WorldWideScience

Sample records for halogenated greenhouse gases

  1. The greenhouse effect gases

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  2. Halogenated greenhouse gases at the Swiss High Alpine Site of Jungfraujoch (3580 m asl): Continuous measurements and their use for regional European source allocation

    Reimann, Stefan; Schaub, Daniel; Stemmler, Konrad; Folini, Doris; Hill, Matthias; Hofer, Peter; Buchmann, Brigitte; Simmonds, Peter G.; Greally, Brian R.; O'Doherty, Simon

    2004-03-01

    At the high Alpine site of Jungfraujoch (3580 m asl), 23 halogenated greenhouse gases are measured quasi-continuously by gas chromatography-mass spectrometry (GCMS). Measurement data from the years 2000-2002 are analyzed for trends and pollution events. Concentrations of the halogenated trace gases, which are already controlled in industrialized countries by the Montreal Protocol (e.g., CFCs) were at least stable or declining. Positive trends in the background concentrations were observed for substances which are used as CFC-substitutes (hydrofluorocarbons, hydrochlorofluorocarbons). Background concentrations of the hydrofluorocarbons at the Jungfraujoch increased from January 2000 until December 2002 as follows: HFC 134a (CF3CH2F) from 15 to 27 ppt, HFC 125 (CF3CHF2) from 1.4 to 2.8 ppt, and HFC 152a (CHF2CH3) from 2.3 to 3.2 ppt. For HFC 152a, a distinct increase of its concentration magnitude during pollution events was observed from 2000 to 2002, indicating rising European emissions for this compound. Background concentrations of all measured compounds were in good agreement with similar measurements at Mace Head, Ireland. On the other hand, peak concentrations were significantly higher at the Jungfraujoch. This finding is due to the proximity to potent European sources, foremost in southern Europe. The average ratio of halocarbons versus carbon monoxide (CO) concentrations above their baseline values was used to estimate source strengths for the part of Europe which most influences the Jungfraujoch during pollution events. HFCs emission estimates from Jungfraujoch tend to be higher than figures at Mace Head (Ireland) from the end of the 1990s, which either reflects the increased use of these compounds or the closer location of Jungfraujoch to major southern European sources. Transport of polluted European boundary layer air masses to the high Alpine site was observed especially during frontal passages, foehn events, and thermal lifting of air masses in summer

  3. Greenhouse gases and global warming

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the enhanced greenhouse effect? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  4. GREENHOUSE GASES AND AGRICULTURE

    Agriculture ranks third in its contribution to Earth's anthropogenically nhanced greenhouse effect. Energy use and production and chlorofluorocarbons are anked first and second, respectively.) pecifically, greenhouse gas sources and inks are increased, and sinks are decreased, by...

  5. Reducing Greenhouse Gases

    Kopp, Andreas

    2015-01-01

    World Bank is applying to transport initiatives a new and distinctive method of greenhouse gas (GHG) analysis as part of its comprehensive GHG accounting policy. In transport, choices by travelers determine usage, and a fundamental trend in much of the world is strongly boosting GHG emissions: the massive rise in motorization as household incomes and technical advances make it affordable. ...

  6. Energy efficiency and greenhouse gases

    Estonia's energy balance for 1990 - 1994 is characterized by the dramatic changes in the economy after regaining independence in 1991. In 1990 - 1993, primary energy supply decreased about 1.9 times. The reasons were a sharp decrease in exports of electric energy and industrial products, a steep increase in fuel prices and the transition from the planned to a market-oriented economy. Over the same period, the total amount of emitted greenhouse gases decreased about 45%. In 1993, the decrease in energy production and consumption stopped, and in 1994, a moderate increase occurred (about 6%), which is a proof stabilizing economy. Oil shale power engineering will remain the prevailing energy resource for the next 20 - 25 years. After stabilization, the use of oil shale will rise in Estonia's economy. Oil shale combustion in power plants will be the greatest source of greenhouse gases emissions in near future. The main problem is to decrease the share of CO2 emissions from the decomposition of carbonate part of oil shale. This can be done by separating limestone particles from oil shale before its burning by use of circulating fluidized bed combustion technology. Higher efficiency of oil shale power plants facilitates the reduction of CO2 emissions per generated MWh electricity considerably. The prognoses for the future development of power engineering depend essentially on the environmental requirements. Under the highly restricted development scenario, which includes strict limitations to emissions (CO2 , SO2 , thermal waste) and a severe penalty system, the competitiveness of nuclear power will increase. The conceptual steps taken by the Estonian energy management should be in compliance with those of neighboring countries, including the development programs of the other Baltic states

  7. Noble Gases and Halogens in Icelandic Basalts

    Weston, Bridget

    2013-01-01

    Noble gas and halogen data from a suite of Icelandic samples are presented. Iceland combines hotspot volcanism, a spreading ridge and abundant subglacially erupted samples. This combination allows for samples that erupted under high enough pressures to retain a measurable mantle volatile content, and also display signatures representing interaction between ocean island basalt (OIB) and mid-ocean ridge basalt (MORB) mantle sources.Erupted samples used to determine the mantle’s halogen and nobl...

  8. Voluntary reporting of greenhouse gases, 1995

    NONE

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  9. GREENHOUSE GASES AND MEANS OF PREVENTION

    Dušica Stojanović

    2013-09-01

    Full Text Available The greenhouse effect can be defined as the consequence of increased heating of the Earth's surface, as well as the lower atmosphere by carbon dioxide, water vapor, and other trace amounts gases. It is well-known that human industrial activities have released large amounts of greenhouse gases in the atmosphere, about 900 billion tons of carbon dioxide, and it is estimated that up to 450 billion are still in the atmosphere. In comparison to greenhouse gases water vapor is one of the greatest contributors to the greenhouse effect on Earth. Many projects, as does the PURGE project, have tendences to build on the already conducted research and to quantify the positive and negative impacts on health and wellbeing of the population with greenhouse gas reduction strategies that are curently being implemented and should be increasingly applied in various sectors and urban areas, having offices in Europe, China and India.

  10. Alkali and Halogen Chemistry in Volcanic Gases on Io

    Schaefer, L

    2004-01-01

    We use chemical equilibrium calculations to model the speciation of alkalis and halogens in volcanic gases emitted on Io. The calculations cover wide temperature (500-2000 K) and pressure (10^-6 to 10^+1 bars) ranges, which overlap the nominal conditions at Pele (T = 1760 K, P = 0.01 bars). About 230 compounds of 11 elements (O, S, Li, Na, K, Rb, Cs, F, Cl, Br, I) are considered. We predict the major alkali and halogen species in a Pele-like volcanic gas and the major alklai and halogen condensates. We also model disequilibrium chemistry of the alkalis and halogens in the volcanic plume. Based on this work and our prior modeling for Na, K, and Cl in a volcanic plume, we predict the major loss processes for the alkali halide gases are photolysis and/or condensation onto grains. On the basis of elemental abundances and photochemical lifetimes, we recommend searching for gaseous KCl, NaF, LiF, LiCl, RbF, RbCl, CsF, and CsCl around volcanic vents during eruptions. Based on abundance considerations and observation...

  11. Mitigating Greenhouse Gases in Agriculture

    Muller, Adrian; Jawtusch, Julia; Gattinger, Andreas

    2011-01-01

    Climate change has severe adverse effects on the livelihood of millions of the world’s poorest people. Increasing temperatures, water scarcity and droughts, flooding and storms affect food security. Thus, mitigation actions are needed to pave the way for a sustainable future for all. Currently, agriculture directly contributes about 10-15 percent to global greenhouse gas (GHG) emissions. Adding emissions from deforestation and land use change for animal feed production, this rises to about 30...

  12. Electricity generation and greenhouse gases

    A comparison is presented of the emissions of carbon dioxide and methane associated with electricity generation and residential heating options found in Canada. Greenhouse impacts of thermal generating technologies and hydroelectric projects are evaluated along with impacts of fuel switching options. Technologies and options considered include coal-fired and combined-cycle plants, heat pumps, and direct combustion of oil or gas in new residential furnaces. Environmental effects taken into account include leaks of methane from natural gas production and coal mining, production of carbon dioxide and methane from decomposition of organic material flooded in a hydroelectric development, and combustion of fuels. It is seen that fuel switching from thermal generation sources to direct combustion of natural gas in space and water heating significantly reduces both total energy use and greenhouse gas emissions. Additional gains can be achieved through use of high-efficiency technology. Substitution of direct combustion of oil where gas is unavailable for incremental oil- or coal-fired electricity will also reduce greenhouse gas emissions. Since direct combustion of natural gas is usually less costly than construction of new electric generating facilities, it may also prove to be a more successful strategy for encouraging energy exports by hydro-based systems to displace thermal electricity. 16 refs., 2 tabs

  13. Global warming and greenhouse gases

    Belić Dragoljub S.

    2006-01-01

    Full Text Available Global warming or Climate change refers to long-term fluctuations in temperature, precipitation, wind, and other elements of the Earth's climate system. Natural processes such as solar-irradiance variations, variations in the Earth's orbital parameters, and volcanic activity can produce variations in climate. The climate system can also be influenced by changes in the concentration of various gases in the atmosphere, which affect the Earth's absorption of radiation.

  14. Global warming and greenhouse gases

    Belić Dragoljub S.

    2006-01-01

    Global warming or Climate change refers to long-term fluctuations in temperature, precipitation, wind, and other elements of the Earth's climate system. Natural processes such as solar-irradiance variations, variations in the Earth's orbital parameters, and volcanic activity can produce variations in climate. The climate system can also be influenced by changes in the concentration of various gases in the atmosphere, which affect the Earth's absorption of radiation.

  15. Synthetic greenhouse gases under control

    This article discusses new Swiss regulations on the use of synthetic materials that posses a considerable greenhouse-warming potential. Synthetic materials such as hydro-chlorofluorocarbons HCFCs, perfluoride-hydrocarbons and sulphur hexafluoride have, in recent years, replaced chlorofluorocarbons CFCs, which were banned on account of their ozone depletion characteristics. The use of these persistent substances is now being limited to applications where more environment-friendly alternatives are not available. The measures decreed in the legislation, which include a general ban on HCFCs as of 2004 and a ban on the export of installations and equipment that use ozone-depleting refrigerants are described. Details on the legislation's effects on the Swiss refrigeration industry are listed and discussed

  16. Comparing greenhouse gases for policy purposes

    In order to derive optimal policies for greenhouse gas emissions control, the discounted marginal damages of emissions from different gases must be compared. The greenhouse warming potential (GWP) index, which is most often used to compare greenhouse gases, is not based on such a damage comparison. This essay presents assumptions under which ratios of gas-specific discounted marginal damages reduce to ratios of discounted marginal contributions to radiative forcing, where the discount rate is the difference between the discount rate relevant to climate-related damages and the rate of growth of marginal climate-related damages over time. If there are important gas-specific costs or benefits not tied to radiative forcing, however, such as direct effects of carbon dioxide on plant growth, there is in general no shortcut around explicit comparison of discounted net marginal damages. 16 refs

  17. Greenhouse gases study in Amazonia

    The Amazon plays an important role on the global carbon cycle, as changing as carbon storage, since Amazon Basin is the biggest area of tropical forest, around 50% of global. Natural's process, deforestation, and use land are CO2 sources. The Amazon forest is a significant source of N2O by soil process, and CH4 by anaerobic process like flooded areas, rice cultures, and others sources. This project is part of the LBA project (Large-Scale Biosphere Atmosphere Experiment in Amazonia), and this project is 'Vertical profiles of carbon dioxide and other trace gas species over the Amazon basin using small aircraft'. Since December 2000 vertical profiles of CO2, CH4, CO, H2, N2O and SF6 have been measured above central Amazonia. The local sampling was over Tapajos National Forest, a primary forest in Para State, where had a CO2 flux tower and an east impact area with sources like animals, rice cultivation, biomass burning, etc, to compare the influence of an impact area and a preserved area in the profiles. The Reserva Biologica de Cuieiras, at Amazon State, is the other studied place, where there already exists a CO2 flux tower, and an east preserved area at this State, to compare with the Cuieiras. The sampling has been carried out on vertical profile from 1000 ft up to 12000 ft using a semi-automated sampling package developed at GMD/NOAA and a small aircraft. The analysis uses the MAGICC system (Multiple Analysis of Gases Influence Climate Change) which is installed at the Atmospheric Chemistry Laboratory (LQA) in IPEN (Instituto de Pesquisas Energeticas e Nucleares). The results showed that all gases studied, except H2 gas, has been following the global trend. At the Para State, for the studied years, the Amazonian Forest performed as small CO2 sink. To compare Wet and Dry Seasons, subtracted the Ascension concentration values in the period to remove the global influence. So that, in the 2004 and 2005 wet seasons and 2004 dry season comparison it was observed 2 ppm

  18. Effect of Greenhouse Gases Dissolved in Seawater

    Shigeki Matsunaga

    2015-01-01

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence o...

  19. Agreements on emission of greenhouse gases

    Agreements on emission of greenhouse gases is one of the instruments used by Norwegian authorities to meet their obligations with respect to the Climate Convention and the Kyoto Protocol. This book discusses the legal issues raised by these agreements. A main topic is how the industrial emissions conform to the Pollution Act. Does the Pollution Act apply to these emissions? What is the impact of the sanction rules in this act on the emissions? The book also deals with the following general questions that arise in connection with the application of public authority: (1) Can the administration grant concessions and permits in the form of agreements? (2) What commitments can be imposed on a private party by the administration by agreement? (3) Should the procedures set down in the Pollution Act and in the Public Administration Act be followed fully when the pollution authorities make agreements? Is the opportunity of the administration to reverse more restricted when they make agreements than when they make one-sided decisions? Although this discussion primarily deals with the emission of greenhouse gases, the reasoning and conclusions are relevant in many other types of agreements in which the public administration is one of the parties. The agreement that regulates the emissions of greenhouse gases from the Norwegian aluminium industry is described in a special section. The book also gives a brief account of how agreements are used in the Danish climate policy

  20. Voluntary reporting of greenhouse gases 1997

    NONE

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  1. Effect of Greenhouse Gases Dissolved in Seawater

    Shigeki Matsunaga

    2015-12-01

    Full Text Available A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  2. Effect of Greenhouse Gases Dissolved in Seawater.

    Matsunaga, Shigeki

    2016-01-01

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region. PMID:26729101

  3. Greenhouse effect gases inventory in France during the years 1990-1999

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF6). Emissions of sulphur dioxide (SO2), nitrogen oxides (NOx), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NOx, 23% as regards NMVOCs, 33% for CO and by 44% regarding SO2. Out of the six greenhouse gases covered by the Kyoto Protocol, CO2 accounts for the largest share in total GWP emissions (70 %), followed by N2O (16 %), CH4 (12 %), HFCs (0.99 %), SF6 (0.5 %), and PFCs (0.39 %). (author)

  4. Reducing greenhouse gases: Promoting an international accord

    This article reports on a Cornell Center for the Environmental sponsored workshop to explore the prospects for reducing atmospheric concentrations of greenhouse gases, carbon dioxide as well as others through voluntary, market-based international accords. Cornell specialists in a range of fields were joined by participants from other universities and policy groups. The topics discussed covered the threat to the biosphere, why international measures are essential, and how they might be implemented. Tradeoffs in terms of emission sources and sinks were explored, along with issues of technology transfer. A panel of experts considered the potential interactions between increases in atmospheric greenhouse gases and agriculture, transportation systems, and national politics. Several participants presented the perspectives of developing nations. Other speakers discussed strategies for effluent monitoring to insure compliance with international accords, including the development and use of remote-sensing technology. The prospects for market-based mechanisms to alleviate other environmental problems, including the threat to biodiversity, were discussed by Cornell biology professor Thomas Eisner

  5. Veracruz State Preliminary Greenhouse Gases Emissions Inventory

    Welsh Rodriguez, C.; Rodriquez Viqueira, L.; Guzman Rojas, S.

    2007-05-01

    At recent years, the international organisms such as United Nations, has discussed that the temperature has increased slightly and the pattern of precipitations has changed in different parts of the world, which cause either extreme droughts or floods and that the extreme events have increased. These are some of the risks of global climate change because of the increase of gas concentration in the atmosphere such as carbon dioxides, nitrogen oxides and methane - which increase the greenhouse effect. Facing the consequences that could emerge because of the global temperature grown, there is a genuine necessity in different sectors of reduction the greenhouse gases and reduced the adverse impacts of climate change. To solve that, many worldwide conventions have been realized (Rio de Janeiro, Kyoto, Montreal) where different countries have established political compromises to stabilize their emissions of greenhouse gases. The mitigation and adaptation policies merge as a response to the effects that the global climate change could have, on the humans as well as the environment. That is the reason to provide the analysis of the areas and geographic zones of the country that present major vulnerability to the climate change. The development of an inventory of emissions that identifies and quantifies the principal sources of greenhouse gases of a country, and also of a region is basic to any study about climate change, also to develop specific political programs that allow to preserve and even improve a quality of the atmospheric environment, and maybe to incorporate to international mechanisms such as the emissions market. To estimate emissions in a systematic and consistent way on a regional, national and international level is a requirement to evaluate the feasibility and the cost-benefit of instrumented possible mitigation strategies and to adopt politics and technologies to reduce emissions. Mexico has two national inventories of emissions, 1990 and 1995, now it is

  6. Computing land use emissions of greenhouse gases

    A model has been developed to estimate the regional emission of greenhouse gases from land-use related sources. Driving forces for this model are the changing regional demand for food and wood products driven by demographic and economic developments. To include the environmental conditions, which are essential factors determining the flux for certain sources, emissions are grid-based where possible. Grid-based explicit calculations are given for CH4 emission from rice, wetlands, emissions from deforestation, savanna burning and agricultural waste burning and N2O from natural soils, arable lands and deforestation. For a number of sources (landfills, domestic sewage treatment, termites, methane hydrates and aquatic sources) geographically explicit calculations are not yet possible because of data limitations. For most of the sources the global results of the calculations are in agreement with other scenario studies, although there are differences for a number of individual sources. 59 refs., 3 figs., 8 tabs

  7. Hydropower may produce more greenhouse gases

    According to this article, dam projects in hydropower development may lead to increased emission of greenhouse gases and may create great inconveniences for the local community. Hence it is not without problems to sponsor such projects through the Clean Development Mechanism (CDM) of the Kyoto Protocol. In many countries the great era of hydroelectric development is over and the potential is now in the developing countries. The aim of the CDM is two-fold: sustainable development in the developing countries, and cheap reduction of greenhouse gas emission from developed nations. It has been agreed upon in the climate negotiations that it is the developing country receiving the investments that shall document that the projects conform to the goal of sustainable development of that country. The concept of sustain ability is a vague one, and it is a great challenge to make it more precise so that requirements may be posed on CDM projects. This is important as projects that are suitable from a climate point of view may have undesirable environmental or social effects, which may be in conflict with the goal of sustainable development. This also pertains to hydropower. It also appears that water reservoirs are not always as clean as has been assumed

  8. Absorption of Greenhouse Gases in Liquids: A Molecular Approach

    Balaji, S.P.

    2015-01-01

    The increase in concentrations of greenhouse gases is responsible for global warming over the past few years. A major portion of the emitted greenhouse gases contains carbon dioxide (CO2). The capture of carbon dioxide from the effluent sources, its transport, and storage has been identified as the

  9. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  10. Analysis of air pollution and greenhouse gases

    Benkovitz, C.M.

    1992-03-01

    The current objective of the project Analysis of Air Pollution and Greenhouse Gases'' is to develop a study of emissions and emission sources that could easily be linked to models of economic activity. Initial studies were conducted to evaluate data currently available linking activity rates and emissions estimates. The emissions inventory developed for the National Acid Precipitation Assessment Program (NAPAP) presents one of the most comprehensive data sets, and was chosen for our initial studies, which are described in this report. Over 99% of the SO{sub 2} emissions, 98% of the NO{sub x} emission and 57% of the VOC emissions from area sources are related to fuel combustion. The majority of emission from these sources are generated by the transportation sector. Activity rates for area sources are not archived with the NAPAP inventory; alternative derivations of these data will be part of the future activities of this project. The availability and completeness of the fuel heat content data in the NAPAP inventory were also studied. Approximately 10% of the SO{sub 2} emissions, 13% of the NO{sub x} emissions and 46% of the VOC emissions are generated by sources with unavailable data for fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content were generated. Future studies for this project include the derivation of activity rates for area sources, improved explanations for the default fuel parameters defined in the NAPAP inventory and the development of links to data bases of economic activity.

  11. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  12. Absorption of Greenhouse Gases in Liquids: A Molecular Approach

    Balaji, S.P.

    2015-01-01

    The increase in concentrations of greenhouse gases is responsible for global warming over the past few years. A major portion of the emitted greenhouse gases contains carbon dioxide (CO2). The capture of carbon dioxide from the effluent sources, its transport, and storage has been identified as the most promising method to mitigate global warming by reducing the carbon footprint in the atmosphere. Post-combustion CO2 capture processes mainly use chemical solvents like monoethanolamine (MEA) t...

  13. The Extension of the RAINS Model to Greenhouse Gases

    Klaassen, G.; Amann, M.; Berglund, C.; J. Cofala; Hoeglund-Isaksson, L.; C. Heyes; Mechler, R.; Tohka, A.; W. Schoepp; Winiwarter, W.

    2004-01-01

    Many of the traditional air pollutants and greenhouse gases have common sources, offering a cost-effective potential for simultaneous improvements for both traditional air pollution problems as well as climate change. A methodology has been developed to extend the RAINS integrated assessment model to explore synergies and trade-offs between the control of greenhouse gases and air pollution. With this extension, the RAINS model allows now the assessment of emission control costs for the six gr...

  14. Radiative forcings for 28 potential Archean greenhouse gases

    B. Byrne; Goldblatt, C.

    2014-01-01

    Despite reduced insolation in the late Archean, evidence suggests a~warm climate which was likely sustained by a stronger greenhouse effect, the so-called faint young sun problem (FYSP). CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4, and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HIT...

  15. Synthetic greenhouse gases to decline if Montreal Protocol amended

    Wendel, JoAnna

    2014-07-01

    The Montreal Protocol, an international treaty designed to reduce the release into the atmosphere of ozone-depleting gases such as hydrochlorofluorocarbons and chlorofluorocarbons, has been successful since its implementation in the late 1980s. However, related greenhouse gases, such as hydrofluorocarbons (HFCs), have increased in concentration in the atmosphere since then. HFCs, along with other synthetic greenhouse gases (SGHGs), account for a radiative forcing almost 20% as large as that due to the increase in carbon dioxide (CO2) since the preindustrial era.

  16. Refutation of the theorie of gases greenhouse

    Mallet, Marc

    2015-01-01

    The explanation of global warming by the IPCC accumulation of gas greenhouse effect in theatmosphere is widely accepted by the analysis scientific community worldwide. However, as weshall prove it, this theory is a mistake because contrary to accepted laws of physical particular asregards the properties of the black body. The effect of Greenhouse invoked is not the right one andradiation that the Earth would send in Space is impossible because much higher than what the blackbody that is the t...

  17. Emissions of greenhouse gases in the United States 1997

    NONE

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  18. Turnover and transport of greenhouse gases in a Danish wetland

    Jørgensen, Christian Juncher

    2011-01-01

    Natural wetlands act as both sources and sinks of greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil to the atmosphere. Production and consumption of these gases in the soil are controlled by a series of highly dynamic and interrelated processes...... these drivers, thereby influencing the net emission or uptake of greenhouse gas. In this PhD thesis the complex aspects in the exchange of N2O across the soil-atmosphere is investigated with special focus on the spatiotemporal variations in drivers for N2O production and consumption in the soil and...... in observed net N2O dynamics. Similarly, plant-mediated gas transport by the subsurface aerating macrophyte Phalaris arundinacea played a major part in regulating and facilitating emissions of greenhouse gases across the soil-atmosphere interface. It is concluded that the spatiotemporal distribution...

  19. Greenhouse effect of chlorofluorocarbons and other trace gases

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    We compare the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. We find that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quarter of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that du...

  20. Greenhouse effect of chlorofluorocarbons and other trace gases

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  1. Impact of greenhouse gases on the Earth's ozone layer

    Zadorozhny, Alexander

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2 , CH4 , and N2 O in the future long-term changes of the Earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the Earth's ozone layer, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2 , essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the

  2. Radiative forcings for 28 potential Archean greenhouse gases

    B. Byrne; Goldblatt, C.

    2014-01-01

    Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP). CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITRAN 2012 line data ...

  3. Halogenated source gases measured by FTIR at the Jungfraujoch station: updated trends and new target species

    Mahieu, Emmanuel; Bader, Whitney; Bovy, Benoît; Franco, Bruno; Lejeune, Bernard; Servais, Christian; Notholt, Justus; Palm, Mathias; Toon, Geoffrey C.

    2015-04-01

    The atmospheric abundances of chlorine and fluorine increased very significantly during the second half of last century, following large emissions of long-lived halogenated source gases used in numerous industrial and domestic applications. Given the phase-out schedule of ozone depleting substances adopted by the Montreal Protocol, its Amendments and Adjustments, the loading of the CFCs in the Earth's atmosphere is now slowly decreasing. In contrast, their first replacement products, the HCFCs, are still on the rise, with current rates of increase substantially larger than at the beginning of the 21st century. As potent greenhouse gases, a suite of fluorinated compounds are targeted by the Kyoto Protocol. At present, they continue to accumulate in the atmosphere (Montzka et al., 2011). Given their environmental impacts, continuous monitoring of the abundances of these gases is of primary importance. In addition to the in situ networks, remote sensing techniques operated from space, balloon or from the ground provide valuable information to assess the long-term tropospheric and lower stratospheric trends of an increasing number of halogenated source gases, as well as of the reservoirs resulting from their photolysis in the stratosphere (e.g. Mahieu et al., 2014a). In this contribution, we will present decadal time series of halogenated source gases monitored at the high altitude station of the Jungfraujoch (46.5° N, 8° E, 3580 m asl) with Fourier Transform Infared (FTIR) spectrometers, within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, see http://www.ndacc.org). Total column trends presented in previous studies for CFC-11, -12 and HCFC-22 (Zander at al., 2008), CCl4 (Rinsland et al., 2012), HCFC-142b (Mahieu et al., 2013), CF4 (Mahieu et al., 2014b) and SF6 (Zander et al., 2008) will be updated using the latest available Jungfraujoch solar observations. Investigations dealing with the definition of approaches to

  4. Iatrogenic greenhouse gases: the role of anaesthetic agents.

    Uzoigwe, Chika E; Sanchez Franco, Luis C; Forrest, Michael D

    2016-01-01

    The contribution of health-care activity to climate change is not negligible and is increasing. Anaesthetic greenhouse gases, in particular the fluranes, have a much more potent global warming capacity, volume for volume, than carbon dioxide, but their emissions remain completely unregulated. PMID:26903451

  5. The influence of greenhouse gases on global climate change

    Present article is devoted to influence of greenhouse gases on global climate change. Thus, the impacts associated with increasing of CO2 concentration are considered. The impacts associated with decreasing of ozone layer are considered as well. The influence of air temperature on agriculture is studied.

  6. OPTIONS FOR ABATING GREENHOUSE GASES FROM EXHAUST STREAMS

    This report examines different alternatives for replacing, treating, and recycling greenhouse gases. It is concluded that treatment (abatement) is the only viable short-term option. Three options for abatement that were tested for use in semiconductor facilities are reviewed, and their performance and costs compared. This study shows that effective abatement options are available to the photovoltaic (PV) industry, at reasonable cost

  7. Recycling of greenhouse gases via methanol

    Bill, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Eliasson, B.; Kogelschatz, U. [ABB Corporate Research Center, Baden-Daettwil (Switzerland)

    1997-06-01

    Greenhouse gas emissions to the atmosphere can be mitigated by using direct control technologies (capture, disposal or chemical recycling). We report on carbon dioxide and methane recycling with other chemicals, especially with hydrogen and oxygen, to methanol. Methanol synthesis from CO{sub 2} is investigated on various catalysts at moderate pressures ({<=}30 bar) and temperatures ({<=}300{sup o}C). The catalysts show good methanol activities and selectivities. The conversion of CO{sub 2} and CH{sub 4} to methanol is also studied in a silent electrical discharge at pressures of 1 to 4 bar and temperatures close to room temperature. Methanol yields are given for mixtures of CO{sub 2}/H{sub 2}, CH{sub 4}/O{sub 2} and also for CH{sub 4} and air mixtures. (author) 2 figs., 5 refs.

  8. Inhomogeneous radiative forcing of homogeneous greenhouse gases

    Huang, Yi; Tan, Xiaoxiao; Xia, Yan

    2016-03-01

    Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO2, the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (-2.5-5.1 W m-2) being more than 3 times the magnitude of the global mean value (2.3 W m-2). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport.

  9. Radiative forcings for 28 potential Archean greenhouse gases

    B. Byrne

    2014-05-01

    Full Text Available Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP. CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITRAN 2012 line data for background pressures of 0.5, 1, and 2 bar. For CO2 to resolve the FYSP alone, 0.21 bar is needed with 0.5 bar of atmospheric pressure, 0.13 bar with 1 bar of atmospheric pressures, or 0.07 bar with 2 bar of atmospheric pressure. For CH4, we find that near-infrared absorption is much stronger than previously thought, arising from updates to the HITRAN database. CH4 radiative forcing peaks at 10.3, 9, or 8.3 W m−2 for background pressures of 0.5, 1 or 2 bar, likely limiting the utility of CH4 for warming the Archean. For the other 26 HITRAN gases, radiative forcings of up to a few to 10 W m−2 are obtained from concentrations of 0.1–1 ppmv for many gases. We further calculate the reduction of radiative forcing due to gas overlap for the 20 strongest gases. We recommend the forcings provided here be used both as a first reference for which gases are likely good greenhouse gases, and as a standard set of calculations for validation of radiative forcing calculations for the Archean.

  10. Greenhouse gases mitigation options and strategies for Tanzania

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  11. Greenhouse effect gases: reduction challenges and accounting methods

    In this article, the author first proposes an overview of strategic challenges related to the reduction of greenhouse gas emissions. He indicates and discusses the various economic consequences of climate change. These consequences can be environmental (issues ranging from a loss of biodiversity to agriculture), social (from climate refugees to tourism), and economic (from climate disasters to insurance). He focuses on the issue of energy (oil at the base of our economy, carbon contents) and discusses competition issues (an always more demanding regulation, and unavoidable practices). In the second part, he proposes an overview of methods of accounting of greenhouse effect gases, and discusses how to perform an emission inventory

  12. Emissions Of Greenhouse Gases From Rice Agriculture

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small

  13. Greenhouse effect of trace gases, 1970-1980

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  14. Mitigation of greenhouse gases from agriculture: Role of models

    Schils, R.L.M.; Ellis, J.L.; De klein, C. A. M.;

    2012-01-01

    Models are widely used to simulate the emission of greenhouse gases (GHG). They help to identify knowledge gaps, estimate total emissions for inventories, develop mitigation options and policies, raise awareness and encourage adoption. These models vary in scale, scope and methodological approach....... The scale increases from field, manure storage or rumen via herd or farm to country or continent. The scope may be restricted to a single GHG or include all gases. Multidisciplinary models may include nutrients, other substances or socio-economic parameters. Mechanistic process-based models have been...

  15. Stable isotope measurement techniques for atmospheric greenhouse gases

    The technical requirements to perform useful measurements of atmospheric greenhouse gas concentrations and of their isotope ratios are of direct relevance for all laboratories engaged in this field. A meaningful interpretation of isotopes in global models on sources and sinks of CO2 and other greenhouse gases depends on strict laboratory protocols and data quality control measures ensuring comparable data in time and space. Only with this precondition met, the isotope techniques can serve as a potentially powerful method for reducing uncertainties in the global CO2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. This publication provides four contributions describing methods for the determination of the isotopic composition of trace gases in atmospheric air and in ice cores. These contributions have been indexed separately

  16. VENTILATION RATE AND GREENHOUSE GASES EMISSIONS FROM BROILER CHICKEN HOUSE

    Monika KNÍŽATOVÁ

    2009-03-01

    Full Text Available An experiment was carried out to determine emissions of greenhouse gases from broiler chicken house during one fattening period (i.e. 40 days. The greatest concentrations of water vapour (H2O, carbon dioxide (CO2, nitrous oxide (N2O and methane (CH4 were observed in the first ten days. Increasing emissions of all greenhouse gases were as a consequence of increasing ventilation rate, although their concentrations were decreasing. It was released 83.8 . 106 m3 polluted air containing 211 314 kg CO2, 5 kg N2O, 1 323 kg CH4 and 178 914 kg H2O over a period of whole fattening time.

  17. Offsets : An innovative approach to reducing greenhouse gases

    One of the most innovative ways to address climate change is the use of offsets, which refers to actions taken outside of a company's operations, domestically and internationally, to reduce greenhouse gas emissions. This paper is devoted to a discussion of Suncor Energy's action plan for greenhouse gases which include offsets, and to an explanation of the reasons why offsets are fundamental to successful greenhouse gas management. Suncor Energy Inc., has developed a plan with seven elements to meet their target of stabilizing their greenhouse gas emissions at 1990 levels by year 2000. The seven elements include: (1) energy efficiency and process improvements at their oil sands facility, (2) the development of alternative and renewable sources of energy, such as ethanol blended gasolines and the use of wind turbines to generate electricity, (3) promoting environmental and economic research to develop more advanced oil and gas technology to reduce greenhouse gas emissions, (4) implementing a constructive public policy input in support of sustainable development, (5) educating employees, customers and communities on global climate change, (6) measuring and reporting the company's environmental progress, and (7) pursuing domestic and international offset opportunities such as transfer of technology to developing countries, cogeneration of energy using natural gas, energy efficiency, renewable energy sources, emission reduction purchases and forest conservation. Of these proposed measures, offsets are the critical element which could spell the difference between success and failure in managing greenhouse gas emissions and the difference between economic hardship and economic opportunity

  18. Catalytic Transformation of Greenhouse Gases in a Membrane Reactor

    Prabhu, Anil K

    2003-01-01

    Supported Ni and Rh catalysts were developed for the reforming of two greenhouse gases, methane and carbon dioxide to syngas (a mixture of hydrogen and carbon monoxide). This is an endothermic, equilibrium limited reaction. To overcome the thermodynamic limitations, a commercially available porous membrane (Vycor glass) was used in a combined reactor-separator configuration. This was to selectively remove one or more of the products from the reaction chamber, and consequently shift the equ...

  19. International Negotiations for Reducing Greenhouse Gases with Emission Permits Trading

    Tadenuma, Koichi

    2004-01-01

    We build a three-stage game model of international negotiations on regulation of global emissions of greenhouse gases, and examine the Pareto optimality of an equilibrium allocation. First, we derive the condition for Pareto optimal allocations, which is an extension of the celebrated Samuelson condition. Next, we show that although production efficiency of a final allocation is always met at an equilibrium of the game, overall Pareto optimality may not be satisfied. This is because in negoti...

  20. Agriculture and greenhouse gases, a common tragedy. A review

    Stavi, Ilan; Lal, Rattan

    2013-01-01

    Increased atmospheric concentrations of greenhouse gases has led to global warming and associated climatic changes. The problem has been aggravated by the perception that the atmosphere is an infinite and toll-free resource. The well-known concept proposed by Garrett Hardin—“The Tragedy of the Commons”—highlights the misuse of common resources, which ultimately lead to their depletion. This article emphasizes the relevance of the same concept to the current climatic changes and highlights the...

  1. Emissions of greenhouse gases in the United States 1996

    NONE

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  2. Response of Thermospheric Hydrogen to Solar Variability and Greenhouse Gases

    Nossal, S. M.; Qian, L.; Solomon, S. C.; Burns, A. G.; Wang, W.; Mierkiewicz, E. J.; Roesler, F. L.; Woodward, R. C., Jr.

    2015-12-01

    Geocoronal hydrogen forms the upper boundary of the Earth's HOx chemisty and is a byproduct of methane and water vapor below. We will discuss observational and modeling studies of the upper atmospheric hydrogen response to the solar cycle and increases in greenhouse gases. The Wisconsin Northern hemisphere hydrogen airglow data set spans over two solar cycles. These data show a statistically significant solar cycle variation and a possible increase in intensity between successive solar maximum periods. We will discuss these data in the context of recent modeling studies with a single-column version of the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model. We investigate mechanisms associated with the solar cycle and greenhouse gas forcing of hydrogen by separately doubling carbon dioxide and methane, as well as doubling both together. These simulations indicate that carbon dioxide cooling, as well as methane changes to the source species for hydrogen, both lead to predicted increases in the upper thermospheric hydrogen density and that the response of hydrogen to greenhouse gases depends on the phase of the solar cycle. However, the effect of greenhouse gas doubling is not as large as the modeled solar cycle variability of thermospheric hydrogen. I will discuss results from these simulations and comparisons to observations.

  3. Quartet excited halogen atoms produced in the electron pulse irradiation of rare gases containing halogenated compounds

    Kuramasu, T.; Ohyama, H.; Yoshikawa, S.; Terazawa, N.; Ishikawa, Y.; Arai, S.

    1995-07-01

    Quartet excited halogen atoms F*(2p4 3s,4PJ), Cl*(3p4 4s,4PJ), Br*(4p4 5s,4PJ), and I*(5p4 6s,4PJ), where the J's are 5/2, 3/2, and 1/2, were found to be produced in the electron pulse irradiation of Ne or Ar containing one of SF6, CCl4, CClF3, CBrF3, CBr2F2, and CF3I. The population distribution ratios at the stage of production were 1.0(J=5/2):0.41(J=3/2):0.06(J=1/2) for F* in Ne containing SF6, 1.0(J=5/2):0.27(J=3/2):0.14(J=1/2) for Cl* in Ne containing CCl4, 1.0(J=5/2):0.29(J=3/2):0.2-0.3(J=1/2) for Br* in Ne containing CBr2F2, and 1.0(J=5/2):0.13(J=3/2):0.54(J=1/2) for I* in Ar containing CF3I. The observed ratios considerably differ from those calculated from the Boltzmann distribution law. F*(4P5/2), F*(4P3/2), and Cl*(4P5/2) are mainly produced by the reactions of lowest triplet excited diatomic molecules of neon with SF6 and CCl4. Cl*(4P3/2) and Cl*(4P1/2) are produced in a rapid process and deactivated into lower Cl*(4P5/2). Several reaction channels probably contribute to the formation of Br*(4PJ) and I*(4PJ). Rate constants for reactions of triplet excited diatomic molecules of neon or argon with these parent molecules were determined from observed absorption decay curves for Ne2* or Ar2* in the presence of parent molecules.

  4. Observations of halogenated trace gases in Taiwan and Malaysia

    Gooch, Lauren J.; Laube, Johannes C.; Sturges, William T.; Oram, David E.; Wang, Jia-Lin; Ou-Yang, Cheng-Feng; Lin, Neng-Huei; Mead, Iq; Rigby, Matt; White, Emily

    2015-04-01

    There are a large variety of halocarbons present in the atmosphere that significantly impact on stratospheric ozone depletion and/or global warming. Though the use of some of these compounds has been phased out and replaced under global control measures, relatively long atmospheric lifetimes, imperfect substitutes and incomplete reductions in usage mean that global concentrations of halocarbons still require regular monitoring. This is especially true for the rapidly developing East Asian region, where high emissions have been repeatedly reported in recent years. We here present results from an air sampling activity in Taiwan and Malaysia during the spring months of 2013 and 2014. A large range of halocarbons, including a number of novel gases, were investigated via high sensitivity gas chromatography mass spectrometry (GC-MS). We find periods of relatively clean air as well as episodes that appear to be impacted by urban and/or industrial emissions and examine correlations between individual species. Observed mixing ratios are compared in context with both global background data and other regional studies. Enhancements in the abundances of many halocarbons are detected with examples including the Halons 1211 and 1202 as well as the very long-lived perfluorocarbons c-C4F8, C5F12 and C7F16. We also show and evaluate unusually high mixing ratios of other globally growing halocarbons such as sulphur hexafluoride (SF6), HCFC-133a (CF3CH2Cl), and CFC-113a (CF3CCl3). Finally, we use NAME analysis to produce back-trajectories in order to assess possible regional emission sources.

  5. 温室效应和温室气体监测%Greenhouse effect and greenhouse gases monitoring

    韩香玉; 卢照方

    2011-01-01

    近年来,大气中温室气体含量的增加及其产生的温室效应,对气候和生态系统造成了一系列影响,因而对大气中温室气体含量的监测显得更为迫切.%Recently the increasing content of greenhouse gases in atmosphere and the greenhouse effect have created a series of influences on the climate and ecosystem, so it is urgent to minitor the content of greenhouse gases in atomosphere. This paper gives a general review of monitoring technologies for greenhouse gases.

  6. Are hydroelectric reservoirs significant sources of greenhouse gases

    Estimates suggest that, per unit of energy produced, greenhouse-gas flux to the atmosphere from some hydroelectric reservoirs may be significant compared to greenhouse-gas emission by fossil-fuelled electricity generation. Greenhouse gases (CO2 and CH4) are produced during bacterial decomposition of flooded peat and forest biomass. The amount emitted will be positively related to the area flooded. Early data from hydroelectric reservoirs in northern Canada support this hypothesis. Our hypothesis is based primarily on two of our past studies which show that both upland forests and peatlands are sites of intense microbial decomposition and greenhouse-gas production when they become covered with water. During the summer of 1992, the first preliminary data were obtained that support our hypothesis. At 12 sampling locations on the LaGrande II-BoydSakami Reservoir complex in northern Quebec, both the CO2 and CH4 were found to be evading to the atmosphere. CO2 concentrations were 2-3 times above atmospheric equilibrium at all sampling sites. This is in contrast to two large lakes, Nipigon and Superior, where CO2 was being absorbed from the atmosphere throughout the ice-free season. Surface CH4 concentrations were 0.05-1.1 μmol L-1 with most sites having concentrations higher than in natural, stratified Canadian shield lakes. Further measurements are required to determine annual fluxes. (19 refs., 3 figs., 2 tabs.)

  7. National and international emissions trading for greenhouse gases

    In the Kyoto Protocol the flexibility mechanisms - Joint Implementation (Art. 6), Clean Development Mechanism (Art. 12), Emissions Trading (Art. 17)- and Bubble (Art. 4) are roughly defined, leaving much questions open about their design and functioning, about eligibility criteria, impact on compliance and their political acceptation. In the NRP research project on national and international emissions trading for greenhouse gases these questions have been researched, mainly from an economic perspective and focussing on Emissions Trading. This report summarises the major results of the research project. refs

  8. Inventory of greenhouse gases in Quebec 1990-2000

    The inventory of greenhouse gas emissions in Quebec for the period 1990-2000 resulting from human activity was discussed. Added to the emissions that occur naturally, the emissions contribute to disrupt the equilibrium of the global system, resulting in global warming. The greenhouse gases selected for this inventory are those covered by the Kyoto Protocol, namely carbon dioxide, methane, nitrous oxide, sulphur fluorides, polyfluorocarbons, and some hydrofluorocarbons. The emissions of greenhouse gases were at 86,36 metric tonnes carbon dioxide equivalent in 1990, and rose to 88,34 metric tonnes carbon dioxide equivalent in 2000, representing an increase of 2.3 per cent. In 2000, the energy sector was responsible for the largest quantities of greenhouse gas emissions (62.64 metric tonnes carbon dioxide equivalent), of which 33.56 metric tonnes carbon dioxide equivalent resulted from transport activities. For the year 2000, the emissions generated by the energy sector represented 70.91 per cent of greenhouse gas emissions in Quebec., followed by industrial processes with 12.05 metric tonnes of carbon dioxide equivalent and 13.64 per cent, and agriculture with 8.37 metric tonnes carbon dioxide equivalent and 9.48 per cent, wastes with 5.16 metric tonnes carbon dioxide equivalent and 5.84 per cent, the use of solvents and other products with 0.11 metric tonne carbon dioxide equivalent and 0.13 per cent. the land use and forestry sector was not included in this inventory, as data was not available. The largest increase in emissions originated from the energy sector for the period 1990-2000, for an increase of 5.3 per cent. For the same period, the emissions from the industrial processes sector decreased by 4.1 per cent. This sector does not include the emissions resulting from the combustion of fossil fuels, as they were included in the energy sector figures. For the agriculture sector, the increase was 1.9 per cent, and the waste sector decreased by 13.3 per cent. The

  9. Radiative forcings for 28 potential Archean greenhouse gases

    Byrne, Brendan

    2014-01-01

    Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP). CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITRAN 2012 line data for background pressures of 0.5, 1, and 2 bar of atmospheric N2. For CO2 to resolve the FYSP alone at 2.8 Gyr BP (80% of present solar luminosity), 0.32 bar is needed with 0.5 bar of atmospheric N2, 0.20 bar with 1 bar of atmospheric N2, or 0.11 bar with 2 bar of atmospheric N2. For CH4, we find that near-infrared absorption is much stronger than previously thought, arising from updates to the HITRAN database. CH4 radiative forcing peaks at 10.3, 9, or 8.3 Wm-2 for background pressures of 0.5, 1 or 2 bar, likely limiting ...

  10. Greenhouse gases regional fluxes estimated from atmospheric measurements

    build up a new system to measure continuously CO2 (or CO), CH4, N2O and SF6 mixing ratios. It is based on a commercial gas chromatograph (Agilent 6890N) which have been modified to reach better precision. Reproducibility computed with a target gas on a 24 hours time step gives: 0.06 ppm for CO2, 1.4 ppb for CO, 0.7 ppb for CH4, 0.2 ppb for N2O and 0.05 ppt for SF6. The instrument's run is fully automated, an air sample analysis takes about 5 minutes. In July 2006, I install instrumentation on a telecommunication tall tower (200 m) situated near Orleans forest in Trainou, to monitor continuously greenhouse gases (CO2, CH4, N2O, SF6), atmospheric tracers (CO, Radon-222) and meteorological parameters. Intake lines were installed at 3 levels (50, 100 and 180 m) and allow us to sample air masses along the vertical. Continuous measurement started in January 2007. I used Mace Head (Ireland) and Gif-sur-Yvette continuous measurements to estimate major greenhouse gases emission fluxes at regional scale. To make the link between atmospheric measurements and surface fluxes, we need to quantify dilution due to atmospheric transport. I used Radon-222 as tracer (radon tracer method) and planetary boundary layer heights estimates from ECMWF model (boundary layer budget method) to parameterize atmospheric transport. In both cases I compared results to available emission inventories. (author)

  11. Emissions of greenhouse gases in the United States 1995

    NONE

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  12. Beyond Vienna and Montreal: Multilateral agreements on greenhouse gases

    Major reductions in emissions of all greenhouse gases are necessary to assure the integrity of the biosphere. National commitments by individual countries and concerted action by groups of large emitting nations, such as the Group of Seven major industrialized nations, are crucial for achieving process toward meaningful reductions in greenhouse-gas emissions. Binding multilateral instruments are also needed to attack global warming on a universal scale. New international institutions and decision-making processes may be desirable or even essential. The desirability of a framework or umbrella treaty - analogous to the Vienna Convention - with associated ancillary agreements - analogous to the Montreal Protocol - has dominated the discussion of multilateral climate instruments for some time. The need for a multilateral convention on climate has become widely recognized at the highest political levels and now appears to be universally accepted. The purpose of this article is to examine the implications of the Vienna-Montreal precedent and to stimulate debate on the form and substance of a global greenhouse-gas convention

  13. Beyond Vienna and Montreal: A global framework convention on greenhouse gases

    This chapter discusses the need for a framework treaty analogous to the Vienna Convention and to the Montreal Protocol for greenhouse gases. Discussed are the following topics: (1) the immediate need for multilateral greenhouse gas controls, including policy implications of scientific uncertainties; (2) recent steps toward a greenhouse gas convention; (3) an environmentally meaningful plan for a greenhouse gase conventions, including the ozone precident, CO2 targets, resource transfers, trading emissions allocations, institutional issues

  14. Projections of global emissions of fluorinated greenhouse gases in 2050

    Gschrey, Barbara; Schwarz, Winfried [Oeko-Recherche Buero fuer Umweltforschung und -beratung GmbH, Frankfurt/Main (Germany)

    2009-11-15

    Emissions of fluorinated greenhouse gases are currently covered under the Montreal Protocol, which focuses on ozone-depleting substances such as CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons), and under the Kyoto Protocol, which controls emissions of HFCs (hydrofluorocarbons), PFCs (perfluorocarbons) and SF{sub 6} (sulfur hexafluoride). This study bridges the gap between political regimes and their reporting systems by giving an overview of banks and emissions of all fluorinated gases in 2005, and projections of banks and emissions of fluorinated gases in 2050. The Montreal Protocol and its amendments will eventually result in the full phase out of CFCs and HCFCs. Developed countries have already completed the phase out of CFCs and will reach full phase out of HCFCs by 2020. Developing countries, in contrast, will phase out CFCs by 2010 and HCFCs by 2030. Although climate-friendly technology is available for most applications, the risk occurs that substitutes for ozone-depleting substances rely on HFCs, which cause global warming. This study determines global emissions of HFCs, PFCs and SF{sub 6} (Kyoto F-gases) in 2050 in a ''business-as-usual'' scenario. The global population is expected to increase to ca. 8.7 billion people, and high economic growth of 3.5% per year is assumed. Emissions in 2050 are quantified for each sector of application as well as for developed and developing countries based on growth rates of each sector. In 2050, total global emissions of fluorinated greenhouse gases are projected to amount to 4 GT CO{sub 2} eq. which equals ca. 5.9% of the total greenhouse gas emissions at this time. Compared to a relatively small share of F-gas emissions ranging around 1.3% of total greenhouse gas emissions in 2004, this percentage reflects an enormous increase. Relative to projected direct CO{sub 2} emissions alone, the 2050 F-gas emissions will even account for ca. 7.9%. In case of CO{sub 2} mitigation, this share

  15. Organic Halogen and Related Trace Gases in the Tropical Atmosphere: Results from Recent Airborne Campaigns Over the Pacific

    Atlas, E. L.; Navarro, M. A.; Donets, V.; Schauffler, S.; Lueb, R.; Hendershot, R.; Gabbard, S.; Hornbrook, R. S.; Apel, E. C.; Riemer, D. D.; Pan, L.; Salawitch, R. J.; Nicely, J. M.; Montzka, S. A.; Miller, B.; Moore, F. L.; Elkins, J. W.; Hintsa, E. J.; Campos, T. L.; Quack, B.; Zhu, X.; Pope, L.

    2014-12-01

    Organic halogen gases, especially containing bromine and iodine, play a significant role as precursors to active halogen chemistry and ozone catalytic loss. Much of the reactive organic halogen originates from biological processes in the surface ocean, which can be quite variable by season and location. The tropics and coastal margins are potentially important sources that are being examined. The recent coordinated CONTRAST/ATTREX/CAST missions were conducted in the Western Tropical Pacific, a region that is a major transport pathway for tropospheric air entering the stratosphere. One of the goals of the missions was to identify sources, distributions, and transport of organic halogens from the ocean surface into the tropical lower stratosphere. The missions were conducted during the NH winter season, Jan-Feb, 2014. In this presentation, we will discuss the distributions and variability of organic halogen gases in the study region and will examine the input of organic halogen species into the Tropical Tropopause Layer (TTL). Comparison with other tracers, such as methyl nitrate and NMHC, will help identify source regions for these gases. We will focus on the measurements obtained in the CONTRAST and ATTREX missions with data from in-situ GC/MS measurements and whole air samples collected on the NSF GV and NASA Global Hawk aircraft. Comparisons with other recent airborne campaigns, such as HIPPO and TC4, and with several ship-based studies will provide an additional context for evaluating the variability of organic halogen species in the tropical atmosphere and their role in transporting reactive halogen compounds into the UT/LS.

  16. Avoidance of fluorinated greenhouse gases. Possibilities of an early exit; Fluorierte Treibhausgase vermeiden. Wege zum Ausstieg

    Becken, Katja; Graaf, Daniel de; Elsner, Cornelia; Hoffmann, Gabriele; Krueger, Franziska; Martens, Kerstin; Plehn, Wolfgang; Sartorius, Rolf

    2010-11-15

    In comparison to carbon dioxide, fluorinated greenhouse gases are more harmful up to a factor of 24,000. Today the amount of fluorinated greenhouse gases of the world-wide emissions of climatic harmful gases amounts 2 % and increases to 6 % in the year 2050. The authors of the contribution under consideration report on possibilities for the avoidance of the emissions of fluorinated greenhouse gases. The characteristics and ecological effects of fluorinated gases as well as the development of the emission in Germany are presented. Subsequently, the applications of fluorinated hydrocarbons are described.

  17. Good practices reducing the greenhouse gases in the transport sector

    Public policies addressing the reduction of the greenhouse gases emission have to give response to the improvement of mobility in three aspects: passengers, freights, and urban and metropolitan areas. Passenger transport, because it involves long transportation distances consuming an important part of transport energy and raises difficult organizational problems. Freight transport, due to the complexity of interconnecting a lot of modes of transportation and the big range for improvement. Urban and metropolitan mobility, by the impact of actions in this field in the quality of life of a big part of the population. According to the peculiarities of their respective territories, different strategies of sustainable mobility that address the three considered aspects have been set up in Spain and its neighbouring countries. This article reviews some action lines implemented in spain, France and Germany, as a previous step to assess their possible adaptation to other territories. (Author) 6 refs.

  18. Constraints: greenhouse gases, resource, supply reliability, economic aspects

    The constraints to which renewable energies and nuclear energy have to comply are reviewed. The most important are: -) the reduction of greenhouse gases releases, -) the depletion of fossil energies and of uranium resource, -) economic competitiveness, -) reliability of the energy supply, -) security (accidents, terrorism, natural disasters...), and -) the acceptance by the public. The most impacting constraint appears to be also the most unpredictable: the acceptance by the public. The answer to limit these constraints is a better knowledge of them, for instance by increasing accuracy in climate predictions or resource assessment, or by a better understanding of the choice criteria used by our modern societies. The study shows that no energy is the best solution and that an optimized mix composed of renewable energies and nuclear energy is the solution by playing the advantages of one energy against the disadvantages of another. (A.C.)

  19. 75 FR 26904 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability; Default Emission Factors...

    2010-05-13

    ... of Greenhouse Gases: Additional Sources of Fluorinated GHGs (75 FR 18652) which included proposed methods for monitoring and reporting greenhouse gases (GHGs) from electronics manufacturing. More...: All documents in the docket are listed in the http://www.regulations.gov index. Although listed in...

  20. Study of greenhouse gases emission factor for nuclear power chain of China

    The Greenhouse Gases Emission Factor (GGEF) for nuclear power chain of China is calculated based on Life Cycle Analysis method and the definition of full energy chain. There is no greenhouse gases released directly from nuclear power plant. The greenhouse gases emission from nuclear power plant is mainly from coal-fired electricity supply to nuclear power plant for its normal operation and the production of construction materials those are used in the nuclear power plant. The total GGEF of nuclear power chain in China is 13.71 g-co2/kWh. It is necessary to regulate un-rational power source mix and to use the energy sources in rational way for reducing the greenhouse gas effect. Nuclear power for electricity generation is one of effective ways to reduce greenhouse gases emission and retard the greenhouse effect

  1. Persistence of climate changes due to a range of greenhouse gases

    Solomon, Susan; Daniel, John S.; Sanford, Todd J.; Murphy, Daniel M.; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-01-01

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO2 greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given...

  2. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    2011-04-25

    ... AGENCY 40 CFR Parts 98 Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY..., 2010 EPA promulgated Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule... outlined for calculating greenhouse gas emissions for the petroleum and natural gas systems source...

  3. Adaptation to Impacts of Greenhouse Gases on the Ocean (Invited)

    Caldeira, K.

    2010-12-01

    Greenhouse gases are producing changes in ocean temperature and circulation, and these changes are already adversely affecting marine biota. Furthermore, carbon dioxide is absorbed by the oceans from the atmosphere, and this too is already adversely affecting some marine ecosystems. And, of course, sea-level rise affects both what is above and below the waterline. Clearly, the most effective approach to limit the negative impacts of climate change and acidification on the marine environment is to greatly diminish the rate of greenhouse gas emissions. However, there are other measures that can be taken to limit some of the negative effects of these stresses in the marine environment. Marine ecosystems are subject to multiple stresses, including overfishing, pollution, and loss of coastal wetlands that often serve as nurseries for the open ocean. The adaptive capacity of marine environments can be improved by limiting these other stresses. If current carbon dioxide emission trends continue, for some cases (e.g., coral reefs), it is possible that no amount of reduction in other stresses can offset the increase in stresses posed by warming and acidification. For other cases (e.g., blue-water top-predator fisheries), better fisheries management might yield improved population health despite continued warming and acidification. In addition to reducing stresses so as to improve the adaptive capacity of marine ecosystems, there is also the issue of adaptation in human communities that depend on this changing marine environment. For example, communities that depend on services provided by coral reefs may need to locate alternative foundations for their economies. The fishery industry will need to adapt to changes in fish abundance, timing and location. Most of the things we would like to do to increase the adaptive capacity of marine ecosystems (e.g., reduce fishing pressure, reduce coastal pollution, preserve coastal wetlands) are things that would make sense to do even in

  4. Halogen Containing Gases as Lubricants for Crystallized Glass Ceramic Metal Combinations at Temperatures to 1500 F

    Buckley, Donald H.; Johnson, Robert L.

    1960-01-01

    Pyroceram 9608 (a crystallized glass ceramic) has been considered for use in high-temperature bearing and seal applications. One of the problems encountered with Pyroceram is the lack of availability of lubricants for the temperature range in which this material becomes practical. Experiments were conducted with Pyroceram sliding on various nickel- and cobalt-base alloys using reactive halogen-containing gases as lubricants. Friction and wear data were obtained as a function of sliding velocity and temperature. Studies were made with a hemispherical rider (3/16-in. rad., Pyroceram 9608) sliding in a circumferential path on the flat surface of a rotating disk (2(1/2) in. diam., nickel- or cobalt-base alloys). The specimens were run in an atmosphere of the various gases with a load of 1200 grams, a sliding velocity of 3200 feet per minute, and temperatures from 75 to 1500 F. The gas CF2Br-CF2Br was found to be an effective lubricant for Pyroceram 9608 sliding on Hastelloy R-235 and Inconel X up to 1400 F. The gas CF2Cl-CF2Cl provided effective lubrication for Pyroceram sliding on various cobalt-base alloys at 1000 F.

  5. Greenhouse gases: How does heavy oil stack up?

    Life-cycle emissions of direct greenhouse gases (GHG) have been calculated to elucidate the global warming impacts of various fossil fuel feedstocks. Calculations were made for the transportation sector using five fossil fuel sources: natural gas, light crude oil, conventional heavy oil, crude bitumen recovered through in-situ steam stimulation, and crude bitumen recovered through mining. Results suggest that fuels sourced from light crude oil have the lowest GHG emissions, while conventional heavy oil has the highest GHG emission levels for this application. Emissions of methane can constitute a significant portion of the life-cycle GHG emissions of a fossil fuel. For all the fossil fuels examined, except conventional heavy oil, GHG emissions associated with their production, transport, processing, and distribution are less than one third of their total life-cycle emissions. The remainder is associated with end use. This confirms that consumers of fossil fuel products, rather than fossil fuel producers, have the most leverage to reduce GHG emissions. 2 figs

  6. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  7. Greenhouse gases from wastewater treatment - A review of modelling tools.

    Mannina, Giorgio; Ekama, George; Caniani, Donatella; Cosenza, Alida; Esposito, Giovanni; Gori, Riccardo; Garrido-Baserba, Manel; Rosso, Diego; Olsson, Gustaf

    2016-05-01

    Nitrous oxide, carbon dioxide and methane are greenhouse gases (GHG) emitted from wastewater treatment that contribute to its carbon footprint. As a result of the increasing awareness of GHG emissions from wastewater treatment plants (WWTPs), new modelling, design, and operational tools have been developed to address and reduce GHG emissions at the plant-wide scale and beyond. This paper reviews the state-of-the-art and the recently developed tools used to understand and manage GHG emissions from WWTPs, and discusses open problems and research gaps. The literature review reveals that knowledge on the processes related to N2O formation, especially due to autotrophic biomass, is still incomplete. The literature review shows also that a plant-wide modelling approach that includes GHG is the best option for the understanding how to reduce the carbon footprint of WWTPs. Indeed, several studies have confirmed that a wide vision of the WWPTs has to be considered in order to make them more sustainable as possible. Mechanistic dynamic models were demonstrated as the most comprehensive and reliable tools for GHG assessment. Very few plant-wide GHG modelling studies have been applied to real WWTPs due to the huge difficulties related to data availability and the model complexity. For further improvement in GHG plant-wide modelling and to favour its use at large real scale, knowledge of the mechanisms involved in GHG formation and release, and data acquisition must be enhanced. PMID:26878638

  8. Thermospheric hydrogen response to increases in greenhouse gases

    Nossal, S. M.; Qian, L.; Solomon, S. C.; Burns, A. G.; Wang, W.

    2016-04-01

    We investigated thermospheric hydrogen response to increase in greenhouse gases and the dependence of this response to solar activity, using a global mean version of the National Center for Atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model. We separately doubled carbon dioxide (CO2) and methane (CH4) to study the influence of temperature and changes to source species for hydrogen. Our results indicate that both CO2 cooling and CH4 changes to the source species for hydrogen lead to predicted increases in the upper thermospheric hydrogen density. At 400 km, hydrogen increases ~30% under solar maximum and ~25% under solar minimum responding to doubling of CH4, indicating that hydrogen response to the source variation due to CH4 increase is relatively independent of solar activity. On the other hand, hydrogen response to doubling of CO2 highly depends on solar activity. At 400 km, doubling of CO2 results in an ~7% hydrogen increase at solar maximum, whereas it is ~25% at solar minimum. Consequently, at solar maximum, the predicted ~40% increase in atomic hydrogen in the upper thermosphere is primarily due to the source variation as a result of doubling of CH4, whereas at solar minimum, both cooling due to doubling of CO2 and the source variation due to doubling of CH4 have commensurate effects, resulting in an approximate 50% increase in the modeled upper thermospheric hydrogen.

  9. Impact of greenhouse gases on agricultural productivity in Pakistan

    Pakistan is an agricultural developing country. About 68% of the country's population resides in rural areas and is mostly linked with agriculture. Agricultural sector contributes more than 25% to GDP, employees about 45% of the labour force and contributes significantly to export earnings of the country. Energy sector is the major source (80%) of emissions of Greenhouse Gases (GHGs). Agriculture and livestock sectors are also responsible for GHGs emissions. The emissions of GHGs results in acid rain and earth's temperature rise (global warming). The destabilization of the global climate destroys natural ecosystem and increases natural disasters, such as violent storms, floods, droughts etc. The acid rain and these natural disasters affect the agricultural productivity. The study indicates that the agricultural productivity per capita in Pakistan decreased continuously during the last two decades. The paper concludes that due to emissions of GHGs, the agricultural productivity is significantly affected in the country. The government should take concrete measures to minimize the emissions of GHGs for increasing the agricultural productivity and reducing other harmful impacts in the country. This paper presents the review and analysis of the effects of GHGs emissions on the agricultural productivity in Pakistan. (author)

  10. Greenhouse effect gases (GEI) by energy consumption; Gases efecto invernadero (GEI) por consumo de energia

    Munoz Ledo C, Ramon; Bazan N, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The purpose of this article is to present the calculation methodology of greenhouse effect gases (GEI) emissions that are produced by the power sector in Mexico, as well as to discuss its possible impact in the subject of climatic change and the possible mitigating actions to lower the amount of emissions that can be taken and, therefore, the possible climate changes. In Mexico GEI inventories have been made since 1991, year in which the National Inventory of Gases with Greenhouse Effect was obtained for year 1988. The GEI include carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), methane (CH4), nitrous oxide (NO) and volatile organic carbides that are not methane (NMVOC) and are secondary products and harmful that are obtained from the processes that turn fuels into energy (combustion). The main sources of GEI are: fixed sources (industries, residences, commerce, public services and energy transformation, such as power generation); movable sources (that include all type of transport that uses fuel). The fuels that, by their volume and efficiency, generate more emissions of GEI are crude oil, natural gas and solid biomass (firewood-cane bagasse). Any effort to reduce these emissions is very important and remarkable if it affects the consumption of these fuels. [Spanish] El proposito de este articulo es presentar la metodologia de calculo de las emisiones de los gases con efecto invernadero (GEI) que son producidos por el sector energetico en Mexico, asi como discutir su posible impacto en las cuestiones de cambio climatico y las posibles acciones de mitigacion que se pueden realizar para abatir la cantidad de emisiones y, por ende, los posibles cambios de clima. En Mexico se han realizado inventarios de GEI desde 1991, ano en que se obtuvo el Inventario Nacional de Gases con Efecto Invernadero para el ano de 1988. Los GEI comprenden al dioxido de carbono (CO2), monoxido de carbono (CO), oxidos de nitrogeno (NOx), metano (CH4), oxido nitroso (N2O) y

  11. NF ISO 14064-1 Greenhouse gases. Part 1: specifications and guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals

    This document describes methodology for quantification, monitoring of greenhouse gas as well as for drafting of inventory report for organisms. Thus it suggests a method for inventory declarations for organism greenhouse gas and provides support for the monitoring and the management of their emission. It provides the terms and definitions, the principles, the greenhouse gases inventory design, development and components, the greenhouse inventory quality management, the reporting of greenhouse gases and the organization role in verification activities. (A.L.B.)

  12. Remote sensing of atmospheric greenhouse gases: bridging spatial scales

    Humpage, N.; Boesch, H.; Parker, R.; Hewson, W.; Sembhi, H.; Somkuti, P.; Webb, A.; Palmer, P. I.; Feng, L.

    2015-12-01

    Observed atmospheric variations of greenhouse gases (GHG) are determined by surface-atmosphere exchange, and atmospheric chemistry and transport. These processes occur over a wide spectrum of spatial and temporal scales. Confronting atmospheric transport models and ultimately improving the fidelity of surface flux estimates demands an integrated observing system that captures these scales. We will discuss using data the role of GHG remote sensing instruments and argue that our ability to deploy them from the ground and to fly them on satellite, aircraft, and unmanned airborne vehicles (UAV) mean that they represent the ideal technology to bridge the observed scales of variability. We will discuss a five-year record of global-scale column observations of CO2 and CH4 from the Japanese GOSAT satellite instrument that is available from University of Leicester as part of the ESA Climate Change Initiative. We will showcase new CO2 and CH4 column data that was collected by our shortwave infrared spectrometer GHOST oboard the NASA Global Hak during a regional survey over the eastern Pacific during early spring 2015, which included coincident overpasses from GOSAT and the NASA OCO-2. These data are being used to test atmospheric transport models over remote regions and to help validate satellite observations over the oceans. We will also discuss GHOST data collected on the UK Dornier 226 research aircraft to measure local-scale measurements over Leicester city centre, a major power plant, and downwind of a controlled Cumbrian heathland fire. Finally, we will report preliminary results from a new ground-based Fourier transform spectrometer station at Harwell (80 km west of London). We anticipate that this site will eventually join the TCCON network, which has been used to validation of satellite observations.

  13. Global Mitigation of Non-CO2 Greenhouse Gases - Data Annexes

    U.S. Environmental Protection Agency — Marginal abatement curves (MAC) can be downloaded as data annexes to the Global Mitigation of Non-CO2 Greenhouse Gases report. This data allows for improved...

  14. Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases 1990-2020

    U.S. Environmental Protection Agency — The data in these Appendices to the Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases (1990-2020) report provide historical and projected estimates of...

  15. 75 FR 18607 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    2010-04-12

    ... Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems... and Natural Gas Systems AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... petroleum and natural gas systems. Specifically, the proposed supplemental rulemaking would...

  16. Direct and ozone-mediated forcing of the Southern Annular Mode by greenhouse gases

    Morgenstern, Olaf; ZENG Guang; Dean, Sam M.; Joshi, Manoj; Abraham, N. Luke; Osprey, Annette

    2014-01-01

    We assess the roles of long-lived greenhouse gases and ozone depletion in driving meridional surface pressure gradients in the southern extratropics; these gradients are a defining feature of the Southern Annular Mode. Stratospheric ozone depletion is thought to have caused a strengthening of this mode during summer, with increasing long-lived greenhouse gases playing a secondary role. Using a coupled atmosphere-ocean chemistry-climate model, we show that there is cancelation between the dire...

  17. Potential of reduction of greenhouse gases emissions in ukraine on period to 2020 year

    Гальперіна, Л.П.; Національний авіаційний університет; Костюковський, Б.А.; Інститут загальної енергетики України НАН України; Мовчан, Я.І.; Національний авіаційний університет; Скрипниченко, М.І.; Інститут економіки і прогнозування НАН України; Запорожець, О.І.; Національний авіаційний університет; Шумська, С.С.; Інститут економіки і прогнозування НАН України

    2010-01-01

     Article is devoted to the assessment of potential of green-house gases mitigation, taking into account basic priorities of national development and providing an implementation of international obligations of Ukraine in this question after 2012 year. A macroeconomic and particular branch forecasting of national development was carried out, basic scenarios were defined, an analysis and estimation of technological potential of measures on reduction of green-house gases due to different scenario...

  18. Emissions of greenhouse gases in the United States, 1985--1990

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  19. Emissions of greenhouse gases in the United States, 1985--1990

    The Earth's capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ''greenhouse gases.'' Their warming capacity, called ''the greenhouse effect,'' is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth's absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available

  20. 75 FR 74773 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs

    2010-12-01

    ... electronics, fluorinated GHG production, and electrical equipment use on April 12, 2009 (74 FR 16448) as part... greenhouse gas emissions from additional sources of fluorinated greenhouse gases, including electronics...- OAR-2009-0927 for this rule. All documents in the docket are listed on the...

  1. Using the energy from land fill gases reduces the greenhouse effect of methane

    Several Norwegian land fills have established systems for utilisation of the energy from the gases extracted from the waste. The energy is used to produce electricity and heating. This is becoming more profitable as the energy price increases. The gas contains about 50 percent methane and its greenhouse effect is 20 times that of carbon dioxide. Thus, using it also reduces the greenhouse effect

  2. 76 FR 61293 - Extension of Public Comment Period: Mandatory Reporting of Greenhouse Gases: Technical Revisions...

    2011-10-04

    ... Gases: Technical Revisions to the Electronics Manufacturing and the Petroleum and Natural Gas Systems..., Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Electronics Manufacturing and the... be free of any defects or viruses. Docket: All documents in the docket are listed in the...

  3. Flow of greenhouse gases from mires and organic soils

    This report describes the Swedish research regarding greenhouse gas emissions from wetlands, both natural and those created for other purposes. Effects on the greenhouse gas balance due to different actions in the ecosystem, like cultivation, peat mining or inundation, is also discussed

  4. Quantification of the greenhouse effect gases at the territorial scale. Final report

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  5. The trade-off between short- and long-lived greenhouse gases under uncertainty and learning

    2001-01-01

    To find an optimal climate policy we must balance abatement of different greenhouse gases. There is substantial uncertainty about future damages from climate change, but we will learn more over the next few decades. Gases vary in terms of how long they remain in the atmosphere, which means that equivalent pulse emissions have very different climate impacts. Such differences between gases are important in consideration of uncertainty and learning about future damages, but they are disregarded ...

  6. Global emissions of fluorinated greenhouse gases until 2050: technical mitigation potentials and cost

    Purohit, P.; Höglund-Isaksson, L.

    2016-01-01

    The anthropogenic fluorinated (F-gases) greenhouse gas emissions have increased significantly in recent years and are estimated to rise further in response to increased demand for cooling services and the phase out of ozonedepleting substances (ODS) under the Montreal Protocol. F-gases (HFCs, PFCs and SF6) are potent greenhouse gases, with a global warming effect up to 22,800 times greater than carbon dioxide (CO2). This study presents estimates of current and future global emissions of F-gas...

  7. Quantification Of Greenhouse Gases From Three Danish Composting Facilities

    Scheutz, Charlotte; Andersen, Jacob Kragh; Samuelsson, J.; Kjeldsen, Peter; Christensen, Thomas Højlund

    2011-01-01

    A measurement method combining a controlled trace gas release with downwind concentrations measurements was successfully used to quantify greenhouse gas (GHG) emissions from three Danish open windrow composting facilities. Overall, the results showed that composting of organic waste generate GHG ...

  8. Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes

    Myhre, C.L.; Hermansen, O.; Fjaeraa, A.M.; Lunder, C.; Fiebig, M.; Schmidbauer, N.; Krognes, T.; Stebel, K.

    2012-07-01

    The report summaries the activities and results of the greenhouse gas monitoring at the Zeppelin and observatory situated on Svalbard in Arctic Norway during the period 2001-2010 and the greenhouse gas monitoring and aerosol observations from Birkenes for 2010. The monitoring programme is performed by the NILU - Norwegian Institute for Air Research and funded by the Norwegian Pollution Control Authority (SFT) (now Climate and Pollution Agency) and NILU - Norwegian Institute for Air Research.(Author)

  9. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angles Basin

    Fu, Dejian; Pongetti, Thomas J.; Sander, Stanley P.; Cheung, Ross; Stutz, Jochen; Park, Chang Hyoun; Li, Qinbin

    2011-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gases and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warming Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distributions of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  10. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard

  11. GREENHOUSE GASES REDUCTION THROUGH WASTE MANAGEMENT IN CROATIA

    Aleksandra Anić Vučinić

    2010-01-01

    Full Text Available The climate change policy is one of the key factors in the achievement of sustainable development in the Republic of Croatia. Control and mitigation of green house gases is correlated with all economy activities. Waste management is one of the main tasks of environmental protection in Croatia. The Waste Management Strategy of the Republic of Croatia and the Waste Management Plan in the Republic of Croatia define the concept of waste management hierarchy and direct and indirect measures as criteria for sustainable waste management establishment. The main constituent of this system is avoiding and minimizing waste, as well as increasing the recycling and recovery level of waste and land fill gas, which also represent green house gases mitigation measures. The Waste Management Plan consists of several direct and indirect measures for green house gases emission reduction and their implementation also affects the green house gases emissions. The contribution of the methane emission from land fills amounts to about 2% of the total green house gases emissions in Croatia. The climate change control and mitigation measures as an integral part of waste management sector strategies represent the measures of achieving the national objectives to wards green house gases emission reduction which Croatia has accepted in the frame work of the Kyoto Protocol.

  12. EVERGREEN (envisat for environmental regulation of greenhouse gases)

    Goede, A.

    The Kyoto Protocol calls for a quantitative reduction in greenhouse gas emissions by the year 2010. However global emissions, sources and sinks, are not accurately known. EVERGREEN, a recently selected project of the European Commission 5th Framework Programme for Environment and Sustainable Development, proposes to use the measurements of ENVISAT to produce improved greenhouse gas emission inventories. A combination of measurement and (inverse) modelling will be employed to derive emission estimates. Measurements include (partial) columns of CO2, CH4, N2O, CO, O3, NO2 and H2O. The focus will be on methane and carbon monoxide and on regional and seasonal variations. End-user involvement is arranged through participation of one coal industry and several national/European institutes, with responsibility for greenhouse gas issues. Specific objectives are: -Quality assessment and improvement of geenhouse (CO2,CH4) and related gasr (CO) measurements from ENVISAT instruments SCIAMACHY and MIPAS. -Assessment of the role of constituent parts in the radiative forcing based on ENVISAT measurements and atmospheric radiative transfer modelling -Quantification of greenhouse and related biospheric gas fluxes through inverse modelling constrained by ENVISAT measurements, with focus on CH4 and CO. -Provision of greenhouse gas emission data to National and European institutes as a value added product from ENVIS T .A The paper will present progress of the project achieved to date. The project will run until the end of 2005.

  13. Greenhouse gases accounting and reporting for waste management - A South African perspective

    This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level.

  14. The macroeconomic consequences of controlling greenhouse gases: a survey

    This is the summary of a major report which provides a survey of existing estimates of the macroeconomic consequences of controlling greenhouse gas emissions, particularly carbon dioxide (CO2). There are broadly speaking two main questions. What are the consequences of global warming for economic activity and welfare? What, if any, are the economic consequences of reducing the levels of greenhouse gas (GHG) emissions? This survey covers only those studies which quantify the overall (macroeconomic) costs of abating greenhouse gas emissions. It is not concerned with whether any particular degree of abatement is sufficient to reduce global warming, nor whether it is worth undertaking in the light of its benefits. These are topics for other researchers and other papers. Here we are concerned only to map the relationship between economic welfare and GHG abatement. (author)

  15. Agriculture and greenhouse gases emissions reduction; Agriculture et reduction des emissions de gaz a effet de serre

    Leguet, B.

    2005-09-15

    In France, the agriculture is the third sector of greenhouse gases emitter. Meanwhile since 1990 this sector poorly reduces its greenhouse gases. It is necessary to find mechanisms which allow the valorization of emissions reduction. In this framework the author presents the specificities of the greenhouse gases emissions of the agricultural sector, the possible incentives of emissions reduction, the reduction projects in France and abroad. (A.L.B.)

  16. Study of greenhouse gases reduction alternatives for the exploitation of non conventional oil sands in Canada

    Bouchonneau, Deborah [Institut Francais du Petrole (IFP), Paris (France)

    2008-07-01

    High energy prices and greenhouse gases reduction represent the main challenges the current worldwide energetic situation has to face. As a consequence, paradox strategies can be highlighted: oil prices are sufficiently high to exploit non conventional oil resources, like extra heavy oils and oil sands. But the production of these resources emits larger GHG than the conventional oil path and implies other major environmental issues (water management, risks of soil pollution, destruction of the boreal forest), incompatible with the rules validated by the protocol of Kyoto. At the light of the new greenhouse gases reduction regulation framework announced by the Canadian Federal government, this work focuses on the study of greenhouse gases reduction alternatives applied to the non conventional oil sands exploitation in Canada. (author)

  17. IMPACT OF GREENHOUSE EFFECT GASES ON CLIMATIC CHANGES. MEASUREMENT INDICATORS AND FORECAST MODELS

    Valentina Vasile; Mariana Balan

    2008-01-01

    The existence of a heavier layer of greenhouse effect gases at the level of theentire planet triggered significant climate changes. The paper intends to present the mainenvironmental indicators elaborated by various specialised international bodies, and themodels used by different governmental or non-governmental European bodies for studying theimpact of greenhouse effect gas emissions on climatic changes or economic development.Also, a comparative analysis was made about the performance indi...

  18. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results

    Schneising, O.; Bergamaschi, P.; H. Bovensmann; M. Buchwitz; Burrows, J.P.; Deutscher, N.M.; Griffith, D. W. T.; J. Heymann; Macatangay, R.; J. Messerschmidt; Notholt, J.; M. Rettinger; Reuter, M.; Sussmann, R.; V. A. Velazco

    2012-01-01

    SCIAMACHY onboard ENVISAT (launched in 2002) enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4). In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Tra...

  19. Soil greenhouse gases emissions reduce the benefit of mangrove plant to mitigating atmospheric warming effect

    Chen, Guangcheng; Chen, Bin; Yu, Dan; Ye, Yong; Tam, Nora F. Y.; Chen, Shunyang

    2016-01-01

    Mangrove soils have been recognized as sources of atmospheric greenhouse gases but the atmospheric fluxes are poorly characterized, and their adverse warming effect has scarcely been considered with respect to the role of mangrove wetlands in mitigating global warming. The present study balanced the warming effect of soil greenhouse gas emissions with plant carbon dioxide (CO2) sequestration rate in a highly productive mangrove wetland in South China to assess the role of mangrove wetland in ...

  20. Measurements of greenhouse gases at Beromünster tall tower station in Switzerland

    2015-01-01

    In order to constrain the regional flux of greenhouse gases, an automated measurement system was built on an old radio tower at Beromünster, Switzerland. The measurement system has been running since November 2012 as part of the Swiss greenhouse gases monitoring network (CARBOCOUNT-CH), which is composed of four measurement sites across the country. The Beromünster tall tower has five sampling lines with inlets at 12.5, 44.6, 71.5, 131.6 and 212.5 m a.g.l., and it is equippe...

  1. The economics of controlling stock pollutants: An efficient strategy for greenhouse gases

    Optimal control theory is applied to develop an efficient strategy to control stock pollutants such as greenhouse gases and hazardous waste. The optimal strategy suggests that, at any time, the marginal costs of abatement should be equated with the present value of the marginal damage of timely unabated emission. The optimal strategy calls for increasingly tight abatement over time as the pollutant stock accumulates. The optimal policy applied to greenhouse gases suggest moderate abatement efforts, at present, with the potential for much greater future efforts. 15 refs., 2 tabs

  2. Reference projection for greenhouse gases in the Netherlands. Emission projections for the period 2001-2010

    The title reference projection considers emission of greenhouse gases in the Netherlands in 2010. Emission sources and developments up to 2000 were analysed, and expected developments with respect to economic growth and energy supply for the period 2001-2010 updated. This led to new estimates for the greenhouse gas emissions in 2010. Differences with previous scenario studies were analysed, and the effects of both announced and implemented policy measures assessed. Emissions of CO2 were analysed separately from other greenhouse gases. The total expected greenhouse gas emissions for the Netherlands in 2010 are concluded to be 225 Mton CO2 equivalent, which represents a near stabilisation for 2000 as the net result of a 12 Mton increase in CO2 emissions and a 9 Mton decrease in non-CO2 greenhouse gases. The expected development of domestic emissions appears favourable with respect to the current policy goal: an emission target stated in the Kyoto agreement of -6 % in relation to the 1990/1995 level and the realisation of half emission reductions through domestic measures. The uncertainty in total annual CO2-equivalent emissions in 2010 is estimated at 14 Mton (95% confidence interval) due to identified uncertain future societal developments and possible future improvements in greenhouse gas emission inventories. This report will be used to evaluate the current progress with respect to the national climate change policy in the Netherlands, described in 'The Netherlands' Climate Policy Implementation Plan, Part 1: domestic measures'

  3. Remote Sensing of Greenhouse Gases by Combining Lidar and Optical Correlation Spectroscopy

    Anselmo C.; Thomas B; Miffre A.; Francis M; Cariou J.P.; Rairoux P.

    2016-01-01

    In this contribution, we present recent work on the ability to achieve range-resolved greenhouse gases concentration measurements in the Earth’s atmosphere (CH4, H2O) by combining broadband optical correlation spectroscopy (OCS) with lidar. We show that OCS-Lidar is a robust methodology, allowing trace gases remote sensing with a low dependence on the temperature and pressure-variation absorption cross section. Moreover, we evaluate, as an experimental proof, the water vapor profile in the pl...

  4. A Strategy For Reducing Emissions Of Greenhouse Gases From Personal Travel In Britain

    Hughes, Peter Samuel

    1992-01-01

    The presence of 'greenhouse gases' in the atmosphere has a warming effect on the biosphere, making the world habitable for life. Human activities, particularly energy use and deforestation, are increasing the concentration of these gases, and in particular carbon dioxide (CO2). Many climatologists believe that the global temperature is beginning to rise as a result. The intergovernmental Panel on Climate Change (IPCC) has recommended that emissions of CO2 be cut by 60 per cent in order to sta...

  5. GREENHOUSE GASES REDUCTION THROUGH WASTE MANAGEMENT IN CROATIA

    Aleksandra Anić Vučinić; Andrea Hublin; Nikola Ružinski

    2010-01-01

    The climate change policy is one of the key factors in the achievement of sustainable development in the Republic of Croatia. Control and mitigation of green house gases is correlated with all economy activities. Waste management is one of the main tasks of environmental protection in Croatia. The Waste Management Strategy of the Republic of Croatia and the Waste Management Plan in the Republic of Croatia define the concept of waste management hierarchy and direct and indirect measures as cri...

  6. The contribution of direct energy use for livestock breeding to the greenhouse gases emissions of Cyprus

    This paper presents a methodology for the estimation of the contribution of direct energy use to the greenhouse gases emissions of cattle, pig and poultry breeding in Cyprus. The energy consumption was estimated using the factors of 2034 MJ/cow, 2182 MJ/sow and 0.002797 MJ/bird. The greenhouse gases emissions for each animal species and energy source were estimated using emission factor of each greenhouse gas according to fuel type as proposed by the IPCC 2006 guidelines and for electricity according to national verified data from the Electricity Authority of Cyprus. Livestock breeding in Cyprus consumes electricity, diesel oil and LPG. The results obtained, show that the emissions from energy use in livestock breeding contribute 16% to the total agricultural energy emissions. Agricultural energy emissions contribute 0.7% to the total energy greenhouse gases (GHG) emissions. The three species of animal considered contribute 3% to their total livestock breeding emissions when compared with enteric fermentation and manure management, of which 2.6% is CO2. These results agree with the findings in available literature. The contribution of direct energy use in the greenhouse gases emissions of livestock breeding could be further examined with the influence of anaerobic digestion to the emissions. -- Highlights: → Energy use contribution to greenhouse gases emissions of Cyprus livestock breeding. → Energy consumption estimated using 2.034 GJ/ cow, 2.182 GJ/ sow and 2.797 kJ/ bird. →Energy use in livestock breeding found to be 16% of agriculture energy emissions. → Energy use found to be 3% of total livestock breeding emissions. → 87% of the energy emissions is CO2.

  7. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angeles Basin

    Fu, Dejian; Sander, Stanley P.; Pongetti, Thomas J.; Cheung, Ross; Stutz, Jochen

    2010-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gasses and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warning Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distribution of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  8. Effect of noble gases on an atmospheric greenhouse /Titan/.

    Cess, R.; Owen, T.

    1973-01-01

    Several models for the atmosphere of Titan have been investigated, taking into account various combinations of neon and argon. The investigation shows that the addition of large amounts of Ne and/or Ar will substantially reduce the hydrogen abundance required for a given greenhouse effect. The fact that a large amount of neon should be present if the atmosphere is a relic of the solar nebula is an especially attractive feature of the models, because it is hard to justify appropriate abundances of other enhancing agents.

  9. Greenhouse gases in the corn-to-fuel ethanol pathway.

    Wang, M. Q.

    1998-06-18

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  10. Greenhouse gases in the corn-to-fuel ethanol pathway

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen

  11. Nonlinear response of modeled stratospheric ozone to changes in greenhouse gases and ozone depleting substances in the recent past

    S. Meul

    2015-03-01

    Full Text Available In the recent past, the evolution of stratospheric ozone (O3 was affected by both increasing ozone depleting substances (ODSs and greenhouse gases (GHGs. The impact of the single forcings on O3 is well known. Interactions between the simultaneously increased GHG and ODS concentrations, however, can occur and lead to nonlinear O3 changes. In this study, we investigate if nonlinear processes have affected O3 changes between 1960 and 2000. This is done with an idealized set of timeslice simulations with the chemistry–climate model (CCM EMAC. Nonlinearity leads to a net reduction of ozone decrease throughout the stratosphere, with a maximum of 1.2% at 3 hPa. The total ozone column loss between 1960 and 2000 that is mainly attributed to the ODS increase is mitigated in the extra-polar regions by up to 1.1% due to nonlinear processes. A separation of the O3 changes into the contribution from chemistry and transport shows that nonlinear interactions occur in both. In the upper stratosphere a reduced efficiency of the ClOx-catalysed O3 loss chiefly causes the nonlinear O3 increase. An enhanced formation of halogen reservoir species through the reaction with methane (CH4 reduces the abundance of halogen radicals significantly. The temperature induced deceleration of the O3 loss reaction rate in the Chapman cycle is reduced, which leads to a nonlinear O3 decrease and counteracts the increase due to ClOx. Nonlinear effects on the NOx abundance cause hemispheric asymmetric nonlinear changes of the O3 loss. Nonlinear changes in O3 transport occur in particular in the Southern Hemisphere (SH during the months September to November. Here, the residual circulation is weakened in the lower stratosphere, which goes along with a reduced O3 transport from the tropics to high latitudes. Thus, O3 decreases in the SH polar region, but increases in the SH midlatitudes.

  12. 75 FR 18575 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    2010-04-12

    ...EPA is proposing a rule to require reporting on carbon dioxide (CO2) injection and geologic sequestration (GS). The proposed rulemaking does not require control of greenhouse gases (GHGs), rather it requires only monitoring and reporting of CO2 injection and geologic sequestration. EPA first proposed that suppliers of CO2 be subject to mandatory GHG reporting......

  13. Greenhouse gases emission from municipal waste management: The role of separate collection

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO2, CH4, N2O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  14. Interaction and coupling in the emission of greenhouse gases from animal husbandry

    Monteny, G.J.; Groenestein, C.M.; Hilhorst, M.A.

    2001-01-01

    The gases methane (CH4) and nitrous oxide (N2O) contribute to global warming, while N2O also affects the ozone layer. Sources of greenhouse gas emissions in animal husbandry include animals, animal houses (indoor storage of animal excreta), outdoor storage, manure and slurry treatment (e.g., compost

  15. Emission of greenhouse gases 1990-2010. Trends and driving forces

    NONE

    2013-03-01

    Emissions of greenhouse gases in Norway from 1990-2010 - trends and driving forces, a report that presents emission trends in Norway with the analysis of the main drivers and trends, and a review and analysis of the effectiveness of implemented measures.(Author)

  16. Greenhouse gases emission from municipal waste management: The role of separate collection.

    Calabrò, Paolo S

    2009-07-01

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO(2), CH(4), N(2)O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management. PMID:19318239

  17. 78 FR 20632 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability Regarding Global Warming...

    2013-04-05

    ... AGENCY Mandatory Reporting of Greenhouse Gases: Notice of Data Availability Regarding Global Warming... EPA is announcing to the public the availability of estimated global warming potentials, as well as... requesting comments on the estimated global warming potentials and the data and analysis supporting them....

  18. Energy and climatic change: within 30 years, divide France's emissions of greenhouse gases in three

    Fighting against global warming means cutting down on greenhouse gases. France can significantly reduce its emissions by seriously modifying life-styles without disrupting them. The population will accept this all the better as far as it is deeply concerned with the issues. (author)

  19. Taxation of multiple greenhouse gases and the effects on income distribution : A case study of the Netherlands

    Kerkhof, Annemarie C.; Moll, Henri C.; Drissen, Eric; Wilting, Harry C.

    2008-01-01

    Current economic instruments aimed at climate change mitigation focus on CO2 emissions only, but the Kyoto Protocol refers to other greenhouse gases (GHG) as well as CO2. These are CH4, N2O, HFCs, PFCs and SF6. Taxation of multiple greenhouse gases improves the cost-effectiveness of climate change m

  20. Emissions of greenhouse gases in the United States, 1987--1994

    NONE

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  1. ACCOUNTING FOR GREENHOUSE GASES EMISSIONS ALLOWANCES IN ROMANIA

    Marius Deac

    2013-02-01

    Full Text Available The present paper tries to analyze the accounting challenges that the implementation of EU Emissions Trading Scheme has risen. On 2 December 2004, IASB has issued an interpretation regarding the accounting of the GHG emissions allowances (IFRIC 3 „Emission Rights”. This interpretation should have been effective for annual periods beginning after 1 March 2005, the first year of the EU Emission Trading Scheme implementation. Less than a year after it was issued, IFRIC has withdrawn IFRIC 3. In December 2007, IASB has started a new project in order to provide guidance on accounting for carbon allowances called Emissions Trading Schemes Project. In the absence of an accounting standard regarding the accounting of these emissions allowances a diversity of accounting practices have been identified. Nowadays, there are three main accounting practices for the recognition of the emissions allowances and the GHG emissions liabilities: IFRIC 3 approach, the government grants approach and the net liability or off balance sheet approach. The accounting treatment of greenhouse gas emissions allowances by Romanian companies resembles the net liability or off balance sheet approach. Finance Ministry Order no. 1118/2012 states that GHG emission certificates should be recognized as fixed assets (if the entity is expecting a profit in the long term or in the category of short term investments (if the entity is expecting a profit in the short term. The accounting of the greenhouse gas emissions allowances described above is applicable mainly to traders of such certificates and not for the installations in the scope of the EU ETS directive, which should recognize GHG emissions off balance sheet, at their nominal value (nil if received for free. The shortfall or excess of allowances will be recognized in the profit or loss as they are bought or sold by the entity (the accounting treatment imposed by Finance Ministry Order no. 3055/2009.

  2. Impact of greenhouse gases on the ozone layer in the polar regions

    Full text: A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2, CH4, and N2O in the future long-term changes of the earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the south to north poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from climate change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the earth's ozone layer in the polar regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard

  3. Climate-chemical interactions and greenhouse effects of trace gases

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  4. Greenhouse gases and ammonia emissions from organic mixed crop-dairy systems: a critical review of mitigation options

    Novak, Sandra; Fiorelli, Jean-Louis

    2010-01-01

    International audience Dairy production systems represent a significant source of air pollutants such as greenhouse gases (GHG), that increase global warming, and ammonia (NH3), that leads to eutrophication and acidification of natural ecosystems. Greenhouse gases and ammonia are emitted both by conventional and organic dairy systems. Several studies have already been conducted to design practices that reduce greenhouse gas and ammonia emissions from dairy systems. However, those studies d...

  5. A New Laser Based Approach for Measuring Atmospheric Greenhouse Gases

    Jeremy Dobler

    2013-11-01

    Full Text Available In 2012, we developed a proof-of-concept system for a new open-path laser absorption spectrometer concept for measuring atmospheric CO2. The measurement approach utilizes high-reliability all-fiber-based, continuous-wave laser technology, along with a unique all-digital lock-in amplifier method that, together, enables simultaneous transmission and reception of multiple fixed wavelengths of light. This new technique, which utilizes very little transmitted energy relative to conventional lidar systems, provides high signal-to-noise (SNR measurements, even in the presence of a large background signal. This proof-of-concept system, tested in both a laboratory environment and a limited number of field experiments over path lengths of 680 m and 1,600 m, demonstrated SNR values >1,000 for received signals of ~18 picoWatts averaged over 60 s. A SNR of 1,000 is equivalent to a measurement precision of ±0.001 or ~0.4 ppmv. The measurement method is expected to provide new capability for automated monitoring of greenhouse gas at fixed sites, such as carbon sequestration facilities, volcanoes, the short- and long-term assessment of urban plumes, and other similar applications. In addition, this concept enables active measurements of column amounts from a geosynchronous orbit for a network of ground-based receivers/stations that would complement other current and planned space-based measurement capabilities.

  6. The trade-off between short- and long-lived greenhouse gases under uncertainty and learning

    To find an optimal climate policy we must balance abatement of different greenhouse gases. There is substantial uncertainty about future damages from climate change, but we will learn more over the next few decades. Gases vary in terms of how long they remain in the atmosphere, which means that equivalent pulse emissions have very different climate impacts. Such differences between gases are important in consideration of uncertainty and learning about future damages, but they are disregarded by the conventional concept of Global Warming Potential We have developed a numerical model to analyze how uncertainty and learning affect optimal emissions of both CO2 and CH4. In the model, emissions of these greenhouse gases lead to global temperature increases and production losses. New information about the severity of the climate problem arrives either in 2010 or in 2020. We find that uncertainty causes increased optimal abatement of both gases, compared to the certainty case. This effect amounts to 0.08 oC less expected temperature increase by year 2200. Learning leads to less abatement for both gases since expected future marginal damages from emissions are reduced. This effect is less pronounced for the short-lived CH4. (author)

  7. Greenhouse gases: Changing the nature of our environment

    Emissions of carbon dioxide and other agriculturally, industrially, and energy-related gases are altering the composition of the atmosphere in a manner that will enhance the trapping of infrared radiation and lend to increasing global average temperatures. Analysis of the historical climate record is under way to identify evidence that the changes in atmospheric concentration to data have already initiated the model-predicted warming. Observations suggest that the global average temperature has risen ∼0.5 ± 0.2 degree C over the past 150 yr, which is, depending on how account is taken of the ocean heat lag and of natural variability, roughly consistent with the lower half of the model-estimated range. The most recent model estimates are, however, in the upper half of this range, suggesting a factor of 2 disagreement and prompting intensive studies of the role of clouds in influencing climate change. What is certain is that the atmospheric composition is changing and that climate will respond, almost certainly by a few-degrees warming if emissions continue unabated. Reducing the uncertainties and refining estimates of impacts to the point where energy and other policies may be affected, however, poses a significant research challenge

  8. The state of greenhouse gases in the atmosphere using global observations through 2014

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed

    2016-04-01

    We present results from the eleventh annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG). Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of CO2, CH4 and N2O derived from this network reached new highs in 2014, at 397.7±0.1 ppm, 1833±1 ppb and 327.1±0.1 ppb respectively. These values constitute 143%, 254% and 121% of pre-industrial (before 1750) levels. The atmospheric increase of CO2 from 2013 to 2014 was 1.9 ppm, which is smaller than the increase from 2012 to 2013 and the average growth rate for the past decade (˜2.06 ppm per year), but larger than the average growth rate for the 1990s (˜1.5 ppm per year). Smaller growth in 2014 compared with other recent years is most likely related to a relatively small net change in large fluxes between the atmosphere and terrestrial biosphere. The rise of atmospheric CO2 has been only about a half of what is expected if all excess CO2 from burning fossil-fuels stayed in the air. The other half has been absorbed by the land biosphere and the oceans, leading to ocean acidification. For both CH4 and N2O the increases from 2013 to 2014 were larger than those observed from 2012 to 2013 and the mean rates over the past 10 years. The National

  9. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    Greenhouse gases other than CO2 make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO2 emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO2 and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO2 following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by ∼ 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO2 from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  10. Greenhouse gases (GHG), NOx and SOx reduction through biomass utilisation

    Environmental issues such as air pollution have been given serious attention these days. Public seems to be more aware of the effects of air pollution after experiencing haze in 1997. Carbon dioxide (C02) is one of the green house gases (GHG) that traps the heat of the sun in the atmosphere and contributes to global warming. Excessive usage of fossil fuels can caused the increase in C02 emission level land this has forced the relevant authorities to find a much cleaner fuel such as biomass. A large-scale.demonstration plant under the EC-ASEAN Cogen Programme is a good reference on how biomass could reduce the GHG without interruption to its process. The company uses wood wastes as fuel for its cogeneration plant to replace diesel oil and fuel oil for power and heat. The cogeneration plant capacity is 1.5 MW of electricity and thermal heat. of 11 MW. The fuel is fed to the combustion chamber with an automatic controlled feeding system to generate 16 tonnes per hour of superheated steam at 22 bar. The steam is supplied to a backpressure turbine and part of the exhaust steam is supplied as process heat to a kiln drying plant and the rest to a condensing turbine. The GHG emission mitigation potential from this cogeneration plant is 15,632 tonnes Of C02 equivalent per year. Moreover, it is also expected to reduce the annual NOx and S0x emission level by 89.5 % and 98.3 %. Therefore, this paper will describe how biomass utilisation through cogeneration could reduce GHG, NOx and S0x emission level. (author)

  11. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M.; Canadell, Josep G.; Saikawa, Eri; Huntzinger, Deborah N.; Gurney, Kevin R.; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R.; Wofsy, Steven C.

    2016-03-01

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  12. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change. PMID:26961656

  13. Reference projections for non-CO2 greenhouse gases. Emission projections for 2001 - 2010

    Results are presented of the project 'reference projection for energy and greenhouse gases' carried out by RIVM and ECN for the Ministries of Housing, Spatial Planning and the Environment, and of Economic Affairs. The emission are considered of non-CO2 greenhouse gases in the Netherlands in 2010. Emission sources and trends up to 2000 were analysed, and expected developments with respect to economic growth for the period 2001-2010 updated. This led to new estimates for the non-CO2 greenhouse gas emissions in 2010. Differences with previous scenario studies were analysed, and the effects of both announced and implemented policy measures assessed.The total expected non-CO2 greenhouse gas emissions for the Netherlands in 2010 are concluded to be 34 Mton CO2 equivalent, which represents a 9 Mton decrease for 2000.s in 2010 is estimated at 5 Mton (95% confidence interval) due to identified uncertain future societal developments and possible future improvements in greenhouse gas emission inventories. The results will be used to evaluate the current progress with respect to the national climate change policy in the Netherlands, described in 'The Netherlands' Climate Policy Implementation Plan, Part 1: inland measures' (June 1999). 20 refs

  14. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  15. Photoacoustic Experimental System To Confirm Infrared Absorption Due to Greenhouse Gases

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masaaki; KASAI, Toshio

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily available components and is suitable for small-group experiments. The PA signal from a greenhouse gas (GHG), such as CO2, H2O, and CH4, can be detected down...

  16. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value

  17. Projection of the gases emissions of greenhouse effect (GEI), Colombia 1998-2010

    The Greenhouse Gas Emissions baseline scenario 1998-2010 was developed from the energy and no-energy sector projections. This study considered the same greenhouse gases as the 1990 inventory. One of the major findings is the increase in the participation share of the energy sector from 31% in 1990 up to 72% in 2010, while the non-energy sector decrease its share from 69% to 28% in the same period the total emissions increase from 167 mt/year in 1990 to 174 mt/year in 2010, an increase of only 4%

  18. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value. PMID:26827362

  19. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    Mohammad Songolzadeh; Mansooreh Soleimani; Maryam Takht Ravanchi; Reza Songolzadeh

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion c...

  20. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  1. Estimation of greenhouse gases emission at different scales in France using high precision observations

    Lopez, Morgan

    2012-01-01

    The aim of my PhD is to use high precision measurements to evaluate greenhouse gas emissions at different scales in France, from local to regional. These measurements are made in the framework of the French greenhouse gases network operated by the RAMCES team. Three stations in France are equipped with gas chromatography measurement systems located at Gif-sur-Yvette, Trainou (Orléans forest) and on the summit of Puy-de-Dôme. They were optimized to measure continuously with high precision the ...

  2. Sedimentary halogens and noble gases within Western Antarctic xenoliths: Implications of extensive volatile recycling to the sub continental lithospheric mantle

    Broadley, Michael W.; Ballentine, Chris J.; Chavrit, Déborah; Dallai, Luigi; Burgess, Ray

    2016-03-01

    Recycling of marine volatiles back into the mantle at subduction zones has a profound, yet poorly constrained impact on the geochemical evolution of the Earth's mantle. Here we present a combined noble gas and halogen study on mantle xenoliths from the Western Antarctic Rift System (WARS) to better understand the flux of subducted volatiles to the sub continental lithospheric mantle (SCLM) and assess the impact this has on mantle chemistry. The xenoliths are extremely enriched in the heavy halogens (Br and I), with I concentrations up to 1 ppm and maximum measured I/Cl ratios (85.2 × 10-3) being ∼2000 times greater than mid ocean ridge basalts (MORB). The Br/Cl and I/Cl ratios of the xenoliths span a range from MORB-like ratios to values similar to marine pore fluids and serpentinites, whilst the 84Kr/36Ar and 130Xe/36Ar ratios range from modern atmosphere to oceanic sediments. This indicates that marine derived volatiles have been incorporated into the SCLM during an episode of subduction related metasomatism. Helium isotopic analysis of the xenoliths show average 3He/4He ratios of 7.5 ± 0.5 RA (where RA is the 3He/4He ratio of air = 1.39 × 10-6), similar to that of MORB. The 3He/4He ratios within the xenoliths are higher than expected for the xenoliths originating from the SCLM which has been extensively modified by the addition of subducted volatiles, indicating that the SCLM beneath the WARS must have seen a secondary alteration from the infiltration and rise of asthenospheric fluids/melts as a consequence of rifting and lithospheric thinning. Noble gases and halogens within these xenoliths have recorded past episodes of volatile interaction within the SCLM and can be used to reconstruct a tectonic history of the WARS. Marine halogen and noble gas signatures within the SCLM xenoliths provide evidence for the introduction and retention of recycled volatiles within the SCLM by subduction related metasomatism, signifying that not all volatiles that survive

  3. Energy and environment - greenhouse effect. The international, european and national actions to control the greenhouse gases emissions: which accounting and which perspectives?

    The scientific knowledge concerning the climatic change justifies today immediate fight actions against the greenhouse reinforcement. This fight is based on an ambitious international device which must take into account more global challenges. At the european and national scale, the exploitation of the potential of greenhouse gases reduction must be reinforced and more specially the evolution of the life style. (A.L.B.)

  4. Remote Sensing of Greenhouse Gases by Combining Lidar and Optical Correlation Spectroscopy

    Anselmo, C.; Thomas, B.; Miffre, A.; Francis, M.; Cariou, J. P.; Rairoux, P.

    2016-06-01

    In this contribution, we present recent work on the ability to achieve range-resolved greenhouse gases concentration measurements in the Earth's atmosphere (CH4, H2O) by combining broadband optical correlation spectroscopy (OCS) with lidar. We show that OCS-Lidar is a robust methodology, allowing trace gases remote sensing with a low dependence on the temperature and pressure-variation absorption cross section. Moreover, we evaluate, as an experimental proof, the water vapor profile in the planetary boundary layer using the 4ν 720 nm absorption band.

  5. Remote Sensing of Greenhouse Gases by Combining Lidar and Optical Correlation Spectroscopy

    Anselmo C.

    2016-01-01

    Full Text Available In this contribution, we present recent work on the ability to achieve range-resolved greenhouse gases concentration measurements in the Earth’s atmosphere (CH4, H2O by combining broadband optical correlation spectroscopy (OCS with lidar. We show that OCS-Lidar is a robust methodology, allowing trace gases remote sensing with a low dependence on the temperature and pressure-variation absorption cross section. Moreover, we evaluate, as an experimental proof, the water vapor profile in the planetary boundary layer using the 4ν 720 nm absorption band.

  6. Greenhouse effects due to man-made perturbations of trace gases

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  7. Emissions, activity data, and emission factors of fluorinated greenhouse gases (F-Gases) in Germany 1995-2002

    Schwarz, Winfried [Oeko-Recherche, Buero fuer Umweltforschung und -beratung GmbH, Frankfurt am Main (Germany)

    2005-06-15

    Before the 1997 Kyoto Protocol on Climate Protection, the fluorinated greenhouse gases HFCs, PFCs, and SF6 (F-gases) aroused little public attention. Since then, the standards on surveying and reporting on national emissions have been rising constantly. Amongst others, the annual reporting to the UNFCCC secretariat makes detailed declarations on use and emissions of F-gases necessary, which have to be filled in specified formats for submission (Common Reporting Format = CRF). The scientific basis has been set out by the UNFCCC guidelines on reporting, in accordance with the instructions laid down in IPCC good practice guidance. Additionally, in Germany the Centralised System of Emissions (ZSE) shall provide a suitable tool to satisfy any quality needs of both activity data and emission factors. From 1995 onwards, activity data and emissions of each individual application sector shall be presented in a comprehensible and transparent way. Therefore, the way of data collection as well as the estimation methods applied must be well documented. Moreover, data has to be prepared for appropriate importation into ZSE. It is the objective of this study to provide the transparency demanded within 40 national application sectors of F-gases, for the period between 1995 and 2002. - Firstly, all the activity data as well as the emissions related to them are presented and commented. This applies to manufacturing of products, F-gases banked in operating systems, and decommissioning. - Secondly, the methodologies applied to calculate the emissions are described and all sources of information are revealed, e.g. literature, names of experts from the manufacturing industry, users, trade, and academia. - Thirdly, reliability and safety of data are discussed. - Fourthly, possible deviations from the IPCC default values are stated and given reasons for. Wherever this intensive reviewing of 40 sectors through eight years of reporting uncovers gaps or inconsistencies in previous reports

  8. The Emission Reduction Potential of Non-CO2 Greenhouse Gases in China and its Policy Implications

    Huang, Delin; Cai, Songfeng; Wang, Zhen

    2013-01-01

    Using the improved Energy-Environmental Version of the GTAP Model (GTAP-E) and the sixth version of emission database of non-CO2 greenhouse gases, we simulate the emission reduction potential of non-CO2 greenhouse gases in China and its policy implications. The results show that at present, China is a country with the greatest emission of non-CO2 greenhouse gases in the world, and the emission will account for about 20% of the world's total emission in 2020. The proportion of emission of non-...

  9. The greenhouse gases HFCs, PFCs and SF{sub 6}, Danish consumption and emissions, 2007

    Sander Poulsen, T.; Bode, I.

    2009-07-01

    The objective of this project was to determine the Danish consumption and actual emissions of HFCs, PFCs, and SF{sub 6} for 2007. Further, if methodology changes are made in connection to the work on 2007 data, the data for previous years are considered and updated accordingly. The emission calculation is made in accordance with the IPCC guidelines and following the method employed in previous year calculation. The methodology includes calculation of the actual emissions of HFCs, PFCs, and SF{sub 6}. In this calculation of actual emissions, the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. Specific emission factors are presented. (ln)

  10. Environment taxation and greenhouse gases (general tax on energy polluting activities and emissions trading)

    This document brings together 11 expert testimonies about the French general tax on polluting activities (GTPA). Content: 1 - the GTPA today and in 2001: the first year GTPA, the GTPA 2001 in the water sector, the everyday formal procedures linked with GTPA, the contentious aspects of GTPA; 2 - the eco-tax or energy-GTPA: European framework of energy products taxing, enforcement and implementation of the energy-GTPA in France; 3 - the negotiable emission permits: negotiable permits for companies with a strong energy intensity, functioning of emission permits in a global strategy, the position of the European Commission about negotiable permits and the perspectives in this domain at the community level; 4 - towards a reduction of greenhouse gases: the Goeteborg protocol, the consequences of La Haye's COP6, the position of a type-sector, an efficient system for the abatement of greenhouse gases by the producing sector. (J.S.)

  11. Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention

    Campos, J. L.; Valenzuela-Heredia, D.; Pedrouso, A.; Val del Río, A.; M. Belmonte; Mosquera-Corral, A.

    2016-01-01

    The operation of wastewater treatment plants results in direct emissions, from the biological processes, of greenhouse gases (GHG) such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), as well as indirect emissions resulting from energy generation. In this study, three possible ways to reduce these emissions are discussed and analyzed: (1) minimization through the change of operational conditions, (2) treatment of the gaseous streams, and (3) prevention by applying new configu...

  12. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    Morgan, E.J.; J. V. Lavrič; Seifert, T; Chicoine, T.; Day, A; J. Gomez; Logan, R; Sack, J.; T. Shuuya; Uushona, E.G.; K. Vincent; U. Schultz; Brunke, E.-G.; C. Labuschagne; R. L. Thompson

    2015-01-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the north...

  13. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    E. J. Morgan; J. V. Lavrič; Seifert, T.; T. Chicoine; Day, A; J. Gomez; Logan, R. (Robert); Sack, J.; Shuuya, T.; E. G. Uushona; K. Vincent; Schultz, U.; E.-G. Brunke; C. Labuschagne; Thompson, R. L.

    2015-01-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated, continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g....

  14. An alternative to the Global Warming Potential for comparing climate impacts of emissions of greenhouse gases

    2003-01-01

    The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subject to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here a new metric, which we call the Global Tem...

  15. Continuous Measurements of Greenhouse Gases and Atmospheric Oxygen in the Namib Desert

    Morgan, Eric James

    2015-01-01

    A new, near-coastal background site was established for observations of greenhouse gases (GHGs) and atmospheric oxygen in the central Namib Desert near Gobabeb, Namibia. The location of the site was chosen to provide observations in a data-poor region in the global sampling network for GHGs. Semi-automated, continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from...

  16. Valuing Greenhouse Gases Emissions and Uncertainty in Transport Cost Benefit Analysis

    Meunier, David; Quinet, Emile

    2015-01-01

    The transport sector has an important and increasing role in greenhouse gases emissions, and cost benefit analysis (CBA) of transport projects should give in this regard accurate and objective information. Indeed, many countries have included this concern in their CBA guidelines, but it typically consists simply in adopting an official value per ton of carbon emitted. Does this mean that the issue is correctly treated by CBA? Since "the devil is in the details" this paper reviews key items in...

  17. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    Larson, D.L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  18. Greenhouse gases, climate change and the transition from coal to low-carbon electricity

    A transition from the global system of coal-based electricity generation to low-greenhouse-gas-emission energy technologies is required to mitigate climate change in the long term. The use of current infrastructure to build this new low-emission system necessitates additional emissions of greenhouse gases, and the coal-based infrastructure will continue to emit substantial amounts of greenhouse gases as it is phased out. Furthermore, ocean thermal inertia delays the climate benefits of emissions reductions. By constructing a quantitative model of energy system transitions that includes life-cycle emissions and the central physics of greenhouse warming, we estimate the global warming expected to occur as a result of build-outs of new energy technologies ranging from 100 GWe to 10 TWe in size and 1–100 yr in duration. We show that rapid deployment of low-emission energy systems can do little to diminish the climate impacts in the first half of this century. Conservation, wind, solar, nuclear power, and possibly carbon capture and storage appear to be able to achieve substantial climate benefits in the second half of this century; however, natural gas cannot. (letter)

  19. Greenhouse effect gases inventory in France during the years 1990-1999; Inventaire des emissions de gaz a effet de serre en France au cours de la periode 1990-1999

    NONE

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO{sub x}, 23% as regards NMVOCs, 33% for CO and by 44% regarding SO{sub 2}. Out of the six greenhouse gases covered by the Kyoto Protocol, CO{sub 2} accounts for the largest share in total GWP emissions (70 %), followed by N{sub 2}O (16 %), CH{sub 4} (12 %), HFCs (0.99 %), SF{sub 6} (0.5 %), and PFCs (0.39 %). (author)

  20. Greenhouse Gases

    ... Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and ... Heating Oil Prices and Outlook Factors Affecting Heating Oil Prices Hydrocarbon Gas Liquids Where do Hydrocarbon Gas Liquids Come From? ...

  1. Greenhouse Gases

    ... over the last few centuries due to the industrial revolution. As the global population has increased and our ... oil, natural gas and wood and since the industrial revolution began in the mid 1700s, each of these ...

  2. The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND

    Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.; Tol, Richard

    2014-01-01

    We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papers have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.

  3. Nonlinear response of modelled stratospheric ozone to changes in greenhouse gases and ozone depleting substances in the recent past

    Meul, S.; Oberländer-Hayn, S.; Abalichin, J.; Langematz, U.

    2015-06-01

    In the recent past, the evolution of stratospheric ozone (O3) was affected by both increasing ozone depleting substances (ODSs) and greenhouse gases (GHGs). The impact of the single forcings on O3 is well known. Interactions between the simultaneously increased GHG and ODS concentrations, however, can occur and lead to nonlinear O3 changes. In this study, we investigate if nonlinear processes have affected O3 changes between 1960 and 2000. This is done with an idealised set of time slice simulations with the chemistry-climate model EMAC. Due to nonlinearity the past ozone loss is diminished throughout the stratosphere, with a maximum reduction of 1.2 % at 3 hPa. The total ozone column loss between 1960 and 2000 that is mainly attributed to the ODS increase is mitigated in the extra-polar regions by up to 1.1 % due to nonlinear processes. A separation of the O3 changes into the contribution from chemistry and transport shows that nonlinear interactions occur in both. In the upper stratosphere a reduced efficiency of the ClOx-catalysed O3 loss chiefly causes the nonlinear O3 increase. An enhanced formation of halogen reservoir species through the reaction with methane (CH4) reduces the abundance of halogen radicals significantly. The temperature-induced deceleration of the O3 loss reaction rate in the Chapman cycle is reduced, which leads to a nonlinear O3 decrease and counteracts the increase due to ClOx. Nonlinear effects on the NOx abundance cause hemispheric asymmetric nonlinear changes of the O3 loss. Nonlinear changes in O3 transport occur in particular in the Southern Hemisphere (SH) during the months September to November. Here, the residual circulation is weakened in the lower stratosphere, which goes along with a reduced O3 transport from the tropics to high latitudes. Thus, O3 decreases in the SH polar region but increases in the SH midlatitudes. The existence of nonlinearities implies that future ozone change due to ODS decline slightly depends on the

  4. The Emission Reduction Potential of Non-CO2 Greenhouse Gases in China and Its Policy Implications

    Delin; HUANG; Songfeng; CAI; Zhen; WANG

    2013-01-01

    Using the improved Energy-Environmental Version of the GTAP Model (GTAP-E) and the sixth version of emission database of non-CO2 greenhouse gases, we simulate the emission reduction potential of non-CO2 greenhouse gases in China and its policy implications. The results show that at present, China is a country with the greatest emission of non-CO2 greenhouse gases in the world, and the emission will account for about 20% of the world’s total emission in 2020. The proportion of emission of non-CO2 greenhouse gases from the agricultural sector reaches 73%. In the next 10 years, the emission of non-CO2 gases from cattle and sheep, industry and service industry will experience the highest growth rate; the growth rate of emission from service industry will be higher than that of emission from industry, and the emission from service industry will exceed that from industry after 2010. China can implement emission reduction policy of non-CO2 greenhouse gases to ease the international pressure of CO2 emission reduction. Although the high carbon tax collected can reduce considerable non-CO2 emission, there is little difference in policy efficiency between high carbon tax and low carbon tax. So, in the implementation of emission reduction carbon tax policy of non-CO2 gases, it is necessary to control the carbon tax at a low level.

  5. Evolution of the global inequality in greenhouse gases emissions using multidimensional generalized entropy measures

    Remuzgo, Lorena; Trueba, Carmen; Sarabia, José María

    2016-02-01

    Given the cumulative consequences of climate change, global concentration of greenhouse gases (GHGs) must be reduced; being inequality in per-capita emissions levels a problem to achieve a commitment by all countries. Thus, the evolution of carbon dioxide (CO2) emissions inequality has received special attention because CO2 is the most abundant GHG in the atmosphere. However, it is necessary to consider other gases to provide a real illustration of our starting point to achieve a multilateral agreement. In this paper, we study the evolution of global inequality in GHGs emissions during the period 1990-2011, considering the four main gases: CO2, methane (CH4), nitrous oxide (N2O) and fluorinated gases (F-gases). The data used in this analysis is taken from the World Resources Institute (2014) and the groups of countries are constructed according to the quantity of emissions that each country released into the atmosphere in the first year of study. For this purpose we use the multidimensional generalized entropy measures proposed by Maasoumi (1986) that can be decomposable into the between- and within-group inequality components. The biggest fall in inequality is observed when we attach more weight to the emissions transfers between the most polluting countries and assume a low substitution degree among pollutants. Finally, some economic policy implications are commented.

  6. Greenhouse gases study in Amazonia; Estudo de gases de efeito estufa na Amazonia

    D' Amelio, Monica Tais Siqueira

    2006-07-01

    The Amazon plays an important role on the global carbon cycle, as changing as carbon storage, since Amazon Basin is the biggest area of tropical forest, around 50% of global. Natural's process, deforestation, and use land are CO{sub 2} sources. The Amazon forest is a significant source of N{sub 2}O by soil process, and CH{sub 4} by anaerobic process like flooded areas, rice cultures, and others sources. This project is part of the LBA project (Large-Scale Biosphere Atmosphere Experiment in Amazonia), and this project is 'Vertical profiles of carbon dioxide and other trace gas species over the Amazon basin using small aircraft'. Since December 2000 vertical profiles of CO{sub 2}, CH{sub 4}, CO, H{sub 2}, N{sub 2}O and SF{sub 6} have been measured above central Amazonia. The local sampling was over Tapajos National Forest, a primary forest in Para State, where had a CO{sub 2} flux tower and an east impact area with sources like animals, rice cultivation, biomass burning, etc, to compare the influence of an impact area and a preserved area in the profiles. The Reserva Biologica de Cuieiras, at Amazon State, is the other studied place, where there already exists a CO{sub 2} flux tower, and an east preserved area at this State, to compare with the Cuieiras. The sampling has been carried out on vertical profile from 1000 ft up to 12000 ft using a semi-automated sampling package developed at GMD/NOAA and a small aircraft. The analysis uses the MAGICC system (Multiple Analysis of Gases Influence Climate Change) which is installed at the Atmospheric Chemistry Laboratory (LQA) in IPEN (Instituto de Pesquisas Energeticas e Nucleares). The results showed that all gases studied, except H{sub 2} gas, has been following the global trend. At the Para State, for the studied years, the Amazonian Forest performed as small CO{sub 2} sink. To compare Wet and Dry Seasons, subtracted the Ascension concentration values in the period to remove the global influence. So that

  7. Global emissions of fluorinated greenhouse gases until 2050: technical mitigation potentials and costs

    Purohit, Pallav; Hoglund-Isaksson, Lena

    2016-04-01

    The anthropogenic fluorinated (F-gases) greenhouse gas emissions have increased significantly in recent years and are estimated to rise further in response to increased demand for cooling services and the phase out of ozone-depleting substances (ODS) under the Montreal Protocol. F-gases (HFCs, PFCs and SF6) are potent greenhouse gases, with a global warming effect up to 22,800 times greater than carbon dioxide (CO2). This study presents estimates of current and future global emissions of F-gases, their technical mitigation potential and associated costs for the period 2005 to 2050. The analysis uses the GAINS model framework to estimate emissions, mitigation potentials and costs for all major sources of anthropogenic F-gases for 162 countries/regions, which are aggregated to produce global estimates. For each region, 18 emission source sectors with mitigation potentials and costs were identified. Global F-gas emissions are estimated at 0.7 Gt CO2eq in 2005 with an expected increase to about 3.6 Gt CO2eq in 2050. There are extensive opportunities to reduce emissions by over 95 percent primarily through replacement with existing low GWP substances. The initial results indicate that at least half of the mitigation potential is attainable at a cost of less than 20€ per t CO2eq, while almost 90 percent reduction is attainable at less than 100€ per t CO2eq. Currently, several policy proposals have been presented to amend the Montreal Protocol to substantially curb global HFC use. We analyze the technical potentials and costs associated with the HFC mitigation required under the different proposed Montreal Protocol amendments.

  8. Inventory of gases of greenhouse effect and mitigation options for Colombia

    In the last years, the possibility of a global heating due to the emissions of greenhouse gases has become a true concern for the international scientific community. As a result of it created the IPCC (Intergovernmental Panel on Climate Change) and the agreement mark was approved about the climatic change of the United Nations (UNFCCC) that was subscribed by the countries in 1992 in Rio de Janeiro city in Brazil. The objective of the agreement is the stabilization of the concentrations of the gases of GEI effect in the atmosphere at a level that allows avoiding interferences anthropogenic dangerous for the climatic system. It is sought to reach this level inside a sufficiently long term to allow the natural adaptation from the ecosystems to the climatic change, guaranteeing this way the production of foods and the sustainable development. The government from Colombia subscribed the agreement mark about the climatic change of the United Nations (UNFCCC) in 1992 and the congress of the republic ratified it in 1995. The signatory countries of the agreement commit to elaborate and to publish national inventories of anthropogenic emissions of gases of greenhouse effect as well as to develop plans to reduce or to control the emissions

  9. Biogenic feedbacks on the atmospheric concentrations of greenhouse gases: overview of the GREENCYCLES network

    Full text: GREENCYCLES is a Marie Curie research training network focussed on the roles of global biogeochemistry for climate change. The project aims to reduce uncertainties associated with biogenic feedbacks on global environmental change and foster the education of the next generation of Earth system scientists. GREENCYCLES young scientists are offered a unique environment bringing together key European research modelling teams with complementary expertise in coupled earth system, oceans, field-based understanding of the terrestrial and oceanic processes, and space based observations. To improve the understanding of the important biogeochemical processes that control the concentrations of anthropogenic greenhouse gases, the network is spread across six key science objectives, each involving different individual research projects undertaken by Early-Stage Researchers (ESRs) and Experienced Researchers (ERs): quantify feedbacks in the global carbon cycle; determine the effects of changing land use on climate; improve understanding of natural sources of CH4 and their responses to human activities; quantify impacts of climate change and climate variability on fire-induced emissions of greenhouse gases; quantify impacts of climate change on terrestrial and oceanic biogenic emissions of aerosols and chemically active gases, and their effects on tropospheric chemistry; quantify impacts of vegetation and climate changes on atmospheric dust, and its feedbacks on CO2 and climate. An overview of the research and training progress to date will be presented. (author)

  10. Model of Emissions of Greenhouse Gases (Ghg's in the Oil and Gas Industry

    Amarildo da Cruz Fernandes

    2012-06-01

    Full Text Available The warming of Earth's atmosphere is a natural phenomenon and necessary to sustain life on the planet, being caused by the balance between the electromagnetic radiation received by the Earth from the Sun and the infrared radiation emitted by the Earth back into space. Since the mid-eighteenth century, with the advent of the Industrial Revolution and the consequent increase in burning fossil fuels, changes in land use and agriculture, the concentrations of carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O has increased significantly. By the year 2010, the concentrations of these three gases showed increments respectively in the order of 39%, 158% and 20% (WMO 2009, 2010 and 2011. Such increases in the concentrations of these gases are changing the Earth's radioactive balance, intensifying the natural greenhouse effect, which over millions of years has been essential to support life on the planet. The main objective of this paper is to present the development of a model based on the language of System Dynamics (SD, of how the emission of Greenhouse Gases (GHGs is in complex installations Exploration and Production (E & P of oil and gas. To illustrate one of the results of this modeling process a computer simulation was performed involving emissions from production estimate for the Pilot Production System and Drainage Area Tupi - Tupi Pilot (ICF, 2008.

  11. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  12. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  13. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  14. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran

    The objectives of this study were to analyze energy use and greenhouse gases (GHG) emissions in various wheat production scenarios in north eastern Iran and to identify measures to reduce energy use and GHG emissions. Three high-input, a low-input, a better crop management and a usual production scenarios were included. All activities and production processes were monitored and recorded. Averages of total energy input and output were 15.58 and 94.4 GJ ha−1, respectively. Average across scenarios, GHG emissions of 1137 kg CO2-eq ha−1 and 291 kg CO2-eq t−1 were estimated. The key factors relating to energy use and GHG emissions were seedbed preparation and sowing and applications of nitrogen fertilizer. The better crop management production scenario required 38% lower nitrogen fertilizer (and 33% lower total fertilizer), consumed 11% less input energy and resulted in 33% more grain yield and output energy compared to the usual production scenario. It also resulted in 20% less GHG emissions per unit field area and 40% less GHG emissions per ton of grain. It was concluded that this scenario was the cleaner production scenario in terms of energy use and GHG emissions. Measures of improvement in energy use and GHG emission were identified. - Highlights: ► Wheat production scenarios were evaluated for energy use and greenhouse gases emission. ► A better crop management production scenario was the cleaner production scenario. ► Measures to reduce energy use and greenhouse gases emission were identified

  15. MAGGnet: An international network to foster mitigation of agricultural greenhouse gases

    Liebig, M.A.; Franzluebbers, A.J.; Alvarez, C.;

    2016-01-01

    established within the Croplands Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (GRA). With involvement from 46 alliance member countries, MAGGnet seeks to provide a platform for the inventory and analysis of agricultural GHG mitigation research throughout the world. To date......, metadata from 315 experimental studies in 20 countries have been compiled using a standardized spreadsheet. Most studies were completed (74%) and conducted within a 13-year duration (68%). Soil carbon and nitrous oxide emissions were measured in over 80% of the studies. Among plant variables, grain yield...

  16. Emission Inventories of Carbon-containing Greenhouse Gases in and Technological Measures for Their Abatement

    Zhuang Yahui; Zhang Hongxun; Wang Xiaoke; Li Changsheng

    2004-01-01

    The report summarizes surveys on carbon inventories and initiatives on sustainable carbon cycling taken by the Research Center for EcoEnvironmental Sciences, where the authors work/worked. The first part of the report, which appeared in the preceding issue of this journal, deals with the concept of sustainable carbon cycling, the historic evolution of carbon cycling processes in China, carbon pool enhancement, value addition,carbon sequestration and carbon balance. This very paper, as the second part of the report, covers the results of carbon dynamics modeling, emission inventories of various carbon-containing greenhouse gases and their potential abatement measures.

  17. Systematical strategies for wastewater treatment and the generated wastes and greenhouse gases in China

    Jingbo GUO; Fang MA; Yuanyuan QU; Ang LI; Liang WANG

    2012-01-01

    China now faces double challenges of water resources shortage and severe water pollution. To resolve Chinese water pollution problems and reduce its impacts on human health, economic growth and social develop- ment, the situation of wastewater treatment was investi- gated. Excess sludge and greenhouse gases (GHGs) emitted during wastewater treatment were also surveyed. It is concluded that Chinese water pollution problems should be systematically resolved with inclusion of wastewater and the solid waste and GHGs generated during wastewater treatment. Strategies proposed for the wastewater treatment in China herein were also adequate for other countries, especially for the developing countries with similar economic conditions to China.

  18. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate......Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative...

  19. Regional development and greenhouse gases emission: the case of the Amazon Region

    Imori, Denise; Guilhoto, Joaquim José Martins; David, Letícia Scretas; Gutierre, Leopoldo Millan; Waisman, Caio

    2011-01-01

    The purpose of this work is to verify the existence of possible tradeoffs between policies direct to reduce the emissions of greenhouse gases (GHGs) with the ones direct to foster the development of the Brazilian Amazon Region, considering its economic relations with the rest of the country and the international markets. In order to achieve this goal, this paper uses an interregional input-output (I-O) model, estimated for the Brazilian economy for the year of 2004. The I-O model is used to m...

  20. The development of the brazilian amazon region and greenhouse gases emission: a dilemma to be faced!

    Imori, Denise; Guilhoto, Joaquim José Martins; David, Leticia Scretas; Gutierre, Leopoldo Millan; Waisman, Caio

    2011-01-01

    The purpose of this work is to verify the existence of possible tradeoffs between policies direct to reduce the emissions of greenhouse gases (GHGs) with the ones direct to foster the development of the Brazilian Amazon Region, which is one of the poorest in the country. In order to achieve this goal, this paper uses an interregional input-output (I-O) model, estimated for the Brazilian economy for the year of 2004. The I-O model is used to make a comparison between the economical and the en...

  1. Greenhouse Gases Emissions Inventory in 2005 by the Mexican Energy Sector

    D. Villalba–Valle.; R. Muñoz Ledo–Carranza.; R. Flores–Velázquez

    2010-01-01

    In the present work, it is estimated the greenhouse gases (GHG, GEI in this paper) emissions in 2005 by the consumption and/or transformation of energy in Mexico. This document is not official, and it is used as reference the fuel consumption reported in the Balance Nacional de Energia 2005 published by the Secretaria de Energia. In this way, it is standardized the emission sources that will be used in the near future to estimated the official 2005 GHG Emissions Inventory. In order to solve t...

  2. Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases

    The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subjected to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here, two new metrics are proposed, which are based on a simple analytical climate model. The first metric is called the Global Temperature Change Potential and represents the temperature change at a given time due to a pulse emission of a gas (GTPP); the second is similar but represents the effect of a sustained emission change (hence GTPS). Both GTPP and GTPS are presented as relative to the temperature change due to a similar emission change of a reference gas, here taken to be carbon dioxide. Both metrics are compared against an upwelling-diffusion energy balance model that resolves land and ocean and the hemispheres. The GTPP does not perform well, compared to the energy balance model, except for long-lived gases. By contrast, the GTPS is shown to perform well relative to the energy balance model, for gases with a wide variety of lifetimes. It is also shown that for time horizons in excess of about 100 years, the GTPS and GWP produce very similar results, indicating an alternative interpretation for the GWP. The GTPS retains the advantage of the GWP in terms of transparency, and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance, as it is further down the cause-effect chain of the impacts of greenhouse gases emissions and has an unambiguous interpretation. It appears to be robust to key uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP

  3. Renewable energies for reduction of greenhouse gases in the Mexican electricity generation in 2025

    Islas, J; Manzini, F; Martinez, M [Centre for Energy Research, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    This study presents three scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the energy policy path that was in effect until 1990. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-90's as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The three scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG). [Spanish] Este estudio presenta tres escenarios relacionados de los futuros ambientales de generacion de electricidad en Mexico hasta el ano 2025. El primer escenario enfatiza la utilizacion de productos del petroleo, particularmente el combustoleo, y representa el curso de la politica de energia vigente hasta 1990. El segundo escenario da prioridad al uso de gas natural, reflejando el patron de consumo de energia que surgio a mediados de los 90's como resultado de reformas en el sector energetico. En el tercer escenario, la alta participacion de las fuentes renovables de energia es considerada factible desde los puntos de vista tecnico y economico. Los tres escenarios son evaluados hasta el ano 2025 en terminos de los gases de efecto invernadero (GHG) y de gases precursores de lluvia acida (ARPG).

  4. The state of greenhouse gases in the atmosphere using global observations through 2013

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed; Montzka, Stephen A.; Keeling, Ralph; Tanhua, Toste; Lorenzoni, Laura

    2015-04-01

    We present results from the tenth annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG), and for the first time, it includes a summary of ocean acidification. Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. The summary of ocean acidification and trends in ocean pCO2 was jointly produced by the International Ocean Carbon Coordination Project (IOCCP) of the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), the Scientific Committee on Oceanic Research (SCOR), and the Ocean Acidification International Coordination Centre (OA-ICC) of the International Atomic Energy Agency (IAEA). The tenth Bulletin included a special edition published prior to the United Nations Climate Summit in September 2014. The scope of this edition was to demonstrate the level of emission reduction necessary to stabilize radiative forcing by long-lived greenhouse gases. It shows in particular that a reduction in radiative forcing from its current level (2.92 W m-2 in 2013) requires significant reductions in anthropogenic emissions of all major greenhouse gases. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of carbon dioxide, methane and nitrous oxide derived from this network reached new highs in 2013, with CO2 at 396.0 ± 0.1 ppm, CH4 at

  5. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  6. An alternative to the global warming potential for comparing climate impacts of emissions of greenhouse gases

    The global warming potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climate impact of emissions of different greenhouse gases. The GQP has been subject at many criticism because of its formulation but nevertheless it has retained some favour because of the simplicity of this design and application and its transparency compared to proposed alternatives. Here a new metric which we call the Global Temperature Change Potential (GTP) is proposed which is based on a simple analytical climate model that represents the temperature change as a given time due to either a pulse emission of a gas or a sustained emission change relative to a similar emission change of carbon dioxide. The GTP for a pulse emission illustrates that the GWP does not represent well the relative temperature response; however, the GWP is shown to be very close to the GTP for a sustained emission change for time horizons of 100 years or more. The new metric retains the advantage of the GWP in terms of transparency and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance as it is further down the cause-effect chain of the impacts of greenhouse gases emissions. The GTP for a sustained emission appears to be robust to a number of uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP. (Author)

  7. The enlargement of the European Union. Effects on trade and emissions of greenhouse gases

    With the gradual accession of various Central and Eastern European Countries (CEECs) to the European Union (EU), international trade between the EU and the CEECs will change as a result of trade liberalisation and the mobility of production factors within the EU. The EU and most of the CEECs have already committed themselves to reduce by 2008-2012 their emissions of greenhouse gases (GHGs) by 8% compared to the 1990 level. This paper reports on an investigation of the potential consequences of the enlargement of the EU and of the emission reduction target set by the Kyoto Protocol on the sectoral production patterns and international trade. A comparative-static general equilibrium model was developed to examine the impacts under different scenarios. For illustrative purposes, two regions (the EU and the CEECs) and three categories of goods and services (agricultural goods, industrial goods, and services) were included. The model was calibrated by the 1998 data. The model was subsequently applied to study the effects of free trade, the mobility of factors and the environmental constraints on production and international trade in light of the enlargement of the EU. We show that in this specific context, free trade is beneficial to economic welfare and does not necessarily increase emissions of greenhouse gases. The mobility of factors also increases economic welfare, but in the case of fixed production technology it may harm the environment through more emissions of GHGs. (author)

  8. Understanding and quantifying greenhouse gases (GHG) emissions: the UK GHG Emissions and Feedback Programme

    Matthiesen, Stephan; Palmer, Paul; Watson, Andrew; Williams, Mathew

    2016-04-01

    We give an overview over the structure, objectives, and methods of the UK-based Greenhouse Gases Emissions and Feedback Programme. The overarching objective of this research programme is to deliver improved GHG inventories and predictions for the UK, and for the globe at a regional scale. To address this objective, the Programme has developed a comprehensive, multi-year and interlinked measurement and data analysis programme, focussing on the major GHGs carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The Programme integrates three UK research consortia with complementary objectives, focussing on observation and modelling in the atmosphere, the oceans, and the terrestrial biosphere: GAUGE (Greenhouse gAs Uk and Global Emissions) will produce robust estimates of the UK GHG budget, using new and existing atmospheric measurement networks and modelling activities at a range of scales. It integrates inter-calibrated information from ground-based, airborne, ferry-borne, balloon-borne, and space-borne sensors, including new sensor technology. The GREENHOUSE (Generating Regional Emissions Estimates with a Novel Hierarchy of Observations and Upscaled Simulation Experiments) project aims to understand the spatio-temporal patterns of biogenic GHG emissions in the UK's landscape of managed and semi-managed ecosystems. It uses existing UK field data and several targeted new measurement campaigns to build regional GHG inventories and improve the capabilities of land surface models. RAGNARoCC (Radiatively active gases from the North Atlantic Region and Climate Change) is an oceanographic project to investigate the air-sea fluxes of GHGs in the North Atlantic region. Through dedicated research cruises as well as data collection from ships of opportunity, it develops a comprehensive budget of natural and anthropogenic components of the carbon cycle in the North Atlantic and a better understanding of why the air-sea fluxes of CO2 vary regionally, seasonally and multi

  9. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014

    R. V. Kochanov

    2015-08-01

    Full Text Available In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014, the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm−1, the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer+ NO2 was used in place of the monomer. Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.

  10. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Sharpe, S. W.; Johnson, T. J.; Sams, R. L.

    2015-08-01

    In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779-1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50-1800 cm-1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer)+ NO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.

  11. Influence of biochar amendment on greenhouse gases emission and rice production in paddy field, China

    Liu, X.; Pan, G. X.; Li, L. Q.; Zhou, T.

    2012-04-01

    Biochar incorporating into agricultural soils as a strategy to increase soil carbon content and mitigate climate change received great attention. We present a field study about biochar amendment into paddy field in Sichuan province 2010, China. The objective was to evaluate the impacts of biochar incorporation on rice production and greenhouse gas emissions. Biochar used in this study was produced from wheat straw at temperature 350-550°C. Biochar incorporated into paddy field before rice transplanting. Methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) fluxes were measured in situ using closed chamber method during whole rice growing season. Flux of greenhouse gases was monitored at about 7 day's interval. Two rates of N fertilizer (0 and 240 kg N/ha) were applied as urea in combination with 3 biochar rates (0, 20 and 40 t/ha). Amendment of biochar had no influence on rice yield even at the hightest rate of 40 t/ha. However, rice production was greatly relying on chemical N fertilization input. No interact effect was detected between biochar and N fertilizer. Amendment of biochar suppressed N2O emission. During the whole rice growing season, the total N2O emission from chemical fertilizer was reduce by 29% and 53% under biochar amendment rates of 20t/ha and 40t/ha respectively. Total amounts of CO2 and CH4 emitted from paddy fields during whole rice growing season were not greatly increased despite of much carbon brought into soil with biochar. However, biochar amendment slightly increased CO2 emission in the absence of N fertilizer. Our results showed that biochar amendment into paddy field did not increase the global warming potential (GPW) and greenhouse gases emission intensity (GHGI).

  12. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  13. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Qing-chun Meng

    Full Text Available CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  14. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants

    Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  15. Isotope aided studies of atmospheric carbon dioxide and other greenhouse gases. Phase II

    The substantial increase in atmospheric greenhouse gas concentrations and their role in global warming have become major concerns of world governments. Application of isotope techniques to label sources and sinks of CO2 and other greenhouse gases has emerged as a potentially powerful method for reducing uncertainties in the global CO2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. As with CO2 concentration measurements, meaningful integration of isotopes in global models requires careful attention to quality assurance, quality control and inter-comparability of measurements made by a number of networks and laboratories. To support improvements in isotope measurement capabilities, the IAEA began implementing Co-ordinated Research Projects (CRPs) in 1992. The first project, entitled Isotope Variations of Carbon Dioxide and other Trace Gases in the Atmosphere, was implemented from 1992 to 1994. A significant contribution was made towards a better understanding of the global carbon cycle and especially of the sources and sinks of carbon with data on the 14C and 13C content of atmospheric CO2, pointing to a better understanding of the problem of the 'missing sink' in the global carbon cycle. Important methodological developments in the field of high precision stable isotope mass spectrometry and improved data acquisition procedures emerged from work carried out within the framework of this programme. The development of pressurized gas standards and planning for an associated interlaboratory calibration were initiated. Due to the good progress and long standing nature of the required work a second CRP was initiated and implemented from 1996 to 1999. It was entitled Isotope aided Studies of Atmospheric Carbon Dioxide and Other Trace Gases - Phase II, to document the close relationship of both programmes. This publication provides an overview of the scientific outcomes of the studies conducted within Phase II of

  16. NF ISO 14064-2. Greenhouse gases. Part 2: specifications and guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements

    This document describes methodology for quantification, monitoring and reporting of activities intended to cause greenhouse gas emissions and reductions at projects level (activity modifying the conditions identified in a baseline scenario, intended to reduce emissions or to increase the removal of greenhouse gases). Thus it suggests a method for the declarations of inventory of projects greenhouse gases and provides support for the monitoring and the management of emissions. It provides terms and definitions, principles, the introduction to greenhouse gases projects and the requirements for greenhouse gas projects. (A.L.B.)

  17. Evaluation of the greenhouse effect gases (CO2, CH4, N2O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO2 and CH4 (by the breeding animals on grass) and N2O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  18. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF{sub 6}. Danish consumption and emissions, 2005

    Sander Poulsen, T. [PlanMiljoe (Denmark)

    2007-06-15

    An evaluation of Danish consumption and emissions of ozone-depleting substances and industrial greenhouse gases has been carried out in continuation of previous evaluations, partly to fulfil Denmark's international obligations to provide information within this area and partly to follow the trend in consumption of ozone-depleting substances as well as the consumption and emissions of HFCs, PFCs and SF{sub 6}. The evaluation includes a calculation of actual emissions of HFCs, PFCs, and SF{sub 6} for 2006. In this calculation the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. (BA)

  19. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4 during BARCA

    V. Y. Chow

    2009-12-01

    Full Text Available High-accuracy continuous measurements of greenhouse gases (CO2 and CH4 during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  20. Working group results on the division by four of the greenhouse gases emissions in France, at 2050, called factor four

    This working group aims to evaluate and propose different ways to divide by four the greenhouse gases emissions at 2050 in France. This objective was decided by the Government and fixed in the Climate Plan and in the Program law of 13 July 2005. In this framework, this meeting presents studies of the working group, concerning the following topics: buildings and greenhouse gases, a scenario for the UE25 realized by Greenpeace, the agriculture and the forests facing the climate, the biomass the nature the agriculture and the silviculture facing the climate. (A.L.B.)

  1. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992: General Guidelines

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, Congress authorized a voluntary program for the public to report achievements in reducing those gases. This document offers guidance on recording historic and current greenhouse gas emissions, emissions reductions, and carbon sequestration. Under the Energy Policy Act (EPAct) reporters will have the opportunity to highlight specific achievements. If you have taken actions to lessen the greenhouse gas effect, either by decreasing greenhouse gas emissions or by sequestering carbon, the Department of Energy (DOE) encourages you to report your achievements under this program. The program has two related, but distinct parts. First, the program offers you an opportunity to report your annual emissions of greenhouse gases. Second, the program records your specific projects to reduce greenhouse gas emissions and increase carbon sequestration. Although participants in the program are strongly encouraged to submit reports on both, reports on either annual emissions or emissions reductions and carbon sequestration projects will be accepted. These guidelines and the supporting technical documents outline the rationale for the program and approaches to analyzing emissions and emissions reduction projects. Your annual emissions and emissions reductions achievements will be reported

  2. Emission estimates for some acidifying and greenhouse gases and options for their control in Finland

    Pipatti, R. [VTT Energy, Espoo (Finland). Energy Systems

    1998-11-01

    This thesis presents estimates and options for control of anthropogenic ammonia (NH{sub 3}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and some halocarbon emissions in Finland. Ammonia is an air pollutant which contributes to both acidification and nitrogen eutrophication of ecosystems. Its emissions are mainly caused by livestock manure. In Finland the anthropogenic emissions of NH{sub 3} have been estimated to be approximately 44 Gg in 1985 and 43 Gg in 1990. In the 1990`s the emissions have declined due to the reduced number of cattle and voluntary implementation of emission reducing measures. The impact of NH{sub 3} emissions on acidification is serious but in Finland it is less than the impact of the other acidifying gases sulphur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}). All three gases and their transformation products are transported by the atmosphere up to distances of hundreds or even more than a thousand kilometres. NH{sub 3} emissions can be reduced with relatively cost-effective measures and the measures can partly replace the implementation of more costly abatement measures on SO{sub 2} and NO{sub x} emissions needed to lower the acidifying deposition in Finland. The other gases studied in this thesis are greenhouse gases. Some of the gases also deplete stratospheric ozone. Finnish anthropogenic CH{sub 4} emissions have been estimated to be around 250 Gg per year during the 1990`s. The emissions come mainly from landfills and agricultural sources (enteric fermentation and manure). The significance of other CH{sub 4} sources in Finland is minor. The potential to reduce the Finnish CH{sub 4} emissions is estimated to be good. Landfill gas recovery offers an option to reduce the emissions significantly at negligible cost if the energy produced can be utilised in electricity and/or heat production. Measures directed at reducing the emissions from livestock manure management are more costly, and the achievable reduction in the emissions

  3. Aspects regarding vertical distribution of greenhouse gases resulted from in situ airborne measurements

    Boscornea, Andreea; Sorin Vajaiac, Nicolae; Ardelean, Magdalena; Benciu, Silviu Stefan

    2016-04-01

    In the last decades the air quality, as well as other components of the environment, has been severely affected by uncontrolled emissions of gases - most known as greenhouse gases (GHG). The main role of GHG is given by the direct influence on the Earth's radiative budget, through Sun light scattering and indirectly by participating in cloud formation. Aldo, many efforts were made for reducing the high levels of these pollutants, e.g., International Panel on Climate Change (IPCC) initiatives, Montreal Protocol, etc., this issue is still open. In this context, this study aims to present several aspects regarding the vertical distribution in the lower atmosphere of some greenhouse gases: water vapours, CO, CO2 and methane. Bucharest and its metropolitan area is one of the most polluted regions of Romania due to high traffic. For assessing the air quality of this area, in situ measurements of water vapours, CO, CO2 and CH4 were performed using a Britten Norman Islander BN2 aircraft equipped with a Picarro gas analyser, model G2401-mc, able to provide precised, continuous and accurate data in real time. This configuration consisting in aircraft and airborne instruments was tested for the first time in Romania. For accomplishing the objectives of the measurement campaign, there were proposed several flight strategies which included vertical and horizontal soundings from 105 m to 3300 m and vice-versa around Clinceni area (20 km West of Bucharest). During 5 days (25.08.2015 - 31.08.2015) were performed 7 flights comprising 10h 18min research flight hours. The measured concentrations of GHS ranged between 0.18 - 2.2 ppm for water vapours with an average maximum value of 1.7 ppm, 0.04 - 0.53 ppm for CO with an average maximum value of 0.21 ppm, 377 - 437.5 ppm for CO2 with an average maximum value of 397 ppm and 1.7 - 6.1 ppm for CH4 with an average maximum value of 2.195 ppm. It was noticed that measured concentrations of GHG are decreasing for high values of sounding

  4. Differences between the glacial cycles of Antarctic temperature and greenhouse gases

    A. W. Omta

    2012-03-01

    Full Text Available Ice-core measurements have indicated that the atmospheric concentrations of the greenhouse gases CO2 and CH4 show glacial-interglacial variations in step with Antarctic temperature. To obtain more insight into the nature of this relationship for cycles of different frequencies, measured time series of temperature, CO2, and CH4 are reanalysed. The results indicate that the temperature signal consists of a linear superposition of a component related to CO2 with a period of ~100 000 yr and a component related to variations in the obliquity of the Earth's orbital plane with a period of ~41 000 yr. This suggests that either there operate very different feedback mechanisms at the different time scales or that CO2 is not merely a~passive follower and amplifier of the glacial-interglacial variations in Antarctic temperature.

  5.  An interdisciplinary approach for studying greenhouse gases at the landscape scale

    Sitaula, BK; Warner, WS; Bakken, LR;

    1995-01-01

    (identified) by an experimental designed (e.g. factorial). The gas fluxes and other soil and environmental factors of potential explanatory importance (e.g. NH4+, NO3-, C, N content of soil, soil moisture and temperature) should be measured simultaneously in selected cells. The number of sample measurements......An experimental approach is described that examines the influence of landscape terrain and land use on fluxes of important greenhouse gases (CH4, N2O and CO2) in soil. The landscape is gridded into 'field' units (cells), and each cell is characterized. For example, a 500 X 500 m rolling landscape...... issues X, Y ground coordinates, then determines elevation (Z), and computes slope for each cell. Through photo interpretation, each cell is classified bylandform, land use, and vegetation. These data are superimposed on soil maps. Each cell is classified by the soil characteristics that conceptually...

  6. Biomass fuel burning and its implications: Deforestation and greenhouse gases emissions in Pakistan

    Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO2, CH4 and N2O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO2-equivalent has been estimated to be 533019 t y-1. - Consumption of forest wood in the brick industry poses the problem of deforestation in Pakistan in addition to release of GHGs in the environment owing to biomass burning.

  7. Possible future scenarios for atmospheric concentration of greenhouse gases. A simplified thermodynamic approach

    Most of the increase in concentrations of greenhouse gases in the Earth's atmosphere is mainly due to anthropogenic activities. This is particularly significant in the case of CO2. The atmospheric concentration of CO2 has systematically increased since the Industrial Revolution (260 ppm), with a remarkable raise after the 1970s until the present day (380 ppm). If this increasing tendency is maintained, the last report of the Intergovernmental Panel on Climate Change (IPCC) estimates that, for the year 2100, the CO2 concentration can augment up to approximately 675 ppm. In this work it is assumed that the quantity of anthropogenic greenhouse gases emitted to the Earth's atmosphere is proportional to the quantity of heat rejected to the environment by internal combustion heat engines. It is also assumed that this increasing tendency of CO2 due to men's activity stems from a mode of energy production mainly based on a maximum-power output paradigm. With these hypotheses, a thermoeconomic optimization of a thermal engine model under two regimes of performance: the maximum-power regime and the so-called ecological function criterion is presented. This last regime consists in maximizing a function that represents a good compromise between high power output and low entropy production. It is showed that, under maximum ecological conditions, the emissions of thermal energy to the environment are reduced approximately up to 50%. Thus working under this mode of performance the slope of the curves of CO2 concentration, for instance, drastically diminishes. A simple qualitative criterion to design ecological taxes is also suggested. (author)

  8. Measurements of greenhouse gases at Beromünster tall-tower station in Switzerland

    Ayalneh Berhanu, Tesfaye; Satar, Ece; Schanda, Rudiger; Nyfeler, Peter; Moret, Hanspeter; Brunner, Dominik; Oney, Brian; Leuenberger, Markus

    2016-06-01

    In order to constrain the regional flux of greenhouse gases, an automated measurement system was built on an old radio tower at Beromünster, Switzerland. The measurement system has been running since November 2012 as part of the Swiss greenhouse gases monitoring network (CarboCount-CH), which is composed of four measurement sites across the country. The Beromünster tall tower has five sampling lines with inlets at 12.5, 44.6, 71.5, 131.6, and 212.5 m above ground level, and it is equipped with a Picarro cavity ring-down spectrometer (CRDS) analyzer (G-2401), which continuously measures CO, CO2, CH4, and H2O. Sensors for detection of wind speed and direction, air temperature, barometric pressure, and humidity have also been installed at each height level. We have observed a non-negligible temperature effect in the calibration measurements, which was found to be dependent on the type of cylinder (steel or aluminum) as well as trace gas species (strongest for CO). From a target gas of known mixing ratio that has been measured once a day, we have calculated a long-term reproducibility of 2.79 ppb, 0.05 ppm, and 0.29 ppb for CO, CO2, and CH4, respectively, over 19 months of measurements. The values obtained for CO2 and CH4 are compliant with the WMO recommendations, while the value calculated for CO is higher than the recommendation. Since the installation of an air-conditioning system recently at the measurement cabin, we have acquired better temperature stability of the measurement system, but no significant improvement was observed in the measurement precision inferred from the target gas measurements. Therefore, it seems that the observed higher variation in CO measurements is associated with the instrumental noise, compatible with the precision provided by the manufacturer.

  9. Possible future scenarios for atmospheric concentration of greenhouse gases. A simplified thermodynamic approach

    Angulo-Brown, F.; Sanchez-Salas, N. [Departamento de Fisica, Escuela Superior de Fisica y Matematicas, del IPN Edif. 9, U.P. Zacatenco, 07738 Mexico, D.F. (Mexico); Barranco-Jimenez, M.A. [Departamento de Ciencias Basicas, Escuela Superior de Computo, del IPN Av., Miguel Bernard s/n., Esq. Juan de Dios Batiz, U.P. Zacatenco, 07738 Mexico, D.F. (Mexico); Rosales, M.A. [Departamento de Fisica y Matematicas, Universidad de las Americas Puebla, Exhacienda Sta., Catarina Martir, Cholula 72820, Puebla (Mexico)

    2009-11-15

    Most of the increase in concentrations of greenhouse gases in the Earth's atmosphere is mainly due to anthropogenic activities. This is particularly significant in the case of CO{sub 2}. The atmospheric concentration of CO{sub 2} has systematically increased since the Industrial Revolution (260 ppm), with a remarkable raise after the 1970s until the present day (380 ppm). If this increasing tendency is maintained, the last report of the Intergovernmental Panel on Climate Change (IPCC) estimates that, for the year 2100, the CO{sub 2} concentration can augment up to approximately 675 ppm. In this work it is assumed that the quantity of anthropogenic greenhouse gases emitted to the Earth's atmosphere is proportional to the quantity of heat rejected to the environment by internal combustion heat engines. It is also assumed that this increasing tendency of CO{sub 2} due to men's activity stems from a mode of energy production mainly based on a maximum-power output paradigm. With these hypotheses, a thermoeconomic optimization of a thermal engine model under two regimes of performance: the maximum-power regime and the so-called ecological function criterion is presented. This last regime consists in maximizing a function that represents a good compromise between high power output and low entropy production. It is showed that, under maximum ecological conditions, the emissions of thermal energy to the environment are reduced approximately up to 50%. Thus working under this mode of performance the slope of the curves of CO{sub 2} concentration, for instance, drastically diminishes. A simple qualitative criterion to design ecological taxes is also suggested. (author)

  10. Measurements of greenhouse gases at Beromünster tall tower station in Switzerland

    Berhanu, T. A.; Satar, E.; Schanda, R.; Nyfeler, P.; Moret, H.; Brunner, D.; Oney, B.; Leuenberger, M.

    2015-10-01

    In order to constrain the regional flux of greenhouse gases, an automated measurement system was built on an old radio tower at Beromünster, Switzerland. The measurement system has been running since November 2012 as part of the Swiss greenhouse gases monitoring network (CARBOCOUNT-CH), which is composed of four measurement sites across the country. The Beromünster tall tower has five sampling lines with inlets at 12.5, 44.6, 71.5, 131.6 and 212.5 m a.g.l., and it is equipped with a Picarro CRDS analyzer (G-2401), which continuously measures CO, CO2, CH4 and H2O. Sensors for detection of wind speed and direction, air temperature, barometric pressure, and humidity have also been installed at each height level. We have observed a non-negligible temperature effect in the calibration measurements, which was found to be dependent on the type of cylinder (steel or aluminum) as well as trace gas species (strongest for CO). From a target gas of known mixing ratio that has been measured once a day, we have calculated a long-term reproducibility of 2.79, 0.05 and 0.29 ppb for CO, CO2 and CH4, respectively over 19 months of measurements. The values obtained for CO2 and CH4 are compliant with the WMO recommendations, while the value calculated for CO is higher than the recommendation, which is mainly due to the above mentioned temperature effects.

  11. On Road Study of Colorado Front Range Greenhouse Gases Distribution and Sources

    Petron, G.; Hirsch, A.; Trainer, M. K.; Karion, A.; Kofler, J.; Sweeney, C.; Andrews, A.; Kolodzey, W.; Miller, B. R.; Miller, L.; Montzka, S. A.; Kitzis, D. R.; Patrick, L.; Frost, G. J.; Ryerson, T. B.; Robers, J. M.; Tans, P.

    2008-12-01

    The Global Monitoring Division and Chemical Sciences Division of the NOAA Earth System Research Laboratory have teamed up over the summer 2008 to experiment with a new measurement strategy to characterize greenhouse gases distribution and sources in the Colorado Front Range. Combining expertise in greenhouse gases measurements and in local to regional scales air quality study intensive campaigns, we have built the 'Hybrid Lab'. A continuous CO2 and CH4 cavity ring down spectroscopic analyzer (Picarro, Inc.), a CO gas-filter correlation instrument (Thermo Environmental, Inc.) and a continuous UV absorption ozone monitor (2B Technologies, Inc., model 202SC) have been installed securely onboard a 2006 Toyota Prius Hybrid vehicle with an inlet bringing in outside air from a few meters above the ground. To better characterize point and distributed sources, air samples were taken with a Portable Flask Package (PFP) for later multiple species analysis in the lab. A GPS unit hooked up to the ozone analyzer and another one installed on the PFP kept track of our location allowing us to map measured concentrations on the driving route using Google Earth. The Hybrid Lab went out for several drives in the vicinity of the NOAA Boulder Atmospheric Observatory (BAO) tall tower located in Erie, CO and covering areas from Boulder, Denver, Longmont, Fort Collins and Greeley. Enhancements in CO2, CO and destruction of ozone mainly reflect emissions from traffic. Methane enhancements however are clearly correlated with nearby point sources (landfill, feedlot, natural gas compressor ...) or with larger scale air masses advected from the NE Colorado, where oil and gas drilling operations are widespread. The multiple species analysis (hydrocarbons, CFCs, HFCs) of the air samples collected along the way bring insightful information about the methane sources at play. We will present results of the analysis and interpretation of the Hybrid Lab Front Range Study and conclude with perspectives

  12. Global CO2 Distributions over Land from the Greenhouse Gases Observing Satellite (GOSAT)

    Hammerling, Dorit M.; Michalak, Anna M.; O'Dell, Christopher; Kawa, Randolph S.

    2012-01-01

    January 2009 saw the successful launch of the first space-based mission specifically designed for measuring greenhouse gases, the Japanese Greenhouse gases Observing SATellite (GOSAT). We present global land maps (Level 3 data) of column-averaged CO2 concentrations (X(sub CO2)) derived using observations from the GOSAT ACOS retrieval algorithm, for July through December 2009. The applied geostatistical mapping approach makes it possible to generate maps at high spatial and temporal resolutions that include uncertainty measures and that are derived directly from the Level 2 observations, without invoking an atmospheric transport model or estimates of CO2 uptake and emissions. As such, they are particularly well suited for comparison studies. Results show that the Level 3 maps for July to December 2009 on a lO x 1.250 grid, at six-day resolution capture much of the synoptic scale and regional variability of X(sub CO2), in addition to its overall seasonality. The uncertainty estimates, which reflect local data coverage, X(sub CO2) variability, and retrieval errors, indicate that the Southern latitudes are relatively well-constrained, while the Sahara Desert and the high Northern latitudes are weakly-constrained. A probabilistic comparison to the PCTM/GEOS-5/CASA-GFED model reveals that the most statistically significant discrepancies occur in South America in July and August, and central Asia in September to December. While still preliminary, these results illustrate the usefulness of a high spatiotemporal resolution, data-driven Level 3 data product for direct interpretation and comparison of satellite observations of highly dynamic parameters such as atmospheric CO2.

  13. The electricity cogeneration in sugar mills and alcohol and the reduction of emissions of greenhouse gases

    Electric power in Cuba currently produces -in high proportion- plants employing fossil fuel. The price of fossil fuels and the negative influence on the environment by emissions of greenhouse gases, has indicated the need to develop other energy sources. Biomass sugarcane provides ample opportunities to produce this energy with positive economic and environmental results. The technological process for the production of sugar requires the use of mechanical energy, low power consumption compared to thermal energy requirements and their use at low pressures determine the possibility of implementing a cogeneration system of mechanical, thermal and electrical energy. The power consumption for the driving equipment of a factory is about 15-30 kw-kr / ton rod. The amount of electrical energy generated in a sugar cane factory is sufficient to meet their own needs, being able to obtain an additional amount for supply to the public network and meet the needs of other productions as is alcohol. Agricultural crop residues (RAC) and sugarcane bagasse and a liquid fuel: alcohol and gaseous fuel: different energy possibilities derived from the sugar industry reflected in the disposal of solid fuels such as is the biogas. The preparation of solid, liquid and gaseous fuels from sugar and alcohol production avoids the use of fossil fuels such as gasoline and fuel oil and gas enables not be sent into the atmosphere that impact on the greenhouse effect. (full text)

  14. Air Pollution Policy in Europe. Quantifying the Interaction with Greenhouse Gases and Climate Change Policies

    Bollen, J. [CPB Netherlands Bureau for Economic Policy Analysis, Den Haag (Netherlands); Brink, C. [Netherlands Environmental Assessment Agency PBL, Den Haag (Netherlands)

    2012-10-15

    In this study the Computable General Equilibrium Model called WorldScan is used to analyse interactions between European air pollution policies and policies aimed at addressing climate change. WorldScan incorporates the emissions of both greenhouse gases (CO2, N2O and CH4) and air pollutants (SO2, NOx, NH3 and PM2.5). WorldScan has been extended with equations that enable the simulation of end-of-pipe measures that remove pollutants without affecting the emission-producing activity itself. Air pollution policy will depend on end-of-pipe controls for not more than 50%, thus also at least 50% of the required emission reduction will come from changes in the use of energy through efficiency improvements, fuel switching and other structural changes in the economy. Greenhouse gas emissions thereby decrease which renders climate change policies less costly. Our results show that carbon prices will fall, but not more than 33%, although they could drop to zero when the EU agrees on a more stringent air pollution policy.

  15. Air pollution policy in Europe: Quantifying the interaction with greenhouse gases and climate change policies

    This paper uses the computable general equilibrium model WorldScan to analyse interactions between EU's air pollution and climate change policies. Covering the entire world and seven EU countries, WorldScan simulates economic growth in a neo-classical recursive dynamic framework, including emissions and abatement of greenhouse gases (CO2, N2O and CH4) and air pollutants (SO2, NOx, NH3 and PM2.5). Abatement includes the possibility of using end-of-pipe control options that remove pollutants without affecting the emission-producing activity itself. This paper analyses several variants of EU's air pollution policies for the year 2020. Air pollution policy will depend on end-of-pipe controls for not more than two thirds, thus also at least one third of the required emission reduction will come from changes in the use of energy through efficiency improvements, fuel switching and other structural changes in the economy. Greenhouse gas emissions thereby decrease, which renders climate change policies less costly. Our results show that carbon prices will fall, and may even drop to zero when the EU agrees on a more stringent air pollution policy. - Highlights: • This paper models bottom-up emission control in top-down CGE model. • We analyse interactions between air pollution and climate policies in Europe. • Structural changes induced by stringent air policies may make EU-ETS market obsolete

  16. Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters.

    Maia, Guilherme D N; Day, George B; Gates, Richard S; Taraba, Joseph L; Coyne, Mark S

    2012-06-01

    Gas-phase compost biofilters are extensively used in concentrated animal feeding operations to remove odors and, in some cases, ammonia from air sources. The expected biochemical pathway for these predominantly aerobic systems is nitrification. However, non-uniform media with low oxygen levels can shift biofilter microbial pathways to denitrification, a source of greenhouse gases. Several factors contribute to the formation of anoxic/anaerobic zones: media aging, media and particle structure, air velocity distribution, compaction, biofilm thickness, and moisture content (MC) distribution. The present work studies the effects of media moisture conditions on ammonia (NH(3)) removal and greenhouse gas generation (nitrous oxide, N(2)O and methane, CH(4)) for gas-phase compost biofilters subject to a 100-day controlled drying process. Continuous recordings were made for the three gases and water vapor (2.21-h sampling cycle, each cycle consisted of three gas species, and water vapor, for a total of 10,050 data points). Media moisture conditions were classified into three corresponding media drying rate (DR) stages: Constant DR (wetter media), falling DR, and stable-dry system. The first-half of the constant DR period (0-750 h; MC=65-52%, w.b.) facilitated high NH(3) removal rates, but higher N(2)O generation and no CH(4) generation. At the drier stages of the constant DR (750-950 h; MC=52-48%, w.b.) NH(3) removal remained high but N(2)O net generation decreased to near zero. In the falling DR stage (1200-1480 h; MC=44-13%) N(2)O generation decreased, CH(4) increased, and NH(3) was no longer removed. No ammonia removal or greenhouse gas generation was observed in the stable-dry system (1500-2500 h; MC=13%). These results indicate that media should remain toward the drier region of the constant DR (in close proximity to the falling DR stage; MC=50%, approx.), to maintain high levels of NH(3) removal, reduced levels of N(2)O generation, and nullify levels of CH(4

  17. Greenhouse gases measurements in road tunnel in São Paulo Megacity, Brazil

    Fornaro, A.; Andrade, M. F.; Ynoue, R. Y.; Galichio, W.; Astolfo, R.; Miranda, R. M.

    2012-04-01

    The Metropolitan Area of São Paulo (MASP) is the richest area in Brazil and is one of the largest megacities in the world, with more than 20 million inhabitants. The fleet, with more than 7 million vehicles, is unique in that most are fueled by ethanol or by a gasoline-ethanol (flex-fuel vehicles) mixture containing 75-78% gasoline (by volume) and 22-25% ethanol (a blend referred to as gasohol). Nowadays, approximately 50% of the fuel burned by the fleet is ethanol. The vehicular emissions are responsible for approximately 98, 97, and 96%, respectively, of all emissions of carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx). In addition, the fleet is the largest source of CO2 emissions in the MASP. The goal is to evaluate of the vehicles emissions of the pollutants and greenhouse gases (CH4 and CO2) in the MASP. The gases carbon dioxide and methane were carried out by Picarro G2301 Analyzer for CO2/CH4/H2O in air. Field measurements were carried out in two road tunnels within the MASP: May 2 to 13, 2011 in the Janio Quadros (JQ) tunnel and from July 04 to 19, 2011 in the Rodoanel (RA) tunnel. The JQ tunnel is located in the southwest portion of São Paulo. It is a two-lane tunnel that is 1900 m in length, and the traffic in both lanes flows in the same directions. The in-tunnel emissions are mainly from gasohol- and ethanol-powered vehicles. The RA tunnel is located in the West portion of the city and different from JQ tunnel. It is 1700m in length and carries gasohol, ethanol and diesel powered vehicles, being that approximately 40% of the heavy-duty (burning diesel) in its four-lane. The results showed that the effects of the number and velocity of the vehicles in the variability of greenhouse gases and pollutants. The carbon dioxide reaching the hourly maximum value of 550 ppm in-inside the JQ tunnel, and 900 ppm in-side the RA tunnel.

  18. Limiting the emission of green-house gases: objectives and results in EU and non-EU countries

    Hellrigl B

    2008-06-01

    Full Text Available Based on UNFCCC and EEA (European Environmental Agency data, changes in the emissions (no LULUCF considered of green-house gases in the period 1990-2004 either in the Annex 1 as well in the UE-27 countries are summarized and commented.

  19. Limiting the emission of green-house gases: objectives and results in EU and non-EU countries

    Hellrigl B

    2008-01-01

    Based on UNFCCC and EEA (European Environmental Agency) data, changes in the emissions (no LULUCF considered) of green-house gases in the period 1990-2004 either in the Annex 1 as well in the UE-27 countries are summarized and commented.

  20. Tropospheric Halogen Chemistry

    von Glasow, R.; Crutzen, P. J.

    2003-12-01

    so far highest atmospheric mixing ratios of BrO were measured (Hebestreit et al., 1999). Volcanoes are sources of halogens as well, mainly in the form of HCl. Biomass burning releases halogens as do industrial processes.So far we have only mentioned chlorine, bromine, and iodine. This is justified because chemistry of fluorine is of no consequence, as very unreactive HF is efficiently formed in the atmosphere, e.g., via the reaction F+H2O→HF+OH. However, several fluorine-containing gases of anthropogenic origin are potentially powerful greenhouse gases, because they absorb strongly in the infrared atmospheric window region near 10 μm. Fully fluorinated gases - such as SF6, CF4, and C2F6 - have atmospheric lifetimes of the order of thousands of years and thus possess very high global warming potential (GWP). Although their abundance in the atmosphere has not yet grown large enough to be of concern for Earth's climate, their production must ultimately be curtailed in the future. The most abundant fully fluorinated gas, CF4, had an atmospheric volume mixing ratio of ˜75 pmol mol-1 in 1995 (Warneck, 1999). Because of their higher concentrations in the atmosphere, about 270 pmol mol-1 and 530 pmol mol-1, respectively, the CFC gases, CFCl3 and CF2Cl2, already exert a significant radiative greenhouse forcing (Ramanathan, 1975) on Earth's climate. For further discussion about atmospheric fluorine, the reader is referred to a thorough review article by Harnisch (1999).Several overview articles have been published on tropospheric halogen chemistry since the early 1980s, starting with Cicerone (1981). Wayne et al. (1995) list in great detail reaction paths, laboratory data, and atmospheric implications of halogen oxides. A good overview on laboratory measurements was also given by de Haan et al. (1999). Reaction cycles involved in tropospheric halogen chemistry and measurements are also thoroughly discussed by Platt (2000) and Platt and Hönninger (2003). Important

  1. Emission factor of gases from the greenhouse effect for the brazilian interconnected system; Fator de emissao de gases de efeito estufa para o sistema interligado brasileiro

    Esparta, A. Ricardo J. [Ecoinvest Carbon S.A., Sao Paulo, SP (Brazil)]. E-mail: esparta@iee.usp.br; esparta@ecoinvestcarbon.com; Fernandez, Pablo [EcoSecurities, Rio de Janeiro, RJ (Brazil)]. E-mail: pablo.fernandez@ecosecurities.com.br; Costa, David Freire da [Econergy Brasil, Sao Paulo, SP (Brazil)]. E-mail: freire@econergy.com.br

    2006-07-01

    The participation of new power generation projects of the Brazilian interconnected system in the Clean Development Mechanism of the Kyoto Protocol demand the definition of greenhouse gases baseline emission scenarios and monitoring methodologies. The present paper describes the reasoning behind approved methodologies for capacity addition from renewable sources as well as carries out the calculation of the emission factor for the Brazilian interconnected grid. (author)

  2. Inventory of greenhouse effect gases in France under the united nation framework convention on climatic change; Inventaire des emissions de gaz a effet de serre en France au titre de la convention cadre des nations unies sur le changement climatique

    NONE

    2001-12-01

    The present report supplies emission data, for France and for the period 1990 - 2000 concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. For the period 1990 - 1999 as a whole, estimates provided in the previous inventories have been reviewed and corrected to take into account updated statistics, improved knowledge, possible changes in methodology and specifications contained in the guidelines (FCCC/CP/1999/7) defined by the UNFCCC on reporting for inventories of emissions, in particular the use of the Common Reporting Format (CRF). (author)

  3. Air pollution, greenhouse gases and climate change: Global and regional perspectives

    Ramanathan, V.; Feng, Y.

    Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. About 30 years ago, it was recognized that the increase in tropospheric ozone from air pollution (NO x, CO and others) is an important greenhouse forcing term. In addition, the recognition of chlorofluorocarbons (CFCs) on stratospheric ozone and its climate effects linked chemistry and climate strongly. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that air pollution is transported across continents and ocean basins due to fast long-range transport, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e., aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols may nucleate more cloud droplets, which makes the clouds reflect more solar radiation. The dimming has a surface cooling effect and decreases evaporation of moisture from the surface, thus slows down the hydrological cycle. On the other hand, absorption of solar radiation by black carbon and some organics increase atmospheric heating and tend to amplify greenhouse warming of the atmosphere. ABCs are concentrated in regional and mega-city hot spots. Long-range transport from these hot spots causes widespread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by widespread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. In S. Asia and N. Africa, the large north-south gradient in the ABC

  4. Methane and Other Greenhouse Gases in the Arctic - Measurements, Process Studies and Modelling (MAMM)

    Pyle, J. A.; Warwick, N. J.; Cain, M.; Hayman, G.; Skiba, U.; Drewer, J.; Dinsmore, K.; George, C.; Nisbet, E. G.; Lowry, D.; Fisher, R. E.; France, J. L.; Lanoiselle, M.; Brownlow, R. B.; Allen, G.; Bower, K.; Gallagher, M. W.; Percival, C.; Illingworth, S. M.; Jones, B.; Muller, J.; O'Shea, S.; Manning, A. C.; Kozlova, E.; Manning, A. J.; Smith, M.; Anderson, D.; Bauguitte, S.

    2013-12-01

    The Arctic is a major source of atmospheric methane and other greenhouse gases, of both natural and anthropogenic origin. Arctic greenhouse gas sources need to be quantified, by strength, geographic location, character (e.g. wetlands, gas fields, hydrates), and by temporal variation (daily, seasonally and annually), and their vulnerability to change assessed. To this end, the MAMM project was commissioned as part of the UK NERC Arctic Research Programme. It involves an integrated series of measurement and modelling activities. Analysis of atmospheric gas concentrations, isotopic character, and source fluxes, are being made from both the ground and from the NERC FAAM (Facility for Airborne Atmospheric Measurements) aircraft. The measurements (historic and new) are being interpreted using a suite of models (trajectory, forward and inverse) to improve the understanding of the local/regional scale, placing the role of Arctic emissions in the context of large-scale global atmospheric change. The first measurement campaign was held in August 2012. Surface flux measurements were made at the Sodankylä research station in Finland, together with in-situ surface and aircraft measurements over a wider area. In addition to flights over the Sodankylä wetlands, the aircraft also flew out to Svalbard, Norway to investigate marine sources of methane. Further campaigns are taking place in Sweden in August and September 2013. The initial measurements have been used to infer wetland emission fluxes and confirm that Scandinavian wetlands are a major source of methane in this region (see posters by Fisher et al, O'Shea et al). The aircraft also measured a high-methane plume over the sea between mainland Norway and Svalbard, which was likely advected from mainland wetland sources (see poster by France et al). Results from the field campaigns will be presented, alongside results from the NAME model (the UK Met Office's Numerical Atmospheric dispersion Modelling Environment) to help

  5. The contribution of drained organic soils to the globally emitted greenhouse gases and emission hotspots

    Barthelmes, Alexandra; Couwenberg, John; Joosten, Hans

    2016-04-01

    Key words: organic soils, peatlands, drainage, emissions, globally Peatlands cover only 3% of the global land surface. Some 15% of these peatlands have been drained for agriculture, forestry and grazing, which leads to the release of huge amounts of carbon. The '2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands' (IPCC 2014) offers up-to-date default emission factors for different land use types on organic soil and thus enables proper reporting. For this, realistic area data of drained organic soils are needed at a national scale. We analysed the drained organic soil areas and related emissions as reported to the UNFCCC in 2014 for several Nordic-Baltic countries . The analysis revealed that the areas often seem to be underestimated and that several countries use outdated emission factors. The re-assessment of the drained area and the application of the IPCC (2014) default emission factors resulted in 5-10 x higher emissions from drained organic soils for some countries. Out of 9 Nordic-Baltic countries only 1 country seems to have overestimated the drainage related organic soil emissions. If adopting the default emission factors from IPCC (2014) globally, the emissions from drained and degrading organic soils (~ 1,600 Mt CO2-eq.) amount to almost double the amount of CO2 emissions from aviation, even when emissions from peat fires are not included . By far the top single emitter of drained peatland related greenhouse gases is Indonesia, followed by the European Union and Russia. 25 countries are together responsible for 95% of global emissions from peatland drainage, excluding fires. Fires raise the importance of particularly Indonesia and Russian Federation. In 25 countries emissions from peatland degradation are over 50% of the emissions from fossil fuels and cement production combined, hence peatland emissions are of national significance.

  6. Emission of greenhouse gases from sewage installations; Emissies van broeikasgassen van rwzi's

    Van Voorthuizen, E.; Van Leusden, M.; Visser, A.; Kruit, J. [Royal Haskoning, Amersfoort (Netherlands); Kampschreur, M.; Van Dongen, U.; Van Loosdrecht, M. [Technische Universiteit Delft TUD, Delft (Netherlands)

    2010-03-15

    Emissions of greenhouse gases (CO2, CH4, N2O) from wastewater treatment plants (WWTPs) are monitored. The emission of CO2 from waste water treatment plants (WWTPs) is related to the use of electricity, natural gas or other fossil fuels. The amount and origin of the emission of CH4 and N2O, however, is unknown. Presently emission factors from the IPCC (Intergovernmental Panel on Climate Change) and the Dutch Ministry of Housing, Spatial Planning and the Environment (VROM) are used to estimate those emissions. The aim of the study on the title subject was to determine the level of N2O and CH4 emission from Dutch WWTPs to understand the accuracy of the existing emission factors. In this way an estimation of the total greenhouse gas emission from a Dutch WWTP can be made. The emission of N2O and CH4 was measured at three WWTPs in the Netherlands: Papendrecht, Kortenoord and Kralingseveer [Dutch] In deze studie zijn de indirecte en directe emissies van broeikasgassen (CO2, CH4 en N2O) van rwzi's in kaart gebracht aan de hand van metingen. De resultaten hebben aanleiding gegeven voor een vervolgonderzoek waarbij onder meer kennis wordt ontwikkeld op het gebied van methaanvorming (CH4) in de riolering en mogelijkheden om de emissie van methaan op een zuivering te reduceren. Met betrekking tot lachgas N2O wordt onderzoek gedaan naar de vormingsprocessen van lachgas en de wijze waarop deze vrijkomt vanuit een rwzi. Verder worden relaties tussen lachgasemissie en procesparameters inzichtelijk gemaakt. Met deze kennis is het hopelijk in de toekomst mogelijk om maatregelen te nemen die de vorming en emissie van lachgas vanuit rwzi's te reduceren.

  7. Seasonal variability of greenhouse gases in the lower troposphere above the eastern European taiga (Syktyvkar, Russia)

    ±A three year long record of regular vertical aircraft profiling for continuous atmospheric CO2 mixing ratio measurements as well as for flask sampling to derive the climatology of other greenhouse gases (CH4, SF6 and N2O), is presented. Measurements were undertaken in the lower troposphere between 100 and 3000 m over the eastern European taiga about 100 km south east of the city of Syktyvkar (61 deg 24 min N, 52 deg 18 min E). From the continuous profiles mean CO2 mixing ratios were calculated for the atmospheric boundary layer (ABL) and for the 'free troposphere' up to 3000 m. The amplitudes of the respective seasonal cycles are 22.1 ± 3.5 and 14.0 ± 2.1 ppm. ABL mixing ratios are generally larger than free tropospheric values during the winter period, and smaller during the summer due to the change of the continental biosphere from a source to a sink. The phasing of the seasonal cycles is slightly different between the two height intervals (by about 30 days), with the ABL extremes occurring earlier. Very abrupt concentration changes up to 8 ppm are observed in the free troposphere associated with changes in air mass origin. Mean CO2 mixing ratios derived from flask samples at 3000 m compare well with the respective integrated values measured in the continuous profiles above the ABL ((delta) CO2 = 0.3 ± 1.6 ppm). CH4 mixing ratios also show a pronounced seasonality, and winter time vertical gradients correlate well with those of CO2. Similarly, SF6 vertical gradients are correlated with CO2 gradients possibly pointing to some anthropogenic origin of the boundary layer CO2 signal during winter. N2O and SF6 also show a slight seasonality with almost the same phasing. The main reasons for the seasonality of both gases are probably transport processes with a possible contribution from stratosphere/troposphere exchange

  8. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  9. A new method for estimating greenhouse gases and ammonia emissions from livestock buildings

    Barrancos, José; Briz, Susana; Nolasco, Dácil; Melián, Gladys; Padilla, Germán; Padrón, Eleazar; Fernández, Isabel; Pérez, Nemesio; Hernández, Pedro A.

    2013-08-01

    It is widely known that carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are the main greenhouse gases contributing to global climate change. Emission factors for the aforementioned gases have been proposed in order to calculate the contribution of livestock farming to global climate change. However, these emission factors depend on many additional factors such as the housing system, environmental conditions, etc., which implies some uncertainties in their estimation. Therefore, works that aim at improving experimental calculation of these emissions are crucial to provide reliable estimates of the emissions produced by livestock. The purpose of this work was to apply a new methodology inspired by the accumulation chamber method to estimate emission rates from livestock buildings. The work was based on measuring the increase of gas emissions inside the livestock building by means of the remote sensing technique Open-Path FTIR (OP-FTIR). Previously to the measurements, livestock building cattle was confined outside of the building. Utilization of fan ventilation system favoured the homogenization of air inside the building. This experiment proved that evolution of CH4 and CO2 concentrations inside the livestock building behaved like an accumulation chamber unlike the N2O which did not show such behaviour. Results showed CH4, CO2 and NH3 emissions of 167 ± 54,700 ± 200 and 1.3 ± 0.2 kg head-1 year-1, respectively. One of the main parameters affecting the estimated emission factors is the type of animal feeding. Therefore, it is essential to investigate the influence of food composition on CH4 and CO2 emission in a relative larger number of operating cattle buildings since the methodology herein proposed is an easy and cheap tool to study livestock emission factors and their variability.

  10. Evaluation of different techniques to control hydrogen sulfide and greenhouse gases from animal production systems

    Gautam, Dhan Prasad

    The livestock manure management sector is one of the prime sources for the emission of greenhouse gases (GHGs) and other pollutant gases such as ammonia (NH3) and hydrogen sulfide (H2S), which may affect the human health, animal welfare, and the environment. So, worldwide investigations are going on to mitigate these gaseous emissions. The overall objective of this research was to investigate different approaches (dietary manipulation and nanotechnology) for mitigating the gaseous emissions from livestock manure system. A field study was conducted to investigate the effect of different levels of dietary proteins (12 and 16%) and fat levels (3 to 5.5%) fed to beef cattle on gaseous emission (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO 2 and hydrogen sulfide-H2S) from the pen surface. To evaluate the effects of different nanoparticles (zinc oxide-nZnO; and zirconium-nZrO 2) on these gaseous emissions from livestock manure stored under anaerobic conditions, laboratory studies were conducted with different treatments (control, bare NPs, NPs entrapped alginate beads applying freely and keeping in bags, and used NPs entrapped alginate beads). Field studies showed no significant differences in the GHG and H2S emissions from the manure pen surface. Between nZnO and nZrO2, nZnO outperformed the nZrO2 in terms of gases production and concentration reduction from both swine and dairy liquid manure. Application of nZnO at a rate of 3 g L-1 showed up to 82, 78, 40 and 99% reduction on total gas production, CH 4, CO2 and H2S concentrations, respectively. The effectiveness of nZnO entrapped alginate (alginate-nZnO) beads was statistically lower than the bare nZnO, but both of them were very effective in reducing gas production and concentrations. These gaseous reductions were likely due to combination of microbial inhibition of microorganisms and chemical conversion during the treatment, which was confirmed by microbial plate count, SEM-EDS, and XPS analysis. However