WorldWideScience

Sample records for halogenated greenhouse gases

  1. Greenhouse Gases

    Science.gov (United States)

    ... in the atmosphere. Many gases exhibit these greenhouse properties. Some gases occur naturally. Some gases are produced ... and the Environment Where Greenhouse Gases Come From Outlook for Future Emissions FAQs How much carbon dioxide ...

  2. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the enhanced greenhouse effect? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  3. Atmospheric Concentrations of Greenhouse Gases

    Science.gov (United States)

    This indicator presents trends in atmospheric concentrations of several greenhouse gases (GHGs) over geological time and in recent years. Changes in atmospheric GHGs, in part caused by human activities, affect the amount of energy held in the Earth-atmosphere system and thus a...

  4. Climate Change and Greenhouse Gases

    Science.gov (United States)

    Ledley, Tamara S.; Sundquist, Eric; Schwartz, Stephen; Hall, Dorothy K.; Fellows, Jack; Killeen, Timothy

    1999-01-01

    The American Geophysical Union (AGU), as a scientific organization devoted to research on the Earth and space sciences, provides current scientific information to the public on issues pertinent to geophysics. The Council of the AGU approved a position statement on Climate Change and Greenhouse Gases in December 1998. The statement, together with a short summary of the procedures that were followed in its preparation, review, and adoption were published in the February 2, 1999 issue of Eos ([AGU, 1999]. The present article reviews scientific understanding of this issue as presented in peer-reviewed publications that serves as the underlying basis of the position statement.

  5. Energy efficiency and greenhouse gases

    International Nuclear Information System (INIS)

    Estonia's energy balance for 1990 - 1994 is characterized by the dramatic changes in the economy after regaining independence in 1991. In 1990 - 1993, primary energy supply decreased about 1.9 times. The reasons were a sharp decrease in exports of electric energy and industrial products, a steep increase in fuel prices and the transition from the planned to a market-oriented economy. Over the same period, the total amount of emitted greenhouse gases decreased about 45%. In 1993, the decrease in energy production and consumption stopped, and in 1994, a moderate increase occurred (about 6%), which is a proof stabilizing economy. Oil shale power engineering will remain the prevailing energy resource for the next 20 - 25 years. After stabilization, the use of oil shale will rise in Estonia's economy. Oil shale combustion in power plants will be the greatest source of greenhouse gases emissions in near future. The main problem is to decrease the share of CO2 emissions from the decomposition of carbonate part of oil shale. This can be done by separating limestone particles from oil shale before its burning by use of circulating fluidized bed combustion technology. Higher efficiency of oil shale power plants facilitates the reduction of CO2 emissions per generated MWh electricity considerably. The prognoses for the future development of power engineering depend essentially on the environmental requirements. Under the highly restricted development scenario, which includes strict limitations to emissions (CO2 , SO2 , thermal waste) and a severe penalty system, the competitiveness of nuclear power will increase. The conceptual steps taken by the Estonian energy management should be in compliance with those of neighboring countries, including the development programs of the other Baltic states

  6. The storage of greenhouse gases

    International Nuclear Information System (INIS)

    Since 1850, that is to say the beginning of the industrial era,the concentration of carbon dioxide in the atmosphere has risen from 280 ppm to 370 ppm, this increase is mainly due to the combustion of fossil fuels. Today fossil fuels represent 85% of all the energy used in the world. Fearing progressive climatic changes, more and more governments become aware of the necessity of reducing the emission of greenhouse gases. A more efficient use of energy and the promoting of renewable energies and of the nuclear energy are the most evident solutions but they appear to be insufficient. A third solution is the storage of carbon dioxide in geological layers. This technique has been put into use since 1996 in Norway. An off-shore natural gas platform injects carbon dioxide in a geological reservoir situated 1000 meters below the ocean bed. The injection of CO2 could be used in oil fields in order to facilitate the extraction of petroleum. Far more large and efficient reservoirs would be the oceans, they already hold up 40000 109 tons of dissolved CO2. Even if the double of the carbon dioxide accumulated in the atmosphere since 1850 were injected, the concentration of carbon in sea waters would rise by less than 2%. The safety of CO2 storage and the impact on the environment of ocean injection sites are being studied. (A.C.)

  7. Voluntary reporting of greenhouse gases, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  8. GREENHOUSE GASES AND MEANS OF PREVENTION

    Directory of Open Access Journals (Sweden)

    Dušica Stojanovi?

    2013-09-01

    Full Text Available The greenhouse effect can be defined as the consequence of increased heating of the Earth's surface, as well as the lower atmosphere by carbon dioxide, water vapor, and other trace amounts gases. It is well-known that human industrial activities have released large amounts of greenhouse gases in the atmosphere, about 900 billion tons of carbon dioxide, and it is estimated that up to 450 billion are still in the atmosphere. In comparison to greenhouse gases water vapor is one of the greatest contributors to the greenhouse effect on Earth. Many projects, as does the PURGE project, have tendences to build on the already conducted research and to quantify the positive and negative impacts on health and wellbeing of the population with greenhouse gas reduction strategies that are curently being implemented and should be increasingly applied in various sectors and urban areas, having offices in Europe, China and India.

  9. The ice record of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Raynaud, D.; Barnola, J.M.; Chappellaz, J.; Delmas, R.J.; Lorius, C. (Cenre National de la Recherche Scientifique, Saint Martin d' Heres Cedex (France)); Jouzel, J. (Commissariat a l' Energie Atomique Saclay, Yvette (France))

    1993-02-12

    Gases trapped in polar ice proved our most direct record of the changes in greenhouse gas levels during the past 150,000 years. The best documented trace-gas records are for CO[sub 2] and CH[sub 4]. The measurements corresponding to the industrial period document the recent changes in growth rate. The variability observed over the last 1000 years constrains the possible feedbacks of a climate change on the trace gases under similar conditions as exist today. Changes in the levels of greenhouse gases during the glacial-interglacial cycle overall paralleled, at least at high southern latitudes, changes in temperature; this relation suggests that greenhouse gases play an important role as an amplifier of the initial orbital forcing of Earth's climated and also helps to assess the feedbacks on the biogeochemical cycles in a climate system in which the components are changing at different rates.

  10. Thermal efficiency of the principal greenhouse gases

    International Nuclear Information System (INIS)

    Atmospheric gases are ranked according to the efficiency with which they absorb and radiate longwave radiation. The open international HITRAN database of gaseous absorption lines of high resolution together with inverse Fourier transform were used. The autocorrelation functions of the total dipole moment of the basic greenhouse gases molecules such as H2O, CO2, O3, N2O, and CH4 were obtained. Absorption coefficient spectra and emission power spectra of infrared radiation of these gases were calculated. Analysis of the emissive ability of all gases under consideration was carried out. Compared to CO2, all the gases under investigation have more effective emission except ozone. An efficiency criterion of IR absorption and emission is defined and is calculated for each studied gas, and the gases are ranked accordingly as follows (from strong to weak): H2O, CH4, CO2, N2O, and O3. (paper)

  11. Electricity generation and greenhouse gases

    International Nuclear Information System (INIS)

    A comparison is presented of the emissions of carbon dioxide and methane associated with electricity generation and residential heating options found in Canada. Greenhouse impacts of thermal generating technologies and hydroelectric projects are evaluated along with impacts of fuel switching options. Technologies and options considered include coal-fired and combined-cycle plants, heat pumps, and direct combustion of oil or gas in new residential furnaces. Environmental effects taken into account include leaks of methane from natural gas production and coal mining, production of carbon dioxide and methane from decomposition of organic material flooded in a hydroelectric development, and combustion of fuels. It is seen that fuel switching from thermal generation sources to direct combustion of natural gas in space and water heating significantly reduces both total energy use and greenhouse gas emissions. Additional gains can be achieved through use of high-efficiency technology. Substitution of direct combustion of oil where gas is unavailable for incremental oil- or coal-fired electricity will also reduce greenhouse gas emissions. Since direct combustion of natural gas is usually less costly than construction of new electric generating facilities, it may also prove to be a more successful strategy for encouraging energy exports by hydro-based systems to displace thermal electricity. 16 refs., 2 tabs

  12. Unconventional views to generation of greenhouse gases

    Directory of Open Access Journals (Sweden)

    Buryan Petr

    2012-12-01

    Full Text Available The majority of the implemented measures lowering the amount of originating greenhouse gases derive particularly fromthe balances targeted into power industry, transportation or heavy industry. The article summarized date shoving that the dumpingof communal biodegradace wastes related to catering in many aspects competes in the creation of grenhouses gates related with the cartransportation or power industry.

  13. Unconventional views to generation of greenhouse gases

    OpenAIRE

    Buryan Petr

    2012-01-01

    The majority of the implemented measures lowering the amount of originating greenhouse gases derive particularly fromthe balances targeted into power industry, transportation or heavy industry. The article summarized date shoving that the dumpingof communal biodegradace wastes related to catering in many aspects competes in the creation of grenhouses gates related with the cartransportation or power industry.

  14. Greenhouse gases and global change: International collaboration

    International Nuclear Information System (INIS)

    Much of the current concern about the fate of the global environment is related to the increased concentration of greenhouse gases and possible effects on the global climate. The chemical composition of the atmosphere, which is changing rapidly, is, to a large degree, determined by the release and uptake of a variety of trace gases by the biosphere. The biospheric production of relatively small amounts of trace gases such as carbon monoxide, methane, and nitrous oxide is of special interest, as they trap infrared radiation, thus warming the Earth's surface. These greenhouse gases and other biogenic trace gases, such as carbon monoxide, odd nitrogen oxides (NOx), and a range of volatile organic compounds play a key role in atmospheric chemistry by affecting tropospheric concentration of ozone, the penetration of photochemically active solar ultra-violet radiation, the production of hydroxyl radicals, and, in the case of dimethyl sulfide, cloud formation. Within the decade of the 1990's, the International Geosphere-Biosphere Program will launch a worldwide research effort, unprecedented in its scope, to address the functioning of the Earth system and to understand how this system is changing. The body of information generated by the IGBP will form the scientific underpinning for predictions relating to future causes and effects of global changes. Through its observational network and process studies, and the effective communication of the resulting data to scientists in all nations committed to this endeavor, the IGBP will help provide the world's decision makers with the input necessary to wisely manage the global environment

  15. Greenhouse gases study in Amazonia

    International Nuclear Information System (INIS)

    The Amazon plays an important role on the global carbon cycle, as changing as carbon storage, since Amazon Basin is the biggest area of tropical forest, around 50% of global. Natural's process, deforestation, and use land are CO2 sources. The Amazon forest is a significant source of N2O by soil process, and CH4 by anaerobic process like flooded areas, rice cultures, and others sources. This project is part of the LBA project (Large-Scale Biosphere Atmosphere Experiment in Amazonia), and this project is 'Vertical profiles of carbon dioxide and other trace gas species over the Amazon basin using small aircraft'. Since December 2000 vertical profiles of CO2, CH4, CO, H2, N2O and SF6 have been measured above central Amazonia. The local sampling was over Tapajos National Forest, a primary forest in Para State, where had a CO2 flux tower and an east impact area with sources like animals, rice cultivation, biomass burning, etc, to compare the influence of an impact area and a preserved area in the profiles. The Reserva Biologica de Cuieiras, at Amazon State, is the other studied place, where there already exists a CO2 flux tower, and an east preserved area at this State, to compare with the Cuieiras. The sampling has been carried out on vertical profile from 1000 ft up to 12000 ft using a semi-automated sampling package developed at GMD/NOAA and a small aircraft. The analysis uses the MAGICC system (Multiple Analysis of Gases Influence Climate Change) which is installed at the Atmospheric Chemistry Laboratory (LQA) in IPEN (Instituto de Pesquisas Energeticas e Nucleares). The results showed that all gases studied, except H2 gas, has been following the global trend. At the Para State, for the studied years, the Amazonian Forest performed as small CO2 sink. To compare Wet and Dry Seasons, subtracted the Ascension concentration values in the period to remove the global influence. So that, in the 2004 and 2005 wet seasons and 2004 dry season comparison it was observed 2 ppm CO2 concentration higher on wet seasons. At Amazon State the wet season profiles had source behavior presenting 10 ppm CO2 concentration higher under PBL (Planetary Boundary Layer) . In both states concentrations were higher than Ascension Island concentration. CH4 concentration over Para and Amazonia States presented higher values than in Ascension in 80 ppb and 25 ppb, respectively. Dry Season concentrations have been higher than Wet Season concentrations. N2O concentrations in Para State was similar to Ascension concentration until 2003, when its concentration has been and enhancement, because of N fertilizer utilization at near area. N2O concentration was similar in the two studied States, presenting discreet source at Wet Season. The SF6 concentration presented the global trend, and it was a little beat higher over Amazon State, suggesting different air origin. The CO concentration was higher under PBL and presented values during Dry Season higher in 130 ppb and 150 ppb than Wet Season, for burning contribution. The highest average concentration was over Amazon State, which agrees with the different air origin hypothesis. H2 gas presented behavior similar to CO gas in the Dry Season. The Amazon State performed a small sink role during Wet Season and in Para State is higher during dry season performed like a source and during wet season like a sink. (author)

  16. Voluntary reporting of greenhouse gases 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  17. Greenhouse effect gases inventory in France during the years 1990-1999

    International Nuclear Information System (INIS)

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF6). Emissions of sulphur dioxide (SO2), nitrogen oxides (NOx), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NOx, 23% as regards NMVOCs, 33% for CO and by 44% regarding SO2. Out of the six greenhouse gases covered by the Kyoto Protocol, CO2 accounts for the largest share in total GWP emissions (70 %), followed by N2O (16 %), CH4 (12 %), HFCs (0.99 %), SF6 (0.5 %), and PFCs (0.39 %). (author)

  18. Effect of Greenhouse Gases Dissolved in Seawater

    Directory of Open Access Journals (Sweden)

    Shigeki Matsunaga

    2015-12-01

    Full Text Available A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  19. Sources and Sinks of Greenhouse Gases

    International Nuclear Information System (INIS)

    It has been observed that there has been a noticeable increase of Greenhouse gases (GHGs) into the atmosphere since the beginning of industrial era. thus, atmospheric concentrations of carbon dioxide (CO2) are over 30% above the pre-industrial level of 200 years ago, having reached 358 ppmv (WWF report, 1996). Concentration of methane (CH4) have risen by 145% from the pre-industrial levels. This is equivalent to a third of the radiative forcing effects of CO2. These changes could be traced to two main sources of GHGs; natural and anthropogenic

  20. Effect of Greenhouse Gases Dissolved in Seawater.

    Science.gov (United States)

    Matsunaga, Shigeki

    2016-01-01

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region. PMID:26729101

  1. Preparing for the regulation of greenhouse gases

    International Nuclear Information System (INIS)

    The Earth is warming, and this belief is shared by the leading scientists that sit on the Intergovernmental Panel on Climate Change, where it is expected that the average surface temperature of the Earth will rise 2.5 to 10.4 degrees Fahrenheit between 1990 and 2100. It is felt that the main culprit is greenhouse gas emissions such as carbon dioxide. The Kyoto Protocol was adopted in 1992 with the aim of reducing greenhouse gas emissions to specified targets below 1990 levels by 2012. For Canada, this commitment is a reduction to 6 per cent below 1990 levels. To avoid penalizing a country that adopts greenhouse gas regulations where the neighbouring country does not follow, negotiations are being held at the international level in an attempt to keep everyone on a level playing field. The United States recently decided not to pursue a cap on greenhouse gas emissions, which could seriously jeopardize the effectiveness of the Kyoto Protocol. The authors examined what the future looks like, in terms of policy options and market-based instruments. In the next section, they discussed the preparations for the regulation of greenhouse gases. The topics reviewed were carbon taxes, command and control regulation, emissions trading, contracts and baseline protection. Canada's baseline protection initiative (BPI) process was closely examined, and identified what reductions are eligible and touched upon ownership issues. The authors concluded that it might be prudent for emitters in Canada to prepare for a variety of regulatory scenarios, as there are a number of uncertainties remaining. Emissions trading must be carefully documented

  2. Computing land use emissions of greenhouse gases

    International Nuclear Information System (INIS)

    A model has been developed to estimate the regional emission of greenhouse gases from land-use related sources. Driving forces for this model are the changing regional demand for food and wood products driven by demographic and economic developments. To include the environmental conditions, which are essential factors determining the flux for certain sources, emissions are grid-based where possible. Grid-based explicit calculations are given for CH4 emission from rice, wetlands, emissions from deforestation, savanna burning and agricultural waste burning and N2O from natural soils, arable lands and deforestation. For a number of sources (landfills, domestic sewage treatment, termites, methane hydrates and aquatic sources) geographically explicit calculations are not yet possible because of data limitations. For most of the sources the global results of the calculations are in agreement with other scenario studies, although there are differences for a number of individual sources. 59 refs., 3 figs., 8 tabs

  3. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    Science.gov (United States)

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  4. An overview on non-CO2 greenhouse gases

    OpenAIRE

    Pulles, T.; Amstel, A.R., van

    2010-01-01

    Non-CO2 greenhouse gases, included in the Kyoto Protocol, are methane (CH4), nitrous oxide (N2O), hexafluorocarbons (HFC), perfluorinated compounds (PFC) and sulphur hexafluoride (SF6). Together they account for about 25% of the present global greenhouse gas emissions. Reductions in emissions of these gases have occurred in the industrialised countries, and they contribute to the efforts to reach the target of 5% greenhouse gas emission reduction as agreed in the Kyoto Protocol for these coun...

  5. Modern inhalation anesthetics: Potent greenhouse gases in the global atmosphere

    Science.gov (United States)

    Vollmer, Martin K.; Rhee, Tae Siek; Rigby, Matt; Hofstetter, Doris; Hill, Matthias; Schoenenberger, Fabian; Reimann, Stefan

    2015-03-01

    Modern halogenated inhalation anesthetics undergo little metabolization during clinical application and evaporate almost completely to the atmosphere. Based on their first measurements in a range of environments, from urban areas to the pristine Antarctic environment, we detect a rapid accumulation and ubiquitous presence of isoflurane, desflurane, and sevoflurane in the global atmosphere. Over the past decade, their abundances in the atmosphere have increased to global mean mole fractions in 2014 of 0.097ppt, 0.30ppt, and 0.13ppt (parts per trillion, 10-12, in dry air), respectively. Emissions of these long-lived greenhouse gases inferred from the observations suggest a global combined release to the atmosphere of 3.1 ± 0.6 million t CO2 equivalent in 2014 of which ?80% stems from desflurane. We also report on halothane, a previously widely used anesthetic. Its global mean mole fraction has declined to 9.2ppq (parts per quadrillion, 10-15) by 2014. However, the inferred present usage is still 280 ±120t yr-1.

  6. 75 FR 26904 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability; Default Emission Factors...

    Science.gov (United States)

    2010-05-13

    ...FRL-9150-9] Mandatory Reporting of Greenhouse Gases: Notice of Data Availability...rule, Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated...for monitoring and reporting greenhouse gases (GHGs) from electronics...

  7. 75 FR 17331 - Public Hearings for the Mandatory Reporting Rule for Greenhouse Gases

    Science.gov (United States)

    2010-04-06

    ...Mandatory Reporting Rule for Greenhouse Gases AGENCY: Environmental Protection...related to mandatory reporting of greenhouse gases, which will be published separately...amend the Mandatory Reporting of Greenhouse Gases rule, published on...

  8. Cosmic-Ray Reaction and Greenhouse Effect of Halogenated Molecules: Culprits for Atmospheric Ozone Depletion and Global Climate Change

    Science.gov (United States)

    Lu, Q.-B.

    2013-07-01

    This study is focused on the effects of cosmic rays (solar activity) and halogen-containing molecules (mainly chlorofluorocarbons — CFCs) on atmospheric ozone depletion and global climate change. Brief reviews are first given on the cosmic-ray-driven electron-induced-reaction (CRE) theory for O3 depletion and the warming theory of halogenated molecules for climate change. Then natural and anthropogenic contributions to these phenomena are examined in detail and separated well through in-depth statistical analyses of comprehensive measured datasets of quantities, including cosmic rays (CRs), total solar irradiance, sunspot number, halogenated gases (CFCs, CCl4 and HCFCs), CO2, total O3, lower stratospheric temperatures and global surface temperatures. For O3 depletion, it is shown that an analytical equation derived from the CRE theory reproduces well 11-year cyclic variations of both polar O3 loss and stratospheric cooling, and new statistical analyses of the CRE equation with observed data of total O3 and stratospheric temperature give high linear correlation coefficients ? 0.92. After the removal of the CR effect, a pronounced recovery by 20 25 % of the Antarctic O3 hole is found, while no recovery of O3 loss in mid-latitudes has been observed. These results show both the correctness and dominance of the CRE mechanism and the success of the Montreal Protocol. For global climate change, in-depth analyses of the observed data clearly show that the solar effect and human-made halogenated gases played the dominant role in Earth's climate change prior to and after 1970, respectively. Remarkably, a statistical analysis gives a nearly zero correlation coefficient (R = -0.05) between corrected global surface temperature data by removing the solar effect and CO2 concentration during 1850-1970. In striking contrast, a nearly perfect linear correlation with coefficients as high as 0.96-0.97 is found between corrected or uncorrected global surface temperature and total amount of stratospheric halogenated gases during 1970-2012. Furthermore, a new theoretical calculation on the greenhouse effect of halogenated gases shows that they (mainly CFCs) could alone result in the global surface temperature rise of 0.6°C in 1970-2002. These results provide solid evidence that recent global warming was indeed caused by the greenhouse effect of anthropogenic halogenated gases. Thus, a slow reversal of global temperature to the 1950 value is predicted for coming 5 7 decades. It is also expected that the global sea level will continue to rise in coming 1 2 decades until the effect of the global temperature recovery dominates over that of the polar O3 hole recovery; after that, both will drop concurrently. All the observed, analytical and theoretical results presented lead to a convincing conclusion that both the CRE mechanism and the CFC-warming mechanism not only provide new fundamental understandings of the O3 hole and global climate change but have superior predictive capabilities, compared with the conventional models.

  9. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Science.gov (United States)

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  10. Radiative forcings for 28 potential Archean greenhouse gases

    OpenAIRE

    Byrne, B; Goldblatt, C.

    2014-01-01

    Despite reduced insolation in the late Archean, evidence suggests a~warm climate which was likely sustained by a stronger greenhouse effect, the so-called faint young sun problem (FYSP). CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4, and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HIT...

  11. Radiative forcings for 28 potential Archean greenhouse gases

    OpenAIRE

    Byrne, B; Goldblatt, C.

    2014-01-01

    Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP). CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITR...

  12. 77 FR 5514 - Mandatory Reporting of Greenhouse Gases: Notice of Preliminary Determinations Regarding Requests...

    Science.gov (United States)

    2012-02-03

    ...FRL-9626-8] Mandatory Reporting of Greenhouse Gases: Notice of Preliminary Determinations...Gas Production Category of the Greenhouse Gas Reporting Rule AGENCY: Environmental...potentials for eight fluorinated greenhouse gases submitted by DuPont de...

  13. 75 FR 75059 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-12-01

    ...and 98 Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration...2060-AP88 Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration...promulgating a regulation to require greenhouse gas monitoring and reporting...

  14. 76 FR 61293 - Extension of Public Comment Period: Mandatory Reporting of Greenhouse Gases: Technical Revisions...

    Science.gov (United States)

    2011-10-04

    ...Period: Mandatory Reporting of Greenhouse Gases: Technical Revisions to the...Gas Systems Categories of the Greenhouse Gas Reporting Rule AGENCY: Environmental...action, Mandatory Reporting of Greenhouse Gases: Technical Revisions to...

  15. 77 FR 10434 - Mandatory Reporting of Greenhouse Gases Rule: Confidentiality Determinations and Best Available...

    Science.gov (United States)

    2012-02-22

    ...2060-AQ70 Mandatory Reporting of Greenhouse Gases Rule: Confidentiality Determinations...of the Mandatory Reporting of Greenhouse Gases Rule. On July 7, 2010, the...technical information, contact the Greenhouse Gas Reporting Rule Hotline...

  16. Halogenated source gases measured by FTIR at the Jungfraujoch station: updated trends and new target species

    Science.gov (United States)

    Mahieu, Emmanuel; Bader, Whitney; Bovy, Benoît; Franco, Bruno; Lejeune, Bernard; Servais, Christian; Notholt, Justus; Palm, Mathias; Toon, Geoffrey C.

    2015-04-01

    The atmospheric abundances of chlorine and fluorine increased very significantly during the second half of last century, following large emissions of long-lived halogenated source gases used in numerous industrial and domestic applications. Given the phase-out schedule of ozone depleting substances adopted by the Montreal Protocol, its Amendments and Adjustments, the loading of the CFCs in the Earth's atmosphere is now slowly decreasing. In contrast, their first replacement products, the HCFCs, are still on the rise, with current rates of increase substantially larger than at the beginning of the 21st century. As potent greenhouse gases, a suite of fluorinated compounds are targeted by the Kyoto Protocol. At present, they continue to accumulate in the atmosphere (Montzka et al., 2011). Given their environmental impacts, continuous monitoring of the abundances of these gases is of primary importance. In addition to the in situ networks, remote sensing techniques operated from space, balloon or from the ground provide valuable information to assess the long-term tropospheric and lower stratospheric trends of an increasing number of halogenated source gases, as well as of the reservoirs resulting from their photolysis in the stratosphere (e.g. Mahieu et al., 2014a). In this contribution, we will present decadal time series of halogenated source gases monitored at the high altitude station of the Jungfraujoch (46.5° N, 8° E, 3580 m asl) with Fourier Transform Infared (FTIR) spectrometers, within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, see http://www.ndacc.org). Total column trends presented in previous studies for CFC-11, -12 and HCFC-22 (Zander at al., 2008), CCl4 (Rinsland et al., 2012), HCFC-142b (Mahieu et al., 2013), CF4 (Mahieu et al., 2014b) and SF6 (Zander et al., 2008) will be updated using the latest available Jungfraujoch solar observations. Investigations dealing with the definition of approaches to retrieve additional halogenated source gases from FTIR spectra will also be evoked. Our trend results will be critically discussed and compared with measurements performed in the northern hemisphere by the in situ networks. Acknowledgments The University of Liège contribution to the present work has primarily been supported by the AGACC-II project of the SSD program funded by the Belgian Federal Science Policy Office (BELSPO), Brussels. E. Mahieu is Research Associate with the F.R.S. - FNRS. Laboratory developments and mission expenses at the Jungfraujoch station were funded by the F.R.S. - FNRS and the Fédération Wallonie-Bruxelles, respectively. We thank the International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat (HFSJG, Bern) for supporting the facilities needed to perform the observations. We further acknowledge the vital contribution from all the Belgian colleagues in performing the Jungfraujoch observations used here. References Mahieu, E., S. O'Doherty, S. Reimann, et al., First retrievals of HCFC-142b from ground-based high-resolution FTIR solar observations: application to high-altitude Jungfraujoch spectra, poster presentation at the 'EGU 2013 General Assembly', 07-12 April 2013, Vienna, Austria, 2013. [http://hdl.handle.net/2268/144709] Mahieu, E., M.P. Chipperfield, J. Notholt, et al., Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes, Nature, 515, 104-107, doi:10.1038/nature13857, 2014a. Mahieu, E., R. Zander, G.C. Toon, et al., Spectrometric monitoring of atmospheric carbon tetrafluoride (CF4) above the Jungfraujoch station since 1989: evidence of continued increase but at a slowing rate, Atmos. Meas. Tech., 7, 333-344, 2014b. [http://hdl.handle.net/2268/154767] Montzka, S.A., S. Reimann, A. Engel, et al., Ozone-Depleting Substances (ODSs) and Related Chemicals, Chapter 1 in Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project-Report No. 52, 516 pp., World Meteorological Organization, Geneva, Switzerland, 2011. Rinsland, C.P., E. Mahieu, P.

  17. European emissions of halogenated greenhouse gases inferred from atmospheric measurements.

    Science.gov (United States)

    Keller, Christoph A; Hill, Matthias; Vollmer, Martin K; Henne, Stephan; Brunner, Dominik; Reimann, Stefan; O'Doherty, Simon; Arduini, Jgor; Maione, Michela; Ferenczi, Zita; Haszpra, Laszlo; Manning, Alistair J; Peter, Thomas

    2012-01-01

    European emissions of nine representative halocarbons (CFC-11, CFC-12, Halon 1211, HCFC-141b, HCFC-142b, HCFC-22, HFC-125, HFC-134a, HFC-152a) are derived for the year 2009 by combining long-term observations in Switzerland, Italy, and Ireland with campaign measurements from Hungary. For the first time, halocarbon emissions over Eastern Europe are assessed by top-down methods, and these results are compared to Western European emissions. The employed inversion method builds on least-squares optimization linking atmospheric observations with calculations from the Lagrangian particle dispersion model FLEXPART. The aggregated halocarbon emissions over the study area are estimated at 125 (106-150) Tg of CO(2) equiv/y, of which the hydrofluorocarbons (HFCs) make up the most important fraction with 41% (31-52%). We find that chlorofluorocarbon (CFC) emissions from banks are still significant and account for 35% (27-43%) of total halocarbon emissions in Europe. The regional differences in per capita emissions are only small for the HFCs, while emissions of CFCs and hydrochlorofluorocarbons (HCFCs) tend to be higher in Western Europe compared to Eastern Europe. In total, the inferred per capita emissions are similar to estimates for China, but 3.5 (2.3-4.5) times lower than for the United States. Our study demonstrates the large benefits of adding a strategically well placed measurement site to the existing European observation network of halocarbons, as it extends the coverage of the inversion domain toward Eastern Europe and helps to better constrain the emissions over Central Europe. PMID:22192076

  18. Emissions of greenhouse gases in the United States 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  19. Greenhouse effect of chlorofluorocarbons and other trace gases

    Science.gov (United States)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  20. Impact of greenhouse gases on the Earth's ozone layer

    Science.gov (United States)

    Zadorozhny, Alexander

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2 , CH4 , and N2 O in the future long-term changes of the Earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the Earth's ozone layer, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2 , essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the ozone layer here. The mechanism of the impact of the greenhouse gases on the polar ozone by means of modification of sulphate aerosol distribution in the atmosphere has been revealed and investigated, too. Numerical experiments show that enhancement of the surface area density of sulphate aerosol in the stratosphere caused by the growth of the greenhouse gases will reduce significantly the ozone depletion during the Antarctic ozone hole.

  1. Turnover and transport of greenhouse gases in a Danish wetland

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher

    2011-01-01

    Natural wetlands act as both sources and sinks of greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil to the atmosphere. Production and consumption of these gases in the soil are controlled by a series of highly dynamic and interrelated processes involving plants, soil and microorganisms. These processes are regulated by different physio-chemical drivers such as soil moisture content, soil temperature, nutrient and oxygen (O2) availability. In wetla...

  2. Production of Greenhouse Gases in The Atmosphere of Early Mars

    Science.gov (United States)

    Kress, Monika E.; McKay, Christopher P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Mars was much warmer and wetter 3.5 to 4 billion years ago than it is today, suggesting that its climate was able to support life in the distant past. Carbon dioxide and methane are greenhouse gases which may have kept Mars warm during this time. We explore the possibility that these gases were produced via grain-catalyzed reactions in the warm, dusty aftermath of large comet and/or asteroid impacts which delivered Mars, volatile inventory.

  3. Biomass Burning and the Production of Greenhouse Gases. Chapter 9

    Science.gov (United States)

    Levine, Joel S.

    1994-01-01

    Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along with methane, lead to the chemical production of tropospheric ozone (another greenhouse gas) as well as control the concentration of the hydroxyl radical, which regulates the lifetime of almost every atmospheric gas. Following biomass burning, biogenic emissions of nitrous oxide, nitric oxide, and methane are significantly enhanced. It is hypothesized that enhanced postburn biogenic emissions of these gases are related to fire-induced changes in soil chemistry and/or microbial ecology. Biomass burning, once believed to be a tropical phenomenon, has been demonstrated by satellite imagery to also be a regular feature of the world's boreal forests. One example of biomass burning is the extensive 1987 fire that destroyed more than 12 million acres of boreal forest in the People's Republic of China and across its border in the Soviet Union. Recent estimates indicate that almost all biomass burning is human-initiated and that it is increasing with time. With the formation of greenhouse and chemically active gases as direct combustion products and a longer-term enhancement of biogenic emissions of gases, biomass burning may be a significant driver for global change.

  4. OPTIONS FOR ABATING GREENHOUSE GASES FROM EXHAUST STREAMS

    International Nuclear Information System (INIS)

    This report examines different alternatives for replacing, treating, and recycling greenhouse gases. It is concluded that treatment (abatement) is the only viable short-term option. Three options for abatement that were tested for use in semiconductor facilities are reviewed, and their performance and costs compared. This study shows that effective abatement options are available to the photovoltaic (PV) industry, at reasonable cost

  5. OPTIONS FOR ABATING GREENHOUSE GASES FROM EXHAUST STREAMS.

    Energy Technology Data Exchange (ETDEWEB)

    FTHENAKIS,V.

    2001-12-01

    This report examines different alternatives for replacing, treating, and recycling greenhouse gases. It is concluded that treatment (abatement) is the only viable short-term option. Three options for abatement that were tested for use in semiconductor facilities are reviewed, and their performance and costs compared. This study shows that effective abatement options are available to the photovoltaic (PV) industry, at reasonable cost.

  6. Release of greenhouse gases by important energy chains

    International Nuclear Information System (INIS)

    The release of greenhouse gases by energy systems on the basis of fossil fuels, nuclear fuels and renewable sources of energy are investigated. Further, the possibilities for the improvement of technologies, import/export of electricity, transport of power as well as other environmental effects are discussed. 10 tabs., 4 refs

  7. Reducing greenhouse gases under the UN FCCC

    International Nuclear Information System (INIS)

    The paper considers the progress being made by industrialized countries to implement the UN Framework Convention on Climate Change (FCCC) through action to mitigate greenhouse gas (GHG) emissions. Based on a review of preliminary information available from four OECD countries (Canada, Germany, the United Kingdom and the United States), the paper compares national strategies and progress toward meeting domestic targets. It concludes that industrialized countries are just beginning to work toward meeting domestic targets and the mitigation 'aim' identified in the Convention: returning emissions of GHG to 1990 levels by the year 2000. More work will be required if industrialized countries are to meet this commitment. (au)

  8. Reducing greenhouse gases under the UN FCCC

    International Nuclear Information System (INIS)

    The paper considers the progress being made by industrialized countries to implement the UN Framework Convention on Climate Change (FCCC) through action to mitigate greenhouse gas (GHG) emissions. Based on a review of preliminary information available from four OECD countries (Canada, Germany, the United Kingdom and the United States), the paper compares national strategies and progress toward meeting domestic targets. It concludes that industrialized countries are just beginning to work toward meeting domestic targets and the mitigation ''aim'' identified in the Convention: returning emissions of GHG to 1990 levels by the year 2000. More work will be required if industrialized countries are to meet this commitment

  9. Observations of halogenated trace gases in Taiwan and Malaysia

    Science.gov (United States)

    Gooch, Lauren J.; Laube, Johannes C.; Sturges, William T.; Oram, David E.; Wang, Jia-Lin; Ou-Yang, Cheng-Feng; Lin, Neng-Huei; Mead, Iq; Rigby, Matt; White, Emily

    2015-04-01

    There are a large variety of halocarbons present in the atmosphere that significantly impact on stratospheric ozone depletion and/or global warming. Though the use of some of these compounds has been phased out and replaced under global control measures, relatively long atmospheric lifetimes, imperfect substitutes and incomplete reductions in usage mean that global concentrations of halocarbons still require regular monitoring. This is especially true for the rapidly developing East Asian region, where high emissions have been repeatedly reported in recent years. We here present results from an air sampling activity in Taiwan and Malaysia during the spring months of 2013 and 2014. A large range of halocarbons, including a number of novel gases, were investigated via high sensitivity gas chromatography mass spectrometry (GC-MS). We find periods of relatively clean air as well as episodes that appear to be impacted by urban and/or industrial emissions and examine correlations between individual species. Observed mixing ratios are compared in context with both global background data and other regional studies. Enhancements in the abundances of many halocarbons are detected with examples including the Halons 1211 and 1202 as well as the very long-lived perfluorocarbons c-C4F8, C5F12 and C7F16. We also show and evaluate unusually high mixing ratios of other globally growing halocarbons such as sulphur hexafluoride (SF6), HCFC-133a (CF3CH2Cl), and CFC-113a (CF3CCl3). Finally, we use NAME analysis to produce back-trajectories in order to assess possible regional emission sources.

  10. Recycling of greenhouse gases via methanol

    Energy Technology Data Exchange (ETDEWEB)

    Bill, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Eliasson, B.; Kogelschatz, U. [ABB Corporate Research Center, Baden-Daettwil (Switzerland)

    1997-06-01

    Greenhouse gas emissions to the atmosphere can be mitigated by using direct control technologies (capture, disposal or chemical recycling). We report on carbon dioxide and methane recycling with other chemicals, especially with hydrogen and oxygen, to methanol. Methanol synthesis from CO{sub 2} is investigated on various catalysts at moderate pressures ({<=}30 bar) and temperatures ({<=}300{sup o}C). The catalysts show good methanol activities and selectivities. The conversion of CO{sub 2} and CH{sub 4} to methanol is also studied in a silent electrical discharge at pressures of 1 to 4 bar and temperatures close to room temperature. Methanol yields are given for mixtures of CO{sub 2}/H{sub 2}, CH{sub 4}/O{sub 2} and also for CH{sub 4} and air mixtures. (author) 2 figs., 5 refs.

  11. Greenhouse gases mitigation options and strategies for Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  12. 76 FR 59542 - Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To...

    Science.gov (United States)

    2011-09-27

    ...2060-AR26 Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics...Manufacturing portion of the Greenhouse Gas Reporting Rule for the ``largest...information, please go to the Greenhouse Gas Reporting Rule Program Web...

  13. Greenhouse effect of trace gases, 1970-1980

    Science.gov (United States)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  14. Stable isotope measurement techniques for atmospheric greenhouse gases

    International Nuclear Information System (INIS)

    The technical requirements to perform useful measurements of atmospheric greenhouse gas concentrations and of their isotope ratios are of direct relevance for all laboratories engaged in this field. A meaningful interpretation of isotopes in global models on sources and sinks of CO2 and other greenhouse gases depends on strict laboratory protocols and data quality control measures ensuring comparable data in time and space. Only with this precondition met, the isotope techniques can serve as a potentially powerful method for reducing uncertainties in the global CO2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. This publication provides four contributions describing methods for the determination of the isotopic composition of trace gases in atmospheric air and in ice cores. These contributions have been indexed separately

  15. Greenhouse gases: the weakness of the French policy

    International Nuclear Information System (INIS)

    The climate action network worries about the weakness of the French policy in matter of greenhouse gases emissions reduction. These French environmental associations emphasize the following points: the government does not give a clear direction towards the car place reduction, in particular and road transport more generally. The government has not given a clear signal on the option of renewable energy sources. Situations and propositions (in ten points to succeed Tokyo) are detailed and discussed. (N.C.)

  16. Elements for a policy of greenhouse effect gases reduction

    International Nuclear Information System (INIS)

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO2 emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  17. Reduction of greenhouse gases emissions of ultimate wastes storage centers

    International Nuclear Information System (INIS)

    The ultimate wastes storage centers emit methane from the blanket deposed on the wastes pile. The wastes processing is now realized with 2 main objectives: the limitation of environmental impacts and the optimization of the wastes energy potential valorization. The mechano-biological treatment, the aerobic bioreactor and the anaerobic bioreactor are three complementary techniques used to optimize the wastes processing. The greenhouses gases emission will not be the same in function of the technology choice. (A.L.B.)

  18. Keeping Mars warm with new super greenhouse gases

    OpenAIRE

    Gerstell, M. F.; J. S. Francisco; Yung, Y. L.; Boxe, C.; Aaltonee, E. T.

    2001-01-01

    Our selection of new super greenhouse gases to fill a putative “window” in a future Martian atmosphere relies on quantum-mechanical calculations. Our study indicates that if Mars could somehow acquire an Earth-like atmospheric composition and surface pressure, then an Earth-like temperature could be sustained by a mixture of five to seven fluorine compounds. Martian mining requirements for replenishing the fluorine could be comparable to current terrestrial extract...

  19. Offsets : An innovative approach to reducing greenhouse gases

    International Nuclear Information System (INIS)

    One of the most innovative ways to address climate change is the use of offsets, which refers to actions taken outside of a company's operations, domestically and internationally, to reduce greenhouse gas emissions. This paper is devoted to a discussion of Suncor Energy's action plan for greenhouse gases which include offsets, and to an explanation of the reasons why offsets are fundamental to successful greenhouse gas management. Suncor Energy Inc., has developed a plan with seven elements to meet their target of stabilizing their greenhouse gas emissions at 1990 levels by year 2000. The seven elements include: (1) energy efficiency and process improvements at their oil sands facility, (2) the development of alternative and renewable sources of energy, such as ethanol blended gasolines and the use of wind turbines to generate electricity, (3) promoting environmental and economic research to develop more advanced oil and gas technology to reduce greenhouse gas emissions, (4) implementing a constructive public policy input in support of sustainable development, (5) educating employees, customers and communities on global climate change, (6) measuring and reporting the company's environmental progress, and (7) pursuing domestic and international offset opportunities such as transfer of technology to developing countries, cogeneration of energy using natural gas, energy efficiency, renewable energy sources, emission reduction purchases and forest conservation. Of these proposed measures, offsets are the critical element which could spell the difference between success and failure in managing greenhouse gas emissions and the difference between economic hardship and economic opportunity

  20. Emissions Of Greenhouse Gases From Rice Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

  1. Emissions of greenhouse gases in the United States 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  2. Our changing atmosphere: Trace gases and the greenhouse effect

    International Nuclear Information System (INIS)

    A very important factor in the scientific evaluation of greenhouse warming during the last decade has been the realization that this is not just a problem of increasing CO2 but is rather a more general problem of increasing concentrations of many trace gases. CFCs are increasing at 5% per year with CFC-113 going up at a more rapid rate; methane approximately 1% per year; CO2 by 0.5% per year; N2O about 0.2% per year. These rates of increase have been fed into detailed models of the infrared absorbing characteristics of the atmosphere, and have provided the estimated relative contributions from the various trace gases. Carbon dioxide is still the major contributor to the greenhouse effect, and its yearly contribution appears to be increasing. An important question for dealing with the greenhouse effect will be the full understanding of these CO2 concentration changes. The total amount of carbon from the burning of fossil fuel that is going into the atmosphere is considerably larger than the carbon dioxide increase registered in the atmosphere. Appreciable CO2 contributions are also being received from the burning of the tropical forests. The procedures necessary to solve the chlorofluorocarbon problem have been put into place on an international scale and have begun to be implemented. We still have left for the future, however, efforts to reduce emissions of carbon dioxide, methane, and nitrous oxide

  3. Mitigation of greenhouse gases from agriculture : Role of models

    DEFF Research Database (Denmark)

    Schils, R.L.M.; Ellis, J. L.

    2013-01-01

    Models are widely used to simulate the emission of greenhouse gases (GHG). They help to identify knowledge gaps, estimate total emissions for inventories, develop mitigation options and policies, raise awareness and encourage adoption. These models vary in scale, scope and methodological approach. The scale increases from field, manure storage or rumen via herd or farm to country or continent. The scope may be restricted to a single GHG or include all gases. Multidisciplinary models may include nutrients, other substances or socio-economic parameters. Mechanistic process-based models have been developed from the knowledge of how GHG are produced in soils, animals and manures. These types of models often operate at the lower end of the scale, but they are also incorporated in farm and regional models. This paper discusses how the different types of models, as well as tools for farmers, are used to develop and evaluate mitigation strategies.

  4. National and international emissions trading for greenhouse gases

    International Nuclear Information System (INIS)

    In the Kyoto Protocol the flexibility mechanisms - Joint Implementation (Art. 6), Clean Development Mechanism (Art. 12), Emissions Trading (Art. 17)- and Bubble (Art. 4) are roughly defined, leaving much questions open about their design and functioning, about eligibility criteria, impact on compliance and their political acceptation. In the NRP research project on national and international emissions trading for greenhouse gases these questions have been researched, mainly from an economic perspective and focussing on Emissions Trading. This report summarises the major results of the research project. refs

  5. Verification of national halogenated greenhouse gas emissions in Europe using top-down estimates inferred from ambient air measurements

    Science.gov (United States)

    Brunner, D.; Keller, C. A.; Vollmer, M. K.; Reimann, S.; O'Doherty, S.

    2010-12-01

    To check for compliance with the reduction targets defined under the Kyoto protocol, each country has to report its greenhouse gas emissions to the UNFCCC (United Nations Framework Convention on Climate Change). These emissions are calculated using a bottom-up approach, by combining categories of com-pound use with specific activity functions and using import/export statistics. The uncertainties of these estimates are not well defined, thereby making an independent validation of the reported emissions highly desirable. In this study, a novel Kalman filter inversion technique was implemented to estimate European emissions of halogenated greenhouse gases including hydrofluorocarbons (HFC), perfluorocarbons (PFC) and SF6. The inversion is based on high-frequency measurements at two European background sites (Jungfraujoch and Mace Head) coupled to backward simulations from the Lagrangian particle dispersion model FLEXPART. The sequential nature of the inversion approach allows tracing slow seasonal and interannual emission changes. Furthermore, by including the estimation of a smoothly varying concentration background into the inversion, potential inconsistencies introduced by independent background subtraction methods are avoided. Further advantages are the applicability to a potentially large number of receptor (measurement) locations and the quantification of uncertainties along with absolute emissions. Annual emissions were estimated for the years 2006 to 2009 on a country-by-country basis and compared with numbers reported to the UNFCCC. Good agreement was found for HFC-134a and HFC-125, which are ubiquitously used for refrigeration and air conditioning. Much higher emissions than reported, however, were estimated for HFC-23, a potent greenhouse gas with a 100-yr global warming potential of 14’800. HFC-23 is an unintentional by-product of HCFC-22 manufacture and our source attribution reveals significant contributions from HCFC-22 production plants in Italy, Spain and Germany. Total HFC-23 emissions over Central Europe are estimated to account for more than 6% of global emissions, which is approximately 3 times higher than calculated by the bottom-up inventories. Similar discrepancies were found for HFC-152 which, however, is only a minor greenhouse gas.

  6. 76 FR 59533 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems: Revisions to Best...

    Science.gov (United States)

    2011-09-27

    ...the document ``Mandatory Reporting of Greenhouse Gases--Petroleum...Systems of the Greenhouse Gas Reporting Rule on November 30, 2010...or operators of facilities reporting under the offshore petroleum...natural gas production industry segment of subpart W is not...

  7. Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India

    OpenAIRE

    Auffhammer, Maximilian; Ramanathan, V.; Jeffrey R. Vincent

    2006-01-01

    Previous studies have found that atmospheric brown clouds partially offset the warming effects of greenhouse gases. This finding suggests a tradeoff between the impacts of reducing emissions of aerosols and greenhouse gases. Results from a statistical model of historical rice harvests in India, coupled with regional climate scenarios from a parallel climate model, indicate that joint reductions in brown clouds and greenhouse gases would in fact have complementary, positive impacts on harvests...

  8. Emissions of greenhouse gases in the United States 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  9. Greenhouse gases regional fluxes estimated from atmospheric measurements

    International Nuclear Information System (INIS)

    build up a new system to measure continuously CO2 (or CO), CH4, N2O and SF6 mixing ratios. It is based on a commercial gas chromatograph (Agilent 6890N) which have been modified to reach better precision. Reproducibility computed with a target gas on a 24 hours time step gives: 0.06 ppm for CO2, 1.4 ppb for CO, 0.7 ppb for CH4, 0.2 ppb for N2O and 0.05 ppt for SF6. The instrument's run is fully automated, an air sample analysis takes about 5 minutes. In July 2006, I install instrumentation on a telecommunication tall tower (200 m) situated near Orleans forest in Trainou, to monitor continuously greenhouse gases (CO2, CH4, N2O, SF6), atmospheric tracers (CO, Radon-222) and meteorological parameters. Intake lines were installed at 3 levels (50, 100 and 180 m) and allow us to sample air masses along the vertical. Continuous measurement started in January 2007. I used Mace Head (Ireland) and Gif-sur-Yvette continuous measurements to estimate major greenhouse gases emission fluxes at regional scale. To make the link between atmospheric measurements and surface fluxes, we need to quantify dilution due to atmospheric transport. I used Radon-222 as tracer (radon tracer method) and planetary boundary layer heights estimates from ECMWF model (boundary layer budget method) to parameterize atmospheric transport. In both cases I compared results to available emission inventories. (author)

  10. Radiative forcings for 28 potential Archean greenhouse gases

    CERN Document Server

    Byrne, Brendan

    2014-01-01

    Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP). CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITRAN 2012 line data for background pressures of 0.5, 1, and 2 bar of atmospheric N2. For CO2 to resolve the FYSP alone at 2.8 Gyr BP (80% of present solar luminosity), 0.32 bar is needed with 0.5 bar of atmospheric N2, 0.20 bar with 1 bar of atmospheric N2, or 0.11 bar with 2 bar of atmospheric N2. For CH4, we find that near-infrared absorption is much stronger than previously thought, arising from updates to the HITRAN database. CH4 radiative forcing peaks at 10.3, 9, or 8.3 Wm-2 for background pressures of 0.5, 1 or 2 bar, likely limiting ...

  11. Avoidance of fluorinated greenhouse gases. Possibilities of an early exit; Fluorierte Treibhausgase vermeiden. Wege zum Ausstieg

    Energy Technology Data Exchange (ETDEWEB)

    Becken, Katja; Graaf, Daniel de; Elsner, Cornelia; Hoffmann, Gabriele; Krueger, Franziska; Martens, Kerstin; Plehn, Wolfgang; Sartorius, Rolf

    2010-11-15

    In comparison to carbon dioxide, fluorinated greenhouse gases are more harmful up to a factor of 24,000. Today the amount of fluorinated greenhouse gases of the world-wide emissions of climatic harmful gases amounts 2 % and increases to 6 % in the year 2050. The authors of the contribution under consideration report on possibilities for the avoidance of the emissions of fluorinated greenhouse gases. The characteristics and ecological effects of fluorinated gases as well as the development of the emission in Germany are presented. Subsequently, the applications of fluorinated hydrocarbons are described.

  12. Projections of global emissions of fluorinated greenhouse gases in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Gschrey, Barbara; Schwarz, Winfried [Oeko-Recherche Buero fuer Umweltforschung und -beratung GmbH, Frankfurt/Main (Germany)

    2009-11-15

    Emissions of fluorinated greenhouse gases are currently covered under the Montreal Protocol, which focuses on ozone-depleting substances such as CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons), and under the Kyoto Protocol, which controls emissions of HFCs (hydrofluorocarbons), PFCs (perfluorocarbons) and SF{sub 6} (sulfur hexafluoride). This study bridges the gap between political regimes and their reporting systems by giving an overview of banks and emissions of all fluorinated gases in 2005, and projections of banks and emissions of fluorinated gases in 2050. The Montreal Protocol and its amendments will eventually result in the full phase out of CFCs and HCFCs. Developed countries have already completed the phase out of CFCs and will reach full phase out of HCFCs by 2020. Developing countries, in contrast, will phase out CFCs by 2010 and HCFCs by 2030. Although climate-friendly technology is available for most applications, the risk occurs that substitutes for ozone-depleting substances rely on HFCs, which cause global warming. This study determines global emissions of HFCs, PFCs and SF{sub 6} (Kyoto F-gases) in 2050 in a ''business-as-usual'' scenario. The global population is expected to increase to ca. 8.7 billion people, and high economic growth of 3.5% per year is assumed. Emissions in 2050 are quantified for each sector of application as well as for developed and developing countries based on growth rates of each sector. In 2050, total global emissions of fluorinated greenhouse gases are projected to amount to 4 GT CO{sub 2} eq. which equals ca. 5.9% of the total greenhouse gas emissions at this time. Compared to a relatively small share of F-gas emissions ranging around 1.3% of total greenhouse gas emissions in 2004, this percentage reflects an enormous increase. Relative to projected direct CO{sub 2} emissions alone, the 2050 F-gas emissions will even account for ca. 7.9%. In case of CO{sub 2} mitigation, this share would be significantly higher. The commercial refrigeration sub sector and the air conditioning (stationary and mobile) sector will account for about 75% of F-gas emissions in 2050. In most sectors, emissions from developing countries will exceed emissions from developed countries. Large banks of HFCs will cause F-gas emissions well beyond 2050. In order to limit F-gas emissions, it appears crucial to consider measures to reduce emissions from all sectors in both developed and developing countries. The current post- Kyoto negotiation process might provide an opportunity to address these issues within a wider scope. A switch from substances that cause global warming to climate friendly alternatives is considered inevitable to be undertaken in the near future in developed countries. Developing countries, in contrast, are facing the chance to replace ozonedepleting substances directly by climate friendly alternatives, and could hence benefit from technologies developed in the last decades. The study does not exclude other scenarios on future HFC emissions. Like earlier projections, it underlines the urgent need for mitigation measures of F-gas emissions. (orig.)

  13. High-Resolution Urban Monitoring of Greenhouse Gases and Pollutants

    Science.gov (United States)

    Baer, D. S.; Leen, J.; Gupta, M.; Graves, L.

    2012-12-01

    Accurate measurements of greenhouse gases and pollutants in urban areas with high spatial and temporal resolution allow scientists and policy makers determine source contributions, monitor pollution migration, and validate air quality models. Currently, these applications are limited by the poor spatial resolution of fixed air monitoring stations. We present very high-resolution measurements of CO, CO2, CH4, H2O, NH3 and NO2 taken throughout the San Francisco Bay Area, California using a flexible mobile monitoring platform. These measurements cover several highly urban and coastal regions that were repeatedly monitored over the course of several months. The data clearly shows the presence of several discrete sources and the migration of pollution through adjacent neighborhoods. Moreover, this validation study demonstrates the ease of mobile monitoring and the possibility of extending this platform to several other gas species (H2S, HF, HCl, NO, and others).

  14. Good practices reducing the greenhouse gases in the transport sector

    International Nuclear Information System (INIS)

    Public policies addressing the reduction of the greenhouse gases emission have to give response to the improvement of mobility in three aspects: passengers, freights, and urban and metropolitan areas. Passenger transport, because it involves long transportation distances consuming an important part of transport energy and raises difficult organizational problems. Freight transport, due to the complexity of interconnecting a lot of modes of transportation and the big range for improvement. Urban and metropolitan mobility, by the impact of actions in this field in the quality of life of a big part of the population. According to the peculiarities of their respective territories, different strategies of sustainable mobility that address the three considered aspects have been set up in Spain and its neighbouring countries. This article reviews some action lines implemented in spain, France and Germany, as a previous step to assess their possible adaptation to other territories. (Author) 6 refs.

  15. Emission of greenhouse gases and acidifying substances 1990-1999

    International Nuclear Information System (INIS)

    In relation to the emission of the greenhouse gases carbon dioxide, laughing gas and methane the emission of carbon dioxide has increased from 52 million tonnes in 1990 to 56 million tonnes in 1999, while the emission of laughing gas and methane nearly have been on a constant level in the period. The emission of laughing gas in 1993 31 thousand tonnes and for methane the emission is 623 thousand tonnes. For the acidifying substances sulphur dioxide, ammonia and nitrogen oxide there have been a decrease in the emission, still mostly for sulphur dioxide there has shown a decrease from 183 thousand tonnes in 1990 to 56 thousand tonnes in 1999. The emission of nitrogen has decreased from 272 thousand tonnes in 1990 to 210 thousand tonnes in 1999. The emission of ammonia has decreased from 128 thousand tonnes in 1990 to 96 thousand tonnes in 1999. (EHS)

  16. Emission of greenhouse gases and acidifying substances 1991-2000

    International Nuclear Information System (INIS)

    The emission of the greenhouse gases carbon dioxide, laughing gas, and methane has decreased from 1991 to 2000. The carbon dioxide emission has decreased from 63 mill. tons in 1991 to 52 mill. tons in 2000. The decrease of emission of laughing gas and methane only decreased slightly during the period. In 2000 the emission of laughing gas and methane is 29 thousand tons and 628 thousand tons, respectively. For all the acidifying substances sulphur dioxide, ammonia, and nitrogen oxides a decrease is observed. The emission of sulphur dioxide has decreased from 239 thousand tons in 1991 to 28 thousand tons in 2000. Emission of nitrogen oxides has decreased from 319 thousand tons in 1991 to 208 thousand tons in 2000. Emission of ammonia has decreased from 128 thousand tons to 104 thousand tons during the same period. (LN)

  17. Greenhouse gases mitigation policies in the agriculture of Aragon, Spain

    Directory of Open Access Journals (Sweden)

    José Albiac

    2013-05-01

    Full Text Available Climate change is an important threat to human society. Agriculture is a source of greenhouse gases (GHG, but it also provides alternatives to confront climate change. The expansion of intensive agriculture around the world during recent decades has generated significant environmental damages from pollution emissions. The spatial distribution of emissions is important for the design of local abatement measures. This study makes an assessment of GHG emissions in an intensive agricultural area of Aragon (Spain, and then an economic optimization model is developed to analyze several GHG mitigation measures. The results indicate that adequate management of manure, emissions limits, and animal production restrictions are appropriate measures to abate pollution. Economic instruments such as input and emission taxes could be only ancillary measures to address nonpoint pollution problems. Suitable pollution abatement policies should be based on institutional instruments adapted to local conditions, and involve the cooperation of stakeholders.

  18. Constraints: greenhouse gases, resource, supply reliability, economic aspects

    International Nuclear Information System (INIS)

    The constraints to which renewable energies and nuclear energy have to comply are reviewed. The most important are: -) the reduction of greenhouse gases releases, -) the depletion of fossil energies and of uranium resource, -) economic competitiveness, -) reliability of the energy supply, -) security (accidents, terrorism, natural disasters...), and -) the acceptance by the public. The most impacting constraint appears to be also the most unpredictable: the acceptance by the public. The answer to limit these constraints is a better knowledge of them, for instance by increasing accuracy in climate predictions or resource assessment, or by a better understanding of the choice criteria used by our modern societies. The study shows that no energy is the best solution and that an optimized mix composed of renewable energies and nuclear energy is the solution by playing the advantages of one energy against the disadvantages of another. (A.C.)

  19. Greenhouse gases emissions, growth and the energy mix in Europe

    International Nuclear Information System (INIS)

    The importance of energy on greenhouse gases (GHG) emissions is reflected by the fact that 65% of said emissions in the World are currently due to the use and production of energy. However, most empirical emission models are found within the Environmental Kuznetz Curve (EKC) framework, which focuses on the relationship between emissions and economic development. Ang's (2007, 2008) papers are some of the exceptions that simultaneously study the relationship between emissions, growth and energy. With respect to Ang's research, we contribute on two important aspects. First, while Ang uses a particular country as the study and use time series techniques, we take advantage of a panel data set of 24 European countries between 1990 and 2006 and use a Dynamic Panel Data (DPD) framework. Second, the impact of energy consumption on emissions would depend on the primary energy mix and on the final use of this energy, and we consider both factors in the model.

  20. Effects of elevated CO2 and agricultural management on flux of greenhouse gases from soil

    Science.gov (United States)

    To evaluate the contribution of agriculture to climate change, flux of greenhouse gases from different cropping systems must be assessed. Measurement of soil efflux of greenhouse gases (CO2, N2O, and CH4) from conservation and conventional tillage systems that have been under the influence of eleva...

  1. Study of greenhouse gases emission factor for nuclear power chain of China

    International Nuclear Information System (INIS)

    The Greenhouse Gases Emission Factor (GGEF) for nuclear power chain of China is calculated based on Life Cycle Analysis method and the definition of full energy chain. There is no greenhouse gases released directly from nuclear power plant. The greenhouse gases emission from nuclear power plant is mainly from coal-fired electricity supply to nuclear power plant for its normal operation and the production of construction materials those are used in the nuclear power plant. The total GGEF of nuclear power chain in China is 13.71 g-co2/kWh. It is necessary to regulate un-rational power source mix and to use the energy sources in rational way for reducing the greenhouse gas effect. Nuclear power for electricity generation is one of effective ways to reduce greenhouse gases emission and retard the greenhouse effect

  2. Persistence of climate changes due to a range of greenhouse gases

    OpenAIRE

    Solomon, Susan; Daniel, John S.; Sanford, Todd J.; Murphy, Daniel M.; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-01-01

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO2 greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given...

  3. The Use of Greenhouse Gases as Climate Proxy Data in Interpreting Climatic Variability

    OpenAIRE

    Oluseyi Enitan Ogunsola; Ezekiel Oluyemi Oladiran

    2013-01-01

    Greenhouse gas data were utilized as proxy data in interpreting climate variability. These greenhouse gases were related to temperature records using standard deviation (SD) as the transfer function based on observed correlations between them and global warming records. The annual SD used as warming index for the concentrations of these greenhouse gases for the period 1996 to 2005 at the various stations considered showed good correlation with 1998 as the warmest for these stations.

  4. Design of a low power -- high temperature heated ceramic sensor to detect halogen gases

    Science.gov (United States)

    Ruales Ortega, Mary Cristina

    The design, construction and optimization of a low power-high temperature heated ceramic sensor to detect leaking of halogen gases in refrigeration systems are presented. The manufacturing process was done with microelectronic assembly and the Low Temperature Cofire Ceramic (LTCC) technique. Four basic sensor materials were fabricated and tested: Li2SiO3, Na2SiO3, K2SiO3, and CaSiO 3. The evaluation of the sensor material, sensor size, operating temperature, bias voltage, electrodes size, firing temperature, gas flow, and sensor life was done. All sensors responded to the gas showing stability and reproducibility. Before exposing the sensor to the gas, the sensor was modeled like a resistor in series and the calculations obtained were in agreement with the experimental values. The sensor response to the gas was divided in surface diffusion and bulk diffusion; both were analyzed showing agreement between the calculations and the experimental values. The sensor with 51.5%CaSiO3 + 48.5%Li 2SiO3 shows the best results, including a stable current and response to the gas.

  5. NF ISO 14064-1 Greenhouse gases. Part 1: specifications and guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals

    International Nuclear Information System (INIS)

    This document describes methodology for quantification, monitoring of greenhouse gas as well as for drafting of inventory report for organisms. Thus it suggests a method for inventory declarations for organism greenhouse gas and provides support for the monitoring and the management of their emission. It provides the terms and definitions, the principles, the greenhouse gases inventory design, development and components, the greenhouse inventory quality management, the reporting of greenhouse gases and the organization role in verification activities. (A.L.B.)

  6. Greenhouse effect gases (GEI) by energy consumption; Gases efecto invernadero (GEI) por consumo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Ledo C, Ramon; Bazan N, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The purpose of this article is to present the calculation methodology of greenhouse effect gases (GEI) emissions that are produced by the power sector in Mexico, as well as to discuss its possible impact in the subject of climatic change and the possible mitigating actions to lower the amount of emissions that can be taken and, therefore, the possible climate changes. In Mexico GEI inventories have been made since 1991, year in which the National Inventory of Gases with Greenhouse Effect was obtained for year 1988. The GEI include carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), methane (CH4), nitrous oxide (NO) and volatile organic carbides that are not methane (NMVOC) and are secondary products and harmful that are obtained from the processes that turn fuels into energy (combustion). The main sources of GEI are: fixed sources (industries, residences, commerce, public services and energy transformation, such as power generation); movable sources (that include all type of transport that uses fuel). The fuels that, by their volume and efficiency, generate more emissions of GEI are crude oil, natural gas and solid biomass (firewood-cane bagasse). Any effort to reduce these emissions is very important and remarkable if it affects the consumption of these fuels. [Spanish] El proposito de este articulo es presentar la metodologia de calculo de las emisiones de los gases con efecto invernadero (GEI) que son producidos por el sector energetico en Mexico, asi como discutir su posible impacto en las cuestiones de cambio climatico y las posibles acciones de mitigacion que se pueden realizar para abatir la cantidad de emisiones y, por ende, los posibles cambios de clima. En Mexico se han realizado inventarios de GEI desde 1991, ano en que se obtuvo el Inventario Nacional de Gases con Efecto Invernadero para el ano de 1988. Los GEI comprenden al dioxido de carbono (CO2), monoxido de carbono (CO), oxidos de nitrogeno (NOx), metano (CH4), oxido nitroso (N2O) y carburos organicos volatiles que no son metano (NMVOC, por sus siglas en ingles) y son productos secundarios y nocivos que se obtienen de los procesos que convierten los combustibles en energia (combustion). Las principales fuentes de GEI son: fuentes fijas (industrias, residencias, comercios, servicios publicos y transformacion de energia, como la produccion de electricidad); fuentes moviles (que incluyen todo tipo de transporte que use combustible). Los combustibles que, por su volumen y eficiencia, generan mas emisiones de GEI son el petroleo crudo, gas natural y biomasa solida (lena - bagazo de cana). Cualquier esfuerzo por reducir estas emisiones es muy importante y notable si incide en estos combustibles.

  7. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  8. Fourier transform spectrometer for Greenhouse Gases Observing Satellite (GOSAT)

    Science.gov (United States)

    Hamazaki, Takashi; Kaneko, Yutaka; Kuze, Akihiko; Kondo, Kayoko

    2005-01-01

    Global warming has become a very serious issue for human beings. In 1997, the Kyoto Protocol was adopted at the Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (COP3), making it mandatory for developed nations to reduce carbon dioxide emissions by six (6) to eight (8) per cent of their total emissions in 1990, and to meet this goal sometime between 2008 and 2012. The Greenhouse gases Observing SATellite (GOSAT) is designed to monitor the global distribution of carbon dioxide (CO2) from the space. GOSAT is a joint project of Japan Aerospace Exploration Agency (JAXA), the Ministry of Environment (MOE), and the National Institute for Environmental Studies (NIES). JAXA is responsible for the satellite and instrument development, MOE is involved in the instrument development, and NIES is responsible for the satellite data retrieval. The satellite is scheduled to be launched in 2008. In order to detect the CO2 variation of boundary layers, both the technique to measure the column density and the retrieval algorithm to remove cloud and aerosol contamination are investigated. Main mission sensor of the GOSAT is a Fourier Transform Spectrometer with high optical throughput, spectral resolution and wide spectral coverage, and a cloud-aerosol detecting imager attached to the satellite. The paper presents the mission sensor system of the GOSAT together with the results of performance demonstration with proto-type instrument aboard an aircraft.

  9. Impact of greenhouse gases on agricultural productivity in Pakistan

    International Nuclear Information System (INIS)

    Pakistan is an agricultural developing country. About 68% of the country's population resides in rural areas and is mostly linked with agriculture. Agricultural sector contributes more than 25% to GDP, employees about 45% of the labour force and contributes significantly to export earnings of the country. Energy sector is the major source (80%) of emissions of Greenhouse Gases (GHGs). Agriculture and livestock sectors are also responsible for GHGs emissions. The emissions of GHGs results in acid rain and earth's temperature rise (global warming). The destabilization of the global climate destroys natural ecosystem and increases natural disasters, such as violent storms, floods, droughts etc. The acid rain and these natural disasters affect the agricultural productivity. The study indicates that the agricultural productivity per capita in Pakistan decreased continuously during the last two decades. The paper concludes that due to emissions of GHGs, the agricultural productivity is significantly affected in the country. The government should take concrete measures to minimize the emissions of GHGs for increasing the agricultural productivity and reducing other harmful impacts in the country. This paper presents the review and analysis of the effects of GHGs emissions on the agricultural productivity in Pakistan. (author)

  10. Inaccuracies in the prediction of the effects of greenhouse gases

    International Nuclear Information System (INIS)

    The outgoing long wave radiation to space is significantly reduced due to heat absorption by the so-called greenhouse gases, notably water vapour, carbon dioxide, methan, nitrous oxides and chlorofluorocarbons. The dominating ones are water vapour and carbon dioxide. Since the industrial revolution the combustion of fossil fuels and deforestation have led to an increase of 26% in carbon dioxide in the atmosphere. It is presently increasing by about 0.5% per year. The effect on climate can not satisfactorily be estimated on radiation balance calculation only, but must incorporate the large scale atmospheric circulation and the important feedbacks with water vapour (positive feedback), clouds (both positive and negative feedbacks), surface albedo and the oceans. This requires comprehensive mathematical modelling of the coupled ocean/land atmosphere system. Several such studies have been undertaken during the last years both in Europe and United States and results from such experiments are described. Due to the enormous complexity of the problem, a number of simplified assumptions have been done and the results so far must be cautiously assessed. The overall global warming, assuming an increase of around 1% annually in the carbon dioxide concentration, is about 3 C after 100 years. There are large regional differences and the warming is generally larger over land than over sea. A particular problem is the temperature of the North Atlantic and also of the Antarctic waters where changes in the deep ocean circulation are significant. (orig.)

  11. Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases 1990-2020

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data in these Appendices to the Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases (1990-2020) report provide historical and projected estimates of...

  12. NACP Greenhouse Gases Multi-Source Data Compilation, 2000-2009

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set is a collection of measurements of carbon dioxide (CO2) and non-CO2 greenhouse gases made across North America by nine independent...

  13. NACP Greenhouse Gases Multi-Source Data Compilation, 2000-2009

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a collection of measurements of carbon dioxide (CO2) and non-CO2 greenhouse gases made across North America by nine independent atmospheric...

  14. Attribution of Ozone Changes in the Near Future: Nonlinear Feedbacks between Ozone Depleting Substances and Greenhouse Gases

    Science.gov (United States)

    Meul, Stefanie; Oberländer, Sophie; Langematz, Ulrike

    2014-05-01

    In the first half of the 21st century the stratospheric burden of ozone depleting substances (ODSs) is predicted to decrease due to the regulations in the Montreal Protocol and its amendments. Concomitantly, the concentrations of well-mixed greenhouse gases (GHGs) will continue to rise. As the removal of the ODSs from the stratosphere is also affected by changes in the Brewer-Dobson Circulation, the decrease of halogens will also depend on the rate of the GHG increase. Furthermore, the increasing concentrations of the GHGs methane (CH4) and nitrous oxide (N2O) can modify the halogen-ozone chemistry. Therefore, a non-linear contribution has to be included in the attribution analysis of the ozone changes to ODS and GHG changes. In this study we detect and analyze this non-linear term in a set of appropriately defined timeslice simulations for the year 2045 with the Chemistry-Climate-Model EMAC. The causal processes of the non-linear interactions are studied in more detail by separating the relative ozone changes in the contribution from chemistry (production and loss) and transport. This allows us to identify not only feedbacks between chemistry and temperature but also between chemistry and dynamics, i.e. ozone transport.

  15. Estimating the Greenhouse Gases Emission and the Most Important Factors in Dairy Farms (Case Study Iran)

    OpenAIRE

    M.Ghorbani; A.R. Koocheki; Motallebi, M.

    2008-01-01

    In this study, the amount of greenhouse gases emission of some important factors was calculated using life cycle assessment. Sample was 85 dairy farms that were selected by simple random sampling method in 2007. Results showed that electricity and diesel used are the most effective parameters on greenhouse gases emissions in dairy farms, respectively and the other effective parameters are the number of other cattle, the distance of food transferring, cows manure, the No. of calves and ...

  16. On the relationship between metrics to compare greenhouse gases – the case of IGTP, GWP and SGTP

    OpenAIRE

    Azar, C; D. J. A. Johansson

    2012-01-01

    Metrics for comparing greenhouse gases are analyzed, with a particular focus on the Integrated Temperature Change Potential (IGTP) following a call from IPCC to investigate this metric. It is shown that GWP and IGTP are asymptotically equal when the time horizon approaches infinity. The difference between IGTP and GWP is estimated for different greenhouse gases using an upwelling diffusion energy balance model with different assumptions on the climate sensitivity and the parameterization gove...

  17. Emissions of greenhouse gases in the United States, 1985--1990

    International Nuclear Information System (INIS)

    The Earth's capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ''greenhouse gases.'' Their warming capacity, called ''the greenhouse effect,'' is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth's absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available

  18. Emissions of greenhouse gases in the United States, 1985--1990

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  19. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2011-04-25

    ...published Subpart W: Petroleum and Natural Gas Systems of the Greenhouse...Association (GPA), Interstate Natural Gas Association of America...Act of 1995 (UMRA) (Public Law 104-4). In addition, this...Greenhouse Gases: Petroleum and Natural Gas Systems,''...

  20. Global Mitigation Of Non-CO2 Greenhouse Gases: 2010-2030

    Science.gov (United States)

    This report illustrates the abatement potential of non-CO2 greenhouse gases, by sector and by region, from 2010-2030. This peer-reviewed update provides economists and policymakers with improved data to better understand the costs and opportunities for reducing non-CO2 greenhouse...

  1. Sun and dust versus greenhouse gases - An assessment of their relative roles in global climate change

    Science.gov (United States)

    Hansen, James E.; Lacis, Andrew A.

    1990-01-01

    Many mechanisms, including variations in solar radiation and atmospheric aerosol concentrations, compete with anthropogenic greenhouse gases as causes of global climate change. Comparisons of available data show that solar variability will not counteract greenhouse warming and that future observations will need to be made to quantify the role of tropospheric aerosols, for example.

  2. The trade-off between short- and long-lived greenhouse gases under uncertainty and learning

    OpenAIRE

    Aaheim, H. Asbjørn; Brekke, Kjell Arne; Lystad, Terje; Torvanger, Asbjørn

    2001-01-01

    To find an optimal climate policy we must balance abatement of different greenhouse gases. There is substantial uncertainty about future damages from climate change, but we will learn more over the next few decades. Gases vary in terms of how long they remain in the atmosphere, which means that equivalent pulse emissions have very different climate impacts. Such differences between gases are important in consideration of uncertainty and learning about future damages, but they are disregarded ...

  3. Quantification of the greenhouse effect gases at the territorial scale. Final report

    International Nuclear Information System (INIS)

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  4. The relative roles of sulfate aerosols and greenhouse gases in climate forcing

    Science.gov (United States)

    Kiehl, J. T.; Briegleb, B. P.

    1993-01-01

    Calculations of the effects of both natural and anthropogenic tropospheric sulfate aerosols indicate that the aerosol climate forcing is sufficiently large in a number of regions of the Northern Hemisphere to reduce significantly the positive forcing from increased greenhouse gases. Summer sulfate aerosol forcing in the Northern Hemisphere completely offsets the greenhouse forcing over the eastern United States and central Europe. Anthropogenic sulfate aerosols contribute a globally averaged annual forcing of -0.3 watt per square meter as compared with +2.1 watts per square meter for greenhouse gases. Sources of the difference in magnitude with the previous estimate of Charlson et al. (1992) are discussed.

  5. Greenhouse gases - an up-date on the contribution of automotive fuels

    International Nuclear Information System (INIS)

    This paper examines the contribution to global emissions of greenhouse gases from automotive fuels. The Greenhouse Effect and Climate Change are explained briefly. Data is presented on the global warming potential of automobile emissions, actual measured emission rates and greenhouse gas emissions as CO2 equivalents. It is concluded that insufficient data exists to assess accurately the contribution of automotive fuel use to all the important greenhouse gases. Over short timescales (say 20 years) low emission technologies do show significant reductions in CO2 equivalent emissions compared with current technology vehicles. However, in the longer term, fuel economy rather than emissions of non-CO2 gases, is likely to become the determining factor. (UK)

  6. Managing agricultural greenhouse gases: The basis of GRACEnet

    Science.gov (United States)

    Since 2002, USDA Agricultural Research Service has been engaged in a national project called GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network). Goals of the project are to (1) evaluate soil organic carbon status and change, (2) assess net greenhouse gas emissions (...

  7. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angles Basin

    Science.gov (United States)

    Fu, Dejian; Pongetti, Thomas J.; Sander, Stanley P.; Cheung, Ross; Stutz, Jochen; Park, Chang Hyoun; Li, Qinbin

    2011-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gases and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warming Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distributions of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  8. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the ozone layer here. The difference in the impact of the greenhouse gases on the ozone layer at the southern and northern polar latitudes through PCS modification is determined by the difference in temperature regimes of the Polar Regions. The mechanism of the impact of the greenhouse gases on the polar ozone by means of modification of sulphate aerosol distribution in the atmosphere has been revealed and investigated, too. Numerical experiments show that enhancement of the surface area density of sulphate aerosol in the stratosphere caused by the growth of the greenhouse gases will reduce significantly the ozone depletion during the Antarctic ozone hole.

  9. Agriculture and greenhouse gases emissions reduction; Agriculture et reduction des emissions de gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Leguet, B.

    2005-09-15

    In France, the agriculture is the third sector of greenhouse gases emitter. Meanwhile since 1990 this sector poorly reduces its greenhouse gases. It is necessary to find mechanisms which allow the valorization of emissions reduction. In this framework the author presents the specificities of the greenhouse gases emissions of the agricultural sector, the possible incentives of emissions reduction, the reduction projects in France and abroad. (A.L.B.)

  10. Greenhouse gases accounting and reporting for waste management - A South African perspective

    International Nuclear Information System (INIS)

    This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level.

  11. Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, C.L.; Hermansen, O.; Fjaeraa, A.M.; Lunder, C.; Fiebig, M.; Schmidbauer, N.; Krognes, T.; Stebel, K.

    2012-07-01

    The report summaries the activities and results of the greenhouse gas monitoring at the Zeppelin and observatory situated on Svalbard in Arctic Norway during the period 2001-2010 and the greenhouse gas monitoring and aerosol observations from Birkenes for 2010. The monitoring programme is performed by the NILU - Norwegian Institute for Air Research and funded by the Norwegian Pollution Control Authority (SFT) (now Climate and Pollution Agency) and NILU - Norwegian Institute for Air Research.(Author)

  12. GREENHOUSE GASES REDUCTION THROUGH WASTE MANAGEMENT IN CROATIA

    Directory of Open Access Journals (Sweden)

    Aleksandra Ani? Vu?ini?

    2010-01-01

    Full Text Available The climate change policy is one of the key factors in the achievement of sustainable development in the Republic of Croatia. Control and mitigation of green house gases is correlated with all economy activities. Waste management is one of the main tasks of environmental protection in Croatia. The Waste Management Strategy of the Republic of Croatia and the Waste Management Plan in the Republic of Croatia define the concept of waste management hierarchy and direct and indirect measures as criteria for sustainable waste management establishment. The main constituent of this system is avoiding and minimizing waste, as well as increasing the recycling and recovery level of waste and land fill gas, which also represent green house gases mitigation measures. The Waste Management Plan consists of several direct and indirect measures for green house gases emission reduction and their implementation also affects the green house gases emissions. The contribution of the methane emission from land fills amounts to about 2% of the total green house gases emissions in Croatia. The climate change control and mitigation measures as an integral part of waste management sector strategies represent the measures of achieving the national objectives to wards green house gases emission reduction which Croatia has accepted in the frame work of the Kyoto Protocol.

  13. Study of greenhouse gases reduction alternatives for the exploitation of non conventional oil sands in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bouchonneau, Deborah [Institut Francais du Petrole (IFP), Paris (France)

    2008-07-01

    High energy prices and greenhouse gases reduction represent the main challenges the current worldwide energetic situation has to face. As a consequence, paradox strategies can be highlighted: oil prices are sufficiently high to exploit non conventional oil resources, like extra heavy oils and oil sands. But the production of these resources emits larger GHG than the conventional oil path and implies other major environmental issues (water management, risks of soil pollution, destruction of the boreal forest), incompatible with the rules validated by the protocol of Kyoto. At the light of the new greenhouse gases reduction regulation framework announced by the Canadian Federal government, this work focuses on the study of greenhouse gases reduction alternatives applied to the non conventional oil sands exploitation in Canada. (author)

  14. The feasibility of a world-wide tax on anthropogenic emissions of greenhouse gases: Levels and impacts of world-wide taxes on greenhouse gases

    OpenAIRE

    Bicchetti, David; Drouet, Laurent; Thalmann, Philippe; Vielle, Marc

    2007-01-01

    A harmonized worldwide carbon tax, implemented at regional or national level, can be enforced only with an international collective action which takes into account inherent interests of all countries. The purpose of this study is to assess the impact ofthe implementation of such a tax by means of different scenarios based on realistic assumptions. We endeavor to design a world tax on anthropogenic greenhouse-gases emissions which can be politically acceptable and technically feasible. To do s...

  15. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) during BARCA

    OpenAIRE

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C.W.; Crosson, E. R.; A. D. Van Pelt; J. Steinbach; O. Kolle; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; G. W. Santoni; Wofsy, S. C.

    2009-01-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pre...

  16. Projection of greenhouse gases and air pollutants 2011-2015

    International Nuclear Information System (INIS)

    This report outlines the expected greenhouse gas emissions (mainly CO2 but also methane and nitrous oxide) and air pollutants in the period 2011 up to and including 2015. Attention is paid to whether or not the Netherlands will comply with the mandatory European and international regulations.

  17. Carbon and Conservation: Cropping systems and greenhouse gases

    Science.gov (United States)

    Quantifying and predicting soil carbon sequestration and greenhouse gas emissions from agricultural systems have been research goals for numerous institutions, especially since the turn of the millennium. Cost, time, and politics are variables that have limited the rapid development of robust quant...

  18. Biomass burning and the production of greenhouse gases

    Science.gov (United States)

    Levine, Joel S.

    1991-01-01

    The present discussion of related aspects of biomass burning describes a technique for estimating the instantaneous emission of trace gases generated by such fires on the basis of satellite imagery, and notes that burning results in significantly enhanced biogenic emissions of N2O, NO, and CH4. Biomass burning therefore has both immediate and long-term impacts on the trace-gas content of the atmosphere. The effects of Kuwait's oil fires, which encompass both combustion gases and particulates, are compared with those of the more general problem.

  19. Nonlinear response of modeled stratospheric ozone to changes in greenhouse gases and ozone depleting substances in the recent past

    Directory of Open Access Journals (Sweden)

    S. Meul

    2015-03-01

    Full Text Available In the recent past, the evolution of stratospheric ozone (O3 was affected by both increasing ozone depleting substances (ODSs and greenhouse gases (GHGs. The impact of the single forcings on O3 is well known. Interactions between the simultaneously increased GHG and ODS concentrations, however, can occur and lead to nonlinear O3 changes. In this study, we investigate if nonlinear processes have affected O3 changes between 1960 and 2000. This is done with an idealized set of timeslice simulations with the chemistry–climate model (CCM EMAC. Nonlinearity leads to a net reduction of ozone decrease throughout the stratosphere, with a maximum of 1.2% at 3 hPa. The total ozone column loss between 1960 and 2000 that is mainly attributed to the ODS increase is mitigated in the extra-polar regions by up to 1.1% due to nonlinear processes. A separation of the O3 changes into the contribution from chemistry and transport shows that nonlinear interactions occur in both. In the upper stratosphere a reduced efficiency of the ClOx-catalysed O3 loss chiefly causes the nonlinear O3 increase. An enhanced formation of halogen reservoir species through the reaction with methane (CH4 reduces the abundance of halogen radicals significantly. The temperature induced deceleration of the O3 loss reaction rate in the Chapman cycle is reduced, which leads to a nonlinear O3 decrease and counteracts the increase due to ClOx. Nonlinear effects on the NOx abundance cause hemispheric asymmetric nonlinear changes of the O3 loss. Nonlinear changes in O3 transport occur in particular in the Southern Hemisphere (SH during the months September to November. Here, the residual circulation is weakened in the lower stratosphere, which goes along with a reduced O3 transport from the tropics to high latitudes. Thus, O3 decreases in the SH polar region, but increases in the SH midlatitudes.

  20. The contribution of direct energy use for livestock breeding to the greenhouse gases emissions of Cyprus

    International Nuclear Information System (INIS)

    This paper presents a methodology for the estimation of the contribution of direct energy use to the greenhouse gases emissions of cattle, pig and poultry breeding in Cyprus. The energy consumption was estimated using the factors of 2034 MJ/cow, 2182 MJ/sow and 0.002797 MJ/bird. The greenhouse gases emissions for each animal species and energy source were estimated using emission factor of each greenhouse gas according to fuel type as proposed by the IPCC 2006 guidelines and for electricity according to national verified data from the Electricity Authority of Cyprus. Livestock breeding in Cyprus consumes electricity, diesel oil and LPG. The results obtained, show that the emissions from energy use in livestock breeding contribute 16% to the total agricultural energy emissions. Agricultural energy emissions contribute 0.7% to the total energy greenhouse gases (GHG) emissions. The three species of animal considered contribute 3% to their total livestock breeding emissions when compared with enteric fermentation and manure management, of which 2.6% is CO2. These results agree with the findings in available literature. The contribution of direct energy use in the greenhouse gases emissions of livestock breeding could be further examined with the influence of anaerobic digestion to the emissions. -- Highlights: ? Energy use contribution to greenhouse gases emissions of Cyprus livestock breeding. ? Energy consumption estimated using 2.034 GJ/ cow, 2.182 GJ/ sow and 2.797 kJ/ bird. ?Energy use in livestock breeding found to be 16% of agriculture energy emissions. ? Energy use found to be 3% of total livestock breeding emissions. ? 87% of the energy emissions is CO2.

  1. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angeles Basin

    Science.gov (United States)

    Fu, Dejian; Sander, Stanley P.; Pongetti, Thomas J.; Cheung, Ross; Stutz, Jochen

    2010-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gasses and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warning Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distribution of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  2. GREENHOUSE GASES REDUCTION THROUGH WASTE MANAGEMENT IN CROATIA

    OpenAIRE

    Aleksandra Ani? Vu?ini?; Andrea Hublin; Nikola Ružinski

    2010-01-01

    The climate change policy is one of the key factors in the achievement of sustainable development in the Republic of Croatia. Control and mitigation of green house gases is correlated with all economy activities. Waste management is one of the main tasks of environmental protection in Croatia. The Waste Management Strategy of the Republic of Croatia and the Waste Management Plan in the Republic of Croatia define the concept of waste management hierarchy and direct and indirect measures as cri...

  3. Water and wastewater services: a contribution to greenhouse gases mitigation. Methodologies and experience feedback

    International Nuclear Information System (INIS)

    Energy efficiency and contribution to reducing emissions of greenhouse gases (GHGs) are at the heart of environmental concerns of communities and the public. Without waiting for the regulations that may affect them in the future on climate/energy, water and sanitation services will need to explore options aimed at saving energy, producing renewable energy and reducing direct or indirect emissions of greenhouse gases on their territory. In terms of controlling emissions of greenhouse gases, the results of initial assessments of GHGs emissions (including some made with the French 'Bilan Carbone' model, developed by the French Environment and Energy Management Agency - Ademe) help to identify the importance of emissions related to the management of water and wastewater services, to propose action plans to reduce them, and contribute to reducing emissions of other local actors through the creation of new renewable energy sources. A joint working group of Astee (French Scientific and Technical Association for Water and Environment) water and wastewater commissions prepared some guidelines for calculating emissions of greenhouse gases of water and wastewater services. These guidelines have been made available on the association web-site since September 2009. This article takes stock on the initial feedbacks relating to its implementation among operators of water and wastewater services. (authors)

  4. Emission of greenhouse gases 1990-2010. Trends and driving forces

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-01

    Emissions of greenhouse gases in Norway from 1990-2010 - trends and driving forces, a report that presents emission trends in Norway with the analysis of the main drivers and trends, and a review and analysis of the effectiveness of implemented measures.(Author)

  5. Advances in Data Processing for Open-path Fourier Transform Infrared Spectrometry of Greenhouse Gases

    Science.gov (United States)

    The automated quantification of three greenhouse gases, ammonia, methane and nitrous oxide, in the vicinity of a large dairy farm by open-path Fourier transform infrared (OP/FT-IR) spectrometry at intervals of 5 minutes is demonstrated. Spectral pretreatment, including the detection and correction ...

  6. Assessing the DICE model: uncertainty associated with the emission and retention of greenhouse gases

    International Nuclear Information System (INIS)

    Analysis of the DICE model indicates that it contains unsupported assumptions, simple extrapolations, and mis-specifications that cause it to understate the rate at which economic activity emits greenhouse gases and the rate at which the atmosphere retains greenhouse gases. The model assumes a world population that is 2 billion people lower than the 'base case' projected by demographers. The model extrapolates a decline in the quantity of greenhouse gases emitted per unit of economic activity that is possible only if there is a structural break in the economic and engineering factors have determined this ratio over the last century. The model uses a single equation to simulate the rate at which greenhouse gases accumulate in the atmosphere. The forecast for the airborne fraction generated by this equation contradicts forecasts generated by models that represent the physical and chemical processes which determine the movement of carbon from the atmosphere to the ocean. When these unsupported assumptions, simple extrapolations, and misspecifications are remedied with simple fixes, the economic impact of global climate change increases several fold. Similarly, these remedies increase the impact of uncertainty on estimates for the economic impact of global climate change. Together, these results indicate that considerable scientific and economic research is needed before the threat of climate change can be dismissed with any degree of certainty. 23 refs., 3 figs

  7. The distribution of greenhouse gases emission rights in the European Union from a competition perspective

    International Nuclear Information System (INIS)

    From an administrative and economical perspective the present method of allocation in the European emissions trading system for greenhouse gases is discussed. In particular, attention is paid to the distribution of the emission rights over the businesses and the related current and future legal and economical problems

  8. 78 FR 20632 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability Regarding Global Warming...

    Science.gov (United States)

    2013-04-05

    ... AGENCY Mandatory Reporting of Greenhouse Gases: Notice of Data Availability Regarding Global Warming... EPA is announcing to the public the availability of estimated global warming potentials, as well as... requesting comments on the estimated global warming potentials and the data and analysis supporting them....

  9. Field emissions of greenhouse gases from contrasting biofuel feedstock production systems under different N fertilization rates

    Science.gov (United States)

    Management choices (crop type, fertilization rate) could affect agricultural soil emissions of important temperature-forcing greenhouse gases (GHGs) such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Soil GHG emissions were measured in situ over the 2010 growing season at a biofu...

  10. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases

    Science.gov (United States)

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  11. Emissions of greenhouse gases in the United States, 1987--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  12. Impact of greenhouse gases on the ozone layer in the polar regions

    International Nuclear Information System (INIS)

    Full text: A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2, CH4, and N2O in the future long-term changes of the earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the south to north poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from climate change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the earth's ozone layer in the polar regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the ozone layer here. The mechanism of the impact of the greenhouse gases on the polar ozone by means of modification of sulphate aerosol distribution in the atmosphere has been revealed and investigated, too. Numerical experiments show that enhancement of the surface area density of sulphate aerosol in the stratosphere caused by the growth of the greenhouse gases will reduce significantly the ozone depletion during the antarctic ozone hole. As for the global total ozone, continuous anthropogenic growth of the greenhouse gases will lead to significant acceleration of its recovery. In the case of the used scenario of expected long-term changes of the greenhouse gases, the global ozone will reach its undisturbed level of 1980 by about 2043. If the CO2 growth stops, the global total ozone will reach this level only by the end of the 21st century. (author)

  13. The relative roles of sulfate aerosols and greenhouse gases in climate forcing

    Energy Technology Data Exchange (ETDEWEB)

    Kiehl, J.T.; Briegleb, B.P. (National Center for Atmospheric Research, Boulder, CO (United States))

    1993-04-16

    Calculations of the effects of both natural and anthropogenic tropospheric sulfate aerosols indicate that the aerosol climate forcing is sufficiently large in a number of regions of the Northern Hemisphere to reduce significantly the positive forcing from increased greenhouse gases. Summer sulfate aerosol forcing in the Northern Hemisphere completely offsets the greenhouse forcing over the eastern United States and central Europe. Anthropogenic sulfate aerosols contribute a globally averaged annual forcing of [minus]0.3 watt per square meter as compared with +2.1 watts per square meter for greenhouse gases. Sources of the difference in magnitude with the previous estimate of Charlson et al. are discussed. 29 refs., 4 figs., 1 tab.

  14. Greenhouse gases and ammonia emissions from organic mixed crop-dairy systems: a critical review of mitigation options

    OpenAIRE

    Novak, S. M.; Fiorelli, J.L.

    2010-01-01

    Dairy production systems represent a significant source of air pollutants such as greenhouse gases (GHG), that increase global warming, and ammonia (NH3), that leads to eutrophication and acidification of natural ecosystems. Greenhouse gases and ammonia are emitted both by conventional and organic dairy systems. Several studies have already been conducted to design practices that reduce greenhouse gas and ammonia emissions from dairy systems. However, those studies did not consider options sp...

  15. Effect of noble gases on an atmospheric greenhouse /Titan/.

    Science.gov (United States)

    Cess, R.; Owen, T.

    1973-01-01

    Several models for the atmosphere of Titan have been investigated, taking into account various combinations of neon and argon. The investigation shows that the addition of large amounts of Ne and/or Ar will substantially reduce the hydrogen abundance required for a given greenhouse effect. The fact that a large amount of neon should be present if the atmosphere is a relic of the solar nebula is an especially attractive feature of the models, because it is hard to justify appropriate abundances of other enhancing agents.

  16. Greenhouse gases in the corn-to-fuel ethanol pathway

    International Nuclear Information System (INIS)

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen

  17. Greenhouse gases in the corn-to-fuel ethanol pathway.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-06-18

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  18. The trade-off between short- and long-lived greenhouse gases under uncertainty and learning

    International Nuclear Information System (INIS)

    To find an optimal climate policy we must balance abatement of different greenhouse gases. There is substantial uncertainty about future damages from climate change, but we will learn more over the next few decades. Gases vary in terms of how long they remain in the atmosphere, which means that equivalent pulse emissions have very different climate impacts. Such differences between gases are important in consideration of uncertainty and learning about future damages, but they are disregarded by the conventional concept of Global Warming Potential We have developed a numerical model to analyze how uncertainty and learning affect optimal emissions of both CO2 and CH4. In the model, emissions of these greenhouse gases lead to global temperature increases and production losses. New information about the severity of the climate problem arrives either in 2010 or in 2020. We find that uncertainty causes increased optimal abatement of both gases, compared to the certainty case. This effect amounts to 0.08 oC less expected temperature increase by year 2200. Learning leads to less abatement for both gases since expected future marginal damages from emissions are reduced. This effect is less pronounced for the short-lived CH4. (author)

  19. ACCOUNTING FOR GREENHOUSE GASES EMISSIONS ALLOWANCES IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Marius Deac

    2013-02-01

    Full Text Available The present paper tries to analyze the accounting challenges that the implementation of EU Emissions Trading Scheme has risen. On 2 December 2004, IASB has issued an interpretation regarding the accounting of the GHG emissions allowances (IFRIC 3 „Emission Rights”. This interpretation should have been effective for annual periods beginning after 1 March 2005, the first year of the EU Emission Trading Scheme implementation. Less than a year after it was issued, IFRIC has withdrawn IFRIC 3. In December 2007, IASB has started a new project in order to provide guidance on accounting for carbon allowances called Emissions Trading Schemes Project. In the absence of an accounting standard regarding the accounting of these emissions allowances a diversity of accounting practices have been identified. Nowadays, there are three main accounting practices for the recognition of the emissions allowances and the GHG emissions liabilities: IFRIC 3 approach, the government grants approach and the net liability or off balance sheet approach. The accounting treatment of greenhouse gas emissions allowances by Romanian companies resembles the net liability or off balance sheet approach. Finance Ministry Order no. 1118/2012 states that GHG emission certificates should be recognized as fixed assets (if the entity is expecting a profit in the long term or in the category of short term investments (if the entity is expecting a profit in the short term. The accounting of the greenhouse gas emissions allowances described above is applicable mainly to traders of such certificates and not for the installations in the scope of the EU ETS directive, which should recognize GHG emissions off balance sheet, at their nominal value (nil if received for free. The shortfall or excess of allowances will be recognized in the profit or loss as they are bought or sold by the entity (the accounting treatment imposed by Finance Ministry Order no. 3055/2009.

  20. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  1. Comparison of the Different Land Use on the Emission of Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Mahdipuor

    2010-07-01

    Full Text Available An increase in the emission of greenhouse gases such as carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O from the soil surface to the atmosphere has been of worldwide concern over the last several decades. Carbon dioxide is recognized as a significant contributor to global warming and climatic change, accounting for 60% of total greenhouse effect. The aim of this research was to determinate the emission of greenhouse gases from different land under agricultural uses. Four types of agricultural land farm, including wheat field, canola field, citrus garden and fallow land were selected to investigate the fate of CO2 in these fields. Gas chromatography technique and close chamber method were used to analyze soil gas samples. Total carbon losses from soil in form of greenhouse gases was 4.47, 3.72, 3.38 and 1.89 Mg C ha-1 yr-1 for wheat field, canola field, citrus garden and fallow land, respectively. Total additional carbon to soil from biomass for wheat field and canola field was 4.1 and 4.6 Mg C ha-1 yr-1, respectively. ECB (ecosystem carbon budget = ? C input - ? C output. For wheat field and canola field ECB was -0.37 and +0.88, respectively. This indicated that in wheat field carbon was lost and in canola field carbon was sequestrated. Under citrus garden due to changes in soil organic carbon form previous year has showed that carbon was sequestrated.

  2. Cost-effective reductions of non-CO{sub 2} greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Chesnaye, Francisco de la; Harvey, Reid; Kruger, Dina; Laitner, John A. ' Skip' [Environmental Protection Agency, Office of Atmospheric Programs, Washington, DC (United States)

    2001-11-01

    To date, most of the focus on greenhouse gas emission reductions has been on energy-related CO{sub 2} emissions. This is understandable since CO{sub 2} emissions currently account for about 82 percent of the total US greenhouse gas emissions weighted by 100-year global warming potentials (EPA, www.epa.gov/globalwarming/publications/emissions, 2001a). However, a number of analyses suggest that the non-CO{sub 2} greenhouse gases included in the Kyoto Protocol - methane, nitrous oxide, and the high-GWP (global warming potential) gases (HFCs, PFCs, and SF{sub 6}) - can make a significant contribution to cost-effective emission reductions for the US and other countries. Our current estimate for the US is a reduction in non-CO{sub 2} emissions of 105 million metric tons of carbon equivalent (MMTCE) at 50 US dollars/ton carbon equivalent in 2010. This paper provides a perspective on the current and projected emissions of greenhouse gas; outlines the potential methods for achieving emissions reductions for various sources; and summarizes several recent studies on the cost of reductions for the US and other countries. Although the paper does not specifically address the potential for reductions of these gases in individual countries outside the US and the European Union, its findings are generally applicable to many countries. (Author)

  3. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    International Nuclear Information System (INIS)

    Greenhouse gases other than CO2 make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO2 emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO2 and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO2 following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by ? 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO2 from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  4. A New Laser Based Approach for Measuring Atmospheric Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Jeremy Dobler

    2013-11-01

    Full Text Available In 2012, we developed a proof-of-concept system for a new open-path laser absorption spectrometer concept for measuring atmospheric CO2. The measurement approach utilizes high-reliability all-fiber-based, continuous-wave laser technology, along with a unique all-digital lock-in amplifier method that, together, enables simultaneous transmission and reception of multiple fixed wavelengths of light. This new technique, which utilizes very little transmitted energy relative to conventional lidar systems, provides high signal-to-noise (SNR measurements, even in the presence of a large background signal. This proof-of-concept system, tested in both a laboratory environment and a limited number of field experiments over path lengths of 680 m and 1,600 m, demonstrated SNR values >1,000 for received signals of ~18 picoWatts averaged over 60 s. A SNR of 1,000 is equivalent to a measurement precision of ±0.001 or ~0.4 ppmv. The measurement method is expected to provide new capability for automated monitoring of greenhouse gas at fixed sites, such as carbon sequestration facilities, volcanoes, the short- and long-term assessment of urban plumes, and other similar applications. In addition, this concept enables active measurements of column amounts from a geosynchronous orbit for a network of ground-based receivers/stations that would complement other current and planned space-based measurement capabilities.

  5. Greenhouse warming by minor gases on early Mars

    Science.gov (United States)

    Heinrich, M. N.; Thompson, W. R.; Sagan, C.

    1992-01-01

    The early atmospheres of Earth and Mars were non-oxidizing mixtures likely derived from volcanic outgassing of a silicate mantle, with some fraction of the volatiles also contributed by impacting comets and meteorites. Here the authors investigate the potential of minor atmospheric constituents produced by ultraviolet and auroral chemistry to contribute to the thermal opacity of early Earth and Mars atmospheres. Using a very simple two-stream thermal opacity model, the authors show that HCN at 10 parts per million (ppm) and N2O at 100 ppm can each block radiation in thermal infrared windows sufficiently to increase the surface temperature by 7 K separately, or 14 K together. Small quantities of other species are also produced in such experiments. Some of these have especially complex infrared spectra and should be further investigated for their potential to help close windows in the CO2 + H2O infrared transmission. Enhancement of greenhouse warming by minor atmospheric species different from those present in today's atmosphere may have played important roles in the climate of early Earth and Mars.

  6. Energy and environment - greenhouse effect. The international, european and national actions to control the greenhouse gases emissions: which accounting and which perspectives?

    International Nuclear Information System (INIS)

    The scientific knowledge concerning the climatic change justifies today immediate fight actions against the greenhouse reinforcement. This fight is based on an ambitious international device which must take into account more global challenges. At the european and national scale, the exploitation of the potential of greenhouse gases reduction must be reinforced and more specially the evolution of the life style. (A.L.B.)

  7. A comparison of the contribution of various gases to the greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Rodhe, H. (Stockholm Univ. (Sweden))

    1990-06-08

    The current concern about an anthropogenic impact on global climate has made it of interest to compare the potential effect of various human activities. A case in point is the comparison between the emission of greenhouse gases from the use of natural gas and that from other fossil fuels. This comparison requires an evaluation of the effect of methane emissions relative to that of carbon dioxide emissions. A rough analysis based on the use of currently accepted values shows that natural gas is preferable to other fossil fuels in consideration of the greenhouse effect as long as its leakage can be limited to 3 to 6 percent. 9 refs., 1 fig., 4 tabs.

  8. Projection of the gases emissions of greenhouse effect (GEI), Colombia 1998-2010

    International Nuclear Information System (INIS)

    The Greenhouse Gas Emissions baseline scenario 1998-2010 was developed from the energy and no-energy sector projections. This study considered the same greenhouse gases as the 1990 inventory. One of the major findings is the increase in the participation share of the energy sector from 31% in 1990 up to 72% in 2010, while the non-energy sector decrease its share from 69% to 28% in the same period the total emissions increase from 167 mt/year in 1990 to 174 mt/year in 2010, an increase of only 4%

  9. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    OpenAIRE

    Mohammad Songolzadeh; Mansooreh Soleimani; Maryam Takht Ravanchi; Reza Songolzadeh

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion c...

  10. Greenhouse effect gases inventory in France during the years 1990-1999; Inventaire des emissions de gaz a effet de serre en France au cours de la periode 1990-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO{sub x}, 23% as regards NMVOCs, 33% for CO and by 44% regarding SO{sub 2}. Out of the six greenhouse gases covered by the Kyoto Protocol, CO{sub 2} accounts for the largest share in total GWP emissions (70 %), followed by N{sub 2}O (16 %), CH{sub 4} (12 %), HFCs (0.99 %), SF{sub 6} (0.5 %), and PFCs (0.39 %). (author)

  11. Greenhouse effects due to man-made perturbations of trace gases

    Science.gov (United States)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  12. Greenhouse gases (GHG), NOx and SOx reduction through biomass utilisation

    International Nuclear Information System (INIS)

    Environmental issues such as air pollution have been given serious attention these days. Public seems to be more aware of the effects of air pollution after experiencing haze in 1997. Carbon dioxide (C02) is one of the green house gases (GHG) that traps the heat of the sun in the atmosphere and contributes to global warming. Excessive usage of fossil fuels can caused the increase in C02 emission level land this has forced the relevant authorities to find a much cleaner fuel such as biomass. A large-scale.demonstration plant under the EC-ASEAN Cogen Programme is a good reference on how biomass could reduce the GHG without interruption to its process. The company uses wood wastes as fuel for its cogeneration plant to replace diesel oil and fuel oil for power and heat. The cogeneration plant capacity is 1.5 MW of electricity and thermal heat. of 11 MW. The fuel is fed to the combustion chamber with an automatic controlled feeding system to generate 16 tonnes per hour of superheated steam at 22 bar. The steam is supplied to a backpressure turbine and part of the exhaust steam is supplied as process heat to a kiln drying plant and the rest to a condensing turbine. The GHG emission mitigation potential from this cogeneration plant is 15,632 tonnes Of C02 equivalent per year. Moreover, it is also expected to reduce the annual NOx and S0x emission level by 89.5 % and 98.3 %. Therefore, this paper will describe how biomass utilisation through cogeneration could reduce GHG, NOx and S0x emission level. (author)

  13. The greenhouse gases HFCs, PFCs and SF{sub 6}, Danish consumption and emissions, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T.; Bode, I.

    2009-07-01

    The objective of this project was to determine the Danish consumption and actual emissions of HFCs, PFCs, and SF{sub 6} for 2007. Further, if methodology changes are made in connection to the work on 2007 data, the data for previous years are considered and updated accordingly. The emission calculation is made in accordance with the IPCC guidelines and following the method employed in previous year calculation. The methodology includes calculation of the actual emissions of HFCs, PFCs, and SF{sub 6}. In this calculation of actual emissions, the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. Specific emission factors are presented. (ln)

  14. Estimating the Greenhouse Gases Emission and the Most Important Factors in Dairy Farms (Case Study Iran

    Directory of Open Access Journals (Sweden)

    M. Ghorbani

    2008-01-01

    Full Text Available In this study, the amount of greenhouse gases emission of some important factors was calculated using life cycle assessment. Sample was 85 dairy farms that were selected by simple random sampling method in 2007. Results showed that electricity and diesel used are the most effective parameters on greenhouse gases emissions in dairy farms, respectively and the other effective parameters are the number of other cattle, the distance of food transferring, cows manure, the No. of calves and dairy cows. It is recommended that the policy makers use some methods like environmental taxes, improving management and carbon sequestration to reduce these kinds of costs. This study results could help policy makers to decide better with considering to effective factors.

  15. Emissions, activity data, and emission factors of fluorinated greenhouse gases (F-Gases) in Germany 1995-2002

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Winfried [Oeko-Recherche, Buero fuer Umweltforschung und -beratung GmbH, Frankfurt am Main (Germany)

    2005-06-15

    Before the 1997 Kyoto Protocol on Climate Protection, the fluorinated greenhouse gases HFCs, PFCs, and SF6 (F-gases) aroused little public attention. Since then, the standards on surveying and reporting on national emissions have been rising constantly. Amongst others, the annual reporting to the UNFCCC secretariat makes detailed declarations on use and emissions of F-gases necessary, which have to be filled in specified formats for submission (Common Reporting Format = CRF). The scientific basis has been set out by the UNFCCC guidelines on reporting, in accordance with the instructions laid down in IPCC good practice guidance. Additionally, in Germany the Centralised System of Emissions (ZSE) shall provide a suitable tool to satisfy any quality needs of both activity data and emission factors. From 1995 onwards, activity data and emissions of each individual application sector shall be presented in a comprehensible and transparent way. Therefore, the way of data collection as well as the estimation methods applied must be well documented. Moreover, data has to be prepared for appropriate importation into ZSE. It is the objective of this study to provide the transparency demanded within 40 national application sectors of F-gases, for the period between 1995 and 2002. - Firstly, all the activity data as well as the emissions related to them are presented and commented. This applies to manufacturing of products, F-gases banked in operating systems, and decommissioning. - Secondly, the methodologies applied to calculate the emissions are described and all sources of information are revealed, e.g. literature, names of experts from the manufacturing industry, users, trade, and academia. - Thirdly, reliability and safety of data are discussed. - Fourthly, possible deviations from the IPCC default values are stated and given reasons for. Wherever this intensive reviewing of 40 sectors through eight years of reporting uncovers gaps or inconsistencies in previous reports, later corrections can be made by means of recalculations. (orig.)

  16. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution

    OpenAIRE

    Eisted, Rasmus; Larsen, Anna Warberg; Christensen, Thomas Højlund

    2009-01-01

    The collection, transfer and transport of waste are basic activities of waste management systems all over the world. These activities all use energy and fuels, primarily of fossil origin. Electricity and fuel consumptions of the individual processes were reviewed and greenhouse gases (GHG) emissions were quantified. The emission factors were assigned a global warming potential (GWP) and aggregated into global warming factors (GWFs), which express the potential contribution to global warmi...

  17. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    OpenAIRE

    Morgan, E.J.; Lavric, J. V.; Seifert, T.; Chicoine, T.; Day, A; Gomez, J; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E.G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R.

    2015-01-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated, continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g....

  18. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    OpenAIRE

    Morgan, E.J.; Lavric, J. V.; Seifert, T.; Chicoine, T.; Day, A; Gomez, J; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E.G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R.

    2015-01-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the north...

  19. Politics and economics of second-best regulation of greenhouse gases: the importance of regulatory credibility

    OpenAIRE

    Bosetti, Valentina; Victor, David G.

    2010-01-01

    Modellers have examined a wide array of ideal-world scenarios for regulation of greenhouse gases. In this ideal world, all countries limit emissions from all economic sectors; regulations are implemented by intelligent, well-informed forward-looking agents; all abatement options, such as new energy technologies and forestry offsets, are available; trade in goods, services and emission credits is free and unfettered. Here we systematically explore more plausible second-best worlds. While analy...

  20. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby expos...

  1. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution

    DEFF Research Database (Denmark)

    Eisted, Rasmus; Larsen, Anna Warberg; Christensen, Thomas Højlund

    2009-01-01

    The collection, transfer and transport of waste are basic activities of waste management systems all over the world. These activities all use energy and fuels, primarily of fossil origin. Electricity and fuel consumptions of the individual processes were reviewed and greenhouse gases (GHG) emissions were quantified. The emission factors were assigned a global warming potential (GWP) and aggregated into global warming factors (GWFs), which express the potential contribution to global warming from...

  2. Emission of greenhouse gases from biogas plants; Treibhausgas-Emissionen aus Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Cuhls, Carsten; Maehl, Birte; Clemens, Joachim [gewitra - Ingenieurgesellschaft fuer Wissenstransfer mbH, Troisdorf (Germany)

    2011-01-15

    The search for renewable energy sources is driven by increasing electricity prices and the necessity of climate protection. Just with the operation of biogas plants it is important not to use up the positive climate balance by means of newly formed, strongly reacting greenhouse gases such as laughing gas. The contribution under consideration presents the critical areas in the plant and points out technical countermeasures.

  3. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    OpenAIRE

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby ...

  4. An alternative to the Global Warming Potential for comparing climate impacts of emissions of greenhouse gases

    OpenAIRE

    Shine, Keith P.; Fuglestvedt, Jan S.; Stuber, Nicola

    2003-01-01

    The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subject to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here a new metric, which we call the Global Tem...

  5. Optimal Directions for Directional Distance Functions: An Exploration of Potential Reductions of Greenhouse Gases

    OpenAIRE

    Hampf, Benjamin; Krüger, Jens J.

    2013-01-01

    This study explores the reduction potential of greenhouse gases for major pollution emitting countries of the world using nonparametric productivity measurement methods and directional distance functions. In contrast to the existing literature we apply optimization methods to endogenously determine optimal directions for the efficiency analysis. These directions represent the compromise of output enhancement and emissions reduction. The results show that for reasonable directions the adoption...

  6. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran

    International Nuclear Information System (INIS)

    The objectives of this study were to analyze energy use and greenhouse gases (GHG) emissions in various wheat production scenarios in north eastern Iran and to identify measures to reduce energy use and GHG emissions. Three high-input, a low-input, a better crop management and a usual production scenarios were included. All activities and production processes were monitored and recorded. Averages of total energy input and output were 15.58 and 94.4 GJ ha?1, respectively. Average across scenarios, GHG emissions of 1137 kg CO2-eq ha?1 and 291 kg CO2-eq t?1 were estimated. The key factors relating to energy use and GHG emissions were seedbed preparation and sowing and applications of nitrogen fertilizer. The better crop management production scenario required 38% lower nitrogen fertilizer (and 33% lower total fertilizer), consumed 11% less input energy and resulted in 33% more grain yield and output energy compared to the usual production scenario. It also resulted in 20% less GHG emissions per unit field area and 40% less GHG emissions per ton of grain. It was concluded that this scenario was the cleaner production scenario in terms of energy use and GHG emissions. Measures of improvement in energy use and GHG emission were identified. - Highlights: ? Wheat production scenarios were evaluated for energy use and greenhouse gases emission. ? A better crop management production scenario was the cleaner production scenario. ? Measures to reduce energy use and greenhouse gases emission were identified

  7. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    Science.gov (United States)

    Larson, D.L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  8. Greenhouse gases, climate change and the transition from coal to low-carbon electricity

    Science.gov (United States)

    Myhrvold, N. P.; Caldeira, K.

    2012-03-01

    A transition from the global system of coal-based electricity generation to low-greenhouse-gas-emission energy technologies is required to mitigate climate change in the long term. The use of current infrastructure to build this new low-emission system necessitates additional emissions of greenhouse gases, and the coal-based infrastructure will continue to emit substantial amounts of greenhouse gases as it is phased out. Furthermore, ocean thermal inertia delays the climate benefits of emissions reductions. By constructing a quantitative model of energy system transitions that includes life-cycle emissions and the central physics of greenhouse warming, we estimate the global warming expected to occur as a result of build-outs of new energy technologies ranging from 100 GWe to 10 TWe in size and 1-100 yr in duration. We show that rapid deployment of low-emission energy systems can do little to diminish the climate impacts in the first half of this century. Conservation, wind, solar, nuclear power, and possibly carbon capture and storage appear to be able to achieve substantial climate benefits in the second half of this century; however, natural gas cannot.

  9. The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND

    Energy Technology Data Exchange (ETDEWEB)

    Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.; Tol, Richard

    2014-01-01

    We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papers have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.

  10. Long term changes in the ionosphere over Indian low latitudes: Impact of greenhouse gases

    Science.gov (United States)

    Sharma, Som; Chandra, H.; Beig, G.

    2015-06-01

    Increased concentration of greenhouse gases due to anthropogenic activities warm the troposphere and have a cooling effect in the middle and upper atmosphere. Ionospheric densities and heights are affected due to cooling. Carbon dioxide is one of the most dominant gases for the cause of long term ionospheric trends along with other radiatively active greenhouse gases. Regular ionospheric soundings are made over Ahmedabad (23.1°N, 72.7°E), since 1953. Long term changes in the ionosphere as a consequence of the cooling of the mesosphere and thermosphere due to the increased concentration of greenhouse gases have been studied. Ionospheric observations over Ahmedabad, a low latitude station in the anomaly crest region, for the years 1955-2003 are examined to study the long term changes in the critical frequencies of the various ionospheric layers and the height of the maximum ionization as characterized by hPF2. A decrease in foF2 (1.9 MHz for midday, 1.4 MHz for midnight) and hPF2 (18 km for midday, 17 km for midnight) during about five decades are noted. An increase is noted in foF1 (0.4 MHz). The foF2 data are also examined over an equatorial station Kodaikanal (10.2°N, 77.5°E), situated near the magnetic equator for the years 1960-1995 and a decrease of 0.5 MHz for midday and 0.7 MHz for midnight are noted in ~35 years.

  11. Vertical profiles of trapped greenhouse gases in Alaskan permafrost active layers before the spring thaw

    Science.gov (United States)

    Byun, Eunji; Yang, Ji-woong; Kim, Yongwon; Ahn, Jinho

    2015-04-01

    Seasonally frozen ground over permafrost is important in controlling annual greenhouse gas exchange between permafrost and atmosphere. Soil microbes decompose soil carbon and generate carbon dioxide and methane when they become activated. However, the actual greenhouse gas emission follows various efflux pathways. For example, seasonal freezing of the top soil layers can either restrain or press the gas emission from deeper layers. It has been reported that abrupt release of methane during spring is attributable to the emission of trapped gases that had failed to be released instantly after formation (1, 2). In order to examine the seasonally trapped greenhouse gases, we drilled five Alaskan permafrost cores before spring thaw; one from coastal tundra, two from typical boreal forests, one from area where fire occurred, and one from peat accumulated sites. Vertical profiles of carbon dioxide and methane concentrations were obtained with 5-10 cm depth intervals. We found methane peaks from two cores, indicating inhibition of methane efflux. We also analyzed organic carbon, nitrogen and water contents and compared them with the greenhouse gas profiles. We are continuing analysis for the soil temperature profiles of the sampling boreholes because the detailed temperature information might be related to microbial activity, and can be used as indirect indicators of soil water freezing and latent heat influences at some active layer depth (zero curtain effects). All the high-resolution analyses for subsurface environments may help to improve understanding greenhouse gas emission from permafrost regions. 1. Mastepanov M, et al. (2008) Large tundra methane burst during onset of freezing. Nature 456(7222):628-630. 2. Song C, et al. (2012) Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environmental Research Letters 7(3):034009.

  12. Greenhouse Gases

    Science.gov (United States)

    ... in the visible and ultraviolet portion of the spectra) heats the surface, longer-wave (infrared) energy (heat) ... vapor is then able to absorb more thermal IR energy radiated from the Earth, thus further warming ...

  13. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    Energy Technology Data Exchange (ETDEWEB)

    DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  14. Temperature and Precipitation Extremes in the United States: Quantifying the Responses to Aerosols and Greenhouse Gases

    Science.gov (United States)

    Mascioli, N. R.; Fiore, A. M.; Previdi, M. J.; Correa, G. J. P.

    2014-12-01

    Changes in extreme temperatures, heat waves, heavy rainfall events, and precipitation frequency can have adverse impacts on human health, air quality, agricultural productivity, and water resources. Using the aerosol only (AER) and greenhouse gas only (GHG) "single forcing" simulations (3 ensemble members each) from the GFDL CM3 chemistry-climate model, we investigate aerosol- versus greenhouse gas-induced changes in high temperature and precipitation extremes over the United States. We identify changes in these events from 1860 to 2005 and the associated large-scale dynamical conditions. Small changes in these extremes in the "all forcing" simulations reflect cancellations between the individual, opposite-signed effects of increasing anthropogenic aerosols and greenhouse gases. In AER, aerosols lead to lower extreme high temperatures and fewer warm spells over the western US (-2.1 K regional average; -20 days/year) and over the central and northeast US (-1.5 K; -12 days/year). In GHG, a similar but opposite-signed response pattern occurs (+2.7 K and +14 days/year over the western US; +2.5 K and +10 days/year in the central and northeast US). The similar spatial response patterns in AER versus GHG suggest a preferred regional mode of response that is largely independent of the regional distribution of the forcing agent. The influence of both greenhouse gases and aerosols on extreme high temperature is weakest in the southeast US, collocated with the observed "warming hole". No statistically significant change occurs in AER, and a warming of only +1.8 K occurs in GHG. Warming in this region continues to be muted over the 21st century under the RCP 8.5 scenario, with increases in extreme temperatures more than 1 K smaller than elsewhere. Aerosols induce decreases in the number of days per year with at least 10mm of precipitation (R10mm) over the eastern US in summer and winter and over the southern US in spring of roughly 1 day/year. In contrast, greenhouse gases induce increases in R10mm over the eastern US in winter (+0.8 days/year), the northern and central US during spring (+1 day/year), and the southeast US during summer (+0.5 days/year), but decreases over the northeast US in summer (-0.2 days/year). In RCP 8.5, the patterns of extreme temperature and precipitation associated with greenhouse gas forcing dominate.

  15. Model of Emissions of Greenhouse Gases (Ghg's in the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Amarildo da Cruz Fernandes

    2012-06-01

    Full Text Available The warming of Earth's atmosphere is a natural phenomenon and necessary to sustain life on the planet, being caused by the balance between the electromagnetic radiation received by the Earth from the Sun and the infrared radiation emitted by the Earth back into space. Since the mid-eighteenth century, with the advent of the Industrial Revolution and the consequent increase in burning fossil fuels, changes in land use and agriculture, the concentrations of carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O has increased significantly. By the year 2010, the concentrations of these three gases showed increments respectively in the order of 39%, 158% and 20% (WMO 2009, 2010 and 2011. Such increases in the concentrations of these gases are changing the Earth's radioactive balance, intensifying the natural greenhouse effect, which over millions of years has been essential to support life on the planet. The main objective of this paper is to present the development of a model based on the language of System Dynamics (SD, of how the emission of Greenhouse Gases (GHGs is in complex installations Exploration and Production (E & P of oil and gas. To illustrate one of the results of this modeling process a computer simulation was performed involving emissions from production estimate for the Pilot Production System and Drainage Area Tupi - Tupi Pilot (ICF, 2008.

  16. Inventory of gases of greenhouse effect and mitigation options for Colombia

    International Nuclear Information System (INIS)

    In the last years, the possibility of a global heating due to the emissions of greenhouse gases has become a true concern for the international scientific community. As a result of it created the IPCC (Intergovernmental Panel on Climate Change) and the agreement mark was approved about the climatic change of the United Nations (UNFCCC) that was subscribed by the countries in 1992 in Rio de Janeiro city in Brazil. The objective of the agreement is the stabilization of the concentrations of the gases of GEI effect in the atmosphere at a level that allows avoiding interferences anthropogenic dangerous for the climatic system. It is sought to reach this level inside a sufficiently long term to allow the natural adaptation from the ecosystems to the climatic change, guaranteeing this way the production of foods and the sustainable development. The government from Colombia subscribed the agreement mark about the climatic change of the United Nations (UNFCCC) in 1992 and the congress of the republic ratified it in 1995. The signatory countries of the agreement commit to elaborate and to publish national inventories of anthropogenic emissions of gases of greenhouse effect as well as to develop plans to reduce or to control the emissions

  17. Monitoring Greenhouse Gases and Their Pollutions in Sarakhs Region Influenced by the Sourest Natural Gas Resource in the Middle East

    OpenAIRE

    Nader Nabhani; Mojtaba Mirdrikvand; Saeedeh Imani Moqadam; Amirali Rezazadeh; Seyed Alireza Sakaki

    2012-01-01

    Shahid Hashemi-Nezhad Gas Processing Company (S.G.P.C.), located in Sarakhs region of Iran, processes wells that consist of the sourest gases in Middle East. The gas entering the company from gas wells includes 3.5 percent H2S and 6.5 percent CO2 that is quite rare among similar wells for sweetening such large quantities as it does. As a result, greenhouse gases and their possible harmful results are sometimes unavoidable in the area. In this study, greenhouse gases in Sarakhs region, the atm...

  18. Use of 222Rn for estimation of greenhouse gases emissions at Russian territory

    Science.gov (United States)

    Berezina, E. V.; Elansky, N. F.

    2009-04-01

    It is well known that 222Rn is widely used as a tracer for studying different atmospheric processes including estimations of greenhouse gases emissions. Calculation of 222Rn fluxes from the soil into the atmosphere allows quantitative estimation of greenhouse gases emissions having the soil origin or sources of which are located near the surface. For accurate estimation of 222Rn fluxes detailed investigations of spatial and temporal variations of its concentrations are necessary. 222Rn concentrations data in the atmospheric surface layer over continental Russia from Moscow to Vladivostok obtained during the six TROICA (Transcontinental Observations Into the Chemistry of the Atmosphere) expeditions of the mobile laboratory along the Trans-Siberian railroad are analyzed. Spatial distribution, diurnal and seasonal variations of surface 222Rn concentrations along the Trans-Siberian railroad are investigated. According to the obtained data surface 222Rn concentration values above continental Russia vary from 0.5 to 75 Bq/m3 depending on meteorological conditions and geological features of the territory with the average value being 8.42 ± 0.10 Bq/m3. The average 222Rn concentration is maximum in the autumn expedition and minimum in the spring one. The factors mostly influencing 222Rn concentration variations are studied: surface temperature inversions, geological features of the territory, precipitations. 222Rn accumulation features in the atmospheric surface layer during night temperature inversions are analyzed. It was noted that during night temperature inversions the surface 222Rn concentration is 7 - 8 times more than the one during the nights without temperature inversions. Since atmospheric stratification determines accumulation and diurnal variations of many atmospheric pollutants as well as greenhouse gases its features are analyzed in detail. Surface temperature inversions were mainly observed from 18:00-19:00 to 06:00-07:00 in the warm season and from 16:00 to 08:00-09:00 in the cold season. During this time 222Rn accumulated in the surface atmospheric layer with its maximum concentration values being observed near sunrise. 222Rn fluxes from the soil into the atmosphere from Moscow to Vladivostok during surface temperature inversions are estimated taking into account geological factors. 222Rn accumulation layer depth in the lower atmosphere is calculated. Using the data of CO2, CH4 and 222Rn concentrations obtained in the expeditions we analyzed correlations between the greenhouse gases and 222Rn. There are significant positive correlations between CO2, CH4 and 222Rn concentrations during night temperature inversions especially in summer and in autumn. It indicates similar accumulation both 222Rn and the greenhouse gases in the surface layer during atmospheric stability. On the basis of the regressions between 222Rn, CO2 and CH4 concentrations the greenhouse gases night time fluxes in the surface layer from Moscow to Vladivostok are estimated using the calculated values of 222Rn fluxes. Acknowledgments. The work was supported by International Science and Technology Center (ISTC) under contract No. 2770 and by Russian Basic Research Foundation (project No. 08-05-13589, 07-05-12063 and 07-05-00428). The authors thank I. B. Belikov for preparation and carrying out the TROICA experiments.

  19. Greenhouse gases study in Amazonia; Estudo de gases de efeito estufa na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    D' Amelio, Monica Tais Siqueira

    2006-07-01

    The Amazon plays an important role on the global carbon cycle, as changing as carbon storage, since Amazon Basin is the biggest area of tropical forest, around 50% of global. Natural's process, deforestation, and use land are CO{sub 2} sources. The Amazon forest is a significant source of N{sub 2}O by soil process, and CH{sub 4} by anaerobic process like flooded areas, rice cultures, and others sources. This project is part of the LBA project (Large-Scale Biosphere Atmosphere Experiment in Amazonia), and this project is 'Vertical profiles of carbon dioxide and other trace gas species over the Amazon basin using small aircraft'. Since December 2000 vertical profiles of CO{sub 2}, CH{sub 4}, CO, H{sub 2}, N{sub 2}O and SF{sub 6} have been measured above central Amazonia. The local sampling was over Tapajos National Forest, a primary forest in Para State, where had a CO{sub 2} flux tower and an east impact area with sources like animals, rice cultivation, biomass burning, etc, to compare the influence of an impact area and a preserved area in the profiles. The Reserva Biologica de Cuieiras, at Amazon State, is the other studied place, where there already exists a CO{sub 2} flux tower, and an east preserved area at this State, to compare with the Cuieiras. The sampling has been carried out on vertical profile from 1000 ft up to 12000 ft using a semi-automated sampling package developed at GMD/NOAA and a small aircraft. The analysis uses the MAGICC system (Multiple Analysis of Gases Influence Climate Change) which is installed at the Atmospheric Chemistry Laboratory (LQA) in IPEN (Instituto de Pesquisas Energeticas e Nucleares). The results showed that all gases studied, except H{sub 2} gas, has been following the global trend. At the Para State, for the studied years, the Amazonian Forest performed as small CO{sub 2} sink. To compare Wet and Dry Seasons, subtracted the Ascension concentration values in the period to remove the global influence. So that, in the 2004 and 2005 wet seasons and 2004 dry season comparison it was observed 2 ppm CO{sub 2} concentration higher on wet seasons. At Amazon State the wet season profiles had source behavior presenting 10 ppm CO{sub 2} concentration higher under PBL (Planetary Boundary Layer) . In both states concentrations were higher than Ascension Island concentration. CH{sub 4} concentration over Para and Amazonia States presented higher values than in Ascension in 80 ppb and 25 ppb, respectively. Dry Season concentrations have been higher than Wet Season concentrations. N{sub 2}O concentrations in Para State was similar to Ascension concentration until 2003, when its concentration has been and enhancement, because of N fertilizer utilization at near area. N{sub 2}O concentration was similar in the two studied States, presenting discreet source at Wet Season. The SF{sub 6} concentration presented the global trend, and it was a little beat higher over Amazon State, suggesting different air origin. The CO concentration was higher under PBL and presented values during Dry Season higher in 130 ppb and 150 ppb than Wet Season, for burning contribution. The highest average concentration was over Amazon State, which agrees with the different air origin hypothesis. H{sub 2} gas presented behavior similar to CO gas in the Dry Season. The Amazon State performed a small sink role during Wet Season and in Para State is higher during dry season performed like a source and during wet season like a sink. (author)

  20. Biogenic emissions of greenhouse gases caused by arable and animal agriculture. Task 3. Overall biogenic greenhouse gas emissions from agriculture. National Inventories

    International Nuclear Information System (INIS)

    The aim of the concerted action 'Biogenic Emissions of Greenhouse Gases Caused by Arable and Animal Agriculture' is to obtain an overview of the current knowledge on the emissions of greenhouse gases related to agricultural activities. This task 3 report summarises the activities that take place in the Netherlands with respect to agriculture emission inventories. This 'national' report was compiled using information from a number of Dutch groups. Therefore, from a national point of view the compilation does not contain new information. The paper can however be useful for other European partners to get an overview of how emission estimates are obtained in the Netherlands. 14 p

  1. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    Science.gov (United States)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  2.  An interdisciplinary approach for studying greenhouse gases at the landscape scale

    DEFF Research Database (Denmark)

    Sitaula, BK; Warner, WS; Bakken, LR; Hargreaves, K; Klemedtsson, L; Sitaula, JIB; Christensen, Søren; Priemé, Anders

    1995-01-01

    An experimental approach is described that examines the influence of landscape terrain and land use on fluxes of important greenhouse gases (CH4, N2O and CO2) in soil. The landscape is gridded into 'field' units (cells), and each cell is characterized. For example, a 500 X 500 m rolling landscape, consisting of forest and croplands, is gridded into 400 field units (25 X 25 m cells). Cell gridding and classification of the slope, elevation and land use are partially automated using photogrammetri...

  3. Passive and Active Remote Sensing of Greenhouse Gases in the GOSAT Project

    Science.gov (United States)

    Morino, I.; Inoue, M.; Yoshida, Y.; Kikuchi, N.; Yokota, T.; Matsunaga, T.; Uchino, O.; Tanaka, T.; Sakaizawa, D.; Kawakami, S.; Ishii, S.; Mizutani, K.; Shibata, Y.; Abo, M.; Nagasawa, C.

    2014-12-01

    The Greenhouse gases Observing SATellite (GOSAT), launched on 23 Jan. 2009, is the world's first satellite dedicated to measuring concentrations of the two major greenhouse gases, carbon dioxide (CO2) and methane (CH4), from space. Column-averaged dry air mole fractions of CO2 and CH4 (XCO2 and XCH4) are retrieved from the Short-Wavelength InfraRed (SWIR) spectral data observed with the Thermal And Near-infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) onboard GOSAT. The present NIES full physics SWIR retrieval algorithm (ver. 02.xx) showed smaller biases and standard deviations (-1.48 ppm and 2.09 ppm for XCO2 and -5.9 ppb and 12.6 ppb for XCH4, respectively) than those of the ver. 01.xx by comparing with data of the Total Carbon Column Observing Network (TCCON). GOSAT retrievals from the GOSAT TANSO-FTS SWIR spectra for more than five years are now ready for scientific research, but may be still influenced by thin aerosols and clouds. Under GOSAT validation activities, we made aircraft observation campaigns to validate the GOSAT products and calibrate TCCON FTSs installed in Japan. In their campaigns, we also made partial column measurements of CO2 with an airborne laser absorption spectrometer, and comparison of ground-based CO2Differential Absorption Lidars with aircraft measurement data. Their active remote sensing experiments are for development of new validation methodology for passive space-based mission and fundamental development for future active space-based mission. The Ministry of the Environment, the Japan Aerospace Exploration Agency, and the National Institute for Environmental Studies also started the development of the follow-on satellite, GOSAT-2 in 2013. GOSAT-2 will be launched in 2017 - 2018. Instruments onboard GOSAT-2 are similar to current GOSAT. The SWIR passive remote sensing of greenhouse gases would be more or less affected by aerosols and thin cirrus clouds. Therefore, active remote sensing is expected to solve it and extend observations during nighttime and to be complementary with passive remote sensing which is adequate to wider observations. In this presentation, we will show results on GOSAT observations, validation activities, and lessons learnt from passive remote sensing of greenhouse gases for next-generation remote sensing.

  4. Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases

    International Nuclear Information System (INIS)

    The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subjected to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here, two new metrics are proposed, which are based on a simple analytical climate model. The first metric is called the Global Temperature Change Potential and represents the temperature change at a given time due to a pulse emission of a gas (GTPP); the second is similar but represents the effect of a sustained emission change (hence GTPS). Both GTPP and GTPS are presented as relative to the temperature change due to a similar emission change of a reference gas, here taken to be carbon dioxide. Both metrics are compared against an upwelling-diffusion energy balance model that resolves land and ocean and the hemispheres. The GTPP does not perform well, compared to the energy balance model, except for long-lived gases. By contrast, the GTPS is shown to perform well relative to the energy balance model, for gases with a wide variety of lifetimes. It is also shown that for time horizons in excess of about 100 years, the GTPS and GWP produce very similar results, indicating an alternative interpretation for the GWP. The GTPS retains the advantage of the GWP in terms of transparency, and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance, as it is further down the cause-effect chain of the impacts of greenhouse gases emissions and has an unambiguous interpretation. It appears to be robust to key uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP

  5. Relative Contribution of Greenhouse Gases and Ozone Change to Temperature Trends in the Stratosphere: A Chemistry/Climate Model Study

    Science.gov (United States)

    Stolarski, Richard S.; Douglass, A. R.; Newman, P. A.; Pawson, S.; Schoeberl, M. R.

    2006-01-01

    Long-term changes in greenhouse gases, primarily carbon dioxide, are expected to lead to a warming of the troposphere and a cooling of the stratosphere. We examine the cooling of the stratosphere and compare the contributions greenhouse gases and ozone change for the decades between 1980 and 2000. We use 150 years of simulation done with our coupled chemistry/climate model (GEOS 4 GCM with GSFC CTM chemistry) to calculate temperatures and constituents fiom,1950 through 2100. The contributions of greenhouse gases and ozone to temperature change are separated by a time-series analysis using a linear trend term throughout the period to represent the effects of greenhouse gases and an equivalent effective stratospheric chlorine (EESC) term to represent the effects of ozone change. The temperature changes over the 150 years of the simulation are dominated by the changes in greenhouse gases. Over the relatively short period (approx. 20 years) of ozone decline between 1980 and 2000 changes in ozone are competitive with changes in greenhouse gases. The changes in temperature induced by the ozone change are comparable to, but smaller than, those of greenhouse gases in the upper stratosphere (1-3 hPa) at mid latitudes. The ozone term dominates the temperature change near both poles with a negative temperature change below about 3-5 hPa and a positive change above. At mid latitudes in the upper stratosphere and mesosphere (above about 1 hPa) and in the middle stratosphere (3 to 70 ma), the greenhouse has term dominates. From about 70 hPa down to the tropopause at mid latitudes, cooling due to ozone changes is the largest influence on temperature. Over the 150 years of the simulation, the change in greenhouse gases is the most important contributor to temperature change. Ozone caused a perturbation that is expected to reverse over the coming decades. We show a model simulation of the expected temperature change over the next two decades (2006-2026). The simulation shows a crossover between lower atmospheric heating and upper atmospheric cooling that is located at about 90 hPa in the tropics and 30-40 hPa in the polar regions. This results from the combination of continuing increases in greehouse gases and recovery from ozone depletion.

  6. NF ISO 14064-2. Greenhouse gases. Part 2: specifications and guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements

    International Nuclear Information System (INIS)

    This document describes methodology for quantification, monitoring and reporting of activities intended to cause greenhouse gas emissions and reductions at projects level (activity modifying the conditions identified in a baseline scenario, intended to reduce emissions or to increase the removal of greenhouse gases). Thus it suggests a method for the declarations of inventory of projects greenhouse gases and provides support for the monitoring and the management of emissions. It provides terms and definitions, principles, the introduction to greenhouse gases projects and the requirements for greenhouse gas projects. (A.L.B.)

  7. The state of greenhouse gases in the atmosphere using global observations through 2013

    Science.gov (United States)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed; Montzka, Stephen A.; Keeling, Ralph; Tanhua, Toste; Lorenzoni, Laura

    2015-04-01

    We present results from the tenth annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG), and for the first time, it includes a summary of ocean acidification. Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. The summary of ocean acidification and trends in ocean pCO2 was jointly produced by the International Ocean Carbon Coordination Project (IOCCP) of the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), the Scientific Committee on Oceanic Research (SCOR), and the Ocean Acidification International Coordination Centre (OA-ICC) of the International Atomic Energy Agency (IAEA). The tenth Bulletin included a special edition published prior to the United Nations Climate Summit in September 2014. The scope of this edition was to demonstrate the level of emission reduction necessary to stabilize radiative forcing by long-lived greenhouse gases. It shows in particular that a reduction in radiative forcing from its current level (2.92 W m-2 in 2013) requires significant reductions in anthropogenic emissions of all major greenhouse gases. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of carbon dioxide, methane and nitrous oxide derived from this network reached new highs in 2013, with CO2 at 396.0 ± 0.1 ppm, CH4 at 1824 ± 2 ppb and N2O at 325.9 ± 0.1 ppb. These values constitute 142%, 253% and 121% of pre-industrial (before 1750) levels, respectively. The atmospheric increase of CO2 from 2012 to 2013 was 2.9 ppm, which is the largest year to year change from 1984 to 2013. The rise of CO2 concentration has been only about a half of what is expected if all the excess CO2 from the burning of fossil-fuel stayed in the air. The other half has been absorbed by the land biosphere and the oceans, but the split between land and oceans is not easily resolved from CO2 data alone. As described in the Bulletin, O2 measurements have been used to estimate the magnitude of the terrestrial biosphere sink. For N2O the increase from 2012 to 2013 is smaller than the one observed from 2011 to 2012 but comparable to the average growth rate over the past 10 years. Atmospheric CH4 continued to increase at a rate similar to the mean rate over the past 5 years. The National Oceanic and Atmospheric Administration (NOAA) Annual Greenhouse Gas Index shows that from 1990 to 2013 radiative forcing by long-lived greenhouse gases increased by 34%, with CO2 accounting for about 80% of this increase. The radiative forcing by all long-lived greenhouse gases in 2013 corresponded to a CO2-equivalent mole fraction of 479 ppm (http://www.esrl.noaa.gov/gmd/aggi). Uptake of anthropogenic CO2 by the ocean results in increased CO2 concentrations and increased acidity levels in sea-water. During the last two decades ocean water pH decreased by 0.0011 - 0.0024 per year, and the amount of CO2 dissolved in see water (pCO2) increased by 1.2 - 2.8 ?atm per year for time-series from several featured ocean stations.

  8. Measurements of greenhouse gases at Beromünster tall tower station in Switzerland

    Science.gov (United States)

    Berhanu, T. A.; Satar, E.; Schanda, R.; Nyfeler, P.; Moret, H.; Brunner, D.; Oney, B.; Leuenberger, M.

    2015-10-01

    In order to constrain the regional flux of greenhouse gases, an automated measurement system was built on an old radio tower at Beromünster, Switzerland. The measurement system has been running since November 2012 as part of the Swiss greenhouse gases monitoring network (CARBOCOUNT-CH), which is composed of four measurement sites across the country. The Beromünster tall tower has five sampling lines with inlets at 12.5, 44.6, 71.5, 131.6 and 212.5 m a.g.l., and it is equipped with a Picarro CRDS analyzer (G-2401), which continuously measures CO, CO2, CH4 and H2O. Sensors for detection of wind speed and direction, air temperature, barometric pressure, and humidity have also been installed at each height level. We have observed a non-negligible temperature effect in the calibration measurements, which was found to be dependent on the type of cylinder (steel or aluminum) as well as trace gas species (strongest for CO). From a target gas of known mixing ratio that has been measured once a day, we have calculated a long-term reproducibility of 2.79, 0.05 and 0.29 ppb for CO, CO2 and CH4, respectively over 19 months of measurements. The values obtained for CO2 and CH4 are compliant with the WMO recommendations, while the value calculated for CO is higher than the recommendation, which is mainly due to the above mentioned temperature effects.

  9. The enlargement of the European Union. Effects on trade and emissions of greenhouse gases

    International Nuclear Information System (INIS)

    With the gradual accession of various Central and Eastern European Countries (CEECs) to the European Union (EU), international trade between the EU and the CEECs will change as a result of trade liberalisation and the mobility of production factors within the EU. The EU and most of the CEECs have already committed themselves to reduce by 2008-2012 their emissions of greenhouse gases (GHGs) by 8% compared to the 1990 level. This paper reports on an investigation of the potential consequences of the enlargement of the EU and of the emission reduction target set by the Kyoto Protocol on the sectoral production patterns and international trade. A comparative-static general equilibrium model was developed to examine the impacts under different scenarios. For illustrative purposes, two regions (the EU and the CEECs) and three categories of goods and services (agricultural goods, industrial goods, and services) were included. The model was calibrated by the 1998 data. The model was subsequently applied to study the effects of free trade, the mobility of factors and the environmental constraints on production and international trade in light of the enlargement of the EU. We show that in this specific context, free trade is beneficial to economic welfare and does not necessarily increase emissions of greenhouse gases. The mobility of factors also increases economic welfare, but in the case of fixed production technology it may harm the environment through more emissions of GHGs. (author)

  10. Regulation of Emission of Greenhouse Gases and Hazardous Air Pollutants from Motor Vehicles

    Directory of Open Access Journals (Sweden)

    Steven G. Davison

    2007-04-01

    Full Text Available Emissions from motor vehicles of toxic and hazardous air pollutants, carbon dioxide, and other greenhouse gases1-emissions that currently are not regulated under the federal Clean Air Act2-are receiving increasing attention at both the federal and state government levels as government officials and members of the public express increasing concern that these substances may pose as much of a threat to public health and welfare as other pollutants from motor vehicles which currently are regulated under the Clean Air Act.Many scientists are reporting a "25-year trend of rising globaltemperatures" and "other dramatic signs of global warming, such as the record shrinkage of the Arctic sea ice cover and unprecedented high ocean temperatures in the Gulf of Mexico."3 Many people attribute global warming to emissions of carbon dioxide and other greenhouse gases resulting fromhuman activities such as the burning of fossil fuels by power plants and motor vehicles.4 Scientists recently have found that the year 2005 was the hottest year on record for the Northern Hemisphere, with temperatures approximately1.3 degrees Fahrenheit above historical average temperatures.5

  11. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014

    Directory of Open Access Journals (Sweden)

    R. V. Kochanov

    2015-08-01

    Full Text Available In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014, the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm?1, the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer+ NO2 was used in place of the monomer. Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.

  12. Evaluation of the greenhouse effect gases (CO2, CH4, N2O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002

    International Nuclear Information System (INIS)

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO2 and CH4 (by the breeding animals on grass) and N2O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  13. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF{sub 6}. Danish consumption and emissions, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [PlanMiljoe (Denmark)

    2007-06-15

    An evaluation of Danish consumption and emissions of ozone-depleting substances and industrial greenhouse gases has been carried out in continuation of previous evaluations, partly to fulfil Denmark's international obligations to provide information within this area and partly to follow the trend in consumption of ozone-depleting substances as well as the consumption and emissions of HFCs, PFCs and SF{sub 6}. The evaluation includes a calculation of actual emissions of HFCs, PFCs, and SF{sub 6} for 2006. In this calculation the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. (BA)

  14. Isotope aided studies of atmospheric carbon dioxide and other greenhouse gases. Phase II

    International Nuclear Information System (INIS)

    The substantial increase in atmospheric greenhouse gas concentrations and their role in global warming have become major concerns of world governments. Application of isotope techniques to label sources and sinks of CO2 and other greenhouse gases has emerged as a potentially powerful method for reducing uncertainties in the global CO2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. As with CO2 concentration measurements, meaningful integration of isotopes in global models requires careful attention to quality assurance, quality control and inter-comparability of measurements made by a number of networks and laboratories. To support improvements in isotope measurement capabilities, the IAEA began implementing Co-ordinated Research Projects (CRPs) in 1992. The first project, entitled Isotope Variations of Carbon Dioxide and other Trace Gases in the Atmosphere, was implemented from 1992 to 1994. A significant contribution was made towards a better understanding of the global carbon cycle and especially of the sources and sinks of carbon with data on the 14C and 13C content of atmospheric CO2, pointing to a better understanding of the problem of the 'missing sink' in the global carbon cycle. Important methodological developments in the field of high precision stable isotope mass spectrometry and improved data acquisition procedures emerged from work carried out within the framework of this programme. The development of pressurized gas standards and planning for an associated interlaboratory calibration were initiated. Due to the good progress and long standing nature of the required work a second CRP was initiated and implemented from 1996 to 1999. It was entitled Isotope aided Studies of Atmospheric Carbon Dioxide and Other Trace Gases - Phase II, to document the close relationship of both programmes. This publication provides an overview of the scientific outcomes of the studies conducted within Phase II of the project, which incorporate the findings of both CRPs

  15. Improving Solid Waste Management in Gulf Co-operation Council States: Developing Integrated Plans to Achieve Reduction in Greenhouse Gases

    OpenAIRE

    Mohammed Saleh Al.Ansari

    2012-01-01

    Landfills are a significant source of greenhouse gases, which contribute to the process of global warming. In the region covered by the Gulf Co-operation Council (GCC), changes in consumption patterns have led to an excessive dump of municipal solid waste (MSW). Thus, it is clearly an important time to re-evaluate conventional waste management protocols in order to establish methods that not only deal with increased demand but also minimize greenhouse gas emissions and improve efficiency of r...

  16. Working group results on the division by four of the greenhouse gases emissions in France, at 2050, called factor four

    International Nuclear Information System (INIS)

    This working group aims to evaluate and propose different ways to divide by four the greenhouse gases emissions at 2050 in France. This objective was decided by the Government and fixed in the Climate Plan and in the Program law of 13 July 2005. In this framework, this meeting presents studies of the working group, concerning the following topics: buildings and greenhouse gases, a scenario for the UE25 realized by Greenpeace, the agriculture and the forests facing the climate, the biomass the nature the agriculture and the silviculture facing the climate. (A.L.B.)

  17. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992: General Guidelines

    International Nuclear Information System (INIS)

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, Congress authorized a voluntary program for the public to report achievements in reducing those gases. This document offers guidance on recording historic and current greenhouse gas emissions, emissions reductions, and carbon sequestration. Under the Energy Policy Act (EPAct) reporters will have the opportunity to highlight specific achievements. If you have taken actions to lessen the greenhouse gas effect, either by decreasing greenhouse gas emissions or by sequestering carbon, the Department of Energy (DOE) encourages you to report your achievements under this program. The program has two related, but distinct parts. First, the program offers you an opportunity to report your annual emissions of greenhouse gases. Second, the program records your specific projects to reduce greenhouse gas emissions and increase carbon sequestration. Although participants in the program are strongly encouraged to submit reports on both, reports on either annual emissions or emissions reductions and carbon sequestration projects will be accepted. These guidelines and the supporting technical documents outline the rationale for the program and approaches to analyzing emissions and emissions reduction projects. Your annual emissions and emissions reductions achievements will be reported

  18. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4 during BARCA

    Directory of Open Access Journals (Sweden)

    V. Y. Chow

    2009-12-01

    Full Text Available High-accuracy continuous measurements of greenhouse gases (CO2 and CH4 during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  19. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) during BARCA

    Science.gov (United States)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2009-12-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  20. Inventory of greenhouse effect gases in France under the united nation framework convention on climatic change; Inventaire des emissions de gaz a effet de serre en France au titre de la convention cadre des nations unies sur le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    The present report supplies emission data, for France and for the period 1990 - 2000 concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. For the period 1990 - 1999 as a whole, estimates provided in the previous inventories have been reviewed and corrected to take into account updated statistics, improved knowledge, possible changes in methodology and specifications contained in the guidelines (FCCC/CP/1999/7) defined by the UNFCCC on reporting for inventories of emissions, in particular the use of the Common Reporting Format (CRF). (author)

  1. Biomass fuel burning and its implications: Deforestation and greenhouse gases emissions in Pakistan

    International Nuclear Information System (INIS)

    Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO2, CH4 and N2O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO2-equivalent has been estimated to be 533019 t y-1. - Consumption of forest wood in the brick industry poses the problem of deforestation in Pakistan in addition to release of GHGs in the environment owing to biomass burning.

  2. Greenhouse gases emission from soils under major crops in Northwest India.

    Science.gov (United States)

    Jain, N; Arora, P; Tomer, R; Mishra, Shashi Vind; Bhatia, A; Pathak, H; Chakraborty, D; Kumar, Vinod; Dubey, D S; Harit, R C; Singh, J P

    2016-01-15

    Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008-2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N2O emissions were significantly different (P>0.05) among the crop types. Emission of N2O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r(2)=0.74, Pagriculture. PMID:26540602

  3. European trends in greenhouse gases emissions from integrated solid waste management.

    Science.gov (United States)

    Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio

    2015-01-01

    The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1). PMID:25704238

  4. Differences between the glacial cycles of Antarctic temperature and greenhouse gases

    Directory of Open Access Journals (Sweden)

    A. W. Omta

    2012-03-01

    Full Text Available Ice-core measurements have indicated that the atmospheric concentrations of the greenhouse gases CO2 and CH4 show glacial-interglacial variations in step with Antarctic temperature. To obtain more insight into the nature of this relationship for cycles of different frequencies, measured time series of temperature, CO2, and CH4 are reanalysed. The results indicate that the temperature signal consists of a linear superposition of a component related to CO2 with a period of ~100 000 yr and a component related to variations in the obliquity of the Earth's orbital plane with a period of ~41 000 yr. This suggests that either there operate very different feedback mechanisms at the different time scales or that CO2 is not merely a~passive follower and amplifier of the glacial-interglacial variations in Antarctic temperature.

  5. Global CO2 Distributions over Land from the Greenhouse Gases Observing Satellite (GOSAT)

    Science.gov (United States)

    Hammerling, Dorit M.; Michalak, Anna M.; O'Dell, Christopher; Kawa, Randolph S.

    2012-01-01

    January 2009 saw the successful launch of the first space-based mission specifically designed for measuring greenhouse gases, the Japanese Greenhouse gases Observing SATellite (GOSAT). We present global land maps (Level 3 data) of column-averaged CO2 concentrations (X(sub CO2)) derived using observations from the GOSAT ACOS retrieval algorithm, for July through December 2009. The applied geostatistical mapping approach makes it possible to generate maps at high spatial and temporal resolutions that include uncertainty measures and that are derived directly from the Level 2 observations, without invoking an atmospheric transport model or estimates of CO2 uptake and emissions. As such, they are particularly well suited for comparison studies. Results show that the Level 3 maps for July to December 2009 on a lO x 1.250 grid, at six-day resolution capture much of the synoptic scale and regional variability of X(sub CO2), in addition to its overall seasonality. The uncertainty estimates, which reflect local data coverage, X(sub CO2) variability, and retrieval errors, indicate that the Southern latitudes are relatively well-constrained, while the Sahara Desert and the high Northern latitudes are weakly-constrained. A probabilistic comparison to the PCTM/GEOS-5/CASA-GFED model reveals that the most statistically significant discrepancies occur in South America in July and August, and central Asia in September to December. While still preliminary, these results illustrate the usefulness of a high spatiotemporal resolution, data-driven Level 3 data product for direct interpretation and comparison of satellite observations of highly dynamic parameters such as atmospheric CO2.

  6. Joint implementation, clean development mechanism and tradable permits. International regulation of greenhouse gases

    DEFF Research Database (Denmark)

    Nielsen, L.; Olsen, K.R.

    2000-01-01

    This report deals with international environmental instruments aimed at a cost-effective reduction of greenhouse gas emissions. More precisely the instruments mentioned in the Kyoto Protocol, namely Joint Implementation (JI), the Clean DevelopmentMechanism (CDM) and Tradable Permits (TP). The report describes the background for the international co-operation on reducing the greenhouse gases and the background for the instruments. How the instruments work in theory and what the practical problemsmay be. What agents' incentives are when they engage in JI or CDM, and how the initiation of the instruments can be organised. The institutional frameworks for JI, CDM and TP are discussed. The report describes how the Kyoto instruments and the Kyotocommitments interact with other instruments and describe distributive effects between countries. It is analysed how the use of CDM may influence the developing countries incentives to participate in the coalition of committed countries. In the concludingchapter some recommendations on the use of JI, TP and CDM are given. The recommendations are a kind of dialog with especially the Norwegian and Swedish reports on tradable permits. Some of the issues described in this main report are analysed in separateworking papers. The working papers are collected in an appendix to the main report.

  7. Air pollution policy in Europe: Quantifying the interaction with greenhouse gases and climate change policies

    International Nuclear Information System (INIS)

    This paper uses the computable general equilibrium model WorldScan to analyse interactions between EU's air pollution and climate change policies. Covering the entire world and seven EU countries, WorldScan simulates economic growth in a neo-classical recursive dynamic framework, including emissions and abatement of greenhouse gases (CO2, N2O and CH4) and air pollutants (SO2, NOx, NH3 and PM2.5). Abatement includes the possibility of using end-of-pipe control options that remove pollutants without affecting the emission-producing activity itself. This paper analyses several variants of EU's air pollution policies for the year 2020. Air pollution policy will depend on end-of-pipe controls for not more than two thirds, thus also at least one third of the required emission reduction will come from changes in the use of energy through efficiency improvements, fuel switching and other structural changes in the economy. Greenhouse gas emissions thereby decrease, which renders climate change policies less costly. Our results show that carbon prices will fall, and may even drop to zero when the EU agrees on a more stringent air pollution policy. - Highlights: • This paper models bottom-up emission control in top-down CGE model. • We analyse interactions between air pollution and climate policies in Europe. • Structural changes induced by stringent air policies may make EU-ETS market obsolete

  8. Tracing origin and fate of dissolved greenhouse gases in Malaysian peat-draining rivers

    Science.gov (United States)

    Müller, Denise; Warneke, Thorsten; Rixen, Tim; Denis, Nastassia; Müller, Moritz; Notholt, Justus

    2014-05-01

    Tropical peatlands are known to store large amounts of organic carbon. Peat-draining rivers in these regions receive considerable amounts of carbon from these soils, yet, its fate remains poorly studied. Although a number of recent studies investigated greenhouse gas production and emission from inland waters, only a small number focused on tropical freshwaters, and data from tropical peat-draining rivers are particularly lacking. We investigated rivers in a peat-dominated catchment in Sarawak, Malaysia. Dissolved greenhouse gases (GHG) were measured with Fourier Transform InfraRed (FTIR) spectroscopy. It allows for the simultaneous and continuous measurement of major GHG (CO2 and ?13C in CO2, CH4, N2O, and CO) with high accuracy and precision. We found that concentrations of dissolved CO, CO2 and CH4 were higher than the respective atmospheric equilibrium concentration, suggesting that those rivers are a source of these GHG to the atmosphere. Enhanced N2O concentrations were only found around some cultivated areas. In order to trace the origin of the GHG, we quantified dissolved organic carbon (DOC), particulate organic carbon (POC), inorganic nutrients and different parameters that describe water chemistry. Stable carbon isotope analysis of dissolved inorganic carbon (DIC) yielded indications of a terrestrial source of inorganic carbon in the river, suggesting that in-situ respiration of organic matter might play an important role.

  9. Air Pollution Policy in Europe. Quantifying the Interaction with Greenhouse Gases and Climate Change Policies

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, J. [CPB Netherlands Bureau for Economic Policy Analysis, Den Haag (Netherlands); Brink, C. [Netherlands Environmental Assessment Agency PBL, Den Haag (Netherlands)

    2012-10-15

    In this study the Computable General Equilibrium Model called WorldScan is used to analyse interactions between European air pollution policies and policies aimed at addressing climate change. WorldScan incorporates the emissions of both greenhouse gases (CO2, N2O and CH4) and air pollutants (SO2, NOx, NH3 and PM2.5). WorldScan has been extended with equations that enable the simulation of end-of-pipe measures that remove pollutants without affecting the emission-producing activity itself. Air pollution policy will depend on end-of-pipe controls for not more than 50%, thus also at least 50% of the required emission reduction will come from changes in the use of energy through efficiency improvements, fuel switching and other structural changes in the economy. Greenhouse gas emissions thereby decrease which renders climate change policies less costly. Our results show that carbon prices will fall, but not more than 33%, although they could drop to zero when the EU agrees on a more stringent air pollution policy.

  10. Greenhouse Gases Emission from Land Application of Swine Waste Water: A Comparison of Three Different Swine Slurry Application Methods

    Science.gov (United States)

    Agricultural activities (including land application of animal manures) account for about 20% of the total human induced global warming budget due to emissions of greenhouse gases (GHG). Recently, there has been an increasing emphasis on controlling these emissions from livestock operations. One of...

  11. Atmospheric Station Kresin u Pacova, Czech Republic - a central European research infrastructure for studying greenhouse gases, aerosols and air quality.

    Czech Academy of Sciences Publication Activity Database

    Dvorská, Alice; Fusek, M.; Hanuš, Vlastimil; Hošková, K.; Michálek, J.; Prošek, P.; Schwarz, Jaroslav; Sedlák, Pavel; Vá?a, Milan; Veselik, P.; Vodi?ka, Petr; Ždímal, Vladimír; Zíková, Nad?žda

    Berlín : European Meteorological Society, 2014, "192-1". [EMS Annual Meeting, 14th & European Conference on Applications of Meteorology (ECAM), 10th. Prague (CZ), 06.10.2014-10.10.2014] Institutional support: RVO:67179843 Keywords : atmospheric station K?ešín * Czech Republic * greenhouse gases * Aerosol-climate model * air quality Subject RIV: DG - Athmosphere Sciences, Meteorology

  12. Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters.

    Science.gov (United States)

    Maia, Guilherme D N; Day, George B; Gates, Richard S; Taraba, Joseph L; Coyne, Mark S

    2012-06-01

    Gas-phase compost biofilters are extensively used in concentrated animal feeding operations to remove odors and, in some cases, ammonia from air sources. The expected biochemical pathway for these predominantly aerobic systems is nitrification. However, non-uniform media with low oxygen levels can shift biofilter microbial pathways to denitrification, a source of greenhouse gases. Several factors contribute to the formation of anoxic/anaerobic zones: media aging, media and particle structure, air velocity distribution, compaction, biofilm thickness, and moisture content (MC) distribution. The present work studies the effects of media moisture conditions on ammonia (NH(3)) removal and greenhouse gas generation (nitrous oxide, N(2)O and methane, CH(4)) for gas-phase compost biofilters subject to a 100-day controlled drying process. Continuous recordings were made for the three gases and water vapor (2.21-h sampling cycle, each cycle consisted of three gas species, and water vapor, for a total of 10,050 data points). Media moisture conditions were classified into three corresponding media drying rate (DR) stages: Constant DR (wetter media), falling DR, and stable-dry system. The first-half of the constant DR period (0-750 h; MC=65-52%, w.b.) facilitated high NH(3) removal rates, but higher N(2)O generation and no CH(4) generation. At the drier stages of the constant DR (750-950 h; MC=52-48%, w.b.) NH(3) removal remained high but N(2)O net generation decreased to near zero. In the falling DR stage (1200-1480 h; MC=44-13%) N(2)O generation decreased, CH(4) increased, and NH(3) was no longer removed. No ammonia removal or greenhouse gas generation was observed in the stable-dry system (1500-2500 h; MC=13%). These results indicate that media should remain toward the drier region of the constant DR (in close proximity to the falling DR stage; MC=50%, approx.), to maintain high levels of NH(3) removal, reduced levels of N(2)O generation, and nullify levels of CH(4) generation. PMID:22465726

  13. Greenhouse gases measurements in road tunnel in São Paulo Megacity, Brazil

    Science.gov (United States)

    Fornaro, A.; Andrade, M. F.; Ynoue, R. Y.; Galichio, W.; Astolfo, R.; Miranda, R. M.

    2012-04-01

    The Metropolitan Area of São Paulo (MASP) is the richest area in Brazil and is one of the largest megacities in the world, with more than 20 million inhabitants. The fleet, with more than 7 million vehicles, is unique in that most are fueled by ethanol or by a gasoline-ethanol (flex-fuel vehicles) mixture containing 75-78% gasoline (by volume) and 22-25% ethanol (a blend referred to as gasohol). Nowadays, approximately 50% of the fuel burned by the fleet is ethanol. The vehicular emissions are responsible for approximately 98, 97, and 96%, respectively, of all emissions of carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx). In addition, the fleet is the largest source of CO2 emissions in the MASP. The goal is to evaluate of the vehicles emissions of the pollutants and greenhouse gases (CH4 and CO2) in the MASP. The gases carbon dioxide and methane were carried out by Picarro G2301 Analyzer for CO2/CH4/H2O in air. Field measurements were carried out in two road tunnels within the MASP: May 2 to 13, 2011 in the Janio Quadros (JQ) tunnel and from July 04 to 19, 2011 in the Rodoanel (RA) tunnel. The JQ tunnel is located in the southwest portion of São Paulo. It is a two-lane tunnel that is 1900 m in length, and the traffic in both lanes flows in the same directions. The in-tunnel emissions are mainly from gasohol- and ethanol-powered vehicles. The RA tunnel is located in the West portion of the city and different from JQ tunnel. It is 1700m in length and carries gasohol, ethanol and diesel powered vehicles, being that approximately 40% of the heavy-duty (burning diesel) in its four-lane. The results showed that the effects of the number and velocity of the vehicles in the variability of greenhouse gases and pollutants. The carbon dioxide reaching the hourly maximum value of 550 ppm in-inside the JQ tunnel, and 900 ppm in-side the RA tunnel.

  14. Cosmic-Ray-Driven Reaction and Greenhouse Effect of Halogenated Molecules: Culprits for Atmospheric Ozone Depletion and Global Climate Change

    OpenAIRE

    Lu, Qing-Bin

    2012-01-01

    This study is focused on the effects of cosmic rays (solar activity) and halogenated molecules (mainly chlorofluorocarbons-CFCs) on atmospheric O3 depletion and global climate change. Brief reviews are first given on the cosmic-ray-driven electron-induced-reaction (CRE) theory for O3 depletion and the warming theory of CFCs for climate change. Then natural and anthropogenic contributions are examined in detail and separated well through in-depth statistical analyses of compr...

  15. A comparative analysis of methodology for inventory of greenhouse gases emissions - IPCC and CORINAIR

    International Nuclear Information System (INIS)

    The inventory of greenhouse gases (GHG) is performed by two accepted methods - CORINAIR (of EU) and IPCC (of UN Intergovernmental Panel on Climate Changes). The first one is applied only in European countries, the second is conformable to GHG emissions from all over the world. The versions IPCC-95 and CORINAIR94 are compared from theoretical and methodological point of view. In Bulgaria the version CORINAIR95 is not applied yet and the inventory analysis for 1994 uses CORINAIR90. The emissions of main GHG and gases-precursors are compared. The main elements of inventory are analyzed. The values recommended by CORINAIR94 are taken into account. A table for accordance between the two methods is used. The differences concerning transport vehicles are taken into account also. Differences between the two methods are noticed in the following directions: nomenclature of the activities emitting GHG; organization of the inventory guides; kind of the activities and technologies included. The qualitative comparison are done for energy sector and for industry separately. The results show too big differences in the volume of the emitted GHG and the reasons could be classified as methodological ones and differences in the kind and values of the emission coefficients. For their determining standard values for Eastern Europe from IPCC guide have been applied as well as data from experimental investigations. Respectively, in the method CORINAIR emission coefficients CORINAIR90 are used. The differences between the emission coefficients determined in the two methods are as big as twice or even more for CO at solid fuels, i.g. at energy production; as big as three times at NOx and up to twenty times at methane also at solid fuels. The two methods do not read the emissions of gases-precursors at some industrial processes. This disadvantage is overcome at IPCC96 and it is necessary to complement the emission coefficients in the data base, especially for gases-precursors regarding the local investigations and the latest assessments of climate changes done by IPCC. Data of the method CORINAIR94 could be used for this purpose

  16. Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily; McLinden, Matthew

    2012-01-01

    This passive laser heterodyne radiometer (LHR) instrument simultaneously measures multiple trace gases in the atmospheric column including carbon dioxide (CO2) and methane (CH4), and resolves their concentrations at different altitudes. This instrument has been designed to operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In the LHR instrument described here, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. For a one-second integration, the estimated column sensitivities are 0.1 ppmv for CO2, and Greenhouse gases Observational SATellite). The only network that currently measures CO2 and CH4 in the atmospheric column is TCCON (Total Carbon Column Observing Network), and only two of its 16 operational sites are in the United States. TCCON data is used for validation of GOSAT data, and will be used for OCO-2 validation. While these Fourier-transform spectrometers (FTS) can measure the largest range of trace gases, the network is severely limited due to the high cost and extreme size of these instruments (these occupy small buildings and require personnel for operation). The LHR/AERONET instrument offers a significantly smaller (carry-on luggage size) autonomous instrument that can be incorporated into AERONET s much larger (450 instruments) global network.

  17. Airborne Observations of Greenhouse Gases during the Asian Summer Monsoon 2008

    Science.gov (United States)

    Schuck, T. J.; Brenninkmeijer, C. A. M.; Slemr, F.; van Velthoven, P. F. J.; Zahn, A.

    2009-04-01

    The new CARIBIC system (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) is operational since December 2004. The fully automated instrument package is deployed monthly aboard a Lufthansa Airbus A340-600. The measurement results are representative for the extra-tropical UT/LS and for tropical free-troposphere air masses. Besides in-situ measurements, air is sampled into glass flasks for laboratory analyses (greenhouse gases, NMHCs, halocarbons, CO2 and H2 isotopes). The main greenhouse gas analysis comprises CO2, CH4, N2O and SF6, isotope analyses include 13C(CO2), 18O(CO2), D(H2) and 13C(CH4). In 2008 the emphasis was on flights between Germany and India in order to study the influence of the Asian summer monsoon on the upper troposphere. During the summer months a distinctive monsoon plume was observed. Higher levels of CH4, N2O and SF6 were found in air masses influenced by the monsoon. While the increase of the purely anthropogenic SF6 is due to increased convective transport during the summer months, the enhancement of CH4 and to a lesser extent also of N2O is caused by increasing emissions from rice paddies, wetlands and landfills during the rainy season. In contrast, CO2 is depleted in the monsoon plume due to an increase in photosynthesis in the regions affected by the monsoon rains. The observations made in 2008 will be compared to data from the phase I of the CARIBIC project.

  18. Emission of greenhouse gases from sewage installations; Emissies van broeikasgassen van rwzi's

    Energy Technology Data Exchange (ETDEWEB)

    Van Voorthuizen, E.; Van Leusden, M.; Visser, A.; Kruit, J. [Royal Haskoning, Amersfoort (Netherlands); Kampschreur, M.; Van Dongen, U.; Van Loosdrecht, M. [Technische Universiteit Delft TUD, Delft (Netherlands)

    2010-03-15

    Emissions of greenhouse gases (CO2, CH4, N2O) from wastewater treatment plants (WWTPs) are monitored. The emission of CO2 from waste water treatment plants (WWTPs) is related to the use of electricity, natural gas or other fossil fuels. The amount and origin of the emission of CH4 and N2O, however, is unknown. Presently emission factors from the IPCC (Intergovernmental Panel on Climate Change) and the Dutch Ministry of Housing, Spatial Planning and the Environment (VROM) are used to estimate those emissions. The aim of the study on the title subject was to determine the level of N2O and CH4 emission from Dutch WWTPs to understand the accuracy of the existing emission factors. In this way an estimation of the total greenhouse gas emission from a Dutch WWTP can be made. The emission of N2O and CH4 was measured at three WWTPs in the Netherlands: Papendrecht, Kortenoord and Kralingseveer [Dutch] In deze studie zijn de indirecte en directe emissies van broeikasgassen (CO2, CH4 en N2O) van rwzi's in kaart gebracht aan de hand van metingen. De resultaten hebben aanleiding gegeven voor een vervolgonderzoek waarbij onder meer kennis wordt ontwikkeld op het gebied van methaanvorming (CH4) in de riolering en mogelijkheden om de emissie van methaan op een zuivering te reduceren. Met betrekking tot lachgas N2O wordt onderzoek gedaan naar de vormingsprocessen van lachgas en de wijze waarop deze vrijkomt vanuit een rwzi. Verder worden relaties tussen lachgasemissie en procesparameters inzichtelijk gemaakt. Met deze kennis is het hopelijk in de toekomst mogelijk om maatregelen te nemen die de vorming en emissie van lachgas vanuit rwzi's te reduceren.

  19. Progress and opportunities for monitoring greenhouse gases fluxes in Mexican ecosystems: the MexFlux network

    Scientific Electronic Library Online (English)

    R., VARGAS; E. A., YÉPEZ; J. L., ANDRADE; G., ÁNGELES; T., ARREDONDO; A. E., CASTELLANOS; J., DELGADO-BALBUENA; J., GARATUZA-PAYÁN; E., GONZÁLEZ DEL CASTILLO; W., OECHEL; J. C., RODRÍGUEZ; A., SÁNCHEZ-AZOFEIFA; E., VELASCO; E. R., VIVONI; C., WATTS.

    2013-06-01

    Full Text Available Para entender los procesos de los ecosistemas desde un punto de vista funcional es fundamental entender las relaciones entre la variabilidad climática, los ciclos biogeoquímicos y las interacciones superficie-atmósfera. En las últimas décadas se ha aplicado de manera creciente el método de covarianz [...] a de flujos turbulentos (EC, por sus siglas en inglés) en ecosistemas terrestres, marinos y urbanos para medir los flujos de gases de invernadero (p. ej., CO2, H2O ) y energía (p. ej., calor sensible y latente). En diversas regiones se han establecido redes de sistemas EC que han aportado información científica para el diseño de políticas ambientales y de adaptación. En este contexto, el presente trabajo delimita el marco conceptual y técnico para el establecimiento de una red regional de medición de flujos de gases de efecto invernadero en México, denominada MexFlux, cuyo objetivo principal es mejorar nuestra comprensión de la forma en que la variabilidad climática y la transformación ambiental influye en la dinámica de los ecosistemas mexicanos ante los factores de cambio ambiental global. En este documento se analiza primero la importancia del intercambio de CO2 y vapor de agua entre los ecosistemas terrestres y la atmósfera. Después se describe brevemente la técnica de covarianza de flujos turbulentos para la medición de éstos, y se presentan ejemplos de mediciones en dos ecosistemas terrestres y uno urbano en México. Por último, se describen las bases conceptuales y operativas a corto, mediano y largo plazo para la continuidad de la red MexFlux. Abstract in english Understanding ecosystem processes from a functional point of view is essential to study relationships among climate variability, biogeochemical cycles, and surface-atmosphere interactions. Increasingly during the last decades, the eddy covariance (EC) method has been applied in terrestrial, marine a [...] nd urban ecosystems to quantify fluxes of greenhouse gases (e.g., CO2, H2O) and energy (e.g., sensible and latent heat). Networks of EC systems have been established in different regions and have provided scientific information that has been used for designing environmental and adaptation policies. In this context, this article outlines the conceptual and technical framework for the establishment of an EC regional network (i.e., MexFlux) to measure the surface-atmosphere exchange of heat and greenhouse gases in Mexico. The goal of the network is to improve our understanding of how climate variability and environmental change influence the dynamics of Mexican ecosystems. First, we discuss the relevance of CO2 and water vapor exchange between terrestrial ecosystems and the atmosphere. Second, we briefly describe the EC basis and present examples of measurements in terrestrial and urban ecosystems of Mexico. Finally, we describe the conceptual and operational goals at short-, medium-, and long-term scales for continuity of the MexFlux network.

  20. Emissions of Greenhouse Gases from Urban Xi'an, China - Direct Measurements by Eddy Covariance

    Science.gov (United States)

    VanReken, T. M.; Mwaniki, G. R.; VanderSchelden, G.; O'Keeffe, P.; Waldo, S.; Erickson, M. H.; Lamb, B. K.; Jobson, B. T.; Tie, X.; Cao, J.

    2012-12-01

    Throughout the world and especially in Asia, rapid urbanization is resulting in an increasing number of very large cities. In these areas, the rate of development can outpace the perceived need for environmental regulation, and frequently there are inadequate resources available to monitor pollution or enforce compliance with those environmental regulations that do exist. These limitations obviously impact air quality on a local scale, but cities also have significant environmental impacts on regional and even global scales. In order to understand and mitigate these impacts on the surrounding environment, it is first necessary to robustly characterize the pollutant emissions themselves. This can be a significant challenge. Major discrepancies arise when comparing emissions inventories based on bottom-up compilations of source types, number, and activity levels to estimates inferred from satellite observations and other large-scale techniques. Direct measurements of neighborhood-scale emission fluxes via micrometeorological approaches provide a means to resolve these differences. Such measurements can be used to quantify the integrated vertical exchange for a wide variety of greenhouse gases and other pollutants, typically with spatial footprints of tens of square kilometers and with temporal resolutions of ~30 minutes. Here we present the results of an urban flux study conducted in Xi'an, China in August 2011. For the study a 23 m tower was erected atop the ~100 m tall administration building at Xi'an Jiaotong University. From the tower, we employed an eddy covariance approach to measure concentrations and fluxes of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and carbon monoxide (CO). Here we present an analysis of the air-surface exchange of these gases. Results indicate that while our study site in Xi'an was a net source of these species, the greenhouse gas fluxes were significantly smaller than at other sites around the world and exhibited a different diurnal pattern. We attribute these results to two factors: 1) the relatively low traffic density at the Xi'an study site relative to other urban flux sites; and 2) the presence of a large urban park in the northerly sector of the study footprint, where the vegetative sink for CO2 was often greater than anthropogenic sources. Overall the analysis suggests that even in heavily urbanized regions land use and activity profiles can have significant impacts on air pollutant emissions.

  1. Carbon sequestration and greenhouse gases emissions in soil under sewage sludge residual effects

    Scientific Electronic Library Online (English)

    Leonardo Machado, Pitombo; Janaina Braga do, Carmo; Isabela Clerici de, Maria; Cristiano Alberto de, Andrade.

    2015-02-01

    Full Text Available The large volume of sewage sludge (SS) generated with high carbon (C) and nutrient content suggests that its agricultural use may represent an important alternative to soil carbon sequestration and provides a potential substitute for synthetic fertilizers. However, emissions of CH4 and N2O could neu [...] tralize benefits with increases in soil C or saving fertilizer production because these gases have a Global Warming Potential (GWP) 25 and 298 times greater than CO2, respectively. Thus, this study aimed to determine C and N content as well as greenhouse gases (GHG) fluxes from soils historically amended with SS. Sewage sludge was applied between 2001 and 2007, and maize (Zea mays L.) was sowed in every year between 2001 and 2009. We evaluated three treatments: Control (mineral fertilizer), 1SS (recommended rate) and 2SS (double rate). Carbon stocks (0-40 cm) were 58.8, 72.5 and 83.1 Mg ha–1in the Control, 1SS and 2SS, respectively, whereas N stocks after two years without SS treatment were 4.8, 5.8, and 6.8 Mg ha–1, respectively. Soil CO2 flux was highly responsive to soil temperature in SS treatments, and soil water content greatly impacted gas flux in the Control. Soil N2O flux increased under the residual effects of SS, but in 1SS, the flux was similar to that found in moist tropical forests. Soil remained as a CH4sink. Large stores of carbon following historical SS application indicate that its use could be used as a method for carbon sequestration, even under tropical conditions.

  2. Carbon sequestration and greenhouse gases emissions in soil under sewage sludge residual effects

    Directory of Open Access Journals (Sweden)

    Leonardo Machado Pitombo

    2015-02-01

    Full Text Available The large volume of sewage sludge (SS generated with high carbon (C and nutrient content suggests that its agricultural use may represent an important alternative to soil carbon sequestration and provides a potential substitute for synthetic fertilizers. However, emissions of CH4 and N2O could neutralize benefits with increases in soil C or saving fertilizer production because these gases have a Global Warming Potential (GWP 25 and 298 times greater than CO2, respectively. Thus, this study aimed to determine C and N content as well as greenhouse gases (GHG fluxes from soils historically amended with SS. Sewage sludge was applied between 2001 and 2007, and maize (Zea mays L. was sowed in every year between 2001 and 2009. We evaluated three treatments: Control (mineral fertilizer, 1SS (recommended rate and 2SS (double rate. Carbon stocks (0-40 cm were 58.8, 72.5 and 83.1 Mg ha–1in the Control, 1SS and 2SS, respectively, whereas N stocks after two years without SS treatment were 4.8, 5.8, and 6.8 Mg ha–1, respectively. Soil CO2 flux was highly responsive to soil temperature in SS treatments, and soil water content greatly impacted gas flux in the Control. Soil N2O flux increased under the residual effects of SS, but in 1SS, the flux was similar to that found in moist tropical forests. Soil remained as a CH4sink. Large stores of carbon following historical SS application indicate that its use could be used as a method for carbon sequestration, even under tropical conditions.

  3. A new method for estimating greenhouse gases and ammonia emissions from livestock buildings

    Science.gov (United States)

    Barrancos, José; Briz, Susana; Nolasco, Dácil; Melián, Gladys; Padilla, Germán; Padrón, Eleazar; Fernández, Isabel; Pérez, Nemesio; Hernández, Pedro A.

    2013-08-01

    It is widely known that carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are the main greenhouse gases contributing to global climate change. Emission factors for the aforementioned gases have been proposed in order to calculate the contribution of livestock farming to global climate change. However, these emission factors depend on many additional factors such as the housing system, environmental conditions, etc., which implies some uncertainties in their estimation. Therefore, works that aim at improving experimental calculation of these emissions are crucial to provide reliable estimates of the emissions produced by livestock. The purpose of this work was to apply a new methodology inspired by the accumulation chamber method to estimate emission rates from livestock buildings. The work was based on measuring the increase of gas emissions inside the livestock building by means of the remote sensing technique Open-Path FTIR (OP-FTIR). Previously to the measurements, livestock building cattle was confined outside of the building. Utilization of fan ventilation system favoured the homogenization of air inside the building. This experiment proved that evolution of CH4 and CO2 concentrations inside the livestock building behaved like an accumulation chamber unlike the N2O which did not show such behaviour. Results showed CH4, CO2 and NH3 emissions of 167 ± 54,700 ± 200 and 1.3 ± 0.2 kg head-1 year-1, respectively. One of the main parameters affecting the estimated emission factors is the type of animal feeding. Therefore, it is essential to investigate the influence of food composition on CH4 and CO2 emission in a relative larger number of operating cattle buildings since the methodology herein proposed is an easy and cheap tool to study livestock emission factors and their variability.

  4. Emission estimates for some acidifying and greenhouse gases and options for their control in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pipatti, R. [VTT Energy, Espoo (Finland). Energy Systems

    1998-11-01

    This thesis presents estimates and options for control of anthropogenic ammonia (NH{sub 3}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and some halocarbon emissions in Finland. Ammonia is an air pollutant which contributes to both acidification and nitrogen eutrophication of ecosystems. Its emissions are mainly caused by livestock manure. In Finland the anthropogenic emissions of NH{sub 3} have been estimated to be approximately 44 Gg in 1985 and 43 Gg in 1990. In the 1990`s the emissions have declined due to the reduced number of cattle and voluntary implementation of emission reducing measures. The impact of NH{sub 3} emissions on acidification is serious but in Finland it is less than the impact of the other acidifying gases sulphur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}). All three gases and their transformation products are transported by the atmosphere up to distances of hundreds or even more than a thousand kilometres. NH{sub 3} emissions can be reduced with relatively cost-effective measures and the measures can partly replace the implementation of more costly abatement measures on SO{sub 2} and NO{sub x} emissions needed to lower the acidifying deposition in Finland. The other gases studied in this thesis are greenhouse gases. Some of the gases also deplete stratospheric ozone. Finnish anthropogenic CH{sub 4} emissions have been estimated to be around 250 Gg per year during the 1990`s. The emissions come mainly from landfills and agricultural sources (enteric fermentation and manure). The significance of other CH{sub 4} sources in Finland is minor. The potential to reduce the Finnish CH{sub 4} emissions is estimated to be good. Landfill gas recovery offers an option to reduce the emissions significantly at negligible cost if the energy produced can be utilised in electricity and/or heat production. Measures directed at reducing the emissions from livestock manure management are more costly, and the achievable reduction in the emissions small. The potential to reduce the CH{sub 4} emissions from enteric fermentation in Finland is not known. If measures to reduce these emissions prove efficient and economically promising in future studies, the total reduction in the Finnish CH{sub 4} emissions will be higher and in the long run the halving of the emission level of 1990 seems achievable. The anthropogenic N{sub 2}O emissions in Finland are considerably smaller than the CH{sub 4} emissions, around 20 Gg per year during the 1990`s, but the greenhouse impact of the Finnish N{sub 2}O emissions is of similar magnitude as that of the Finnish CH{sub 4} emissions. The most important anthropogenic N{sub 2}O emission sources in Finland are nitrogen fertilisation, nitric acid production and burning processes in the energy sector. The indirect emissions caused by nitrogen deposition due to NH{sub 3} and NO{sub x} emissions are also of significance. The N{sub 2}O emissions are estimated to grow due to the increasing use of fluidized bed combustion and catalytic converters in the energy sector. These otherwise environmentally friendly technologies produce significantly more N{sub 2}O than the corresponding conventional technologies. Measures for N{sub 2}O emission control are not known very well and many of the measures are still at an experimental stage. Promising measures to reduce the N{sub 2}O emissions from nitric acid production and fluidized bed combustion have been put forward but plant scale applications of the measures are still lacking. If the measures can be implemented on plant scale, emission reductions of the same order of magnitude as the estimated growth in the emissions are anticipated. The CFCs and other considered halocarbons are already partly phased out. The halocarbons that destroy stratospheric O{sub 3} are subject to regulations under the Montreal protocol and in Finland most of the consumption ceased in 1996. The O{sub 3} depleting substances are partly substituted with substances that are effective greenhouse gases, the most important of which are the HFCs. The emission estimates and i

  5. Energy scenarios and greenhouse effect gases emissions model for Mexico; Modelo de escenarios energeticos y de emisiones de gases de efecto invernadero para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia; Rodriguez Viqueira, Luis [Instituto de Ingenieria de la UNAM, Mexico, D. F. (Mexico)

    1998-12-31

    This paper presents the bases for the Model of Energy and Greenhouse Emission Scenarios (MEEEM) developed by the Instituto de Ingenieria de la UNAM (Universidad Nacional Autonoma de Mexico`s Engineering Institute). This model was built with the objective of analyzing the different technological options for the mitigation of the greenhouse gases effect on Mexico. The MEEEM is a model for the end uses that simulate in a simple way the energy demand, transformation and supply and calculates the differential leveled costs among a basic scenario and several mitigation scenarios of the greenhouse emissions. The article also presents some of the results in evaluating three technologies of renewable energy sources. Although the model is perfectible, its development shows its usefulness in this type of models in the decision taking for the energy and environmental planning of the country. [Espanol] Este articulo presenta las bases del Modelo de Escenarios Energeticos y de Emisiones de Gases de Efecto Invernadero para Mexico (MEEEM), desarrollado por el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM). Este modelo fue construido con el objetivo de analizar las diversas opciones tecnologicas de mitigacion de gases de efecto invernadero para Mexico. El MEEEM es un modelo de usos finales que simula de una manera sencilla, la demanda, transformacion y oferta de la energia y calcula la diferencia de costos nivelados entre un escenario base y diversos escenarios de mitigacion de emisiones de gases de efecto invernadero. El articulo presenta tambien algunos resultados obtenidos al evaluar tres tecnologias de fuentes renovables de energia. Aun cuando el modelo es perfectible, su desarrollo demuestra la utilidad de este tipo de modelos en la toma de decisiones para planeacion energetica y ambiental del pais.

  6. Olympic Games promote the reduction in emissions of greenhouse gases in Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jisong [China Centre of Recycle Economy Research, School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: js_wub@buaa.edu.cn; Zhang Yongjie [China Centre of Recycle Economy Research, School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2008-09-15

    Global climate change is one of the most serious global environmental problems faced by humankind at present. Serious attention should be paid and precautions should be taken before disasters occur. The amount of CO{sub 2} emissions in China has increased during the past few years and the Chinese government and people have attached great importance to this phenomenon and treated it seriously. With the instruction of scientific development viewpoint, Beijing has made significant progress in emissions reduction through technological innovation, industrial structure adjustment, promoting energy efficiency and utilization of renewable energy, and absorption of CO{sub 2} using forest and wetland, since bidding for Olympic Games. At the same time, energy conservation and emissions reduction measures taken in the construction of Beijing Olympic stadiums just incarnate the Beijing Green Olympics. Using the Beijing Olympic Games as a turning-point, adopting energy conservation and emissions reduction measures, Beijing will make contributions to reduction of greenhouse gases and slowing down climate changes and Beijing Olympic Games will leave behind an inheritance for future generations to enjoy.

  7. Olympic Games promote the reduction in emissions of greenhouse gases in Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jisong; Zhang, Yongjie [China Centre of Recycle Economy Research, School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2008-09-15

    Global climate change is one of the most serious global environmental problems faced by humankind at present. Serious attention should be paid and precautions should be taken before disasters occur. The amount of CO{sub 2} emissions in China has increased during the past few years and the Chinese government and people have attached great importance to this phenomenon and treated it seriously. With the instruction of scientific development viewpoint, Beijing has made significant progress in emissions reduction through technological innovation, industrial structure adjustment, promoting energy efficiency and utilization of renewable energy, and absorption of CO{sub 2} using forest and wetland, since bidding for Olympic Games. At the same time, energy conservation and emissions reduction measures taken in the construction of Beijing Olympic stadiums just incarnate the Beijing Green Olympics. Using the Beijing Olympic Games as a turning-point, adopting energy conservation and emissions reduction measures, Beijing will make contributions to reduction of greenhouse gases and slowing down climate changes and Beijing Olympic Games will leave behind an inheritance for future generations to enjoy. (author)

  8. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution

    DEFF Research Database (Denmark)

    Eisted, Rasmus; Larsen, Anna Warberg

    2009-01-01

    The collection, transfer and transport of waste are basic activities of waste management systems all over the world. These activities all use energy and fuels, primarily of fossil origin. Electricity and fuel consumptions of the individual processes were reviewed and greenhouse gases (GHG) emissions were quantified. The emission factors were assigned a global warming potential (GWP) and aggregated into global warming factors (GWFs), which express the potential contribution to global warming from collection, transport and transfer of 1 tonne of wet waste. Six examples involving collection, transfer and transport of waste were assessed in terms of GHG emissions, including both provision and use of energy. (GHG emissions related to production, maintenance and disposal of vehicles, equipment, infrastructure and buildings were excluded.) The estimated GWFs varied from 9.4 to 368 kg CO2-equivalent (kg CO2-eq.) per tonne of waste, depending on method of collection, capacity and choice of transport equipment, andtravel distances. The GHG emissions can be reduced primarily by avoiding transport of waste in private cars and by optimization of long distance transport, for example, considering transport by rail and waterways.

  9. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution.

    Science.gov (United States)

    Eisted, Rasmus; Larsen, Anna W; Christensen, Thomas H

    2009-11-01

    The collection, transfer and transport of waste are basic activities of waste management systems all over the world. These activities all use energy and fuels, primarily of fossil origin. Electricity and fuel consumptions of the individual processes were reviewed and greenhouse gases (GHG) emissions were quantified. The emission factors were assigned a global warming potential (GWP) and aggregated into global warming factors (GWFs), which express the potential contribution to global warming from collection, transport and transfer of 1 tonne of wet waste. Six examples involving collection, transfer and transport of waste were assessed in terms of GHG emissions, including both provision and use of energy. (GHG emissions related to production, maintenance and disposal of vehicles, equipment, infrastructure and buildings were excluded.) The estimated GWFs varied from 9.4 to 368 kg CO(2)-equivalent (kg CO(2)-eq.) per tonne of waste, depending on method of collection, capacity and choice of transport equipment, and travel distances. The GHG emissions can be reduced primarily by avoiding transport of waste in private cars and by optimization of long distance transport, for example, considering transport by rail and waterways. PMID:19808734

  10. Influence of nuclear power unit on decreasing emissions of greenhouse gases

    Directory of Open Access Journals (Sweden)

    Stanek Wojciech

    2015-03-01

    Full Text Available The paper presents a comparison of selected power technologies from the point of view of emissions of greenhouse gases. Such evaluation is most often based only on analysis of direct emissions from combustion. However, the direct analysis does not show full picture of the problem as significant emissions of GHG appear also in the process of mining and transportation of fuel. It is demonstrated in the paper that comparison of power technologies from the GHG point of view has to be done using the cumulative calculus covering the whole cycle of fuel mining, processing, transportation and end-use. From this point of view coal technologies are in comparable level as gas technologies while nuclear power units are characterised with lowest GHG emissions. Mentioned technologies are compared from the point of view of GHG emissions in full cycle. Specific GHG cumulative emission factors per unit of generated electricity are determined. These factors have been applied to simulation of the influence of introduction of nuclear power units on decrease of GHG emissions in domestic scale. Within the presented simulations the prognosis of domestic power sector development according to the Polish energy policy till 2030 has been taken into account. The profitability of introduction of nuclear power units from the point of view of decreasing GHG emissions has been proved.

  11. Emission of greenhouse gases and soil organic matter balance in different farming systems

    Directory of Open Access Journals (Sweden)

    A. Kawalec

    2008-09-01

    Full Text Available Estimation of the influence of different farming systems on emission of greenhouse gases (methane and nitrous oxide was the aim of the research. The research was conducted on the basis of a special field experiment established in 1994 in the Experimental Station in Osiny in which different crop production systems are compared, and in a group of 20 organic farms organic farms located in the central part of Poland. For the first object the analysis of nitrous oxide emission and soil organic matter balance was done for 1996-2007, whereas for the second one CH4 and N2O emission and potential of sequestration of CO2 in soil organic matter was done for 2004-2005. Organic farming system was characterized by significantly lower nitrous oxide emission in comparison to other systems. There was no distinct difference in CH4 emission between compared systems. In the organic farms, total CH4 and N2O emission expressed in GWP units amounted to 1623 points and this was 22% less than the average value for the Kuyavian-Pomeranian voivodeship. Balance method showed that organic system has a great potential in sequestration of CO2 in soil organic matter in comparison to integrated and conventional systems. However, measurements of humus content in soil did not confirm that observation.

  12. Overview of existing studies on full-energy-chain (FENCH) emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Literature on investigations into full-energy-chain emissions of greenhouse gases is scanty. Fourteen different studies are reviewed most of which deal with energy use only in parts of the fuel chain or with CO2 only. The scatter in full-energy-chain emissions factors of individual energy sources is not very large, except that in the emission factors of gas-fired power, biomass-fueled power and hydropower generation. The sources of this scatter are discussed. Fossil fuels have emission factors in the range of 500-1200 g CO2 equiv./kW(e).h. Wind, nuclear and geothermal power generation are in the range of low emission factors: 10-70 g CO2 equiv./kW(e).h. Emission factors of hydropower and sustainable biomass-fueled power generation range 10-400 and 40-180 g CO2 equiv./kW(e).h, resp. The solar and ocean power generating sources are in the range of 100-300 g CO2 equiv./kW(e).h. (author). 14 refs, 2 figs, 3 tabs

  13. Biomass fuel burning and its implications: Deforestation and greenhouse gases emissions in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, S.N.A., E-mail: snatahir@cyber.net.p [Forestry, Wildlife and Fisheries Department, Govt. of the Punjab, Poonch House, 38-Multan Road, Lahore (Pakistan); Rafique, M. [Chief Conservator of Forests, Northern Zone, Rawalpindi, Punjab Forest Department (Pakistan); Alaamer, A.S. [Al-Imam Muhammad Ibn Saud Islamic University, Faculty of Science, Physics Department, Riyadh (Saudi Arabia)

    2010-07-15

    Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO{sub 2}, CH{sub 4} and N{sub 2}O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO{sub 2}-equivalent has been estimated to be 533019 t y{sup -1}. - Consumption of forest wood in the brick industry poses the problem of deforestation in Pakistan in addition to release of GHGs in the environment owing to biomass burning.

  14. Comparing solubility algorithms of greenhouse gases in Earth-System modelling

    Science.gov (United States)

    Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.

    2015-09-01

    Accurate solubility estimates are fundamental for (i) Earth-System models forecasting the climate change taking into consideration the atmosphere-ocean balances and trades of greenhouse gases, and (ii) using field data to calibrate and validate the algorithms simulating those trades. We found important differences between the formulation generally accepted and a recently proposed alternative relying on a different chemistry background. First, we tested with field data from the Baltic Sea, which also enabled finding differences between using water temperatures measured at 0.5 or 4 m depths. Then, we used data simulated by atmospheric (Meteodata application of WRF) and oceanographic (WW3-NEMO) models of the European Coastal Ocean and Mediterranean to compare the use of the two solubility algorithms in Earth-System modelling. The mismatches between both formulations lead to a difference of millions of tons of CO2, and hundreds of tons of CH4 and N2O, dissolved in the first meter below the sea surface of the whole modelled region.

  15. Life cycle assessment of processes for hydrogen production. Environmental feasibility and reduction of greenhouse gases emissions

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J.; Moreno, J. [Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Serrano, D.P. [Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain)]|[IMDEA Energia, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Galvez, J.L.; Garcia, C. [National Institute of Aerospace Technology (INTA), Renewable Energies Area, Crtra. Ajalvir Km 4, 28850 Torrejon de Ardoz, Madrid (Spain)

    2009-02-15

    Decomposition of CH{sub 4} (natural gas) is one of the alternatives under study to achieve the sustainable production of hydrogen. No CO{sub 2} or other greenhouse gases emissions are produced in this route and carbon is obtained as a solid co-product at the end of the reaction (CH{sub 4}<-> C+2 H{sub 2}). This process can be thermally or catalytically conducted and recent studies have demonstrated that the carbon obtained in the reaction can also show catalytic activity. In this work, thermal and autocatalytic decomposition of methane were studied and compared with the steam reforming with and without CO{sub 2} capture and storage from an environmental point of view, using life cycle assessment (LCA) tools. As well, different energetic scenarios were included in the study. The selected functional unit was 1 Nm{sup 3} of hydrogen and the LCA was focused on material and raw materials acquisition and manufacturing stages. The assessment was carried out with SimaPro 7.1 software by using Eco-indicator 95 method. Results showed that autocatalytic decomposition is the most environmental-friendly process for hydrogen production since presented the lowest total environmental impact and CO{sub 2} emissions. Also, steam reforming with CO{sub 2} capture and storage led to lower CO{sub 2} emissions but higher total environmental impact than conventional steam reforming. (author)

  16. Effect of increasing greenhouse gases on Indian monsoon rainfall as downscaled from the ECHAM coupled model

    International Nuclear Information System (INIS)

    It is more or less accepted that the increasing anthropogenic gases will result in global warming through the greenhouse effect. The major influence of this will be felt in the form of ice melts and rising sea levels. The influence on regional climates like monsoons is not very clear. Since the monsoons arise due to surface heating, one would expect that global warming will lead to more vigorous monsoons. The expected change in a climate parameter can be studied by analyzing the historical data and then extrapolating in time. Alternatively, one can use the state-of-the-art coupled GCMs which are able to simulate the earth's climate with reasonable accuracy. Both methods have some limitations. The first method cannot adequately consider the nonlinearity, and the second method may not be efficient for regional scales. So that the projections can be trusted, the regional features should be well simulated. None of the current models are able to simulate the Indian monsoon satisfactorily. Therefore it is desirable to infer the expected change in monsoons from other large and near global scale features which are better simulated. This approach, which depends on the concurrent association between a large-scale modeled feature and a regional scale, is known as downscaling, after Storch et al., and is adopted here to project the Indian monsoon rainfall for the next 100 years from the ECHAM T21 coupled model

  17. Frequency Comb-Based Remote Sensing of Greenhouse Gases over Kilometer Air Paths

    CERN Document Server

    Rieker, Gregory B; Swann, William C; Kofler, Jon; Zolot, Alex M; Sinclair, Laura C; Baumann, Esther; Cromer, Christopher; Petron, Gabrielle; Sweeney, Colm; Tans, Pieter P; Coddington, Ian; Newbury, Nathan R

    2014-01-01

    We demonstrate coherent dual frequency-comb spectroscopy for detecting variations in greenhouse gases. High signal-to-noise spectra are acquired spanning 5990 to 6260 cm^-1 (1600 to 1670 nm) covering ~700 absorption features from CO2, CH4, H2O, HDO, and 13CO2, across a 2-km open-air path. The transmission of each frequency comb tooth is resolved, leading to spectra with <1 kHz frequency accuracy, no instrument lineshape, and a 0.0033-cm^-1 point spacing. The fitted path-averaged concentrations and temperature yield dry-air mole fractions. These are compared with a point sensor under well-mixed conditions to evaluate current absorption models for real atmospheres. In heterogeneous conditions, time-resolved data demonstrate tracking of strong variations in mole fractions. A precision of <1 ppm for CO2 and <3 ppb for CH4 is achieved in 5 minutes in this initial demonstration. Future portable systems could support regional emissions monitoring and validation of the spectral databases critical to global s...

  18. Emissions of greenhouse gases from the use of transportation fuels and electricity

    International Nuclear Information System (INIS)

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO2), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO2-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO2-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles

  19. Are Greenhouse Gases Changing ENSO Precursors in the Western North Pacific?

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S-Y (Simon); Heureux, Michelle L.; Yoon, Jin-Ho

    2013-09-01

    Using multiple observational and modeling datasets, we document a strengthening relationship between boreal winter sea surface temperature anomalies (SSTA) in the western North Pacific (WNP) and the development of the El Nino-Southern Oscillation (ENSO) one year later. The increased WNP-ENSO association emerged in the mid 20th century and has grown through the present, reaching correlation coefficients as high as ~0.70 in recent decades. Fully coupled climate experiments with the Community Earth System Model (CESM) replicate the WNP-ENSO association and indicate that greenhouse gases (GHG) are largely responsible for the observed increase. We speculate that shifts in the location and amplitudes of positive SST trends in the subtropical-tropical western Pacific impacts the low-level circulation so that WNP variability is increasingly influencing the development of ENSO one year later. A strengthened GHG-driven relationship between the WNP and ENSO provides an example of how anthropogenic climate change can potentially improve the skill of intraseasonal-to-interannual climate prediction.

  20. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2009-01-01

    Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate change. An objective of this paper is to increase awareness that the GWP of GHGs has been re-adjusted as the concentration and relative proportion of these GHGs has changed with time (e.g., the GWP of methane has changed from 21 to 25 CO2-eq). Improved understanding of the indirect effects of GHGs has also led to a modification in the methodology for calculating GWP. Following a presentation of theory behind GHG, RF and GWP concepts, the paper briefly describes the most important GHG sources and sinks in the context of the waste management industry. The paper serves as a primer for more detailed research publications presented in this special issue of Waste Management & Research providing a technology-based assessment of quantitative GHG emissions from different waste management technologies.

  1. Olympic Games promote the reduction in emissions of greenhouse gases in Beijing

    International Nuclear Information System (INIS)

    Global climate change is one of the most serious global environmental problems faced by humankind at present. Serious attention should be paid and precautions should be taken before disasters occur. The amount of CO2 emissions in China has increased during the past few years and the Chinese government and people have attached great importance to this phenomenon and treated it seriously. With the instruction of scientific development viewpoint, Beijing has made significant progress in emissions reduction through technological innovation, industrial structure adjustment, promoting energy efficiency and utilization of renewable energy, and absorption of CO2 using forest and wetland, since bidding for Olympic Games. At the same time, energy conservation and emissions reduction measures taken in the construction of Beijing Olympic stadiums just incarnate the Beijing Green Olympics. Using the Beijing Olympic Games as a turning-point, adopting energy conservation and emissions reduction measures, Beijing will make contributions to reduction of greenhouse gases and slowing down climate changes and Beijing Olympic Games will leave behind an inheritance for future generations to enjoy

  2. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model

    International Nuclear Information System (INIS)

    When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions

  3. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate

    Science.gov (United States)

    Postawko, S. E.; Kuhn, W. R.

    1986-01-01

    There is general agreement that certain surface features on Mars are indicative of the presence of liquid water at various times in the geologic past. In particular, the valley networks are difficult to explain by a mechanism other than the flow of liquid water. It has been suggested in several studies that a thick CO2 atmosphere on Mars early in its history could have provided a greenhouse warming that would have allowed the flow of water either on the surface or just below the surface. However, this effect was examined with a detailed radiation model, and it was found that if reduced solar luminosity early in the history of the solar system is taken into account, even three bars of CO2 will not provide sufficient greeenhouse warming. The addition of water vapor and sulflur dioxide (both plausible gases that may have been emitted by Martian volcanoes) to the atmosphere also fail to warm the surface above 273 K for reduced solar luminosity conditions. The increase in temperature may be large enough, however, for the formation of these features by brines.

  4. Global warming: Experimental study about the effect of accumulation of greenhouse gases in the atmosphere

    Science.gov (United States)

    Molto, Carlos; Mas, Miquel

    2010-05-01

    The project presented here was developed by fifteen year old students of the Institut Sabadell (Sabadell Secondary School. Spain). The objective of this project was to raise the students awareness' about the problem of climate change, mainly caused by the accumulation of greenhouse gases in the atmosphere. It is also intended that students use the scientific method as an effective system of troubleshooting and that they use the ICTs (Information and Communication Technologies) to elicit data and process information. To develop this project, four lessons of sixty minutes each were needed. The first lesson sets out the role of the atmosphere as an Earth's temperature regulator, highlighting the importance of keeping the levels of carbon dioxide, methane and water steam in balance. The second lesson is focused on the experimental activity that students will develop in the following lesson. In lesson two, students will present and justify their hypothesis about the experiment. Some theoretical concepts, necessary to carry out the experiment, will also be explained. The third lesson involves the core of the project, that is the experiment in the laboratory. The experiment consists on performing the atmosphere heating on a little scale. Four different atmospheres are created inside four plastic boxes heated by an infrared lamp. Students work in groups (one group for each atmosphere) and have to monitor the evolution of temperature by means of a temperature sensor (Multilog software). The first group has to observe the relationship between temperature and carbon dioxide levels increase, mainly caused by the widespread practice of burning fossil fuels by growing human populations. The task of this group is to measure simultaneously the temperature of an empty box (without CO2) and the temperature of a box with high carbon dioxide concentration. The carbon dioxide concentration is the result of the chemical reaction when sodium carbonate mixes with hydrochloric acid. The second group's task is similar to the first. Students have to study how the concentration of methane affects the temperature of their atmosphere box. Similarly, the third group monitors the influence of the water steam (generated by evaporation) on the temperature of their atmosphere box. Results must be carefully analyzed because of possible interferences from water steam. And finally, the forth and last group explores the long term effects that the accumulation of greenhouse gases have on the Earth's temperature. As temperature rises, evaporation increases and more water steam accumulates in the atmosphere. As a greenhouse gas, water absorbs heat, therefore the air gets warmer and, again, more water is evaporated. To develop this project, a previous experiment is needed so that the concentration of carbon dioxide remains constant and water steam levels increase gradually. Thus, the consequences of an uncontrolled increase of temperature can be simulated. Students' aim is to examine the data elicited from the last step of the scientific method experiment. They have to decide either if the experiment supported their hypothesis and, therefore, they can be regarded as true, or the experiment disproved them and, therefore, they are false. Finally, in the last lesson, students perform an oral presentation about their experimental results, establishing relationships amongst the different experiments. All together emphasizes the must of humankind to promote renewable energies.

  5. The increase of Southern Ocean winds and SAM: is it caused by the ozone hole or by increased greenhouse gases?

    Science.gov (United States)

    Roscoe, H. K.

    2010-12-01

    The amplitude of the Southern Annular Mode of variability in sea level pressure has increased significantly since station records began in the late 1950s. As expected, this has led to an increase in surface winds over the Southern Ocean in meteorological analyses. Roscoe & Haigh (2007), using data to 2006, showed that the increase in SAM correlated at high significance with both the ozone hole and the increase in greenhouse gases, but the correlation with the ozone hole was more significant. However, it was difficult to quantify the meaning of this greater significance because of the then similarity between the trends in greenhouse gases and the ozone hole - the esoteric statistical concepts associated with the Akaike Information Criterion had to be used. Now the trends have diverged significantly, so the update presented here allows us to quantify the greater degree of significance of the ozone hole, using the more familiar statistical method of Student’s t-test.

  6. Energy Consumption and Greenhouse Gases Emission form Canned Fish Production in Iran a Case Study: Khuzestan Province

    OpenAIRE

    Abbas Asakereh; Asadalah Akram; Shahin Rafiee; Afshin Marzban

    2010-01-01

    Energy is a fundamental ingredient in the process of economic development, as it provides essential services that maintain economic activity and the quality of human life but intensive use of it causes problems threatening public health and environment. The aim of this study was to evaluate energy consumption and greenhouse gases emission from canned fish production in the Khuzestan province, Iran, to determine the losing energy factors and pollutant emission. In this research, canneries, con...

  7. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation Campos do sul do Brasil: estoques de carbono no solo, fluxos de gases de efeito estufa e algumas opções para mitigação

    OpenAIRE

    VD Pillar; CG Tornquist; Bayer, C.

    2012-01-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecos...

  8. Air-Sea Interactions of Natural Long-Lived Greenhouse Gases (CO2, N2O, CH4) in a Changing Climate

    Digital Repository Service at National Institute of Oceanography (India)

    Bakker, D.C.E.; Bange, H.W.; Gruber, N.; Johannessen, T.; Upstill-Goddard, R.C.; Borges, A.V.; Delille, B.; Loscher, C.R.; Naqvi, S.W.A.; Omar, A.M.; Santana-Casiano, J.M.

    Understanding and quantifying ocean–atmosphere exchanges of the long-lived greenhouse gases carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are important for understanding the global biogeochemical cycles of carbon and nitrogen...

  9. 75 FR 18651 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs

    Science.gov (United States)

    2010-04-12

    ...only) means each pump, compressor, agitator, pressure...vented. Fluorinated gas means any fluorinated...fluorinated greenhouse gas refrigerant (e.g...limited to condensers, compressors, line sets, and coils...fluorinated greenhouse gas refrigerant prior...

  10. 75 FR 74773 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs

    Science.gov (United States)

    2010-12-01

    ...only) means each pump, compressor, agitator, pressure...vented. Fluorinated gas means any fluorinated...fluorinated greenhouse gas refrigerant (e.g...limited to condensers, compressors, line sets, and coils...fluorinated greenhouse gas refrigerant prior...

  11. 76 FR 36339 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs: Extension of...

    Science.gov (United States)

    2011-06-22

    ...Provisions for Electronics Manufacturing AGENCY: Environmental...Subpart I: Electronics Manufacturing of the Mandatory Greenhouse...then select Contact Us. SUPPLEMENTARY INFORMATION...Act SIA Semiconductor Industry Association SBREFA...Subpart I: Electronics Manufacturing of the Greenhouse...

  12. Life cycle greenhouse gases and non-renewable energy benefits of kraft black liquor recovery

    International Nuclear Information System (INIS)

    The life cycle greenhouse gas (GHG) and fossil fuel benefits of black liquor recovery are analyzed. These benefits are due to the production of energy that can be used in the pulping process or sold, and the recovery of the pulping chemicals that would otherwise need to be produced from other resources. The fossil GHG emissions and non-renewable energy consumption of using black liquor in the kraft recovery system are approximately 90% lower than those for a comparable fossil fuel-based system. Across all scenarios, the systems relying on black liquor solids achieve a median reduction of approximately 140 kg CO2 eq./GJ of energy produced, compared to the systems relying on fossil fuels to provide the same energy and pulping chemical production functions. The benefits attributable to the recovery of pulping chemicals vary from 44% to 75% of the total benefit. Applied to the total production of kraft pulp in the U.S., the avoided emissions are equivalent to the total Scopes 1 and 2 emissions from the entire U.S. forest products industry. These results do not depend on the accounting method for biogenic carbon (because biogenic CO2 emissions are the same for the systems compared) and the results are valid across a range of assumptions about the displaced fossil fuel, the GHG-intensity of the electricity grid, the fossil fuels used in the lime kiln, and the level of cogeneration at pulp and paper mills. The benefits occur without affecting the amount of wood harvested or the amount of chemical pulp produced. -- Highlights: ? Black liquor, a by-product of kraft pulping, represents about half of the energy used in the paper industry. ? The greenhouse gases (GHG) benefits of black liquor recovery compared to an equivalent fossil fuel system were analyzed. ? The GHG emissions of the black liquor system are approximately 90% lower than those for the fossil fuel system. ? The benefits from the recovery of the chemicals vary from 44% to 75% of the total benefit. ? These avoided emissions are equivalent to the total Scope 1 and 2 emissions from the U.S. forest products industry.

  13. Proceedings of the International Workshop on Sustainable ForestManagement: Monitoring and Verification of Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye (Ed.), Jayant; Makundi (Ed.), Willy; Goldberg (Ed.),Beth; Andrasko (Ed.), Ken; Sanchez (Ed.), Arturo

    1997-07-01

    The International Workshop on Sustainable Forest Management: Monitoring and Verification of Greenhouse Gases was held in San Jose, Costa Rica, July 29-31, 1996. The main objectives of the workshop were to: (1) assemble key practitioners of forestry greenhouse gas (GHG) or carbon offset projects, remote sensing of land cover change, guidelines development, and the forest products certification movement, to offer presentations and small group discussions on findings relevant to the crucial need for the development of guidelines for monitoring and verifying offset projects, and (2) disseminate the findings to interested carbon offset project developers and forestry and climate change policy makers, who need guidance and consistency of methods to reduce project transaction costs and increase probable reliability of carbon benefits, at appropriate venues. The workshop brought together about 45 participants from developed, developing, and transition countries. The participants included researchers, government officials, project developers, and staff from regional and international agencies. Each shared his or her perspectives based on experience in the development and use of methods for monitoring and verifying carbon flows from forest areas and projects. A shared sense among the participants was that methods for monitoring forestry projects are well established, and the techniques are known and used extensively, particularly in production forestry. Introducing climate change with its long-term perspective is often in conflict with the shorter-term perspective of most forestry projects and standard accounting principles. The resolution of these conflicts may require national and international agreements among the affected parties. The establishment of guidelines and protocols for better methods that are sensitive to regional issues will be an important first step to increase the credibility of forestry projects as viable mitigation options. The workshop deliberations led to three primary outputs: (1) a Workshop Statement in the JI Quarterly, September, 1996; (2) the publication of a series of selected peer-reviewed technical papers from the workshop in a report of the Lawrence Berkeley National Laboratory (LBNL. 40501); and (3) a special issue of the journal ''Mitigation and Adaptation Strategies for Global Change'', Kluwer Academic Publishers. The outputs will be distributed to practitioners in this field and to negotiators attending the Framework Convention on Climate Change (FCCC) deliberations leading up to the Third conference of Parties in Kyoto, in December 1997.

  14. Mobility as a territorial key factor in the emission of greenhouse gases; La movilidad como factor territorial dominante en la emision de gases de efecto invernadero

    Energy Technology Data Exchange (ETDEWEB)

    Crespo Garcia, L.; Montane Lopez, M. M.; Garcia Cortes, A.; Jimenez Arroyo, F.

    2011-07-01

    Transport and energy generation are the two dominant sectors in the overall balance of energy consumption, and thus of greenhouse gases emissions. Placement of energy generation plants responds to strategic reasons relate to energy supply in the Spanish territory, while transport is an economic activity tightly related to the productive structure and territorial characteristics: density of populations, geographic situation, efficient space organization, etc. The analysis of these factors enables to prioritize different strategies according the their energetic efficiency in order to pursue an economy less dependent of fossil fuels, focused in activities of higher added value and that keeps in mind limits and strengths of Spanish reality. (Author) 9 refs.

  15. Inventory of greenhouse gases at the municipality level. Description of calculation methods; Denmark; Drivhusgasopgoerelse paa kommuneniveau. Beskrivelse af beregningsmetoder

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Gyldenkaerne, S.; Lyck, E.; Thomsen, Marianne; Hoffmann, L.; Fauser, P.

    2009-02-15

    This report includes a description of methodologies, data and algorithms behind the inventories of greenhouse gases at the municipality level divided into sectors. The starting point for the sectors in this report is the sectors used for the official Danish emission inventories. A simplified generalization of the equations used in emission calculations is based on the assumption that emissions of a given activity is estimated using data descriptive for the size of the activity multiplied by an emission factor pr unit of activity. Emissions of CH{sub 4} and N{sub 2}O are converted to CO{sub 2} equivalents. In this project this generalization and these conversions are also the basis for all methodologies. The sectors included in this report are: the collective power and heating, individual heating, mobile sources, transportation and machinery, industrial processes, solvents, agriculture, land use and waste depositing and wastewater. The methods include calculations of the greenhouse gases that are most important for the sectors. The importance is estimated from the national emission inventory. This report covers methodologies for the greenhouse gases CO{sub 2}, CH{sub 4} and N{sub 2}O. Due to the mentioned importance criteria for some sectors not all greenhouse gases are included. As for the national inventories the calculation is built into several levels (Tiers) with increased requirements for municipalities regarding data. Tier 1 is mainly based on the Danish national greenhouse gas inventory data using appropriate distribution keys for a given activity into municipality level. Tier 2 is more detailed and includes emission factors used in the Danish national greenhouse gas inventories, for some sectors the emission factors are aggregated, while municipalities can enter their own activity data. At Tier 3, which is the most detailed level, there is - for some sectors - the opportunity to enter municipality specific emission factors and activity data. For other sectors Tier 3 is a further disaggregation of emission factors compared to Tier 2. Each municipality may use different tiers for different sectors depending on the data availability. (au)

  16. Potential of native forests for the mitigation of greenhouse gases in Salta, Argentina

    International Nuclear Information System (INIS)

    Carbon stocks were assessed in three archetypal forest ecosystems in the province of Salta, Argentina, namely Yungas, Chaco, and shrublands located around Chaco. Over a total area of about 7000 m2, detailed measurements of woody biomass were conducted using structural information such as diameter at breast height (dbh), total height, and stem height. At the same time, the wet weight of herbaceous, shrubs, and litter was registered within that area. Soil samples were also collected to determine parameters such as bulk density and organic carbon. The above-ground tree biomass (AGB) was quantified by two non-destructive methods. This biomass was expressed from each reservoir studied in t.ha-1 and the carbon content was then calculated using a factor of 0.5. Carbon stocks in the ecosystems studied were 162, 92, and 48 tC.ha-1 for Yungas, Chaco, and shrublands, respectively. Our results show that carbon is concentrated in the soil or as AGB. The latter is the most important reservoir in Yungas, while the soil plays this role in the other two, drier environments. In the province of Salta, native forests play a significant role in the mitigation of greenhouse gases. Our results reveal the magnitude of carbon stocks in some characteristic regional native forests, and estimate their carbon sequestration potential. These results could be useful to inform policy makers in charge of negotiations related to conservation and sustainable management of native forests, and be a relevant input for the formulation of more comprehensive land use planning processes in the region. -- Highlights: ? We assessed carbon stocks in forest ecosystems in the province of Salta, Argentina. ? The studied areas are located within ecosystems called Yungas, Chaco and shrublands. ? Main carbon reservoirs in all ecosystems were found in above-ground tree biomass and soil. ? Carbon stocks could be restored, maintained or increased with forest management. ? We conclude that the studied forests have a high potential for the mitigation of GHG.

  17. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    Directory of Open Access Journals (Sweden)

    E. J. Morgan

    2015-02-01

    Full Text Available A new coastal background site has been established for observations of greenhouse gases (GHGs in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated, continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA. Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS; nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS. Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a working tank.

  18. Impact of equatorial and continental airflow on primary greenhouse gases in the northern South China Sea

    Science.gov (United States)

    Ou-Yang, Chang-Feng; Yen, Ming-Cheng; Lin, Tang-Huang; Wang, Jia-Lin; Schnell, Russell C.; Lang, Patricia M.; Chantara, Somporn; Lin, Neng-Huei

    2015-06-01

    Four-year ground-level measurements of the two primary greenhouse gases (carbon dioxide (CO2) and methane (CH4)) were conducted at Dongsha Island (DSI), situated in the northern South China Sea (SCS), from March 2010 to February 2014. Their mean mixing ratios are calculated to be 396.3 ± 5.4 ppm and 1863.6 ± 50.5 ppb, with an annual growth rate of +2.19 ± 0.5 ppm yr-1 and +4.70 ± 4.4 ppb yr-1 for CO2 and CH4, respectively, over the study period. Our results suggest that the Asian continental outflow driven by the winter northeast monsoon could have brought air pollutants into the northern SCS, as denoted by significantly elevated levels of 6.5 ppm for CO2 and 59.6 ppb for CH4, which are greater than the marine boundary layer references at Cape Kumukahi (KUM) in the tropical northern Pacific in January. By contrast, the summertime CH4 at DSI is shown to be lower than that at KUM by 19.7 ppb, whereas CO2 is shown to have no differences (effects of anthropogenic emissions and vegetative sinks on land on a vertical profiling basis. The prevailing southeasterly winds originating from as far south as the equator or Southern Hemisphere pass through the lower troposphere in the northern SCS, forming a tunnel of relatively clean air masses as indicated by the low CH4 mixing ratios observed on the DSI in summer.

  19. Greenhouse gases observation from space -initial operation and calibration results of TANSO on GOSAT- (Invited)

    Science.gov (United States)

    Kuze, A.; Shiomi, K.; Suto, H.; Nakajima, M.

    2009-12-01

    The Greenhouse gases Observing SATellite (GOSAT) observes carbon dioxide (CO2) and methane (CH4) globally from space. It is a joint project of Japan Aerospace Exploration Agency (JAXA), Ministry of the Environment (MOE) and National Institute for Environmental Studies (NIES). GOSAT was launched on January 23, 2009 from Tanegashima Space Center and placed in a 666 km sun-synchronous orbit of 12:48 local time, with an inclination angle of 98 deg. There are two instruments: the Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) detects gas absorption spectra of Short Wave InfraRed (SWIR) reflected on the earth's surface as well as of Thermal InfraRed (TIR) radiated from the ground and the atmosphere. TANSO-FTS is capable of detecting wide spectral coverage; three narrow bands (0.76, 1.6, and 2?m) and a wide band (5.5-14.3 ?m) with 0.27 cm-1 spectral resolution. The TANSO Cloud and Aerosol Imager (TANSO-CAI) is a radiometer of ultraviolet (UV), visible, and SWIR to detect cloud and aerosol interference. TANSO-FTS and CAI acquire global data every three days. For the first six months after the launch, on-orbit function, performance, calibration, and validation have been checked-out. The presentation includes instrument design, pre-launch test results, observation plan, onboard calibration schemes, and the initial on-orbit results of radiometric, geometric and spectroscopic performances. The data processing on the ground is also presented.

  20. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    Science.gov (United States)

    Morgan, E. J.; Lavri?, J. V.; Seifert, T.; Chicoine, T.; Day, A.; Gomez, J.; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E. G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R. L.; Schmidt, S.; Manning, A. C.; Heimann, M.

    2015-02-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated, continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a working tank.

  1. Simulated ENSO-tropical rainfall teleconnections in present-day and under enhanced greenhouse gases conditions

    Energy Technology Data Exchange (ETDEWEB)

    Camberlin, P. [Universite de Bourgogne, Sciences Gabriel, Centre de Recherches de Climatologie, Dijon (France); Chauvin, F.; Douville, H. [Meteo-France CNRM/GMGEC/UDC, Toulouse Cedex 1 (France); Zhao, Y. [Universite de Bourgogne, Sciences Gabriel, Centre de Recherches de Climatologie, Dijon (France); Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China)

    2004-11-01

    El-Nino/Southern Oscillation (ENSO) variability and its relationship with precipitation in the tropics and subtropics are analysed using the ARPEGE-OPA ocean-atmosphere coupled model. Three 150-year simulations are considered, differing by greenhouse gases (GHG) and aerosols concentrations. The first one has constant (1950 level) concentrations, and the two others follow observed values till 1999, then the SRES B2 scenario until 2099. The model is able to reproduce most present-day features characteristic of ENSO in the Pacific. It also displays ENSO as the leading mode of sea-surface temperature (SST) variability, with spatial patterns and explained variance both quite similar to the observation. A detailed analysis of its teleconnections with rainfall variability is carried out on a seasonal basis. Patterns for the last part of the twentieth century compare favourably with the observation, with the notable exception of parts of the Atlantic sector. The overall strong rainfall response arises from the strong interannual variability of simulated ENSO, and also suggests an ability to simulate atmospheric dynamics in a realistic way. In the future climate, the model does not exhibit major changes in the ENSO/rainfall teleconnections. However, on a regional basis, there is some evidence of strengthening (e.g., in parts of Southern Africa) and weakening (e.g., East Africa) in the course of the twenty-first century. In most cases, decadal swings in the correlations suggest that these alterations may partly reflect natural changes in the teleconnections with ENSO, long-term correlation trends (possibly GHG-induced) being comparatively weaker. (orig.)

  2. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    Science.gov (United States)

    Morgan, E. J.; Lavri?, J. V.; Seifert, T.; Chicoine, T.; Day, A.; Gomez, J.; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E. G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R. L.; Schmidt, S.; Manning, A. C.; Heimann, M.

    2015-06-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a reference cylinder.

  3. Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis

    International Nuclear Information System (INIS)

    Input-output modeling of primary energy and greenhouse gas embodiments in goods and services is a useful technique for designing greenhouse gas abatement policies. The present paper describes direct and indirect primary energy and greenhouse gas requirements for a given set of Australian final consumption. It considers sectoral disparities in energy prices, capital formation and international trade flows and it accounts for embodiments in the Gross National Expenditure as well as the Gross Domestic Product. Primary energy and greenhouse gas intensities in terms of MJ/$ and kg CO2-e/$ are reported, as well as national balance of primary energy consumption and greenhouse gas emissions. (author)

  4. Catching the role of anisotropic electronic distribution and charge transfer in halogen bonded complexes of noble gases

    Science.gov (United States)

    Bartocci, Alessio; Belpassi, Leonardo; Cappelletti, David; Falcinelli, Stefano; Grandinetti, Felice; Tarantelli, Francesco; Pirani, Fernando

    2015-05-01

    The systems studied in this work are gas-phase weakly bound adducts of the noble-gas (Ng) atoms with CCl4 and CF4. Their investigation was motivated by the widespread current interest for the intermolecular halogen bonding (XB), a structural motif recognized to play a role in fields ranging from elementary processes to biochemistry. The simulation of the static and dynamic behaviors of complex systems featuring XB requires the formulation of reliable and accurate model potentials, whose development relies on the detailed characterization of strength and nature of the interactions occurring in simple exemplary halogenated systems. We thus selected the prototypical Ng-CCl4 and Ng-CF4 and performed high-resolution molecular beam scattering experiments to measure the absolute scale of their intermolecular potentials, with high sensitivity. In general, we expected to probe typical van der Waals interactions, consisting of a combination of size (exchange) repulsion with dispersion/induction attraction. For the He/Ne-CF4, the analysis of the glory quantum interference pattern, observable in the velocity dependence of the integral cross section, confirmed indeed this expectation. On the other hand, for the He/Ne/Ar-CCl4, the scattering data unravelled much deeper potential wells, particularly for certain configurations of the interacting partners. The experimental data can be properly reproduced only including a shifting of the repulsive wall at shorter distances, accompanied by an increased role of the dispersion attraction, and an additional short-range stabilization component. To put these findings on a firmer ground, we performed, for selected geometries of the interacting complexes, accurate theoretical calculations aimed to evaluate the intermolecular interaction and the effects of the complex formation on the electron charge density of the constituting moieties. It was thus ascertained that the adjustments of the potential suggested by the analysis of the experiments actually reflect two chemically meaningful contributions, namely, a stabilizing interaction arising from the anisotropy of the charge distribution around the Cl atom in CCl4 and a stereospecific electron transfer that occurs at the intermolecular distances mainly probed by the experiments. Our model calculations suggest that the largest effect is for the vertex geometry of CCl4 while other geometries appear to play a minor to negligible role.

  5. Man -made greenhouse gases trigger unified force to start global warming impacts referred to as climate change

    International Nuclear Information System (INIS)

    Global warming problems due to man-made greenhouse gases (GHGs), appear to be a serious concern and threat to the globe. CO/sub 2/, O/sub 3, NOx and HFC's are the main greenhouse gases and CO/sub 2/ is one of the main cause of global warming. CO/sub 2/ is emitted from burning fossil fuels to produce electricity from power plants and burning of gasoline in vehicles and airplanes. Global greenhouse gases and its sources in regions are discussed in this paper. This paper initially discusses the CO/sub 2/ emissions and the recycle of CO/sub 2/ in biodiesel. This paper mainly focuses on 'Unified Force'. The increase of H/sub 2/O in the sea due to warming of the globe triggers the 'Unified Force' or 'Self-Compressive Surrounding Pressure Force' which is proportional to the H/sub 2/O level in the sea to start global warming impacts referred to as climate change. This paper also points out the climate change and the ten surprising results of global warming. Finally, this paper suggests switching from fossil fuel technology to green energy technologies like biodiesel which recycles CO/sub 2/ emissions and also Hydrogen Energy and Fuel Cell Technologies which eradicates global warming impacts. The benefits of switching from fossil fuel to biodiesel and Hydrogen Energy utilization includes reduction of greenhouse gas emissions and pollution, economic independence by having distributed production and burning of biodiesel does not add extra CO/sub 2/ to the air that contributes global warming impacts. (author)

  6. Understanding the behavior of materials for caputre of greenhouse gases by molecular simulations

    OpenAIRE

    Builes Toro, Santiago

    2012-01-01

    Establecer una cota global a las emisiones de gases de efecto invernadero ha sido imposibilitado por la complejidad que conlleva demostrar los efectos de la contribución humana al efecto invernadero. Para alcanzar un desarrollo sostenible es necesario, primero limitar y en lo posible eliminar las emisiones de dichos gases a la atmosfera. En este contexto, la adsorción de gases se ha establecido como una de las alternativas más efectivas a mediano plazo para la reducción de emisiones de gases ...

  7. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    Science.gov (United States)

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance. PMID:23011297

  8. Comportamiento de los gases de efecto invernadero y las temperaturas atmosféricas con sus escenarios de incremento potencial / Behavior of greenhouse gases and atmospheric temperatures with increased potential scenarios

    Scientific Electronic Library Online (English)

    María de Lourdes, Olivo; Alejandra, Soto-Olivo.

    2010-12-01

    Full Text Available En los últimos decenios se ha establecido que las actividades antropogénicas han incrementado las concentraciones de los gases de efecto invernadero en la atmósfera, así, la posibilidad de un cambio climático global se ha convertido en una preocupación real. El objetivo de la investigación es analiz [...] ar el comportamiento de las concentraciones de los principales gases de efecto invernadero (GEI), y el de las temperaturas atmosféricas, desde las épocas geológicas hasta la actualidad, con sus escenarios potenciales de incremento al año 2100, bajo varias hipótesis. Adicionalmente, se presentan sus potenciales impactos ambientales. El estudio consiste en una extensa investigación documental, realizada con el propósito de ampliar los conocimientos sobre el cambio climático antropogénico y sus impactos potenciales sobre el ecosistema humano, a fin de renovar el alerta a la comunidad científica y público en general. Se basa en la revisión y discusión de trabajos científicos recientes publicados por varios investigadores. Se concluye que las concentraciones globales de los principales GEI han aumentado como resultado de las actividades humanas, incidiendo en el aumento de la temperatura con impactos ambientales negativos. Se propone promover la participación ciudadana para lograr políticas a fin de enfrentar las consecuencias del cambio climático. Abstract in english In recent decades, it has been established that anthropogenic activities have increased concentrations of greenhouse gases in the atmosphere, so the possibility of global climate change has become a concern. The objective of this research is to analyze the behavior of the concentrations of major gre [...] enhouse gases and air temperatures from geological times to the present, with increased potential scenarios to 2100, under various hypotheses. Additionally, there are potential social and environmental impacts. The study consists of an extensive desk research, conducted with the aim of expanding knowledge about anthropogenic climate change and its impacts on the human ecosystem in order to renew the alert to the scientific community and general public. It is based on review and discussion of recent scientific papers published by various researchers. We conclude that global concentrations of the main greenhouse gases have increased as a result of human activities, focusing on increasing the temperature with negative environmental impacts. It aims to promote citizen participation to achieve policies to deal with the consequences of climate change.

  9. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results

    Directory of Open Access Journals (Sweden)

    O. Schneising

    2012-02-01

    Full Text Available SCIAMACHY onboard ENVISAT (launched in 2002 enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4. In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling.

    It is shown that there are generally no significant differences between the carbon dioxide annual increases of SCIAMACHY and the assimilation system CarbonTracker (2.00 ± 0.16 ppm yr?1 compared to 1.94 ± 0.03 ppm yr?1 on global average. The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant for a subset of the analysed TCCON sites when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision (mean standard deviation of the differences of about 2.2 ppm and a relative accuracy (standard deviation of the mean differences of 1.1–1.2 ppm for monthly average composites within a radius of 500 km.

    For methane, prior to November 2005, the regional relative precision amounts to 12 ppb and the relative accuracy is about 3 ppb for monthly composite averages within the same radius. The loss of some spectral detector pixels results in a degradation of performance thereafter in the spectral range currently used for the methane column retrieval. This leads to larger scatter and lower XCH4 values are retrieved in the tropics for the subsequent time period degrading the relative accuracy. As a result, the overall relative precision is estimated to be 17 ppb and the relative accuracy is in the range of about 10–20 ppb for monthly averages within a radius of 500 km.

    The derived estimates show that the SCIAMACHY XCH4 data set before November 2005 is suitable for regional source/sink determination and regional-scale flux uncertainty reduction via inverse modelling worldwide. In addition, the XCO2 monthly data potentially provide valuable information in continental regions, where there is sparse sampling by surface flask measurements.

  10. Greenhouse gases mitigation against climate change: United States-Mexico border study case

    Scientific Electronic Library Online (English)

    N., SANTILLÁN SOTO; O. R., GARCÍA CUETO; S., OJEDA BENÍTEZ; N., VELÁZQUEZ LIMÓN; M., QUINTERO NÚÑEZ; M., SCHORR.

    2013-10-01

    Full Text Available La radiación solar es una de las fuentes de energía más importantes de nuestro planeta. El interés por su uso como energía renovable y limpia para mitigar los efectos de los gases de efecto invernadero (GEI) se ha incrementado de manera significativa. Este artículo presenta una evaluación de las med [...] iciones de radiación solar y la estimación del potencial energético, así como una comparación de ambas, como ejemplo del esfuerzo para reducir los GEI. Las mediciones fueron realizadas con piranómetros instalados en la ciudad de Mexicali, Baja California, localizada en el noroeste de México, y en la ciudad de Yuma, Arizona, en el suroeste de EUA, que están separadas por una distancia de 96 km. Ambas ciudades muestran un desarrollo sostenido y características climáticas similares con numerosos días soleados, elevadas temperaturas extremas y escasa precipitación. Los resultados muestran diferencias tanto en su comportamiento como en las mediciones de radiación solar global, especialmente durante las estaciones críticas primavera y verano, con valores 15.73% (0.042 KW/m²) superiores en Mexicali con respecto a Yuma a pesar a pesar de su cercanía. Esto indica que los flujos de mesoescala parecen dominar los sistemas sinópticos prevalentes en la región. Se estima el potencial energético, y se analiza con algunas variables como radiación solar global, precipitación, temperatura del aire, humedad relativa y climatología de los días claros, parcialmente nublados y nublados. Con esto se estima la energía proyectada para Mexicali en caso de que se utilizara el recurso solar, y se calcula que se evitarían 291 ton de GEI. Los valores de energía potencial obtenidos en Mexicali son mayores que los registrados en Yuma, por lo que este estudio comparativo de radiación solar y energía contribuye al desarrollo de estas tecnologías en México. Los resultados de las mediciones en la región demuestran la importancia de la estrategia propuesta para mitigar el cambio climático. Abstract in english Solar radiation is one of the most important energy resources of our planet. The interest in its use as a renewable and clean energy to mitigate the greenhouse gases (GHG) effects has increased significantly. This paper evaluates the measurements of global solar radiation and its energy potential an [...] d presents a comparison between both of them, as an example of the effort to reduce GHG emissions. The measurements were made with pyranometers installed in the city of Mexicali, Baja California, located in northwestern Mexico, and the city of Yuma, Arizona, located in the southwestern United States. Separated by a distance of 96 km, both cities have a sustained development and are climatically similar, since they present numerous sunny days, extreme hot temperatures and little precipitation. The results presented show differences in their behavior and in the solar radiation measurement values, especially for the critical spring and summer seasons, with values 15.73% (0.042 kW/m²) higher in Mexicali with respect to Yuma. Energy power is estimated, and it is discussed with some variables as global solar radiation, rainfall, air temperature, relative humidity and climatology of clear, partly cloudy, and cloudy days. With this estimation, the solar energy used and GHG avoided is projected for Mexicali. It is assessed that 291 tons of GHG are prevented. The Mexicali values of potential energy are higher than those of Yuma; therefore, this solar and energy comparative study provides reasons to develop these technologies in Mexico, but solar technologies should be deployed also in Yuma. The measured data at the regional level demonstrate their importance, and the relevance of the proposed mitigation strategy for climate change.

  11. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    Directory of Open Access Journals (Sweden)

    D. A. Plummer

    2010-09-01

    Full Text Available A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs and Ozone Depleting Substances (ODSs. The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHG-related effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the residual circulation of the atmosphere and chemical effects from CO2 cooling more than halve the increase in reactive nitrogen in the mid to upper stratosphere that results from the specified increase in N2O between 1950 and 2100.

  12. Opportunities for Coordinated Observations of CO2 with the Orbiting Carbon Observatory (OCO) and Greenhouse Gases Observing Satellite (GOSAT)

    Science.gov (United States)

    Crisp, David

    2008-01-01

    The Orbiting Carbon Observatory (OCO) and the Greenhouse Gases Observing Satellite (GOSAT) are the first two satellites designed to make global measurements of atmospheric carbon dioxide (CO2) with the precision and sampling needed identify and monitor surface sources and sinks of this important greenhouse gas. Because the operational phases of the OCO and GOSAT missions overlap in time, there are numerous opportunities for comparing and combining the data from these two satellites to improve our understanding of the natural processes and human activities that control the atmospheric CO2 and it variability over time. Opportunities for cross-calibration, cross-validation, and coordinated observations that are currently under consideration are summarized here.

  13. Sensitivity of radiative forcing, ocean heat uptake, and climate feedback to changes in anthropogenic greenhouse gases and aerosols

    Science.gov (United States)

    Paynter, D.; Frölicher, T. L.

    2015-10-01

    We use both prescribed sea surface temperature and fully coupled versions of the Geophysical Fluid Dynamics Laboratory coupled climate model (CM3) to analyze the sensitivity of radiative forcing, ocean heat uptake, and climate feedback to changes in anthropogenic greenhouse gases and aerosols considered separately over the 1870 to 2005 period. The global anthropogenic aerosol climate feedback parameter (- ?) of -1.13 ± 0.33 Wm-2 K-1 is indistinguishable from the greenhouse gas - ? of -1.28 ± 0.23 Wm-2 K-1. However, this greenhouse gas climate feedback parameter is about 50% larger than that obtained for CM3 from a widely used linear extrapolation method of regressing Earth's top of atmosphere imbalance against surface air temperature change in idealized CO2 radiative forcing experiments. This implies that the global mean surface temperature change due to forcing over the 1870-2005 period is 50% smaller than that predicted using the climate feedback parameter obtained from idealized experiments. This difference results from time dependence in ?, which makes the radiative forcing obtained by the fixed sea surface temperature method incompatible with that obtained by the linear extrapolation method fitted over the first 150 years after CO2 is quadrupled. On a regional scale, ? varies greatly between the greenhouse gas and aerosol case. This suggests that the relationship between transient and equilibrium climate sensitivities obtained from idealized CO2 simulations, using techniques such as regional feedback analysis and heat uptake efficacy, may not hold for other forcing scenarios.

  14. Method and system for reducing or eliminating the greenhouse-gas content of a gas or mixture of gases

    OpenAIRE

    García García, Ricardo; Zerbetto, Francesco

    2009-01-01

    The method comprises the use of an atomic force microscope (AFM) for the application of a high electric field (~10 V/nm) by means of the application of a corresponding moderate (10-100 V) voltage (V) across a point (P) of the microscope and a semiconductor or conducting substrate (S) between which there is a volume of greenhouse gas or mixture of gases (G) containing same, such as carbon dioxide or methane, the molecules of which are thus chemically activated and subsequently react with one a...

  15. Impact of rising greenhouse gases on mid-latitude storm tracks and associated hydroclimate variability and change

    Energy Technology Data Exchange (ETDEWEB)

    Seager, Richard

    2014-12-08

    Project Summary This project aimed to advance physical understanding of how and why the mid-latitude jet streams and storm tracks shift in intensity and latitude in response to changes in radiative forcing with an especial focus on rising greenhouse gases. The motivation, and much of the work, stemmed from the importance that these mean and transient atmospheric circulation systems have for hydroclimate. In particular drying and expansion of the subtropical dry zones has been related to a poleward shift of the mid-latitude jets and storm tracks. The work involved integrated assessment of observation and model projections as well as targeted model simulations.

  16. Emissions from animal husbandry. Greenhouse gases, environmental assessment, state of the art; Emissionen der Tierhaltung. Treibhausgase, Umweltbewertung, Stand der Technik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the KTBL conference (KTBL = Board of trustees for technology and construction science in the field of agriculture, Darmstadt, Federal Republic of Germany) from 6th to 8th December, 2011, in the monastery Banz, Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) Development and environmental impacts of livestock production worldwide (Harald Menzl); (2) Methods to assess environmental aspects of livestock (Hayo van der Werf); (3) Methological aspects of environmental assessment of livestock production by Life Cycle Assessment (Lorie Hamelin); (4) Life Cycle Assessment of milk production systems (Gerard Gaillard); (5) Environmental impact assessment of beef production systems demonstrated for greenhouse gases (Monika Ziehetmeier); (6) Environmental impact assessment of pig production systems in Europe - From land use to feed efficiency (Ingrid Strid); (7) Envionmental impact assessment of egg production systems in Europe as seen from the United Kingdom (Adrian Willias); (8) Environmental impacts and improvement options of chicken meat production (Juha-Matti Katajajuuri); (9) Greenhouse gas emissions from livestock farming (Annette Freibauer); (10) Methane and nitrous oxide emissions from livestock manure: The scientific basis (Soeren O. Petersen); (11) Strategic measures to influence methane emissions from livestock (Michael Kreuzer); (12) Enteric methane production - Results from respiration chambers (Michael Derno); (13) Greenhouse gas emissions from cattle housing systems (Inga Schiefler); (14) Towards reduced methane from grass-based Irish milk production systems (Eva Lewis); (15) Greenhouse gas emissions from pig housing (Knut-Haakan Jeppsson); (16) Greenhouse gas emissions from poultry housings and manure management: inventory and update of emission factors (Peter Groot Koerkamp); (17) Greenhouse gas emissions from the storage of liquid and solid manure and abatement strategies (Lena Rodhe); (18) Nitrous oxide emissions following the application of livestock manure - an integrated approach (Rachel E. Thorman); (19) Political and administrative instruments for the abatement of greenhouse gas emissions from EU agriculture (Thomas Fellmann); (20) Best available techniques (BAT) - State of the revision of the BAT reference document (Ewald Grimm); (21) Emission abatement measures in pig farming (Wilhelm Pflanz); (22) Cost of ammonia emission abatement (Sebastian Wulf); (23) Measures to reduce emissions and immissions from livestock farming - implementation and inspection (Stefan Neser); (24) Emissions from animal husbandry in Austria: assessment and reporting (Barbara Amon); (25) Ammonia and greenhouse gas emissions from a straw flow system for fattening pigs: housing and manure storage (Barbara Amon); (26) Ascertainment and assessment of energy use in livestock farming - the example of dairy farming (Werner Berg); (27) Ammonia emissions from a broiler farm: Influence of emitted concentrations on adjacent woodland (Kristina von Bobrutzki); (28) Exhaust air treatment in animal housings - How efficient are certified systems in practice? (Lars Broer); (29) Revision of methods and data for the assessment of greenhouse gas and ammonia emissions from German pig production (Ulrich Daemmgen); (30) The effect of diet composition and feeding strategies on excretion rates in German pig production (Ulrich Daemmgen); (31) Strategies for the mitigation of greenhouse gas emissions in organic dairy farming (Andreas Gattinger); (32) Calculation of emissions of greenhouse gases, ammonia and particulate matter from animal husbandry within the German agricultural emission inventory (Hans-Dieter Haenel); (33) Modelling fluxes of matter and energy for mammals in the agricultural emission inventory by taking the example dairy cow (Hans-Dieter Haenel); (34) Requirements for measures to reduce ammonia emissions from cattle husbandry (Margret Keck); (35) Sustainable nutrient management in intensive livestock areas: Nitrogen and phosphorus flows in pig production (Dennis Otten); (36) Seasonal effect on emissi

  17. Good practices reducing the greenhouse gases in the transport sector; Buenas practicas en la reduccion de emisiones de gases de efecto invernadero en el sector del transporte

    Energy Technology Data Exchange (ETDEWEB)

    Crespo Garcia, L.; Garcia Cortes, A.; Jimenez Arroyo, F.; Montane Lopez, M. M.

    2010-07-01

    Public policies addressing the reduction of the greenhouse gases emission have to give response to the improvement of mobility in three aspects: passengers, freights, and urban and metropolitan areas. Passenger transport, because it involves long transportation distances consuming an important part of transport energy and raises difficult organizational problems. Freight transport, due to the complexity of interconnecting a lot of modes of transportation and the big range for improvement. Urban and metropolitan mobility, by the impact of actions in this field in the quality of life of a big part of the population. According to the peculiarities of their respective territories, different strategies of sustainable mobility that address the three considered aspects have been set up in Spain and its neighbouring countries. This article reviews some action lines implemented in spain, France and Germany, as a previous step to assess their possible adaptation to other territories. (Author) 6 refs.

  18. Optimization Model for Reducing Emissions of Greenhouse Gases from Automobiles (OMEGA)

    Science.gov (United States)

    The EPA Vehicle Greenhouse Gas (VGHG) model is used to apply various technologies to a defined set of vehicles in order to meet a specified GHG emission target, and to then calculate the costs and benefits of doing so.

  19. Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Christensen, Thomas Højlund

    2009-01-01

    The greenhouse gas (GHG) emissions related to the recycling of wood waste have been assessed with the purpose to provide useful data that can be used in accounting of greenhouse gas emissions. Here we present data related to the activities in a material recovery facility (MRF) where wood waste is shredded and foreign objects are removed in order to produce wood chips for use in the production of particleboard. The data are presented in accordance with the UOD (upstream, operational, downstream) ...

  20. Inventory preliminary of gases of greenhouse effect in Colombia. Sources and drains

    International Nuclear Information System (INIS)

    This document presents a summary of the results of the national greenhouse gas emissions inventory sources sinks and reservoirs project, which has been developed within the framework of the national study to address climate change. The study was initiated by a professionals group on behalf of the Academia Colombiana de Ciencias Exactas, Fisicas y Naturales in July 1995, with financial support of the German Organization of Cooperation GTZ and the technical assistance of the Venezuelan Country Study Greenhouse gas Inventory team

  1. Definition of yearly emission factor of dust and greenhouse gases through continuous measurements in swine husbandry

    Science.gov (United States)

    Costa, Annamaria; Guarino, Marcella

    The object of this study was to develop an accurate estimation method to evaluate the contribution of the various compartments of swine husbandry to dust and GHG (greenhouse gases, CO 2, CH 4 and N 2O) emission into the atmosphere during one year of observation. A weaning, a gestation, a farrowing and a fattening room in an intensive pig house were observed in three different periods (Autumn-Winter, Springtime and Summer, monitoring at least 60% of each period (20% at the beginning, in the middle and at the end) of each cycle). During monitoring, live weight, average live weight gain, number of animals and its variation, type of feed and feeding time were taken into account to evaluate their influence on PM 10, or the fraction of suspended particulate matter with an aerodynamic diameter less than or equal to 10 ?m [Emission Inventory Guidebook, 2007. B1100 Particle Emissions from Animal Husbandry Activities. Available from: (accessed October 2008)] and to define GHG emission. The selected piggery had a ventilation control system using a free running impeller to monitor continuously real-time environmental and management parameters with an accuracy of 5%. PM 10 concentration was monitored by a sampler (Haz Dust EPAM 5000), either continuously or through traditional gravimetric technique, and the mean value of dust amount collected on the membranes was utilized as a correction factor to be applied to continuously collected data. PM 10 concentration amount incoming from inlets was removed from PM 10 emission calculation, to estimate the real contribution of pig house dust pollution into atmosphere. Mean yearly emission factor of PM 10 was measured in 2 g d -1 LU -1 for the weaning room, 0.09 g d -1 LU -1 for the farrowing room, 2.59 g d -1 LU -1 for the fattening room and 1.23 g d -1 LU -1 for the gestation room. The highest PM 10 concentration and emission per LU was recorded in the fattening compartment while the lowest value was recorded in the farrowing room. CO 2, CH 4 and N 2O concentrations were continuously measured in the exhaust ducts using an infrared photoacoustic detector IPD (Brüel & Kjaer, Multi-gas Monitor Type 1302, Multipoint Sampler and Doser Type 1303) sampling data every 15 min, for the 60% of the cycles. Yearly emission factor for CO 2 was measured in 5997 g d -1 LU -1 for the weaning room, 1278 g d -1 LU -1 for the farrowing room, 13,636 g d -1 LU -1 for the fattening room and 8851 g d -1 LU -1 for the gestation room. Yearly emission factor for CH 4 was measured in 24.57 g d -1 LU -1 for the weaning room, 4.68 g d -1 LU -1 for the farrowing room, 189.82 g d -1 LU -1 for the fattening room and 132.12 g d -1 LU -1 for the gestation room. Yearly emission factor for N 2O was measured in 3.62 g d -1 LU -1 for the weaning room, 0.66 g d -1 LU -1 for the farrowing room, 3.26 g d -1 LU -1 for the fattening room and 2.72 g d -1 LU -1 for the gestation room.

  2. Cost effective method for valuation of impacts caused by greenhouse gases emissions for oil and gas companies; Metodo de custo-efetividade para avaliacao de impactos causados pelas emissoes de gases de efeito estufa em empresas de oleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Elisa Vieira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Barros, Sergio Ricardo da Silveira [Universidade Federal Fluminense (LATEC/UFF), Niteroi, RJ (Brazil). Mestrado em Sistemas de Gestao

    2012-07-01

    The objective of this work is to apply the method of cost-effectiveness in economic evaluation of new investment projects, based on information about reducing greenhouse gases emissions. In the context of the commitment of companies with the Climate Change and Sustainability, this work is important and contributes to the oil and gas industry, because it integrates information on reducing emissions of greenhouse gases in negative Net Present Value (NPV) projects, helping the portfolio manager on decision making between alternative projects. In this article, examples are given of two investment projects, in which the cost effectiveness methodology is applied, considering the reduction of emission of greenhouse gases such as additional environmental benefit, or cost avoidance, in an adjusted model of the economic viability analysis of meritorious projects. (author)

  3. Assessment of the greenhouse gases in Mexico: Importance of the electric sector; Inventario de gases de invernadero en Mexico: Importancia del sector electrico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia [Instituto de Ingenieria, UNAM, Mexico, D. F. (Mexico)

    1996-12-31

    In this paper are presented the principal results of the various studies on energy end uses developed by the Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM Group of Energy and Environment) for years 1987 and 1993, emphasizing on the emissions originated by the generation of electricity and for the following greenhouse effect gases: carbon dioxide (CO{sub 2}), carbon monoxide (CO), nitrogen oxides (NOx) and methane (CH{sub 4}). Also, a comparison is presented among Mexico and other Latin America countries based on statistics of OLADE (Latin American Organization of Energy) [Espanol] En este trabajo se presentan los principales resultados de estudios diversos sobre usos finales de energia desarrollados por el Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM) para los anos 1987 y 1993, poniendo enfasis en las emisiones debidas a la generacion de electricidad y para los siguientes gases de efecto invernadero: bioxido de carbono (CO{sub 2}), monoxido de carbono (CO), oxidos de nitrogeno (NOx) y metano (HC{sub 4}). Asi mismo se presenta una comparacion entre Mexico y otros paises de Latinoamerica basado en estadisticas de la Organizacion Latinoamericana de Energia

  4. Electric energy auctions in Brazil and its effect on emissions of greenhouse gases by the electric sector; Leiloes de energia eletrica no Brasil e sua influencia nas emissoes de gases de efeito estufa pelo setor eletrico

    Energy Technology Data Exchange (ETDEWEB)

    Alpire, Ricardo; Pereira, Osvaldo Livio Soliano [Universidade Salvador (UNIFACS), BA (Brazil)

    2010-07-01

    The result of the auctions of electricity, after the new regulatory framework in 2004, has shown the increased participation of fossil sources of thermal generation, contributing to increased emission of greenhouse gases by the Brazilian Electricity Sector. This article aims to analyze the correlation between growth in electric generation sector and rising greenhouse gases, especially through the study of the winning projects of electric power auctions conducted with the advent of the New Institutional Model of the Power Sector from 2004, comparing with the existing policies and prospects of the next auction of the electric sector. (author)

  5. The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND

    OpenAIRE

    Waldhoff, Stephanie; Anthoff, David; Rose, Steven; Tol, Richard S.J.

    2011-01-01

    We use FUND 3.5 to estimate the social cost of carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. We show the results of a range of sensitivity analyses, focusing on the impact of carbon dioxide fertilization. Ignored in previous studies of the social cost of greenhouse gas emissions, carbon dioxide fertilization has a positive effect at the margin, but only for carbon dioxide. Because of this, the ratio of the social cost of a greenhouse gas to that of carbon dioxide...

  6. PLANIFICACIÓN CONTABLE Y DERECHOS DE EMISIÓN DE GASES DEEFECTO INVERNADERO ACCOUNTING PLANNING AND GREENHOUSE GAS EMISSION RIGHTS

    Directory of Open Access Journals (Sweden)

    Ana Isabel Mateos Ansótegui

    2008-02-01

    Full Text Available A implementação do comércio de direitos de emissão de Gases do Efeito Estufa (GEE, em 2005, na Espanha, tem suscitado múltiplas incertezas tanto contábeis como fiscais. Antes de junho de 2005, as empresas espanholas deviam ter recebido a cota de CO2 fixada pelo Governo através da abertura de uma conta no Registro Nacional de emissões. Qualquer empresa que pretender exceder a sua cota de emissão de gases deve adquirir ou gerar os direitos de emissão correspondentes que não detenha. Porém, toda companhia, que tenha emitido um volume de gases inferior à cota recebida ou que tenha gerado direitos num montante superior ao que necessitava, poderá repassá-los a outros atores econômicos. Este regime de comércio de direitos de emissão recém-lançado gera um novo cenário, pleno de desafios e oportunidades e uma ou outra ameaça derivada da possibilidade de se gerarem excedentes ou a necessidade de se adquirirem novos direitos, com as conseqüentes receitas e aumentos de custos. O problema que estudamos neste trabalho é como contabilizar estes movimentos e que efeito essas operações podem ter na determinação da base de cálculo do Imposto de Sociedades à luz da recente publicação da Resolução do ICAC sobre direitos de emissão. A única referência disponível para as empresas espanholas que devem apresentar contas em conformidade com as NIIF era a Final Interpretation 3 (IFRIC 3, publicada em dezembro de 2004, através do IASB, mas revogada em junho de 2005, devido às numerosas críticas recebidas de outros organismos privados. Palavras-chave: Planejamento Contábil. Direitos de Emissão de Gases do Efeito Estufa. Provisões. Normas Internacionais de Contabilidade. In January 2005, the European Union established a greenhouse gas emission trading plan. In Spain, several doubts about the accountant effects of this plan have arisen. All installations emitting greenhouse gases must be in possession of an appropriate permit issued by competent authorities. A government (or government agency issues rights (allowances to participating entities for them to emit a specified level of emissions. Participants in the scheme are able to buy and sell allowances in the CO2 stock exchange market. At the end of a specified period, participants are required to deliver allowances equal to their actual emissions. The accounting to be adopted by participants and its effect on earnings due to the new Spanish regulation (ICAC Resolution is the study objective of this paper. For firms ruled by IFR’s the only reference was IFRIC 3 which, however, was withdrawn in June 2005 due to the EFRAG recommendation. The Spanish Accounting Plan and the ICAC Resolutions remain the legal frameworks for the rest of the firms. We demonstrate how in the new Spanish legal context it will be possible to differ or anticipate incomes, making for a very useful tool for accounting planning. Keywords: Allowances. Accounting planning. Provisions. IFRs. Earnings. La implantación del comercio de los derechos de emisión de Gases de Efecto Invernadero (GEI en 2005 en España ha suscitado múltiples incertidumbres tanto contables como fiscales. Antes de junio de 2005 las empresas españolas debían haber recibido la asignación de CO2 fijada por el Gobierno a través de la apertura de una cuenta en el Registro Nacional de emisiones. Cualquier empresa que pretenda emitir más gases de los que se le han asignado, deberá adquirir o generar los correspondientes derechos de emisión de los que carezca. En cambio, toda aquella compañía que haya emitido gases por debajo de la cantidad asignada o que haya generado derechos en cuantía superior a la que necesitaba podrá transmitirlos a otros agentes económicos. Este recién estrenado régimen de comercio de derechos de emisión genera un nuevo entorno repleto de retos y oportunidades y alguna que otra amenaza, derivadas de la posibilidad de generar excedentes o la necesidad de adquirir nuevos derechos con los consiguientes beneficios o incremento de costes. El problema que nos ocupa en

  7. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) during BARCA

    OpenAIRE

    Chow, V. Y.; Gottlieb, E. W.; Daube, B. C.; Beck, V.; J. Steinbach; O. Kolle; Crosson, E. R.; A. D. Van Pelt; Rella, C.W.; Gerbig, C.; Hoefer, A.; Chen, H.; Winderlich, J.; G. W. Santoni; Wofsy, S. C.

    2009-01-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived f...

  8. 76 FR 36472 - Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing...

    Science.gov (United States)

    2011-06-22

    ... proposal (75 FR 18652) concerning the monitoring and reporting methods for electronics manufacturing... Manufacturing of the Greenhouse Gas Reporting Rule on December 1, 2011 (40 CFR part 98, subpart I) (75 FR 74774... Electronics Manufacturing (Subpart I) To Provide Flexibility AGENCY: Environmental Protection Agency...

  9. "An Inconvenient Truth" Increases Knowledge, Concern, and Willingness to Reduce Greenhouse Gases

    Science.gov (United States)

    Nolan, Jessica M.

    2010-01-01

    Since May 24, 2006 millions of people have seen the movie "An Inconvenient Truth." Several countries have even proposed using the film as an educational tool in school classrooms. However, it is not yet clear that the movie accomplishes its apparent goals of increasing knowledge and concern, and motivating people to reduce their greenhouse gas…

  10. Emissões de gases de efeito estufa pela deposição de palha de cana-de-açúcar sobre o solo / Greenhouse gases emissions due to sugarcane trash on the soil

    Scientific Electronic Library Online (English)

    Diana, Signor; Luísa Lorentz Magalhães, Pissioni; Carlos Eduardo Pellegrino, Cerri.

    2014-06-01

    Full Text Available Biocombustíveis contribuem para reduzir as emissões de gases de efeito estufa (GEE). No Brasil, o principal biocombustível é o etanol de cana-de-açúcar. Além dos colmos, as folhas de cana-de-açúcar também podem ser usadas para produzir etanol. O objetivo deste trabalho foi avaliar as emissões de GEE [...] (CO2, CH4 e N2O) induzidas pela presença de palha sobre o solo. Três experimentos foram conduzidos em Latossolos, em Piracicaba: imediatamente após a colheita, aos seis e aos 12 meses após a colheita. Foram avaliados os efeitos de três doses de palha (0%, 50% e 100% da quantidade disponível na superfície) sobre as emissões. Imediatamente após a colheita, as emissões de CO2 e CH4 aumentaram com o aumento da quantidade de palha. Aos seis meses após a colheita houve consumo de CH4 à medida que a quantidade de palha aumentou. Doze meses após a colheita, as emissões dos três gases foram similares, independentemente da quantidade de palha. Remover a palha de cana-de-açúcar não aumenta as emissões de GEE do solo em comparação ao manejo sem retirada da palha da superfície. Contudo, estudos adicionais são necessários para investigar os efeitos sobre a produtividade de cana-de-açúcar, sobre a erosão e sobre outros atributos do solo. Abstract in english Biofuels are important to reduce greenhouse gases (GHGs) emissions to atmosphere. In Brazil, the main biofuel is ethanol from sugarcane. Beyond stalk, sugarcane sheets are also stating to be used to produce second generation ethanol. The objective of this work was evaluate soil GHGs (CO2, CH4 and N2 [...] O) emissions induced by sugarcane trash on soil surface. Three experiments were done in an Oxisol, in Piracicaba region, taking in account three periods: immediately after sugarcane harvest, six and twelve months after harvest. In each experiment, we evaluated the effects of three sugarcane trash rates (0%, 50% and 100% of the quantity available at soil surface). Immediately after harvest, CO2 and CH4 emissions increased linearly with trash rate on soil surface. Six months after harvest there were CH4 consumption by soil as trash on surface increased. Twelve months after harvest, emissions of the three gases were similar in all trash rates. Removing sugarcane straw from soil surface do not increase soil GHGs emissions as compared to the current management, in which 100% of trash is maintained on the soil surface. However, other studies are needed to investigate its effects under sugarcane yield, soil erosion and under other soil attributes.

  11. The response of soil organic matter decomposition and greenhouse gases emission to global warming and nitrogen addition

    Science.gov (United States)

    Oh, H.; Choi, J. H.

    2014-12-01

    The increase of atmospheric greenhouse gases has caused noticeable climate change. The increased temperature by climate change could dramatically change in the decomposition rate and greater losses of carbon from soil organic matter. Decomposition of organic carbon regulates both the amount of organic material which is stored in soils, as well as the amount of mineralized carbon that can be released into the atmosphere as greenhouse gases (CO2 and CH4). In addition, the largest increase in the N-deposition was expected in Asia due to the dramatic increase in anthropogenic activities. Previous results from N-deposition experiments led to apparently contradictory hypotheses regarding the decomposition of organic carbon in soil. N-deposition has been found to decrease the decomposition of chemically complex carbon compounds, while increasing decomposition rates of labile carbon pools. Combined changes in temperature increase and N-deposition have considerable potential to affect soil carbon sequestration/loss and soil nutrient cycling. This study investigated how the combined changes of temperature increase and N-deposition influence mineralization processes and C dynamics of two soil systems (wetlands and forest). For this objective, we conducted a growth chamber experiment to examine the effects of combined changes in temperature increase and N-deposition on the decomposition of organic carbon and emission of greenhouse gases from two different soil systems. The samples were collected in wetland and forest around Gyeongan stream of South Korea. Incubator experiment was conducted under the enhanced air temperature (controlled 20 ?, 25 ? and 30 ?) and nitrogen addition (low and high condition by using ammonium nitrate). GHGs (CO2, N2O, and CH4) were measured gas chromatograph. Results of experiment show that CO2 flux decrease with time at forest soil and increase at wetland. Moreover high temperature (25 ?, 30 ?) and high concentration of nitrogen cause emission more than 20 ?. As time goes on, N2O flux decrease at low concentration of nitrogen, increase at high concentration in both of the soils. But cases of N2O flux have a lot of fluctuation. While CH4 flux was not detected at all of temperatures and soils.

  12. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  13. GREENHOUSE GASES FROM BIOMASS AND FOSSIL FUEL STOVES IN DEVELOPING COUNTRIES: A MANILA PILOT STUDY

    Science.gov (United States)

    Samples were taken of the combustion gases released by household cookstoves in Manila, Philippines. In a total of 24 samples, 14 cookstoves were tested. These were fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Ambient samples were ...

  14. Emission of greenhouse gases and acidifying substances 1991-2000; Emission af drivhusgasser og forsurende stoffer 1991-2000

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2002-07-01

    The emission of the greenhouse gases carbon dioxide, laughing gas, and methane has decreased from 1991 to 2000. The carbon dioxide emission has decreased from 63 mill. tons in 1991 to 52 mill. tons in 2000. The decrease of emission of laughing gas and methane only decreased slightly during the period. In 2000 the emission of laughing gas and methane is 29 thousand tons and 628 thousand tons, respectively. For all the acidifying substances sulphur dioxide, ammonia, and nitrogen oxides a decrease is observed. The emission of sulphur dioxide has decreased from 239 thousand tons in 1991 to 28 thousand tons in 2000. Emission of nitrogen oxides has decreased from 319 thousand tons in 1991 to 208 thousand tons in 2000. Emissione of ammonia has decreased from 128 thousand tons to 104 thousand tons during the same period. (LN)

  15. Emission of greenhouse gases and acidifying substances 1990-1999; Emission af drivhusgasser og forsurende stoffer 1990-1999

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2001-07-01

    In relation to the emission of the greenhouse gases carbon dioxide, laughing gas and methane the emission of carbon dioxide has increased from 52 million tonnes in 1990 to 56 million tonnes in 1999, while the emission of laughing gas and methane nearly have been on a constant level in the period. The emission of laughing gas in 1993 31 thousand tonnes and for methane the emission is 623 thousand tonnes. For the acidifying substances sulphur dioxide, ammonia and nitrogen oxide there have been a decrease in the emission, still mostly for sulphur dioxide there has shown a decrease from 183 thousand tonnes in 1990 to 56 thousand tonnes in 1999. The emission of nitrogen has decreased from 272 thousand tonnes in 1990 to 210 thousand tonnes in 1999. The emission of ammonia has decreased from 128 thousand tonnes in 1990 to 96 thousand tonnes in 1999. (EHS)

  16. Emission of greenhouse gases and acidifying substances 1991-2000; Emission af drivhusgasser og forsurende stoffer 1991-2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The emission of the greenhouse gases carbon dioxide, laughing gas, and methane has decreased from 1991 to 2000. The carbon dioxide emission has decreased from 63 mill. tons in 1991 to 52 mill. tons in 2000. The decrease of emission of laughing gas and methane only decreased slightly during the period. In 2000 the emission of laughing gas and methane is 29 thousand tons and 628 thousand tons, respectively. For all the acidifying substances sulphur dioxide, ammonia, and nitrogen oxides a decrease is observed. The emission of sulphur dioxide has decreased from 239 thousand tons in 1991 to 28 thousand tons in 2000. Emission of nitrogen oxides has decreased from 319 thousand tons in 1991 to 208 thousand tons in 2000. Emission of ammonia has decreased from 128 thousand tons to 104 thousand tons during the same period. (LN)

  17. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions

    OpenAIRE

    Astrup, Thomas; Møller, Jacob; Fruergaard, Thilde

    2009-01-01

    Important greenhouse gas (GHG) emissions related to waste incineration and co-combustion of waste were identified and considered relative to critical aspects such as: the contents of biogenic and fossil carbon, N2O emissions, fuel and material consumptions at the plants, energy recovery, and solid residues generated. GHG contributions were categorized with respect to direct emissions from the combustion plant as well as indirect upstream contributions (e.g. provision of fuels and materials) ...

  18. Recycling of glass: accounting of greenhouse gases and global warming contributions

    OpenAIRE

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Christensen, Thomas Højlund

    2009-01-01

    Greenhouse gas (GHG) emissions related to recycling of glass waste were assessed from a waste management perspective. Focus was on the material recovery facility (MRF) where the initial sorting of glass waste takes place. The MRF delivers products like cullet and whole bottles to other industries. Two possible uses of reprocessed glass waste were considered: (i) remelting of cullet added to glass production; and (ii) re-use of whole bottles. The GHG emission accounting included indirect upstr...

  19. Recycling of metals: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Damgaard, Anders; Larsen, Anna Warberg; Christensen, Thomas Højlund

    2009-01-01

    Greenhouse gas (GHG) emissions related to recycling of metals in post-consumer waste are assessed from a waste management perspective; here the material recovery facility (MRF), for the sorting of the recovered metal. The GHG accounting includes indirect upstream emissions, direct activities at the MRF as well as indirect downstream activities in terms of reprocessing of the metal scrap and savings in terms of avoided production of virgin metal. The global warming factor (GWF) shows that upstrea...

  20. Recycling of plastic: accounting of greenhouse gases and global warming contributions

    OpenAIRE

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas Højlund

    2009-01-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic...

  1. Recycling of paper: Accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Damgaard, Anders; Christensen, Thomas Højlund

    2009-01-01

    Greenhouse gas (GHG) emissions have been established for recycling of paper waste with focus on a material recovery facility (MRF). The MRF upgrades the paper and cardboard waste before it is delivered to other industries where new paper or board products are produced. The accounting showed that the GHG contributions from the upstream activities and operational activities, with global warming factors (GWFs) of respectively 1 to 29 and 3 to 9 kg CO2-eq. tonne— 1 paper waste, were small in compari...

  2. Recycling of glass: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Christensen, Thomas Højlund

    2009-01-01

    Greenhouse gas (GHG) emissions related to recycling of glass waste were assessed from a waste management perspective. Focus was on the material recovery facility (MRF) where the initial sorting of glass waste takes place. The MRF delivers products like cullet and whole bottles to other industries. Two possible uses of reprocessed glass waste were considered: (i) remelting of cullet added to glass production; and (ii) re-use of whole bottles. The GHG emission accounting included indirect upstream...

  3. Recycling of plastic: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas Højlund

    2009-01-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in...

  4. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; Møller, Jacob; Fruergaard, Thilde

    2009-01-01

    Important greenhouse gas (GHG) emissions related to waste incineration and co-combustion of waste were identified and considered relative to critical aspects such as: the contents of biogenic and fossil carbon, N2O emissions, fuel and material consumptions at the plants, energy recovery, and solid residues generated. GHG contributions were categorized with respect to direct emissions from the combustion plant as well as indirect upstream contributions (e.g. provision of fuels and materials) and ...

  5. Landfilling of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund; Scharff, H.

    2009-01-01

    Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recovery, and landfills receiving low-organic-carbon waste. The results showed that direct emissions of GHG from the landfill systems (primarily dispersive release of methane) are the major contributions to th...

  6. Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution

    DEFF Research Database (Denmark)

    Møller, Jacob; Boldrin, Alessio; Christensen, Thomas Højlund

    2009-01-01

    Anaerobic digestion (AD) of source-separated municipal solid waste (MSW) and use of the digestate is presented from a global warming (GW) point of view by providing ranges of greenhouse gas (GHG) emissions that are useful for calculation of global warming factors (GWFs), i.e. the contribution to GW measured in CO2-equivalents per tonne of wet waste. The GHG accounting was done by distinguishing between direct contributions at the AD facility and indirect upstream or downstream contributions. GHG...

  7. Composting and compost utilization: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Andersen, Jacob Kragh; Møller, Jacob; Christensen, Thomas Højlund; Favoino, E.

    2009-01-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency...

  8. An international agreement with full participation to tackle the stock of greenhouse gases

    OpenAIRE

    Kratzsch, Uwe; Sieg, Gernot; Stegemann, Ulrike

    2011-01-01

    This paper analyzes greenhouse gas emissions that build up an atmospheric stock which depreciates over time. Weakly renegotiation- proof and subgame perfect equilibria in a game of international emission reduction exist if countries put a sufficiently high weight on future payoffs, even though there is a discontinuity in the required discount factor due to the integrity of the number of punishing countries. Treaties are easier to reach if the gas depreciates slowly.

  9. New light on interactions between trace gases and ozon. International Symposium on Non-CO2 greenhouse gases; Nieuw licht op interacties tussen sporengassen en ozon. Internationaal Symposium Niet-CO2-broeikasgassen

    Energy Technology Data Exchange (ETDEWEB)

    Van Amstel, A. [Departement Omgevingswetenschappen, Wageningen Universiteit, Wageningen (Netherlands)

    2005-12-01

    The title symposium is the fourth in a series of conferences devoted to the science and policy of greenhouse gases other than carbon dioxide. This symposium was especially devoted to the implementation of measures to reduce greenhouse gas emissions. Science has drawn our attention recently to the fact that air pollution may have obscured the actual global warming by global dimming. Therefore during this conference the interactions between trace gases in the atmosphere and especially the ozone chemistry were discussed extensively. Further topics which were discussed to reduce emissions were: science, control, policy and implementation strategies. It has now been widely recognised that the non-CO2 greenhouse gases offer excellent opportunities to contribute substantially to meeting national commitments at relatively low costs. This article a brief overview is given of the symposium. [Dutch] Klimaatverandering door kooldioxide krijgt alom aandacht. Daarom worden de mogelijkheden om de overige broeikasgassen terug te dringen onderbelicht. Wellicht is een dergelijke benadering zelfs gemakkelijker en goedkoper. Om de balans in evenwicht te brengen leveren de internationale symposia 'Non-CO2 Greenhouse Gases' wetenschappelijke achtergrondinformatie over de luchtkwaliteit en klimaatverandering door andere gassen dan kooldioxide. In dit artikel aandacht voor de interacties tussen sporengassen en de ozon in de atmosfeer.

  10. CARIBIC observations of greenhouse gases and non-methane hydrocarbons on flights between Germany and South Africa

    Science.gov (United States)

    Brenninkmeijer, C. A.; Schuck, T. J.; Baker, A. K.; van Velthoven, P.

    2012-12-01

    Since May 2005 the CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic-atmospheric.com) has made near-monthly deployments of an atmospheric observatory making measurements from aboard a Lufthansa Airbus A340-600 during routine passenger flights. Flights originate in Frankfurt, Germany and serve a large number of destinations, among them Cape Town and Johannesburg in South Africa. On these flights, which took place primarily during northern hemisphere winter 2010/2011, a near-meridional profile was obtained over Europe and Africa, in similar fashion to HIPPO flight tracks over the Pacific, be it without vertical profiles. Over Central Africa, deep convection transports boundary layer air to the free troposphere, linking observations at cruise altitude to surface emissions and allowing for the investigation of emissions and sources of atmospherically relevant species in Africa. Mixing ratios of greenhouse gases (methane, carbon dioxide, sulfur hexafluoride and nitrous oxide) and a suite of C2-C8 non-methane hydrocarbons (NMHC) are measured from flask samples collected at cruise altitude during flight. Several tracers, for example methane, carbon monoxide, and various NMHC, exhibit enhanced mixing ratios over tropical Africa. Using tracer-tracer correlations to characterize methane emissions from Africa, we find that biomass burning made a major contribution to the methane burden, but that also biogenic sources, such as wetlands, play a significant role. We also compare these measurements to those conducted earlier over India, which were used to investigate sources and emissions of greenhouse gases during the South Asian summer monsoon.

  11. Using ocean-glint scattered sunlight as a diagnostic tool for satellite remote sensing of greenhouse gases

    Directory of Open Access Journals (Sweden)

    A. Butz

    2013-05-01

    Full Text Available Spectroscopic measurements of sunlight backscattered by the Earth's surface is a technique widely used for remote sensing of atmospheric constituent concentrations from space. Thereby, remote sensing of greenhouse gases poses particularly challenging accuracy requirements for instrumentation and retrieval algorithms which, in general, suffer from various error sources. Here, we investigate a method that helps disentangle sources of error for observations of sunlight backscattered from the glint spot on the ocean surface. The method exploits the backscattering characteristics of the ocean surface which is bright for glint geometry but dark for off-glint angles. This property allows for identifying a set of clean scenes where light scattering due to particles in the atmosphere is negligible such that uncertain knowledge of the lightpath can be excluded as a source of error. We apply the method to more than 3 yr of ocean-glint measurements by the Thermal And Near infrared Sensor for carbon Observation (TANSO – Fourier Transform Spectrometer (FTS onboard the Greenhouse Gases Observing Satellite (GOSAT which aims at measuring carbon dioxide (CO2 and methane (CH4 concentrations. The proposed method is able to clearly monitor recent improvements in the instrument calibration of the oxygen (O2 A-band channel and suggests some residual uncertainty in our knowledge about the instrument. We further assess the consistency of CO2 retrievals from several absorption bands between 6400 cm?1 (1565 nm and 4800 cm?1 (2100 nm and find that the absorption bands commonly used for monitoring of CO2 dry air mole fractions from GOSAT allow for consistency better than 1.5 ppm. Usage of other bands reveals significant inconsistency among retrieved CO2 concentrations pointing at inconsistency of spectroscopic parameters.

  12. Using ocean-glint scattered sunlight as a diagnostic tool for satellite remote sensing of greenhouse gases

    Directory of Open Access Journals (Sweden)

    A. Butz

    2013-09-01

    Full Text Available Spectroscopic measurements of sunlight backscattered by the Earth's surface is a technique widely used for remote sensing of atmospheric constituent concentrations from space. Thereby, remote sensing of greenhouse gases poses particularly challenging accuracy requirements for instrumentation and retrieval algorithms which, in general, suffer from various error sources. Here, we investigate a method that helps disentangle sources of error for observations of sunlight backscattered from the glint spot on the ocean surface. The method exploits the backscattering characteristics of the ocean surface, which is bright for glint geometry but dark for off-glint angles. This property allows for identifying a set of clean scenes where light scattering due to particles in the atmosphere is negligible such that uncertain knowledge of the lightpath can be excluded as a source of error. We apply the method to more than 3 yr of ocean-glint measurements by the Thermal And Near infrared Sensor for carbon Observation (TANSO Fourier Transform Spectrometer (FTS onboard the Greenhouse Gases Observing Satellite (GOSAT, which aims at measuring carbon dioxide (CO2 and methane (CH4 concentrations. The proposed method is able to clearly monitor recent improvements in the instrument calibration of the oxygen (O2 A-band channel and suggests some residual uncertainty in our knowledge about the instrument. We further assess the consistency of CO2 retrievals from several absorption bands between 6400 cm?1 (1565 nm and 4800 cm?1 (2100 nm and find that the absorption bands commonly used for monitoring of CO2 dry air mole fractions from GOSAT allow for consistency better than 1.5 ppm. Usage of other bands reveals significant inconsistency among retrieved CO2 concentrations pointing at inconsistency of spectroscopic parameters.

  13. Presentation of conclusions of the 9. meeting of the working group on the division by four of the greenhouse gases emissions in France for 2050, called factor 4

    International Nuclear Information System (INIS)

    This document provides opinions and recommendations of the working group on the factor 4. It deals with the individual behaviors and their positive evolution, the part of the public policies, the actions of the CITEPA, the scientific context about the greenhouse gases decrease objectives, the works of the factor 4 and the long dated reduction aboard. (A.L.B.)

  14. Emissions and removals of greenhouse gases from land use, land use change and forestry (LULUCF) for England, Scotland, Wales and Northern Ireland: 1990-2012

    OpenAIRE

    Miles, Stephanie; Malcolm, Heath; Buys, Gwen; Moxley, Janet

    2014-01-01

    This report presents a summary of the net emissions and removals of greenhouse gases for 1990-2012 by the Land Use, Land Use Change and Forestry sector of the UNFCCC National Inventory for each of the UK Administrations (England, Scotland, Wales and Northern Ireland).

  15. Emissions of greenhouse gases, ammonia, and hydrogen sulfide from pigs fed standard diets and diets supplemented with dried distillers grains with solubles

    Science.gov (United States)

    Swine growers are increasingly supplementing animal diets with dried distillers grains soluble (DDGS) to offset cost of a typical corn-soybean meal diet. An experiment was conducted to investigate the effects of DDGS diets on both on manure composition and emissions of greenhouse gases (GHG), ammoni...

  16. The Danish government's climate plan. Towards a society without greenhouse gases; Regeringens klimaplan. Pae vej mod et samfund uden drivhusgasser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The Danish government's goal is to reduce greenhouse gas emissions with 40% by the year 2020, compared to 1990 levels. A major step towards reaching that goal was accomplished in March 2012, with the political agreement on energy policy. The remaining reductions to achieve the goal will come primarily from the transportation, agriculture and construction sectors, and from waste management. In order to reach the government's goal, we must eliminate the equivalent of approximately four million tonnes of CO{sub 2} emissions by 2020. Reaching the goal in 2020 also depends on factors such as the economy as we progress toward 2020, as well as on EU climate policy. The government will continue to work proactively to ensure that ambitious climate and energy policies are pursued by the EU. The EU policies will contribute significantly in order to achieve the national objectives. The government will engage in a dialogue with parliament, business society and civil society to discuss what kind of national policy initiatives to be decided on to reduce greenhouse gas emissions. The government will introduce a climate change bill during the upcoming session of parliament. The purpose of this upcoming bill is to ensure progress and transparency in the climate policy development. The bill will include requirements for an annual climate policy progress report to show whether Denmark is on track to meet the goal of a 40% reduction in greenhouse gases by 2020. As part of its work on the climate policy plan, an inter-ministerial working group has developed a catalogue of about 80 possible climate policy initiatives to address climate change. These policy proposals, along with the proposed legislation, will be the government's main instruments in the coming years in order to continuously monitor and adjust its climate policy. (Author)

  17. Energy Consumption and Greenhouse Gases Emission form Canned Fish Production in Iran a Case Study: Khuzestan Province

    Directory of Open Access Journals (Sweden)

    Abbas Asakereh

    2010-08-01

    Full Text Available Energy is a fundamental ingredient in the process of economic development, as it provides essential services that maintain economic activity and the quality of human life but intensive use of it causes problems threatening public health and environment. The aim of this study was to evaluate energy consumption and greenhouse gases emission from canned fish production in the Khuzestan province, Iran, to determine the losing energy factors and pollutant emission. In this research, canneries, consuming human labor, electricity and diesel fuel energy sources w ere investigated. Total input energy was 22681.8 MJ/t that diesel fuel had the biggest share in the total energy up to 98%. Energy of labour was a small amount of total input energy, but it is the most expensive input in the canned fish production. Primary cooking and sterilization operations are most consumers of input energy in canning fish production with 21202.6 MJ/t. Manual operations of fish cleaning and transferring, includes the lowest energy and this stage includes 43.33% of total human labour. Amount of greenhouse gas and air pollutant emissions from diesel fuel is much greater than electricity in fish cannery. Emission of CO2, NOX and SO2 are the most gas emission with 1071.282, 7.264 and 6.52 Kg/t, respectively. Productivity of labour and electricity, diesel fuel and labour energy were 0.025 t/La 1h and 2.2, 0.044 t/GJ and 0.056 t/MJ, respectively. Using agitating retorts in steed of still retorts and reform path of transferring vapor will decrease the diesel fuel consumption and greenhouse gas emission.

  18. The early faint sun paradox: Organic shielding of ultraviolet-labile greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, C. [Cornell Univ., Ithaca, NY (United States); Chyba, C. [Univ. of Arizona, Tucson, AZ (United States)

    1997-05-23

    Atmospheric mixing ratios of {approximately}10{sup -5 {+-}1} for ammonia on the early Earth would have been sufficient, through the resulting greenhouse warming, to counteract the temperature effects of the faint early sun. One argument against such model atmospheres has been the short time scale for ammonia photodissociation by solar ultraviolet light. Here it is shown that ultraviolet absorption by steady-state amounts of high-altitude organic solids produced from methane photolysis may have shielded ammonia sufficiently that ammonia resupply rates were able to maintain surface temperatures above freezing. 78 refs., 2 figs., 1 tab.

  19. The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases

    Science.gov (United States)

    Sagan, C.; Chyba, C.

    1997-01-01

    Atmospheric mixing ratios of approximately 10(-5 +/- 1) for ammonia on the early Earth would have been sufficient, through the resulting greenhouse warming, to counteract the temperature effects of the faint early sun. One argument against such model atmospheres has been the short time scale for ammonia photodissociation by solar ultraviolet light. Here it is shown that ultraviolet absorption by steady-state amounts of high-altitude organic solids produced from methane photolysis may have shielded ammonia sufficiently that ammonia resupply rates were able to maintain surface temperatures above freezing.

  20. Greenhouse gases emission from sanitary landfills in Lombardy: estimation and uncertainty analysis

    International Nuclear Information System (INIS)

    Quantification of methane emissions from landfills is important to evaluate measures for reduction of greenhouse gas emissions. A census has been conducted across all landfills in Lombardy in order to get a double assessment of greenhouse gas emissions in the period 1973-2007. The first approach is of a deterministic kind: it produced a GHG emission assessment of about 2,240 ktCO2 (like 2.4% of GHG emission in Lombardy in 2005). The second approach is a probabilistic approach according to Monte Carlo simulation, and allows an assessment of probabilistic distribution of emissions and uncertainty. Uncertainty in GHG emission from landfill in Lombardy is about 20% and efficiency of LFG collection and biodegradable carbon content are the most relevant parameters in this assessment. Also, a projection of GHG emission was made. Two scenarios were analyzed for the 2008-2020 period: a business as usual (BAU) one and an alternative one. It results that we are expecting a 50% reduction of GHG emission, with alternative scenario, from 2007 level: at regional scale it is like a 1% of overall GHG emissions in Lombardy.

  1. Investigation into the emission of greenhouse effect gases; Onshitsu koka gas no haishutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper grasped the situation of greenhouse effect gas emissions of advanced countries based on the reports from them. The advanced countries which concluded the U.N. Framework Convention on Climate Change (OECD member countries, the former U.S.S.R., and East European countries) are to be reported to the office concerned with work for the framework the situation of their greenhouse effect gas emissions according to the obligation of the framework. In and after April 1997, they made the second report. The paper summarized changes in emission amount, the future trend, and the policies/measures mainly taken of nine countries which have already presented the second report (the U.S., the U.K., Germany, Holland, Italy, Norway, Sweden, Finland, and New Zealand) and one country (Russia) which has made only the first report. Moreover, the literature was collected and summed up concerning the mechanism and coefficients of the emission of nitrous oxide and methane. The collected literature was classified into all fields/plural number of fields, energy relation, industrial process relation, relation with the use of organic solvent and other products, agricultural relation, relation with changes in land use and forests, and waste relation. 4 figs., 228 tabs.

  2. Options for the reduction of gases emissions of greenhouse effect (GEI), Colombia 1998 -2010

    International Nuclear Information System (INIS)

    Taking into account the greenhouse gas emissions for Colombia in year 2010, different options for reduction of GHG emissions were considered. Twenty-four options were evaluated from economical and technical points of view, with a total reduction potential of 31.7 M ton/ year of CO2 equivalent. About 75% of this potential could be developed in the forestry sector and 25% in energy projects. If the proposed measures can to be implemented, the country's emissions will be 143.5 M ton/year of co2 by 2010: this means that Colombia will have lowered its emissions not only to the 1990 level but down to 14% below this level

  3. Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Christensen, Thomas HØjlund

    2009-01-01

    The greenhouse gas (GHG) emissions related to the recycling of wood waste have been assessed with the purpose to provide useful data that can be used in accounting of greenhouse gas emissions. Here we present data related to the activities in a material recovery facility (MRF) where wood waste is shredded and foreign objects are removed in order to produce wood chips for use in the production of particleboard. The data are presented in accordance with the UOD (upstream, operational, downstream) framework presented in Gentil et al. (Waste Management & Research, 27, 2009). The GHG accounting shows that the emissions related to upstream activities (5 to 41 kg CO2-equivalents tonne —1 wood waste) and to activities at the MRF (approximately 5 kg CO2-equivalents tonne—1 wood waste) are negligible compared to the downstream processing (—560 to —120 kg CO2equivalents tonne—1 wood waste). The magnitude of the savings in GHG emissions downstream are mainly related to savings in energy consumption for drying of fresh wood for particleboard production. However, the GHG account highly depends on the choices made in the modelling of the downstream system. The inclusion of saved electricity from avoided chipping of virgin wood does not change the results radically (—665 to —125 kg CO2-equivalents tonne— 1 wood waste). However, if in addition it is assumed that the GHG emissions from combustion of wood has no global warming potential (GWP) and that the energy produced from excess wood due to recycling substitutes energy from fossil fuels, here assumed to be coal, potentially large downstream GHG emissions savings can be achieved by recycling of waste wood (—1.9 to —1.3 tonnes CO2-equivalents tonne— 1 wood waste). As the data ranges are broad, it is necessary to carefully evaluate the feasibility of the data in the specific system which the GHG accounting is to be applied to.

  4. Greenhouse gases emissions inventory in 2005 by the Mexican energy sector; Inventario de emisiones en 2005 de gases de efecto invernadero por el sector energetico mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Flores Velazquez, R.; Munoz Lerdo Carranza, R.; Villalba Valle, D. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rfv@iie.org.mx; rml@iie.org.mx; danviva17@yahoo.com.mx

    2010-01-15

    In the present work, it is estimated the greenhouse gases (GHG, GEI in this paper) emissions in 2005 by the consumption and/or transformation of energy in Mexico. This document is not official, and it is used as reference the fuel consumption reported in the Balance National de Energia 2005 published by the Secretaria de Energia. In this way, it is standardized the emission source that will be used in the near future to estimated the official 2005 GHG Emissions Inventory. In order to solve the absence of own emission factors in Mexico, it is used the default global emission factors proposed by the Intergovernmental Panel for Climate Change. The Sectorial Method was used to estimate the GHG emissions taking in account the fuel consumption in each subsector considered in the energy sector. It was found that the transport and energy industries sector had the most GHG emissions, and that Mexico as a non-industrialized country had lower per capita emissions that developed countries. [Spanish] En este trabajo se calcularon las emisiones de Gases de Efecto de inventario (GEI's) del 2005 por la seccion de consumo y/o transformacion de energia en Mexico. El documento obtenido no es oficial, y como referencia, se utiliza el consumo de combustible que refiere el Balance Nacional de Energia 2005, publicado por la Secretaria de Energia. Con esto, se estandarizan las fuentes de emision que en algun momento usara el Inventario Nacional de Emisiones de GEI's 2005. Para resolver la falta de factores de emision propios de Mexico, se recurre a los factores globales de emision propuestos como valores por omision por el Panel Intergubernamental de Cambio Climatico. Para la estimacion de las emisiones de GEI's se utilizo el Metodo Sectorial tomando en consideracion el consumo de combustible de cada uno de los subsectores en que se encuentra dividido el sector energetico. Se encontro que los sectores transporte y de la industria de la transformacion de energia son los que mas emisiones de GEI's presentan, y que Mexico como pais no industrializado tiene menos emisiones per capita que los paises desarrollados.

  5. Renewable energies and reduction of greenhouse gases within the framework of the Kyoto protocol; Energias renovables y reduccion de gases invernadero en el marco del protocolo de Kioto

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Castellanos, Carolina [Comision Nacional para el Ahorro de Energia, Mexico, D.F. (Mexico)

    2001-07-01

    The modern societies face diverse environmental problems among which appear the air pollution, the deterioration of seas and coasts, the acidification of soils, acid rain and the climatic change, phenomena, all of them, related in greater or smaller degree to the conventional practices of production and consumption of energy. Specifically, the climatic change puts in risk the well-being of the future generations, and even, the future of the life in the planet. Although uncertainty around the possible repercussions of this phenomenon exists, one knows that one of its main sources is burning of fossil fuels, when affecting the increase of the atmospheric concentrations of greenhouse gases. However, in spite of the achievement that represents the creation of an instrument so sophisticated as the commonly denominated Kyoto Protocol, reluctance on part of some developed countries exists to ratify it and assume their commitments, and in the last session of the Conference of the Parts, (COP-6), celebrated at The Hague, Holland, it was not managed to consolidate to put in action the mechanisms that Kyoto establishes. [Spanish] Las sociedades modernas enfrentan diversos problemas ambientales entre los que figuran la contaminacion del aire, el deterioro de mares y costas, la acidificacion de suelos, la lluvia acida y el cambio climatico, fenomenos, todos ellos, relacionados en mayor o menor medida con las practicas convencionales de produccion y consumo de energia. De manera especifica, el cambio climatico pone en riesgo el bienestar de las futuras generaciones, e incluso, el futuro de la vida en el planeta. Si bien existe incertidumbre en torno a las posibles repercusiones de este fenomeno, se sabe que una de sus principales fuentes es la quema de combustibles fosiles, al incidir en el aumento en las concentraciones atmosfericas de gases invernadero. No obstante, pese al logro que representa la creacion de un instrumento tan sofisticado como el comunmente denominado Protocolo de Kioto, existe reticencia por parte de algunos paises desarrollados para ratificarlo y asumir sus compromisos, y en la ultima sesion de la Conferencia de las Partes, (COP-6), celebrada en la Haya, Holanda, no se logro consolidar la entrada en operacion de los mecanismos que establece Kioto.

  6. Greenhouse gases generated from the anaerobic biodegradation of natural offshore asphalt seepages in southern California

    Science.gov (United States)

    Lorenson, T.D.; Wong, Florence L.; Dartnell, Peter; Sliter, Ray W.

    2014-01-01

    Significant offshore asphaltic deposits with active seepage occur in the Santa Barbara Channel offshore southern California. The composition and isotopic signatures of gases sampled from the oil and gas seeps reveal that the coexisting oil in the shallow subsurface is anaerobically biodegraded, generating CO2 with secondary CH4 production. Biomineralization can result in the consumption of as much as 60% by weight of the original oil, with 13C enrichment of CO2. Analyses of gas emitted from asphaltic accumulations or seeps on the seafloor indicate up to 11% CO2 with 13C enrichment reaching +24.8‰. Methane concentrations range from less than 30% up to 98% with isotopic compositions of –34.9 to –66.1‰. Higher molecular weight hydrocarbon gases are present in strongly varying concentrations reflecting both oil-associated gas and biodegradation; propane is preferentially biodegraded, resulting in an enriched 13C isotopic composition as enriched as –19.5‰. Assuming the 132 million barrels of asphaltic residues on the seafloor represent ~40% of the original oil volume and mass, the estimated gas generated is 5.0×1010 kg (~76×109 m3) CH4 and/or 1.4×1011 kg CO2 over the lifetime of seepage needed to produce the volume of these deposits. Geologic relationships and oil weathering inferences suggest the deposits are of early Holocene age or even younger. Assuming an age of ~1,000 years, annual fluxes are on the order of 5.0×107 kg (~76×106 m3) and/or 1.4×108 kg for CH4 and CO2, respectively. The daily volumetric emission rate (2.1×105 m3) is comparable to current CH4 emission from Coal Oil Point seeps (1.5×105 m3/day), and may be a significant source of both CH4 and CO2 to the atmosphere provided that the gas can be transported through the water column.

  7. Anticipated changes in the emissions of green-house gases and ammonia from pork production due to shifts from fattening of barrows towards fattening of boars

    DEFF Research Database (Denmark)

    Dämmgen, Ulrich; Berk, Andreas

    2013-01-01

    Greenhouse gases and of ammonia emissions from pork production will change when fattening of barrows switches towards to fattening of (intact) boars. The results of an accurate feeding experiment allow for the differentiation of the effects on emissions of gender (differentiating in boars, barrows and gilts) and of diet composition. The modified fattening pig module of the agricultural emission model GAS-EM was used to estimate emissions in 2020 when the fattening of barrows will no longer be common practice. The scenarios also reflect the effect of the expected increased weight gains and the related effect of increased numbers of animals produced. The fattening of intact boars as compared to barrows is associated with a reduction of emissions of greenhouse gases and of ammonia per animal. For ammonia, all scenarios result in reduced emissions, most markedly when this shift is combined with increased weight gains. To a lesser extent, this also applies to nitric and nitrous oxide emissions. Methane emissions are less affected; increased weight gains result in increased emissions. As the greenhouse gas balance is dominated by methane emissions, the overall emission of greenhouse gases (expressed as CO2 equivalents) is likely to increase slightly in 2020 despite the reductions in nitrous oxide emissions.

  8. A new UK Greenhouse Gas measurement network providing ultra high-frequency measurements of key radiatively active trace gases taken from a network of tall towers

    Science.gov (United States)

    Grant, A.; O'Doherty, S.; Manning, A. J.; Simmonds, P. G.; Derwent, R. G.; Moncrieff, J. B.; Sturges, W. T.

    2012-04-01

    Monitoring of atmospheric concentrations of gases is important in assessing the impact of international policies related to the atmospheric environment. The effects of control measures on greenhouse gases introduced under the Montreal and Kyoto Protocols are now being observed. Continued monitoring is required to assess the overall success of the Protocols. For over 15 years the UK Government have funded high-frequency measurements of greenhouse gases and ozone depleting gases at Mace Head, a global background measurement station on the west coast of Ireland. These continuous, high-frequency, high-precision measurements are used to estimate regional (country-scale) emissions of greenhouse gases across the UK using an inversion methodology (NAME-Inversion) that links the Met Office atmospheric dispersion model (Numerical Atmospheric dispersion Modelling Environment - NAME) with the Mace Head observations. This unique inversion method acts to independently verify bottom up emission estimates of radiatively active and ozone-depleting trace gases. In 2011 the UK government (DECC) funded the establishment and integration of three new tall tower measurements stations in the UK, to provide enhanced resolution emission maps and decrease uncertainty of regional emission estimates produced using the NAME-Inversion. One station included in this new UK network was already established in Scotland and was used in collaboration with Edinburgh University. The two other new stations are in England and were set-up early in 2012, they contain brand new instrumentation for measurements of greenhouse gases. All three additional stations provide ultra high-frequency (1 sec) data of CO2 and CH4 using the Picarro© Cavity Ring Down Spectrometer and high frequency (20 min) measurements of N2O and SF6 from custom built sample modules with GC-ECD. We will present the new tall tower UK measurement network in detail. Using high-frequency measurements at new operational sites, including Mace Head, we will present the latest inversion results from the new network highlighting the enhanced resolution in regional emission maps for the UK. These results are presented to the UK government periodically and provide independent verification of the emission estimates of radiatively active trace gases. These results also inform policy makers on the accuracy of inventory emissions estimates of radiatively active and ozone-depleting trace gases.

  9. Increased spring flooding of agricultural fields will exhibit altered production of greenhouse gases

    Science.gov (United States)

    Paul, R. F.; Smith, C. M.; Smyth, E. M.; Kantola, I. B.; DeLucia, E. H.

    2013-12-01

    The U.S. Corn Belt currently is a net source of carbon dioxide and nitrous oxide to the atmosphere, but is also a sink of methane. Among the proposed effects of climate change in the North American Midwest region is an increase in the frequency and duration of spring flooding events. This would cause ponding in fields which may change the greenhouse gas balance of the region, especially by providing a suitable anoxic environment for the proliferation of methanogens, increasing methane emissions. To determine whether methanogenesis occurs in flooded agricultural soils of the Midwest and how other gas fluxes are affected, we installed collars into the ground of a research field located in central Illinois. The control group was maintained at the same conditions as the surrounding field. Two groups of collars were sustained with water flooding the headspaces via a drip irrigation system; one treatment was analyzed for gas fluxes of CH4, N2O, and CO2 evolving from the collars, and a separate treatment of flooded collars was used for soil sampling. Comparing flooded soils versus control we measured reduced N2O fluxes (-3.12 x 10-6 × 6.8 x 10-7 g N m-2 min-1), reduced CO2 fluxes (-6.13 x 10-3 × 9.3 x 10-4 g CO2 m-2 min-1), and increased methane fluxes (+2.72 x 10-6 × 5.8 x 10-7 g CH4 m-2 min-1). After only one week of treatment the flooded soils switched from being sinks to sources of methane, which continued across the duration of the experiment. These preliminary results indicate that methanogenesis occurs in flooded agricultural fields, and suggest including regional modeling into further study. Although the global warming potential of methane is 25 times greater than CO2, our measured rates of methane production were compensated by reductions in nitrous oxide and CO2 fluxes, reducing the total 100-year horizon global warming potential of the flooded soils we studied by 64.8%. This indicates that accounting for more frequent seasonal ponding would significantly revise the estimates of future greenhouse gas emissions for Midwest agroecology.

  10. Estimación de gases de efecto invernadero en humedales construidos de flujo subsuperficial / Assessment of Greenhouse Effect Gases in Sub-Superficial Flow Constructed Wetlands / Estimativa de gases de efeito estufa em pantanais construídos de fluxo subsuperficial

    Scientific Electronic Library Online (English)

    Juan Pablo, Silva-Vinasco; Arlyn, Valverde-Solís.

    2011-07-01

    Full Text Available Os pantanais construídos são sistemas atraentes, de baixo custo de operação e manutenção, para países em desenvolvimento, quanto a tratamento das águas residuais. Entretanto, estes ao reduzir as cargas poluidoras das águas residuais, podem gerar metano, dióxido de carbono e óxido nitroso, chamados g [...] ases de efeito estufa. Neste sentido, foram comparadas duas espécies ornamentais e estimaram-se as emissões de metano, dióxido de carbono e óxido nitroso, mediante câmara estática, em tres pantanais construídos, a escala real, dos quais um foi plantado com Heliconia psittacorum, outro com Phragmites australis e o terceiro sem plantar (controle). Cada um, foi submetido a uma carga hidráulica de 3,5 m³d-1, equivalente a um tempo nominal de retenção hidráulico de 1,8 dias. Além disso, foram realizadas as caracterizações fisioquímicas habituais. A eficiência ficou entre 66,2% e 87,8% para a DQO, a temperatura média esteve entre 29 e 31 °C e o pH entre 6,3 a 7, em os sistemas plantados e sem plantar. Além disso, não foram encontradas diferenças significativas entre a vegetação estudada. Por tanto, conclui-se que as espécies Heliconia psittacorum e Phragmites australis não afetam a emissão de gases de efeito estufa nos sistemas estudados. Abstract in spanish Los humedales construidos son sistemas atractivos, de bajo costo de operación y mantenimiento, para países en vía de desarrollo, en cuanto a tratamiento de las aguas residuales. Sin embargo, estos al reducir las cargas contaminantes de las aguas residuales, pueden generar metano, dióxido de carbono [...] y óxido nitroso, llamados gases de efecto invernadero. En este sentido, se compararon dos especies ornamentales y se estimaron las emisiones de metano, dióxido de carbono y óxido nitroso, mediante cámara estática, en tres humedales construidos, a escala real, de los cuales se plantaron uno con Heliconia psittacorum, otro con Phragmites australis y un tercero sin plantar (control). Cada uno, sometido a una carga hidráulica de 3,5 m³d-1, equivalente a un tiempo nominal de retención hidráulico de 1,8 días. Además, se realizaron las caracterizaciones fisicoquímicas habituales. La eficiencia se situó entre 66,2% y 87,8% para la DQO, la temperatura tuvo en promedio del 29 y 31 °C y el pH entre 6,3 a 7, en los sistemas plantados y sin plantar. Además, no se encontraron diferencias significativas entre la vegetación estudiada. Por tanto, se concluye que las especies Heliconia psittacorum y Phragmites australis no afectan la emisión de gases de efecto invernadero en los sistemas estudiados. Abstract in english In developing countries, constructed wetlands are attractive systems with low operational and maintenance costs in terms of wastewater treatment. However, by reducing the pollution load of wastewater they might contribute to produce some greenhouse gases such as methane, carbon dioxide and nitrous o [...] xide. This research compared two ornamental species and assessed the emissions of these gases through the use of static cameras in three full-scale constructed wetlands of which two were planted: one with Heliconia psittacorum, one with Phragmites australis, and the third one, which was not planted, was the control wetland. Each one of them received a hydraulic load of 3.5 m³d-1, which is equivalent to a nominal hydraulic retention time of 1.8 days. In addition, physicochemical characterizations were performed. Efficiency was between 66.2% and 87.8% for COD; on average, the temperature was between 29 and 31 °C, and the pH was between 6.3 and 7, in both planted and unplanted systems. Additionally, no significant differences in the vegetation studied were found. We conclude that the ornamental species used do not affect the emission of greenhouse gases in the systems analyzed.

  11. Fossil and renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries

    International Nuclear Information System (INIS)

    Recently a great number of empirical research studies have been conducted on the relationship between certain indicators of environmental degradation and income. The EKC (Environmental Kuznets Curve) hypothesis has been tested for various types of environmental degradation. The EKC hypothesis states that the relationship between environmental degradation and income per capita takes the form of an inverted U shape. In this paper the EKC hypothesis was investigated with regards to the relationship between carbon emissions, income and energy consumption in 16 EU (European Union) countries. We conducted panel data analysis for the period of 1990–2008 by fixing the multicollinearity problem between the explanatory variables using their centered values. The main contribution of this paper is that the EKC hypothesis has been investigated by separating final energy consumption into renewable and fossil fuel energy consumption. Unfortunately, the inverted U-shape relationship (EKC) does not hold for carbon emissions in the 16 EU countries. The other important finding is that renewable energy consumption contributes around 1/2 less per unit of energy consumed than fossil energy consumption in terms of GHG (greenhouse gas) emissions in EU countries. This implies that a shift in energy consumption mix towards alternative renewable energy technologies might decrease the GHG emissions. - Highlights: • We investigate the EKC (Environmental Kuznets Curve) hypothesis for 16 EU (European Union) countries. • We fix the multicollinearity problem between explanatory variables. • We found no evidence to support the EKC hypothesis in EU between 1990 and 2008 periods. • Renewable energy contributes less to GHGs (greenhouse gases) around ½ that of a unit of fossil energy

  12. Prospects of and requirements for nuclear power as a contributor toward managing greenhouse gases

    International Nuclear Information System (INIS)

    The world's population, energy demand, and rate of carbon emissions are increasing, but the rates of increase are uncertain. Even modest growth rates present significant challenges to existing and developing technologies for reducing carbon and greenhouse gas emissions while meeting growing energy demands. Nuclear power is currently the most developed alternative to fossil fuel combustion and is one of the options for meeting these challenges. However, there remain significant technical, economic and institutional barriers inhibiting growth of nuclear capacity in the U.S. and slowing implementation worldwide. In the near-term, the major barriers to nuclear power, especially in the U.S., appear to be economic and institutional, with the risks such as safety, waste management and proliferation having reasonably acceptable limits considering the current installed capacity. Future growth of nuclear power, however, may well hinge on continuous evolutionary and perhaps revolutionary reduction of these risks such that the overall risk of nuclear power, aggregated over the entire installed capacity, remains at or below today's risks

  13. Greenhouse gases emission trading and green certificates market : instruments of the liberalized electricity market in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Matei, M.; Udroiu, I.; Salisteanu, C. [Valahia Targoviste Univ., Targoviste (Romania); Matei, L. [Bucharest Univ., Bucharest (Romania); Stanca, A. [Energy Research and Modernizing Inst.-ICEMENERG, Bucharest (Romania); Grigoras, R. [Ministry of Environment and Water Management, Bucharest (Romania)

    2007-07-01

    As of January 2008, Romania became a member of the European Union (EU). This required the country to transpose and to implement EU legislation within all sectors, including energy and environment. This paper presented the results of the first 11 months of running the green certificate (GC) market and implementing the EU directive 2001/77/EC, whose purpose is to promote an increase in the contribution of renewable energy sources (RES) to electricity production in the internal electricity market. The GC system includes mandatory quotas for suppliers. Producers qualified for receiving GC are wind, biomass and solar power plants and hydro generation less than 10 megawatts of installed power. Suppliers are obliged to buy annually a number of GC equal with the mandatory quota multiplied with the amount of electricity sold yearly to their final consumers. The additional price received for the GC sold is determined on a parallel market, separated from the electricity market, where they are traded for the environmental benefits of the clean electricity production. The paper also commented on the efficiency of the system. It also discussed the transposition of EU legislation concerning greenhouse gas (GHG) emission trading and the state-of-the-art of its implementation. It was concluded that Romania needs to manage its GHG emissions on the longer term by preparing its national and international policy and regulations for the period post 2012. 7 refs., 4 tabs., 5 figs.

  14. Achieving reductions in greenhouse gases in the US road transportation sector

    International Nuclear Information System (INIS)

    It is well established that GHG emissions must be reduced 50 to 80% by 2050 in order to limit global temperature increase to 2 °C. Achieving reductions of this magnitude in the transportation sector is a challenge and requires a multitude of policies and technology options. The research presented here analyzes three scenarios: changes in the perceived price of travel, land use intensification, and increases in transit. Elasticity estimates are derived using an activity-based travel model for the state of California and broadly representative of the US. The VISION model is used to forecast changes in technology and fuel options that are currently forecast to occur in the US for the period 2000–2040, providing a life-cycle GHG forecast for the road transportation sector. Results suggest that aggressive policy action is required, especially pricing policies, but also more on the technology side, especially increases in the carbon efficiency of medium and heavy-duty vehicles. - Highlights: • Travel elasticities are calculated for policy scenarios using an activity-based travel model. • These elasticities are used to estimate changes in total life-cycle greenhouse gas emissions. • Current technology and fuel policy and the strongest behavioral policy will not meet targets. • Heavy and medium-duty trucks need more aggressive technology and fuel options

  15. Composting and compost utilization: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Andersen, Jacob Kragh

    2009-01-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (—900 kg CO2-equivalents tonne—1 wet waste (ww)) and a net load (300 kg CO2-equivalents tonne —1 ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.

  16. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant.

    Science.gov (United States)

    Masuda, Shuhei; Suzuki, Shunsuke; Sano, Itsumi; Li, Yu-You; Nishimura, Osamu

    2015-12-01

    The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2m(-3). The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3°C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank. PMID:25439128

  17. Comparison of energy sources in terms of their full-energy-chain emission factors of greenhouse gases. Proceedings of an IAEA advisory group meeting/workshop

    International Nuclear Information System (INIS)

    Sustainable and therefore climate benign energy planning is becoming a cornerstone of national energy policies in many countries that ratified the United Nations Framework Convention on Climate Change. The ratification implies a commitment to lowering greenhouse gas emissions by the so-called Annex I countries, i.e. the developed countries. Sustainable energy planning requires comparing the advantages and disadvantages of different energy sources. Such comparison cannot be done objectively without accounting for the emissions of all greenhouse gases (GHGs) - not only CO2 - from the whole energy chain, from ''cradle to grave''. The greenhouse gas emissions upstream and downstream of the energy conversion step are inherently associated with the production of any energy carrier, such as electricity. Therefore, analysis of the emissions of all greenhouse gases from the full energy chain FENCH is considered to be the only fair approach in comparing energy sources for climate benign energy planning. This publication reports on the IAEA Advisory Group Meeting on Analysis of Net Energy Balance and Full-Energy-Chain Greenhouse Gas Emissions for Nuclear and Other Energy Systems, held in Beijing, China, 4-7 October 1994. Refs., figs., tabs

  18. Quantifying urban/industrial emissions of greenhouse and ozone-depleting gases based on atmospheric observations

    Science.gov (United States)

    Barnes, Diana Hart

    2000-11-01

    Background and pollution trends and cycles of fourteen trace gases over the Northeastern U.S. are inferred from continuous atmospheric observations at the Harvard Forest research station located in Petersham, Massachusetts. This site receives background `clean' air from the northwest (Canada) and `dirty' polluted air from the southwest (New York City-Washington, D.C. corridor). Mixing ratios of gases regulated by the Montreal Protocol or other policies (CO, PCE, CFC11, CFC12, CFC113, CH 3CCl3, CCl4, and Halon-1211) and of those not subject to restrictions (H2, CH4, CHCl3, TCE, N2O, and SF6) were measured over the three-year period, 1996 to 1998, every 24 minutes by a fully automated gas chromatographic instrument with electron capture detectors. Evidence for polar vortex venting is found consistently in the month of June of the background seasonal cycles. The ratio of CO and PCE enhancements borne on southwesterly winds are in excellent agreement with county-level EPA and sales-based inventories for the New York City-Washington, D.C. region. From this firm footing, we use CO and PCE as reference compounds to determine the urban/industrial source strengths for the other species. A broad historical and geographic study of emissions reveals that the international treaty has by and large been a success. Locally, despite the passing of the 1996 Montreal Protocol ban, only emissions of CFC12 and CH3CCl3 are abating. Though source strengths are waning, the sources are not spent and continued releases to the atmosphere may be expected for some years to come. For CH3CCl3, whose rate of decline is central to our understanding of atmospheric processes, we estimate that absolute concentrations may persist until around the year 2010. The long-term high frequency time series of hydrogen provided here represents the first such data set of its kind. The H2 diurnal cycle is established and explained in terms of its sources and sinks. The ratio of H2 to CO in pollution plumes is found to be a seasonal and unchanged since early automobile exhaust studies of the 1960s, despite the many restrictions placed on car emissions and fuels since that time. Based on this result, a spatial inventory of H2 emissions from fossil fuel combustion is developed at the county level for the entire Northeastern U.S.

  19. A South African perspective on livestock production in relation to greenhouse gases and water usage

    Scientific Electronic Library Online (English)

    M.M., Scholtz; J.B.J., van Ryssen; H.H., Meissner; M.C., Laker.

    Full Text Available The general perception that livestock is a major contributor to global warming resulted mainly from the FAO publication, Livestock's Long Shadow, in 2006, which indicated that livestock is responsible for 18% of the world's greenhouse gas (GHG) emissions. This figure has since been proved to be an o [...] verestimation, since it includes deforestation and other indirect contributions. The most recent figure is in the order of 5% - 10%. Although only ruminants can convert the world's high-fibre vegetation into high-quality protein sources for human consumption, ruminant production systems are targeted as they are perceived to produce large quantities of GHG. Livestock is also accused of using large quantities of water, an allegation that is based on questionable assumptions and the perception that all sources of food production require a similar and equal quantity and quality of water. In the case of ruminants, extensive systems are usually found to have a lower per-area carbon footprint than grain-fed systems, but a higher footprint if expressed in terms of kg product. Feedlots maximize efficiency of meat production, resulting in a lower carbon footprint, whereas organic production systems consume more energy and have a bigger carbon footprint than conventional production systems. Cows on pastures produce more methane than cows on high concentrate diets. In South Africa, as in most of the countries in the sub-tropics, livestock production is the only option on about 70% of the agricultural land, since the marginal soils and rainfall do not allow for crop production and the utilization of green water. An effective way to reduce the carbon and water footprint of livestock is to decrease livestock numbers and increase production per animal, thereby improving their efficiency.

  20. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Astrup, Thomas; Møller, Jacob; Fruergaard, Thilde

    2009-11-01

    Important greenhouse gas (GHG) emissions related to waste incineration and co-combustion of waste were identified and considered relative to critical aspects such as: the contents of biogenic and fossil carbon, N(2)O emissions, fuel and material consumptions at the plants, energy recovery, and solid residues generated. GHG contributions were categorized with respect to direct emissions from the combustion plant as well as indirect upstream contributions (e.g. provision of fuels and materials) and indirect downstream contributions (e.g. substitution of electricity and heat produced elsewhere). GHG accounting was done per tonne of waste received at the plant. The content of fossil carbon in the input waste, for example as plastic, was found to be critical for the overall level of the GHG emissions, but also the energy conversion efficiencies were essential. The emission factors for electricity provision (also substituted electricity) affected the indirect downstream emissions with a factor of 3-9 depending on the type of electricity generation assumed. Provision of auxiliary fuels, materials and resources corresponded to up to 40% of the direct emission from the plants (which were 347-371 kg CO(2)-eq. tonne( -1) of waste for incineration and 735-803 kg CO(2)-eq. tonne(-1) of waste for co-combustion). Indirect downstream savings were within the range of -480 to -1373 kg CO(2)eq. tonne(-1) of waste for incineration and within -181 to -2607 kg CO(2)-eq. tonne(- 1) of waste for co-combustion. N(2)O emissions and residue management did not appear to play significant roles. PMID:19748939

  1. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; MØller, Jacob

    2009-01-01

    Important greenhouse gas (GHG) emissions related to waste incineration and co-combustion of waste were identified and considered relative to critical aspects such as: the contents of biogenic and fossil carbon, N2O emissions, fuel and material consumptions at the plants, energy recovery, and solid residues generated. GHG contributions were categorized with respect to direct emissions from the combustion plant as well as indirect upstream contributions (e.g. provision of fuels and materials) and indirect downstream contributions (e.g. substitution of electricity and heat produced elsewhere). GHG accounting was done per tonne of waste received at the plant. The content of fossil carbon in the input waste, for example as plastic, was found to be critical for the overall level of the GHG emissions, but also the energy conversion efficiencies were essential. The emission factors for electricity provision (also substituted electricity) affected the indirect downstream emissions with a factor of 3—9 depending on the type of electricity generation assumed. Provision of auxiliary fuels, materials and resources corresponded to up to 40% of the direct emission from the plants (which were 347—371 kg CO2-eq. tonne —1 of waste for incineration and 735—803 kg CO2-eq. tonne—1 of waste for co-combustion). Indirect downstream savings were within the range of —480 to —1373 kg CO2eq. tonne—1 of waste for incineration and within —181 to —2607 kg CO2-eq. tonne— 1 of waste for co-combustion. N2O emissions and residue management did not appear to play significant roles.

  2. Recycling of glass: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Larsen, Anna W; Merrild, Hanna; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions related to recycling of glass waste were assessed from a waste management perspective. Focus was on the material recovery facility (MRF) where the initial sorting of glass waste takes place. The MRF delivers products like cullet and whole bottles to other industries. Two possible uses of reprocessed glass waste were considered: (i) remelting of cullet added to glass production; and (ii) re-use of whole bottles. The GHG emission accounting included indirect upstream emissions (provision of energy, fuels and auxiliaries), direct activities at the MRF and bottle-wash facility (combustion of fuels) as well as indirect downstream activities in terms of using the recovered glass waste in other industries and, thereby, avoiding emissions from conventional production. The GHG accounting was presented as aggregated global warming factors (GWFs) for the direct and indirect upstream and downstream processes, respectively. The range of GWFs was estimated to 0-70 kg CO(2)eq. tonne( -1) of glass waste for the upstream activities and the direct emissions from the waste management system. The GWF for the downstream effect showed some significant variation between the two cases. It was estimated to approximately -500 kg CO(2)-eq. tonne(- 1) of glass waste for the remelting technology and -1500 to -600 kg CO(2)-eq. tonne(-1) of glass waste for bottle re-use. Including the downstream process, large savings of GHG emissions can be attributed to the waste management system. The results showed that, in GHG emission accounting, attention should be drawn to thorough analysis of energy sources, especially electricity, and the downstream savings caused by material substitution. PMID:19710108

  3. Recycling of glass: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina

    2009-01-01

    Greenhouse gas (GHG) emissions related to recycling of glass waste were assessed from a waste management perspective. Focus was on the material recovery facility (MRF) where the initial sorting of glass waste takes place. The MRF delivers products like cullet and whole bottles to other industries. Two possible uses of reprocessed glass waste were considered: (i) remelting of cullet added to glass production; and (ii) re-use of whole bottles. The GHG emission accounting included indirect upstream emissions (provision of energy, fuels and auxiliaries), direct activities at the MRF and bottle-wash facility (combustion of fuels) as well as indirect downstream activities in terms of using the recovered glass waste in other industries and, thereby, avoiding emissions from conventional production. The GHG accounting was presented as aggregated global warming factors (GWFs) for the direct and indirect upstream and downstream processes, respectively. The range of GWFs was estimated to 0—70 kg CO2eq. tonne —1 of glasswaste for the upstream activities and the direct emissions from the waste management system. The GWF for the downstream effect showed some significant variation between the two cases. It was estimated to approximately —500 kg CO2-eq. tonne— 1 of glass waste for the remelting technology and —1500 to —600 kg CO2-eq. tonne—1 of glass waste for bottle re-use. Including the downstream process, large savings of GHG emissions can be attributed to the waste management system. The results showed that, in GHG emission accounting, attention should be drawn to thorough analysis of energy sources, especially electricity, and the downstream savings caused by material substitution.

  4. Modern to millennium-old greenhouse gases emitted from freshwater ecosystems of the eastern Canadian Arctic

    Science.gov (United States)

    Bouchard, F.; Laurion, I.; Preskienis, V.; Fortier, D.; Xu, X.; Whiticar, M. J.

    2015-07-01

    Ponds and lakes are widespread across the rapidly changing permafrost environments. Aquatic systems play an important role in global biogeochemical cycles, especially in greenhouse gas (GHG) exchanges between terrestrial systems and the atmosphere. The source, speciation and emission of carbon released from permafrost landscapes are strongly influenced by local specific conditions rather than general environmental setting. This study reports on GHG ages and emission rates from aquatic systems on Bylot Island in the eastern Canadian Arctic. Dissolved and ebullition gas samples were collected during the summer season from different types of water bodies located in a highly dynamic periglacial valley: polygonal ponds, collapsed ice-wedge trough ponds, and larger lakes overlying unfrozen soils (talik). The results showed strikingly different ages and fluxes depending on aquatic system types. Polygonal ponds were net sinks of dissolved CO2, but variable sources of dissolved CH4. They presented the highest ebullition fluxes, one or two orders of magnitude higher than from other ponds and lakes. Trough ponds appeared as substantial GHG sources, especially when their edges were actively eroding. Both types of ponds produced modern to hundreds of years old (2000 yr BP) derived from freshly eroded peat. Lakes had small dissolved and ebullition fluxes, however they released much older GHG, including millennium-old CH4 (up to 3500 yr BP) sampled from lake central areas. Acetoclastic methanogenesis dominated at all study sites and there was minimal, if any, methane oxidation in gas emitted through ebullition. These findings provide new insights on the variable role of permafrost aquatic systems as a positive feedback mechanism on climate.

  5. Carbon and nitrogen dynamics and greenhouse gases emissions in constructed wetlands: a review

    Science.gov (United States)

    Jahangir, M. M. R.; Fenton, O.; Gill, L.; Müller, C.; Johnston, P.; Richards, K. G.

    2014-07-01

    The nitrogen (N) removal efficiency of constructed wetlands (CWs) is very inconsistent and does not alone explain if the removed species are reduced by physical attenuation or if they are transformed to other reactive forms (pollution swapping). There are many pathways for the removed N to remain in the system: accumulation in the sediments, leaching to groundwater (nitrate-NO3- and ammonium-NH4+), emission to atmosphere via nitrous oxide- N2O and ammonia and/or conversion to N2 gas and adsorption to sediments. The kinetics of these pathways/processes varies with CWs management and therefore needs to be studied quantitatively for the sustainable use of CWs. For example, the quality of groundwater underlying CWs with regards to the reactive N (Nr) species is largely unknown. Equally, there is a dearth of information on the extent of Nr accumulation in soils and discharge to surface waters and air. Moreover, CWs are rich in dissolved organic carbon (DOC) and produce substantial amounts of CO2 and CH4. These dissolved carbon (C) species drain out to ground and surface waters and emit to the atmosphere. The dynamics of dissolved N2O, CO2 and CH4 in CWs is a key "missing piece" in our understanding of global greenhouse gas budgets. In this review we provide an overview of the current knowledge and discussion about the dynamics of C and N in CWs and their likely impacts on aquatic and atmospheric environments. We suggest that the fate of various N species in CWs and their surface emissions and subsurface drainage fluxes need to be evaluated in a holistic way to better understand their potential for pollution swapping. Research on the process based N removal and balancing the end products into reactive and benign forms are critical to assess environmental impacts of CWs. Thus we strongly suggest that in situ N transformation and fate of the transformation products with regards to pollution swapping requires further detailed examination.

  6. Heterogeneous saline formations : long-term benefits for geo-sequestration of greenhouse gases

    International Nuclear Information System (INIS)

    The feasibility of sequestering carbon dioxide (CO2) into deep saline formations as a means of reducing atmospheric greenhouse gas emissions was discussed with particular reference to reservoir performance of heterogenous formations with varying permeability and porosity distributions. If CO2 is injected into such formations, the increased baffling and reduced permeability may inhibit the flow of CO2 towards potential leak points in the reservoir. Injectivity into low-quality rock is a concern for heterogeneous formations. Injection programs involving multiple wells and appropriate well- completion strategies may be able to overcome injectivity problems for these candidate formations. The opportunity for geosequestration increases if low-quality heterogeneous saline formations are considered as possible target formations. Dynamic simulation of CO2 injection into a formation was used to model possible outcomes for geosequestration projects. Heterogeneity may include stratigraphic layering in the reservoir, faults, depositional mixing, compartmentalization, and channel systems. It was determined that for underground storage, CO2 should be injected at the bottom of a heterogeneous formation to take the best advantage of vertical baffling in the reservoir to stratigraphically trap CO2 and increase reservoir contact with the formation. The trapping mechanisms for CO2 sequestration were discussed with reference to solubility; gas-water relative permeability hysteresis; geological seals; and, mineralization. Pressure rise reservoir simulation studies have shown that permeability has a pronounced influence on reservoir performance in terms of CO2 migration, local pressure changes in the formation and long-term status of the CO2. The increased travel path of CO2 causes increased trapping through greater reservoir contact and potentially improves the storage project. 28 refs., 4 tabs., 5 figs

  7. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    OpenAIRE

    Chow, V. Y.; Gottlieb, E. W.; Daube, B. C.; Beck, V.; J. Steinbach; O. Kolle; Crosson, E. R.; A. D. Van Pelt; Rella, C.W.; Gerbig, C.; Hoefer, A.; Chen, H.; Winderlich, J.; G. W. Santoni; Wofsy, S. C.

    2010-01-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from labo...

  8. Sources of greenhouse gases and carbon monoxide in central London (UK)

    Science.gov (United States)

    Helfter, Carole; Tremper, Anja; Zazzeri, Giulia; Barlow, Janet F.; Nemitz, Eiko

    2015-04-01

    Biosphere-atmosphere exchange of carbon dioxide (CO2) has been on the scientific agenda for several decades and new technology now also allows for high-precision, continuous monitoring of fluxes of methane (CH4) and nitrous oxide (N2O). Compared to the natural environment, flux measurements in the urban environment, which is home to over 50% of the population globally, are still rare despite high densities of anthropogenic sources of pollutants. We report on over three years of measurements atop a 192 m tower in central London (UK), Europe's largest city, which started in October 2011. Fluxes of methane, carbon monoxide (CO) and carbon dioxide are measured by eddy-covariance (EC) at the British Telecom tower (51° 31' 17.4' N 0° 8' 20.04' W). In addition to the long-term measurements, EC fluxes of nitrous oxide (N2O) were measured in February 2014. All four trace gases exhibit diurnal trends consistent with anthropogenic activities with minimum emissions at night and early afternoon maxima. Segregating emissions by wind direction reveals heterogeneous source distributions with temporal patterns and source strengths that differ between compounds. The lowest emissions for CO, CO2 and CH4 were recorded for NW winds. The highest emissions of methane were in the SE sector, in the NE for CO2 and in the W for CO. Fluxes of all 3 gases exhibited marked seasonal trends characterised by a decrease in emissions in summer (63% reduction for CO, 36% for CO2 and 22% for CH4). Monthly fluxes of CO and CO2 were linearly correlated to air temperature (R2 = 0.7 and 0.59 respectively); a weaker dependence upon temperature was also observed for CH4 (R2 = 0.31). Diurnal and seasonal emissions of CO and CO2 are mainly controlled by local fossil fuel combustion and vehicle cold starts are thought to account for 20-30% of additional emissions of CO during the winter. Fugitive emissions of CH4 from the natural gas distribution network are thought to be substantial, which is consistent with the weaker seasonality of CH4 fluxes compared with CO and CO2. Annual estimates of CO2 emissions (41 kt km-2) obtained by EC were consistent with data upscaled from the London Atmospheric Emissions Inventory (LAEI; 46 kt km-2). Good agreement between measurements and inventory data was also found for CO (measured 156 t km-2; LAEI 145 t km-2) and for N2O (measured 0.36 t km-2; LAEI 0.42 t km-2), although based on a much shorter measurement period. By contrast, a two-fold difference was found between inventory and measured CH4 fluxes (measured 75 t km-2; LAEI 34 t km-2), which could indicate an underestimation by the inventory of CH4 emissions from anthropogenic sources or the existence of unaccounted biogenic sources. Measurements of isotopic CH4 taken 2 km SE of the tower near the banks of the river Thames reveal multiple episodes of 13C-depleted morning peaks consistent with biogenic sources. We speculate that the Thames can act as an additional significant source of biogenic methane especially at low tide and after heavy rainfall, which could explain the large emissions observed in the S-SE sector.

  9. An Environmental and Economic Evaluation of Pyrolysis for Energy Generation in Taiwan with Endogenous Land Greenhouse Gases Emissions

    Directory of Open Access Journals (Sweden)

    Chih-Chun Kung

    2014-03-01

    Full Text Available Taiwan suffers from energy insecurity and the threat of potential damage from global climate changes. Finding ways to alleviate these forces is the key to Taiwan’s future social and economic development. This study examines the economic and environmental impacts when ethanol, conventional electricity and pyrolysis-based electricity are available alternatives. Biochar, as one of the most important by-product from pyrolysis, has the potential to provide significant environmental benefits. Therefore, alternative uses of biochar are also examined in this study. In addition, because planting energy crops would change the current land use pattern, resulting in significant land greenhouse gases (GHG emissions, this important factor is also incorporated. Results show that bioenergy production can satisfy part of Taiwan’s energy demand, but net GHG emissions offset declines if ethanol is chosen. Moreover, at high GHG price conventional electricity and ethanol will be driven out and pyrolysis will be a dominant technology. Fast pyrolysis dominates when ethanol and GHG prices are low, but slow pyrolysis is dominant at high GHG price, especially when land GHG emissions are endogenously incorporated. The results indicate that when land GHG emission is incorporated, up to 3.8 billion kWh electricity can be produced from fast pyrolysis, while up to 2.2 million tons of CO2 equivalent can be offset if slow pyrolysis is applied.

  10. Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants

    Science.gov (United States)

    Tao, Lei; Sun, Kang; Miller, David J.; Pan, Dan; Golston, Levi M.; Zondlo, Mark A.

    2015-04-01

    A low-power mobile sensing platform has been developed with multiple open-path gas sensors to measure the ambient concentrations of greenhouse gases and air pollutants with high temporal and spatial resolutions over extensive spatial domains. The sensing system consists of four trace gas sensors including two custom quantum cascade laser-based open-path sensors and two LICOR open-path sensors to measure CO2, CO, CH4, N2O, NH3, and H2O mixing ratios simultaneously at 10 Hz. In addition, sensors for meteorological and geolocation data are incorporated into the system. The system is powered by car batteries with a low total power consumption (~200 W) and is easily transportable due to its low total mass (35 kg). Multiple measures have been taken to ensure robust performance of the custom, open-path sensors located on top of the vehicle where the optics are exposed to the harsh on-road environment. The mobile sensing system has been integrated and installed on top of common passenger vehicles and participated in extensive field campaigns (>400 h on-road time with >18,000 km total distance) in both the USA and China. The simultaneous detection of multiple trace gas species makes the mobile sensing platform a unique and powerful tool to identify and quantify different emission sources through mobile mapping.

  11. A dynamic model to optimize a regional energy system with waste and crops as energy resources for greenhouse gases mitigation

    International Nuclear Information System (INIS)

    A dynamic model of a regional energy system has been developed to support sustainable waste treatment with greenhouse gases (GHG) mitigation, addressing the possibility for development towards a regional fossil fuel-free society between 2011 and 2030. The model is based on conventional mixed integer linear programming (MILP) techniques to minimize the total cost of regional energy systems. The CO2 emission component in the developed model includes both fossil and biogenic origins when considering waste, fossil fuels and other renewable sources for energy production. A case study for the county of Västmanland in central Sweden is performed to demonstrate the applicability of the developed MILP model in five distinct scenarios. The results show significant potential for mitigating CO2 emission by gradually replacing fossil fuels with different renewable energy sources. The MILP model can be useful for providing strategies for treating wastes sustainably and mitigating GHG emissions in a regional energy system, which can function as decision bases for formulating GHG reduction policies and assessing the associated economic implications. -- Highlights: ? A dynamic MILP model is developed to study a regional energy system under five waste scenarios. ? Municipal waste and energy crops work as main raw materials to replace fossil fuels. ? Gradual GHG mitigation is achieved for a fossil fuel free energy system. ? The obstacles to achieve a fossil fuel free energy system have been investigated and studied. ? How to come to a fossil fuel free energy system is given in this study.

  12. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    International Nuclear Information System (INIS)

    Highlights: ? GHGs emissions from sludge digestion + residue land use in China were calculated. ? The AD unit contributes more than 97% of total biogenic GHGs emissions. ? AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO2, biogenic CO2, CH4, and avoided CO2 as the main objects is discussed respectively. The results show that the total CO2-eq is about 1133 kg/t DM (including the biogenic CO2), while the net CO2-eq is about 372 kg/t DM (excluding the biogenic CO2). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO2-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO2-eq reduction.

  13. Anthropogenic effects on the subtropical jet in the Southern Hemisphere: aerosols versus long-lived greenhouse gases

    International Nuclear Information System (INIS)

    We use single-forcing historical simulations with a coupled atmosphere–ocean global climate model to compare the effects of anthropogenic aerosols (AAs) and increasing long-lived greenhouse gases (LLGHGs) on simulated winter circulation in the Southern Hemisphere (SH). Our primary focus is on the subtropical jet, which is an important source of baroclinic instability, especially in the Australasian region, where the speed of the jet is largest. For the period 1950 to 2005, our simulations suggest that AAs weaken the jet, whereas increasing LLGHGs strengthen the jet. The different responses are explained in terms of thermal wind balance: increasing LLGHGs preferentially warm the tropical mid-troposphere and upper troposphere, whereas AAs have a similar effect of opposite sign. In the mid-troposphere, the warming (cooling) effect of LLGHGs (AAs) is maximal between 20S and 30S; this coincides with the descending branch of the Hadley circulation, which may advect temperature changes from the tropical upper troposphere to the subtropics of the SH. It follows that LLGHGs (AAs) increase (decrease) the mid-tropospheric temperature gradient between low latitudes and the SH mid-latitudes. The strongest effects are seen at longitudes where the southward branches of the Hadley cell in the upper troposphere are strongest, notably at those that correspond to Asia and the western Pacific warm pool. (letter)

  14. Gas chromatography and photoacoustic spectroscopy for the assessment of soil greenhouse gases emissions Cromatografia gasosa e espectroscopia fotoacústica para avaliação das emissões de gases de efeito estufa do solo

    OpenAIRE

    Rodrigo da Silveira Nicoloso; Cimélio Bayer; Genuir Luis Denega; Paulo Armando Victória de Oliveira; Martha Mayumi Higarashi; Juliano Corulli Corrêa; Letícia dos Santos Lopes

    2013-01-01

    Assessments of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions are critical for determination of the agricultural practices' potential to mitigate global warming. This study evaluated the photoacoustic spectroscopy (PAS) for the assessment of soil greenhouse gases (GHG) fluxes in comparison to the standard gas chromatography (GC) method. Two long-term experiments with different tillage and cropping systems over a Paleudult were evaluated using static chambers. PAS ...

  15. Changes of interannual NAO variability in response to greenhouse gases forcing

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Buwen; Sutton, Rowan T.; Woollings, Tim [University of Reading, National Centre for Atmospheric Science, Department of Meteorology, Reading (United Kingdom)

    2011-10-15

    Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO{sub 2}, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO{sub 2}. Results indicate that SST and CO{sub 2} change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO{sub 2} change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO{sub 2} and those in observations in the mid-1970s implies that the increase of greenhouse gas concentration in the atmosphere, and the resulting changes in the stratosphere, might have played an important role in the multidecadal change of interannual NAO variability and its associated climate anomalies during the late twentieth century. The weak change in mean westerlies in the troposphere in response to CO{sub 2} change implies that enhanced and eastward extended mid-latitude westerlies in the troposphere might not be a necessary condition for the poleward and eastward shift of the NAO action centres in the mid-1970s. (orig.)

  16. Why the developing nations like India need strong capacity building efforts in greenhouse gases mitigation?

    Science.gov (United States)

    Vishal, V.; Sudhakaran, A.; Singh, T. N.

    2014-12-01

    Today, India rubs shoulders with nations like USA and China for being the major shareholders in global greenhouse emissions and has more emissions than Russia! Carbon Capture, Utilization and Storage (CCUS) has been proven as a reliable method to counter global warming and keep the 2ºC per year policy in check and is currently in the pilot stage in many developed nations. The three major requirements for CCUS are: manpower in diverse fields, implementation potential and capital. Keeping other social problems aside, India still has sufficient mankind in all spheres of research ranging from earth science, engineering, basic sciences, economy, policy making, regulation, public outreach etc. to successfully work on such challenges. India has leading academic institutions, research labs and universities in science and engineering. They also have a working power force in aspects like economy, policy making, regulation, public outreach etc. in various management institutes of repute. India, however, lacks in sufficient funding for advanced research and capacity building schemes to support projects of such scale. Deployment of facts and concepts on climate change need an approach of much greater scope than what is anticipated. The above workforces can put forth a clear picture about the various entities surrounding CCUS and provide sensible planning and implementation information through scientific research. CCUS is only possible when the direct anthropogenic emitters like fossil fuel plants modify their features to incorporate the methods associated with it. The rural population has to be educated in context to the safety of the storage sites. Above all, the Indian government must holistically divert funds for such programs and provide economic incentives to the industries for the industries. The bottom line is that India has been working in lots of aspects with not very clear cuts objectives. There are CO2 capture technologies like amine scrubbing and membrane separation that is available and immense storage potential is also seen in the Gondwana coal fields and basalt rocks of the Deccan plateau. For successful working of such ideas, the confidence of a big section of public comprising of academicians, researchers, industrialists, sustainable energy workers, politicians etc. is required apart from the key workforce.

  17. Carbon and nitrogen dynamics and greenhouse gases emissions in constructed wetlands: a review

    Directory of Open Access Journals (Sweden)

    M. M. R. Jahangir

    2014-07-01

    Full Text Available The nitrogen (N removal efficiency of constructed wetlands (CWs is very inconsistent and does not alone explain if the removed species are reduced by physical attenuation or if they are transformed to other reactive forms (pollution swapping. There are many pathways for the removed N to remain in the system: accumulation in the sediments, leaching to groundwater (nitrate-NO3- and ammonium-NH4+, emission to atmosphere via nitrous oxide- N2O and ammonia and/or conversion to N2 gas and adsorption to sediments. The kinetics of these pathways/processes varies with CWs management and therefore needs to be studied quantitatively for the sustainable use of CWs. For example, the quality of groundwater underlying CWs with regards to the reactive N (Nr species is largely unknown. Equally, there is a dearth of information on the extent of Nr accumulation in soils and discharge to surface waters and air. Moreover, CWs are rich in dissolved organic carbon (DOC and produce substantial amounts of CO2 and CH4. These dissolved carbon (C species drain out to ground and surface waters and emit to the atmosphere. The dynamics of dissolved N2O, CO2 and CH4 in CWs is a key "missing piece" in our understanding of global greenhouse gas budgets. In this review we provide an overview of the current knowledge and discussion about the dynamics of C and N in CWs and their likely impacts on aquatic and atmospheric environments. We suggest that the fate of various N species in CWs and their surface emissions and subsurface drainage fluxes need to be evaluated in a holistic way to better understand their potential for pollution swapping. Research on the process based N removal and balancing the end products into reactive and benign forms are critical to assess environmental impacts of CWs. Thus we strongly suggest that in situ N transformation and fate of the transformation products with regards to pollution swapping requires further detailed examination.

  18. Reduced emissions of greenhouse gases 2050: Technological wedges - Input to the Commission on Low Emissions; Reduserte klimagassutslipp 2050: Teknologiske kiler - Innspill til Lavutslippsutvalget

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Espegren, Kari Aamodt; Finden, Per; Hageman, Rolf; Stenersen, Dag

    2006-09-15

    The Commission on Low Emissions was established in March 2005 and has been charged with the task of describing how Norway can achieve a 50-80 percent reduction in emissions of greenhouse gases by 2050. The commission describes the desired total reduction in emissions to be a set of actions or 'wedges', meaning that the reduction in emissions are linked to an array of technological and behavioural changes. The technological wedges are described here, while the behavioural wedges are treated in a different report. The potentials described are based on the Low Emission's reference line. Possible changes in the reference line will result in changed potentials. The technological wedges studied comprise to a great extent a potential of 50-80 percent reduction in greenhouse gases by 2050. This depends on considerable effort from research and development, and a determination to change external conditions.

  19. Does the correlation between solar cycle lengths and Northern Hemisphere land temperatures rule out any significant global warming from greenhouse gases?

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1998-01-01

    Since the discovery of a striking correlation between solar cycle lengths and Northern Hemisphere land temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse gases. The present analysis shows that a similar degree of correlation is obtained when testing the solar data against a couple of fictitious temperature series representing different global warming trends...

  20. The role of non-CO2 greenhouse gases in cost-effective strategies to reduce pollution by dairy cattle in the Czech Republic

    OpenAIRE

    Havlikova, M.; Kroeze, C.

    2010-01-01

    Agriculture is an important source of greenhouse gases, including methane (CH4) and nitrous oxide (N2O). In addition, it is a source of compounds contributing to other environmental problems such as acidification, terrestrial and aquatic eutrophication, tropospheric ozone formation, and human health problems. These compounds include, for instance, ammonia (NH3), nitrogen oxides (NOx), and particulate matter (PM) volatile organic compounds or nitrate ( NO-3). In this article, we address the qu...

  1. Atmospheric station K?ešín u Pacova, Czech Republic – a Central European research infrastructure for studying greenhouse gases, aerosols and air quality.

    Czech Academy of Sciences Publication Activity Database

    Dvorská, Alice; Sedlák, Pavel; Schwarz, Jaroslav; Fusek, M.; Vodi?ka, Petr; Trusina, Jan

    Vol. 12. Göttingen : Copernicus GmbH, 2015, s. 79-83. ISSN 1992-0628. [EMS Annual Meeting /14./ and European Conference on Applied Climatology /10./. Praha (CZ), 06.10.2014-10.10.2014] R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 ; RVO:67985858 Keywords : air quality * atmospheric station K?ešín * greenhouse gases * Czech Republic * aerosols Subject RIV: DI - Air Pollution ; Quality; CF - Physical ; Theoretical Chemistry (UCHP-M)

  2. Atmospheric station K?ešín u Pacova, Czech Republic – a Central European research infrastructure for studying greenhouse gases, aerosols and air quality.

    Czech Academy of Sciences Publication Activity Database

    Dvorská, A.; Sedlák, Pavel; Schwarz, J.; Fusek, M.; Hanuš, V.; Vodi?ka, P.; Trusina, J.

    Vol. 12. Göttingen : Copernicus GmbH, 2015, s. 79-83. ISSN 1992-0628. [EMS Annual Meeting /14./ and European Conference on Applied Climatology /10./. Praha (CZ), 06.10.2014-10.10.2014] Institutional support: RVO:68378289 Keywords : air quality * atmospheric station K?ešín * greenhouse gases * Czech Republic * aerosols Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.adv-sci-res.net/12/79/2015/asr-12-79-2015.pdf

  3. The impact of 59 Green Deals on the contribution of renewable energy and emission of non-ETS greenhouse gases. A quick scan

    International Nuclear Information System (INIS)

    The potential additional effect was mapped for the first round of 59 Green Deals (agreements between the Dutch government and various sectors of society). The effect was determined with regard to the bandwidths, which were estimated in the recent Outlook for the Halsema motion. The bandwidths concern the contribution of renewable energy and the emission of greenhouse gases that are not covered by the EU Emissions Trading system (ETS)

  4. Laser-based sensors on UAVs for quantifying local emissions of greenhouse gases

    Science.gov (United States)

    Zondlo, Mark; Tao, Lei; O'Brien, Anthony; Ross, Kevin; Khan, Amir; Pan, Da; Golston, Levi; Sun, Kang; DiGangi, Josh

    2015-04-01

    Small unmanned aerial systems (UAS) provide an ideal platform to sample both locally near an emission source as well as within the atmospheric boundary layer. However, small UAS (those with wingspans or rotors on the order of a meter) place severe constraints on sensor size (~ liter volume), mass (~ kg), and power (10s W). Laser-based sensors employing absorption techniques are ideally suited for such platforms due to their high sensitivity, high selectivity, and compact footprint. We have developed and flown compact sensors for water vapor, carbon dioxide and methane using new advances in open-path, laser-based spectroscopy on a variety of platforms ranging from remote control helicopters to long-duration UAS. Open-path spectroscopy allows for high frequency sampling (10-25 Hz) while avoiding the size/mass/power of sample delays, inlet lines, and pumps. To address the challenges of in-flight stability in changing environmental conditions and any associated flight artifacts on the measurement itself (e.g. vibrations), we use an in-line reference cell at a reduced pressure (10 hPa) to account for systematic drift continuously while in flight. Wavelength modulation spectroscopy is used at different harmonics to isolate the narrow linewidth of the in-line reference signal from the ambient, pressure-broadened absorption lineshape of the trace gas of interest. As a result, a metric of in-flight performance is achieved in real-time on the same optical pathlength as the ambient signal. To demonstrate the great potential of laser-based sensors on UAS, we deployed a 1.65 micron-based methane sensor (4 kg, 50 W, 100 ppbv precision at 10 Hz) on a UT-Dallas remote control aircraft for two weeks around gas/oil extraction activities as part of the EDF Barnett Coordinated Campaign in October 2013. We conducted thirty-four flights around a compressor station to examine the spatial and temporal characteristics of its emissions. Leaks of methane were typically lofted to altitudes well above the surface (up to 100 m). In addition, plumes were very narrow horizontally (10-30 m width) within 200 m of the emission origin. By using a mass balance approach of upwind versus downwind CH4 concentrations, coupled to meteorological wind data, the CH4 emission rate from the compressor station averaged 13 ± 5 g CH4 s-1, consistent with individual, leak surveys measured within the compressor station itself. More recently, we developed a mid-infrared version of the same sensor using an antimonide laser at 3.3 microns. This sensor has a precision of 2 ppbv CH4 at 10 Hz, a mass of 1.3 kg, and consumes 10 W of power. Flight tests show the improved precision is capable of detecting methane leaks from landfills and cattle feedlots at higher altitudes (500 m) and greater distances downwind (several km) than the near infrared CH4 sensor. Sampling strategy is particularly important for not only UAS-based flight patterns but also sensor design. Many tradeoffs exist between the sampling density of the flight pattern, sensor precision, accuracy of wind data, and geographic isolation of the source of interest, and these will be discussed in the context of airborne-based CH4 measurements in the field. The development of compact yet robust trace gas sensors to be deployed on small UAS opens new capabilities for atmospheric sensing such as quantifying local source emissions (e.g. farms, well pads), vertical profiling of trace gases in a forest canopy, and trace gas distributions in complex areas (mountains, urban canyons).

  5. An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2009-03-01

    Full Text Available A new analytical inversion method has been developed to determine the regional and global emissions of long-lived atmospheric trace gases. It exploits in situ measurement data from three global networks and builds on backward simulations with a Lagrangian particle dispersion model. The emission information is extracted from the observed concentration increases over a baseline that is itself objectively determined by the inversion algorithm. The method was applied to two hydrofluorocarbons (HFC-134a, HFC-152a and a hydrochlorofluorocarbon (HCFC-22 for the period January 2005 until March 2007. Detailed sensitivity studies with synthetic as well as with real measurement data were done to quantify the influence on the results of the a priori emissions and their uncertainties as well as of the observation and model errors. It was found that the global a posteriori emissions of HFC-134a, HFC-152a and HCFC-22 all increased from 2005 to 2006. Large increases (21%, 16%, 18%, respectively from 2005 to 2006 were found for China, whereas the emission changes in North America (?9%, 23%, 17%, respectively and Europe (11%, 11%, ?4%, respectively were mostly smaller and less systematic. For Europe, the a posteriori emissions of HFC-134a and HFC-152a were slightly higher than the a priori emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC. For HCFC-22, the a posteriori emissions for Europe were substantially (by almost a factor 2 higher than the a priori emissions used, which were based on HCFC consumption data reported to the United Nations Environment Programme (UNEP. Combined with the reported strongly decreasing HCFC consumption in Europe, this suggests a substantial time lag between the reported time of the HCFC-22 consumption and the actual time of the HCFC-22 emission. Conversely, in China where HCFC consumption is increasing rapidly according to the UNEP data, the a posteriori emissions are only about 40% of the a priori emissions. This reveals a substantial storage of HCFC-22 and potential for future emissions in China. Deficiencies in the geographical distribution of stations measuring halocarbons in relation to estimating regional emissions are also discussed in the paper. Applications of the inversion algorithm to other greenhouse gases such as methane, nitrous oxide or carbon dioxide are foreseen for the future.

  6. Ground-based demonstration of imaging SWIR-FTS for space-based detection of air pollution and greenhouse gases

    Science.gov (United States)

    Imai, Tadashi; Murooka, Jumpei; Kuze, Akihiko; Suto, Hiroshi; Sato, Ryota

    2013-10-01

    Fourier transform spectrometer (FTS) has many advantages, especially for greenhouse gases and air pollution detection in the atmosphere, because a single instrument can provide wide spectral coverage and high spectral resolution with highly stabilized instrumental line function for all wavenumbers. Several channels are usually required to derive the column amount or vertical profile of a target species. Near infrared (NIR) and shortwave infrared (SWIR) spectral regions are very attractive for remote sensing applications. The GHG and CO of precursors of air pollution have absorption lines in the SWIR region, and the sensitivity against change in the amounts in the boundary layer is high enough to measure mole fractions near the Earth surface. One disadvantage of conventional space-based FTS is the spatial density of effective observation. To improve the effective numbers of observations, an imaging FTS coupled with a two-dimensional (2D)-camera was considered. At first, a mercury cadmium telluride (MCT)-based imaging FTS was considered. However, an MCT-based system requires a calibration source (black body and deep-space view) and a highly accurate and super-low temperature control system for the MCT detector. As a result, size, weight, and power consumption are increased and the cost of the instrument becomes too high. To reduce the size, weight, power consumption, and cost, a commercial 2D indium gallium arsenide (InGaAs) camera can be used to detect SWIR light. To demonstrate a small imaging SWIR-FTS (IS-FTS), an imaging FTS coupled with a commercial 2D InGaAs camera was developed. In the demonstration, the CH4 gas cell was equipped with an IS-FTS for the absorber to make the spectra in the SWIR region. The spectra of CH4 of the IS-FTS demonstration model were then compared with those of traditional FTS. The spectral agreement between the traditional and IS-FTS instruments was very good.

  7. An extensive study of O(1D) reaction rate coefficients for key ozone depleting substances and greenhouse gases

    Science.gov (United States)

    Burkholder, J. B.; Baasandorj, M.; Fleming, E. L.; Jackman, C. H.

    2012-12-01

    A key stratospheric loss process for ozone depleting substances (ODSs) and greenhouse gases (GHGs) is their gas-phase reaction with electronically excited oxygen atoms, O(1D). Although numerous O(1D) reactions have been studied in the past, large uncertainties in the recommended rate coefficients and reactive yields, i.e., loss of ODS or GHG, for use in atmospheric modeling still exist for a number of key compounds. Our understanding of the coupling of atmospheric chemistry and climate-change requires the most accurate reaction rate coefficient data to be used in climate-change model calculations. In this presentation, results from an extensive laboratory study of the total reaction rate coefficient, corresponding to loss of O(1D), and reactive rate coefficients, corresponding to the loss of the reactant compound, will be presented for the ODSs: CFCl3 (CFC-11), CF2Cl2 (CFC-12), CFCl2CF2Cl (CFC-113), CF2ClCF2Cl (CFC-114), CF3CF2Cl (CFC-115), HClCF2 (HCFC-22), CH3CClF2 (HCFC-142b); GHGs: CHF3 (HFC-23), CHF2CF3 (HFC-125), CF3CHCF3 (HFC-227ea), and CF3CH3 (HFC-143a); and the persistent (long-lived) GHGs: NF3, SF5CF3, C2F6, c-C4F8, n-C5F12, and n-C6F14. The results from this work will be compared with results from previous studies and discrepancies discussed along with the atmospheric implications of the improved kinetic dataset on the atmospheric lifetimes of these compounds.

  8. GHG (Greenhouse Gases) emission inventory and mitigation measures for public district heating plants in the Republic of Serbia

    International Nuclear Information System (INIS)

    As a non-Annex I Party to the United Nations Framework Convention on Climate Change and Kyoto Protocol signatory, the Republic of Serbia has committed to develop GHG (Greenhouse Gases) emission inventory and prepare comprehensive program of mitigation measures at national level. The paper presents results of 2000–2008 GHG emission inventory assembled for PDH (Public District Heating) sub-sector in accordance with revised IPCC (Intergovernmental Panel on Climate Change) Tier 1 methodology. Evaluation of proposed mitigation measures was performed based on 2012 and 2015 GHG emission projections, obtained for basic and four alternative scenarios, all characterized by the same energy demand but with different fuel mix used. The first alternative scenario addresses GHG emissions in case that solid fuel is substituted by natural gas. The second alternative scenario represents a sub-scenario of the first alternative scenario, with additional substitution of liquid fuel with locally available biomass. Third alternative scenario addresses emissions resulting from complete fuel switch from natural gas to liquid fuel oil, while the final alternative scenario considers the case when natural gas is the only energy resource used. GHG emission trends in the period until 2015, examined in case of previously mentioned basic and four alternative scenarios, point out to the positive impact of fuel switch on GHG emission reduction and pathways for future implementation of proposed mitigation measures. Results obtained clearly quantified assumption that fuel substitution by locally available biomass could solve environmental problems, overcome problems associated with high prices of imported fuels, improve energy supply security and increase local employment

  9. Spatial variations in immediate greenhouse gases and aerosol emissions and resulting radiative forcing from wildfires in interior Alaska

    Science.gov (United States)

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shuguang

    2015-01-01

    Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001-2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m-2 and a standard deviation of 2,589 g C m-2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (-583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m-2 with a standard deviation of 2.87 W m-2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.

  10. Greenhouse effect gases sources and sinks (CO2, CH4, N2O) in grasslands and reduction strategies. Greenhouse effect gases prairies. Final report of the second part of the project. April 2004

    International Nuclear Information System (INIS)

    The project 'GES-Prairies' (Greenhouse Gases - Grasslands) had two main objectives: 1. To measure more accurately the fluxes of CO2, CH4 and N2O of French grasslands and determine the greenhouse gas (GHG) balance of these areas. 2. To calculate the net GHG emissions of cattle production farms and finally to propose and evaluate some management scenarios leading to a reduction of GHG emissions. This project deals with three different spatial scales: the field scale, the farm scale and finally, the regional scale. At the field scale, during two years, fluxes of CO2, CH4 and N2O were measured in a mid-mountain permanent grassland, previously managed intensively by cutting and grazing (Laqueuille, Auvergne, France). Results from the first complete year of measurements show that the extensification process (reduction of the stocking rate and stopping N fertilization) allows to stock more carbon in the ecosystem. At the farm scale, We developed a model (FARMSIM, coupled to PASIM) able to simulate the GHG balance of a livestock farm. FARMSIM has been tested with data obtained from a mixed livestock farm in Lorraine (dairy and meat production, annual average stocking rate = 1.3 LU ha-1) of 100 ha (including 76 ha of grasslands and 21 of annual crops). The results indicate a net emission of 175 t equivalent C-CO2 for this farm. If expressed per unit of product, it represents 1.34 t equivalent C-CO2 per LU and per year or 0.54 kg CO2 per kg of milk and per year. At the regional scale/. The PASIM model has been used to simulate the European grasslands with a spatial resolution of 1' (about 200 * 200 km). For each grid cell, a sensibility analysis allowed to determine the N application which correspond to 30% of the N application that would maximize the annual yield of the pasture. Simulation runs on mixed systems (combining grazing and cutting) show that almost one half of the grassland area is, on average, used for cutting. These simulations predict N2O emission factors that are relatively stable for the different grid cells across Europe wit values ranging between 1 and 2% in cut systems and between 3 and 4% under grazing (with organic N application through faeces and urine deposition). Under cutting, the simulations predict a important annual C storage (varying between 0.5 to 6 t C ha-1 y-1). However one must consider that an important part of this storage occurs in the harvested forage. C storage in grazed grasslands (0.3 to 2 t C ha-1 y-1) is lower than in cut grasslands. The simulations indicates therefore that cut grassland could represent an important net GHG sink. In France, the amplitude of this sink could vary between 0.5 and 2 t C CO2 equivalent ha-1 y-1. The simulations combining cut and grazed grassland, in proportion to the dietary needs, show that,in France, these systems would be a net GHG sink of 2 to 3 t C CO2 equivalent ha-1 y-1. More realistic results would be obtained if the differences between farming systems were taken into account more specifically. (author)

  11. Quantification of the greenhouse effect gases at the territorial scale. Final report; Quantification des emissions de gaz a effet de serre a l'echelle territoriale. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, G.; Lacassagne, S

    2003-07-01

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  12. INVENTARIO DE GASES CON EFECTO INVERNADERO EMITIDOS POR LA ACTIVIDAD AGROPECUARIA CHILENA Inventory of greenhouse gas emissions by Chilean agriculture

    Directory of Open Access Journals (Sweden)

    Rafael Novoa S.A.

    2000-04-01

    Full Text Available Se realizó una estimación de los gases con efecto invernadero emitidos por la agricultura chilena. Los resultados indican que el año 1994, la agricultura chilena emitió 321,92 Gg de metano, 21,80 Gg de N2O; 2,96 Gg de NOx y 51,97 Gg de CO. Además, se estimó que las emisiones de COVNM llegan a 2,59 Gg año-1. Estas cifras expresadas como porcentaje de las emisiones del sector no energía chileno llegan a un 74,3 % para el metano, un 5,1 % para el CO; un 93,8 % para el N2O; un 9,8 % para los NOx y un 4,9 % para los COVNM. Al sumar el potencial de calentamiento de las emisiones de metano y óxidos de N resulta que la agricultura estaría emitiendo un total equivalente a 10.504 Gg de CO2 año-1. La silvicultura, el cambio de uso del suelo y la gestión de residuos del país, generan una captación neta de CO2 de 29.709 Gg año-1, por ello se reduce este excedente en un 32 % el que quedaría en 19.205 Gg.The greenhouse gas emissions from Chilean agriculture were estimated. The results showed that during 1994, Chilean agriculture emitted 321.92 Gg of methane; 21.80 Gg of N2O; 2.96 Gg of NOx and 51.97 Gg of CO. Also, agriculture generated 2.59 Gg year-1 of non-methane volatile compound emissions (NMVOC. These figures as a percentage of the non-energy sector emissions are as follows: 74.3% for methane; 5.1 % for CO; 93.8 % for N2O; 9.8 % for NOx and 4.9 % for NMVOC. Taking into account the potential warming effects of methane and nitrous oxide as CO2 equivalent amounts, agriculture is responsible for 10,504 Gg CO2 year-1. Since forestry, land-use changes and handling of residues in Chile represent a net capture of 29,709 CO2 Gg year-1, agriculture reduces this surplus to 35.4 %. So, the total surplus is about 19.205 Gg year-1.

  13. Sugarcane field renovation: influence of tillage and no-tillage in the emission of greenhouse gases (GHG).

    Science.gov (United States)

    Packer, Ana Paula; Degaspari, Iracema A. M.; Ramos, Nilza Patricia; Vilela, Viviane A. A.; do Carmo, Janaina B.; Cabral, Osvaldo M. R.; Rossi, Paulo; de Andrade, Cristiano A.

    2015-04-01

    The management of agricultural soils can play an important role in the greenhouse gases (GHG) balance, depending on the adopted practices. In the agricultural system, current GHG emissions generated by anthropogenic activities include land use, land use change and management practices, which have contributed to disrupt the C and N cycles in terrestrial ecosystems. The GHG (CO2, N2O and CH4) emissions from agricultural soils depend on the biophysical processes, and the incorporation/decomposition of organic residues. Agricultural soils preparation requires a combination of several implements, which can produce great soil disturbance as is the case of conventional tillage or minimum soil mobilization in the reduced tillage or no-tillage. Tillage breaks soil aggregates leading to enhanced organic matter decomposition and reduced C and N concentrations and no-tillage increases the stability of soil macroaggregates, reducing the emissions of CO2. In this study, we evaluated the CO2 emissions from different management practices widely used in the renewal of sugarcane fields previously planted with soybean, in an Acric Oxisol plantation in the southeast region of Brazil. The conventional tillage (CT) operation consisted of an offset disk harrowing using a tool with 36 disks x 26" and a subsoiling with an implement reaching nearly 50 cm depth. The reduced tillage (RT) was carried out with subsoiling operation in the row planting and in the no-tillage (NT), the soybean trash from the last harvest was left on the soil. The soil preparation and the establishment of four experimental plots (30 m x 30 m each) occurred within two days. During the studied period, two CO2 and N2O emission peaks were observed after the soil preparation, the first one on day 4 and the second on day 35 after a 55 mm rain. The cumulative emissions were measured during 40 days after soil preparation. We observed higher emissions in the conventional tillage (CT), and lower values in the reduced tillage (approximately 10%) and non-tillage (approximately 20%) areas. Considering the expansion of sugarcane area in 320,000 hectares during the next sugarcane season (2014/2015), the NT management practice compared to the CT could reduce the emissions of CO2 and N2O in approximately 0.2 - 0.6 T g of CO2 eq.

  14. Profiling Wind and Greenhouse Gases by Infrared-laser Occultation: Algorithm and Results from Simulations in Windy Air

    Science.gov (United States)

    Plach, Andreas; Proschek, Veronika; Kirchengast, Gottfried

    2014-05-01

    We employ the Low Earth Orbit (LEO-LEO) microwave and infrared-laser occultation (LMIO) method to derive a full set of thermodynamic state variables from microwave signals and climate benchmark profiling of greenhouse gases (GHGs) and line-of-sight (l.o.s.) wind using infrared-laser signals. The focus lies on the upper troposphere/lower stratosphere region (UTLS - 5 km to 35 km). The GHG retrieval errors are generally smaller than 1% to 3% r.m.s., at a vertical resolution of about 1 km. In this study we focus on the infrared-laser part of LMIO, where we introduce a new, advanced wind retrieval algorithm to derive accurate l.o.s. wind profiles. The wind retrieval uses the reasonable assumption of the wind blowing along spherical shells (horizontal winds) and therefore the l.o.s. wind speed can be retrieved by using an Abel integral transform. A 'delta-differential transmission' principle is applied to two thoroughly selected infrared-laser signals placed at the wings of the highly symmetric C18OO absorption line (nominally ±0.004 cm-1 from the line center near 4767 cm-1) plus a related 'off-line' reference signal. The delta-differential transmission obtained by differencing these signals is clear from atmospheric broadband effects and is proportional to the wind-induced Doppler shift; it serves as the integrand of the Abel transform. The Doppler frequency shift calculated along with the wind retrieval is in turn also used in the GHG retrieval to correct the frequency of GHG-sensitive infrared-laser signals for the wind-induced Doppler shift, which enables improved GHG estimation. This step therefore provides the capability to correct potential wind-induced residual errors of the GHG retrieval in case of strong winds. We performed end-to-end simulations to test the performance of the new retrieval in windy air. The simulations used realistic atmospheric conditions (thermodynamic state variables and wind profiles) from an analysis field of the European Centre for Medium-Range Weather Forecasts (ECMWF). GHG profiles were taken from the Fast Atmospheric Signature Code (FASCODE) model. Three geographic regions were investigated, representing three different atmospheric conditions: Tropics (TRO) - a warm and moist atmosphere, Standard (STD) - an intermediate atmosphere at mid-latitudes, and Sub-Arctic Winter (SAW) - a cold and dry atmosphere. We will discuss the results in windy air, which show an encouraging performance both for the wind retrieval throughout the stratosphere (essentially unbiased l.o.s. winds with rms errors within 2 m/s over about 15 to 35 km) and for the GHG estimation.

  15. INVENTARIO DE GASES CON EFECTO INVERNADERO EMITIDOS POR LA ACTIVIDAD AGROPECUARIA CHILENA / Inventory of greenhouse gas emissions by Chilean agriculture

    Scientific Electronic Library Online (English)

    Rafael, Novoa S.A.; Sergio, González M.; Rosemary, Novoa J.; Rosa, Rojas.

    2000-04-01

    Full Text Available Se realizó una estimación de los gases con efecto invernadero emitidos por la agricultura chilena. Los resultados indican que el año 1994, la agricultura chilena emitió 321,92 Gg de metano, 21,80 Gg de N2O; 2,96 Gg de NOx y 51,97 Gg de CO. Además, se estimó que las emisiones de COVNM llegan a 2,59 G [...] g año-1. Estas cifras expresadas como porcentaje de las emisiones del sector no energía chileno llegan a un 74,3 % para el metano, un 5,1 % para el CO; un 93,8 % para el N2O; un 9,8 % para los NOx y un 4,9 % para los COVNM. Al sumar el potencial de calentamiento de las emisiones de metano y óxidos de N resulta que la agricultura estaría emitiendo un total equivalente a 10.504 Gg de CO2 año-1. La silvicultura, el cambio de uso del suelo y la gestión de residuos del país, generan una captación neta de CO2 de 29.709 Gg año-1, por ello se reduce este excedente en un 32 % el que quedaría en 19.205 Gg. Abstract in english The greenhouse gas emissions from Chilean agriculture were estimated. The results showed that during 1994, Chilean agriculture emitted 321.92 Gg of methane; 21.80 Gg of N2O; 2.96 Gg of NOx and 51.97 Gg of CO. Also, agriculture generated 2.59 Gg year-1 of non-methane volatile compound emissions (NMVO [...] C). These figures as a percentage of the non-energy sector emissions are as follows: 74.3% for methane; 5.1 % for CO; 93.8 % for N2O; 9.8 % for NOx and 4.9 % for NMVOC. Taking into account the potential warming effects of methane and nitrous oxide as CO2 equivalent amounts, agriculture is responsible for 10,504 Gg CO2 year-1. Since forestry, land-use changes and handling of residues in Chile represent a net capture of 29,709 CO2 Gg year-1, agriculture reduces this surplus to 35.4 %. So, the total surplus is about 19.205 Gg year-1.

  16. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    Science.gov (United States)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the Tropics and high latitudes, are consistent with predictions of a number of previous GCM studies. Finally, direct radiative forcing of anthropogenic aerosols is predicted to induce strong regional cooling over East and South Asia. Wintertime rainfall over southeastern China and the Indian subcontinent is predicted to decrease because of the increased atmospheric stability and decreased surface evaporation, while the geographic distribution of precipitation is also predicted to be altered as a result of aerosol-induced changes in wind flow.

  17. Tropospheric Chemistry and Climate Impacts of VSL Halogens: Pre-Industrial to Present day

    Science.gov (United States)

    Kinnison, Douglas; Saiz-Lopez, Alfonso; Lamarque, Jean-Francois; Ordoñez, Carlos; Fernandez, Rafael; Tilmes, Simone

    2013-04-01

    Ozone in the troposphere is one of the most important short-lived gases contributing to greenhouse radiative forcing (IPCC, 2007) and is of central importance to the chemistry of this region of the atmosphere. Tropospheric ozone is produced by photochemical oxidation of carbon monoxide, methane and non-methane volatile organic compounds in the presence of nitrogen oxide. A large fraction of the tropospheric ozone loss occurs within the tropical marine boundary layer via photolysis to excited oxygen atoms followed by reaction with water vapor, reactions with odd hydrogen radical, and surface deposition. In addition, inorganic halogens (i.e., chlorine, bromine, and iodine species) are known to destroy ozone through efficient catalytic reaction cycles. In this study, we use the NCAR 3D chemistry climate model (CAM-CHEM). The model has a full representation of tropospheric and stratospheric chemistry. Its scope has been extended to include halogen sources, reactive halogen chemistry, and related atmospheric processes (Ordonez et al. 2012; Saiz-Lopez et al. 2012). The purpose of this work is to contrast the pre-industrial importance of tropospheric halogen driven ozone loss to present day conditions; specifically the importance of iodine chemistry.

  18. Chemistry of Very Short Lived Halogens in the Troposphere: Pre-Industrial to Present day

    Science.gov (United States)

    Kinnison, Douglas; Saiz-Lopez, Alfonso; Fernandez, Rafael; Lamarque, Jean-Francois; Tilmes, Simone

    2014-05-01

    Ozone in the troposphere is one of the most important short-lived gases contributing to greenhouse radiative forcing (IPCC, 2007) and is of central importance to the chemistry of this region of the atmosphere. Tropospheric ozone is produced by photochemical oxidation of carbon monoxide, methane and other non-methane volatile organic compounds in the presence of nitrogen oxide. A large fraction of the tropospheric ozone loss occurs within the tropical marine boundary layer via photolysis to excited oxygen atoms followed by reaction with water vapor, reactions with odd hydrogen radical, and surface deposition. In addition, inorganic halogens (i.e., chlorine, bromine, and iodine species) are known to destroy ozone through efficient catalytic reaction cycles. In this study, we use the NCAR 3D chemistry climate model (CAM-Chem), including a detailed representation of tropospheric and stratospheric chemistry. Its scope has been extended to include halogen sources, reactive halogen chemistry, and related atmospheric processes (Ordonez et al., ACP, 2012; Saiz-Lopez et al., ACP,. 2012). The purpose of this work is to contrast the pre-industrial importance of tropospheric halogen driven ozone loss to present day conditions, specifically the importance of iodine and bromine chemistry. The sensitivity to inorganic nitrogen abundance will be shown. The model results compared to the pre-industrial surface ozone measurements at Montsouris (Volz and Kley, 1988) will also be discussed.

  19. Energy balance, bioelectricity and emission of greenhouse gases from power plants in Mato Grosso do Sul; Balanco energetico, bioeletricidade e emissao de gases estufa das usinas de Mato Grosso do Sul

    Energy Technology Data Exchange (ETDEWEB)

    Turdera, Eduardo Mirko Valenzuela [Universidade Federal da Grande Dourados (UFGD), MS (Brazil)], email: eduardoturdera@ufgd.edu.br

    2010-07-01

    First we present in this paper the most important greenhouse gases emitted by sugar cane crops. The principal reference of the energy balance methodology and its theory are described. Furthermore, we show the yields of the unique energy balance applied to the sugar cane mills of Mato Grosso do Sul. The yields brings information about land use of the sugar cane crops, efficiency of technologies and process to produce ethanol and inputs about how the companies could improve its competitive position which involves, to care of environment impacts. Finally, we present the yield of CO{sub 2} emissions of the five mills evaluated. (author)

  20. Balance of greenhouse gases emission in the life cycle of ethanol fuel; Balanco de emissao de gases de efeito estufa no ciclo de vida do etanol combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cinthia Rubio Urbano da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Programa de Pos-Graduacao em Planejamento de Sistemas Energeticos; Walter, Arnaldo Cesar da Silva [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2008-07-01

    The environmental focus of the use of biofuels is the reduction of green houses gases emissions through automobile exhaust; furthermore, the European Union has discussed the necessity of the requirement these reduction between 30 to 50% compared with the gasoline cycle. Inside this context, this paper joins and compares recent studies about green house gases emission balance of environmental life cycle of ethanol fuel derived form corn, wheat and sugar cane with the goal of recognize the reduction these emissions from the use of ethanol in function of the different alternatives of production. Results show that production of ethanol from sugar cane results higher reduction of green house gases emission compared with the gasoline. Ethanol from corn and ethanol from wheat meet, in the current conditions of Canadian production and use, the least requirement of 30% of saved emission. (author)

  1. Energy and environment - greenhouse effect. The international, european and national actions to control the greenhouse gases emissions: which accounting and which perspectives?; Energie et environnement - effet de serre. Les actions internationales, europeennes et nationales pour maitriser les emissions de gaz a effet de serre: quel bilan et quelles perspectives?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-15

    The scientific knowledge concerning the climatic change justifies today immediate fight actions against the greenhouse reinforcement. This fight is based on an ambitious international device which must take into account more global challenges. At the european and national scale, the exploitation of the potential of greenhouse gases reduction must be reinforced and more specially the evolution of the life style. (A.L.B.)

  2. Greenhouse Gas (CO2 AND N2O) Emissions from Soils: A Review Emisión de Gases invernadero (CO2 y N2O) desde Suelos

    OpenAIRE

    Cristina Muñoz; Leandro Paulino; Carlos Monreal; Erick Zagal

    2010-01-01

    In agricultural activities, the main greenhouse gases (GHG) are those related to C and N global cycles. The impact of agriculture on GHG emissions has become a key issue, especially when considering that natural C and N cycles are influenced by agricultural development. This review focuses on CO2 and N2O soil emissions in terrestrial ecosystems, with emphasis in Chilean and similar agro-ecosystems around the world. The influence of land use and crop management practices on CO2 and N2O emissio...

  3. Does the correlation between solar cycle lengths and Northern Hemisphere land temperatures rule out any significant global warming from greenhouse gases?

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1998-01-01

    Since the discovery of a striking correlation between solar cycle lengths and Northern Hemisphere land temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse gases. The present analysis shows that a similar degree of correlation is obtained when testing the solar data against a couple of fictitious temperature series representing different global warming trends. Therefore, the correlation cannot be used to estimate the magnitude of a possible contribution to global warming from human activities, nor to rule out a sizable contribution from that source.

  4. Life Cycle Assessment of Selected Biomass and Fossil Fuel Energy Systems in Denmark and Ghana - with a focus on greenhouse gases

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts

    1996-01-01

    The aim of the present project has been to establish an LCA methodology for assessing different biomass energy systems in Denmark and Ghana in relation to their emission of greenhouse gases. The biomass systems which have been studied are willow chips, surplus straw and biogas from manure for Denmark and energy forest and use of saved wood in the food preparation process for electricity production in Ghana.DenmarkThe life cycle analysis has been relatively well defined for the case of willow chi...

  5. NF ISO 14064-3. Greenhouse gases. - Part 3: specifications with guidance for the validation and verification of greenhouse gas assertions

    International Nuclear Information System (INIS)

    This document describes methodology for validation and monitoring of inventories or projects. Thus it suggests a framework to facilitate the granting of credits and changes relating to greenhouse gas emission reduction or deletions increases. It provides a definition of the terms used, the principles, the ethical conduct, the validation and verification requirements. (A.L.B.)

  6. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  7. The Rhone-Alpes Observatory of Energy and Greenhouse Gases. Key data for 2012, February 2014 release

    International Nuclear Information System (INIS)

    Maps, graphs and tables related to greenhouse gas emissions are presented and briefly commented. They illustrate a comparison between the Rhone-Alpes region and France, the European objectives in this region, energy consumption, greenhouse gas emissions, and energy production. They also illustrate an analysis of final energy consumption and greenhouse gas emissions per sector (housing, office building, industry, transports, agriculture, and uses of energy). They present the renewable energy production in Rhone-Alpes: production of electricity from renewable sources, production of renewable heat, carbon sinks

  8. Greenhouse Gas (GHG) Widget

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Greenhouse Gase Widget allows the user to view greenhouse data in several geospatial and graphical formats for individual facilities or groups of facilities...

  9. Analysis of the influence of the expansion of the South American electric system in emissions of greenhouse gases; Analise da influencia da expansao do sistema eletrico Sul-Americano nas emissoes de gases de efeito estufa

    Energy Technology Data Exchange (ETDEWEB)

    Castagna, Annemarlen Gehrke [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Blesl, Markus [Institute of Economics and the Rational Use of Energie (IER), Stuttgart (Germany)

    2010-07-01

    South America combines economic and population growth with a consequent rapid increase in electricity demand. This can only be covered by building new power plants, use of the remaining renewable potential and expansion of transmission lines. The expansion of supply in all regions, with reliable generation and transmission systems is the greatest challenge for the continent in order to reduce social differences and not to curb economic development. To support the energy planning the application of system models represents useful method. This paper intends to analyze the expansion effect of power plant parks in regard of greenhouse gases emissions using a regionalized model system 'TIMES (The Integrated Markal - EFOM System)'. The model includes 10 South American countries (Argentina, Brazil, Bolivia, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay and Venezuela) with their respective power parks and transmission lines, demand divided in sectors, potential use of renewable energy sources, gas pipelines and possibilities of new interconnections within and between countries. As results are obtained the future installed capacity and generation according the energy use, greenhouse gases emissions, as well as the investments needed to expand the electric system in different scenarios. (author)

  10. Fluxes of greenhouse gases CH{sub 4}, CO{sub 2} and N{sub 2}O on some peat mining areas in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, H.; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Biology; Silvola, J.; Alm, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The increase in concentration of greenhouse gases (CO{sub 2}, CH{sub 4} and N{sub 2}O) in atmosphere is associated with burning of fossil fuels and also changes in biogeochemistry due to land use activities. Virgin peatlands are globally important stores of carbon and sources of CH4. Peatland drainage changes the processes in carbon and nitrogen cycles responsible for the fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O. Preparing of peatlands for peat mining greatly change their biogeochemical processes. Effective drainage decreases water table and allows air to penetrate deep into peat profile. Aerobic conditions inhibit activities of anaerobic microbes, including the methanogens, whereas aerobic processes like methane oxidation are stimulated. Destruction of vegetation cover stops the carbon input to peat. In Finland the actual peat mining area is 0.05 x 106 hectares and further 0.03 x 106 hectares have been prepared or are under preparation for peat mining. The current total peatland area in the world used for mining is 0.94 x 106 ha and the area already mined is 1.15 x 106 ha. In this presentation fluxes of greenhouse gases (CH{sub 4}, CO{sub 2} and N{sub 2}O) on some mires under peat mining are reported and compared with those on natural mires and with the emissions from peat combustion. (15 refs.)

  11. Final report on activities and findings under DOE grant “Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Prather, Michael J. [UCI

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  12. Part I. Decrepitation and degassing behaviour of quartz up to 1560 °C: Analysis of noble gases and halogens in complex fluid inclusion assemblages

    Science.gov (United States)

    Kendrick, M. A.; Phillips, D.; Miller, J. McL.

    2006-05-01

    Stepped heating and crushing experiments have been used to investigate the noble gas and halogen degassing behaviour of quartz in detail. Samples with diverse character were selected from the Eloise and Osborne, Iron Oxide Copper Gold (IOCG) ore deposits, and the Railway Fault, 13 km south of the Mt Isa Mine, in the Proterozoic Mt Isa Inlier of northeast Australia. Quartz has been shown to have a bimodal degassing profile. The first degassing mode at temperatures of gas released at different temperatures up to 700 °C can be related to the decrepitation of different types of fluid inclusion observed by microthermometry. These variations with temperature permit deconvolution of the complex fluid inclusion assemblages associated with the IOCG samples; the ultra high salinity, multi solid (MS) and liquid-vapour-daughter (LVD) fluid inclusions, with a predominantly primary origin, decrepitate at higher temperatures than lower salinity liquid-vapour (LV) and monophase (M) fluid inclusions that have a predominantly secondary origin. Three of the IOCG samples have primary MS and LVD fluid inclusions characterized by molar Br/Cl values of between 0.25 × 10 -3 and 0.66 × 10 -3, I/Cl between 0.37 × 10 -6 and 5.0 × 10 -6, 40Ar/ 36Ar values of volume of gas than the first degassing mode. Several lines of evidence, including microscope observations, indicate that the gas released at high temperature is also from the fluid inclusion reservoir. However, its release may be triggered by a metastable phase transition of quartz (˜1200 °C) and caution is required in interpretation of the fluid compositions obtained at these temperatures. The data provide an improved understanding of fluid inclusion decrepitation behaviour that is different to that obtained in lower temperatures experiments designed by other workers to investigate H-isotope fractionation.

  13. Selection of groundwater sites in Egypt, using geographic information systems, for desalination by solar energy in order to reduce greenhouse gases

    Directory of Open Access Journals (Sweden)

    Mariam G. Salim

    2012-01-01

    Full Text Available Although Egypt has already reached the water poverty limit, it possesses a high potential of brackish groundwater available from different aquifers. All Arab countries lie in the best sun-belt region in the world and Egypt has the highest number of sun hours all year round. Solar energy for groundwater desalination is an independent infinite energy resource; it has low running costs and reduces the contribution of greenhouse gases (GHG to global warming. Perfect meteorological conditions and land space are available in remote areas, where solar desalination could supply freshwater for drinking, industry, and for greenhouse agriculture. The present study uses Geographic Information System(s (GIS as a spatial decision support tool to select appropriate sites in Egypt for groundwater solar desalination. Solar radiation, aquifer depth, aquifer salinity, distance from the Delta and the Nile Valley, incidence of flash floods, sand dunes, rock faults, and seawater intrusion in the North Delta, are the criteria that have been taken into consideration in the process of analysis. A specific weight is given to each criterion according to its relative influence on the process of decision making. The results from the application of the presented methodology determine the relative suitability of sites for groundwater solar desalination. These sites are ranked in descending order to help decision-makers in Egypt. The results show that groundwater solar desalination is suitable in remote regions on the North Western Coast, on the North Sinai Coast, and at the Southern Oasis, for reducing greenhouse gases and that it is particularly useful for poor communities suffering from polluted water.

  14. Optimal control strategies for carbon dioxide enrichment in greenhouse tomato crops, Part II: Using the exhaust gases of natural gas fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Chalabi, Z.S.; Bailey, B.J. [Silsoe Research Institute, Bedford (United Kingdom); Biro, A. [Godollo University of Agricultural Sciences, Godollo (Hungary); Aikman, D.P.; Cockshull, K.E. [Horticulture Research International, Warwick (United Kingdom)

    2002-03-01

    Optimized control strategies for carbon dioxide (CO{sub 2}) enrichment of greenhouse tomato crops using CO{sub 2} from the exhaust gases of boilers burning natural gas are presented. In one group of strategies, the heat produced during CO{sub 2} generation which exceeds the immediate heat requirement of the greenhouse is stored as hot water and used subsequently for heating. The simulations show that, use of optimal control can increase the financial margin of crop value over the combined expenditure on gas used for CO{sub 2} and heating by 2.3 pounds m{sup -2} (11%) when heat is not stored and by 4.9 pounds m{sup -2} (24%) when heat is stored, compared with enriching with CO{sub 2} only when heating is required. A 30% increase in gas price reduced the financial margin by 11%, whereas a 30% increase in tomato price increased the margin by 40%. The capacity of the heat store places a limit on the amount of heat that can be stored and consequently on the amount of natural gas that can be burnt and the associated amount of CO{sub 2} produced during the day. The optimum size of heat store is 20x10{sup -3} m{sup 3} per unit greenhouse area. (author)

  15. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, Andrew A.; Hansen, James E.; Russell, Gary L.; Oinas, Valdar; Jonas, Jeffrey [NASA Goddard Inst. for Space Studies, New York (United States)], e-mail: Andrew.A.Lacis@nasa.gov

    2013-11-15

    The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterised by non-condensing greenhouse gases (GHGs) that provide the core radiative forcing. Of these, the most important is atmospheric CO{sub 2}. There is a strong feedback contribution to the greenhouse effect by water vapour and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapour and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius-Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discern able long-term trend in solar irradiance since precise monitoring began in the late seventies. This leaves atmospheric CO{sub 2} as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO{sub 2}, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO{sub 2}, to increase by 2 ppm yr{sup -1}, whereas the interglacial rate has been 0.005 ppm yr{sup -1}. This is a geologically unprecedented rate to turn the CO{sub 2} climate control knob. This is causing the global warming that threatens the global environment.

  16. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change

    Directory of Open Access Journals (Sweden)

    Andrew A. Lacis

    2013-11-01

    Full Text Available The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterised by non-condensing greenhouse gases (GHGs that provide the core radiative forcing. Of these, the most important is atmospheric CO2. There is a strong feedback contribution to the greenhouse effect by water vapour and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapour and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius–Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discernable long-term trend in solar irradiance since precise monitoring began in the late 1970s. This leaves atmospheric CO2 as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO2, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO2, to increase by 2 ppm yr?1, whereas the interglacial rate has been 0.005 ppm yr?1. This is a geologically unprecedented rate to turn the CO2 climate control knob. This is causing the global warming that threatens the global environment.

  17. The Role of Long-Lived Greenhouse Gases as Principal LW Control Knob that Governs the Global Surface Temperature for Past and Future Climate Change

    Science.gov (United States)

    Lacis, Andrew A.; Hansen, James E.; Russell, Gary L.; Oinas, Valdar; Jonas, Jeffrey

    2013-01-01

    The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterized by non-condensing greenhouse gases (GHGs) that provide the core radiative forcing. Of these, the most important is atmospheric CO2. There is a strong feedback contribution to the greenhouse effect by water vapor and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapor and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius-Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discernible long-term trend in solar irradiance since precise monitoring began in the late 1970s. This leaves atmospheric CO2 as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO2, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO2, to increase by 2 ppm per year, whereas the interglacial rate has been 0.005 ppm per year. This is a geologically unprecedented rate to turn the CO2 climate control knob. This is causing the global warming that threatens the global environment.

  18. EFFECT OF MOISTURE AND MANURE CONTENT ON MICROBIAL PROCESSES IN CATTLE FEEDLOT SOILS: GREENHOUSE GASES, NUTRIENT LOSSES, AND ODORS

    Science.gov (United States)

    Microorganisms play a central role in environmental challenges facing animal agriculture. Aerobic and anaerobic processes in the manure affect greenhouse gas emissions, odors, and nutrient losses, but the controls on these processes are not well understood. Cattle feedlot surface moisture and manu...

  19. Preface to book entitled: Managing Agricultural Greenhouse Gases: Coordinated Agricultural Research through GRACEnet to Address our Changing Climate

    Science.gov (United States)

    Atmospheric greenhouse gas (GHG) absorbs and emits radiation within the thermal infrared range, a natural process that regulates the temperature of the Earth. Long-term changes in GHG emission could negatively or positively affect global surface temperature (USGCRP, 2009). The abatement of climate...

  20. Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants

    Science.gov (United States)

    Gardner, A.; Baer, D. S.; Owano, T. G.; Provencal, R. A.; Gupta, M.; Parsotam, V.; Graves, P.; Goldstein, A.; Guha, A.

    2010-12-01

    Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants A. Gardner(1), D. Baer (1), T. Owano (1), R. Provencal (1), V. Parsotam (1), P. Graves (1), M. Gupta (1), Allen Goldstein (2), Abhinav Guha (2) (1) Los Gatos Research, 67 East Evelyn Avenue, Suite 3, Mountain View, CA 94041-1529 (2) Department of Environmental Science, Policy, and Management, University of California at Berkeley Quantifying the Urban Fossil Fuel Plume: Convergence of top-down and bottom-up approaches (Session A54). We report on the design, development and deployment of a novel Mobile Emissions Laboratory, consisting of innovative laser-based gas analyzers, for rapid measurements of multiple greenhouse gases and pollutants. Designed for real-time mobile and stationery emissions monitoring, the Mobile Emissions Laboratory was deployed at several locations during 2010, including CalNEX 2010, Caldecott Tunnel (Oakland, CA), and Altamont Landfill (Livermore, CA), to record real-time continuous measurements of isotopic CO2 (?13C, CO2), methane (CH4), acetylene (C2H2), nitrous oxide (N2O), carbon monoxide (CO), and isotopic water vapor (H2O; ?18O, ?2H). The commercial gas analyzers are based on novel cavity-enhanced laser absorption spectroscopy. The portable analyzers provide measurements in real time, require about 150 watts (each) of power and do not need liquid nitrogen to operate. These instruments have been applied in the field for applications that require high data rates (for eddy correlation flux), wide dynamic range (e.g., for chamber flux and other applications with concentrations that can be 10-1000 times higher than typical ambient levels) and highest accuracy (atmospheric monitoring stations). The Mobile Emissions Laboratory, which contains onboard batteries for long-term unattended measurements without access to mains power, can provide regulatory agencies, monitoring stations, scientists and researchers with temporally and spatially resolved data (including measurements of important greenhouse gases, isotopes and pollutants) necessary for compliance monitoring, hot-spot detection, as well as cap and trade, at any location. Details of extended measurement campaigns (including lessons learned) at the various field sites (urban and rural environments) will be presented.

  1. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4 using the cavity ring-down spectroscopy (CRDS technique

    Directory of Open Access Journals (Sweden)

    V. Y. Chow

    2010-03-01

    Full Text Available High-accuracy continuous measurements of greenhouse gases (CO2 and CH4 during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  2. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    Science.gov (United States)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2010-03-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  3. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation / Campos do sul do Brasil: estoques de carbono no solo, fluxos de gases de efeito estufa e algumas opções para mitigação

    Scientific Electronic Library Online (English)

    VD, Pillar; CG, Tornquist; C, Bayer.

    2012-08-01

    Full Text Available Os campos do sul do Brasil são ecossistemas naturais com alta diversidade e têm sido há séculos importantes para a atividade pastoril e para outros importantes serviços ambientais. Este trabalho aponta os principais fatores que controlam os processos ecossistêmicos, revisa e discute os dados disponí [...] veis sobre os estoques de carbono no solo e as emissões de gases de efeito estufa dos solos, e sugere oportunidades de mitigação das mudanças climáticas. A pesquisa sobre as emissões de carbono e gases de efeito estufa nos campos do sul do Brasil é recente e os resultados são ainda fragmentados. Os dados disponíveis indicam que os ecossistemas campestres naturais manejados adequadamente contêm estoques importantes de carbono orgânico no solo e, portanto, sua conservação é relevante para a mitigação das mudanças climáticas. Além disso, esses ecossistemas apresentam uma grande e rápida perda de carbono orgânico do solo quando convertidos para lavouras com preparo convencional do solo. No entanto, nas áreas já convertidas, há potencial para mitigar as emissões de gases de efeito estufa por meio de sistemas de cultivo usando plantio direto e rotações de culturas baseadas em plantas de cobertura de solo. O efeito está relacionado principalmente ao potencial desses sistemas de cultivo para acumular matéria orgânica do solo em taxas que superam o aumento das emissões de óxido nitroso. O uso de modelos com esses resultados associados aos sistemas de informação geográfica poderá gerar estimativas regionais de balanço de carbono. Abstract in english The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available d [...] ata on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  4. L'effet de serre par le CO2 et les gaz traces Greenhouse Effect from CO2 and Trace Gases

    Directory of Open Access Journals (Sweden)

    Bertrand A.

    2006-11-01

    Full Text Available Selon une opinion assez répandue le CO2 et les gaz traces, produits par l'activité humaine depuis le début de la révolution industrielle (1850, principalement du fait de la combustion et de la déforestation, et progressivement accumulés dans l'atmosphère terrestre, pourraient par effet de serre provoquer au XXIe siècle un réchauffement de la Terre de quelques degrés. Les conséquences climatiques (fonte des glaces. . . en seraient désastreuses. Aussi avons-nous étudié les principaux paramètres impliqués par ce phénomène : nature de l'effet de serre, cycle du carbone, transfert de CO2 à l'échelle du globe, gaz traces, conséquences climatiques de l'effet de serre dû au CO2 et aux gaz traces. Nous en sommes arrivés aux conclusions suivantes : - La concentration de l'atmosphère en CO2 et en gaz traces augmente de façon exponentielle en absence de toute réglementation et cela parallèlement à une production humaine également exponentielle de ces mêmes substances. - On n'a encore décelé aucun accroissement de la température moyenne de la Terre dû à l'effet de serre, d'ailleurs depuis 1940 nous traversons une période de refroidissement. - L'activité humaine engendre aussi des effets antagonistes de refroidissement (action des poussières dans l'atmosphère. . . assez mal connus. - L'étude des climats anciens indique une succession régulière de périodes froides et chaudes, cela doit nous rassurer sur le risque d'une brusque modification irréversible du climat. - Cependant il est absolument nécessaire d'améliorer nos connaissances fondamentales sur les principaux facteurs réglant le climat terrestre (chimie de l'atmosphère, transfert océan-atmosphère. . . et éventuellement de restreindre la production de certains gaz traces (fréons en particulier. According to a fairly widespread opinion, CO2 and trace gases, which have been produced by human activity since the start of the industrial revolution (1850, mainly from combustion and deforestation, and have been progressively accumulating in the Earth's atmosphere, could result in a greenhouse effect that could cause the heating up of the Earth by several degrees in the 21st century. The climatic consequences (melting of ice, etc. would be disastrous. Therefore, we examined the leading parameters involved in this phenomenon: nature of the greenhouse effect, carbon cycle, CO2 transfer on a worldwide scale, trace gases, climatic consequences of the greenhouse effect due to CO2 and trace gases. We reached the following conclusions:(a The CO2 and trace-gas concentration in the atmosphere increases exponentially in the absence of any regulations, and this occurs at the same time as human production of the same substances also at an exponential rate. (b No increase has as yet been detected in the Earth's average temperature due to the greenhouse effect. Moreover, since 1940 we have been going through a period of cooling. (c Human activity also produces antagonistic cooling effects (effect of dust in the atmosphere, etc. that are rather poorly understood. (d The study of ancient climates indicates a regular succession of cool and warm periods, which should reassure us about any sudden and irreversible change in the climate. (e However, it is absolutely necessary to improve our fundamental understanding of the main factors governing the Earth's climate (chemistry of the atmosphere, ocean/ atmosphere transfers, etc. and eventually to limit the production of some trace gases (Freon, in particular.

  5. Impacts of greenhouse gases on epicuticular waxes of Populus tremuloides Michx.: Results from an open-air exposure and a natural O3 gradient

    International Nuclear Information System (INIS)

    Epicuticular waxes of three trembling aspen (Populus tremuloides Michx.) clones differing in O3 tolerance were examined over six growing seasons (1998-2003) at three bioindicator sites in the Lake States region of the USA and at FACTS II (Aspen FACE) site in Rhinelander, WI. Differences in epicuticular wax structure were determined by scanning electron microscopy and quantified by a coefficient of occlusion. Statistically significant increases in stomatal occlusion occurred for the three O3 bioindicator sites, with the higher O3 sites having the most affected stomata for all three clones as well as for all treatments including elevated CO2, elevated O3, and elevated CO2+O3. We recorded statistically significant differences between aspen clones and between sampling period (spring, summer, fall). We found no statistically significant differences between treatments or aspen clones in stomatal frequency. - Structure of epicuticular waxes indicated phytotoxic effects of greenhouse gases on Populus tremuloides Michx

  6. Historical contribution by country of three greenhouse gases (CO2, CH4, N2O) to the climate change and Equity principle

    International Nuclear Information System (INIS)

    The historical contribution by country to climate change can be used as a basis of analysis for a second period of commitments to the burden share. The historical greenhouse gases emission inventory is an important tool to evaluate the common but differentiated responsibilities of groups according to the principle of the UN Framework Convention on Climate Convention (1992). This paper aims to discuss the differences among the meaning of the GHG historical emissions in terms of development patterns and suggests that different weights for different sectors should be taken into account. GHG emissions due to enteric fermentation from domestic livestock, for example, are linked to different regional activities such as food production, cultural expression or even religion meaning, depending on the region analyzed. Emissions due to fossil fuel sector represent in the majority a not feasible consumption pattern in terms of sustainable development

  7. Future concentrations of atmospheric greenhouse gases CO2, CFC and CH4 - an assessment on the educational level

    International Nuclear Information System (INIS)

    A model on the educational level is described to estimate effective future atmospheric CO2 concentrations. The effects of chlorofluorocarbon and methane emission and deforestation are taken into account. The influence of different emission scenarios on the time evolution of greenhouse-gas concentration are illustrated. Future global energy policies are discussed both under the aspects of rising world population and the reduction in global CO2 emissions. The model can be handled on a PC or even on a pocket calculator

  8. Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Fruergaard, Thilde; Astrup, Thomas; Ekvall, T.

    2009-01-01

    The energy system plays an essential role in accounting of greenhouse gas (GHG) emissions from waste management systems and waste technologies. This paper focuses on energy use and energy recovery in waste management and outlines how these aspects should be addressed consistently in a GHG perspective. Essential GHG emission data for the most common fuels, electricity and heat are provided. Average data on electricity provision show large variations from country to country due to different fuels ...

  9. Greenhouse gases regional fluxes estimated from atmospheric measurements; Estimation des flux de gaz a effet de serre a l'echelle regionale a partir de mesures atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Messager, C

    2007-07-15

    build up a new system to measure continuously CO{sub 2} (or CO), CH{sub 4}, N{sub 2}O and SF{sub 6} mixing ratios. It is based on a commercial gas chromatograph (Agilent 6890N) which have been modified to reach better precision. Reproducibility computed with a target gas on a 24 hours time step gives: 0.06 ppm for CO{sub 2}, 1.4 ppb for CO, 0.7 ppb for CH{sub 4}, 0.2 ppb for N{sub 2}O and 0.05 ppt for SF{sub 6}. The instrument's run is fully automated, an air sample analysis takes about 5 minutes. In July 2006, I install instrumentation on a telecommunication tall tower (200 m) situated near Orleans forest in Trainou, to monitor continuously greenhouse gases (CO{sub 2}, CH{sub 4}, N{sub 2}O, SF{sub 6}), atmospheric tracers (CO, Radon-222) and meteorological parameters. Intake lines were installed at 3 levels (50, 100 and 180 m) and allow us to sample air masses along the vertical. Continuous measurement started in January 2007. I used Mace Head (Ireland) and Gif-sur-Yvette continuous measurements to estimate major greenhouse gases emission fluxes at regional scale. To make the link between atmospheric measurements and surface fluxes, we need to quantify dilution due to atmospheric transport. I used Radon-222 as tracer (radon tracer method) and planetary boundary layer heights estimates from ECMWF model (boundary layer budget method) to parameterize atmospheric transport. In both cases I compared results to available emission inventories. (author)

  10. The role of transport sector within the German energy system under greenhouse gas reduction constraints and effects on other exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Walbeck, M.; Martinsen, D. [Research Center Juelich (Germany)

    1996-12-01

    The German Federal Government pledged itself to make a 25% reduction in national CO{sub 2} emissions by 2005 on the basis of 1990 CO{sub 2} emissions. This reduction target is valid for the entire Federal Republic. Within that context the Federal Ministry of Education, Science, Research and Technology initiated the IKARUS project (Instruments for Greenhouse Gas Reduction Strategies) in 1990. The aim of the project is to provide tools for developing strategies to reduce energy-related emissions of greenhouse gases in Germany. A range of instruments has been developed consisting of models, a data base and various tools with the aid of which different action sequences can be simulated and evaluated until the year 2020. By using the database and mainly one of the models of the project a scenario in terms of energy and carbon dioxide emissions will be sown as it could be expected for the year 2005. For this scenario as base two different strategies that hit the 25% reduction target will be discussed. Special attention is given to the transport sector. (au)

  11. A comparative study of vertical flow and free-water surface constructed wetlands for low C/N ratio domestic wastewater treatment and its greenhouse gases emission

    Science.gov (United States)

    Xu, K.; Liu, C.; Ebie, Y.; Inamori, Y.

    2008-12-01

    Constructed wetland (CW) systems are reliable, flexible in design, and can be built, operated, and maintained at lower costs compared to conventional methods of chemical treatment. Therefore, CW systems are widely used for controlling water-body eutrophication as an ease-operation and cost-effective ecological technology in developing countries. However, growing attention has been directed to its greenhouse side-effect and global-warming potential in recent years. In this study, two typical constructed wetlands: Vertical flow (VF) and Free-water surface (FWS) constructed wetlands were used not only to compare the nutrients removal performance for treatment of low C/N ratio loading domestic wastewater, but also to investigate and compare their CH4 and N2O greenhouse gases emission characteristics. The results indicated that the VF CW showed a comparatively good performance for nitrogen and phosphorus removal than FWS constructed wetland, which was 98.5, 95.9, 93.2 and 90.7 percent for BOD5, SS, NH4-N and TP under 6 days HRT, respectively. It was found that the FWS CW had the higher tendency to emit CH4 than the VF CW during four seasons of one year.

  12. Método basado en teledetección para estimar la emisión de gases efecto invernadero por quema de biomasa A remote sensing method to estimate greenhouse gas emissions from biomass burning

    Directory of Open Access Journals (Sweden)

    Jesús Adolfo Anaya Acevedo

    2011-01-01

    Full Text Available La quema de biomasa es una fuente importante de gases efecto invernadero en países en vías de desarrollo. En Colombia, el cambio de uso del suelo, la silvicultura y el sector agropecuario superan el 50% de las emisiones totales de efecto invernadero. El fuego se utiliza con frecuencia como un mecanismo para cambiar el uso del suelo. Los Llanos orientales y la Amazonía colombiana están sometidos todos los años a la quema de biomasa, especialmente entre enero y marzo. Los estudios en la distribución espacial y temporal de las emisiones son importantes de cara a los informes en el ámbito nacional. Este artículo de revisión describe el método para hacer estas estimaciones utilizando teledetección y algunos de los resultados disponibles para Colombia.Biomass burning is a major source of greenhouse gas emissions in developing countries. In Colombia, land use change, forestry and agriculture are responsible for more than 50% of the total greenhouse gas emissions. Fire is commonly used as a mechanism for land use change. In Colombia the Llanos Orientales and the Amazonia are subject to biomass burning every year during the dry season, especially from January to March. Studies of the spatial and temporal distribution of emissions are required for emissions report at a national level. The goal of this state of the art article is to describe a method to estimate emissions with a remote sensing approach and to present some of the variables already measured in Colombia.

  13. Effects of Low-Carbon Technologies and End-Use Electrification on Energy-Related Greenhouse Gases Mitigation in China by 2050

    Directory of Open Access Journals (Sweden)

    Zheng Guo

    2015-07-01

    Full Text Available Greenhouse gas emissions in China have been increasing in line with its energy consumption and economic growth. Major means for energy-related greenhouse gases mitigation in the foreseeable future are transition to less carbon intensive energy supplies and structural changes in energy consumption. In this paper, a bottom-up model is built to examine typical projected scenarios for energy supply and demand, with which trends of energy-related carbon dioxide emissions by 2050 can be analyzed. Results show that low-carbon technologies remain essential contributors to reducing emissions and altering emissions trends up to 2050. By pushing the limit of current practicality, emissions reduction can reach 20 to 28 percent and the advent of carbon peaking could shift from 2040 to 2030. In addition, the effect of electrification at end-use sectors is studied. Results show that electrifying transport could reduce emissions and bring the advent of carbon peaking forward, but the effect is less significant compared with low-carbon technologies. Moreover, it implies the importance of decarbonizing power supply before electrifying end-use sectors.

  14. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    OpenAIRE

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to e...

  15. Water and wastewater services: a contribution to greenhouse gases mitigation. Methodologies and experience feedback; Service d'eau et d'assainissement: contribuer a reduire les emissions de gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Maugendre, J.P. [Lyonnaise des Eaux, 75 - Paris (France); Arama, G. [Veolia Eau, 75 - Paris (France); Reungoat, E. [Saur - Les Cyclades, 78 - Guyancourt (France); Schafer, E. [SIAAP, 75 - Paris (France); Ginsburger, C. [FNCCR, 75 - Paris (France); Duguet, J.P. [Eau de Paris, 75 - Paris (France); Gourdon, T. [Ademe, 49 - Angers (France); Senante, E. [Suez Environnement, 78 - Le Pecq (France); Hassine, M. [Sade - CGTH, 75 - Paris (France)

    2010-10-15

    Energy efficiency and contribution to reducing emissions of greenhouse gases (GHGs) are at the heart of environmental concerns of communities and the public. Without waiting for the regulations that may affect them in the future on climate/energy, water and sanitation services will need to explore options aimed at saving energy, producing renewable energy and reducing direct or indirect emissions of greenhouse gases on their territory. In terms of controlling emissions of greenhouse gases, the results of initial assessments of GHGs emissions (including some made with the French 'Bilan Carbone' model, developed by the French Environment and Energy Management Agency - Ademe) help to identify the importance of emissions related to the management of water and wastewater services, to propose action plans to reduce them, and contribute to reducing emissions of other local actors through the creation of new renewable energy sources. A joint working group of Astee (French Scientific and Technical Association for Water and Environment) water and wastewater commissions prepared some guidelines for calculating emissions of greenhouse gases of water and wastewater services. These guidelines have been made available on the association web-site since September 2009. This article takes stock on the initial feedbacks relating to its implementation among operators of water and wastewater services. (authors)

  16. Results of the working group on the division by four of greenhouse gases emissions in France, at the horizon of 2050, called ''factor 4''. DGEMP- Observatory of the energy

    International Nuclear Information System (INIS)

    This group, created by the french Government in march 2005, aims to evaluate the different possibilities to reach the objective of division by four the greenhouse gases emissions. This document presents some recalls on the climatic change and the situation today, the positions of the France and the foreign and the conclusions and the recommendations of the group. (A.L.B.)

  17. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite

    Directory of Open Access Journals (Sweden)

    I. Morino

    2011-04-01

    Full Text Available The Greenhouse gases Observing SATellite (GOSAT was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here, we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS. The algorithm consists of three steps. First, cloud-free observational scenes are selected by several cloud-detection methods. Then, column abundances of carbon dioxide and methane are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. Most of the retrieval random errors come from instrumental noise. The interferences due to auxiliary parameters retrieved simultaneously with gas abundances are small. The evaluated precisions of the retrieved column abundances for single observations are less than 1% in most cases. The interhemispherical differences and temporal variation patterns of the retrieved column abundances show features similar to those of an atmospheric transport model.

  18. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite

    Directory of Open Access Journals (Sweden)

    I. Morino

    2010-11-01

    Full Text Available The Greenhouse gases Observing SATellite (GOSAT was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS. The algorithm consists of three steps. First, cloud-free observational scenes are selected by several cloud-detection methods. Then, column abundances of carbon dioxide and methane are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. Most of the retrieval random errors come from the instrumental noise. The interferences by auxiliary parameters retrieved simultaneously with gas abundances are small. The evaluated precisions of the retrieved column abundances for single observations are less than 1% in most cases. The interhemispherical differences and the temporal variation patterns of the retrieved column abundances agree well with the current state of knowledge.

  19. Determinación de las tasas de ventilación natural en un invernadero mediante modelos teóricos y gases trazadores / Determination of rates of natural ventilation in a greenhouse using theoretical models and tracer gases

    Scientific Electronic Library Online (English)

    Daniel, Espejel Trujano; Irineo Lorenzo, López Cruz.

    2013-03-01

    Full Text Available La mayoría de los invernaderos en México utilizan ventilación natural como mecanismo principal de controlar el clima. La cuantificación de las tasas de ventilación es difícil porque éstas dependen del efecto de la fluctuación de viento, resistencia de las ventanas al paso del aire y geometría del in [...] vernadero en el campo de presiones del viento sobre la estructura. El objetivo del presente trabajo fue determinar las tasas de ventilación natural de un invernadero, bajo tres configuraciones de ventilación: ventanas laterales, cenitales y laterales-cenitales, mediante el método dinámico de gases trazadores. Se compararon mediciones contra predicciones de modelos teóricos de ventilación natural y se analizó el efecto de velocidad del viento sobre las tasas de ventilación. El invernadero está ubicado en el campo experimental San Ignacio en la Universidad Autónoma Chapingo, Chapingo, México. El experimento se realizó en 2010 y el invernadero estuvo libre de cultivo. El gas trazador utilizado fue dióxido de carbono. Para la estimación de parámetros se usó el algoritmo de mínimos cuadrados no lineales. Los resultados mostraron que las tasas de ventilación son dependientes de la velocidad del viento y de la configuración de ventanas existente. Las tasas de ventilación más altas se observaron cuando ambas ventanas laterales y cenitales estuvieron abiertas. Los modelos teóricos predijeron de manera aceptable las tasas de ventilación tomando en cuenta los valores de los estadísticos coeficientes de determinación y cuadrado medio de error, así como el comportamiento de la línea 1:1 entre predicciones y mediciones. Abstract in english In Mexico, most greenhouses use natural ventilation as the main mechanism to control the weather. Quantification of ventilation rates is difficult because these depend on the effect of fluctuating wind, resistance to airflow windows and geometry ofthe greenhouse in the field ofwind pressure on the s [...] tructure. The objective of the present study was to determine the rates of natural ventilation in a greenhouse under three ventilation configurations: side windows, zenith and side-zenith, by the dynamic method of tracer gases. Measurements were compared against predictions of theoretical models of natural ventilation and analyzed the effect of wind speed on ventilation rates. The greenhouse is located at the experimental field of San Ignacio in the University of Chapingo, Chapingo, Mexico. The experiment was conducted in 2010 and the greenhouse was free of crops. The tracer gas used was carbon dioxide. To estimate the parameters the non-linear least squares algorithm was used. The results showed that ventilation rates are dependent on the wind speed and configuration ofthe existing windows. The higher ventilation rates were observed when both side and zenith windows were open. Theoretical models acceptably predicted ventilation rates, taking into account the values of the statistical coefficients of determination and mean square error, as the behavior ofthe 1:1 line between predictions and measurements.

  20. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck

    Science.gov (United States)

    Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon

    2015-04-01

    As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically significant increases in nitrogen oxides (NOx) emissions for 50% or higher biodiesel blends. The 20% blends of the biodiesels showed no statistically significant effect on NOx emissions on any cycle. In contrast, renewable diesel slightly decreased NOx emissions and the degree of reduction was statistically significant for 50% or higher blends over the UDDS cycle, but not at the 20% blends. The highway cruise cycles did not show a statistically strong NOx emission trend with increasing blend level of renewable diesel. Biodiesel and renewable fuel impacts on two greenhouse gases, CO2 and N2O emissions were of lower magnitude when compared to other regulated pollutants emissions, showing a change in their emissions within approximately ±3% from the CARB ULSD.

  1. The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index

    International Nuclear Information System (INIS)

    High-precision measurements of CO2, CH4, N2O, CFC-12, CFC-11 (major greenhouse gases) and 10 minor halogenated gases from a globally distributed network of air sampling sites are used to calculate changes in radiative climate forcing since the pre-industrial era (1750) for the period of measurement, 1979-2004. The five major greenhouse gases account for about 97% of the direct radiative forcing by long-lived gases. The fraction of the sum of radiative forcings by all long-lived gases that is due to CO2 has grown from 60% to 63% over this time. Though the long-term increase in this sum is due primarily to increased anthropogenic emissions of these radiatively important gases, interannual variations in the growth rate of radiative forcing due to CO2 are large and likely related to natural phenomena such as volcanic eruptions and ENSO events. The annual value of the total global radiative forcing of the long-lived gases is used to define an Annual Greenhouse Gas Index (AGGI). The AGGI is normalized to 1990, the Kyoto Protocol baseline year

  2. Fixação de carbono e a emissão dos gases de efeito estufa na exploração da cana-de-açúcar Fixing of carbon and emission of greenhouse gases in the exploitation of sugar cane

    Directory of Open Access Journals (Sweden)

    Mauro de Paula

    2010-06-01

    Full Text Available A produção de uma tonelada (t de fitomassa em matéria seca (MS de cana-de-açúcar fixa, no mínimo, 0,42 t em carbono (C, o que corresponde a mitigar 1,54 t de dióxido de carbono (CO2 da atmosfera. Neste trabalho, objetivou-se efetuar um levantamento da quantidade de fitomassa da cana-de-açúcar produzida em 1 ha anualmente. Além de analisar o total de C fixado e a emissão de diversos gases de efeito estufa (GEE, em CO2 equivalente (eqCO2, em consequência da adubação nitrogenada; da queima da fitomassa na colheita e da oxidação de combustíveis fósseis usados na produção, colheita e no transporte da cana até a indústria. Com base na análise dos dados, concluiu-se que ao adotar como procedimento a colheita da cana-de-açúcar crua, o produtor canavieiro estará deixando de emitir 0,286 t ha-1 ano-1 de material particulado, 13,53 t ha-1 ano-1 em eqCO2 de outros gases, além de fixar o C na fitomassa, gerando um ativo ambiental de 52,50 t ha-1 ano-1 de eqCO2. Ao somar-se o total da fixação, mais a redução que deixará de ser emitida, a mitigação total será de 66,03 t ha-1 ano-1 de eqCO2.The production of one tonne (t of phytomass in dry matter (DM of sugar cane assimilates at least 0.42 t in carbon (C which corresponds to 1.54 t of carbon dioxide (CO2 from the atmosphere. This work aimed to make a survey of the quantity of phytomass from sugar cane produced in 1 ha annually, and also to examine the total C fixed and the emission of greenhouse gases (GHGs, in CO2 equivalent as a consequence of nitrogen fertilization, burning of phytomass at harvest and the oxidation of fossil fuels during production, harvest, and transport of the sugar cane to the industrial plant. Based on the analysis of data, it was concluded that by harvesting the sugar cane without burning, the farmer will not emit 0.286 t ha-1 year-1 of particulate matter, 13,53 t ha-1 year-1 in eqCO2 of other gases. This will also assimilate carbon in the phytomass, generating an environmental active of 52,50 t ha-1 year-1 of eqCO2. By adding up the total fixation and the reduction of emissions, the mitigation will total 66,03 t ha-1 year-1 of eqCO2.

  3. Renewable Energy Production and Urban Remediation: Modeling the biogeochemical cycle at contaminated urban brownfields and the potential for renewable energy production and mitigation of greenhouse gases

    Science.gov (United States)

    Gopalakrishnan, G.

    2014-12-01

    Brownfields or urban sites that have been contaminated as a result of historic practices are present throughout the world. In the United States alone, the National Research Council has estimated that there are approximately 300,000 to 400,000 sites which have been contaminated by improper use and disposal of chemicals (NRC 1993). The land available at these sites is estimated at several million acres; however, the presence of high levels of contamination in the soil and groundwater makes it difficult to utilize these sites for traditional purposes such as agriculture. Further, the time required to remediate these contaminants to regulated levels is in the order of decades, which often results in long-term economic consequences for the areas near these sites. There has been significant interest in developing these sites as potential sources of renewable energy production in order to increase the economic viability of these sites and to provide alternative land resources for renewable energy production (EPA 2012). Solar energy, wind energy, and bioenergy from lignocellulosic biomass production have been identified as the main sources of renewable energy that can be produced at these locations. However, the environmental impacts of such a policy and the implications for greenhouse gas emissions, particularly resulting from changes in land-use impacting the biogeochemical cycle at these sites, have not been studied extensively to date. This study uses the biogeochemical process-based model DNDC to simulate carbon sequestration, nitrous oxide emissions and methane emissions from typical urban brownfield systems in the United States, when renewable energy systems are deployed. Photovoltaic solar energy and lignocellulosic biomass energy systems are evaluated here. Plants modeled include those most widely used for both bioenergy and remediation such as woody trees. Model sensitivity to soil conditions, contaminant levels and local weather data and the resulting impacts on greenhouse gas emissions are explored. Tradeoffs between renewable energy production,contaminant removal, and mitigation of greenhouse gases are also evaluated. Results indicate that a decrease in greenhouse gas emissions of 29-43% is possible, together with an estimated increase in renewable energy production of 7-22%.

  4. The Berkeley Atmospheric CO2 Observation Network (BEACON): Measuring Greenhouse Gases and Criteria Pollutants within the Urban Dome

    Science.gov (United States)

    Teige, V. E.; Weichsel, K.; Hooker, A.; Wooldridge, P. J.; Cohen, R. C.

    2012-12-01

    Efforts to curb greenhouse gas emissions, while global in their impacts, often focus on local and regional scales for execution and are dependent on the actions of communities and individuals. Evaluating the effectiveness of local policies requires observations with much higher spatial resolution than are currently available---kilometer scale. The Berkeley Atmospheric CO2 Observation Network (BEACON):, launched at the end of 2011, aims to provide measurements of urban-scale concentrations of CO2, temperature, pressure, relative humidity, O3, CO, and NO2 with sufficient spatial and temporal resolution to characterize the sources of CO2 within cities. Our initial deployment in Oakland, California uses ~40 sensor packages at a roughly 2 km spacing throughout the city. We will present an initial analysis of the vertical gradients and other spatial patterns observed to date.

  5. Projection of Denmark's energy consumption and emission of greenhouse gases 2012; Danmarks energifremskrivning 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    The Danish energy Agency's baseline projection of Denmark's energy consumption and greenhouse gas emissions is not a forecast, but describes the development which may occur in the coming years, based on a number of assumptions about technological development, prices, economic development, etc., hypothetically assuming that no new initiatives or measures beyond those already taken are implemented. The consumption of coal and natural gas are expected to fall by 50 % and 27 %, respectively, the next 8 years, and overall Denmark's fossil fuel consumption is reduced by approx. 120 PJ by 2020. Instead, renewable energy consumption will increase by more than 40 % from 2011 to 2020. The largest contribution to new renewable energy comes from the future offshore wind farms at Anholt, Krieger's Flak and Horns Rev, and from the increased use of biomass. With this conversion, the share of renewable energy in electricity supply is expected to increase from approx. 40 % in 2011 to around 69 % in 2020 and to 75 % in 2025. Final energy consumption drops from 640 PJ in 2011 to 632 PJ in 2020 as a consequence of a decline in industrial and household energy consumption, while the transport sector's energy consumption is expected to increase. With the projection's assumptions, a renewable energy share in the transport sector of 11 % may be achieved. Denmark's total greenhouse gas emissions are expected to decrease to 45.1 million tons of CO{sub 2} equivalent in 2020. This corresponds directly to the total emissions being reduced by 35 % compared to emissions in the 1990 base year. The figure is, however, highly uncertain. (LN)

  6. INVENTARIO DE GASES CON EFECTO INVERNADERO EMITIDOS POR LA ACTIVIDAD AGROPECUARIA CHILENA Inventory of greenhouse gas emissions by Chilean agriculture

    OpenAIRE

    Rafael Novoa S. A.; Sergio González M.; Rosemary Novoa J.; Rosa Rojas

    2000-01-01

    Se realizó una estimación de los gases con efecto invernadero emitidos por la agricultura chilena. Los resultados indican que el año 1994, la agricultura chilena emitió 321,92 Gg de metano, 21,80 Gg de N2O; 2,96 Gg de NOx y 51,97 Gg de CO. Además, se estimó que las emisiones de COVNM llegan a 2,59 Gg año-1. Estas cifras expresadas como porcentaje de las emisiones del sector no energía chileno llegan a un 74,3 % para el metano, un 5,1 % para el CO; un 93,8 % para el N2O; un 9,8 % para los NOx ...

  7. Greenhouse gas emissions in Bulgaria for 1990-1995

    International Nuclear Information System (INIS)

    The present study includes the following greenhouse gases (GHG): carbon dioxide, methane and nitrous oxide but not all controlled by the Montreal protocol as chlorofluorocarbons and halogens. The estimation methods follow the IPCC Guidelines for National Greenhouse Gas Inventory (IPCC, 1995) including 'bottom-up' approach and emission factors values. The aggregated GHG emissions as well as the anthropogenic emissions for 1990 are given in tables. Carbon dioxide had the biggest share with 65-68%, followed by methane (24-26%) and nitrous oxide (7.5%). The stationary combustion was the most important GHG emission source (64.2% of the total emissions), relatively small (in comparison to Western countries) was mobile combustion share (7.7%) followed by the emissions from industrial activities (6.6%). The analysis of the total GHG emissions and of those per capita showed a general tendency for reduction

  8. Balanço de emissões e remoções de Gases de Efeito Estufa no campus da Universidade Federal de Viçosa / Balance of emissions and removals of Greenhouse Gases at campus of Universidade Federal de Viçosa

    Scientific Electronic Library Online (English)

    Daniel, Brianezi; Laércio Antônio Gonçalves, Jacovine; Carlos Pedro Boechat, Soares; Wantuelfer, Gonçalves; Samuel José Silva Soares da, Rocha.

    2014-06-01

    Full Text Available Objetivou-se com este estudo realizar o balanço das emissões e remoções de Gases de Efeito Estufa (GEE) do campus-sede da Universidade Federal de Viçosa - UFV (Viçosa, MG), comparando a emissão de GEE do ano-base adotado (outubro de 2010 a outubro de 2011) e o incremento médio anual de carbono pelos [...] sumidouros da universidade (arborização urbana, florestas nativas e plantadas). Utilizou-se dados coletados na universidade e metodologias da ABNT NBR ISO 14064 e do IPCC. Os resultados encontrados apontaram que o campus-sede da UFV possui uma grande cobertura vegetal que representam 39,84% de sua área total. No entanto, estas áreas não foram suficientes para compensar as 6.034,18 tCO2eq. emitidas pela universidade. Portanto, o balanço geral das emissões e remoções de GEE do campus-sede da UFV foi negativo (déficit de 727,02 tCO2eq.). Embora tenha apresentado este resultado, os sumidouros de carbono foram importantes para a compensação de parte dos GEE gerados. Abstract in english The objective of this study was to generate the balance of Greenhouse Gases (GHG) emissions and removals at main campus of Universidade Federal de Viçosa - UFV (Viçosa, MG), contrasting GHG emissions in base-year (October 2010 to October 2011) and the annual average carbon increment of university si [...] nks (urban trees, native and planted forests). We used data collected at university, and ABNT NBR ISO 14064 and IPCC database. The final results indicated that main campus of UFV own huge forest field that represents 39.84% overall. However, these areas were not enough to compensate 6,034.18 tCO2eq. released of the university. Therefore, the global GHG emissions and removals at main campus of UFV was negative (727.02 tCO2eq. of shortfall). Although this result, carbon sinks were important to offset part of GHG generated.

  9. Simulating last interglacial climate with NorESM: role of insolation and greenhouse gases in the timing of peak warmth

    Directory of Open Access Journals (Sweden)

    P.M. Langebroek

    2014-07-01

    Full Text Available The last interglacial (LIG, ~130–116 ka, ka = 1000 yr ago is characterized by high-latitude warming and is therefore often considered as a possible analogue for future warming. However, in contrast to predicted future greenhouse warming, the LIG climate is largely governed by variations in insolation. Greenhouse gas (GHG concentrations were relatively stable and similar to pre-industrial values, with the exception of the early LIG when, on average, GHGs were slightly lower. We performed six time-slice simulations with the low-resolution version of the Norwegian Earth System Model covering the LIG. In four simulations only the orbital forcing was changed. In two other simulations, representing the early LIG, additionally the GHG forcing was reduced. With these simulations we investigate (1 the different effects of GHG versus insolation forcing on the temperatures during the LIG; (2 whether reduced GHGs can explain the low temperatures reconstructed for the North Atlantic; and (3 the timing of the observed LIG peak warmth. Our simulations show that the insolation forcing results in seasonal and hemispheric differences in temperature. In contrast, a reduction in the GHG forcing causes a global and seasonal-independent cooling. Furthermore, we compare modelled temperatures with proxy-based LIG sea-surface temperatures along a transect in the North Atlantic. The modelled North Atlantic summer sea-surface temperatures capture the general trend of the reconstructed summer temperatures, with low values in the early LIG, a peak around 125 ka, and a steady decrease towards the end of the LIG. Simulations with reduced GHG forcing improve the model–data fit as they show lower temperatures in the early LIG. Furthermore we show that the timing of maximum summer and winter surface temperatures is in line with the local summer and winter insolation maximum at most latitudes. Two regions where the maximum local insolation and temperature do not occur at the same time are Antarctica and the Southern Ocean. The austral summer insolation has a late maximum at ~115 ka. In contrast the austral summer temperatures in Antarctica show maxima at both ~130 ka and ~115 ka, and the Southern Ocean temperatures peak only at ~130 ka. This is probably due to the integrating effect of the ocean, storing heat from other seasons and resulting in relatively warm austral summer temperatures. Reducing the GHG concentrations in the early LIG (125 and 130 ka results in a similar timing of peak warmth, except over Antarctica. There, the lower austral summer temperatures at 130 ka shift the maximum warmth to a single peak at 115 ka.

  10. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation and separation method. This review covers separation by solid phase chromatography, gel permeation chromatography, and liquid-liquid extraction, followed by halogen determination. All studies performed acco...

  11. Research and development on climate change and greenhouse gases in support of climate-smart livestock production and a vibrant industry

    Scientific Electronic Library Online (English)

    M.M, Scholtz; H.C, Schonfeldt; F.W.C, Neser; G.M, Schutte.

    Full Text Available Climate change represents a feedback-loop in which livestock production both contributes to the problem and suffers from the consequences. The impact of global warming and continued, uncontrolled release of greenhouse gasses (GHG) has twofold implications for the livestock industry, and consequently [...] food security. Firstly, the continuous increase in ambient temperature is predicted to have a direct effect on the animal, as well as on food and nutrition security, due to changes associated with temperature itself, relative humidity, rainfall distribution in time and space, altered disease distribution, changes in the ecosystem and biome composition. Secondly, the responsibility of livestock production is to limit the release of greenhouse gases (GHG) or the carbon footprint, in order to ensure future sustainability. This can be done by implementing new or adapted climate-smart production systems, the use of known and new technologies to turn waste into assets, and by promoting sustainable human diets with low environmental impacts. The following elements, which are related to livestock production and climate change, are discussed in this paper: (1) restoring the value of grasslands/rangelands, (2) pastoral risk management and decision support systems, (3) improved production efficiency, (4) global warming and sustainable livestock production, (5) the disentanglement between food and nutritional needs, focusing on nutrient rich core foods, (6) GHG from livestock and carbon sequestration, and (7) water and waste management. No single organization (or industry) within South Africa can perform this research and the implementation thereof on its own. The establishment of a (virtual) centre of excellence in climate-smart livestock production and the environment for the livestock industries, with the objective to share research expertise and information, build capacity and conduct research and development studies, should be a priority.

  12. Switching to a U.S. hydrogen fuel cell vehicle fleet: The resultant change in emissions, energy use, and greenhouse gases

    Science.gov (United States)

    Colella, W. G.; Jacobson, M. Z.; Golden, D. M.

    This study examines the potential change in primary emissions and energy use from replacing the current U.S. fleet of fossil-fuel on-road vehicles (FFOV) with hybrid electric fossil fuel vehicles or hydrogen fuel cell vehicles (HFCV). Emissions and energy usage are analyzed for three different HFCV scenarios, with hydrogen produced from: (1) steam reforming of natural gas, (2) electrolysis powered by wind energy, and (3) coal gasification. With the U.S. EPA's National Emission Inventory as the baseline, other emission inventories are created using a life cycle assessment (LCA) of alternative fuel supply chains. For a range of reasonable HFCV efficiencies and methods of producing hydrogen, we find that the replacement of FFOV with HFCV significantly reduces emission associated with air pollution, compared even with a switch to hybrids. All HFCV scenarios decrease net air pollution emission, including nitrogen oxides, volatile organic compounds, particulate matter, ammonia, and carbon monoxide. These reductions are achieved with hydrogen production from either a fossil fuel source such as natural gas or a renewable source such as wind. Furthermore, replacing FFOV with hybrids or HFCV with hydrogen derived from natural gas, wind or coal may reduce the global warming impact of greenhouse gases and particles (measured in carbon dioxide equivalent emission) by 6, 14, 23, and 1%, respectively. Finally, even if HFCV are fueled by a fossil fuel such as natural gas, if no carbon is sequestered during hydrogen production, and 1% of methane in the feedstock gas is leaked to the environment, natural gas HFCV still may achieve a significant reduction in greenhouse gas and air pollution emission over FFOV.

  13. Greenhouse Gas (CO2 AND N2O Emissions from Soils: A Review Emisión de Gases invernadero (CO2 y N2O desde Suelos

    Directory of Open Access Journals (Sweden)

    Cristina Muñoz

    2010-09-01

    Full Text Available In agricultural activities, the main greenhouse gases (GHG are those related to C and N global cycles. The impact of agriculture on GHG emissions has become a key issue, especially when considering that natural C and N cycles are influenced by agricultural development. This review focuses on CO2 and N2O soil emissions in terrestrial ecosystems, with emphasis in Chilean and similar agro-ecosystems around the world. The influence of land use and crop management practices on CO2 and N2O emissions is analyzed; some mitigation measures to reduce such emissions are also discussed here. More knowledge on the biological processes that promote of GHG emissions from soil will allow creating opportunities for agricultural development under friendly-environmental conditions, where soil can act as a reservoir and/or emitter of GHG, depending on the balance of inputs and outputs.En actividades agrícolas los principales gases de efecto invernadero (GHG son los relacionados con los ciclos globales de C y N. El impacto de la agricultura sobre las emisiones GHG se ha convertido en una cuestión clave, especialmente si se considera que los ciclos naturales C y N se ven influidos por el desarrollo agrícola. Esta revisión se centra en emisiones de CO2 y N2O del suelo en los ecosistemas terrestres, con énfasis en agro-ecosistemas de Chile y similares alrededor del mundo. Se analiza la influencia del uso del suelo y las prácticas de manejo del cultivo sobre emisiones de CO2 y N2O, se discuten medidas de mitigación para reducir estas emisiones. Un mayor conocimiento sobre los procesos biológicos que promueven las emisiones GHG del suelo permitirá la creación de oportunidades para el desarrollo agrícola en condiciones ambientalmente amigables, donde el suelo puede actuar como un reservorio y/o emisor de GHG, dependiendo del balance de entradas y salidas.

  14. Radiative Forcing by Well-Mixed Greenhouse Gases: Estimates from Climate Models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)

    Science.gov (United States)

    Collins, W. D.; Ramaswamy, V.; Schwarzkopf, M. D.; Sun, Y.; Portmann, R. W.; Fu, Q.; Casanova, S. E. B.; Dufresne, J.-L.; Fillmore, D. W.; Forster, P. M. D.; Galin, V. Y.; Gohar, L. K.; Ingram, W. J.; Kratz, D. P.; Lefebvre, M.-P.; Li, J.; Marquet, P.; Oinas, V.; Tsushima, Y.; Uchiyama, T.; Zhong, W. Y.

    2006-01-01

    The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO2, CH4, N2O, CFC-11, CFC-12, and the increased H2O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH4 and N2O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.

  15. Greenhouse Gas (CO2 AND N2O) Emissions from Soils: A Review / Emisión de Gases invernadero (CO2 y N2O) desde Suelos

    Scientific Electronic Library Online (English)

    Cristina, Muñoz; Leandro, Paulino; Carlos, Monreal; Erick, Zagal.

    2010-09-01

    Full Text Available En actividades agrícolas los principales gases de efecto invernadero (GHG) son los relacionados con los ciclos globales de C y N. El impacto de la agricultura sobre las emisiones GHG se ha convertido en una cuestión clave, especialmente si se considera que los ciclos naturales C y N se ven influidos [...] por el desarrollo agrícola. Esta revisión se centra en emisiones de CO2 y N2O del suelo en los ecosistemas terrestres, con énfasis en agro-ecosistemas de Chile y similares alrededor del mundo. Se analiza la influencia del uso del suelo y las prácticas de manejo del cultivo sobre emisiones de CO2 y N2O, se discuten medidas de mitigación para reducir estas emisiones. Un mayor conocimiento sobre los procesos biológicos que promueven las emisiones GHG del suelo permitirá la creación de oportunidades para el desarrollo agrícola en condiciones ambientalmente amigables, donde el suelo puede actuar como un reservorio y/o emisor de GHG, dependiendo del balance de entradas y salidas. Abstract in english In agricultural activities, the main greenhouse gases (GHG) are those related to C and N global cycles. The impact of agriculture on GHG emissions has become a key issue, especially when considering that natural C and N cycles are influenced by agricultural development. This review focuses on CO2 an [...] d N2O soil emissions in terrestrial ecosystems, with emphasis in Chilean and similar agro-ecosystems around the world. The influence of land use and crop management practices on CO2 and N2O emissions is analyzed; some mitigation measures to reduce such emissions are also discussed here. More knowledge on the biological processes that promote of GHG emissions from soil will allow creating opportunities for agricultural development under friendly-environmental conditions, where soil can act as a reservoir and/or emitter of GHG, depending on the balance of inputs and outputs.

  16. ACROPOLIS: An example of international collaboration in the field of energy modelling to support greenhouse gases mitigation policies

    International Nuclear Information System (INIS)

    Energy models are considered as valuable tools to assess the impact of various energy and environment policies. The ACROPOLIS initiative, supported by the European Commission and the International Energy Agency, used up to 15 energy models to simulate and evaluate selected policy measures and instruments and then compare their impacts on energy systems essentially in terms of costs of greenhouse gas emissions (GHG) reduction and energy technology choice. Four case studies are formulated considering policies and measures on renewable portfolio schemes and internationally tradable green certificates, emissions trading and global GHG abatement target, energy efficiency standards and internalisation of external costs. The main focus of the project is on the electricity sector. From a large set of quantified results, ACROPOLIS provides an international scientific consensus, on some key issues, which could be useful in assessing and designing energy and environment policies at the world, European and national/regional levels. It concludes that the Kyoto targets (and their continuation beyond 2010 in specific scenarios) could be achieved at a cost around 1% of GDP through global emissions trading, indicating also that this flexibility mechanism is a more cost-effective instrument for GHG mitigation than meeting the goal domestically without trade. It demonstrates that internalising external costs through a price increase reduces local pollutants (SO x , NO x , and others) and it produces other benefits such as triggering the penetration of clean technologies in addition to the curbing of CO2 emissions

  17. Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China

    International Nuclear Information System (INIS)

    The atmospheric fluxes of N2O, CH4 and CO2 from the soil in four mangrove swamps in Shenzhen and Hong Kong, South China were investigated in the summer of 2008. The fluxes ranged from 0.14 to 23.83 ?mol m-2 h-1, 11.9 to 5168.6 ?mol m-2 h-1 and 0.69 to 20.56 mmol m-2 h-1 for N2O, CH4 and CO2, respectively. Futian mangrove swamp in Shenzhen had the highest greenhouse gas fluxes, followed by Mai Po mangrove in Hong Kong. Sha Kong Tsuen and Yung Shue O mangroves in Hong Kong had similar, low fluxes. The differences in both N2O and CH4 fluxes among different tidal positions, the landward, seaward and bare mudflat, in each swamp were insignificant. The N2O and CO2 fluxes were positively correlated with the soil organic carbon, total nitrogen, total phosphate, total iron and NH4+-N contents, as well as the soil porosity. However, only soil NH4+-N concentration had significant effects on CH4 fluxes.

  18. Greenhouse gases mitigation potential and costs for Brazil's energy system from 2010 to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Bruno S.M.C.; Lucena, Andre F.P. de; Rathmann, Regis; Costa, Isabella V.L. da; Nogueira, Larissa P.P.; Rochedo, Pedro R.R.; H. Junior, Mauricio F.; Szklo, Alexandre; Schaeffer, Roberto [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PPE/COPPE/UFRJ), RJ (Brazil). Programa de Planejamento Energetico

    2012-07-01

    This paper analyses the potential for energy-related greenhouse gas (GHG) emission reductions and their abatement costs in the energy system of Brazil. The analysis of mitigation options and their costs focuses on the following sectors: industry, transportation and energy supply (electricity generation and oil refining), given their large contribution to the Brazil's GHGs emissions. For the industrial and oil refining sectors, the paper estimated abatement costs based on the investments along with the energy and operational costs of the measures considered. Two discount rates were used: 15% a year (private discount rate) and 8% a year (social discount rate). Compared to a business-as-usual reference scenario, results show a potential to reduce future energy-related GHG emissions by 27% in 2030. This study shows, however, that in relation to a reference year (2007), the examined abatement measures, along with the socioeconomic dynamics of an emerging country such as Brazil, would not be enough to attain absolute reductions in GHG emissions by 2030. This result is valid both each sector individually and for the sum of the emissions from all the sectors analyzed. (author)

  19. Applying California's AB 32 targets to the regional level: A study of San Diego County greenhouse gases and reduction strategies

    International Nuclear Information System (INIS)

    This paper presents a summary of a local effort in California to assess greenhouse gas (GHG) emissions and identify potential mitigation measures. Local policymakers in California already have been searching for ways to reduce GHG emissions but it was the California Global Warming Solutions Act of 2006 (AB 32), which seeks to reduce GHG emissions to 1990 levels by 2020, that has provided a framework for regions to evaluate their ability to reduce GHG emissions. We conducted a GHG inventory for the San Diego region from 1990 to 2006, with forecasts to 2020. The region emitted approximately 34 million metric tons of carbon dioxide equivalent (MMT CO2E) in 2006 from anthropogenic sources, which represents a 17% increase over the 1990 level of 29 MMT CO2E. Applying a combination of 21 existing or pending state GHG reduction mandates and feasible regional measures we show that the region could achieve the AB 32 target. Although the largest reductions are achieved through state mandates, all measures, including at the local level, will be required to achieve the AB 32 target. Thus local regions retain control over a fairly significant portion of reductions, and remain important actors in the implementation and compliance of state mandates.

  20. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases.

    Science.gov (United States)

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  1. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Alexander Malaver

    2015-02-01

    Full Text Available Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs and Unmanned Aerial Vehicles (UAVs currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.

  2. For a better control of the greenhouse gases emissions of the international maritime and aerial baggage holds: evaluation and possible actions; Pour une maitrise des emissions de gaz a effet de serre des soutes internationales aeriennes et maritimes: constat et actions possibles

    Energy Technology Data Exchange (ETDEWEB)

    Sassi, O. [Ecole Nationale des Ponts et Chaussees, 77 - Marne la Vallee (France)

    2003-07-01

    The greenhouse gases emissions resulting from the aerial and marine baggage holds, are not taken into account in the national objectives of greenhouse gases reduction, defined by the Kyoto protocol. Thus they have to be controlled separately by each country concerned by the Kyoto protocol and urgent actions to reduce the greenhouse gases emissions are necessary. This study brings in first parts information on the context (legislation, traffic), the emission inventories and the options of allocation. It proposes then control methods and analyzes the possible measures. (A.L.B.)

  3. Update on the Development of Optical Remote Sensing Tools for Quantification of Greenhouse Gases from Distributed Area Sources

    Science.gov (United States)

    Douglass, K.; Maxwell, S. E.; Samarov, D. V.; Bienfang, J. C.; Restelli, A.; Liu, X.; Plusquellic, D. F.

    2014-12-01

    Our goal is to develop and validate advanced optical measurement technologies to enable accurate quantification of greenhouse gas (GHG) sources and sinks with a well-characterized uncertainty. Our focus is the measurement of distributed-area sources with spatial scales ranging from of 1 km2 to 10 km2. A few examples of distributed sources include landfills, mines, gas and oil production sites, carbon sequestration sites, enhanced oil-recovery sites, etc. The goal is to measure both concentration and wind speed of the emitted gas to determine the emission flux. To achieve our measurement goals we are developing several complementary differential absorption LIDAR (DIAL) systems. The systems are designed for the detection of methane and carbon dioxide, but they vary in the type of laser source, the range resolution, the wavelength tuning method, detector type, and expected use. A limiting component of DIAL systems in the short wave infrared is detector technology. There are four detectors currently being tested, three single-photon detectors, and one linear-mode, which include an 8 % quantum-efficiency photomultiplier tube, 300 pixel array of Geiger-mode APDs with an effective area of 200 ?m, a 100 MHz linear mode APD with a diameter of 500 ?m, and a single-pixel Geiger-mode APD gated at 1.25 GHz whose active-area diameter is line-of-sight wind velocity. The aerosol LIDAR system operates at three wavelengths 1064 nm, 532 nm, and 355 nm. Extinction, backscatter, and depolarization measurements are performed at 532 nm and 1064 nm. The wind velocity and temperature measurements are performed at 355 nm and use direct detection methods. The system is housed in a trailer with scanning capabilities. The presentation will provide an overview of the NIST LIDAR systems, recent results, a discussion of detector technology, and plans for deployment of the DIAL systems.

  4. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.

    Science.gov (United States)

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks. PMID:25938939

  5. The "Lung": a software-controlled air accumulator for quasi-continuous multi-point measurement of agricultural greenhouse gases

    Directory of Open Access Journals (Sweden)

    R. J. Martin

    2011-10-01

    Full Text Available We describe the design and testing of a flexible bag ("Lung" accumulator attached to a gas chromatographic (GC analyzer capable of measuring surface-atmosphere greenhouse gas exchange fluxes in a wide range of environmental/agricultural settings. In the design presented here, the Lung can collect up to three gas samples concurrently, each accumulated into a Tedlar bag over a period of 20 min or longer. Toggling collection between 2 sets of 3 bags enables quasi-continuous collection with sequential analysis and discarding of sample residues. The Lung thus provides a flexible "front end" collection system for interfacing to a GC or alternative analyzer and has been used in 2 main types of application. Firstly, it has been applied to micrometeorological assessment of paddock-scale N2O fluxes, discussed here. Secondly, it has been used for the automation of concurrent emission assessment from three sheep housed in metabolic crates with gas tracer addition and sampling multiplexed to a single GC.

    The Lung allows the same GC equipment used in laboratory discrete sample analysis to be deployed for continuous field measurement. Continuity of measurement enables spatially-averaged N2O fluxes in particular to be determined with greater accuracy, given the highly heterogeneous and episodic nature of N2O emissions. We present a detailed evaluation of the micrometeorological flux estimation alongside an independent tuneable diode laser system, reporting excellent agreement between flux estimates based on downwind vertical concentration differences. Whilst the current design is based around triplet bag sets, the basic design could be scaled up to a larger number of inlets or bags and less frequent analysis (longer accumulation times where a greater number of sampling points are required.

  6. The "Lung": a software-controlled air accumulator for quasi-continuous multi-point measurement of agricultural greenhouse gases

    Directory of Open Access Journals (Sweden)

    R. J. Martin

    2011-03-01

    Full Text Available We describe the design and testing of a flexible bag ("Lung" accumulator attached to a gas chromatographic (GC analyzer capable of measuring greenhouse gas emissive fluxes in a wide range of environmental/agricultural settings. In the design presented here, the Lung can collect up to three gas samples concurrently, each accumulated into a Tedlar® bag over a period of 20 min or longer. Toggling collection between 2 sets of 3 bags enables quasi-continuous collection with sequential analysis and discarding of sample residues. The Lung thus provides a flexible "front end" collection system for interfacing to a GC or alternative analyzer and has been used in 2 main types of application. Firstly, it has been applied to micrometeorological assessment of paddock-scale N2O fluxes. Secondly, it has been used for the automation of concurrent emission assessment from three flux chambers, multiplexed to a single GC.

    The Lung allows the same GC equipment used in laboratory discrete sample analysis to be deployed for continuous field measurement. Continuity of measurement enables spatially-averaged N2O fluxes in particular to be determined with greater accuracy, given the highly heterogeneous and episodic nature of N2O emissions. We present a detailed evaluation of the micrometeorological flux estimation alongside an independent tuneable diode laser system, reporting excellent agreement between flux estimates based on downwind vertical concentration differences. Whilst the current design is based around triplet bag sets, the basic design could be scaled up to a larger number of inlets or bags and less frequent analysis (longer accumulation times where a greater number of sampling points are required.

  7. Dissolved greenhouse gases (nitrous oxide and methane associated with the natural iron-fertilized Kerguelen region (KEOPS 2 cruise in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    L. Farías

    2014-08-01

    Full Text Available The concentrations of greenhouse gases (GHGs like nitrous oxide (N2O and methane (CH4 were measured in the Kerguelen Plateau Region (KPR, an area with annual microalgal bloom caused by natural Fe fertilization, which may stimulate microbes involved in GHG cycling. This study was carried out during the KEOPS 2 cruise during the austral spring of 2011. Two transects were sampled along and across the KRP, the north–south (N–S transect (46–51° S, 72° E meridian and the west–east (W–E transect (66–75° E, 48.3° S latitude, both associated with the presence of a plateau, polar fronts and other mesoscale features. The W–E transect had N2O levels ranging from equilibrium (105% to light supersaturation (120% with respect to the atmosphere. CH4 levels fluctuated dramatically, with intense supersaturations (120–970% in areas close to the coastal waters of Kerguelen Island and in the polar front (PF. There, Fe and nutrient fertilization seem to promote high total chlorophyll a (TChl a levels. The distribution of both gases was more homogenous in the N–S transect, but CH4 peaked at southeastern stations of the KPR (A3 stations, where phytoplankton bloom was observed. Both gases responded significantly to the patchy distribution of particulate matter as Chl a, stimulated by Fe supply by complex mesoscale circulation. While CH4 appears to be produced mainly at the pycnoclines, N2O seems to be consumed superficially. Air–sea fluxes for N2O (from ?10.5 to 8.65, mean 1.71 ?mol m?2d?1, and for CH4 (from 0.32 to 38.1, mean 10.07 ?mol m?2d?1 reflected sink and source behavior for N2O and source behavior for CH4, with considerable variability associated with a highly fluctuating wind regime and, in the case of CH4, due to its high superficial levels that had not been reported before in the Southern Ocean and may be caused by an intense microbial CH4 cycling.

  8. Dissolved greenhouse gases (nitrous oxide and methane) associated with the naturally iron-fertilized Kerguelen region (KEOPS 2 cruise) in the Southern Ocean

    Science.gov (United States)

    Farías, L.; Florez-Leiva, L.; Besoain, V.; Sarthou, G.; Fernández, C.

    2015-03-01

    The concentrations of greenhouse gases (GHGs), such as nitrous oxide (N2O) and methane (CH4), were measured in the Kerguelen Plateau region (KPR). The KPR is affected by an annual microalgal bloom caused by natural iron fertilization, and this may stimulate the microbes involved in GHG cycling. This study was carried out during the KEOPS 2 cruise during the austral spring of 2011. Oceanographic variables, including N2O and CH4, were sampled (from the surface to 500 m depth) in two transects along and across the KRP, the north-south (TNS) transect (46°-51° S, ~ 72° E) and the east-west (TEW) transect (66°-75° E, ~ 48.3° S), both associated with the presence of a plateau, polar front (PF) and other mesoscale features. The TEW presented N2O levels ranging from equilibrium (105%) to slightly supersaturated (120%) with respect to the atmosphere, whereas CH4 levels fluctuated dramatically, being highly supersaturated (120-970%) in areas close to the coastal waters of the Kerguelen Islands and in the PF. The TNS showed a more homogenous distribution for both gases, with N2O and CH4 levels ranging from 88 to 171% and 45 to 666% saturation, respectively. Surface CH4 peaked at southeastern stations of the KPR (A3 stations), where a phytoplankton bloom was observed. Both gases responded significantly, but in contrasting ways (CH4 accumulation and N2O depletion), to the patchy distribution of chlorophyll a. This seems to be associated to the supply of iron from various sources. Air-sea fluxes for N2O (from -10.5 to 8.65, mean 1.25 ± 4.04 ?mol m-2 d-1) and for CH4 (from 0.32 to 38.1, mean 10.01 ± 9.97 ?mol-2 d-1) indicated that the KPR is both a sink and a source for N2O, as well as a considerable and variable source of CH4. This appears to be associated with biological factors, as well as the transport of water masses enriched with Fe and CH4 from the coastal area of the Kerguelen Islands. These previously unreported results for the Southern Ocean suggest an intense microbial CH4 production in the study area.

  9. Dissolved greenhouse gases (nitrous oxide and methane) associated with the natural iron-fertilized Kerguelen region (KEOPS 2 cruise) in the Southern Ocean

    Science.gov (United States)

    Farías, L.; Florez-Leiva, L.; Besoain, V.; Fernández, C.

    2014-08-01

    The concentrations of greenhouse gases (GHGs) like nitrous oxide (N2O) and methane (CH4) were measured in the Kerguelen Plateau Region (KPR), an area with annual microalgal bloom caused by natural Fe fertilization, which may stimulate microbes involved in GHG cycling. This study was carried out during the KEOPS 2 cruise during the austral spring of 2011. Two transects were sampled along and across the KRP, the north-south (N-S) transect (46-51° S, 72° E meridian) and the west-east (W-E) transect (66-75° E, 48.3° S latitude), both associated with the presence of a plateau, polar fronts and other mesoscale features. The W-E transect had N2O levels ranging from equilibrium (105%) to light supersaturation (120%) with respect to the atmosphere. CH4 levels fluctuated dramatically, with intense supersaturations (120-970%) in areas close to the coastal waters of Kerguelen Island and in the polar front (PF). There, Fe and nutrient fertilization seem to promote high total chlorophyll a (TChl a) levels. The distribution of both gases was more homogenous in the N-S transect, but CH4 peaked at southeastern stations of the KPR (A3 stations), where phytoplankton bloom was observed. Both gases responded significantly to the patchy distribution of particulate matter as Chl a, stimulated by Fe supply by complex mesoscale circulation. While CH4 appears to be produced mainly at the pycnoclines, N2O seems to be consumed superficially. Air-sea fluxes for N2O (from -10.5 to 8.65, mean 1.71 ?mol m-2d-1), and for CH4 (from 0.32 to 38.1, mean 10.07 ?mol m-2d-1) reflected sink and source behavior for N2O and source behavior for CH4, with considerable variability associated with a highly fluctuating wind regime and, in the case of CH4, due to its high superficial levels that had not been reported before in the Southern Ocean and may be caused by an intense microbial CH4 cycling.

  10. Remote Sensing Observations of Greenhouse Gases from space based and airborne platforms: from SCIAMACHY and MaMap to CarbonSat

    Science.gov (United States)

    Burrows, John P.; Schneising, Oliver; Buchwitz, Michael; Bovensmann, Heinrich; Heymann, Jens; Gerilowski, Konstantin; Krings, Thomas; Krautwurst, Sven; Dickerson, Russ

    2015-04-01

    Methane, CH4, e and carbon dioxide, CO2, play an important role in the earth carbon cycle. They are the two most important long lived greenhouse gases produced by anthropogenic fossil fuel combustion. In order to assess accurately the surface fluxes of CH4 or CO2. The Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY, SCIAMACHY, was a national contribution to the ESA Envisat platform: the latter being launched on the 28th February 2002 and operating successfully until April 2012. The SCIAMACHY measurements of the up-welling radiation have been used to retrieve the dry mole fraction of XCH4 and XCO2, providing a unique 10 year record at the spatial resolution of 60 kmx30 km. This data has been used to observe the changing CH4 abundance in the atmosphere and identify anthropogenic such as Fracking and natural sources such as wetlands. The Methane and carbon dioxide Mapper, MaMap, was developed as an aircraft demonstration instrument for our CarbonSat and CarbonSat Constellation concepts. CarbonSat is in Phase A B1 studies as one of two candidate missions for ESA's Earth Explorer 8 Mission. Selected results from SCIAMACHY and Mamap will be presented with a focus on methane and the perspective for CarbonSat.

  11. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    International Nuclear Information System (INIS)

    Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities’ boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management

  12. Contribution of some ozone depleting substances (ODS) and greenhouse gases (GHGs) on total column zone growth at Srinagar (34°N, 74.8°), India

    Indian Academy of Sciences (India)

    P K Jana; D K Saha; D Sarkar

    2013-02-01

    A critical analysis has been made on the contribution of CFC-11, CFC-12, CFC-113, CH2Cl, CH3Br, CCl4, CH3CCl3, HCFCs, halons, WMO (World Meteorological Organization) minor constituents, CH4, N2O and water vapour to the variation of total column ozone (TCO) concentration at the station in Srinagar (34°N, 74.8°E), India from 1992 to 2003. With the implementation of Montreal Protocol, though the concentrations of CFC-11, CFC-113, CH3Cl, CH3Br, CCl4 and CH3CCl3 had decreased, the concentrations of CFC-12, HCFCs, halons, WMO minor constituents, CH4, N2O and water vapour had increased, as a result of which TCO had risen from 1992 to 2003 at the above station. The nature of yearly variations of concentrations of the above ozone depleting substances and greenhouse gases as well as ozone has been presented. Possible explanations for build-up of TCO have also been offered.

  13. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology

    International Nuclear Information System (INIS)

    One way of producing nearly CO2 free electricity is by using biomass as a combustible. In many cases, removal of CO2 in biomass grown is almost the same as the emissions for the bioelectricity production at the power plant. For this reason, bioelectricity is generally considered CO2 neutral. For large-scale biomass electricity generation two alternatives can be considered: biomass-only fired power plants, or cofiring in an existing coal power plant. Among other factors, two important aspects should be analyzed in order to choose between the two options. Firstly, which is the most appealing alternative if their Greenhouse Gases (GHG) Emissions savings are taken into account. Secondly, which biomass resource is the best, if the highest impact reduction is sought. In order to quantify all the GHG emissions related to each system, a Life Cycle Assessment (LCA) methodology has been performed and all the processes involved in each alternative have been assessed in a cradle-to-grave manner. Sensitivity analyses of the most dominant parameters affecting GHG emissions, and comparisons between the obtained results, have also been carried out.

  14. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, S.M., E-mail: saulo@lima.coppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Rovere, E.L.L., E-mail: emilio@ppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Mahler, C.F., E-mail: mahler0503@yahoo.com [Department of Civil Engineering, Federal University of Rio de Janeiro, C.P. 68506, CEP 21945-970, Rio de Janeiro, RJ (Brazil)

    2013-05-15

    Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities’ boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.

  15. Reduction of greenhouse gases emissions in Romania, by rehabilitation of the aged power plants based on a new circulating fluidized bed combustion technology - CFBC

    International Nuclear Information System (INIS)

    The low quality of coal available for Romania power generation, mainly lignite with a low calorific value (6.5-7 MJ/kg) and high in sulfur content (1.5-2%) has caused severe damage to the stations and environmental problems. The local capability existing in clean and efficient Circulating Fluidized Bed Combustion (CFBC) technology, well suited to least costs refurbishment, is discussed. The retrofit operation using this clean technology would also address the problem of serious air pollution caused by local coal use with little or no control of dust or greenhouse gases like NOx and SOx. The paper presents the results obtained on an experimental facility, 1 MWth CFBC pilot plant. A comparison among several rehabilitation possibilities with the view to diminishing polluting emissions is included. The CFBC technology advantages and environmental benefits for Romania and its neighbouring countries, by choosing this clean coal technology, are reviewed. In addition, the paper presents the main aspects of technical investments for a few power plants equipped with supplementary devices for controlling the SOx and NOx in comparison with retrofit by using CFBC boilers. 6 refs., 6 figs., 1 tab

  16. Impact of a possible environmental externalities internalisation on energy prices: The case of the greenhouse gases from the Greek electricity sector

    International Nuclear Information System (INIS)

    The present paper is concerned with the impact of the internalisation of environmental externalities on energy prices. In this context, its aim is to quantify the external cost of greenhouse gases (specifically carbon dioxide) generated during electricity production in the thermal power plants in Greece and to estimate the impact on the electricity production cost and on the electricity prices of a possible internalisation of this external cost by the producers. For this purpose, this paper applies the EcoSenseLE online tool to quantify the examined externalities. This research finds that the calculated external cost is significantly high (compared to the corresponding production cost) mainly in lignite-fired power plants. Specifically, a possible internalisation of this external cost would increase the production cost by more than 52% (on average), which, in turn, would affect similarly the electricity prices. This finding could be important for decision makers in the electricity sector to develop strategies for emission reduction and to develop environmental and energy policies. The general limitation of the external cost methodology applies to this work as it uses the standard method developed for the Externe project. Similarly, the data limitations as well as assumptions related to the costs and exclusions/ omissions of cost elements affect the results.

  17. Forest science and technology to reduce atmospheric greenhouse gases - an overview, with emphasis on carbon in Canada's forests

    International Nuclear Information System (INIS)

    The forest as a CO2 sink comprises, in addition to mature and immature trees, C accumulated in understorey plants, animals, forest soils, peat bogs and wetlands. Estimates of how much carbon (C) is entering and leaving a forest ecosystem cannot be obtained merely by estimating gaseous CO2 fluxes. The C cycle also involves direct transfer of CO2 to soil in rain and snow, non-photosynthetic or 'dark' fixation of CO2 by myriad soil and aquatic micro-organisms, roots, fungi and animals, and loss of C in forms other than CO2 via air, groundwater flow and runoff. The complexity of the carbon cycle challenges us to develop reliably accurate means of inventorying C accumulation in trees. In productive forests the C of wood can be determined by estimating tree merchantable volume and, by density conversion, mass of dry wood. Percentage C in dry wood varies by species and type of wood, but otherwise C of wood can be readily calculated. The C present in foliage, branches, bark and roots can, as a first approximation, be assumed to be equivalent to that in the merchantable boles. National Forestry Database statistics and our elemental analysis data on total carbon in wood were used to determine how much C is present in and being removed annually from Canadian forests. In 1998 Canada extracted 45 million tonnes of C of wood from 0.5% of its more than 244 million hectares (ha) of productive forest area. That annual harvest contained less than 0.001% of the 6400 gigatonnes of C of wood existing in boles of merchantable trees. However, harvesting over the last three centuries has reduced C content m productive forests to well below 50% of their pre-1700 sink capacity. To refill the sink, it is proposed that a ceiling of 50 million tonnes C of wood be set as the annual allowable cut. Mean temperature increases of as much as 8 oC have been forecast for Canada over the next 100 years. The impact of those increases on tree growth and survival will depend not so much on changes in the annual mean but on what individual trees actually experience during the growing season in relation to the extremes they are able to tolerate. From a physiological perspective, maintaining shelterwoods with canopies approaching full closure is the only option for modulating extremes, thus for keeping forests growing healthily. Recycling and refabricating wood and paper represent major societal and industrial opportunities to offset greenhouse gas emissions. Canadians can contribute to the C sink level of the nation by ensuring that paper and wood products have longer in-service lifetimes. (author)

  18. Nitric oxide and greenhouse gases emissions following the application of different cattle slurry particle size fractions to soil

    Science.gov (United States)

    Fangueiro, David; Coutinho, João; Cabral, Fernanda; Fidalgo, Paula; Bol, Roland; Trindade, Henrique

    2012-02-01

    The application to soil of different slurry particle size fractions may lead to variable gaseous soil emissions and associated differential environmental impacts. An incubation experiment was carried out during 70 d to assess the influence on nitric oxide (NO) and greenhouse gas (GHG; i.e. nitrous oxide, carbon dioxide and methane) emissions following incorporation of 4 particle size fractions, obtained through laboratorial separation from cattle slurry, to agricultural sandy loam soil (Dystric Cambisol). The response to these applied slurry fractions (>2000 ?m, 2000-500 ?m, 500-100 ?m, ammonium sulphate (AS) and an unamended control (CON). The highest value of cumulated NO emissions (6.3 mg NO-N kg -1 dry soil) were observed from the AS treatment. The cumulated amount of NO emitted (˜1 mg NO-N kg -1 dry soil) was not significantly different between slurry fractions, thereby indicating that slurry particle size had no effect on NO emissions. The largest slurry fraction (>2000 ?m) induced significantly higher N 2O emissions (1.8 mg N 2O-N kg -1 dry soil) compared to the other smaller sized fractions (1.0 mg N 2O-N kg -1 dry soil). The >2000 ?m, fraction, being more than 55% of the slurry by weight, was the major contributor to daily and cumulative N 2O emissions. Hence, for N 2O, the application of WS to agricultural soil is a better option that amendment with the >2000 ?m, fraction. Low CH 4 emissions (C kg -1 dry soil d -1) were observed, but only in treatments amended with slurry or its fractions. The CH 4 emissions were short-lived and rates returned to control levels within 3 d after the slurry application. Higher CO 2 emissions were observed in soils amended with slurry fractions when compared to application with whole slurry. Clearly, slurry separation can increase soil CO 2 emissions relative to whole slurry application. Overall, N 2O contributed 10-30% to total GHG emissions, while that of methane was negligible. The present study suggested that mechanical separation of slurry into fractions and targeted application of the finest fractions to soil is a potential suitable management tool to reduce GHG emissions. However, the largest fractions have to be used for other purposes as anaerobic digestion rather than applied to soil.

  19. Greenhouse gases embodied in the international trade and final consumption of Finland: An input-output analysis

    International Nuclear Information System (INIS)

    The estimation of greenhouse gas (GHG) emissions associated with international trade and final consumption gives a more complete and balanced picture of the responsibilities of various countries for the emissions that cause the climate change. The aim of this study was to look at the impact of the coverage of the GHGs and their sources and assumptions regarding the emissions of imports on the results of GHG emissions associated with international trade and final consumption of Finland. In addition to a single year study, a trend covering years 1990-2003 was produced for Finland to study the development of the GHG emissions associated with domestic consumption and the reasons behind the development. According to our results Finland was in 1999 a net exporter of CO2 from fossil fuel combustion, CO2 from all sources and GHGs of 4(4.2), 5 or 7 Gkg, respectively. The impact of different assumptions concerning the emissions embodied in imports in the case of Finland was tested by using the domestic emission intensities and the ratios of embodied emissions in imports in relation to domestic products by utilizing the data from the study by (OECD, 2003b. Carbon Dioxide Emissions Embodied in International Trade of Goods, STI Working Paper 2003/15, OECD, Paris). In the case of Finland, the differences of results calculated with these two methods remained rather small. The total emissions embodied in the imports changed from 33.8 to 34.4 Gkg and consequently the net export of CO2 from fossil fuel combustion changed from 4.2 to 3.6 Gkg. The results for 1990-2003 show that the GHG emissions embodied in the exports have exceeded the GHG emissions embodied in the imports from early 1990s. The reason for the increasingly positive GHG trade balance in the case of Finland has been the change in the magnitude of trade rather than the changes in its structure. The results show also that the impact of international transport on the emission intensity of imports is significant and merits further research

  20. Chemolithoautotrophic production mediating the cycling of the greenhouse gases N2O and CH4 in an upwelling ecosystem

    Directory of Open Access Journals (Sweden)

    M. E. Alcaman

    2009-12-01

    Full Text Available The high availability of electron donors occurring in coastal upwelling ecosystems with marked oxyclines favours chemoautotrophy, in turn leading to high N2O and CH4 cycling associated with aerobic NH4+ (AAO and CH4 oxidation (AMO. This is the case of the highly productive coastal upwelling area off central Chile (36° S, where we evaluated the importance of total chemolithoautotrophic vs. photoautotrophic production, the specific contributions of AAO and AMO to chemosynthesis and their role in gas cycling. Chemolithoautotrophy was studied at a time-series station during monthly (2007–2009 and seasonal cruises (January 2008, September 2008, January 2009 and was assessed in terms of the natural C isotopic ratio of particulate organic carbon (?13POC, total and specific (associated with AAO and AMO dark carbon assimilation (CA, and N2O and CH4 cycling experiments. At the oxycline, ?13POC averaged ?22.2‰; this was significantly lighter compared to the surface (?19.7‰ and bottom layers (?20.7‰. Total integrated dark CA in the whole water column fluctuated between 19.4 and 2.924 mg C m?2 d?1, was higher during active upwelling, and contributed 0.7 to 49.7% of the total integrated autotrophic CA (photo plus chemoautotrophy, which ranged from 135 to 7.626 mg C m?2 d?1, and averaged 20.3% for the whole sampling period. Dark CA was reduced by 27 to 48% after adding a specific AAO inhibitor (ATU and by 24 to 76% with GC7, a specific archaea inhibitor. This indicates that AAO and AMO microbes (most of them archaea were performing dark CA through the oxidation of NH4+ and CH4. Net N2O cycling rates varied between 8.88 and 43 nM d?1, whereas net CH4 cycling rates ranged from ?0.41 to ?26.8 nM d?1. The addition of both ATU and GC7 reduced N2O accumulation and increased CH4 consumption, suggesting that AAO and AMO were responsible, in part, for the cycling of these gases. These findings show that chemically driven chemolithoautotrophy (with NH4+ and CH4 acting as electron donors could be more important than previously thought in upwelling ecosystems, raising new questions concerning its relevance in the future ocean.

  1. Grappling with greenhouse

    International Nuclear Information System (INIS)

    A natural greenhouse effect keeps the Earth at a temperature suitable for life. Some of the gases responsible for the greenhouse effect are increasing at an unprecedented rate because of human activity. These increased levels of greenhouse gases in the atmosphere will strengthen the natural greenhouse effect, leading to an overall warming of the Earth's surface. Global warming resulting from the enhanced greenhouse effect is likely to be obscured by normal climatic fluctuations for another ten years or more. The extent of human-caused climate change will depend largely on future concentrations of greenhouse gases in the atmosphere. In turn, the composition of the atmosphere depends on the release of greenhouse gases. Releases are hard to predict, because they require an understanding of future human activity. The composition of the atmosphere also depends on the processes which remove greenhouse gases from it. This booklet is summarizing the latest research results in the form of climate change scenarios. The present scenarios of change are based on climate models, together with an understanding of how present-day climate, with its inherent natural variability, affects human activities. These scenarios present a coherent range of future possibilities for climate; they are not predictions but they serve as a useful starting point. It is estimated that human-caused climate change will affect all aspects of life in Australia, including our cities, agriculture, pests and diseases, fisheries and natural ecosystems. 15 figs., ills

  2. Fixação de carbono e a emissão dos gases de efeito estufa na exploração da cana-de-açúcar / Fixing of carbon and emission of greenhouse gases in the exploitation of sugar cane

    Scientific Electronic Library Online (English)

    Mauro de, Paula; Francisco Assis Rolim, Pereira; Edison Rubens Arrabal, Arias; Bruno Ricardo, Scheeren; Celso Correia de, Souza; Danúbia Sales da, Mata.

    2010-06-01

    Full Text Available A produção de uma tonelada (t) de fitomassa em matéria seca (MS) de cana-de-açúcar fixa, no mínimo, 0,42 t em carbono (C), o que corresponde a mitigar 1,54 t de dióxido de carbono (CO2) da atmosfera. Neste trabalho, objetivou-se efetuar um levantamento da quantidade de fitomassa da cana-de-açúcar pr [...] oduzida em 1 ha anualmente. Além de analisar o total de C fixado e a emissão de diversos gases de efeito estufa (GEE), em CO2 equivalente (eqCO2), em consequência da adubação nitrogenada; da queima da fitomassa na colheita e da oxidação de combustíveis fósseis usados na produção, colheita e no transporte da cana até a indústria. Com base na análise dos dados, concluiu-se que ao adotar como procedimento a colheita da cana-de-açúcar crua, o produtor canavieiro estará deixando de emitir 0,286 t ha-1 ano-1 de material particulado, 13,53 t ha-1 ano-1 em eqCO2 de outros gases, além de fixar o C na fitomassa, gerando um ativo ambiental de 52,50 t ha-1 ano-1 de eqCO2. Ao somar-se o total da fixação, mais a redução que deixará de ser emitida, a mitigação total será de 66,03 t ha-1 ano-1 de eqCO2. Abstract in english The production of one tonne (t) of phytomass in dry matter (DM) of sugar cane assimilates at least 0.42 t in carbon (C) which corresponds to 1.54 t of carbon dioxide (CO2) from the atmosphere. This work aimed to make a survey of the quantity of phytomass from sugar cane produced in 1 ha annually, an [...] d also to examine the total C fixed and the emission of greenhouse gases (GHGs), in CO2 equivalent as a consequence of nitrogen fertilization, burning of phytomass at harvest and the oxidation of fossil fuels during production, harvest, and transport of the sugar cane to the industrial plant. Based on the analysis of data, it was concluded that by harvesting the sugar cane without burning, the farmer will not emit 0.286 t ha-1 year-1 of particulate matter, 13,53 t ha-1 year-1 in eqCO2 of other gases. This will also assimilate carbon in the phytomass, generating an environmental active of 52,50 t ha-1 year-1 of eqCO2. By adding up the total fixation and the reduction of emissions, the mitigation will total 66,03 t ha-1 year-1 of eqCO2.

  3. Effects of ploughing on land-atmosphere exchange of greenhouse gases in a managed temperate grassland in central Scotland

    Science.gov (United States)

    Helfter, Carole; Drewer, Julia; Anderson, Margaret; Scholtes, Bob; Rees, Bob; Skiba, Ute

    2015-04-01

    Grasslands are important ecosystems covering > 20% and > 30% of EU and Scotland's land area respectively. Management practices such as grazing, fertilisation and ploughing can have significant short- and long-term effects on greenhouse gas exchange. Here we report on two separate ploughing events two years apart in adjacent grasslands under common management. The Easter Bush grassland, located 10 km south of Edinburgh (55° 52'N, 3° 2'W), comprises two fields separated by a fence and is used for grazing by sheep and cattle. The vegetation is predominantly Lolium perenne (> 90%) growing on poorly drained clay loam. The fields receive several applications of mineral fertiliser a year in spring and summer. Net ecosystem exchange (NEE) of carbon dioxide (CO2) has been monitored continuously by eddy-covariance (EC) since 2002 which has demonstrated that the site is a consistent yet variable sink of atmospheric CO2. The EC system comprises a LI-COR 7000 closed-path analyser and a Gill Instruments Windmaster Pro ultrasonic anemometer mounted atop a 2.5 m mast located along the fence line separating the fields. In addition, fluxes of nitrous oxide (N2O), methane (CH4)and CO2were measured with static chambers installed along transects in each field. Gas samples collected from the chambers were analysed by gas chromatography and fluxes calculated for each 60-minute sampling period. The ploughing events in 2012 and 2014 exhibited multiple similarities in terms of NEE. The light response (i.e. relationship between CO2 flux, and photosynthetically active radiation, PAR) of the NF and SF during the month preceding each ploughing event was of comparable magnitude in both years. Following ploughing, CO2 uptake ceased in the ploughed field for approximately one month and full recovery of the photosynthetic potential was observed after ca. 2 months. During the month following the 2014 ploughing event, the ploughed NF released on average 333 ± 17 mg CO2-C m-2 h-1. In contrast, the SF net uptake during the same period was -79 ± 19 mg CO2-C m-2 h-1. Ploughing caused a net release of carbon of 183 g CO2-C m-2 during the month following ploughing, thus turning the grassland into a potent CO2 source. Chamber measurements of CH4 and N2O exhibited high spatial variability in 2012 and no statistical difference could be established between fields and treatments. CH4 fluxes were high in both fields after ploughing which was presumably linked to air temperature. N2O fluxes in the ploughed SF reached on average 100 ?g N2O-N m-2 h-1 29 days after ploughing which corresponded to ca. 20 times the background level recorded at the site. Fluxes of N2O were however considerably larger in 2014, peaking at 2570 ?g N2O-N m-2 h-1 29 days after ploughing. Contrarily to 2012, substantial and statistically significant CH4 emissions were recorded in 2014 in the ploughed field. Whilst spatial variability was high in both years it can nevertheless be concluded that ploughing had substantial adverse short term effects on emissions and that environmental conditions greatly impacted the magnitude of CH4 and N2O fluxes.

  4. Economic efficiency assessment of greenhouse gases mitigation for agriculture; Analyse af omkostningseffektiviteten ved drivhusgasreducerende tiltag i relation til landbruget

    Energy Technology Data Exchange (ETDEWEB)

    Dubgaard, A.; Moeller Laugesen, F.; Staehl, E.E.; Bang, J.R.; Schou, E.; Jacobsen, Brian H.; Oerum, J.E.; Dejgaerd Jensen, J.

    2013-08-15

    The report contains the contributions by the Institute of Food and Resource Economics (IFRO) to a Danish Government appraisal of greenhouse gas (GHG) reduction measures. The policy goal is a 40 per cent reduction in total Danish GHG emissions by 2020 compared to 1990. The GHGs analysed in the present study include emissions of CO{sub 2}, nitrous oxide and methane plus soil carbon sequestration. The purpose of the study is to identify GHG mitigation measures related to agriculture which can deliver cost-effective contributions to the targeted reduction in GHG emissions in Denmark. A total of 21 GHG mitigation measures are included in the assessment. The stipulated implementation period is 2013 to 2020. The cost calculations have a time horizon equal to 30 years, i.e. from 2013 to 2042. The GHG reduction potential, expressed in CO{sub 2} equivalents (CO{sub 2}-eq), is calculated as the sum of the effect on the emission of CO{sub 2} (with and without changes in soil carbon), methane and nitrous oxide. The 21 mitigation measures are listed below (figures in brackets show the assumed implementation potential): 1. Biogas from livestock manure/slurry (10 % of total slurry production) 2. Biogas from slurry and maize (10 % of total slurry production) 3. Biogas from organic clover 4. Additional fat in diet for dairy cows (80% of conventional dairy cow stock and 20 % of organic dairy cow stock) 5. Additional concentrated feed in diet for other cattle (25 % of cattle stock under 2 years of age) 6. Prolonged lactation period for dairy cows (10 % of dairy cow stock) 7. Acidification of slurry (10 % of total slurry production) 8. Covers on slurry containers (40 % of total slurry production) 9. Cooling of pig slurry (10 % of pig slurry) 10. Nitrification inhibitors in nitrate fertilisers (100 % of chemical fertilisers with nitrogen) 11. Increased nitrogen utilization requirement for degassed slurry in nitrogen quota system (50 % of total slurry production) 12. Increased nitrogen utilization requirement for certain types of slurry in nitrogen quota system (5 % mink, 10 % poultry, and 20 % liquid manure) 13. Reduction of nitrogen quota (10 % of total nitrogen quota) 14. Energy willow (100,000 ha) 15. Straw for combustion (100,000 ha) 16. Catch crops ( 240,000ha, whereof 110,000 ha on clay soil and 130,000 ha on sandy soil) 17. Short term catch crops (240,000 ha, whereof 110,000 ha on clay soil and 130,000 ha on sandy soil) 18. Conversion of arable land (not naturally wet) to permanent grass (100,000 ha) 19. Afforestation of arable land (50,000 ha, whereof 31,000 ha on clay soil and 19,000 ha on sandy soil ha) 20. Conversion of arable, organogenic land to permanent grass with continued drainage (35,000 ha) 21. Conversion of arable, organogenic land to permanent grass with termination of drainage (35,000 ha). The mitigation measures and their assumed implementation potentials have been chosen in cooperation with the Faculty of Agricultural Sciences, Aarhus University. Marginal abatement cost functions have been constructed. The levels of the implementation potential for the individual measures have been stipulated at a scale assumed to allow implementation at approximately constant marginal costs when using existing technologies. For some measures the specified implementation potential is limited by the assumptions of the overall Government appraisal of GHG reduction measures for the non-ETS area. The focus of the Government appraisal is on the identification of cost-effective GHG reduction potentials which are not already covered by existing policy programs - such as the Danish Government's Green Growth program. For example, when the present study was initiated the Green Growth program stipulated that up to 50 per cent of the animal manure produced in Denmark should be used in biogas production by 2020. The 10 per cent specified here is in addition to this target. (LN)

  5. The Norwegian Emission Inventory 2011. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond

    2012-07-01

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency1 and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emission models like, e.g., the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2011b) for documentation on this topic. This report replaces the previous documentation of the emission model (Sandmo 2010), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: To define the different economic sectors in the Norwegian emission model, the standard industrial classification SIC2007 has replaced the previous SIC2002 (Appendix F) A new model for calculating emissions to air (HBEFA) from road traffic has been incorporated. The time series for CH4, N2O, NOX, NMVOC, CO, NH3 and particle emissions from road traffic have thus been recalculated. There have been some changes made to the activity data, e.g. a new data source on annual driving lengths has been utilised and more detailed information on traffic activity has been taken into account. Emissions of CH4 from gas distribution have for the first time been included in the inventory, The calculation method for NOx emissions from production of silicon metal has been revised. For national navigation, revised emission factors for NOX emissions from gas engines and emissions of particulate matter from oil based fuels and LNG have been introduced. A new uncertainty analysis for greenhouse gases has been performed, and the main results are documented in this report Furthermore, there are lower emission figures for CH4 for all years since 1990 due to revisions of Statistics Norway's waste statistics, but there are no methodological changes in the calculation of these emissions. There have also been several minor changes in the emission figures, e.g. due to changes in figures on energy combustion. Chapter 8 Recalculations gives a more thorough description of changes in the most recent emission calculations.(Author)

  6. Transport fluxes and emission of greenhouse gases of the Middle Niger River (west Africa): disproprotionate importance of the recent red floods in the Niamey region

    Science.gov (United States)

    Darchambeau, François; Bouillon, Steven; Alhou, Bassirou; Lambert, Thibault; Borges, Alberto V.

    2014-05-01

    The Niger River is Africa's third longest river and drains an area of ~2,120,000 km². It encompasses six hydrographic regions and crosses almost all possible ecosystem zones in West Africa. Since few decades, the Middle Niger River presents a two flood hydrograph, the local flood, or red flood, occurring during the rainy season being the more pronounced one. Here, we report initial results of a monitoring campaign whereby 2-weekly samples were collected at Niamey (Niger) [2.01°E 13.57°N] between April 2011 and March 2013 for a suite of physico-chemical and biogeochemical characteristics, including total suspended matter (TSM) concentrations, concentration and stable isotope composition of particulate organic carbon (POC and ?13C-POC) and particulate nitrogen (PN and ?15N-PN), chromophoric dissolved organic matter (CDOM), dissolved organic carbon (DOC and ?13C-DOC), dissolved inorganic carbon (DIC and ?13C-DIC), concentration of greenhouse gases (GHGs) (CO2, CH4 and N2O), as well as major elements, total alkalinity, and oxygen isotope signatures of water (?18O-H2O). This dataset allows us to construct seasonal budgets for particulate and dissolved carbon fluxes, nutrient exports, as well as a first seasonally resolved characterisation of the GHGs emitted to the atmosphere by the Middle Niger River. The red flood, concentrated on 2 months (August-September), contributed to more than 80% of the annual transport fluxes of TSM and POC and to approximately 30% of the annual transport fluxes of DIC and DOC.

  7. Emissão de gases do efeito estufa em diferentes usos da terra no bioma Cerrado / Greenhouse gas emission caused by different land-uses in brazilian Savannah

    Scientific Electronic Library Online (English)

    Marcos, Siqueira Neto; Marisa de Cássia, Piccolo; Ciniro, Costa Junior; Carlos Clemente, Cerri; Martial, Bernoux.

    2011-02-01

    Full Text Available A conversão de áreas nativas com o corte e queima de vegetação seguida do cultivo do solo resultam em mudanças na dinâmica da matéria orgânica do solo, com alterações nas emissões dos gases causadores de efeito estufa (GEE: CO2, CH4 e N2O) da biosfera para a atmosfera, que causam a elevação da tempe [...] ratura média e, consequentemente, as mudanças climáticas globais. O objetivo deste estudo foi verificar as relações entre os fluxos de CO2, CH4 e N2O com a umidade, biomassa microbiana e as formas inorgânicas de N no solo com diferentes usos das terras no bioma Cerrado (Rio Verde, Goiás). O clima da região é do tipo Aw (Köppen-Geiger), e o solo foi classificado como Latossolo Vermelho distrófico caulinítico textura argilosa com vegetação original de Cerradão. O delineamento experimental foi inteiramente casualizado (DIC), com quatro tratamentos (áreas): vegetação nativa - Cerradão (CE); pastagem (PA) de braquiária, semeadura convencional (SC) de soja; e semeadura direta (SD) de milho sucedido por milheto. As emissões anuais de CO2 e N2O não mostraram diferenças significativas entre os tratamentos; isso ocorreu devido à elevada variação nos fluxos dos gases em decorrência da sazonalidade no clima, com as menores emissões observadas durante o inverno, devido à ausência da umidade do solo. A média na emissão de CO2 foi de 108,9 ± 85,6 mg m-2 h-1 , e para o N2O, de 13,5 ± 7,6 µg m-2 h-1. Os fluxos de CH4 apresentaram diferenças significativas somente para a pastagem, com emissão de 32 µg m-2 h-1 , enquanto nas demais áreas foram observados influxos entre 46 e 15 µg m-2 h-1 . Com os resultados das correlações, pode-se verificar que a umidade foi a variável do solo que apresentou maior correlação com o fluxo dos três gases de efeito estufa. O teor de N-NO3- e as emissões de CO2 mostraram correlações para todas as áreas. Quando consideradas as correlações para todos os tratamentos conjuntamente, verificou-se que os fluxos dos três gases apresentaram correlações significativas com os teores de C e N-microbiano. Contudo, a relação Cmicro:Nmicro não mostrou correlação significativa com o fluxo dos gases de efeito estufa. A pastagem foi a única situação em que os fluxos de CO2 e N2O apresentaram correlação com as quantidades de N-inorgânico. Os resultados sugerem que os fluxos dos GEE são dependentes do regime pluvial no bioma Cerrado, principalmente nas áreas cultivadas que recebem altas doses de fertilizantes para o aumento da produtividade. Abstract in english The conversion of native forests by cutting and burning into farming areas leads to alterations in the dynamics of soil organic matter, with changes in emissions of greenhouse gases (GHGs: CO2, CH4 and N2O) from the biosphere to the atmosphere. These cause an average temperature rise and, consequent [...] ly, global climate change. The aim of this study was to examine relationships between the fluxes of CO2, CH4 and N2O with moisture, microbial biomass and inorganic N forms in soil with different land uses in the Cerrado biome (Rio Verde county, State of Goias - Brazil). The climate (Köppen-Geiger) was classified as Aw and the soil as Latossolo Vermelho distrófico caulinítico / a clayey kaolinitic Oxisol under original Cerrado (Brazilian savanna) vegetation. The experiment was arranged in a completely randomized design (CRD) with four treatments (areas): Native vegetation - Cerrado (CE); brachiaria pasture (PA); soybean in conventional tillage (SC) and no-tillage (NT) corn followed by millet. No significant differences in annual CO2 and N2O emissions were observed between treatments. This can be explained by the variability of gas fluxes due to climate seasonality, with lower emissions in the winter due to low soil moisture. Mean emissions of CO2 were 108.9 ± 85.6 mg m-2 h-1 , and of N2O 13.5 ± 7.6 mg m-2 h-1 . For CH4 significant differences in the fluxes were only observed in pasture (32 mg m-2 h-1 ), while in the other areas inflows between 46 and 15 mg m-2 h-1 wer

  8. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    Directory of Open Access Journals (Sweden)

    J. Ofner

    2012-01-01

    Full Text Available Reactive halogen species (RHS, such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA and organic aerosol derived from biomass-burning (BBOA has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols.

    Model SOA from ?-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS released from simulated natural halogen sources like salt pans. Subsequently the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which result in new functional groups, changed UV/VIS absorption, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  9. Reply to "Comment on 'Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change' by Dana Nuccitelli et al."

    Science.gov (United States)

    Lu, Q.-B.

    2014-04-01

    In the Comment by Nuccitelli et al., they make many false and invalid criticisms of the CFC-warming theory in my recent paper, and claim that their anthropogenic forcings including CO2 would provide a better explanation of the observed global mean surface temperature (GMST) data over the past 50 years. First, their arguments for no significant discrepancy between modeled and observed GMST changes and for no pause in recent global warming contradict the widely accepted fact and conclusion that were reported in the recent literature extensively. Second, their criticism that the key data used in my recent paper would be "outdated" and "flawed" is untrue as these data are still used in the recent or current literature including the newest (2013) IPCC Report and there is no considerable difference between the UK Met Office HadRCUT3 and HadRCUT4 GMST datasets. The use of even more recently computer-reconstructed total solar irradiance data (whatever have large uncertainties) for the period prior to 1976 would not change any of the conclusions in my paper, where quantitative analyses were emphasized on the influences of humans and the Sun on global surface temperature after 1970 when direct measurements became available. For the latter, the solar effect has been well shown to play only a negligible role in global surface temperature change since 1970, which is identical to the conclusion made in the 2013 IPCC Report. Third, their argument that the solar effect would not play a major role in the GMST rise of 0.2°C during 1850-1970 even contradicts the data and conclusion presented in a recent paper published in their Skeptical Science by Nuccitelli himself. Fourth, their comments also indicate their lack of understandings of the basic radiation physics of the Earth system as well as of the efficacies of different greenhouse gases in affecting global surface temperature. Their listed "methodological errors" are either trivial or non-existing. Fifth, their assertion that "the climate system takes centuries to millennia to fully equilibrate" is lack of scientific basis. Finally, their model calculations including an additional fitting parameter do not reduce the discrepancy with observed GMST data even after their adjustments. Instead, their modeled results give a sharp GMST rise over the past 16 years, which obviously disagrees with the observed data.

  10. Control of pollutants in flue gases and fuel gases

    Energy Technology Data Exchange (ETDEWEB)

    Zevenhoven, R. [Helsinki Univ. of Technology, Otaniemi (Finland); Kilpinen, P. [Aabo Akademi Univ., Turku (Finland)

    2001-07-01

    Funding from the Nordic Energy Research Programme and from Helsinki University of Technology allowed for the preparation of this e-book, accompanied by overhead sheets as presented during the lectures. All material can be downloaded as pdf documents from the internet-address http://www.hut.fi/-rzeveho//gasbook, hence the qualification e- book Updates will be produced chapter-by-chapter in the future. Objectives and scope. Textbooks on this subject are, in general, limited to what can be called 'conventional' flue gas cleaning for conventional pulverised coal combustion processes, i.e. wet flue gas desulphurisation (FGD), bag filters and electrostatic precipitators for flyash and selective catalytic reduction (SCR) for NO{sub x} control. Other books address waste incineration within a discussion on waste management. The scope of this material we tried to make more up-to-date and therefore wider than these texts. Apart from pollutant control the formation of the pollutants is briefly addressed, which often provides the key to abatement methods as an alternative to control methods. Secondly, more species are addressed such HS in addition to SO{sub 2}; N{sub 2}0, HCN and NH{sub 3} in addition to NO{sub x}; alkali metals and trace elements such as mercury, halogenic compounds such as HO and dioxines and furanes; and volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Also greenhouse gases, mainly CO{sub 2}, and ozone-depleting gases, such as CFCs, are briefly discussed. The motivation for this was to cover flue gases from combustion as well as fuel gases from gasification processes, using various types of furnaces and boilers, and to extend the range of chemical compounds to those found in the product gases in waste incineration and energy-from-waste processes. Finally, not only 'cold' gas cleaning but also 'hot' gas cleaning is addressed. All this in an attempt to cover the wide spectrum of pollutants found in gas streams in modern thermal power generation processes, being based on combustion or gasification, with a fossil fuel, biomass or waste-derived fuel as input. Recovery boilers for black liquor are, however, not specifically- dealt with. For preparing the material the most important sources were the reports from LEA Coal Research in London, UK; Chapters 9, 10 and 11 of the Finnish textbook 'Poltto ja palaminen', and the articles, papers and theses (co-)produced by the authors themselves since the 1990s. (orig.)

  11. The greenhouse gas balance of the oil palm industry in Colombia: a preliminary analysis. II. Greenhouse gas emissions and the carbon budget / Balance de gases de efecto invernadero de la agroindustria de la palma de aceite en Colombia: análisis preliminar. II. Emisión de gases de efecto invernadero y balance de carbono

    Scientific Electronic Library Online (English)

    Ian E, Henson; Rodrigo, Ruiz R; Hernán Mauricio, Romero.

    2012-09-01

    Full Text Available Se evaluó el secuestro de carbono por parte de plantaciones de palma de aceite y en los productos del procesamiento y sus subproductos, como parte de un estudio del balance de gases de la producción de aceite de palma en Colombia, mostrando como este ha cambiado a través del tiempo. Se examinaron lo [...] s procesos opuestos de la emisión de gases de efecto invernadero y calcula el balance neto de carbono resultante para la industria. La principales fuentes de emisiones en orden decreciente de magnitud, usando las opciones "por defecto" o "más probables" fueron el cambio de uso de tierra (40,9% del total), producción de metano en las plantas de procesamiento (21,4%), uso directo de combustibles fósiles (18,5%), uso indirecto de los combustibles fósiles (11,9%) y producción de óxido nitroso (7.3%). El total de emisiones (valor bruto) expresadas en carbono equivalente (Ceq.) fue menor que la cantidad de carbono secuestrado, resultando en un balance positivo neto de Ceq. Todas las zonas palmeras mostraron una ganancia neta con excepción de la zona Occidental en donde las emisiones dadas por el cambio de uso de tierra fueron sustanciales. De los 11 escenarios alternativos analizados solamente tres resultaron en un menor balance de Ceq. comparado al utilizado por defecto y solamente dos de ellos tuvieron un balance negativo Abstract in english In the preceding paper we examined carbon sequestration in oil palm plantations and in mill products and by-products as part of a study of the greenhouse gas balance of palm oil production in Colombia, showing how this has changed over time. Here, we look at the opposing processes of greenhouse gas [...] (GHG) emission and calculate the resulting net carbon budget for the industry. The main emission sources, in decreasing order of magnitude, assessed using "default" or "most probable" options, were found to be land use change (40.9% of total), mill methane production (21.4%), direct use of fossil fuel (18.5%), indirect use of fossil fuel (11.9%) and nitrous oxide production (7.3%). The total (gross) emissions, expressed in carbon equivalents (Ceq.), were less than the amount of sequestered carbon, resulting in a positive net Ceq. balance. All oil palm growing regions showed a net gain with the exception of the western zone, where emissions due to land-use change were judged to be substantial. Of the 11 alternative scenarios tested, only three resulted in Ceq. balances lower than the default and only two gave a negative balance

  12. Ozone depleting substances and greenhouse gases HFCs, PFCs and SF{sub 6} consumption and emissions; Ozonlagsnedbrydende stoffer og drivhusgasserne HFC'er, PFC'er og SF{sub 6}. Forbrug og emissioner 2002

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [Planmiljoe, Veksoe Sjaelland (Denmark)

    2004-07-01

    The aim of the project is to map the 2002 Danish consumption of produced ozone depleting substances and the consumption and actual emission of the greenhouse gases HFCs, PFCs and SF{sub 6}. The inventory is performed, partly according to the guidelines recommended by IPCC (Intergovernmental Panel on Climate Change), and partly according to the method that has been used for previous mappings. The mapping is done partly in order to meet Denmark's international commitments to report and partly in order to monitor how the consumption of ozone depleting substances and the emissions of greenhouse gases develop. The mapping of ozone depleting substances includes the net consumption, meaning the amount of the imported raw materials in bulk or in drums minus any re-export of the substances in the form of raw materials. Mapping of the actual emissions of HFCs, PFCs and SF{sub 6} is done in continuation of previous greenhouse gas inventories. The inventory process is continuously improving due to development of international approved guidelines (IPCC) and the production of increasingly detailed data. (BA)

  13. GREENHOUSE GASES EMISSIONS OF VEHICLES USED TO HOME-WORK SHIFT AND SERVICE IN THE MINISTRY OF ENVIRONMENT, BRAZIL = EMISSÕES DE GASES DE EFEITO ESTUFA DE VEÍCULOS EM DESLOCAMENTO CASA-TRABALHO E A SERVIÇO NO MINISTÉRIO DO MEIO AMBIENTE

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Haisi Mandalho

    2015-11-01

    Full Text Available The transportation subsector accounts for 23% of the CO2 global emissions related to energy and 8.1% of Brazil's emissions of Greenhouse Gases (GHG. Few public institutions publish their GHG emissions due to displacement house-work and service. This study aimed to quantify GHG emissions resulting from the use of motor vehicles by employees of the Ministry of Environment (MMA, due to housework drive displacement and under service, in base year 2013. A questionnaire was applied to determine the paths and vehicles used by employees, in addition to data collection in the MMA transport sector and the Department of Transportation of the Federal District. The emission factors presented in the 2013 National Inventory of Air Emissions by Road Vehicles: base year 2012 was used in this study. Calculations of total and per capita emissions, as well as the analysis of emission reduction scenarios, were performed. Most housework drive displacements are made by personal vehicles, particularly by cars, which accounted for 63.64% of the displacements and 77.15% of the emissions. Emissions totaled 835.27 tCO2eq. and the housework displacement accounted for 92.08%, while the shuttle service accounted for 7.92% of emissions. Per capita emission in the housework displacement was 0.72 tCO2eq a year. A possible increase of 50% and 100% in the use of shuttle to homework displacement would lead to reduction of 17% and 47% of total GHG emissions, respectively. = O subsetor dos transportes representa 23% do total das emissões de CO2 relacionadas à energia e 8,1% das emissões brasileiras de Gases de Efeito Estufa (GEE. Poucas instituições públicas explicitam suas emissões de GEE devidas ao deslocamento casa-trabalho e a serviço. Este trabalho objetivou quantificar as emissões de GEE decorrentes do uso de veículos automotores, por servidores do Ministério do Meio Ambiente (MMA, nos deslocamentos casa-trabalho e a serviço, no ano-base 2013. Foi aplicado um questionário para determinar os trajetos e os veículos utilizados pelos funcionários, além da coleta de dados no setor de transporte do MMA e na Secretaria de Transportes do Governo do Distrito Federal. Foram utilizados os fatores de emissão apresentados no Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários 2013: ano base 2012. Foi realizado o cálculo das emissões totais e per capita, bem como a análise de cenários de redução das emissões. A maior parte dos deslocamentos casa-trabalho é feita por veículos próprios, em maior parcela por carros, que responderam por 63,64% dos deslocamentos e 77,15% das emissões. As emissões totalizaram 835,27 tCO2eq. O deslocamento casa-trabalho respondeu por 92,08%, enquanto o serviço de transporte do MMA foi responsável por 7,92% das emissões. A emissão per capita nos deslocamentos casa-trabalho foi de 0,72 tCO2eq por ano. Conclui-se que um possível incremento na utilização de ônibus nos deslocamentos casa-trabalho, para 50% e 100%, levaria a redução de 17% e 47% do total das emissões de GEE, respectivamente.

  14. Gas chromatography and photoacoustic spectroscopy for the assessment of soil greenhouse gases emissions / Cromatografia gasosa e espectroscopia fotoacústica para avaliação das emissões de gases de efeito estufa do solo

    Scientific Electronic Library Online (English)

    Rodrigo da Silveira, Nicoloso; Cimélio, Bayer; Genuir Luis, Denega; Paulo Armando Victória de, Oliveira; Martha Mayumi, Higarashi; Juliano Corulli, Corrêa; Letícia dos Santos, Lopes.

    2013-02-01

    Full Text Available As avaliações das emissões de dióxido de carbono (CO2), metano (CH4) e óxido nitroso (N2O) do solo são fundamentais para a determinação do potencial de práticas agrícolas em mitigar o aquecimento global. Este estudo avaliou a espectroscopia fotoacústica (EFA) para a determinação dos fluxos de gases [...] de efeito estufa (GEE) do solo em comparação com o método padrão de cromatografia gasosa (CG). Dois experimentos de longa duração com diferentes sistemas de preparo do solo e rotação de culturas sobre um Argissolo foram avaliados usando câmaras estáticas. As medidas das concentrações de CO2 e N2O realizadas por EFA mostraram boa correlação e linearidade (R2=0,98 e 0,94; respectivamente) com os resultados de CG. Entretanto, as medidas de CH4 foram significativamente afetadas pela umidade da amostra de ar que interferiu na detecção do CH4 por EFA. A superestimativa das concentrações de CO2 e N2O nas amostras analisadas por EFA (14,6 e 18,7%; respectivamente) também foram relacionadas com o conteúdo de umidade da amostra. Os fluxos de CO2 e N2O mostraram boa correlação entre os métodos (R2=0,96 e 0,95; respectivamente), apesar da superestimativa dos fluxos determinados por EFA ter sido de 18,6 e 13,6% em relação aos resultados obtidos por CG, respectivamente. A EFA mostrou boa sensibilidade e foi capaz de detectar fluxos de CO2 e N2O tão baixos quanto 332mg CO2 m-2 h-1 and 21µg N2O m-2 h-1. A calibração detalhada do analisador fotoacústico para reduzir a interferência da umidade das amostras nas medidas das concentrações de CO2, CH4 e N2O deve ser realizada a fim de evitar superestimativa ou erro na determinação dos fluxos de GEE do solo. Abstract in english Assessments of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions are critical for determination of the agricultural practices' potential to mitigate global warming. This study evaluated the photoacoustic spectroscopy (PAS) for the assessment of soil greenhouse gases (GHG) f [...] luxes in comparison to the standard gas chromatography (GC) method. Two long-term experiments with different tillage and cropping systems over a Paleudult were evaluated using static chambers. PAS measurements of CO2 and N2O concentrations showed good relationship and linearity (R2=0.98 and 0.94, respectively) with GC results. However, CH4 measurements were significantly affected by air sample moisture which interfered on CH4 detection by PAS. Overestimation of CO2 and N2O concentrations in air samples determined by PAS (14.6 and 18.7%, respectively) were also related to sampling moisture. CO2 and N2O fluxes showed good agreement between methods (R2=0.96 and 0.95, respectively), though PAS overestimated fluxes by 18.6 and 13.6% in relation to GC results, respectively. PAS showed good sensitivity and was able to detect CO2 and N2O fluxes as low as 332mg CO2 m-2 h-1 and 21µg N2O m-2 h-1. PAS analyzer should be detailed calibrated to reduce humidity interference on CO2, CH4 and N2O concentrations measurements avoiding overestimation or erroneous determination of soil GHG fluxes.

  15. Los métodos gravitacionales como herramienta para el cálculo de las emisiones de gases de efecto invernadero derivadas del tráfico rodado en la planificación urbana Gravity methods as a tool to calculate greenhouse gas emissions from road traffic in urban planning

    Directory of Open Access Journals (Sweden)

    Sergio Zubelzu Mínguez

    2011-08-01

    Full Text Available El presente artículo propone una metodología para la estimación de las emisiones de gases de efecto invernadero que se producen consecuencia del tráfico rodado en las ciudades. El método adopta como punto de partida la información relativa a los núcleos existentes en el término y los crecimientos previstos por la actividad urbanística estimando el tráfico que se prevé generarán ambos mediante un modelo gravitacional. Este modelo permite identificar los recorridos que presumiblemente seguirán los vehículos y así calcular sus emisiones de gases de efecto invernadero. De esta forma se dispone de información respecto de la huella de carbono pueden incluirse medidas correctoras o compensatorias de las emisiones en la fase de diseño urbanístico.This paper proposes a methodology for estimating greenhouse gas emissions from road traffic. The method uses information about the cities and their growth estimates in order to model traffic by using a gravity model. These kind of mathematical models allow study the number of trips "originated in" or "destined for" a particular area and distribute them to calculate the greenhouse gases emissions from these trips. In this way the information regarding these emissions can be used in urban planning phase and preventive and compensatory measures can be included in these processes.

  16. Los métodos gravitacionales como herramienta para el cálculo de las emisiones de gases de efecto invernadero derivadas del tráfico rodado en la planificación urbana / Gravity methods as a tool to calculate greenhouse gas emissions from road traffic in urban planning

    Scientific Electronic Library Online (English)

    Sergio, Zubelzu Mínguez; Alfonso, López Díaz; Miguel Ángel, Gutiérrez García; Fernando, Blanco Silva.

    2011-08-01

    Full Text Available El presente artículo propone una metodología para la estimación de las emisiones de gases de efecto invernadero que se producen consecuencia del tráfico rodado en las ciudades. El método adopta como punto de partida la información relativa a los núcleos existentes en el término y los crecimientos pr [...] evistos por la actividad urbanística estimando el tráfico que se prevé generarán ambos mediante un modelo gravitacional. Este modelo permite identificar los recorridos que presumiblemente seguirán los vehículos y así calcular sus emisiones de gases de efecto invernadero. De esta forma se dispone de información respecto de la huella de carbono pueden incluirse medidas correctoras o compensatorias de las emisiones en la fase de diseño urbanístico. Abstract in english This paper proposes a methodology for estimating greenhouse gas emissions from road traffic. The method uses information about the cities and their growth estimates in order to model traffic by using a gravity model. These kind of mathematical models allow study the number of trips "originated in" o [...] r "destined for" a particular area and distribute them to calculate the greenhouse gases emissions from these trips. In this way the information regarding these emissions can be used in urban planning phase and preventive and compensatory measures can be included in these processes.

  17. Profiling wind and greenhouse gases by infrared-laser occultation: algorithm and results from end-to-end simulations in windy air

    Directory of Open Access Journals (Sweden)

    A. Plach

    2015-01-01

    Full Text Available The new mission concept of microwave and infrared-laser occultation between low-Earth-orbit satellites (LMIO is designed to provide accurate and long-term stable profiles of atmospheric thermodynamic variables, greenhouse gases (GHGs, and line-of-sight (l.o.s. wind speed with focus on the upper troposphere and lower stratosphere (UTLS. While the unique quality of GHG retrievals enabled by LMIO over the UTLS has been recently demonstrated based on end-to-end simulations, the promise of l.o.s. wind retrieval, and of joint GHG and wind retrieval, has not yet been analyzed in any realistic simulation setting so far. Here we describe a newly developed l.o.s. wind retrieval algorithm, which we embedded in an end-to-end simulation framework that also includes the retrieval of thermodynamic variables and GHGs, and analyze the performance of both standalone wind retrieval and joint wind and GHG retrieval. The wind algorithm utilizes LMIO laser signals placed on the inflection points at the wings of the highly symmetric C18OO absorption line near 4767 cm?1 and exploits transmission differences from wind-induced Doppler shift. Based on realistic example cases for a diversity of atmospheric conditions, ranging from tropical to high-latitude winter, we find that the retrieved l.o.s wind profiles are of high quality over the lower stratosphere under all conditions, i.e., unbiased and accurate to within about 2 m s?1 over about 15 to 35 km. The wind accuracy degrades into the upper troposphere due to decreasing signal-to-noise ratio of the wind-induced differential transmission signals. The GHG retrieval in windy air is not vulnerable to wind speed uncertainties up to about 10 m s?1 but is found to benefit in case of higher speeds from the integrated wind retrieval that enables correction of wind-induced Doppler shift of GHG signals. Overall both the l.o.s. wind and GHG retrieval results are strongly encouraging towards further development and implementation of a LMIO mission.

  18. Greenhouse gases emission and carbon sequestration in agro-ecosystems under long-term no-till: implications for global warming mitigation

    Science.gov (United States)

    Jacinthe, P.; Dick, W. A.; Lal, R.; Shrestha, R. K.; Bilen, S.

    2011-12-01

    No-till (NT) management has gained wide acceptance in US agriculture, and could contribute to global warming mitigation by offsetting fossil fuel emission. While C sequestration in NT systems is fairly well documented, the dynamics of greenhouse gases (GHG) emission is less well understood. However, the literature abounds with viewpoints and assumptions. Because of crop residue accumulation on NT surface and generally higher soil moisture, it is often assumed that production of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) is greater in NT systems compared to conventional tillage (MP). But it is also possible that long-term implementation of NT could increase soil macro-porosity, lead to the evolution of an active population of methanotrophs, and ultimately result in enhanced CH4 uptake. Field data are needed to reconcile these conflicting assumptions. A 2-year (2009-2011) study was conducted to quantify C sequestration, and compare GHG fluxes in adjacent forest and cropland under MP and long-term NT (9, 13, 36 and 48 years). The study sites were located across Ohio on soil series with similar drainage characteristics (moderately well drained, MWD) so that duration of NT management is the experimental factor. We also included a site under NT for 48 years but located on somewhat poorly-drained soil (SPD) in order to assess the impact of soil drainage. Results revealed marked effect of NT duration and soil drainage characteristics on GHG fluxes. As hypothesized, we found a positive impact of NT on CH4 uptake, but significant difference with MP management was noted at sites under NT for > 10 years. At the sites under NT for 48 years, CH4 uptake rate was 10-12 times higher in MWD than in SPD soils. When data from all sites were pooled, N2O fluxes were significantly higher under MP (2.01 mg N2O-N m-2 d-1) than under NT (0.73), but the trend varied with NT duration. While at recent ( 30 years. At these older NT sites, N2O emissions accounted for 40-60 % of the global warming potential (GWP, sum of all GHG expressed as CO2 equivalents). These findings suggest that the viability of NT farming as a climate warming mitigation strategy hinges on the adoption of N fertilizer management practices (timing, amount, type and method of application) that minimize N2O emissions from cropland under long-term NT.

  19. Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS version 2

    Directory of Open Access Journals (Sweden)

    J. Kurokawa

    2013-04-01

    Full Text Available We have updated the Regional Emission inventory in ASia (REAS as version 2.1. REAS 2.1 includes most major air pollutants and greenhouse gases from each year during 2000 and 2008 and following areas of Asia: East, Southeast, South, and Central Asia and the Asian part of Russia. Emissions are estimated for each country and region using updated activity data and parameters. Monthly gridded data with a 0.25 × 0.25° resolution are also provided. Asian emissions for each species in 2008 are as follows (with their growth rate from 2000 to 2008: 56.9 Tg (+34% for SO2, 53.9 Tg (+54% for NOx, 359.5 Tg (+34% for CO, 68.5 Tg (+46% for non-methane volatile organic compounds, 32.8 Tg (+17% for NH3, 36.4 Tg (+45% for PM10, 24.7 Tg (+42% for PM2.5, 3.03 Tg (+35% for black carbon, 7.72 Tg (+21% for organic carbon, 182.2 Tg (+32% for CH4, 5.80 Tg (+18% for N2O, and 16.7 Pg (+59% for CO2. By country, China and India were respectively the largest and second largest contributors to Asian emissions. Both countries also had higher growth rates in emissions than others because of their continuous increases in energy consumption, industrial activities, and infrastructure development. In China, emission mitigation measures have been implemented gradually. Emissions of SO2 in China increased from 2000 to 2006 and then began to decrease as flue-gas desulfurization was installed to large power plants. On the other hand, emissions of air pollutants in total East Asia except for China decreased from 2000 to 2008 owing to lower economic growth rates and more effective emission regulations in Japan, South Korea, and Taiwan. Emissions from other regions generally increased from 2000 to 2008, although their relative shares of total Asian emissions are smaller than those of China and India. Tables of annual emissions by country and region broken down by sub-sector and fuel type, and monthly gridded emission data with a resolution of 0.25 × 0.25° for the major sectors are available from the following url: http://www.nies.go.jp/REAS/ .

  20. Joint profiling of greenhouse gases, isotopes, thermodynamic variables, and wind from space by combined microwave and IR laser occultation: the ACCURATE concept

    Science.gov (United States)

    Kirchengast, G.; Schweitzer, S.

    2008-12-01

    The ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) mission was conceived at the Wegener Center in late 2004 and subsequently proposed in 2005 by an international team of more than 20 scientific partners from more than 12 countries to an ESA selection process for next Earth Explorer Missions. While the mission was not selected for formal pre-phase A study, it received very positive evaluation and was recommended for further development and demonstration. ACCURATE employs the occultation measurement principle, known for its unique combination of high vertical resolution, accuracy and long-term stability, in a novel way. It systematically combines use of highly stable signals in the MW 17-23/178-196 GHz bands (LEO-LEO MW crosslink occultation) with laser signals in the SWIR 2-2.5 ?m band (LEO-LEO IR laser crosslink occultation) for exploring and monitoring climate and chemistry in the atmosphere with focus on the UTLS region (upper troposphere/lower stratosphere, 5-35 km). The MW occultation is an advanced and at the same time compact version of the LEO-LEO MW occultation concept, studied in 2002-2004 for the ACE+ mission project of ESA for frequencies including the 17-23 GHz band, complemented by U.S. study heritage for frequencies including the 178-196 GHz bands (R. Kursinski et al., Univ. of Arizona, Tucson). The core of ACCURATE is tight synergy of the IR laser crosslinks with the MW crosslinks. The observed parameters, obtained simultaneously and in a self-calibrated manner based on Doppler shift and differential log-transmission profiles, comprise the fundamental thermodynamic variables of the atmosphere (temperature, pressure/geopotential height, humidity) retrieved from the MW bands, complemented by line-of-sight wind, six greenhouse gases (GHGs) and key species of UTLS chemistry (H2O, CO2, CH4, N2O, O3, CO) and four CO2 and H2O isotopes (HDO, H218O, 13CO2, C18OO) from the SWIR band. Furthermore, profiles of aerosol extinction, cloud layering, and turbulence are obtained. All profiles come with accurate height knowledge (science value and the new IR laser occultation capability. The focus will then be on retrieval performance analysis results obtained so far, in particular regarding the profiles of GHGs, isotopes, and wind. The results provide evidence that the GHG and isotope profiles can generally be retrieved within 5-35 km outside clouds with science and demonstration activities are outlined, including international participation opportunities.

    <