previously found in the urines of Italian and French autism spectrum disorder (ASD) children up until 8 years of age, and may be associated with autism severity or with the intensity of abnormal behaviors. This study aims to investigate the mechanism producing elevated urinary p-cresol in ASD. Urinary p-cresol levels were thus measured by High Performance Liquid Chromatography in a sample of 53 Italian ASD children assessed for (a) presence of Clostridium spp. strains in the gut by means of an in vitro fecal stool test and of Clostridium difficile-derived toxin A/B in the feces, (b) intestinal permeability using the lactulose/mannitol (LA/MA) test, (c) frequent use of antibiotics due to recurrent infections during the first 2 years of postnatal life, and (d) stool habits with the Bristol Stool Form Scale. Chronic constipation was the only variable significantly associated with total urinary p-cresol concentration (P p-cresol levels are elevated in young ASD children with increased intestinal transit time and chronic constipation. Autism Res 2016, 9: 752-759. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26437875

  17. Scintigraphic determination of the effect of metoclopramide and morphine on small intestinal transit time

    To determine if a scintigraphic method could detect pharmacologic changes in small intestinal transit time (SITT), 10 male volunteers were studied at baseline and after intravenously administered metoclopramide (10 mg) and morphine (8 mg). Five of these volunteers were studied with the hydrogen breath test method for comparison. For each of the scintigraphic studies, the volunteers were positioned supine under a large-field-of-view gamma camera after ingesting an isosmotic lactulose solution containing 99mtechnetium-diethylenetriaminepentaacetic acid (DTPA). Data were collected and stored in a computer. Both gastric emptying and SITT were determined. SITT was 81 +/- 11 min (mean +/- S.E.M.; N = 10) during baseline studies, was decreased significantly to 50 +/- 6 min (N = 10; P less than 0.01) after metoclopramide, and was increased significantly to 161 +/- 15 min (N = 8; P less than 0.01) after morphine. Baseline mean values were 86.3 +/- 15 min (N = 15) for the hydrogen breath tests, 47 +/- 8 min (N = 5) for metoclopramide, and 183 +/- 16 min (N = 5) for morphine. For gastric emptying, there was no significant difference in percentage emptying at 1 hr for baseline and metochopramide (82 +/- 5% vs. 88 +/- 4%). Morphine prolonged gastric emptying at 1 hr to 63 +/- 8%. We conclude that the scintigraphic method for measuring SITT permits accurate investigation of the pharmacologic effects on intestinal motility and, in addition, may be a useful research and clinical method for SITT determination

  18. QSAR Study and VolSurf Characterization of Human Intestinal Absorption of Druge

    胡桂香; 商志才; 等

    2003-01-01

    The prediction of human intestinal absorption is a major goal in the design,optimization,and selection of candidates for the develoment of oral drugs.In this study,a computerized method(VolSurf with GRID) was used as a novel tool for predicting human intestinal absorption of test compound,and for determining the critical molecular properties needed for human intestinal absorption.The tested molecules consisted of 20 diverse drug-like compounds.Partial least squares(PLS) discriminant analysis was used to correlate the experimental data with the theoretical molecular properties of human intestinal absorption.A good correlation(r2=0.95,q2=0.86) between the molecular modeling results and the experimental data demonstrated that human intestinal absorption could be predicted from the three-dimensional(3D) molecular structure of a compound .Favorable structureal properties identified for the potent intestinal absorption of drugs included strong imbalance between the center of mass of a molecule and the barycentre of its hydrophilic and hydrophobic regions and a definitive hydrophobic region as well as less hydrogen bonding donors and acceptors in the molecule.

  19. Comparative proteomic analysis of cell lines and scrapings of the human intestinal epithelium

    Renes Johan

    2007-04-01

    Full Text Available Abstract Background In vitro models are indispensable study objects in the fields of cell and molecular biology, with advantages such as accessibility, homogeneity of the cell population, reproducibility, and growth rate. The Caco-2 cell line, originating from a colon carcinoma, is a widely used in vitro model for small intestinal epithelium. Cancer cells have an altered metabolism, making it difficult to infer their representativity for the tissue from which they are derived. This study was designed to compare the protein expression pattern of Caco-2 cells with the patterns of intestinal epithelial cells from human small and large intestine. HT-29 intestinal cells, Hep G2 liver cells and TE 671 muscle cells were included too, the latter two as negative controls. Results Two-dimensional gel electrophoresis was performed on each tissue and cell line protein sample. Principal component and cluster analysis revealed that global expression of intestinal epithelial scrapings differed from that of intestinal epithelial cell lines. Since all cultured cell lines clustered together, this finding was ascribed to an adaptation of cells to culture conditions and their tumor origin, and responsible proteins were identified by mass spectrometry. When investigating the profiles of Caco-2 cells and small intestinal cells in detail, a considerable overlap was observed. Conclusion Numerous proteins showed a similar expression in Caco-2 cells, HT-29 cells, and both the intestinal scrapings, of which some appear to be characteristic to human intestinal epithelium in vivo. In addition, several biologically significant proteins are expressed at comparable levels in Caco-2 cells and small intestinal scrapings, indicating the usability of this in vitro model. Caco-2 cells, however, appear to over-express as well as under-express certain proteins, which needs to be considered by scientists using this cell line. Hence, care should be taken to prevent misinterpretation of

  20. Contribution of Listeria monocytogenes RecA to acid and bile survival and invasion of human intestinal Caco-2 cells

    Veen, van der S.; Abee, T.

    2011-01-01

    The food-borne pathogen Listeria monocytogenes is able to colonize the human gastro-intestinal tract and subsequently cross the intestinal barrier. Thus, for L. monocytogenes to become virulent, it must survive the low pH of the stomach, high bile concentrations in the small intestine, and invade th

  1. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase

    A cDNA clone for human adult intestinal alkaline phosphatase (ALP) [orthophosphoric-monoester phosphohydrolase (alkaline optimum); EC 3.1.3.1] was isolated from a λgt11 expression library. The cDNA insert of this clone is 2513 base pairs in length and contains an open reading frame that encodes a 528-amino acid polypeptide. This deduced polypeptide contains the first 40 amino acids of human intestinal ALP, as determined by direct protein sequencing. Intestinal ALP shows 86.5% amino acid identity to placental (type 1) ALP and 56.6% amino acid identity to liver/bone/kidney ALP. In the 3'-untranslated regions, intestinal and placental ALP cDNAs are 73.5% identical (excluding gaps). The evolution of this multigene enzyme family is discussed

  2. Growth inhibition of Streptococcus mutans by cellular extracts of human intestinal lactic acid bacteria.

    Ishihara, K; Miyakawa, H; Hasegawa, A.; Takazoe, I; Kawai, Y.

    1985-01-01

    The in vitro growth of Streptococcus mutans was completely inhibited by water-soluble extracts from cells of various intestinal lactic acid bacteria identified as Streptococcus faecium, Streptococcus equinus, Lactobacillus fermentum, and Lactobacillus salivarius. The growth inhibition was dependent on the concentrations of the extracts. In contrast, the extracts did not inhibit the growth of the major indigenous intestinal lactic acid bacteria isolated from humans. These lactic acid bacteria ...

  3. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium

    Walsham, Alistair D. S.; MacKenzie, Donald A.; Cook, Vivienne; Wemyss-Holden, Simon; Hews, Claire L.; Juge, Nathalie; Schüller, Stephanie

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as hum...

  4. Ecological Effects of Antimicrobial Agents on the Human Intestinal Microflora

    Nord, C E; Edlund, C

    2011-01-01

    Administration of antimicrobial agents may seriously disturb the balance of the normal intestinal microflora. This may cause bacterial overgrowth and emergence of resistant microorganisms which may lead to serious infections and also encourage transfer of resistance factors among bacteria. This review article summarises published scientific reports on the ecological effect of penicillins, cephalosporins, monobactams, carbapenems, macrolides, tetracyclines, nitroimidazoles, clindamycin and qui...

  5. Development of Functional Microfold (M Cells from Intestinal Stem Cells in Primary Human Enteroids.

    Joshua D Rouch

    Full Text Available Intestinal microfold (M cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs, and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting.Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium.Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2 in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells.Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an

  6. Assessing DNA methylation in the developing human intestinal epithelium: potential link to inflammatory bowel disease.

    Kraiczy, J; Nayak, K; Ross, A; Raine, T; Mak, T N; Gasparetto, M; Cario, E; Rakyan, V; Heuschkel, R; Zilbauer, M

    2016-05-01

    DNA methylation is one of the major epigenetic mechanisms implicated in regulating cellular development and cell-type-specific gene expression. Here we performed simultaneous genome-wide DNA methylation and gene expression analysis on purified intestinal epithelial cells derived from human fetal gut, healthy pediatric biopsies, and children newly diagnosed with inflammatory bowel disease (IBD). Results were validated using pyrosequencing, real-time PCR, and immunostaining. The functional impact of DNA methylation changes on gene expression was assessed by employing in-vitro assays in intestinal cell lines. DNA methylation analyses allowed identification of 214 genes for which expression is regulated via DNA methylation, i.e. regulatory differentially methylated regions (rDMRs). Pathway and functional analysis of rDMRs suggested a critical role for DNA methylation in regulating gene expression and functional development of the human intestinal epithelium. Moreover, analysis performed on intestinal epithelium of children newly diagnosed with IBD revealed alterations in DNA methylation within genomic loci, which were found to overlap significantly with those undergoing methylation changes during intestinal development. Our study provides novel insights into the physiological role of DNA methylation in regulating functional maturation of the human intestinal epithelium. Moreover, we provide data linking developmentally acquired alterations in the DNA methylation profile to changes seen in pediatric IBD. PMID:26376367

  7. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines

    Cui Zhu

    2016-08-01

    Full Text Available Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11 have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes, goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  8. Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans

    Miguel-Aliaga, Irene

    2012-01-01

    The increasingly recognized role of gastrointestinal signals in the regulation of food intake, insulin production and peripheral nutrient storage has prompted a surge of interest in studying how the gastrointestinal tract senses and responds to nutritional information. Identification of metabolically important intestinal nutrient sensors could provide potential new drug targets for the treatment of diabetes, obesity and gastrointestinal disorders. From a more fundamental perspective, the stud...

  9. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates

    Zoetendal, Erwin G; Raes, Jeroen; van den Bogert, Bartholomeus;

    2012-01-01

    The human gastrointestinal tract (GI tract) harbors a complex community of microbes. The microbiota composition varies between different locations in the GI tract, but most studies focus on the fecal microbiota, and that inhabiting the colonic mucosa. Consequently, little is known about the...... microbiota at other parts of the GI tract, which is especially true for the small intestine because of its limited accessibility. Here we deduce an ecological model of the microbiota composition and function in the small intestine, using complementing culture-independent approaches. Phylogenetic microarray...... analyses demonstrated that microbiota compositions that are typically found in effluent samples from ileostomists (subjects without a colon) can also be encountered in the small intestine of healthy individuals. Phylogenetic mapping of small intestinal metagenome of three different ileostomy effluent...

  10. Lineage-specific expression of bestrophin-2 and bestrophin-4 in human intestinal epithelial cells

    Ito, Go; Okamoto, Ryuichi; Murano, Tatsuro;

    2013-01-01

    Intestinal epithelial cells (IECs) regulate the absorption and secretion of anions, such as HCO3(-) or Cl(-). Bestrophin genes represent a newly identified group of calcium-activated Cl(-) channels (CaCCs). Studies have suggested that, among the four human bestrophin-family genes, bestrophin-2...... (BEST2) and bestrophin-4 (BEST4) might be expressed within the intestinal tissue. Consistently, a study showed that BEST2 is expressed by human colonic goblet cells. However, their precise expression pattern along the gastrointestinal tract, or the lineage specificity of the cells expressing these genes...

  11. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip

    Kim, Hyun Jung; Li, Hu; Collins, James J.; Donald E. Ingber

    2015-01-01

    The main advance of this study is the development of a microengineered model of human intestinal inflammation and bacterial overgrowth that permits analysis of individual contributors to the pathophysiology of intestinal diseases, such as ileus and inflammatory bowel disease, over a period of weeks in vitro. By studying living human intestinal epithelium, with or without vascular and lymphatic endothelium, immune cells, and mechanical deformation, as well as living microbiome and pathogenic m...

  12. Effects of progesterone on gastric emptying and intestinal transit in male rats

    Chuan-Yong Liu; Lian-Bi Chen; Pei-Yi Liu; Dong-Ping Xie; Paulus S. Wang

    2002-01-01

    AIM: To study the dose-dependent of progesterone (P) effect and the interaction between the oxytocin (OT) and Pon gastrointestinal motility.METHODS: In order to monitor the gastric emptying andintestinal transit, the SD male rats were intubated via acatheter with normal saline (3 mi/kg) containing Na251 CrO4(0.5 μCi/ml) and 10 % charcoal.OT was dissolved intonormal saline and P was dissolved into 75 % alcohol.RESULTS: Low does of P (1 mg/kg, i. p. ) enhanced thegastric emptying (75 ± 3 %, P< 0.05) and high dose of P (5mg/kg, i.p. ) inhibit it (42± 11.2 %, P< 0.01). P (1 rog/kg)increased the intestinal transit (4.2 ± 0. 3, P < 0.05) whilethe higher dose ( 10-20 mg/kg) had no effect. OT (0.8 mg/kg, i.p. ) inhibited the gastric emptying (23.5 ± 9.8 %, P <0.01). The inhibitory effects of P (20 mg/kg) (32± 9.7 %, P< 0.05) and OT (0.8 mg/kg) on gastric emptying enhancedeach other when the two chemicals were administratedsimultaneously ( 17 ± 9.4 %, P < 0.01).CONCLUSION: Low dose of P increased Gl motility whilehigh dose of P decreased it. During the later period ofpregnancy, elevated plasma level of OT may also participatein the gastrointestinal inhibition.

  13. Kinematics of transition during human accelerated sprinting

    Ryu Nagahara

    2014-07-01

    Full Text Available This study investigated kinematics of human accelerated sprinting through 50 m and examined whether there is transition and changes in acceleration strategies during the entire acceleration phase. Twelve male sprinters performed a 60-m sprint, during which step-to-step kinematics were captured using 60 infrared cameras. To detect the transition during the acceleration phase, the mean height of the whole-body centre of gravity (CG during the support phase was adopted as a measure. Detection methods found two transitions during the entire acceleration phase of maximal sprinting, and the acceleration phase could thus be divided into initial, middle, and final sections. Discriminable kinematic changes were found when the sprinters crossed the detected first transition—the foot contacting the ground in front of the CG, the knee-joint starting to flex during the support phase, terminating an increase in step frequency—and second transition—the termination of changes in body postures and the start of a slight decrease in the intensity of hip-joint movements, thus validating the employed methods. In each acceleration section, different contributions of lower-extremity segments to increase in the CG forward velocity—thigh and shank for the initial section, thigh, shank, and foot for the middle section, shank and foot for the final section—were verified, establishing different acceleration strategies during the entire acceleration phase. In conclusion, there are presumably two transitions during human maximal accelerated sprinting that divide the entire acceleration phase into three sections, and different acceleration strategies represented by the contributions of the segments for running speed are employed.

  14. Genomic and ecological studies to understand bifidobacterial adaptation to the human gastro-intestinal tract

    Turroni, Francesca

    2010-01-01

    The Bifidobacterium genus comprises a high GC Gram positive bacteria belonging to the Actinobacteria phylum, which has been found to represent a common inhabitant of the gastro-intestinal tract (GIT) of mammals. In particular focusing on the GIT of human, the overall microorganisms that colonize such environment represent the “gut microbiota”. The human gut microbiota is an extremely complex microbial community whose functions are believed to have a significant impact on human physiology. Dif...

  15. Isolation and identification of intestinal steroid-desulfating bacteria from rats and humans.

    Van Eldere, J.; Robben, J; De Pauw, G.; Merckx, R.; Eyssen, H.

    1988-01-01

    We isolated 12 strictly anaerobic steroid-3-sulfate-desulfating strains from the intestinal floras of rats and humans. Two strains (S1 and S2) of the same atypical Clostridium species and an atypical Lactobacillus strain (termed R9) were obtained from rats. The human isolates were identified as Eubacterium cylindroides (two strains, H1 and H2), Peptococcus niger (two strains, H4 and H89), and Clostridium clostridiiforme. We also isolated, from different human fecal samples, four strains of ph...

  16. Human Intestinal Cells Modulate Conjugational Transfer of Multidrug Resistance Plasmids between Clinical Escherichia coli Isolates

    Machado, Ana Manuel; SOMMER, Morten

    2014-01-01

    Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an...

  17. Effects of laxative and N-acetylcysteine on mucus accumulation, bacterial load, transit, and inflammation in the cystic fibrosis mouse small intestine.

    De Lisle, Robert C; Roach, Eileen; Jansson, Kyle

    2007-09-01

    The accumulation of mucus in affected organs is characteristic of cystic fibrosis (CF). The CF mouse small intestine has dramatic mucus accumulation and exhibits slower interdigestive intestinal transit. These factors are proposed to play cooperative roles that foster small intestinal bacterial overgrowth (SIBO) and contribute to the innate immune response of the CF intestine. It was hypothesized that decreasing the mucus accumulation would reduce SIBO and might improve other aspects of the CF intestinal phenotype. To test this, solid chow-fed CF mice were treated with an osmotic laxative to improve gut hydration or liquid-fed mice were treated orally with N-acetylcysteine (NAC) to break mucin disulfide bonds. Treatment with laxative or NAC reduced mucus accumulation by 43% and 50%, respectively, as measured histologically as dilation of the intestinal crypts. Laxative and NAC also reduced bacterial overgrowth in the CF intestine by 92% and 63%, respectively. Treatment with laxative normalized small intestinal transit in CF mice, whereas NAC did not. The expression of innate immune response-related genes was significantly reduced in laxative-treated CF mice, whereas there was no significant effect in NAC-treated CF mice. In summary, laxative and NAC treatments of CF mice reduced mucus accumulation to a similar extent, but laxative was more effective than NAC at reducing bacterial load. Eradication of bacterial overgrowth by laxative treatment was associated with normalized intestinal transit and a reduction in the innate immune response. These results suggest that both mucus accumulation and slowed interdigestive small intestinal transit contribute to SIBO in the CF intestine. PMID:17615175

  18. CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells.

    Makita, Shin; Kanai, Takanori; Oshima, Shigeru; Uraushihara, Koji; Totsuka, Teruji; Sawada, Taisuke; Nakamura, Tetsuya; Koganei, Kazutaka; Fukushima, Tsuneo; Watanabe, Mamoru

    2004-09-01

    It is well known that immune responses in the intestine remain in a state of controlled inflammation, suggesting that not only active suppression by regulatory T cells plays an important role in the normal intestinal homeostasis, but also its dysregulation leads to the development of inflammatory bowel disease. In this study, we demonstrate that the CD4(+)CD25(bright) T cells reside in the human intestinal lamina propria (LP) and functionally retain regulatory activities. All human LP CD4(+) T cells regardless of CD25 expression constitutively expressed CTLA-4, glucocorticoid-induced TNFR family-related protein, and Foxp3 and proliferate poorly. Although LP CD4(+)CD25(-) T cells showed an activated and anergic/memory phenotype, they did not retain regulatory activity. In LP CD4(+)CD25(+) T cells, however, cells expressing CD25 at high levels (CD4(+)CD25(bright)) suppressed the proliferation and various cytokine productions of CD4(+)CD25(-) T cells. LP CD4(+)CD25(bright) T cells by themselves produced fewer amounts of IL-2, IFN-gamma, and IL-10. Interestingly, LP CD4(+)CD25(bright) T cells with regulatory T activity were significantly increased in patients with active inflammatory bowel disease. These results suggest that CD4(+)CD25(bright) T cells found in the normal and inflamed intestinal mucosa selectively inhibit the host immune response and therefore may contribute to the intestinal immune homeostasis. PMID:15322172

  19. E durans strain M4-5 isolated from human colonic flora attenuates intestinal inflammation

    Avram-Hananel, Liraz; Stock, Julia; Parlesak, Alexandr;

    2010-01-01

    PURPOSE: The aim of this study was to evaluate in vitro and in vivo effects of a unique high-butyrate-producing bacterial strain from human colonic flora, Enterococcus durans, in prevention and treatment of intestinal inflammation. METHODS: A compartmentalized Caco-2/leukocyte coculture model was...

  20. Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA

    Cowell, G M; Kønigshøfer, E; Danielsen, E M;

    1988-01-01

    The complete primary structure (967 amino acids) of an intestinal human aminopeptidase N (EC 3.4.11.2) was deduced from the sequence of a cDNA clone. Aminopeptidase N is anchored to the microvillar membrane via an uncleaved signal for membrane insertion. A domain constituting amino acid 250...

  1. Associations between common intestinal parasites and bacteria in humans as revealed by qPCR

    O'Brien Andersen, L.; Karim, A. B.; Roager, Henrik Munch;

    2016-01-01

    Several studies have shown associations between groups of intestinal bacterial or specific ratios between bacterial groups and various disease traits. Meanwhile, little is known about interactions and associations between eukaryotic and prokaryotic microorganisms in the human gut. In this work, we...

  2. Microbial Eco-Physiology of the human intestinal tract: a flow cytometric approach

    Amor, Ben K.

    2004-01-01

    This thesis describes a multifaceted approach to further enhance our view of the complex human intestinal microbial ecosystem. This approach combines me advantages of flow cyrometry (FCM), a single cell and high-throughput technology, and molecular techniques that have proven themselves to be invalu

  3. Consensus hologram QSAR modeling for the prediction of human intestinal absorption.

    Moda, Tiago L; Andricopulo, Adriano D

    2012-04-15

    Consistent in silico models for ADME properties are useful tools in early drug discovery. Here, we report the hologram QSAR modeling of human intestinal absorption using a dataset of 638 compounds with experimental data associated. The final validated models are consistent and robust for the consensus prediction of this important pharmacokinetic property and are suitable for virtual screening applications. PMID:22425566

  4. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency

    Jackson, Robert S; Creemers, John W M; Farooqi, I Sadaf;

    2003-01-01

    , some mature ACTH and glucagon-like peptide 17-36(amide) were detectable in her plasma, suggesting that the production of these hormones, at least in humans, does not have an absolute dependence on PC1. The presence of severe obesity and the absence of growth retardation in both subjects contrast......We have previously described the only reported case of human proprotein convertase 1 (PC1) deficiency, in a female (Subject A) with obesity, hypogonadism, hypoadrenalism, and reactive hypoglycemia. We now report the second case of human PC1 deficiency (Subject B), also due to compound...... in type. Subsequent investigation of Subject A revealed marked small-intestinal absorptive dysfunction, which was not previously clinically suspected. We postulate that PC1, presumably in the enteroendocrine cells, is essential for the normal absorptive function of the human small intestine. The...

  5. A cost-effective system for differentiation of intestinal epithelium from human induced pluripotent stem cells

    Soichiro Ogaki; Mayu Morooka; Kaito Otera; Shoen Kume

    2015-01-01

    The human intestinal epithelium is a useful model for pharmacological studies of absorption, metabolism, drug interactions, and toxicology, as well as for studies of developmental biology. We established a rapid and cost effective system for differentiation of human induced pluripotent stem (iPS) cells into definitive endoderm (DE) cells. In the presence of dimethyl sulfoxide (DMSO), a low concentration of Activin at 6.25 ng/ml is sufficient to give a similar differentiation efficiency with t...

  6. Inhibition of human pancreatic and biliary output but not intestinal motility by physiological intraileal lipid loads

    Keller, Jutta; Holst, Jens Juul; Layer, Peter

    2005-01-01

    Lipid perfusion into the distal ileal lumen at supraphysiological loads inhibits pancreatic exocrine secretion and gastrointestinal motility in humans. In the present study, we sought to determine the effects of physiological postprandial intraileal lipid concentrations on endogenously stimulated....... Physiological postprandial ileal lipid concentrations dose dependently inhibited human digestive pancreatic protease and bile acid output, but not intestinal motor activity. Thus physiological postprandial ileal nutrient exposure may be of importance for the termination of digestive secretory responses...

  7. Metagenomics of the human intestinal tract: from who is there to what is done there

    Lapaque, Nicolas; Doré, Joël; Blottière, Hervé

    2015-01-01

    The human gastro-intestinal tract is colonized by 10(6)-10(14) microorganisms from the three domains, eukaria, archaea and bacteria that are collectively referred as the human gut microbiota. Gut microbiota actively contributes to the digestion of the nutrients, mainly the fibers otherwise undigested by the host, and participate to the host capacity of energy recovery from food. It plays also a key role in gut homeostasis, impacting on its barrier function and regulating the immune and metabo...

  8. Recombinant Human Epidermal Growth Factor Accelerates Recovery of Mouse Small Intestinal Mucosa After Radiation Damage

    Purpose: To determine whether systemically administered recombinant human epidermal growth factor (rhEGF) accelerates the recovery of mouse small intestinal mucosa after irradiation. Methods and Materials: A mouse mucosal damage model was established by administering radiation to male BALB/c mice with a single dose of 15 Gy applied to the abdomen. After irradiation, rhEGF was administered subcutaneously at various doses (0.04, 0.2, 1.0, and 5.0 mg/kg/day) eight times at 2- to 3-day intervals. The evaluation methods included histologic changes of small intestinal mucosa, change in body weight, frequency of diarrhea, and survival rate. Results: The recovery of small intestinal mucosa after irradiation was significantly improved in the mice treated with a high dose of rhEGF. In the mice that underwent irradiation without rhEGF treatment, intestinal mucosal ulceration, mucosal layer damage, and severe inflammation occurred. The regeneration of villi was noticeable in mice treated with more than 0.2 mg/kg rhEGF, and the villi recovered fully in mice given more than 1 mg/kg rhEGF. The frequency of diarrhea persisting for more than 3 days was significantly greater in the radiation control group than in the rhEGF-treated groups. Conclusions: Systemic administration of rhEGF accelerates recovery from mucosal damage induced by irradiation. We suggest that rhEGF treatment shows promise for the reduction of small intestinal damage after irradiation

  9. Comparative quantification of human intestinal bacteria based on cPCR and LDR/LCR

    Zhou-Rui Tang; Kai Li; Yu-Xun Zhou; Zhen-Xian Xiao; Jun-Hua Xiao; Rui Huang; Guo-Hao Gu

    2012-01-01

    AIM: To establish a multiple detection method based on comparative polymerase chain reaction (cPCR) and ligase detection reaction (LDR)/ligase chain reaction (LCR) to quantify the intestinal bacterial components.METHODS: Comparative quantification of 16S rDNAs from different intestinal bacterial components was used to quantify multiple intestinal bacteria. The 16S rDNAs of different bacteria were amplified simultaneously by cPCR. The LDR/LCR was examined to actualize the genotyping and quantification. Two beneficial (Bifidobacterium, Lactobacillus) and three conditionally pathogenic bacteria (Enterococcus, Enterobacterium and Eubacterium) were used in this detection. With cloned standard bacterial 16S rDNAs, standard curves were prepared to validate the quantitative relations between the ratio of original concentrations of two templates and the ratio of the fluorescence signals of their final ligation products. The internal controls were added to monitor the whole detection flow. The quantity ratio between two bacteria was tested.RESULTS: cPCR and LDR revealed obvious linear correlations with standard DNAs, but cPCR and LCR did not. In the sample test, the distributions of the quantity ratio between each two bacterial species were obtained. There were significant differences among these distributions in the total samples. But these distributions of quantity ratio of each two bacteria remained stable among groups divided by age or sex.CONCLUSION: The detection method in this study can be used to conduct multiple intestinal bacteria genotyping and quantification, and to monitor the human intestinal health status as well.

  10. Autoradiographic and enzyme histochemical studies of intestinal metaplasia in human stomach

    The relationship between growth potency and alkaline phosphatase activity of intestinal metaplasia of human stomach was studied using enzyme histochemical and autoradiographic technique. Both alkaline phosphatase positive and negative glands were seen in the intestinal metaplasia. Two types of alkaline phosphatase positive glands were observed, one in which alkaline phosphatase positive cells were distributed from the lower part to the surface of the gland and the other in which alkaline phosphatase positive cells were localized only at the surface of the gland. 3H-Thymidine labelled cells in the former gland were localized only at the bottom but the labelled cells in the latter were distributed in the lower part of the gland. 3H-Thymidine labelled cells in alkaline phosphatase negative gland were distributed from the bottom to middle part of the gland. These results imply that the intestinal metaplasia in which cell proliferative zone was localized at the bottom of the gland showed alkaline phosphatase activity just like the activity in the small intestine, however the gland in which the cell proliferative zone was prolonged showed the alkaline phosphatase activity different from the small intestine. (author)

  11. Phase transitions in models of human cooperation

    Perc, Matjaž

    2016-08-01

    If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for the common good? Recent research indicates that a comprehensive answer to such questions requires that we look beyond the individual and focus on the collective behavior that emerges as a result of the interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among humans often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. Here we briefly review research done in the realm of the public goods game, and we outline future research directions with an emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer better social systems and develop more efficient policies for a sustainable and better future.

  12. Circulating intestine-derived exosomal miR-328 in plasma, a possible biomarker for estimating BCRP function in the human intestines

    Gotanda, Keisuke; Hirota, Takeshi; Saito, Jumpei; Fukae, Masato; Egashira, Yu; Izumi, Noritomo; Deguchi, Mariko; Kimura, Miyuki; Matsuki, Shunji; Irie, Shin; Ieiri, Ichiro

    2016-01-01

    A variant in the breast cancer resistance protein (BCRP) gene, 421C> A is a useful biomarker for describing large inter-individual differences in the pharmacokinetics of sulfasalazine (SASP), a BCRP substrate. However, large intra-genotypic variability still exists in spite of the incorporation of this variant into the pharmacokinetics of SASP. Since miR-328 negatively regulates BCRP expression in human tissues, we hypothesized that exosomal miR-328 in plasma, which leaks from the intestines, is a possible biomarker for estimating BCRP activity in the human intestines. We established an immunoprecipitation-based quantitative method for circulating intestine-derived miR-328 in plasma using an anti-glycoprotein A33 antibody. A clinical study was conducted with an open-label, non-randomized, and single-arm design involving 33 healthy participants. Intestine-derived exosomal miR-328 levels positively correlated (P exosomal miR-328 in plasma has potential as a possible biomarker for estimating BCRP function in the human intestines. PMID:27571936

  13. Human intestinal cells modulate conjugational transfer of multidrug resistance plasmids between clinical Escherichia coli isolates.

    Ana Manuel Dantas Machado

    Full Text Available Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co-cultured with human intestinal cells. We show that filtered media from co-cultures contain a factor that reduces conjugation efficiency. Protease treatment of the filtered media eliminates this inhibition of conjugation. This data suggests that a peptide or protein based factor is secreted on the apical side of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut.

  14. Antibiotic residues and drug resistance in human intestinal flora.

    Corpet, D. E.

    1987-01-01

    The effect of residual levels of ampicillin on the drug resistance of fecal flora was studied in human volunteers given 1.5 mg of ampicillin orally per day for 21 days. This treatment failed to have any significant reproducible effect on the number of resistant Escherichia coli in their feces. The effect of continuous administration of small doses of ampicillin, chlortetracycline, or streptomycin in the drinking water was studied in gnotobiotic mice inoculated with a human fecal flora. In thi...

  15. The Modulatory Effect of Anthocyanins from Purple Sweet Potato on Human Intestinal Microbiota in Vitro.

    Zhang, Xin; Yang, Yang; Wu, Zufang; Weng, Peifang

    2016-03-30

    In order to investigate the modulatory effect of purple sweet potato anthocyanins (PSPAs) on human intestinal microbiota, PSPAs were prepared by column chromatography and their influence on intestinal microbiota was analyzed by monitoring the bacterial populations and analyzing short-chain fatty acid (SCFA) concentrations at different time points. The numbers (log10 cell/mL) of Bifidobacterium and Lactobacillus/Enterococcus spp., Bacteroides-Prevotella, Clostridium histolyticum, and total bacteria after 24 h of culture in anaerobic fermentation broth containing PSPAs were 8.44 ± 0.02, 8.30 ± 0.01, 7.80 ± 0.03, 7.60 ± 0.03, and 9.00 ± 0.02, respectively, compared with 8.21 ± 0.03, 8.12 ± 0.02, 7.95 ± 0.02, 7.77 ± 0.02, and 9.01 ± 0.03, respectively, in the controls. The results showed that PSPAs induced the proliferation of Bifidobacterium and Lactobacillus/Enterococcus spp., inhibited the growth of Bacteroides-Prevotella and Clostridium histolyticum, and did not affect the total bacteria number. Total SCFA concentrations in the cultures with PSPAs were significantly higher than in the controls (P acids, which may exert a better effect on intestinal microecology, suggesting that PSPAs may have prebiotic-like activity by generating SCFAs and modulating the intestinal microbiota, contributing to improvements in human health. PMID:26975278

  16. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium.

    Walsham, Alistair D S; MacKenzie, Donald A; Cook, Vivienne; Wemyss-Holden, Simon; Hews, Claire L; Juge, Nathalie; Schüller, Stephanie

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains. PMID:26973622

  17. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium

    Alistair eWalsham

    2016-03-01

    Full Text Available Enteropathogenic E. coli (EPEC is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC A/E lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains.

  18. Activation of Intestinal Human Pregnane X Receptor Protects against Azoxymethane/Dextran Sulfate Sodium–Induced Colon Cancer

    Cheng, Jie; Fang, Zhong-Ze; Nagaoka, Kenjiro; Okamoto, Minoru; Qu, Aijuan; Tanaka, Naoki; Kimura, Shioko; Frank J. Gonzalez

    2014-01-01

    The role of intestinal human pregnane X receptor (PXR) in colon cancer was determined through investigation of the chemopreventive role of rifaximin, a specific agonist of intestinal human PXR, toward azoxymethane (AOM)/dextran sulfate sodium (DSS)–induced colon cancer. Rifaximin treatment significantly decreased the number of colon tumors induced by AOM/DSS treatment in PXR-humanized mice, but not wild-type or Pxr-null mice. Additionally, rifaximin treatment markedly increased the survival r...

  19. Comparative Genomics Analysis of Streptococcus Isolates from the Human Small Intestine Reveals their Adaptation to a Highly Dynamic Ecosystem

    Bogert, van den B.; Boekhorst, te J.; Herrmann, R.; Smid, E.J.; Zoetendal, E.G.; Kleerebezem, M.

    2013-01-01

    The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus s

  20. Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine

    Gassler, Nikolaus; Kopitz, Jürgen; Tehrani, Arman;

    2004-01-01

    -CoA synthetase 5 pattern correlate with conversion of intestinal epithelial cells to a gastric phenotype. These results suggest that deranged acyl-CoA synthetase 5 expression, synthesis, and activity are closely related to the state of villus architecture and epithelial homeostasis in human small intestine.......Several disorders of the small intestine are associated with disturbances in villus architecture. Thus, an understanding of the molecular mechanisms associated with the differentiation of villi represents an important step in the improvement of the understanding of small intestinal pathology...

  1. Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats.

    Zhimin Wang

    Full Text Available Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI alone, male Sprague Dawley (SD rats were treated with human ghrelin (20 nmol/rat daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days. The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury.

  2. Expression and significance of C-fos and proliferating cell nuclear antigen in the small intestinal tissue of human fetus

    Xue-hong LIU

    2011-02-01

    Full Text Available Objective To explore the expression rule of proliferating cell nuclear antigen(PCNA,C-fos proteins and apoptosis genes in the small intestinal tissue of human fetus.Methods At the second-to fourth-month of gestation,the expressions of cell proliferation and apoptosis were observed in 16 specimens of human fetal small intestinal tissue by using the immunohistochemical methods and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling(TUNEL.Results At the second to fourth month of gestation,all the PCNA and C-fos proteins were positively expressed in the small intestinal tissues and cells of human fetus.With the increase in gestational period,the positive cell number and average intensity(AI of PCNA protein increased gradually(P < 0.01.The positive cell number of C-fos protein increased first,and then decreased,while the AI of C-fos protein stably increased in the small intestinal tissues and cells of human fetus(P < 0.01.At the second to fourth month of gestation,TUNEL positive cells were seen to distribute in each layer of the small intestinal tissues of human fetus.With the increase of age,all the positive cell number and AI of TUNEL positive cells showed a tendency of decrease following increase in the small intestine of human fetus(P < 0.01.Conclusions PCNA,C-fos and apoptosis gene participate in adjusting the growth and development of the cells and tissues in the small intestine of human fetus.In the third month of gestation,especially,proliferation and apoptosis are significantly increased in the small intestinal tissue of human fetus,which may be the key period of intestinal tissue development.

  3. Extensive diversity of intestinal trichomonads of non-human primates

    Smejkalová, P.; Petrželková, Klára Judita; Pomajbíková, K.; Modrý, David; Čepička, I.

    2012-01-01

    Roč. 139, č. 1 (2012), s. 92-102. ISSN 0031-1820 R&D Projects: GA ČR GA206/09/0927 Institutional research plan: CEZ:AV0Z60930519; CEZ:AV0Z60220518 Keywords : trichomonads * Parabasalia * non-human primates * diversity * host specificity Subject RIV: EG - Zoology Impact factor: 2.355, year: 2012

  4. Human intestinal metagenomics: state of the art and future

    Blottière, H.M.; Vos, de W.M.; Ehrlich, S.D.; Doré, J.

    2013-01-01

    Over the last few years our understanding of human biology has undergone profound transformation. The key role of the 'world inside us', namely the gut microbiota, once considered a forgotten organ, has been revealed, with strong impact on our health and well-being. The present review highlights the

  5. Human Intestinal Cells Modulate Conjugational Transfer of Multidrug Resistance Plasmids between Clinical Escherichia coli Isolates

    Machado, Ana Manuel; Sommer, Morten

    2014-01-01

    Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems to...... the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut....

  6. Cellular and molecular mechanism study of declined intestinal transit function in the cholesterol gallstone formation process of the guinea pig

    Fan, Ying; Wu, Shuodong; YIN, ZHENHUA; Fu, Bei-Bei

    2014-01-01

    The aim of this study was to investigate the cellular and molecular mechanisms of declined intestinal transit (IT) function in the cholesterol gallstone (CG) formation process. Forty guinea pigs were divided into an experimental group (EG) and a control group (CoG), and the reverse transcription-polymerase chain reaction (RT-PCR) was performed for the analysis of c-kit and stem cell factor (scf) mRNA expression in the small bowel. In addition, immunofluorescence staining and confocal laser mi...

  7. Metabolomics Analysis of Cistus monspeliensis Leaf Extract on Energy Metabolism Activation in Human Intestinal Cells

    Yoichi Shimoda

    2012-01-01

    Full Text Available Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells.

  8. Metabolomics analysis of Cistus monspeliensis leaf extract on energy metabolism activation in human intestinal cells.

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells. PMID:22523469

  9. Diagnosis of edema and inflammation in human intestines using ultrawideband radar

    Smith, Sonny; Narayanan, Ram M.; Messaris, Evangelos

    2015-05-01

    Human intestines are vital organs, which are often subjected to chronic issues. In particular, Crohn's disease is a bowel aliment resulting in inflammation along the lining of one's digestive tract. Moreover, such an inflammatory condition causes changes in the thickness of the intestines; and we posit induce changes in the dielectric properties detectable by radar. This detection hinges on the increase in fluid content in the afflicted area, which is described by effective medium approximations (EMA). In this paper, we consider one of the constitutive parameters (i.e. relative permittivity) of different human tissues and introduce a simple numerical, electromagnetic multilayer model. We observe how the increase in water content in one layer can be approximated to predict the effective permittivity of that layer. Moreover, we note trends in how such an accumulation can influence the total effective reflection coefficient of the multiple layers.

  10. Localisation of hyaluronan in the human intestinal wall.

    Gerdin, B; Hällgren, R

    1991-01-01

    By using biotin labelled proteoglycan core protein and an avidin enzyme system, hyaluronan (hyaluronic acid) was visualised in specimens of human jejunum. Intense staining for hyaluronan was seen in the loose connective tissue of the villi and of lamina propria while the epithelial layer was unstained. The muscularis mucosae showed only faint staining. The accumulation of hyaluronan in the subepithelial layer of the jejunal mucosa indicates that the previously reported high jejunal secretion ...

  11. Assessing DNA methylation in the developing human intestinal epithelium: potential link to inflammatory bowel disease

    Kraiczy, J; Nayak, K.(National Institute of Science Education and Research, Bhubaneswar, India); Ross, A.; Raine, T; Mak, T N; Gasparetto, M.; Cario, E; Rakyan, V; Heuschkel, R; Zilbauer, M.

    2015-01-01

    DNA methylation is one of the major epigenetic mechanisms implicated in regulating cellular development and cell-type-specific gene expression. Here we performed simultaneous genome-wide DNA methylation and gene expression analysis on purified intestinal epithelial cells derived from human fetal gut, healthy pediatric biopsies, and children newly diagnosed with inflammatory bowel disease (IBD). Results were validated using pyrosequencing, real-time PCR, and immunostaining. The functional impa...

  12. Profiles of the human intestinal microbiota during antibiotic perturbation and resilience

    Heinsen, Femke-Anouska

    2012-01-01

    Each human being harbors an individual and quite stable community of microorganisms within the gastrointestinal tract, whereas the highest density can be found in the large intestine. The ability of the microbiota to recover after an external perturbation is referred to as the resilience phenomenon. The aim of this study was the investigation of resilience of the colonic microbiota after a three day course of antibiotic perturbation with paromomycin and a subsequent therapy with probiotic ...

  13. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome

    Gloux, Karine; Berteau, Olivier; El oumami, Hanane; Béguet, Fabienne; Leclerc, Marion; Doré, Joël

    2010-01-01

    In the human gastrointestinal tract, bacterial β-D-glucuronidases (BG; E.C. 3.2.1.31) are involved both in xenobiotic metabolism and in some of the beneficial effects of dietary compounds. Despite their biological significance, investigations are hampered by the fact that only a few BGs have so far been studied. A functional metagenomic approach was therefore performed on intestinal metagenomic libraries using chromogenic glucuronides as probes. Using this strategy, 19 positive metagenomic cl...

  14. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation

    Liu, Yuying; Fatheree, Nicole Y.; Mangalat, Nisha; Rhoads, Jon Marc

    2010-01-01

    Lactobacillus reuteri (L. reuteri) is a probiotic that inhibits the severity of enteric infections and modulates the immune system. Human-derived L. reuteri strains DSM17938, ATCC PTA4659, ATCC PTA 5289, and ATCC PTA 6475 have demonstrated strain-specific immunomodulation in cultured monocytoid cells, but information about how these strains affect inflammation in intestinal epithelium is limited. We determined the effects of the four different L. reuteri strains on lipopolysaccharide (LPS)-in...

  15. The human intestinal microbiota and its relationship to energy balance

    Bäckhed, Fredrik; Ley, Ruth E.; Sonnenburg, Justin L.; Jeffrey I Gordon

    2006-01-01

    The human gut microbiota can be pictured as a microbial organ placed within a host organ: it is composed of different cell lineages that have the capacity to communicate with one another and with the host. One major function of the microbiota is to degrade complex and otherwise indigestible components of the diet, such as polysaccharides. This process results in production of short-chain fatty acids that are readily absorbed and used as an energy source by the host. Studies in gnotobiotic mou...

  16. Transcriptome-wide Analysis Reveals Hallmarks of Human Intestine Development and Maturation In Vitro and In Vivo

    Stacy R. Finkbeiner; David R. Hill; Christopher H. Altheim; Priya H. Dedhia; Matthew J. Taylor; Yu-Hwai Tsai; Alana M. Chin; Maxime M. Mahe; Carey L. Watson; Jennifer J. Freeman; Roy Nattiv; Matthew Thomson; Ophir D. Klein; Noah F. Shroyer; Michael A. Helmrath

    2015-01-01

    Summary Human intestinal organoids (HIOs) are a tissue culture model in which small intestine-like tissue is generated from pluripotent stem cells. By carrying out unsupervised hierarchical clustering of RNA-sequencing data, we demonstrate that HIOs most closely resemble human fetal intestine. We observed that genes involved in digestive tract development are enriched in both fetal intestine and HIOs compared to adult tissue, whereas genes related to digestive function and Paneth cell host de...

  17. Human intestinal microbiota and diseases%人体肠道细菌群落与疾病

    翁幸鐾; 糜祖煌

    2011-01-01

    肠道定植有100万亿细菌,这占到了人体细菌总量的绝大多数.一旦肠道菌群失调,就会产生一系列疾病.本文介绍了人体肠道细菌群落异常与5种肠道疾病和5种肠道外疾病的关系,并推荐用益生菌和益生素来治疗人体肠道细菌群落异常.为了解人体肠道细菌群落和人体健康的关系,美国国立卫生研究院已启动了人类微生物组计划,欧洲委员会也正在资助人类肠道宏基因组学项目,而中国在此项目中亦取得了可喜进步.基于肠道宏基因组的个体化医疗时代已不再遥远.%Gut homes 100 trillion microorganisms-the vast majority of our complement of microbes.Shifts in the microbial species that reside in our intestines have been associated with a long list of pathologies.The review introduces a strong correlation between disrupted microbial composition and 5 kinds of gastrointestinal problems as well as 5 kinds of extra-gastrointestinal problems, and recommends probiotics and prebiotics to treat microbiota-associated illness.In order to find out the relationship between human intestinal microbiota and diseases, the National Institutes of Health launched the Human Microbiome Project at the end of 2007, and the European Commission is funding a related effort, called Metagenomics of the Human Intestinal Tract, in which China makes delightful progress.In sum, individual therapy based on intestinal metagenomics is coming.

  18. Supplementation transgenic cow's milk containing recombinant human lactoferrin enhances systematic and intestinal immune responses in piglets.

    Li, Qiuling; Hu, Wenping; Zhao, Jie; Wang, Jianwu; Dai, Yunping; Zhao, Yaofeng; Meng, Qingyong; Li, Ning

    2014-01-01

    Lactoferrin (LF) plays an important role in the body's immune system. However, the immunomodulatory effects of supplementation transgenic cow's milk containing recombinant human LF (rhLF) on the systemic and intestinal immune systems in infants remain unclear. Our laboratory has used genetic engineer to produce transgenic cow secreted rhLF. To assess the immune responses we took piglets as an animal model for infants. Eighteen piglets at 7 days of age were fed ordinary milk, 1:1 mix of ordinary and rhLF milk, or rhLF milk (LFM) for 30 days. The incidence of diarrhea in piglets in natural condition was observed. The protein abundances of immunoglobulin (Ig)G, IgA, IgM, IgE, histamine, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-8, IL-10, IL-12 interferon, tumor necrosis factor in the plasma, spleen or intestine were measured by enzyme-linked immunosorbent assay. Intestinal structure was assessed by hematoxylin and eosin. The mRNA levels of immune and allergy-related genes were measured by quantitative reverse transcription-polymerase chain reaction. The results showed that LFM-fed significantly reduced incidence of diarrhea, enhanced humoral immunity, T helper (Th) 1, and Th2 cell responses, improved the structure of the intestinal mucosal and did not induce food allergy. LFM increased mRNA levels of toll-like receptor 2 and nuclear factor-κB p65 and decreased that of FCεRI β. In conclusion, rhLF-enriched formula could improve systematic and intestinal immune responses and did not elicit food allergies in neonatal piglets. PMID:24420858

  19. Carrageenan Induces Cell Cycle Arrest in Human Intestinal Epithelial Cells in Vitro1–3

    Bhattacharyya, Sumit; Borthakur, Alip; Dudeja, Pradeep K.; Tobacman, Joanne K.

    2016-01-01

    Multiple studies in animal models have shown that the commonly used food additive carrageenan (CGN) induces inflammation and intestinal neoplasia. We performed the first studies to determine the effects of CGN exposure on human intestinal epithelial cells (IEC) in tissue culture and tested the effect of very low concentrations (1–10 mg/L) of undegraded, high-molecular weight CGN. These concentrations of CGN are less than the anticipated exposure of the human colon to CGN from the average Western diet. In the human colonic epithelial cell line NCM460 and in primary human colonic epithelial cells that were exposed to CGN for 1–8 d, we found increased cell death, reduced cell proliferation, and cell cycle arrest compared with unexposed control cells. After 6–8 d of CGN exposure, the percentage of cells reentering G0–G1 significantly decreased and the percentages of cells in S and G2-M phases significantly increased. Increases in activated p53, p21, and p15 followed CGN exposure, consistent with CGN-induced cell cycle arrest. Additional data, including DNA ladder, poly ADP ribose polymerase Western blot, nuclear DNA staining, and activities of caspases 3 and 7, indicated no evidence of increased apoptosis following CGN exposure and were consistent with CGN-induced necrotic cell death. These data document for the first time, to our knowledge, marked adverse effects of low concentrations of CGN on survival of normal human IEC and suggest that CGN exposure may have a role in development of human intestinal pathology. PMID:18287351

  20. Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to sugar beet fibre and decreasing intestinal transit time pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    Tetens, Inge

    Following an application from Nordic Sugar A/S, submitted pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of Denmark, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver an opinion on the scientific substantiation of a health claim...... weaknesses whereas one human intervention study showed no effect of the consumption of sugar beet fibre on decreasing intestinal (orofaecal) transit time. In weighing the evidence the Panel took into account that one human study from which conclusions could be drawn for the scientific substantiation of the...

  1. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation.

    Liu, Yuying; Fatheree, Nicole Y; Mangalat, Nisha; Rhoads, Jon Marc

    2010-11-01

    Lactobacillus reuteri (L. reuteri) is a probiotic that inhibits the severity of enteric infections and modulates the immune system. Human-derived L. reuteri strains DSM17938, ATCC PTA4659, ATCC PTA 5289, and ATCC PTA 6475 have demonstrated strain-specific immunomodulation in cultured monocytoid cells, but information about how these strains affect inflammation in intestinal epithelium is limited. We determined the effects of the four different L. reuteri strains on lipopolysaccharide (LPS)-induced inflammation in small intestinal epithelial cells and in the ileum of newborn rats. IPEC-J2 cells (derived from the jejunal epithelium of a neonatal piglet) and IEC-6 cells (derived from the rat crypt) were treated with L. reuteri. Newborn rat pups were gavaged cow milk formula supplemented with L. reuteri strains in the presence or absence of LPS. Protein and mRNA levels of cytokines and histological changes were measured. We demonstrate that even though one L. reuteri strain (DSM 17938) did not inhibit LPS-induced IL-8 production in cultured intestinal cells, all strains significantly reduced intestinal mucosal levels of KC/GRO (∼IL-8) and IFN-γ when newborn rat pups were fed formula containing LPS ± L. reuteri. Intestinal histological damage produced by LPS plus cow milk formula was also significantly reduced by all four strains. Cow milk formula feeding (without LPS) produced mild gut inflammation, evidenced by elevated mucosal IFN-γ and IL-13 levels, a process that could be suppressed by strain 17938. Other cytokines and chemokines were variably affected by the different strains, and there was no toxic effect of L. reuteri on intestinal cells or mucosa. In conclusion, L. reuteri strains differentially modulate LPS-induced inflammation. Probiotic interactions with both epithelial and nonepithelial cells in vivo must be instrumental in modulating intrinsic anti-inflammatory effects in the intestine. We suggest that the terms anti- and proinflammatory be used only

  2. Expression of Tn, sialosyl-Tn and T antigens in human foetal large intestine

    Barresi, G; Tuccari, G; Giuffrè, G.; Vitarelli, E.; Grosso, M.

    2009-01-01

    Tn, sialosyl-Tn and T antigens are simple mucintype carbohydrate antigens that may be expressed in human neoplasies due to alteration of the glycoprotein biosynthetic pathway. Utilising specific monoclonal antibodies (HB-Tn1, HB-STn1 and HB-T1), we have investigated the expression of these simple mucin-type carbohydrate antigens in large intestine of 8 human foetuses at early gestational age (9-10 weeks), obtained after therapeutic abortion. In all cases the expression of Tn antigen was mainl...

  3. Permeability of plumbagin across human intestinal cell in vitro.

    Sumsakul, Wiriyaporn; Na-Bangchang, Kesara

    2016-03-01

    Plumbagin is the active compound isolated from plants used in traditional medicine for treatment of various diseases such as activities malaria, leishmaniasis, viral infections and cancers. The aim of the study was to investigate the permeability of plumbagin across Caco-2 (human epithelial colorectal adenocarcinoma) cell monolayer and its effects on the expression and function of P-glycoprotein. The integrity of Caco-2 cell monolayer was evaluated by measuring trans-epithelial electrical resistance and permeation (Papp) of Lucifer yellow across the cell monolayer. The effect of plumbagin on P-glycoprotein was detected by measuring its interference with the transport of the P-glycoprotein substrate (R123) and the effect on MDR-1 mRNA expression was detected by RT-PCR. The Papp of plumbagin (2-8 µM) for the apical to basolateral and basolateral to apical directions were 10.29-15.96 × 10(-6) and 7.40-9.02 × 10(-6) cm/s, respectively, with the efflux ratios of 0.57-0.73. Plumbagin is not either a substrate or inhibitor of P-glycoprotein. It did not interfere with the P-glycoprotein-mediated R123 transport across Caco-2 cell monolayer, as well as the function of P-glycoprotein and the expression of MDR-1 mRNA. Results suggest moderate permeability of plumbagin across the Caco-2 cell monolayer in both directions. The transport mechanism is likely to be a passive transport. PMID:26620575

  4. Radioprotection of the intestinal crypts of mice by recombinant human interleukin-1 alpha

    Recombinant human interleukin-1 alpha (rHIL-1 alpha or IL-1) protected the intestinal crypt cells of mice against X-ray-induced damage. The survival of crypt cells measured in terms of their ability to form colonies of regenerating duodenal epithelium in situ was increased when IL-1 was given either before or after irradiation. The maximum degree of radioprotection was seen when the drug was given between 13 and 25 h before irradiation. The IL-1 dose producing maximum protection was about 6.3 micrograms/kg. This is the first report indicating that the cytokine IL-1 has a radioprotective effect in the intestine. The finding suggests that IL-1 may be of potential value in preventing radiation injury to the gut in the clinic

  5. Studies on the determination of extracellular galactosyltransferase in human intestinal tissue

    The determination of extracellular galactosyl transferase (EC 2.4.1.38) activity in human intestinal tissue by assessment of the incorporation of label after incubation with UDP[3H]galactose was evaluated. Intestinal biopsy specimens were incubated with membrane-permeable L-[1-14C]fucose and non-permeable UDP-D-[6-3H]galactose (UDP[3H]Gal). Comparison of the amounts of 3H- and 14C-label incorporated into subcellular fractions showed uptake and incorporation of galactose formed by the hydrolysis of UDP[3H]Gal by brush-border enzymes. The results indicate that incorporation of galactose after incubation of the tissue with UDP[3H]Gal is not exclusively attributable to extracellular galactosyl transferase. (Auth.)

  6. A Human Breast Cell Model of Preinvasive to Invasive Transition

    Rizki, Aylin; Weaver, Valerie M.; Lee, Sun-Young; Rozenberg, Gabriela I.; Chin, Koei; Myers, Connie A.; Bascom, Jamie L.; Mott, Joni D.; Semeiks, Jeremy R.; Grate, Leslie R.; Mian, I. Saira; Borowsky, Alexander D; Jensen, Roy A; Idowu, Michael O.; Chen, Fanqing

    2008-01-01

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from preinvasive to invasive phenotype as it may occur “spontaneously” in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted basement membrane cultures. These cells remained noninvasive;...

  7. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Benoît Couvigny

    Full Text Available The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor, we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.

  8. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Couvigny, Benoît; de Wouters, Tomas; Kaci, Ghalia; Jacouton, Elsa; Delorme, Christine; Doré, Joël; Renault, Pierre; Blottière, Hervé M; Guédon, Eric; Lapaque, Nicolas

    2015-01-01

    The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB) in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor), we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health. PMID:25946041

  9. Splitting the scotoperiod: effects on feeding behaviour, intestinal fill and digestive transit time in broiler chickens

    Duve, Linda Rosager; Steenfeldt, Sanna; Thodberg, Karen;

    2011-01-01

    1. The aim of this study was to evaluate how splitting the dark period (scotoperiod) affects feeding behaviour and associated intestinal measures in broilers. 2. Ross 308 broilers were reared to 37 d in groups given either a daily 8-h continuous scotoperiod (DARK 8) or an intermittent light...... schedule with two equally spaced 4-h scotoperiods (DARK 4þ4), which yielded the same total duration of darkness per 24 h. 3. Feeding behaviour was recorded weekly from 24-h video recordings of 24 groups each of 64 birds. Empty intestinal weights as well as their contents were measured weekly at 4 time...... activity across the day. However, DARK 4þ4 had a higher feed intake and weight gain. The occurrence and severity of foot pad dermatitis was similar between treatments. 6. In conclusion, broilers modify their feeding behaviour according to the prevailing light schedule. Eight consecutive hours of darkness...

  10. Intestinal Coccidia

    MJ Ggaravi

    2007-01-01

    Intestinal Coccidia are a subclass of Apicomplexa phylum. Eucoccidida are facultative heteroxenous, but some of them are monoxenous. They have sexual and asexual life cycle. Some coccidia are human pathogens, for example: Cryptosporidium: Cryptosporidiums has many species that are mammalian intestinal parasites.C. Parvum specie is a human pathogenic protozoa. Cryptosporidum has circle or ellipse shapes and nearly 4-6 mm. It is transmitted in warm seasons. Oocyst is obtained insexual life cycl...

  11. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine.

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2013-05-15

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature. PMID:23518679

  12. Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans.

    Darwich, Adam S; Aslam, Umair; Ashcroft, Darren M; Rostami-Hodjegan, Amin

    2014-12-01

    Due to the rapid turnover of the small intestinal epithelia, the rate at which enterocyte renewal occurs plays an important role in determining the level of drug-metabolizing enzymes in the gut wall. Current physiologically based pharmacokinetic (PBPK) models consider enzyme and enterocyte recovery as a lumped first-order rate. An assessment of enterocyte turnover would enable enzyme and enterocyte renewal to be modeled more mechanistically. A literature review together with statistical analysis was employed to establish enterocyte turnover in human and preclinical species. A total of 85 studies was identified reporting enterocyte turnover in 1602 subjects in six species. In mice, the geometric weighted combined mean (WX) enterocyte turnover was 2.81 ± 1.14 days (n = 169). In rats, the weighted arithmetic mean enterocyte turnover was determined to be 2.37 days (n = 501). Humans exhibited a geometric WX enterocyte turnover of 3.48 ± 1.55 days for the gastrointestinal epithelia (n = 265), displaying comparable turnover to that of cytochrome P450 enzymes in vitro (0.96-4.33 days). Statistical analysis indicated humans to display longer enterocyte turnover as compared with preclinical species. Extracted data were too sparse to support regional differences in small intestinal enterocyte turnover in humans despite being indicated in mice. The utilization of enterocyte turnover data, together with in vitro enzyme turnover in PBPK modeling, may improve the predictions of metabolic drug-drug interactions dependent on enzyme turnover (e.g., mechanism-based inhibition and enzyme induction) as well as absorption of nanoparticle delivery systems and intestinal metabolism in special populations exhibiting altered enterocyte turnover. PMID:25233858

  13. Differentiation-dependent activation of the human intestinal alkaline phosphatase promoter by HNF-4 in intestinal cells

    Olsen, Line; Bressendorff, Simon; Troelsen, Jesper T;

    2005-01-01

    The intestinal alkaline phosphatase gene (ALPI) encodes a digestive brush-border enzyme, which is highly upregulated during small intestinal epithelial cell differentiation. To identify new putative promoter motifs responsible for the regulation of ALPI expression during differentiation of the...... of HNF-4alpha to stimulate the expression from the ALPI promoter was investigated in the nonintestinal Hela cell line. Cotransfection with an HNF-4alpha expression vector demonstrated a direct activation of the ALPI promoter through this -94 to -82 element. EMSA showed that HNF-4alpha from nuclear...... extracts of differentiated intestinal epithelial cells (Caco-2) bound with high affinity to the predicted HNF-4 binding site. A 521 bp promoter fragment containing the HNF-4 binding site demonstrated a differentiation-dependent increase in promoter activity in Caco-2 cells. The presence of the HNF-4...

  14. Beneficial effect of recombinant human growth hormone on the intestinal mucosa barrier of septic rats

    C. Yi

    2007-01-01

    Full Text Available The objective of the present study was to investigate the effects of recombinant human growth hormone (rhGH on the intestinal mucosa barrier of septic rats and explore its possible mechanism. Female Sprague-Dawley rats were randomized into three groups: control, Escherichia coli-induced sepsis (S and treatment (T groups. Groups S and T were subdivided into subgroups 1d and 3d, respectively. Expression of liver insulin-like growth factor-1 (IGF-1 mRNA, Bcl-2 and Bax protein levels and the intestinal Bax/Bcl-2 ratio, and plasma GH and IGF-1 levels were determined. Histological examination of the intestine was performed and bacterial translocation was determined. rhGH significantly attenuated intestinal mucosal injuries and bacterial translocation in septic rats, markedly decreased Bax protein levels, inhibited the decrease of Bcl-2 protein expression and maintained the Bax/Bcl-2 ratio in the intestine. rhGH given after sepsis significantly improved levels of plasma GH (T1d: 1.28 ± 0.24; T3d: 2.14 ± 0.48 µg/L vs S1d: 0.74 ± 0.12; S3d: 0.60 ± 0.18 µg/L; P < 0.05 and IGF-1 (T1d: 168.94 ± 65.67; T3d: 201.56 ± 64.98 µg/L vs S1d: 116.72 ± 13.96; S3d: 107.50 ± 23.53 µg/L; P < 0.05 and expression of liver IGF-1 mRNA (T1d: 0.98 ± 0.20; T3d: 1.76 ± 0.17 vs S1d: 0.38 ± 0.09; S3d: 0.46 ± 0.10; P < 0.05. These findings indicate that treatment with rhGH had beneficial effects on the maintenance of the integrity of the intestinal mucosa barrier in septic rats.

  15. Specific-sized hyaluronan fragments promote expression of human β-defensin 2 in intestinal epithelium.

    Hill, David R; Kessler, Sean P; Rho, Hyunjin K; Cowman, Mary K; de la Motte, Carol A

    2012-08-31

    Hyaluronan (HA) is a glycosaminoglycan polymer found in the extracellular matrix of virtually all mammalian tissues. Recent work has suggested a role for small, fragmented HA polymers in initiating innate defense responses in immune cells, endothelium, and epidermis through interaction with innate molecular pattern recognition receptors, such as TLR4. Despite these advances, little is known regarding the effect of fragmented HA at the intestinal epithelium, where numerous pattern recognition receptors act as sentinels of an innate defense response that maintains epithelial barrier integrity in the presence of abundant and diverse microbial challenges. Here we report that HA fragments promote expression of the innate antimicrobial peptide human β-defensin 2 (HβD2) in intestinal epithelial cells. Treatment of HT-29 colonic epithelial cells with HA fragment preparations resulted in time- and dose-dependent up-regulated expression of HβD2 protein in a fragment size-specific manner, with 35-kDa HA fragment preparations emerging as the most potent inducers of intracellular HβD2. Furthermore, oral administration of specific-sized HA fragments promotes the expression of an HβD2 ortholog in the colonic epithelium of both wild-type and CD44-deficient mice but not in TLR4-deficient mice. Together, our observations suggest that a highly size-specific, TLR4-dependent, innate defense response to fragmented HA contributes to intestinal epithelium barrier defense through the induction of intracellular HβD2 protein. PMID:22761444

  16. Bovine and soybean milk bioactive compounds: Effects on inflammatory response of human intestinal Caco-2 cells.

    Calvello, Rosa; Aresta, Antonella; Trapani, Adriana; Zambonin, Carlo; Cianciulli, Antonia; Salvatore, Rosaria; Clodoveo, Maria Lisa; Corbo, Filomena; Franchini, Carlo; Panaro, Maria Antonietta

    2016-11-01

    In this study the effects of commercial bovine and soybean milks and their bioactive compounds, namely genistein, daidzein and equol, on the inflammatory responses induced by lipopolysaccharide (LPS) treatment of human intestinal Caco-2 cells were examined, in terms of nitric oxide (NO) release and inducible nitric oxide synthetase (iNOS) expression. Both milks and their bioactive compounds significantly inhibited, dose-dependently, the expression of iNOS mRNA and protein, resulting in a decreased NO production. The NF-κB activation in LPS-stimulated intestinal cells was also examined. In all cases we observed that cell pre-treatment before LPS activation inhibited the IkB phosphorylation. Accordingly, quantification of bioactive compounds by solid phase microextraction coupled with liquid chromatography has shown that they were absorbed, metabolized and released by Caco-2 cells in culture media. In conclusion, we demonstrated that milks and compounds tested are able to reduce LPS-induced inflammatory responses from intestinal cells, interfering with NF-kB dependent molecular mechanisms. PMID:27211648

  17. Poliovirus mutants excreted by a chronically infected hypogammaglobulinemic patient establish persistent infections in human intestinal cells

    Immunodeficient patients whose gut is chronically infected by vaccine-derived poliovirus (VDPV) may excrete large amounts of virus for years. To investigate how poliovirus (PV) establishes chronic infections in the gut, we tested whether it is possible to establish persistent VDPV infections in human intestinal Caco-2 cells. Four type 3 VDPV mutants, representative of the viral evolution in the gut of a hypogammaglobulinemic patient over almost 2 years [J. Virol. 74 (2000) 3001], were used to infect both undifferentiated, dividing cells, and differentiated, polarized enterocytes. A VDPV mutant excreted 36 days postvaccination by the patient was lytic in both types of intestinal cell cultures, like the parental Sabin 3 (S3) strain. In contrast, three VDPVs excreted 136, 442, and 637 days postvaccination, established persistent infections both in undifferentiated cells and in enterocytes. Thus, viral determinants selected between day 36 and 136 conferred on VDPV mutants the capacity to infect intestinal cells persistently. The percentage of persistently VDPV-infected cultures was higher in enterocytes than in undifferentiated cells, implicating cellular determinants involved in the differentiation of enterocytes in persistent VDPV infections. The establishment of persistent infections in enterocytes was not due to poor replication of VDPVs in these cells, but was associated with reduced viral adsorption to the cell surface

  18. Exogenous HIV-1 Nef upsets the IFN-γ-induced impairment of human intestinal epithelial integrity.

    Maria Giovanna Quaranta

    Full Text Available BACKGROUND: The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line. METHODOLOGY/PRINCIPAL FINDINGS: We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepithelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade. CONCLUSION/SIGNIFICANCE: Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.

  19. Butyrate Produced by Commensal Bacteria Potentiates Phorbol Esters Induced AP-1 Response in Human Intestinal Epithelial Cells

    Nepelska, Malgorzata; Cultrone, Antonietta; Béguet-Crespel, Fabienne; Le Roux, Karine; Doré, Joël; Arulampalam, Vermulugesan; Blottière, Hervé M.

    2012-01-01

    The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect...

  20. Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Bautia sp. MRG-PMF1.

    Kim, Mihyang; Kim, Nayoung; Han, Jaehong

    2014-12-24

    Poylmethoxyflavones (PMFs) are major bioactive flavonoids, which exhibit various biological activities, such as anticancer effects. The biotransformation of PMFs and characterization of a PMF-metabolizing human intestinal bacterium were studied herein for the first time. Hydrolysis of aryl methyl ether functional groups by human fecal samples was observed from the bioconversion of various PMFs. Activity-guided screening for PMF-metabolizing intestinal bacteria under anaerobic conditions resulted in the isolation of a strict anaerobic bacterium, which was identified as Blautia sp. MRG-PMF1. The isolated MRG-PMF1 was able to metabolize various PMFs to the corresponding demethylated flavones. The microbial conversion of bioactive 5,7-dimethoxyflavone (5,7-DMF) and 5,7,4'-trimethoxyflavone (5,7,4'-TMF) was studied in detail. 5,7-DMF and 5,7,4'-TMF were completely metabolized to 5,7-dihydroxyflavone (chrysin) and 5,7,4'-trihydroxyflavone (apigenin), respectively. From a kinetics study, the methoxy group on the flavone C-7 position was found to be preferentially hydrolyzed. 5-Methoxychrysin, the intermediate of 5,7-DMF metabolism by Blautia sp. MRG-PMF1, was isolated and characterized by nuclear magnetic resonance spectroscopy. Apigenin was produced from the sequential demethylation of 5,7,4'-TMF, via 5,4'-dimethoxy-7-hydroxyflavone and 7,4'-dihydroxy-5-methoxyflavone (thevetiaflavone). Not only demethylation activity but also deglycosylation activity was exhibited by Blautia sp. MRG-PMF1, and various flavonoids, including isoflavones, flavones, and flavanones, were found to be metabolized to the corresponding aglycones. The unprecedented PMF demethylation activity of Blautia sp. MRG-PMF1 will expand our understanding of flavonoid metabolism in the human intestine and lead to novel bioactive compounds. PMID:25437273

  1. Generation of L-cells in mouse and human small intestine organoids

    Petersen, Natalia; Reimann, Frank; Bartfeld, Sina; Farin, Henner F.; Ringnalda, Femke C.; Vries, Robert G J; van den Brink, Stieneke; Clevers, Hans; Gribble, Fiona M.; de Koning, Eelco J. P.

    2013-01-01

    Upon a nutrient challenge, L-cells produce glucagon-like peptide 1 (GLP-1), a powerful stimulant of insulin release. Strategies to augment endogenous GLP-1 production include promoting L-cell differentiation and increasing L-cell number. Here we present a novel in vitro platform to generate functional L-cells from 3D cultures of mouse and human intestinal crypts. We show that short-chain fatty acids (SCFAs) selectively increase the number of L-cells resulting in an elevation of GLP-1 release....

  2. Combined Effects of Lipophilic Phycotoxins (Okadaic Acid, Azapsiracid-1 and Yessotoxin on Human Intestinal Cells Models

    Pierre-Jean Ferron

    2016-02-01

    Full Text Available Phycotoxins are monitored in seafood because they can cause food poisonings in humans. Phycotoxins do not only occur singly but also as mixtures in shellfish. The aim of this study was to evaluate the in vitro toxic interactions of binary combinations of three lipophilic phycotoxins commonly found in Europe (okadaic acid (OA, yessotoxin (YTX and azaspiracid-1 (AZA-1 using the neutral red uptake assay on two human intestinal cell models, Caco-2 and the human intestinal epithelial crypt-like cells (HIEC. Based on the cytotoxicity of individual toxins, we studied the interactions between toxins in binary mixtures using the combination index-isobologram equation, a method widely used in pharmacology to study drug interactions. This method quantitatively classifies interactions between toxins in mixtures as synergistic, additive or antagonistic. AZA-1/OA, and YTX/OA mixtures showed increasing antagonism with increasing toxin concentrations. In contrast, the AZA-1/YTX mixture showed increasing synergism with increasing concentrations, especially for mixtures with high YTX concentrations. These results highlight the hazard potency of AZA-1/YTX mixtures with regard to seafood intoxication.

  3. Combined Effects of Lipophilic Phycotoxins (Okadaic Acid, Azapsiracid-1 and Yessotoxin) on Human Intestinal Cells Models

    Ferron, Pierre-Jean; Dumazeau, Kevin; Beaulieu, Jean-François; Le Hégarat, Ludovic; Fessard, Valérie

    2016-01-01

    Phycotoxins are monitored in seafood because they can cause food poisonings in humans. Phycotoxins do not only occur singly but also as mixtures in shellfish. The aim of this study was to evaluate the in vitro toxic interactions of binary combinations of three lipophilic phycotoxins commonly found in Europe (okadaic acid (OA), yessotoxin (YTX) and azaspiracid-1 (AZA-1)) using the neutral red uptake assay on two human intestinal cell models, Caco-2 and the human intestinal epithelial crypt-like cells (HIEC). Based on the cytotoxicity of individual toxins, we studied the interactions between toxins in binary mixtures using the combination index-isobologram equation, a method widely used in pharmacology to study drug interactions. This method quantitatively classifies interactions between toxins in mixtures as synergistic, additive or antagonistic. AZA-1/OA, and YTX/OA mixtures showed increasing antagonism with increasing toxin concentrations. In contrast, the AZA-1/YTX mixture showed increasing synergism with increasing concentrations, especially for mixtures with high YTX concentrations. These results highlight the hazard potency of AZA-1/YTX mixtures with regard to seafood intoxication. PMID:26907345

  4. Naturally occurring products of proglucagon 111-160 in the porcine and human small intestine

    Buhl, T; Thim, L; Kofod, Hans;

    1988-01-01

    proglucagon (proglucagon 111-160) using radioimmunoassays against proglucagon 111-123 and 126-160. Two peptides were isolated from acid ethanol extracts of porcine ileal mucosa and sequenced: one corresponding to proglucagon 126-158 and one probably corresponding to proglucagon 111-158. By comparing human and...... porcine proglucagon sequences, Ala117 is replaced by Thr, and Ile138, Ala144, Ile152 and Gln153 are replaced by Val, Thr, Leu, and His. By gel filtration and radioimmunoassay of intestinal extracts it was established that a large part of porcine and virtually all of human proglucagon are processed to...... release proglucagon 111-123 (designated spacer peptide 2), which, like proglucagon 126-158 must be considered a potential hormonal entity. By isocratic high pressure liquid chromatography human spacer peptide 2 was indistinguishable from synthetic proglucagon 111-122 amide, suggesting that this is the...

  5. Radiolabeled keratin: an undigestible marker for gastro-intestinal transit investigations

    A new marker for undigestible food is described in this paper. Labeling of keratin fibers with radioactive chromium 51 was operated by a simple process. A 90 % labeling efficiency was obtained. Assessment of in vitro chromium binding stability was performed by incubating fibers in different solutions (24 hours, 370C). Remaining activity on fibers was found to be 92+-2% in a pepsin solution, and 97+-1% in a pancreatic extract solution. Acid or basic solutions (pH 1 to pH 11) did not yield significant elution. In Man, scintigraphic views displayed a focal distribution of the radioactivity in the digestive tractus. Patient's irradiation during such an exploration was estimated by dosimetric calculation and found to be acceptable. Scintigraphic survey of fibers progression was possible throughout the whole digestive tractus, particularly in the intestine. This marker should become mainly interesting for intestinal studies, since it is one of the only two undigestible markers, with radiolabeled alpha-cellulose. Properties related to its original structure, and advantages of a simple labeling process should be valuable in a promizing way of exploration

  6. Endoscopic ultrasonography: Transition towards the future of gastro-intestinal diseases.

    De Lisi, Stefania; Giovannini, Marc

    2016-02-01

    Endoscopic ultrasonography (EUS) is a technique with an established role in the diagnosis and staging of gastro-intestinal tumors. In recent years, the spread of new devices dedicated to tissue sampling has improved the diagnostic accuracy of EUS fine-needle aspiration. The development of EUS-guided drainage of the bilio-pancreatic region and abdominal fluid collections has allowed EUS to evolve into an interventional tool that can replace more invasive procedures. Emerging techniques applying EUS in pancreatic cancer treatment and in celiac neurolysis have been described. Recently, confocal laser endomicroscopy has been applied to EUS as a promising technique for the in vivo histological diagnosis of gastro-intestinal, bilio-pancreatic and lymph node lesions. In this state-of-the-art review, we report the most recent data from the literature regarding EUS devices, interventional EUS, EUS-guided confocal laser endomicroscopy and EUS pancreatic cancer treatment, and we also provide an overview of their principles, clinical applications and limitations. PMID:26855537

  7. Comparative Study on Cancer Cell Apoptosis between Gastric and Intestinal-type Human Gastric Carcinoma

    2006-01-01

    Apoptosis of cancer cells between the gastric and intestinal-type human gastric carcinoma were compared in terms of the expression of oncogene MDM2 and CD68, the histological types, the infiltration depth, and lymph node metastasis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay was employed to stain apoptotic cells.Histochemical method(AB-PAS) was applied to stain mucus that is neutral or acidic in nature. Immunohistochemical method (SABC) was used to detect expression of MDM2 and CD6. The results showed that the mean apoptosis index (AI) of total 48 cases was 8.60±2.60. AI in the 30 intestinal type cases was significantly higher than that in the 18 gastric type cases (t=4.67, P<0.01). In the 30intestinal type cases, the spontaneous apoptosis index of MDM2 negative cases was significantly higher than that of the positive cases (t=7.16, P<0.01). And in the 18 gastric type cases, the same result was found. (t=11.39, P<0.01). The MDM2 positive ratio in gastric type cases was higher than that in intestinal type cases (x2=4.68, P<0.05). There is no significant difference in AI between cases of lymph node metastasis and non-metastasis cases in intestinal type cases (t=0.26, P>0.05). But in the gastric type cases, a significant difference existed (t=5.87, P<0.01). A significant difference in lymph node metastasis ratio was found between the two gastric carcinoma types (x2=4.48, P<0.05).The CD68 expression ratio in the 30 intestinal type cases was much lower than that in the 18 gastric type cases (t=4.29, P<0.01). AI of 25 MDM2-positive cases was much lower than that of the 23MDM2-negative cases (t=7.80, P<0.01). CD68 positive ratio in the 25 MDM2-negative cases was much lower than that in the 23 negative cases. The difference was statistically significant (t=10.90,P<0.01). Except for few cells scattering within the cancer nest, most CD68 positive cells infiltrated in the interstitium around the cancer

  8. A comparative analysis of the intestinal metagenomes present in guinea pigs (Cavia porcellus) and humans (Homo sapiens)

    Hildebrand, Falk; Ebersbach, Tine; Nielsen, Henrik Bjørn;

    2012-01-01

    Background: Guinea pig (Cavia porcellus) is an important model for human intestinal research. We have characterized the faecal microbiota of 60 guinea pigs using Illumina shotgun metagenomics, and used this data to compile a gene catalogue of its prevalent microbiota. Subsequently, we compared...... the guinea pig microbiome to existing human gut metagenome data from the MetaHIT project. Results: We found that the bacterial richness obtained for human samples was lower than for guinea pig samples. The intestinal microbiotas of both species were dominated by the two phyla Bacteroidetes and Firmicutes...

  9. Receptor-Mediated Transcytosis of Leptin through Human Intestinal Cells In Vitro

    Émile Levy

    2010-01-01

    Full Text Available Gastric Leptin is absorbed by duodenal enterocytes and released on the basolateral side towards the bloodstream. We investigated in vitro some of the mechanisms of this transport. Caco-2/15 cells internalize leptin from the apical medium and release it through transcytosis in the basal medium in a time- temperature-dependent and saturable fashion. Leptin receptors are revealed on the apical brush-border membrane of the Caco-2 cells. RNA-mediated silencing of the receptor led to decreases in the uptake and basolateral release. Leptin in the basal medium was found bound to the soluble form of its receptor. An inhibitor of clathrin-dependent endocytosis (chlorpromazine decreased leptin uptake. Confocal immunocytochemistry and the use of brefeldin A and okadaic acid revealed the passage of leptin through the Golgi apparatus. We propose that leptin transcytosis by intestinal cells depends on its receptor, on clathrin-coated vesicles and transits through the Golgi apparatus.

  10. A cost-effective system for differentiation of intestinal epithelium from human induced pluripotent stem cells.

    Ogaki, Soichiro; Morooka, Mayu; Otera, Kaito; Kume, Shoen

    2015-01-01

    The human intestinal epithelium is a useful model for pharmacological studies of absorption, metabolism, drug interactions, and toxicology, as well as for studies of developmental biology. We established a rapid and cost effective system for differentiation of human induced pluripotent stem (iPS) cells into definitive endoderm (DE) cells. In the presence of dimethyl sulfoxide (DMSO), a low concentration of Activin at 6.25 ng/ml is sufficient to give a similar differentiation efficiency with that using Activin at 100 ng/ml at the presence of Wnt activator. In the presence of DMSO, Activin at low concentration triggered hiPS cells to undergo differentiation through G1 arrest, reduce apoptosis, and potentiate activation of downstream targets, such as SMAD2 phosphorylation and SOX17 expression. This increased differentiation into CDX2 + SOX17 + DE cells. The present differentiation procedure therefore permits rapid and efficient derivation of DE cells, capable of differentiating into intestinal epithelium upon BIO and DAPT treatment and of giving rise to functional cells, such as enterocytes. PMID:26616277

  11. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    Tatiana Christides

    Full Text Available Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55 increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.

  12. Expression of Tn, sialosyl-Tn and T antigens in human foetal large intestine

    G Barresi

    2009-12-01

    Full Text Available Tn, sialosyl-Tn and T antigens are simple mucintype carbohydrate antigens that may be expressed in human neoplasies due to alteration of the glycoprotein biosynthetic pathway. Utilising specific monoclonal antibodies (HB-Tn1, HB-STn1 and HB-T1, we have investigated the expression of these simple mucin-type carbohydrate antigens in large intestine of 8 human foetuses at early gestational age (9-10 weeks, obtained after therapeutic abortion. In all cases the expression of Tn antigen was mainly localised as a thin rim at the cell membrane and occasionally in the supranuclear region of epithelial cells, while sialosyl-Tn antigen was documented in some goblet cell vacuoles and occasionally in the cytoplasm of columnar cells. T antigen was not expressed in any case. These results indicate that Tn and sialosyl-Tn antigens are expressed as early as nine weeks of gestation, further supporting the notion that they may be considered as oncodevelopmental cancerassociated antigens in the large intestine.

  13. Isolation and Identification of Intestinal CYP3A Inhibitors from Cranberry (Vaccinium macrocarpon) using Human Intestinal Microsomes

    Kim, Eunkyung; Sy-Cordero, Arlene; Graf, Tyler N.; Brantley, Scott J; Paine, Mary F.; Oberlies, Nicholas H

    2010-01-01

    Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry ju...

  14. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip.

    Kim, Hyun Jung; Li, Hu; Collins, James J; Ingber, Donald E

    2016-01-01

    A human gut-on-a-chip microdevice was used to coculture multiple commensal microbes in contact with living human intestinal epithelial cells for more than a week in vitro and to analyze how gut microbiome, inflammatory cells, and peristalsis-associated mechanical deformations independently contribute to intestinal bacterial overgrowth and inflammation. This in vitro model replicated results from past animal and human studies, including demonstration that probiotic and antibiotic therapies can suppress villus injury induced by pathogenic bacteria. By ceasing peristalsis-like motions while maintaining luminal flow, lack of epithelial deformation was shown to trigger bacterial overgrowth similar to that observed in patients with ileus and inflammatory bowel disease. Analysis of intestinal inflammation on-chip revealed that immune cells and lipopolysaccharide endotoxin together stimulate epithelial cells to produce four proinflammatory cytokines (IL-8, IL-6, IL-1β, and TNF-α) that are necessary and sufficient to induce villus injury and compromise intestinal barrier function. Thus, this human gut-on-a-chip can be used to analyze contributions of microbiome to intestinal pathophysiology and dissect disease mechanisms in a controlled manner that is not possible using existing in vitro systems or animal models. PMID:26668389

  15. Nitric oxide mediates increased P-glycoprotein activity in interferon-{gamma}-stimulated human intestinal cells.

    Dixit, Santosh G; Zingarelli, Basilia; Buckley, Donna J; Buckley, Arthur R; Pauletti, Giovanni M

    2005-03-01

    Patients with refractory inflammatory bowel disease (IBD) exhibit increased expression of intestinal P-glycoprotein (P-gp) as well as elevated luminal IFN-gamma and nitric oxide (NO) levels. Using the in vitro Caco-2 cell culture model, we investigated whether these pathological mediators associated with the etiology of IBD affect functional activity of intestinal efflux systems. IFN-gamma reduced cellular uptake of cyclosporin A (CysA) but not methotrexate (MTX) in a time- and concentration-dependent manner. Simultaneously, P-gp expression increased by approximately twofold. Coincubation with the inducible NO synthase inhibitor l-N(6)-(1-iminoethyl)lysine (l-NIL) dramatically reduced production of intracellular NO in response to IFN-gamma stimulus. The presence of l-NIL also abrogated the cytokine-mediated increase in P-gp expression and function suggesting that NO is required for IFN-gamma-mediated activation of this efflux system. Exposure of Caco-2 cells to the chemical NO donor S-nitroso-N-acetylpenicillamine (SNAP) produced a concentration-dependent decrease in intracellular CysA accumulation that was paralleled by an increase in P-gp expression. Both IFN-gamma and SNAP enhanced DNA binding of NF-kappaB, whereas inclusion of l-NIL dramatically decreased this cytokine-induced effect on NF-kappaB binding. These results suggest that NO mediates IFN-gamma-induced increase in expression and function of intestinal P-gp in the human Caco-2 cell culture model by altering DNA binding of NF-kappaB, which may enhance transcription of the ABCB1 gene encoding for this efflux system. PMID:15486347

  16. Intestinal steroidogenesis.

    Bouguen, Guillaume; Dubuquoy, Laurent; Desreumaux, Pierre; Brunner, Thomas; Bertin, Benjamin

    2015-11-01

    Steroids are fundamental hormones that control a wide variety of physiological processes such as metabolism, immune functions, and sexual characteristics. Historically, steroid synthesis was considered a function restricted to the adrenals and the gonads. In the past 20 years, a significant number of studies have demonstrated that steroids could also be synthesized or metabolized by other organs. According to these studies, the intestine appears to be a major source of de novo produced glucocorticoids as well as a tissue capable of producing and metabolizing sex steroids. This finding is based on the detection of steroidogenic enzyme expression as well as the presence of bioactive steroids in both the rodent and human gut. Within the intestinal mucosa, the intestinal epithelial cell layer is one of the main cellular sources of steroids. Glucocorticoid synthesis regulation in the intestinal epithelial cells is unique in that it does not involve the classical positive regulator steroidogenic factor-1 (SF-1) but a closely related homolog, namely the liver receptor homolog-1 (LRH-1). This local production of immunoregulatory glucocorticoids contributes to intestinal homeostasis and has been linked to pathophysiology of inflammatory bowel diseases. Intestinal epithelial cells also possess the ability to metabolize sex steroids, notably estrogen; this mechanism may impact colorectal cancer development. In this review, we contextualize and discuss what is known about intestinal steroidogenesis and regulation as well as the key role these functions play both in physiological and pathological conditions. PMID:25560486

  17. Human intestinal parasites in the past: new findings and a review

    Marcelo Luiz Carvalho Gonçalves

    2003-01-01

    Full Text Available Almost all known human specific parasites have been found in ancient feces. A review of the paleoparasitological helminth and intestinal protozoa findings available in the literature is presented. We also report the new paleoparasitologic findings from the examination performed in samples collected in New and Old World archaeological sites. New finds of ancylostomid, Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis, Trichostrongylus spp., Diphyllobothrium latum, Hymenolepis nana and Acantocephalan eggs are reported. According to the findings, it is probable that A. lumbricoides was originally a human parasite. Human ancylostomids, A. lumbricoides and T. trichiura, found in the New World in pre-Columbian times, have not been introduced into the Americas by land via Beringia. These parasites could not supported the cold climate of the region. Nomadic prehistoric humans that have crossed the Bering Land Bridge from Asia to the Americas in the last glaciation, probably during generations, would have lost these parasites, which life cycles need warm temperatures in the soil to be transmitted from host to host. Alternative routes are discussed for human parasite introduction into the Americas.

  18. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity

    Verdam, F.J.; Fuentes Enriquez de Salamanca, S.; Jonge, de C.; Zoetendal, E.G.; Erbil, R.; Greve, J.W.; Buurman, W.A.; Vos, de W.M.; Rensen, S.S.

    2013-01-01

    OBJECTIVE: Intestinal microbiota have been suggested to contribute to the development of obesity, but the mechanism remains elusive. The relationship between microbiota composition, intestinal permeability, and inflammation in nonobese and obese subjects was investigated. DESIGN AND METHODS: Fecal m

  19. Vitamin A metabolism in the human intestinal Caco-2 cell line

    The human intestinal Caco-2 cell line, described as enterocyte-like in a number of studies, was examined for its ability to carry out the metabolism of vitamin A normally required in the absorptive process. Caco-2 cells contained cellular retinol-binding protein II, a protein which is abundant in human villus-associated enterocytes and may play an important role in the absorption of vitamin A. Microsomal preparations from Caco-2 cells contained retinal reductase, acyl-CoA-retinol acyltransferase (ARAT), and lecithin-retinol acyltransferase (LRAT) activites, which have previously been proposed to be involved in the metabolism of dietary vitamin A in the enterocyte. When intact Caco-2 cells were provided with β-carotene, retinyl acetate, or retinyl acetate, or retinol, synthesis of retinyl palmitoleate, oleate, palmitate, and small amounts of stearate resulted. However, exogenous retinyl palmitate or stearate was not used by Caco-2 cells as a source of retinol for ester synthesis. While there was a disproportionate synthesis of monoenoic fatty acid esters of retinol in Caco-2 cells compared to the retinyl esters typically found in human chylomicrons or the esters normally synthesized in rat intestine, the pattern was consistent with the substantial amount of unsaturated fatty acids, particularly 18:1 and 16:1, found in the sn-1 position of Caco-2 microsomal phosphatidylcholine, the fatty acyl donor for LRAT. Both ARAT and LRAT have been proposed to be responsible for retinyl ester synthesis in the enterocyte. These data suggest the LRAT may be the physiologically important enzyme for the esterification of retinol in Caco-2 cells

  20. Partial Characterization of Bacteriocins Produced by Two New Enterococcus faecium Isolated from Human Intestine.

    Turgis, Mélanie; Vu, Khanh Dang; Lacroix, Monique

    2013-06-01

    This study aimed at characterizing two novel bacteriocin-producing enterococcal strains isolated from human intestine. A total of 200 lactic acid bacteria were isolated from a woman stool sample. Two of them were selected for characterization due to their high antimicrobial activity against five strains of Listeria monocytogenes. The selected bacteria were identified as two different strains of Enterococcus faecium and designated MT 104 and MT 162. The bacteriocins produced by MT 104 and MT 162 were stable at different pH ranging from 2 to 11 and were active after different treatments such as heat, enzymes, detergents, and γ-irradiation. The two isolated strains exhibited some probiotic properties such as survival in simulated gastric fluid and intestinal fluid, lack of expression of bile salt hydrolase or hemolytic activity, adhesion to Caco-2 cells efficiently, and sensitivity to clinical antimicrobial agents. Thus, the two isolated strains of E. faecium could become new probiotic bacteria and their bacteriocins could be used for controlling L. monocytogenes in combination with irradiation for food preservation. PMID:26782736

  1. Metabolic activation of lignans to estrogenic and antiestrogenic substances by human intestinal bacteria

    GAO, Jiang Jing; Hattori, Masao

    2005-01-01

    ヒト腸内細菌は広く自然界に存在する植物エストロゲンの前駆体の代謝活性化に必須である。本総説ではin vitroの実験に基づいた植物エストロゲン前駆体secoisolariciresinol diglucoside (SDG), arctiin, pinoresinol diglucoside (PDG)やそれらのアグリコンの動物リグナン, enterodiol (END), enterolactone (ENL)への変換に関する最近の研究成果を概説している。また, これら関連反応に関与する腸内細菌の単離や性質についても言及している。The role of human intestinal bacteria is indispensable for the metabolic activation of phytoestrogenic precursor lignans. This review summarized recent researches on the in vitro intestinal bacteria transformation of lignan prec...

  2. Study of opportunistic intestinal parasitic infections in human immunodeficiency virus/acquired immunodeficiency syndrome patients

    Manish Kumar Mathur

    2013-01-01

    Full Text Available Introduction: Intestinal parasites predominantly coccidian parasites are a common cause for diarrhea in human immunodeficiency virus (HIV-positive patients. Materials and Methods: The study was conducted during January 2009-December 2010. A total of 1,088 stool samples from 544 seropositive HIV positive cases were examined microscopically for ova and cyst using wet mount preparations and stained smears. Out of 544 patients, 343 had prolonged diarrhea for more than 4 weeks, 57 had acute diarrhea of lesser than 7 days and 144 were asymptomatic cases who attended out-patient department; included in this study after taking consent from patients. Enteric pathogens were detected in 274 (50.36% of the 544 patients. Results and Conclusions: The parasites identified were Cryptosporidium (135, Isospora belli (42, Cyclospora (12, Microsporidia (02, Entamoeba histolytica (49, Hookworm (34. Intestinal parasites in chronic diarrhea were significantly higher than the acute diarrhea (63.05% vs. 7.35%; P < 0.05. Parasitic pathogens were frequently associated with HIV-positive patients with diarrhea in Western India. Stools of all HIV-positive patients with diarrhea should thoroughly be investigated to identify etiologic agents for proper management.

  3. Glutamine and recombinant human growth hormone protect intestinal barrier function following portal hypertension surgery

    Zhao-Feng Tang; Yun-Biao Ling; Nan Lin; Zheng Hao; Rui-Yun Xu

    2007-01-01

    AIM: To evaluate the effects of combined treatment of glutamine (Gln) and recombinant human growth hormone(rhGH) on intestinal barrier function following portal hypertension surgery.METHODS: This study was designed as a prospective,randomized and controlled clinical trial. Forty two patients after portal hypertension surgery were randomly assigned into 2 groups: control group (n = 20) and supplemental group (adding Gin and rhGH, n = 22). Every patient received isocaloric and isonitrogenous standard total parenteral nutrition (TPN) starting 3 d after surgery for 7 d. Blood samples were obtained before surgery and at the 3rd and 10th day postoperatively. Host immunity was evaluated by measuring levels of CD4, CD8, CD4/CD8, IgG, IgM and IgA, and the inflammatory responses were determined by assessing IL-2, TNF-α and C-reactive protein (CRP) levels. Intestinal permeability and integrity was evaluated by L/M test and histological examination, respectively.RESULTS: On postoperative d 10, CD4, CD4/CD8, IgG and IL-2 levels in supplemental group were significantly higher than those in control group (33.7 ± 5.5 vs 31.0± 5.4, P < 0.05, (1.17 ± 0.32 vs 1.05 ± 0.15, P < 0.05,13.94 ± 1.09 vs 12.33±1.33, P < 0.05, and 368.12± 59.25 vs 318.12 ± 45.65, P < 0.05, respectively),whereas the increase in serum TNF-α concentration was significantly reduced (41.02 ± 27.56 vs 160.09 ± 35.17,P < 0.05). The increase in L/M ratio was significantly lower in the supplemental group than in the control group (0.0166 ± 0.0017 vs 0.0339 ± 0.0028, P < 0.05).Moreover, mucosal integrity in the supplemental group was better than in the control group.CONCLUSION: Postoperative administration of TPN supplemented with Gin and rhGH in patients after portal hypertension surgery improves immune function,modulates inflammatory response, prevents the intestinal mucous membrane from atrophy and preserves intestinal integrity.

  4. Functional Comparison of Human Colonic Carcinoma Cell Lines and Primary Small Intestinal Epithelial Cells for Investigations of Intestinal Drug Permeability and First-Pass Metabolism.

    Yamaura, Yoshiyuki; Chapron, Brian D; Wang, Zhican; Himmelfarb, Jonathan; Thummel, Kenneth E

    2016-03-01

    To further the development of a model for simultaneously assessing intestinal absorption and first-pass metabolism in vitro, Caco-2, LS180, T84, and fetal human small intestinal epithelial cells (fSIECs) were cultured on permeable inserts, and the integrity of cell monolayers, CYP3A4 activity, and the inducibility of enzymes and transporters involved in intestinal drug disposition were measured. Caco-2, T84, and fSIECs all formed tight junctions, as assessed by immunofluorescence microscopy for zonula occludens-1, which was well organized into circumscribing strands in T84, Caco-2, and fSIECs but was diffuse in LS180 cells. The transepithelial electrical resistance value for LS180 monolayers was lower than that for Caco-2, T84, and fSIECs. In addition, the apical-to-basolateral permeability of the paracellular marker Lucifer yellow across LS180 monolayers was greater than in fSIECs, T84, and Caco-2 monolayers. The transcellular marker propranolol exhibited similar permeability across all cells. With regard to metabolic capacity, T84 and LS180 cells showed comparable basal midazolam hydroxylation activity and was inducible by rifampin and 1α,25(OH)2D3 in LS180 cells, but only marginally so in T84 cells. The basal CYP3A4 activity of fSIECs and Caco-2 cells was much lower and not inducible. Interestingly, some of the drug transporters expressed in LS180 and Caco-2 cells were induced by either 1α,25(OH)2D3 or rifampin or both, but effects were limited in the other two cell lines. These results suggest that none of the cell lines tested fully replicated the drug disposition properties of the small intestine and that the search for an ideal screening tool must continue. PMID:26700954

  5. Human capital, Demographic Transition and Economic Growth

    Haitham Issa

    2003-01-01

    This paper extends the literature on economic growth and demographic change by developing a neo-classical model of endogenous growth in which both economic and demographic outcomes are jointly determined. The key point in this model is the endogenisation of child mortality rate by linking it to parents¡¯ human capital, defined in a broad sense to include both education and health. The numerical simulation of this model confirms that as economic development takes place there will be a decline ...

  6. A Monoclonal Antibody to the Amebic Lipophosphoglycan-Proteophosphoglycan Antigens Can Prevent Disease in Human Intestinal Xenografts Infected with Entamoeba histolytica

    Zhang, Zhi; Duchêne, Michael; Stanley, Samuel L.

    2002-01-01

    Entamoeba histolytica trophozoites are covered by lipophosphoglycan-peptidoglycan molecules which may be key virulence factors. We found that pretreatment of severe combined immunodeficient mice bearing human intestinal xenografts with a monoclonal antibody to the amebic lipophosphoglycan-peptidoglycan molecules can prevent or significantly reduce the human intestinal inflammation and tissue damage that are normally seen with E. histolytica colonic infection.

  7. Cooperation between MEF2 and PPARγ in human intestinal β,β-carotene 15,15'-monooxygenase gene expression

    Yan Bingfang

    2006-02-01

    Full Text Available Abstract Background Vitamin A and its derivatives, the retinoids, are essential for normal embryonic development and maintenance of cell differentiation. β, β-carotene 15,15'-monooxygenase 1 (BCMO1 catalyzes the central cleavage of β-carotene to all-trans retinal and is the key enzyme in the intestinal metabolism of carotenes to vitamin A. However, human and various rodent species show markedly different efficiencies in intestinal BCMO1-mediated carotene to retinoid conversion. The aim of this study is to identify potentially human-specific regulatory control mechanisms of BCMO1 gene expression. Results We identified and functionally characterized the human BCMO1 promoter sequence and determined the transcriptional regulation of the BCMO1 gene in a BCMO1 expressing human intestinal cell line, TC-7. Several functional transcription factor-binding sites were identified in the human promoter that are absent in the mouse BCMO1 promoter. We demonstrate that the proximal promoter sequence, nt -190 to +35, confers basal transcriptional activity of the human BCMO1 gene. Site-directed mutagenesis of the myocyte enhancer factor 2 (MEF2 and peroxisome proliferator-activated receptor (PPAR binding elements resulted in decreased basal promoter activity. Mutation of both promoter elements abrogated the expression of intestinal cell BCMO1. Electrophoretic mobility shift and supershift assays and transcription factor co-expression in TC-7 cells showed MEF2C and PPARγ bind to their respective DNA elements and synergistically transactivate BCMO1 expression. Conclusion We demonstrate that human intestinal cell BCMO1 expression is dependent on the functional cooperation between PPARγ and MEF2 isoforms. The findings suggest that the interaction between MEF2 and PPAR factors may provide a molecular basis for interspecies differences in the transcriptional regulation of the BCMO1 gene.

  8. Vasoactive intestinal polypeptide and peptide histidine methionine. Presence in human follicular fluid and effects on DNA synthesis and steroid secretion in cultured human granulosa/lutein cells

    Gräs, S; Ovesen, P; Andersen, A N;

    1994-01-01

    Vasoactive intestinal polypeptide (VIP) and peptide histidine methionine (PHM) originate from the same precursor molecule, prepro VIP. In the present study we examined the concentrations of VIP and PHM in human follicular fluid and their effects on cultured human granulosa/lutein cells. Follicular...

  9. Somatostatin, substance P and calcitonin gene-related peptide-positive intramural nerve structures of the human large intestine affected by carcinoma.

    Jerzy Kaleczyc

    2010-11-01

    Full Text Available The aim of this study was to investigate the arrangement and chemical coding of enteric nerve structures in the human large intestine affected by cancer. Tissue samples comprising all layers of the intestinal wall were collected during surgery form both morphologically unchanged and pathologically altered segments of the intestine (n=15, and fixed by immersion in buffered paraformaldehyde solution. The cryostat sections were processed for double-labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene-product 9.5 and their chemical coding using antibodies against somatostatin (SOM, substance P (SP and calcitonin gene-related peptide (CGRP. The microscopic observations revealed distinct morphological differences in the enteric nerve system structure between the region adjacent to the cancer invaded area and the intact part of the intestine. In general, infiltration of the cancer tissue resulted in the gradual (depending on the grade of invasion first decomposition and reduction to final partial or complete destruction and absence of the neuronal elements. A comparative analysis of immunohistochemically labeled sections (from the unchanged and pathologically altered areas revealed a statistically significant decrease in the number of CGRP-positive neurons and nerve fibres in both submucous and myenteric plexuses in the transitional zone between morphologically unchanged and cancer-invaded areas. In this zone, a decrease was also observed in the density of SP-positive nerve fibres in all intramural plexuses. Conversely, the investigations demonstrated statistically insignificant differences in number of SP- and SOM-positive neurons and a similar density of SOM-positive nerve fibres in the plexuses of the intact and pathologically changed areas. The differentiation between the potential adaptive changes in ENS or destruction of its elements by cancer invasion should be

  10. Phase Transition in a Healthy Human Heart Rate

    Kiyono, Ken; Struzik, Zbigniew R.; Aoyagi, Naoko; Togo, Fumiharu; Yamamoto, Yoshiharu

    2005-07-01

    A healthy human heart rate displays complex fluctuations which share characteristics of physical systems in a critical state. We demonstrate that the human heart rate in healthy individuals undergoes a dramatic breakdown of criticality characteristics, reminiscent of continuous second order phase transitions. By studying the germane determinants, we show that the hallmark of criticality—highly correlated fluctuations—is observed only during usual daily activity, and a breakdown of these characteristics occurs in prolonged, strenuous exercise and sleep. This finding is the first reported discovery of the dynamical phase transition phenomenon in a biological control system and will be a key to understanding the heart rate control system in health and disease.

  11. The Influence of Different Apple Based Supplements on the Intestinal Microbiota of Humans

    Bergström, Anders; Wilcks, Andrea; Ravn-Haren, Gitte;

    restriction diet during the control period, and in the four other periods it was supplied with four different apple based supplements. Between the diets there was a 2-week wash-out period still on the restriction diet. The four apple based supplements were: 1) whole apples, 2) clear apple juice (pectin......Background and objective: The present project is part of the large ISAFRUIT project, where one of the objectives is to identify effects of apple and apple product on parameters related to gut health. In a previous rat study we observed changes in the intestinal microbiota of rats fed whole apples......, pomace or apple pectin ([1], and we were interested in finding out if the same effect can be observed in humans. Method: The study was conducted as a randomized, controlled 5 x 28 days cross-over study with 24 healthy persons of both genders. The persons were following a pectin- and polyphenol free...

  12. E Durans Strain M4-5 Isolated From Human Colonic Flora Attenuates Intestinal Inflammation

    Avram-Hananel, L.; Stock, J.; Parlesak, Alexandr;

    2010-01-01

    PURPOSE: The aim of this study was to evaluate in vitro and in vivo effects of a unique high-butyrate-producing bacterial strain from human colonic flora, Enterococcus durans, in prevention and treatment of intestinal inflammation. METHODS: A compartmentalized Caco-2/leukocyte coculture model was...... examine in vivo effects of prevention and therapy with E durans on clinical, biochemical, and histologic parameters of inflammation. RESULTS: In the coculture model, treatment with E durans and with butyrate reduced basal as well as E coli stimulated secretion of IL-8, IL-6, and TNF-α and increased...... inflammation, and inhibited colonic transcription of proinflammatory immune factors. The effect of therapeutic treatment alone on these parameters was more moderate but still significant. CONCLUSIONS: We conclude that E durans strain M4 to 5 and its metabolic product butyrate induce significant anti...

  13. The epidemiology of human intestinal helminthiasis in Ibadan, South Western Nigeria.

    Ayanwale, F O; Esuruoso, G O; Dipeolu, O O

    1982-06-01

    An epidemiological survey of human faeces collected from open places in native quarters and from volunteers in modern housing areas was conducted so as to ascertain the intestinal helminth infections in Ibadan a town in South Western Nigeria. Out of four hundred and seventy eight stool samples examined between February 1980 and January 1981 in twenty nine localities grouped into 7 zones, Ascaris (Round worm) Trichuris (Whip worm) and hookworm were most prevalent. Ascaris and hookworms were three times as prevalent in native areas as in modern quarters. Two local dispensary records confirmed many reported cases of 'stomach aches' that responded to deworming therapy. The public health significance of open field defecation is discussed. The need to resuscitate the public sanitary inspectors' act as practiced prior to the country's independence in 1960 is also advocated. PMID:7174237

  14. CONTROL AND CANCEROUS TISSUES OF HUMAN STOMACH, SMALL INTESTINE AND LARGE INTESTINE - THE AVERAGE CONTENT OF SODIUM AND POTASSIUM

    Marta Głogowska

    2015-02-01

    Full Text Available Sodium and potassium regulate the total amount of water in the body and the transmission of sodium into and out of individual cells also plays a role in critical body functions. The movement of sodium is critical in generation of these electrical signals. Research was conducted on samples taken from women and men aged 20-90 years, derived from the stomach, small intestine and large intestine. Samples were dried at 80ºC for 24 hours, and then increased temperature to 105ºC and dried for seven days until dry mass was obtained. All dry material of each sample was weighted and placed in a separate mineralization tubes and mixed with 1 cm3 of 65% HNO3 and heated at 105°C for 120 minutes in a thermostat-controlled digestion block, VELP Scientifica DK 20. Metals such as sodium and potassium were detected using FAAS method. The average content of sodium in patients diagnosed with stomach cancer is lower, than in healthy person. Indicate higher mean content of sodium in the control tissues of stomach (2151,730 μg•g-1d.m., compared to a sodium content in tissues adjacent to the tumor (1813,958 μg•g-1d.m. and tumor tissues (2029,442 μg•g-1d.m.. In the case of colon, control tissues have lower average content of sodium (2160,886 μg•g-1d.m., than the tissues surrounding the tumor (3325,963 μg•g-1d.m. and tumor tissues (3037,121 μg•g-1d.m.. The potassium level is higher in the control tissues of stomach (1428,993 μg•g-1d.m., than in the tissues adjacent to the tumor (1091,544 μg•g-1d.m. and tumor tissues (1220,471 μg•g-1d.m.. In the large intestine higher average content of potassium is characterized by tumor tissues (2307,234 μg•g-1d.m. and tissues adjacent to the tumor (1712,779 μg•g-1d.m., than control tissue (1389,703 μg•g-1d.m.. Comparing this relationship with data on potassium channels, it can be assumed that in the some case of malignant transformation in the colon, potassium channels also play a big role.

  15. Transport of Aflatoxin M1 in human intestinal Caco-2/TC7 cells

    Francesca eCaloni

    2012-06-01

    Full Text Available Aflatoxin M1 (AFM1 is a hydroxylated metabolite of aflatoxin B1 (AFB1. After it is formed, it is secreted in the milk of mammals.Despite the potential risk of human exposure to AFM1, data reported in literature on the metabolism, toxicity and bioavailability of this molecule are limited and out of date. The aim of the present research was to study the absorption profile of AFM1 and possible damage to tight junctions of the intestinal Caco-2/TC7 clone grown on microporous filter supports. These inserts allowed for the separation of the apical and basolateral compartments which correspond to the in vivo lumen and the interstitial space/vascular systems of intestinal mucosa respectively.In this study, the Caco-2/TC7 cells were treated with different AFM1 concentrations (10-10,000 ng/kg for short (40 minutes and long periods of time (48 hours. The AFM1 influx/efflux transport and effects on tight junctions were evaluated by measuring trans-epithelial electrical resistance and observing tight junction protein (Zonula occludens-1 and occludin localization.The results showed that: i when introduced to the apical and basolateral compartments, AFM1 was poorly absorbed by the Caco-2/TC7 cells but its transport across the cell monolayer occurred very quickly (Papp value of 105.10 ± 7.98 cm/s x 10-6. ii The integrity of tight junctions was not permanently compromised after exposure to the mycotoxin. Viability impairment or barrier damage did not occur either.The present results contribute to the evaluation of human risk exposure to AFM1, although the AFM1 transport mechanism need to be clarified.

  16. L-lysine dose dependently delays gastric emptying and increases intestinal fluid volume in humans and rats

    Baruffol, C; Jordi, J; Camargo, S.; RADOVIC, T; Herzog, B.; Fried, M; Schwizer, W; Verrey, F; Lutz, T. A.; Steingoetter, A

    2014-01-01

    BACKGROUND: Novel sensory inputs for the control of food intake and gastrointestinal (GI) function are of increasing interest due to the rapid increase in nutrition-related diseases. The essential amino acid L-lysine was demonstrated to have a selective impact on food intake, gastric emptying, and intestinal transit in rats, thus indicating a potential novel direct sensory input to assess dietary protein content and quality. The aim of this study was to assess translational aspects of this fi...

  17. Maintaining human productivity during Mars transit

    Statler, Irving C.; Billings, Charles E.

    1989-01-01

    This paper addresses the special nature of the human-machine relationship during a trip to Mars. In particular, the potential for monotony and boredom during a long-duration space voyage and the effect on motivation and productivity can be important considerations to the health and welfare of the crew. For the voyage to Mars, a design may be considered that will purposefully maintain some level of workload for the crew as a preventive measure for the deterioration of productivity that comes with boredom. This paper speculates on these considerations, on the appropriate level of workload for maximum productivity, and on what might be done during the mission to alleviate the problems caused by monotony and boredom.

  18. The Intestine Plays a Substantial Role in Human Vitamin B6 Metabolism: A Caco-2 Cell Model

    Albersen, Monique; Bosma, Marjolein; Knoers, Nine V. V. A. M.; de Ruiter, Berna H. B.; Diekman, Eugène F.; de Ruijter, Jessica; Visser, Wouter F.; de Koning, Tom J.; Verhoeven-Duif, Nanda M.

    2013-01-01

    Background Vitamin B6 is present in various forms (vitamers) in the diet that need to be metabolized to pyridoxal phosphate (PLP), the active cofactor form of vitamin B6. In literature, the liver has been reported to be the major site for this conversion, whereas the exact role of the intestine remains to be elucidated. Objective To gain insight into the role of the intestine in human vitamin B6 metabolism. Materials and Methods Expression of the enzymes pyridoxal kinase (PK), pyridox(am)ine ...

  19. Vasoactive intestinal polypeptide (VIP) receptor scintigraphy in humans using an [123l] iodinated derivative of VIP

    Full text: VIP labelled with iodine-123 has recently been reported to be useful ligand for the in vivo localisation of various tumours, including colorectal, pancreatic, gastric adenocarcinomas, and both Iymph node and liver metastases. The aim of this investigation was to determine the dosimetry and biodistribution of [123I] iodo VIP in humans. Synthetic human VIP was reacted with [123I]Nal in the presence of lodogen to afford, after purification of the reaction mixture using HPLC, two isomeric [123I] iodotyrosylMet(O) vasoactive intestinal polypeptides, both of which are ligands for VIP receptors. After intravenous administration of these two iodinated peptides (160-200 MBq, 123l]iodo VIP was rapidly cleared from the blood and primarily localised in the lungs, which accounted for 30. per cent of the injected dose at times 2,4 and 24 h post-injection, respectively. The radioactivity measured in the urine amounted to 30 per cent of the injected dose at 6 h and 80 per cent at 24 h postinjection. The effective dose was calculated to be 3.7 mSv/160 MBq. The dosimetry and biodistribution of the [123I]iodo VIP prepared in our institution is similar to that reported in the literature. Furthermore, the dosimetry of this radiolabelled peptide is such that it is safe to use in humans

  20. Transitions in Oral and Intestinal Microflora Composition and Innate Immune Receptor-Dependent Stimulation during Mouse Development▿ †

    Hasegawa, Mizuho; Osaka, Toshifumi; Tawaratsumida, Kazuki; Yamazaki, Takashi; Tada, Hiroyuki; Chen, Grace Y.; Tsuneda, Satoshi; Núñez, Gabriel; Inohara, Naohiro

    2009-01-01

    Commensal bacteria possess immunostimulatory activities that can modulate host responses to affect development and homeostasis in the intestine. However, how different populations of resident bacteria stimulate the immune system remains largely unknown. We characterized here the ability of intestinal and oral microflora to stimulate individual pattern recognition receptors (PRRs) in bone marrow-derived macrophages and mesothelial cells. The intestinal but not oral microflora elicited age- and...

  1. Investigation of general and cytoskeletal markers to estimate numbers and proportions of neurons in the human intestine

    Ganns, D.; Schrödl, F.; Neuhuber, W.; Brehmer, A

    2006-01-01

    An important requirement in pathological diagnostics in the human enteric nervous system (ENS) is the estimation of the total numbers of neurons and of proportions of distinct subpopulations. In this study, we compared the suitability of two suggested panneuronal markers, cuprolinic blue (CB) and anti-Hu-protein (HU), for staining and counting human myenteric neurons in wholemounts, derived from small and large intestinal samples. Furthermore, the proportional ...

  2. Advancing the use of Lactobacillus acidophilus surface layer protein A for the treatment of intestinal disorders in humans.

    Sahay, Bikash; Ge, Yong; Colliou, Natacha; Zadeh, Mojgan; Weiner, Chelsea; Mila, Ashley; Owen, Jennifer L; Mohamadzadeh, Mansour

    2015-01-01

    Intestinal immunity is subject to complex and fine-tuned regulation dictated by interactions of the resident microbial community and their gene products with host innate cells. Deterioration of this delicate process may result in devastating autoinflammatory diseases, including inflammatory bowel disease (IBD), which primarily comprises Crohn's disease (CD) and ulcerative colitis (UC). Efficacious interventions to regulate proinflammatory signals, which play critical roles in IBD, require further scientific investigation. We recently demonstrated that rebalancing intestinal immunity via the surface layer protein A (SlpA) from Lactobacillus acidophilus NCFM potentially represents a feasible therapeutic approach to restore intestinal homeostasis. To expand on these findings, we established a new method of purifying bacterial SlpA, a new SlpA-specific monoclonal antibody, and found no SlpA-associated toxicity in mice. Thus, these data may assist in our efforts to determine the immune regulatory efficacy of SlpA in humans. PMID:26647142

  3. An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis.

    Devendra Bansal

    Full Text Available Amoebiasis (a human intestinal infection affecting 50 million people every year is caused by the protozoan parasite Entamoeba histolytica. To study the molecular mechanisms underlying human colon invasion by E. histolytica, we have set up an ex vivo human colon model to study the early steps in amoebiasis. Using scanning electron microscopy and histological analyses, we have established that E. histolytica caused the removal of the protective mucus coat during the first two hours of incubation, detached the enterocytes, and then penetrated into the lamina propria by following the crypts of Lieberkühn. Significant cell lysis (determined by the release of lactodehydrogenase and inflammation (marked by the secretion of pro-inflammatory molecules such as interleukin 1 beta, interferon gamma, interleukin 6, interleukin 8 and tumour necrosis factor were detected after four hours of incubation. Entamoeba dispar (a closely related non-pathogenic amoeba that also colonizes the human colon was unable to invade colonic mucosa, lyse cells or induce an inflammatory response. We also examined the behaviour of trophozoites in which genes coding for known virulent factors (such as amoebapores, the Gal/GalNAc lectin and the cysteine protease 5 (CP-A5, which have major roles in cell death, adhesion (to target cells or mucus and mucus degradation, respectively were silenced, together with the corresponding tissue responses. Our data revealed that the signalling via the heavy chain Hgl2 or via the light chain Lgl1 of the Gal/GalNAc lectin is not essential to penetrate the human colonic mucosa. In addition, our study demonstrates that E. histolytica silenced for CP-A5 does not penetrate the colonic lamina propria and does not induce the host's pro-inflammatory cytokine secretion.

  4. Solution structure of human intestinal fatty acid binding protein: Implications for ligand entry and exit

    Zhang Fengli [Boston University School of Medicine, Department of Biophysics (United States); Luecke, Christian [Johann Wolfgang Goethe-Universitaet (Germany); Baier, Leslie J. [NIDDK, NIH, Phoenix Epidemiology and Clinical Research Branch (United States); Sacchettini, James C. [Texas A and M University, Department of Biochemistry and Biophysics (United States); Hamilton, James A. [Boston University School of Medicine, Department of Biophysics (United States)

    1997-04-15

    The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) protein which binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanine to threonine substitution at position 54 in I-FABP has been identified which affects fatty acid binding and transport, and is associated with the development of insulin resistance in several populations including Mexican-Americans and Pima Indians. To investigate the molecular basis of the binding properties of I-FABP, the 3D solution structure of the more common form of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy.Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed by using 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra(NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP was calculated by using the distance geometry program DIANA based on 2519 distance constraints obtained from the NMR data. Subsequent energy minimization was carried out by using the program SYBYL in the presence of distance constraints. The conformation of human I-FABP consists of 10 antiparallel {beta}-strands which form two nearly orthogonal {beta}-sheets of five strands each, and two short {alpha}-helices that connect the {beta}-strands A and B. The interior of the protein consists of a water-filled cavity between the two {beta}-sheets. The NMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP.The NMR results show significant conformational variability of certain backbone segments around the postulated portal region for the entry and exit of fatty acid ligand.

  5. A comparative analysis of the intestinal metagenomes present in guinea pigs (Cavia porcellus and humans (Homo sapiens

    Hildebrand Falk

    2012-09-01

    Full Text Available Abstract Background Guinea pig (Cavia porcellus is an important model for human intestinal research. We have characterized the faecal microbiota of 60 guinea pigs using Illumina shotgun metagenomics, and used this data to compile a gene catalogue of its prevalent microbiota. Subsequently, we compared the guinea pig microbiome to existing human gut metagenome data from the MetaHIT project. Results We found that the bacterial richness obtained for human samples was lower than for guinea pig samples. The intestinal microbiotas of both species were dominated by the two phyla Bacteroidetes and Firmicutes, but at genus level, the majority of identified genera (320 of 376 were differently abundant in the two hosts. For example, the guinea pig contained considerably more of the mucin-degrading Akkermansia, as well as of the methanogenic archaea Methanobrevibacter than found in humans. Most microbiome functional categories were less abundant in guinea pigs than in humans. Exceptions included functional categories possibly reflecting dehydration/rehydration stress in the guinea pig intestine. Finally, we showed that microbiological databases have serious anthropocentric biases, which impacts model organism research. Conclusions The results lay the foundation for future gastrointestinal research applying guinea pigs as models for humans.

  6. Toxic mechanisms induced by fumonisin b1 mycotoxin on human intestinal cell line.

    Minervini, Fiorenza; Garbetta, Antonella; D'Antuono, Isabella; Cardinali, Angela; Martino, Nicola Antonio; Debellis, Lucantonio; Visconti, Angelo

    2014-07-01

    The gastrointestinal tract is the main target of exposure to mycotoxin fumonisin B1 (FB1), common natural contaminant in food. Previous studies reported that proliferating cells are more sensitive than confluent cells to the toxic effect of FB1. This study aims to investigate, by dose- and time-dependent experiments on human colon proliferating intestinal cell line (HT-29), the modifications induced by FB1 at concentrations ranging from 0.25 to 69 μM. The choice of highest FB1 concentration considered the low toxicity previously reported on intestinal cell lines, whereas the lowest one corresponded to the lower FBs levels permitted by European Commission Regulation. Different functional parameters were tested such as cell proliferation, oxidative status, immunomodulatory effect and changes in membrane microviscosity. In addition FB1-FITC localization in this cell line was assessed by using confocal laser scanning microscopy. Lipid peroxidation induction was the main and early (12 h) effect induced by FB1 at concentrations ranging from 0.5 to 69 μM, followed by inhibition of cell proliferation (up to 8.6 μM), the immunomodulatory effect (up to 17.2 μM), by assessing IL-8 secretion, and increase in membrane microviscosity (up to 34.5 μM). The toxic effects observed in different functional parameters were not dose-dependent and could be the consequence of the FB1 intracytoplasmatic localization as confirmed by confocal microscopy results. The different timescales and concentrations active of different functional parameters could suggest different cellular targets of FB1. PMID:24549592

  7. Effect of absorbable and nonabsorbable sugars on intestinal calcium absorption in humans

    The effects of glucose, galactose, and lactitol on intestinal calcium absorption and gastric emptying were studied in 9, 8, and 20 healthy subjects, respectively. Calcium absorption was measured by using a double-isotope technique and the kinetic parameters were obtained by a deconvolution method. The gastric emptying rate was determined with /sup 99m/Tc-diethylenetriaminepentaacetic acid and was expressed as the half-time of the emptying curve. Each subject was studied under two conditions: (a) with calcium alone and (b) with calcium plus sugar. Glucose and galactose increased the calcium mean transit time and improved the total fractional calcium absorption by 30% (p less than 0.02). Lactitol decreased the mean rate of absorption (p less than 0.001) and reduced the total fractional calcium absorption by 15% (p less than 0.001). The gastric emptying rate did not appear to influence directly the kinetic parameters of calcium absorption. These results show that both glucose and galactose exert the same stimulatory effect as lactose on calcium absorption in subjects with normal lactase whereas lactitol mimics the effects of lactose in lactase-deficient patients. Thus the absorbability of sugars determines their effect on calcium absorption

  8. Phase Transitions in Antibody Solutions: from Pharmaceuticals to Human Disease

    Wang, Ying; Lomakin, Aleksey; Benedek, George; Dana Farber Cancer Institute Collaboration; Amgen Inc. Collaboration

    2014-03-01

    Antibodies are very important proteins. Natural antibodies play essential role in the immune system of human body. Pharmaceutical antibodies are used as drugs. Antibodies are also indispensable tools in biomedical research and diagnostics. Recently, a number of observations of phase transitions of pharmaceutical antibodies have been reported. These phase transitions are undesirable from the perspective of colloid stability of drug solutions in processing and storage, but can be used for protein purification, X-ray crystallography, and improving pharmokinetics of drugs. Phase transitions of antibodies can also take place in human body, particularly in multiple myeloma patients who overproduce monoclonal antibodies. These antibodies, in some cases, crystallize at body temperature and cause severe complications called cryoglobulinemia. I will present the results of our current studies on phase transitions of both pharmaceutical antibodies and cryoglobulinemia-associated antibodies. These studies have shown that different antibodies have different propensity to undergo phase transitions, but their phase behavior has universal features which are remarkably different from those of spherical proteins. I will discuss how studies of phase behavior can be useful in assessing colloid stability of pharmaceutical antibodies and in early diagnostics of cryoglobulinemia, as well as general implications of the fact that some antibodies can precipitate at physiological conditions.

  9. A Layered Model of a Virtual Human Intestine for Surgery Simulation

    France, Laure; Lenoir, Julien; Angelidis, Alexis; Meseure, P.; Cani, Marie-Paule; Faure, François; Chaillou, Christophe

    2005-01-01

    In this paper, we propose a new approach to simulate the small intestine in a context of laparoscopic surgery. The ultimate aim of this work is to simulate the training of a basic surgical gesture in real-time: moving aside the intestine to reach hidden areas of the abdomen. The main problem posed by this kind of simulation is animating the intestine. The problem comes from the nature of the intestine: a very long tube which is not isotropically elastic, and is contained in a volume that is s...

  10. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models.

    Efstathia Papafragkou

    Full Text Available Human noroviruses are the most common cause of acute gastroenteritis worldwide. Recently, cell culture systems have been described using either human embryonic intestinal epithelial cells (Int-407 or human epithelial colorectal adenocarcinoma cells (Caco-2 growing on collagen-I porous micro carrier beads in a rotating bioreactor under conditions of physiological fluid shear. Here, we describe the efforts from two independent laboratories to implement this three dimensional (3D cell culture system for the replication of norovirus. Int-407 and Caco-2 were grown in a rotating bioreactor for up to 28 days. Prior to infection, cells were screened for the presence of microvilli by electron microscopy and stained for junction proteins (zonula occludens-1, claudin-1, and β-catenin. Differentiated 3D cells were transferred to 24-well plates and infected with bacteria-free filtrates of various norovirus genotypes (GI.1, GI.3, GI.8, GII.2, GII.4, GII.7, and GII.8. At 12 h, 24 h, and 48 h post inoculation, viral RNA from both cells and supernatants were collected and analyzed for norovirus RNA by real-time reverse transcription PCR. Despite observations of high expression of junction proteins and microvilli development in stained thin sections, our data suggest no significant increase in viral titer based on norovirus RNA copy number during the first 48 h after inoculation for the different samples and virus culture conditions tested. Our combined efforts demonstrate that 3D cell culture models using Int-407 or Caco-2 cells do not support norovirus replication and highlight the complexity and difficulty of developing a reproducible in vitro cell culture system for human norovirus.

  11. Optical properties of human normal small intestine tissue determined by Kubelka-Munk method in vitro

    Hua-Jiang Wei; Da Xing; Guo-Yong Wu; Ying Jin; Huai-Min Gu

    2003-01-01

    AIM: To study the optical properties of human normal small intestine tissue at 476.5 nm, 488 nm, 496.5 nm, 514.5 nm,532 nm, 808 nm wavelengths of laser irradiation.METHODS: A double-integrating-sphere system, the basic principle of measuring technology of light radiation, and an optical model of biological tissues were used in the study.RESULTS: The results of measurement showed that there were no significant differences in the absorption coefficients of human normal small intestine tissue at 476.5 nm, 488 nm,496.5 nm laser in the Kubelka-Munk two-flux model (P>0.05).The absorption coefficients of the tissue at 514.5 nm, 532 nm,808 nm laser irradiation were obviously increased with the decrease of these wavelengths. The scattering coefficients of the tissue at 476.5 nm, 488 nm, 496.5 nm laser irradiation were increased with the decrease of these wavelengths.The scattering coefficients at 496.5 nm, 514.5 nm, 532 nm laser irradiation were obviously increased with the increase of these wavelengths. The scattering coefficient of the tissue at 532 nm laser irradiation was bigger than that at 808 nm.There were no significant differences in the total attenuation coefficient of the tissue at 476.5 nm and 488 nm laser irradiation (P>0.05). The total attenuation coefficient of the tissue at 488 nm, 496.5 nm, 514.5 nm, 532 nm, 808 nm laser irradiation was obviously increased with the decrease of these wavelengths, and their effective attenuation coefficient revealed the same trend. There were no significant differences among the forward scattered photon fluxe,backward scattered photon fiuxe, and total scattered photon fiuxe of the tissue at 476.5 nm, 488 nm, 496.5 nm laser irradiation. They were all obviously increased with attenuation of tissue thickness. The attenuations of forward and backward scattered photon fluxes, and the total scattered photon fiuxe of the tissue at 514.5 nm laser irradiation were slower than those at 476.5 nm, 488 nm, 496.5 nm laser irradiation

  12. An inherent acceleratory effect of insulin on small intestinal transit and its pharmacological characterization in normal mice

    Murali Krishna Reddy Peddyreddy; Steven Aibor Dkhar; Subramanian Ramaswamy; Amrithraj Theophilus Naveen; Deepak Gopal Shewade

    2006-01-01

    AIM: To study an inherent effect of insulin on small intestinal transit and to explore involvement of various systems/mechanisms in normal mice.METHODS: Insulin at the doses of 2 μU/kg, 2 mU/kg,2 U/kg or vehicle was subcutaneously administered to four groups of overnight fasted normal male mice.Blood glucose (BG) levels were measured 2 min before insulin administration and 2 min before sacrificing the animals for the measurement of small intestinal transit (SIT). Charcoal meal was administered (0.3 mL) intragastrically 20 min after insulin administration and animals were sacrificed after 20 min and SIT was determined. For exploration of the various mechanisms involved in insulin-induced effect on SIT, the dose of insulin which can produce a significant acceleration of SIT without altering BG levels was determined.The following drugs, atropine (1 mg/kg), clonidine (0.1 mg/kg), ondansetron (1 mg/kg), naloxone (5mg/kg), verapamil (8 mg/kg) and glibenclamide (10 mg/kg), were administered intravenously 10 min prior to the administration of insulin (2 μU/kg).RESULTS: The lower doses of insulin (2 μU/kg and 2 mU/kg) produced a significant acceleration of SIT from 52.0% to 70.7% and 73.5% without lowering blood glucose levels (P< 0.01), while the highest dose of insulin (2 U/kg) produced a fall in blood glucose levels which was also associated with significant acceleration of SIT (P< 0.01). After pretreatment of insulin (2 μU/kg)group with atropine, insulin could reverse 50% of the inhibition produced by atropine. In clonidine-pretreated group, insulin administration could reverse only 37%of the inhibition produced by clonidine and inhibition of SIT was significant compared with vehicle + insulintreated group, i.e. from 74.7% to 27.7% (P<0.01). In ondansetron-pretreated group, insulin administration could produce only mild acceleration of SIT (23.5%). In naloxone-pretreated group, insulin administration could significantly reverse the inhibition of SIT produced

  13. Mast cells modulate transport of CD23/IgE/antigen complex across human intestinal epithelial barrier

    Ping-Chang Yang

    2009-06-01

    Full Text Available Background: Food allergy and chronic intestinal inflammation are common in western countries. The complex of antigen/IgE is taken up into the body from the gut lumen with the aid of epithelial cell-derived CD23 (low affinity IgE receptor II that plays an important role in the pathogenesis of intestinal allergy. This study aimed to elucidate the role of mast cell on modulation of antigen/IgE complex transport across intestinal epithelial barrier. Methods: Human intestinal epithelial cell line HT29 cell monolayer was used as a study platform. Transepithelial electric resistance (TER and permeability to ovalbumin (OVA were used as the markers of intestinal epithelial barrier function that were recorded in response to the stimulation of mast cell-derived chemical mediators. Results: Conditioned media from naïve mast cell line HMC-1 cells or monocyte cell line THP-1 cells significantly upregulated the expression of CD23 and increased the antigen transport across the epithelium. Treatment with stem cell factor (SCF, nerve growth factor (NGF, retinoic acid (RA or dimethyl sulphoxide (DMSO enhanced CD23 expression in HT29 cells. Conditioned media from SCF, NGF or RA-treated HMC-1 cells, and SCF, NGF, DMSO or RA-treated THP-1 cells enhanced immune complex transport via enhancing the expression of the CD23 in HT29 cells and the release of inflammatory mediator TNF-α. Nuclear factor kappa B inhibitor, tryptase and TNF-α inhibited the increase in CD23 in HT29 cells and prevents the enhancement of epithelial barrier permeability. Conclusions: Mast cells play an important role in modulating the intestinal CD23 expression and the transport of antigen/IgE/CD23 complex across epithelial barrier.

  14. Determination of tolerable fatty acids and cholera toxin concentrations using human intestinal epithelial cells and BALB/c mouse macrophages.

    Tamari, Farshad; Tychowski, Joanna; Lorentzen, Laura

    2013-01-01

    The positive role of fatty acids in the prevention and alleviation of non-human and human diseases have been and continue to be extensively documented. These roles include influences on infectious and non-infectious diseases including prevention of inflammation as well as mucosal immunity to infectious diseases. Cholera is an acute intestinal illness caused by the bacterium Vibrio cholerae. It occurs in developing nations and if left untreated, can result in death. While vaccines for cholera exist, they are not always effective and other preventative methods are needed. We set out to determine tolerable concentrations of three fatty acids (oleic, linoleic and linolenic acids) and cholera toxin using mouse BALB/C macrophages and human intestinal epithelial cells, respectively. We solubilized the above fatty acids and used cell proliferation assays to determine the concentration ranges and specific concentrations of the fatty acids that are not detrimental to human intestinal epithelial cell viability. We solubilized cholera toxin and used it in an assay to determine the concentration ranges and specific concentrations of cholera toxin that do not statistically decrease cell viability in BALB/C macrophages. We found the optimum fatty acid concentrations to be between 1-5 ng/μl, and that for cholera toxin to be < 30 ng per treatment. This data may aid future studies that aim to find a protective mucosal role for fatty acids in prevention or alleviation of cholera infections. PMID:23748896

  15. Selective FFA2 Agonism Appears to Act via Intestinal PYY to Reduce Transit and Food Intake but Does Not Improve Glucose Tolerance in Mouse Models.

    Forbes, Sarah; Stafford, Stuart; Coope, Gareth; Heffron, Helen; Real, Katia; Newman, Robert; Davenport, Richard; Barnes, Matt; Grosse, Johannes; Cox, Helen

    2015-11-01

    Free fatty acid receptor 2 (FFA2) is expressed on enteroendocrine L cells that release glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) when activated by short-chain fatty acids (SCFAs). Functionally GLP-1 and PYY inhibit gut transit, increase glucose tolerance, and suppress appetite; thus, FFA2 has therapeutic potential for type 2 diabetes and obesity. However, FFA2-selective agonists have not been characterized in vivo. Compound 1 (Cpd 1), a potent FFA2 agonist, was tested for its activity on the following: GLP-1 release, modulation of intestinal mucosal ion transport and transit in wild-type (WT) and FFA2(-/-) tissue, and food intake and glucose tolerance in lean and diet-induced obese (DIO) mice. Cpd 1 stimulated GLP-1 secretion in vivo, but this effect was only detected with dipeptidyl peptidase IV inhibition, while mucosal responses were PYY, not GLP-1, mediated. Gut transit was faster in FFA2(-/-) mice, while Cpd 1 slowed WT transit and reduced food intake and body weight in DIO mice. Cpd 1 decreased glucose tolerance and suppressed plasma insulin in lean and DIO mice, despite FFA2(-/-) mice displaying impaired glucose tolerance. These results suggest that FFA2 inhibits intestinal functions and suppresses food intake via PYY pathways, with limited GLP-1 contribution. Thus, FFA2 may be an effective therapeutic target for obesity but not for type 2 diabetes. PMID:26239054

  16. Transcriptome-wide Analysis Reveals Hallmarks of Human Intestine Development and Maturation In Vitro and In Vivo

    Stacy R. Finkbeiner

    2015-06-01

    Full Text Available Human intestinal organoids (HIOs are a tissue culture model in which small intestine-like tissue is generated from pluripotent stem cells. By carrying out unsupervised hierarchical clustering of RNA-sequencing data, we demonstrate that HIOs most closely resemble human fetal intestine. We observed that genes involved in digestive tract development are enriched in both fetal intestine and HIOs compared to adult tissue, whereas genes related to digestive function and Paneth cell host defense are expressed at higher levels in adult intestine. Our study also revealed that the intestinal stem cell marker OLFM4 is expressed at very low levels in fetal intestine and in HIOs, but is robust in adult crypts. We validated our findings using in vivo transplantation to show that HIOs become more adult-like after transplantation. Our study emphasizes important maturation events that occur in the intestine during human development and demonstrates that HIOs can be used to model fetal-to-adult maturation.

  17. Human behavioral regularity, fractional Brownian motion, and exotic phase transition

    Li, Xiaohui; Yang, Guang; An, Kenan; Huang, Jiping

    2016-08-01

    The mix of competition and cooperation (C&C) is ubiquitous in human society, which, however, remains poorly explored due to the lack of a fundamental method. Here, by developing a Janus game for treating C&C between two sides (suppliers and consumers), we show, for the first time, experimental and simulation evidences for human behavioral regularity. This property is proved to be characterized by fractional Brownian motion associated with an exotic transition between periodic and nonperiodic phases. Furthermore, the periodic phase echoes with business cycles, which are well-known in reality but still far from being well understood. Our results imply that the Janus game could be a fundamental method for studying C&C among humans in society, and it provides guidance for predicting human behavioral activity from the perspective of fractional Brownian motion.

  18. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota.

    Zhou, Li; Wang, Wei; Huang, Jun; Ding, Yu; Pan, Zhouqiang; Zhao, Ya; Zhang, Renkang; Hu, Bing; Zeng, Xiaoxiong

    2016-04-20

    The effects of several parameters on the extraction yield of total polyphenols from grape seeds by pressurized liquid extraction were investigated. The highest recovery of total polyphenols occurred at 80 °C within 5 min, and a single extraction allowed a recovery of more than 97% of total polyphenols. Following the purification with macroporous resin, the effects of grape polyphenols (>94.8%) on human intestinal microbiota were monitored over 36 h incubation by fluorescence in situ hybridization, and short-chain fatty acids (SCFAs) were measured by HPLC. The result showed that the grape polyphenols promoted the changes in the relevant microbial populations and shifted the profiles of SCFAs. Fermentation of grape polyphenols resulted in a significant increase in the numbers of Bifidobacterium spp. and Lactobacillus-Enterococcus group and inhibition in the growth of the Clostridium histolyticum group and the Bacteroides-Prevotella group, with no significant effect on the population of total bacteria. The findings suggest that grape polyphenols have potential prebiotic effects on modulating the gut microbiota composition and generating SCFAs that contribute to the improvements of host health. PMID:26980065

  19. Effect of linear alkylbenzene sulfonate (LAS) on human intestinal Caco-2 cells at non cytotoxic concentrations.

    Bradai, Mohamed; Han, Junkyu; Omri, Abdelfatteh El; Funamizu, Naoyuki; Sayadi, Sami; Isoda, Hiroko

    2016-08-01

    Linear alkylbenzene sulfonate (LAS) is a cytotoxic synthetic anionic surfactant widely present in the environment due to its large-scale production and intensive use in the detergency field. In this study, we investigated the effect of LAS (CAS No. 25155-30-0) at non cytotoxic concentrations on human intestinal Caco-2 cells using different in vitro bioassays. As results, LAS increased Caco-2 cell proliferation at concentrations ranging from 1 to 15 ppm, more significantly for shorter exposure time (24 h), confirmed using flow cytometry and trypan blue exclusion methods. Moreover, proteomics analysis revealed that this effect was associated with an over-expression of elongation factor 2 and dipeptidyl peptidase 3, and a down-regulation of 14-3-3 protein theta, confirmed at mRNA level using real-time PCR. These findings suggest that LAS at non cytotoxic concentrations, similar to those observed at wastewater treatment plants outlets, increases the growth rate of colon cancer cells, raising thereby its tumor promotion effect potential. PMID:25999174

  20. Functional alterations induced by the food contaminant furazolidone on the human tumoral intestinal cell line Caco-2.

    Vincentini, O; De Angelis, I; Stammati, A; Zucco, F

    1993-07-01

    Caco-2 cells, which are derived from a human colon carcinoma and are able to differentiate in culture, have been used to study the effect of furazolidone (FZ), a chemical belonging to the nitrofuran family which is frequently used for the prevention of animal infections. Its potentially toxic residues could remain in some food products of animal origin and affect human health. Toxicity has been measured by different parameters, either in undifferentiated cells (day 7 of culture), or on differentiated cells (day 21 of culture). Our results indicate that FZ may seriously affect the proliferating portion of the intestinal mucosa, while the differentiated cells appear to be more resistant. However, the slight effect recorded on the aspecific and specific functions of the differentiated cells may suggest that the specialized portion of the intestine can also be compromised by the drug. Caco 2 cells seem a good model for a deeper investigation of the mechanism involved in the toxic action of FZ. PMID:20732223

  1. Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells

    Medda, Rituparna; Lyros, Orestis; Schmidt, Jamie L.; Jovanovic, Nebojsa; Nie, Linghui; Link, Benjamin J.; Otterson, Mary F.; Stoner, Gary D.; Shaker, Reza; Rafiee, Parvaneh

    2014-01-01

    Polyphenolic compounds (anthocyanins, flavonoid glycosides) in berries prevent the initiation, promotion, and progression of carcinogenesis in rat’s digestive tract and esophagus, in part, via anti-inflammatory pathways. Angiogenesis has been implicated in the pathogenesis of chronic inflammation and tumorigenesis. In this study, we investigated the anti-inflammatory and anti-angiogenic effects of black raspberry extract (BRE) on two organ specific primary human intestinal microvascular endot...

  2. Development of 3D human intestinal equivalents for substance testing in microliter-scale on a multi-organ-chip

    Jaenicke, Annika; Tordy, Dominique; Groeber, Florian; Hansmann, Jan; Nietzer, Sarah; Tripp, Carolin; Walles, Heike; Lauster, Roland; Marx, Uwe

    2013-01-01

    First published by BioMed Central: Jaenicke, Annika; Tordy, Dominique; Groeber, Florian; Hansmann, Jan; Nietzer, Sarah; Tripp, Carolin; Walles, Heike; Lauster, Roland; Marx, Uwe: Development of 3D human intestinal equivalents for substance testing in microliter-scale on a multi-organ-chip. - In: BMC Proceedings. - ISSN 1753-6561 (online). - 7 (2013), suppl. 6, P65. - doi:10.1186/1753-6561-7-S6-P65.

  3. For Application to Human Spaceflight and ISS Experiments: VESGEN Mapping of Microvascular Network Remodeling during Intestinal Inflammation

    Parsons-Wingerter, Patricia; Reinecker, Hans-Christian

    2012-01-01

    Challenges to long-duration space exploration and colonization in microgravity and cosmic radiation environments by humans include poorly understood risks for gastrointestinal function and cancer. Nonetheless, constant remodeling of the intestinal microvasculature is critical for tissue viability, healthy wound healing, and successful prevention or recovery from vascular-mediated inflammatory or ischemic diseases such as cancer. Currently no automated image analysis programs provide quantitat...

  4. Intestine Transplant

    ... Heart/Lung Kidney Pancreas Kidney/Pancreas Liver Intestine Intestine Transplant Although it is possible for a living donor to donate an intestine segment, most intestine transplants involve a whole organ ...

  5. The shaping of human diversity: filters, boundaries and transitions.

    Mirazón Lahr, Marta

    2016-07-01

    The evolution of modern humans was a complex process, involving major changes in levels of diversity through time. The fossils and stone tools that record the spatial distribution of our species in the past form the backbone of our evolutionary history, and one that allows us to explore the different processes-cultural and biological-that acted to shape the evolution of different populations in the face of major climate change. Those processes created a complex palimpsest of similarities and differences, with outcomes that were at times accelerated by sharp demographic and geographical fluctuations. The result is that the population ancestral to all modern humans did not look or behave like people alive today. This has generated questions regarding the evolution of human universal characters, as well as the nature and timing of major evolutionary events in the history of Homo sapiens The paucity of African fossils remains a serious stumbling block for exploring some of these issues. However, fossil and archaeological discoveries increasingly clarify important aspects of our past, while breakthroughs from genomics and palaeogenomics have revealed aspects of the demography of Late Quaternary Eurasian hominin groups and their interactions, as well as those between foragers and farmers. This paper explores the nature and timing of key moments in the evolution of human diversity, moments in which population collapse followed by differential expansion of groups set the conditions for transitional periods. Five transitions are identified (i) at the origins of the species, 240-200 ka; (ii) at the time of the first major expansions, 130-100 ka; (iii) during a period of dispersals, 70-50 ka; (iv) across a phase of local/regional structuring of diversity, 45-25 ka; and (v) during a phase of significant extinction of hunter-gatherer diversity and expansion of particular groups, such as farmers and later societies (the Holocene Filter), 15-0 ka.This article is part of the

  6. Conversion of 5-fluorocytosine to 5-fluorouracil by human intestinal microflora

    5-Fluorocytosine (FC) is used to treat systemic fungal infections in man. Its clinical effectiveness has been limited by hematologic toxicity which may be secondary to the formation of 5-fluorouracil (FU). It is unclear how FU is formed since human cells lack cytosine deaminase. The present study examined if intestinal microflora (IMF) could convert FC to FU in man. An in vitro semicontinuous culture system was inoculated with human feces and maintained with sterile nutrient suspension. The microbial community was assessed for cell count and anaerobes as well as formation of volatile fatty acids and CH4. The system approximated that believed to occur in vivo. The study was initiated with addition of purified [6-14C]-FC. Unlabelled FC was then added to the system daily for 2 weeks following which [6-14C]-FC was again added. Following each addition of [6-14C]-FC, samples were removed at 2,4,8,24,48,72, and 96 hr. Utilizing HPLC, FC and FU could be separated with quantitation of radioactivity in each peak. Following the initial dose, no detectable FU was observed during the first 8 hr, but after 24 hr increasing levels were detected (9.42 μg FU/ml after 4 days). Following chronic administration of FC, increased levles of FU were noted without an 8 hr lag time in the production of FU (31.86 μg FU/ml after 4 days). In summary, these studies demonstrate that IMF can convert FC to FU possibly accounting for toxicity observed following administration of FC

  7. Characterization of calcium transport by basolateral membrane vesicles of human small intestine

    The present studies investigated the mechanism of Ca2+ transport across basolateral membrane vesicles (BLMVs) prepared from human small intestine. Ca2+ uptake represented transport into the intravesicular space as evident by osmolality study and by the demonstration of Ca2+ efflux from the intravesicular space by Ca2+ ionophore A23187. Ca2+ uptake was stimulated by Mg2+-ATP. Kinetic parameters for ATP-dependent Ca2+ uptake revealed a Michaelis constant (Km) of 0.02±0.01 μM and a maximum rate of uptake (Vmax) of 1.00±0.03 nmol·mg protein-1·min-1. Ca2+ uptake in the presence of Mg2+ was inhibited by 75%. The Km of ATP concentration required for half-maximal Ca2+ uptake was 0.50±0.1 mM. Basolateral membranes depleted of calmodulin by EDTA osmotic shock decreased ATP-dependent Ca2+ uptake by 65%. Trifluoperazine, an anticalmodulin drug, inhibited ATP-dependent Ca2+ uptake by 50%, while no inhibition was noted in calmodulin-depleted membranes. Efflux of Ca2+ in the BLMVs was stimulated by trans-Na+. Na+-dependent Ca2+ uptake was saturable with respect to Ca2+ concentration and exhibited a Km of 0.09±0.03 μM and a Vmax of 1.08±0.01 nmol·mg protein-1·min-1. These results are consistent with the existence of a Na+-Ca2+ exchange system and ATP and Mg2+-dependent, calmodulin-regulated Ca2+, transport mechanism in BLMVs of human enterocytes

  8. Comparison of DNA extraction kits for PCR-DGGE analysis of human intestinal microbial communities from fecal specimens

    Nakatsu Cindy H

    2010-05-01

    Full Text Available Abstract Background The influence of diet on intestinal microflora has been investigated mainly using conventional microbiological approaches. Although these studies have advanced knowledge on human intestinal microflora, it is imperative that new methods are applied to facilitate scientific progress. Culture-independent molecular fingerprinting method of Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE has been used to study microbial communities in a variety of environmental samples. However, these protocols must be optimized prior to their application in order to enhance the quality and accuracy of downstream analyses. In this study, the relative efficacy of four commercial DNA extraction kits (Mobio Ultra Clean® Fecal DNA Isolation Kit, M; QIAamp® DNA Stool Mini Kit, Q; FastDNA® SPIN Kit, FSp; FastDNA® SPIN Kit for Soil, FSo were evaluated. Further, PCR-DGGE technique was also assessed for its feasibility in detecting differences in human intestinal bacterial fingerprint profiles. Method Total DNA was extracted from varying weights of human fecal specimens using four different kits, followed by PCR amplification of bacterial 16S rRNA genes, and DGGE separation of the amplicons. Results Regardless of kit, maximum DNA yield was obtained using 10 to 50 mg (wet wt of fecal specimens and similar DGGE profiles were obtained. However, kits FSp and FSo extracted significantly larger amounts of DNA per g dry fecal specimens and produced more bands on their DGGE profiles than kits M and Q due to their use of bead-containing lysing matrix and vigorous shaking step. DGGE of 16S rRNA gene PCR products was suitable for capturing the profiles of human intestinal microbial community and enabled rapid comparative assessment of inter- and intra-subject differences. Conclusion We conclude that extraction kits that incorporated bead-containing lysing matrix and vigorous shaking produced high quality DNA from human fecal

  9. Development of microfluidic cell culture devices towards an in vitro human intestinal barrier model

    Tan, Hsih-Yin

    displaying folds that closely resembled the intestinal villi and formation of a tight barrier. Furthermore, the microelectrodes embedded in the microchip also allow real-time monitoring of the barrier integrity by means of measuring the trans-epithelial electrical resistance. Demonstrations of transport...... enable real-time detection of cell responses, adjustment of cellular stimulation etc. leading to establishment of conditional experiments. In this project, microfluidic systems engineering was leveraged to develop an eight chamber multi-layer microchip for intestinal barrier studies. Sandwiched between...... without compromising the epithelial cell viability and barrier function. Such a platform paves the way towards an alternative in vitro intestinal model for high throughput screening of drugs, chemicals, pathogens, intestinal diseases as well as toxicological studies....

  10. Human intestinal epithelial cells in innate immunity : interactions with normal microbiota and pathogenic bacteria

    Ou, Gangwei

    2009-01-01

    Rod-shaped bacteria were previously shown to be associated with the small intestinal epithelium of children with celiac disease (CD). Using culture-dependent and independent methods, we characterized the microbiota of small intestine in children with CD and controls. The normal microbiota constitutes an unique organ-specific biofilm. Dominant bacteria are Streptococcus, Neisseria, Veillonella, Gemella, Actinomyces, Rothia and Haemophilus. Altogether 162 Genus Level Operational Taxonomic Units...