WorldWideScience

Sample records for halogenated greenhouse gases

  1. Greenhouse Gases

    Science.gov (United States)

    ... like industrial gases. What are the types of greenhouse gases? Source: U.S. Environmental Protection Agency (public domain) There are several major greenhouse gases the United States emits as a result ...

  2. Greenhouse Gases

    Science.gov (United States)

    ... are man-made include the chlorofluorocarbons (CFCs) , hydrofluorocarbons (HFCs) and Perfluorocarbons (PFCs), as well as sulfur hexafluoride ( ... of concern. Another set of synthesized compounds called HFCs (hydrofluorocarbons) are also greenhouse gases, though they are ...

  3. Regulating Greenhouse Gases

    Science.gov (United States)

    KQED

    This video highlights the work of climate scientists in the Amazon who research the relationship between deforestation, construction of new dams, and increased amounts of greenhouse gases being exchanged between the biosphere and the atmosphere.

  4. Halogenated greenhouse gases at the Swiss High Alpine Site of Jungfraujoch (3580 m asl): Continuous measurements and their use for regional European source allocation

    Science.gov (United States)

    Reimann, Stefan; Schaub, Daniel; Stemmler, Konrad; Folini, Doris; Hill, Matthias; Hofer, Peter; Buchmann, Brigitte; Simmonds, Peter G.; Greally, Brian R.; O'Doherty, Simon

    2004-03-01

    At the high Alpine site of Jungfraujoch (3580 m asl), 23 halogenated greenhouse gases are measured quasi-continuously by gas chromatography-mass spectrometry (GCMS). Measurement data from the years 2000-2002 are analyzed for trends and pollution events. Concentrations of the halogenated trace gases, which are already controlled in industrialized countries by the Montreal Protocol (e.g., CFCs) were at least stable or declining. Positive trends in the background concentrations were observed for substances which are used as CFC-substitutes (hydrofluorocarbons, hydrochlorofluorocarbons). Background concentrations of the hydrofluorocarbons at the Jungfraujoch increased from January 2000 until December 2002 as follows: HFC 134a (CF3CH2F) from 15 to 27 ppt, HFC 125 (CF3CHF2) from 1.4 to 2.8 ppt, and HFC 152a (CHF2CH3) from 2.3 to 3.2 ppt. For HFC 152a, a distinct increase of its concentration magnitude during pollution events was observed from 2000 to 2002, indicating rising European emissions for this compound. Background concentrations of all measured compounds were in good agreement with similar measurements at Mace Head, Ireland. On the other hand, peak concentrations were significantly higher at the Jungfraujoch. This finding is due to the proximity to potent European sources, foremost in southern Europe. The average ratio of halocarbons versus carbon monoxide (CO) concentrations above their baseline values was used to estimate source strengths for the part of Europe which most influences the Jungfraujoch during pollution events. HFCs emission estimates from Jungfraujoch tend to be higher than figures at Mace Head (Ireland) from the end of the 1990s, which either reflects the increased use of these compounds or the closer location of Jungfraujoch to major southern European sources. Transport of polluted European boundary layer air masses to the high Alpine site was observed especially during frontal passages, foehn events, and thermal lifting of air masses in summer. The measurement data during the periods when the Jungfraujoch was under the influence of the polluted boundary layer were used in combination with concurrent air mass trajectories to allocate above baseline halocarbon concentrations to specific European source regions.

  5. Greenhouse Gases Exposed

    Science.gov (United States)

    Victoria Babcock

    In this activity, students learn about the relationship between greenhouse gases and global warming through a simple teacher demo or hands-on lab activity. Everyday materials are used: beakers, baking soda, vinegar, candle, thermometers, heat source such as a goose-necked lamp, etc. Students shine a light onto three thermometers: a control, an upside down beaker w/ a thermometer and air, and a beaker in which CO2 had been poured.

  6. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the enhanced greenhouse effect? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)greenhouse gases relatively high? (Author)

  7. Greenhouse Gases: A Closer Look

    Science.gov (United States)

    King's Centre for Visualization in Science

    This lesson covers different aspects of the major greenhouse gases - water vapor, carbon dioxide, methane, nitrous oxides and CFCs - including some of the ways in which human activities are affecting the atmospheric concentrations of these key greenhouse gases. This is lesson six in a nine-lesson module about climate change.

  8. Quotation systems for greenhouse gases

    International Nuclear Information System (INIS)

    The article surveys recommendations from a Norwegian committee for implementing at a national level, the Kyoto protocol aims for reducing the total emissions of greenhouse gases from the industrial countries through quotation systems

  9. GREENHOUSE GASES AND AGRICULTURE

    Science.gov (United States)

    Agriculture ranks third in its contribution to Earth's anthropogenically nhanced greenhouse effect. Energy use and production and chlorofluorocarbons are anked first and second, respectively.) pecifically, greenhouse gas sources and inks are increased, and sinks are decreased, by...

  10. Greenhouse gases thinning the thermosphere

    Science.gov (United States)

    Emmert et al.

    Orbital decay rates of satellites and other objects that have flown continually for more than 30 years were analyzed to determine the concentrations of greenhouse gases in the thermosphere. A decrease of 25 percent per decade was found in the thermosphere's density since 1966. Implications are discussed.

  11. How Greenhouse Gases Absorb Heat

    Science.gov (United States)

    2012-08-01

    Learners observe two model atmospheres -- one with normal atmospheric composition and another with an elevated concentration of carbon dioxide. These two model atmospheres are exposed to light energy from a sunny window or from a lamp. This activity will help learners understand that greenhouse gases in the atmosphere absorb and hold heat, relating to global warming and climate change.

  12. Greenhouse Gases: The Overlooked Sources

    Science.gov (United States)

    This radio broadcast, which took place during the Kyoto Conference on global warming, discusses well-known and more obscure sources of greenhouse gases. Solutions to reduce carbon emissions are discussed, including creating fuel with less carbon in it (biomass fuels); reducing driving by increasing the cost of fuel; and improving vehicle fuel economy. The broadcast then introduces the topic of methane as a greenhouse gas; although less is emitted, it is about fifty times more effective than carbon dioxide at warming the planet. Cattle are a major source of methane; some ideas are introduced for monitoring and reducing their emissions. There is also discussion of whether global warming could be a result of natural variability as opposed to the result of a human-caused greenhouse effect. The broadcast is 49 minutes and 39 seconds in length.

  13. Energy efficiency and greenhouse gases

    International Nuclear Information System (INIS)

    Estonia's energy balance for 1990 - 1994 is characterized by the dramatic changes in the economy after regaining independence in 1991. In 1990 - 1993, primary energy supply decreased about 1.9 times. The reasons were a sharp decrease in exports of electric energy and industrial products, a steep increase in fuel prices and the transition from the planned to a market-oriented economy. Over the same period, the total amount of emitted greenhouse gases decreased about 45%. In 1993, the decrease in energy production and consumption stopped, and in 1994, a moderate increase occurred (about 6%), which is a proof stabilizing economy. Oil shale power engineering will remain the prevailing energy resource for the next 20 - 25 years. After stabilization, the use of oil shale will rise in Estonia's economy. Oil shale combustion in power plants will be the greatest source of greenhouse gases emissions in near future. The main problem is to decrease the share of CO2 emissions from the decomposition of carbonate part of oil shale. This can be done by separating limestone particles from oil shale before its burning by use of circulating fluidized bed combustion technology. Higher efficiency of oil shale power plants facilitates the reduction of CO2 emissions per generated MWh electricity considerably. The prognoses for the future development of power engineering depend essentially on the environmental requirements. Under the highly restricted development scenario, which includes strict limitations to emissions (CO2 , SO2 , thermal waste) and a severe penalty system, the competitiveness of nuclear power will increase. The conceptual steps taken by the Estonian energy management should be in compliance with those of neighboring countries, including the development programs of the other Baltic states

  14. Greenhouse gases and emissions trading

    International Nuclear Information System (INIS)

    Global cooperation is essential in cutting greenhouse-gas emissions, say Alice LeBlanc and Daniel J. Dudek of the Environmental Defense in New York City. The first step, they continue, is agreement among nations on an overall global limit for all greenhouse gases, followed by an allocation of the global limit among nations. The agreements must contain effective reporting and monitoring systems and enforcement provisions, they add. The Framework Convention on Climate Change, signed by most nations of the world in Brazil in 1992, provides the foundation for such an agreement, LeBlanc and Dudek note. open-quotes International emissions trading is a way to lower costs and expand reduction options for the benefit of all,close quotes they contend. Under such an arrangement, an international agency would assign allowances, stated in tons of carbon dioxide. Countries would be free to buy and sell allowances, but no country could exceed, in a given year, the total allowances it holds. By emitting less than its allowed amount, a country would accumulate more allowances, which it could sell. The authors claim such a system would offer benefits to the world economy by saving billions of dollars in pollution-reduction costs while still achieving emission limits established in an international agreement

  15. GREENHOUSE GASES AND MEANS OF PREVENTION

    Directory of Open Access Journals (Sweden)

    Dušica Stojanovi?

    2013-09-01

    Full Text Available The greenhouse effect can be defined as the consequence of increased heating of the Earth's surface, as well as the lower atmosphere by carbon dioxide, water vapor, and other trace amounts gases. It is well-known that human industrial activities have released large amounts of greenhouse gases in the atmosphere, about 900 billion tons of carbon dioxide, and it is estimated that up to 450 billion are still in the atmosphere. In comparison to greenhouse gases water vapor is one of the greatest contributors to the greenhouse effect on Earth. Many projects, as does the PURGE project, have tendences to build on the already conducted research and to quantify the positive and negative impacts on health and wellbeing of the population with greenhouse gas reduction strategies that are curently being implemented and should be increasingly applied in various sectors and urban areas, having offices in Europe, China and India.

  16. Unconventional views to generation of greenhouse gases

    International Nuclear Information System (INIS)

    The majority of the implemented measures lowering the amount of originating greenhouse gases derive particularly from the balances targeted into power industry, transportation or heavy industry. The article summarized date shoving that the dumping of communal biodegradable wastes related to catering in many aspects competes in the creation of greenhouses gates related with the car transportation or power industry. (authors)

  17. Alkali and Halogen Chemistry in Volcanic Gases on Io

    CERN Document Server

    Schaefer, L

    2004-01-01

    We use chemical equilibrium calculations to model the speciation of alkalis and halogens in volcanic gases emitted on Io. The calculations cover wide temperature (500-2000 K) and pressure (10^-6 to 10^+1 bars) ranges, which overlap the nominal conditions at Pele (T = 1760 K, P = 0.01 bars). About 230 compounds of 11 elements (O, S, Li, Na, K, Rb, Cs, F, Cl, Br, I) are considered. We predict the major alkali and halogen species in a Pele-like volcanic gas and the major alklai and halogen condensates. We also model disequilibrium chemistry of the alkalis and halogens in the volcanic plume. Based on this work and our prior modeling for Na, K, and Cl in a volcanic plume, we predict the major loss processes for the alkali halide gases are photolysis and/or condensation onto grains. On the basis of elemental abundances and photochemical lifetimes, we recommend searching for gaseous KCl, NaF, LiF, LiCl, RbF, RbCl, CsF, and CsCl around volcanic vents during eruptions. Based on abundance considerations and observation...

  18. Thermal efficiency of the principal greenhouse gases

    Science.gov (United States)

    Y. Galashev, A.; R. Rakhmanova, O.

    2015-01-01

    Atmospheric gases are ranked according to the efficiency with which they absorb and radiate longwave radiation. The open international HITRAN database of gaseous absorption lines of high resolution together with inverse Fourier transform were used. The autocorrelation functions of the total dipole moment of the basic greenhouse gases molecules such as H2O, CO2, O3, N2O, and CH4 were obtained. Absorption coefficient spectra and emission power spectra of infrared radiation of these gases were calculated. Analysis of the emissive ability of all gases under consideration was carried out. Compared to CO2, all the gases under investigation have more effective emission except ozone. An efficiency criterion of IR absorption and emission is defined and is calculated for each studied gas, and the gases are ranked accordingly as follows (from strong to weak): H2O, CH4, CO2, N2O, and O3.

  19. Global emissions of greenhouse gases and aerosols

    International Nuclear Information System (INIS)

    This paper describes the latest developments in global emissions scenarios for direct and indirect greenhouse gases and sulphur dioxide. The paper treats global emission projections of all greenhouse gases in the first part (section 2), where the work of the team engaged in preparing the Special Report on Emissions Scenarios (SRES) is summarized. The SRES report was requested by the Intergovernmental Panel on Climate Change (IPCC). The second part (section 3) describes the modelling of the future global emissions of HFCs, PFCs and SF done at Risoe as an input to the SRES modelling work. (au)

  20. Unconventional views to generation of greenhouse gases

    OpenAIRE

    Buryan Petr

    2012-01-01

    The majority of the implemented measures lowering the amount of originating greenhouse gases derive particularly fromthe balances targeted into power industry, transportation or heavy industry. The article summarized date shoving that the dumpingof communal biodegradace wastes related to catering in many aspects competes in the creation of grenhouses gates related with the cartransportation or power industry.

  1. Unconventional views to generation of greenhouse gases

    Directory of Open Access Journals (Sweden)

    Buryan Petr

    2012-12-01

    Full Text Available The majority of the implemented measures lowering the amount of originating greenhouse gases derive particularly fromthe balances targeted into power industry, transportation or heavy industry. The article summarized date shoving that the dumpingof communal biodegradace wastes related to catering in many aspects competes in the creation of grenhouses gates related with the cartransportation or power industry.

  2. Greenhouse gases study in Amazonia

    International Nuclear Information System (INIS)

    The Amazon plays an important role on the global carbon cycle, as changing as carbon storage, since Amazon Basin is the biggest area of tropical forest, around 50% of global. Natural's process, deforestation, and use land are CO2 sources. The Amazon forest is a significant source of N2O by soil process, and CH4 by anaerobic process like flooded areas, rice cultures, and others sources. This project is part of the LBA project (Large-Scale Biosphere Atmosphere Experiment in Amazonia), and this project is 'Vertical profiles of carbon dioxide and other trace gas species over the Amazon basin using small aircraft'. Since December 2000 vertical profiles of CO2, CH4, CO, H2, N2O and SF6 have been measured above central Amazonia. The local sampling was over Tapajos National Forest, a primary forest in Para State, where had a CO2 flux tower and an east impact area with sources like animals, rice cultivation, biomass burning, etc, to compare the influence of an impact area and a preserved area in the profiles. The Reserva Biologica de Cuieiras, at Amazon State, is the other studied place, where there already exists a CO2 flux tower, and an east preserved area at this State, to compare with the Cuieiras. The sampling has been carried out on vertical profile from 1000 ft up to 12000 ft using a semi-automated sampling package developed at GMD/NOAA and a small aircraft. The analysis uses the MAGICC system (Multiple Analysis of Gases Influence Climate Change) which is installed at the Atmospheric Chemistry Laboratory (LQA) in IPEN (Instituto de Pesquisas Energeticas e Nucleares). The results showed that all gases studied, except H2 gas, has been following the global trend. At the Para State, for the studied years, the Amazonian Forest performed as small CO2 sink. To compare Wet and Dry Seasons, subtracted the Ascension concentration values in the period to remove the global influence. So that, in the 2004 and 2005 wet seasons and 2004 dry season comparison it was observed 2 ppm CO2 concentration higher on wet seasons. At Amazon State the wet season profiles had source behavior presenting 10 ppm CO2 concentration higher under PBL (Planetary Boundary Layer) . In both states concentrations were higher than Ascension Island concentration. CH4 concentration over Para and Amazonia States presented higher values than in Ascension in 80 ppb and 25 ppb, respectively. Dry Season concentrations have been higher than Wet Season concentrations. N2O concentrations in Para State was similar to Ascension concentration until 2003, when its concentration has been and enhancement, because of N fertilizer utilization at near area. N2O concentration was similar in the two studied States, presenting discreet source at Wet Season. The SF6 concentration presented the global trend, and it was a little beat higher over Amazon State, suggesting different air origin. The CO concentration was higher under PBL and presented values during Dry Season higher in 130 ppb and 150 ppb than Wet Season, for burning contribution. The highest average concentration was over Amazon State, which agrees with the different air origin hypothesis. H2 gas presented behavior similar to CO gas in the Dry Season. The Amazon State performed a small sink role during Wet Season and in Para State is higher during dry season performed like a source and during wet season like a sink. (author)

  3. Voluntary reporting of greenhouse gases 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  4. Greenhouse effect gases inventory in France during the years 1990-1999

    International Nuclear Information System (INIS)

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF6). Emissions of sulphur dioxide (SO2), nitrogen oxides (NOx), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NOx, 23% as regards NMVOCs, 33% for CO and by 44% regarding SO2. Out of the six greenhouse gases covered by the Kyoto Protocol, CO2 accounts for the largest share in total GWP emissions (70 %), followed by N2O (16 %), CH4 (12 %), HFCs (0.99 %), SF6 (0.5 %), and PFCs (0.39 %). (author)

  5. Greenhouse gases and global change: International collaboration

    International Nuclear Information System (INIS)

    Much of the current concern about the fate of the global environment is related to the increased concentration of greenhouse gases and possible effects on the global climate. The chemical composition of the atmosphere, which is changing rapidly, is, to a large degree, determined by the release and uptake of a variety of trace gases by the biosphere. The biospheric production of relatively small amounts of trace gases such as carbon monoxide, methane, and nitrous oxide is of special interest, as they trap infrared radiation, thus warming the Earth's surface. These greenhouse gases and other biogenic trace gases, such as carbon monoxide, odd nitrogen oxides (NOx), and a range of volatile organic compounds play a key role in atmospheric chemistry by affecting tropospheric concentration of ozone, the penetration of photochemically active solar ultra-violet radiation, the production of hydroxyl radicals, and, in the case of dimethyl sulfide, cloud formation. Within the decade of the 1990's, the International Geosphere-Biosphere Program will launch a worldwide research effort, unprecedented in its scope, to address the functioning of the Earth system and to understand how this system is changing. The body of information generated by the IGBP will form the scientific underpinning for predictions relating to future causes and effects of global changes. Through its observational network and process studies, and the effective communication of the resulting data to sc communication of the resulting data to scientists in all nations committed to this endeavor, the IGBP will help provide the world's decision makers with the input necessary to wisely manage the global environment

  6. Why hybrid porous solids capture greenhouse gases?

    Energy Technology Data Exchange (ETDEWEB)

    Ferey, G.; Serre, C.; Devic, T.; Maurin, G.; Jobic, H.; Llewellyn, P.L.; De Weireld, G.; Vimont, A.; Daturi, M.; Chang, J.S. [University of Versailles St Quentin, Versailles (France)

    2011-07-01

    Hybrid porous solids, with their tunable structures, their multi functional properties and their numerous applications, are currently topical, particularly in the domain of adsorption and storage of greenhouse gases. Most of the data reported so far concern the performances of these solids in this domain, particularly in terms of adsorbed amounts of gas but do not explain at the atomic level why and how adsorption and storage occur. From a combination of structural, spectroscopic, thermodynamic experiments and of molecular simulations, this tutorial review proposes answers to these open questions with a special emphasis on CO{sub 2} and CH{sub 4} storage by some rigid and flexible hybrid porous materials.

  7. Preparing for the regulation of greenhouse gases

    International Nuclear Information System (INIS)

    The Earth is warming, and this belief is shared by the leading scientists that sit on the Intergovernmental Panel on Climate Change, where it is expected that the average surface temperature of the Earth will rise 2.5 to 10.4 degrees Fahrenheit between 1990 and 2100. It is felt that the main culprit is greenhouse gas emissions such as carbon dioxide. The Kyoto Protocol was adopted in 1992 with the aim of reducing greenhouse gas emissions to specified targets below 1990 levels by 2012. For Canada, this commitment is a reduction to 6 per cent below 1990 levels. To avoid penalizing a country that adopts greenhouse gas regulations where the neighbouring country does not follow, negotiations are being held at the international level in an attempt to keep everyone on a level playing field. The United States recently decided not to pursue a cap on greenhouse gas emissions, which could seriously jeopardize the effectiveness of the Kyoto Protocol. The authors examined what the future looks like, in terms of policy options and market-based instruments. In the next section, they discussed the preparations for the regulation of greenhouse gases. The topics reviewed were carbon taxes, command and control regulation, emissions trading, contracts and baseline protection. Canada's baseline protection initiative (BPI) process was closely examined, and identified what reductions are eligible and touched upon ownership issues. The authors concluded that it might be prudent for emitters ded that it might be prudent for emitters in Canada to prepare for a variety of regulatory scenarios, as there are a number of uncertainties remaining. Emissions trading must be carefully documented

  8. Greenhouse gases: Changing the global climate

    International Nuclear Information System (INIS)

    Model calculations, supported by paleoclimatic and analytic studies and verified against a variety of cases of past climatic change, suggest that the global average surface-air temperatures will increase several degrees during the next century if the increasing rates of emission of greenhouse gases continue. High-confidence predictions of global-scale temperature increases of such magnitude may provide sufficient information for the world to institute measures to slow the rate of increase for emissions and thereby the rate of temperature increase. Because continuation of at least present emissions levels seems highly probable, projections of potential changes at the regional level are needed to plan possible adaptive measures. Climate model results suggest that potential global environmental change may justify an ameliorative policy of reducing current emissions of man-made greenhouse gases but that expensive and comprehensive adaptive actions should generally await more certain results from improved models. While the authors labor at improving their models, they should also be identifying society's vulnerabilities to climatic change and setting in place programs to moderate potential impacts

  9. Transport of Greenhouse Gases in Trees

    Science.gov (United States)

    Kutschera, E.; Khalil, A. K.; Shearer, M.; Rosenstiel, T.

    2009-12-01

    Emissions of greenhouse gases methane (CH4) and nitrous oxide (N2O) have been measured in cultivated and natural regions, quantifying overall emissions for croplands, wetlands, and forests. However, segregation between soil and plant emissions is less clear, and the dynamics behind each respective emission type differs. Better defined plant transport mechanisms will yield more accurate determination of greenhouse gas flux, contributing to a comprehensive theory quantifying greenhouse gas emissions globally. While the mechanisms of CH4 and N2O emissions from rice have not been fully identified, for trees these mechanisms are virtually unknown. CH4 and N2O emissions from several species of tree (Alnus rubra, Populus trichocarpa, Thuja plicata, Fraxinus latifolia) native to the Pacific Northwest have been measured. To identify mechanisms of gas transport, correlation of emissions and stomatal conductance, transpiration, and photosynthesis has been tested. A synthesis between plant physiological data and emissions is sought to elucidate the role plant physiology plays in the production and transport of CH4 and N2O. This research was supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-08ER64515.

  10. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    Science.gov (United States)

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  11. The challenges of the greenhouse gases emissions reduction in buildings

    International Nuclear Information System (INIS)

    The building sector is responsible of 18% of the greenhouse gases emissions in France. This document aims to evaluate the greenhouse gases emissions of the sector and then defines technical and financial avenues worth exploring to reduce them. (A.L.B.)

  12. Measuring the Heat Capacity of Greenhouse Gases

    Science.gov (United States)

    This quantitative experiment involves lab teams in comparing a sample of room air with one of the greenhouse gases - carbon dioxide, nitrous oxide, or methane - and measuring their heat capacity. The activity requires an infrared heat source, such as a heat lamp, two 2L beverage bottles, #4 one hole rubber stoppers, and a thermometer or temperature probe, volumetric flasks, a graduated cylinder, and tubing. Nitrous oxide can be obtained from a dentist, methane from gas jets in a chemistry lab, and becomes CO² can be generated using vinegar and baking soda. A worksheet guides student calculations of heat capacity of the different samples. The investigation s is supported by the textbook, Climate Change, part of the Global System Science, an interdisciplinary course for high school students that emphasizes how scientists from a wide variety of fields work together to understand significant problems of global impact.

  13. Emission reduction potential and costs for non-CO2 greenhouse gases in the EU-15

    International Nuclear Information System (INIS)

    Emission reduction of Non-CO2 Greenhouse Gases (NCGGs) as methane, nitrous oxide and the halogenated gases HFCs, PFCs and SF6 can make a significant contribution to the realisation of the Kyoto-target for the European Union. This paper describes the reduction potential and costs of mitigation options for these gases and concludes that in the year 2010 about 40% of the required emission reduction for the EU-15 can be realised by these gases at relative low specific costs (2-eq.). The database, which is constructed for the evaluation, is an important tool in identifying the most promising reduction options and strategies, both on a gas by gas, a source by source and a country by country basis. (Author)

  14. An overview on non-CO2 greenhouse gases

    OpenAIRE

    Pulles, T.; Amstel, A.R.

    2010-01-01

    Non-CO2 greenhouse gases, included in the Kyoto Protocol, are methane (CH4), nitrous oxide (N2O), hexafluorocarbons (HFC), perfluorinated compounds (PFC) and sulphur hexafluoride (SF6). Together they account for about 25% of the present global greenhouse gas emissions. Reductions in emissions of these gases have occurred in the industrialised countries, and they contribute to the efforts to reach the target of 5% greenhouse gas emission reduction as agreed in the Kyoto Protocol for these coun...

  15. Modern inhalation anesthetics: Potent greenhouse gases in the global atmosphere

    Science.gov (United States)

    Vollmer, Martin K.; Rhee, Tae Siek; Rigby, Matt; Hofstetter, Doris; Hill, Matthias; Schoenenberger, Fabian; Reimann, Stefan

    2015-03-01

    Modern halogenated inhalation anesthetics undergo little metabolization during clinical application and evaporate almost completely to the atmosphere. Based on their first measurements in a range of environments, from urban areas to the pristine Antarctic environment, we detect a rapid accumulation and ubiquitous presence of isoflurane, desflurane, and sevoflurane in the global atmosphere. Over the past decade, their abundances in the atmosphere have increased to global mean mole fractions in 2014 of 0.097ppt, 0.30ppt, and 0.13ppt (parts per trillion, 10-12, in dry air), respectively. Emissions of these long-lived greenhouse gases inferred from the observations suggest a global combined release to the atmosphere of 3.1 ± 0.6 million t CO2 equivalent in 2014 of which ?80% stems from desflurane. We also report on halothane, a previously widely used anesthetic. Its global mean mole fraction has declined to 9.2ppq (parts per quadrillion, 10-15) by 2014. However, the inferred present usage is still 280 ±120t yr-1.

  16. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Science.gov (United States)

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  17. Per capita emissions of greenhouse gases and international trade

    International Nuclear Information System (INIS)

    The role played by international trade in Canada's emissions of greenhouse gases is investigated. Data used in the study include Environment Canada greenhouse gas emission estimates for 1990, a Statistics Canada input-output model linking greenhouse gas emissions to economic activity in different sectors, and monetary statistics on imports and exports. Subject to some simplifying assumptions, it is estimated that nearly 20% of Canada's greenhouse gas emissions can be attributed to the production of commodities destined for export to other countries. If the same greenhouse gas emission intensities are assumed for Canada's imports, the greenhouse gas emissions due to Canada's net trade is nearly 7% of the 660 megatonnes of CO2 equivalent emissions for 1990. Commodities from natural resource exploitation head the list of greenhouse gas emissions attributed to international trade, as expected from their large export volumes and large greenhouse gas emission intensities. 4 refs., 1 fig

  18. 76 FR 36339 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs: Extension of...

    Science.gov (United States)

    2011-06-22

    ...Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs...Manufacturing of the Mandatory Greenhouse Gas Reporting Rule. Consequently...Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated...

  19. Air Pollution, Greenhouse Gases and Climate Change

    Science.gov (United States)

    Ramanathan, V.

    2007-12-01

    The global build up of greenhouse gases (GHGs), is the most significant environmental issue facing the planet. GHGs warm the surface and the atmosphere with significant implications for, rainfall, retreat of glaciers and sea ice, sea level, among other factors. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that, due to fast long range transport, air pollution is transported across continents and ocean basins, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e, aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols nucleate more cloud drops which makes the clouds reflect more solar radiation. While the solar heating at the surface is reduced by aerosols in ABCs, the atmospheric solar heating increases due to soot solar absorption. The net difference between the dimming and the atmospheric solar heating is estimated be negative which contributes to a global cooling effect. The global cooling from this negative ABC forcing may have masked as much as 50% of the warming due to GHGs. We will identify regional and mega-city hot spots of ABCs. Long range transport from these hot spots gives rise to wide spread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by wide spread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. The large north-south gradient in the ABC dimming has altered the north-south gradients in sea surface temperatures, which in turn has been shown by models to decrease rainfall over the continents. The uncertainties in our understanding of the ABC effects are large, but we are discovering new ways in which human activities are changing the climate and the environment.

  20. Halogenated source gases measured by FTIR at the Jungfraujoch station: updated trends and new target species

    Science.gov (United States)

    Mahieu, Emmanuel; Bader, Whitney; Bovy, Benoît; Franco, Bruno; Lejeune, Bernard; Servais, Christian; Notholt, Justus; Palm, Mathias; Toon, Geoffrey C.

    2015-04-01

    The atmospheric abundances of chlorine and fluorine increased very significantly during the second half of last century, following large emissions of long-lived halogenated source gases used in numerous industrial and domestic applications. Given the phase-out schedule of ozone depleting substances adopted by the Montreal Protocol, its Amendments and Adjustments, the loading of the CFCs in the Earth's atmosphere is now slowly decreasing. In contrast, their first replacement products, the HCFCs, are still on the rise, with current rates of increase substantially larger than at the beginning of the 21st century. As potent greenhouse gases, a suite of fluorinated compounds are targeted by the Kyoto Protocol. At present, they continue to accumulate in the atmosphere (Montzka et al., 2011). Given their environmental impacts, continuous monitoring of the abundances of these gases is of primary importance. In addition to the in situ networks, remote sensing techniques operated from space, balloon or from the ground provide valuable information to assess the long-term tropospheric and lower stratospheric trends of an increasing number of halogenated source gases, as well as of the reservoirs resulting from their photolysis in the stratosphere (e.g. Mahieu et al., 2014a). In this contribution, we will present decadal time series of halogenated source gases monitored at the high altitude station of the Jungfraujoch (46.5° N, 8° E, 3580 m asl) with Fourier Transform Infared (FTIR) spectrometers, within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, see http://www.ndacc.org). Total column trends presented in previous studies for CFC-11, -12 and HCFC-22 (Zander at al., 2008), CCl4 (Rinsland et al., 2012), HCFC-142b (Mahieu et al., 2013), CF4 (Mahieu et al., 2014b) and SF6 (Zander et al., 2008) will be updated using the latest available Jungfraujoch solar observations. Investigations dealing with the definition of approaches to retrieve additional halogenated source gases from FTIR spectra will also be evoked. Our trend results will be critically discussed and compared with measurements performed in the northern hemisphere by the in situ networks. Acknowledgments The University of Liège contribution to the present work has primarily been supported by the AGACC-II project of the SSD program funded by the Belgian Federal Science Policy Office (BELSPO), Brussels. E. Mahieu is Research Associate with the F.R.S. - FNRS. Laboratory developments and mission expenses at the Jungfraujoch station were funded by the F.R.S. - FNRS and the Fédération Wallonie-Bruxelles, respectively. We thank the International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat (HFSJG, Bern) for supporting the facilities needed to perform the observations. We further acknowledge the vital contribution from all the Belgian colleagues in performing the Jungfraujoch observations used here. References Mahieu, E., S. O'Doherty, S. Reimann, et al., First retrievals of HCFC-142b from ground-based high-resolution FTIR solar observations: application to high-altitude Jungfraujoch spectra, poster presentation at the 'EGU 2013 General Assembly', 07-12 April 2013, Vienna, Austria, 2013. [http://hdl.handle.net/2268/144709] Mahieu, E., M.P. Chipperfield, J. Notholt, et al., Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes, Nature, 515, 104-107, doi:10.1038/nature13857, 2014a. Mahieu, E., R. Zander, G.C. Toon, et al., Spectrometric monitoring of atmospheric carbon tetrafluoride (CF4) above the Jungfraujoch station since 1989: evidence of continued increase but at a slowing rate, Atmos. Meas. Tech., 7, 333-344, 2014b. [http://hdl.handle.net/2268/154767] Montzka, S.A., S. Reimann, A. Engel, et al., Ozone-Depleting Substances (ODSs) and Related Chemicals, Chapter 1 in Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project-Report No. 52, 516 pp., World Meteorological Organization, Geneva, Switzerland, 2011. Rinsland, C.P., E. Mahieu, P.

  1. Are recent Arctic ozone losses caused by increasing greenhouse gases?

    Science.gov (United States)

    Rieder, H.; Polvani, L. M.

    2013-12-01

    It has been suggested that the Arctic ozone losses observed in recent years might be a manifestation of climate change due to increasing greenhouse gases. We here offer evidence to the contrary, by focusing on the volume of polar stratospheric clouds (VPSC), a convenient proxy for polar ozone loss whose simplicity allows for easily reproducible results. First, we analyze the time series of VPSC in three reanalysis datasets and find no statistically significant trends in VPSC - nor changes in their probability density functions - over the period 1979-2011. Second, we analyze VPSC in a stratosphere-resolving chemistry-climate model forced uniquely with increasing greenhouse gases following the A1B scenario: here too, we find no significant changes in VPSC over the entire 21st century. Taken together, these results strongly suggest that the sporadic high ozone losses in recent years have not been caused by increasing greenhouse gases.

  2. Emissions of greenhouse gases in the United States 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  3. Greenhouse effect of chlorofluorocarbons and other trace gases

    Science.gov (United States)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  4. Impact of greenhouse gases on the Earth's ozone layer

    Science.gov (United States)

    Zadorozhny, Alexander

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2 , CH4 , and N2 O in the future long-term changes of the Earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the Earth's ozone layer, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2 , essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the ozone layer here. The mechanism of the impact of the greenhouse gases on the polar ozone by means of modification of sulphate aerosol distribution in the atmosphere has been revealed and investigated, too. Numerical experiments show that enhancement of the surface area density of sulphate aerosol in the stratosphere caused by the growth of the greenhouse gases will reduce significantly the ozone depletion during the Antarctic ozone hole.

  5. Biomass Burning and the Production of Greenhouse Gases. Chapter 9

    Science.gov (United States)

    Levine, Joel S.

    1994-01-01

    Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along with methane, lead to the chemical production of tropospheric ozone (another greenhouse gas) as well as control the concentration of the hydroxyl radical, which regulates the lifetime of almost every atmospheric gas. Following biomass burning, biogenic emissions of nitrous oxide, nitric oxide, and methane are significantly enhanced. It is hypothesized that enhanced postburn biogenic emissions of these gases are related to fire-induced changes in soil chemistry and/or microbial ecology. Biomass burning, once believed to be a tropical phenomenon, has been demonstrated by satellite imagery to also be a regular feature of the world's boreal forests. One example of biomass burning is the extensive 1987 fire that destroyed more than 12 million acres of boreal forest in the People's Republic of China and across its border in the Soviet Union. Recent estimates indicate that almost all biomass burning is human-initiated and that it is increasing with time. With the formation of greenhouse and chemically active gases as direct combustion products and a longer-term enhancement of biogenic emissions of gases, biomass burning may be a significant driver for global change.

  6. 75 FR 26904 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability; Default Emission Factors...

    Science.gov (United States)

    2010-05-13

    ...manufacturing in Mandatory Reporting of Greenhouse Gases (74 FR 16448...titled Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated...utilization and by-product formation for multi-gas...

  7. Recycling of greenhouse gases via methanol

    Energy Technology Data Exchange (ETDEWEB)

    Bill, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Eliasson, B.; Kogelschatz, U. [ABB Corporate Research Center, Baden-Daettwil (Switzerland)

    1997-06-01

    Greenhouse gas emissions to the atmosphere can be mitigated by using direct control technologies (capture, disposal or chemical recycling). We report on carbon dioxide and methane recycling with other chemicals, especially with hydrogen and oxygen, to methanol. Methanol synthesis from CO{sub 2} is investigated on various catalysts at moderate pressures ({<=}30 bar) and temperatures ({<=}300{sup o}C). The catalysts show good methanol activities and selectivities. The conversion of CO{sub 2} and CH{sub 4} to methanol is also studied in a silent electrical discharge at pressures of 1 to 4 bar and temperatures close to room temperature. Methanol yields are given for mixtures of CO{sub 2}/H{sub 2}, CH{sub 4}/O{sub 2} and also for CH{sub 4} and air mixtures. (author) 2 figs., 5 refs.

  8. Greenhouse Gases and the Kyoto Protocol

    Science.gov (United States)

    2001-01-01

    The United Nations Environment Programme UNEP/ GRID Arendal Website (described in the June 24, 1998 Scout Report for Science & Engineering) summarizes greenhouse gas emissions for 1998 and provides projections for 2010. The maps and statistics presented here are based on data collected by the UN Framework Convention on Climate Change (UNFCCC) for the international summit in The Hague, November 2000. Units for totals are "thousands of metric tonnes of Carbon Dioxide (CO2) equivalent units," and for emissions per capita, the units are "tonnes of Carbon Dioxide (CO2) equivalent per person." In every case, emissions from industrialized nations are what the viewer might expect. Nevertheless, the comparison of 1998 and projected future levels is certainly instructive. A series of links provides access to additional related information.

  9. Greenhouse gases mitigation options and strategies for Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  10. Greenhouse effect of trace gases, 1970-1980

    Science.gov (United States)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  11. Observations of halogenated trace gases in Taiwan and Malaysia

    Science.gov (United States)

    Gooch, Lauren J.; Laube, Johannes C.; Sturges, William T.; Oram, David E.; Wang, Jia-Lin; Ou-Yang, Cheng-Feng; Lin, Neng-Huei; Mead, Iq; Rigby, Matt; White, Emily

    2015-04-01

    There are a large variety of halocarbons present in the atmosphere that significantly impact on stratospheric ozone depletion and/or global warming. Though the use of some of these compounds has been phased out and replaced under global control measures, relatively long atmospheric lifetimes, imperfect substitutes and incomplete reductions in usage mean that global concentrations of halocarbons still require regular monitoring. This is especially true for the rapidly developing East Asian region, where high emissions have been repeatedly reported in recent years. We here present results from an air sampling activity in Taiwan and Malaysia during the spring months of 2013 and 2014. A large range of halocarbons, including a number of novel gases, were investigated via high sensitivity gas chromatography mass spectrometry (GC-MS). We find periods of relatively clean air as well as episodes that appear to be impacted by urban and/or industrial emissions and examine correlations between individual species. Observed mixing ratios are compared in context with both global background data and other regional studies. Enhancements in the abundances of many halocarbons are detected with examples including the Halons 1211 and 1202 as well as the very long-lived perfluorocarbons c-C4F8, C5F12 and C7F16. We also show and evaluate unusually high mixing ratios of other globally growing halocarbons such as sulphur hexafluoride (SF6), HCFC-133a (CF3CH2Cl), and CFC-113a (CF3CCl3). Finally, we use NAME analysis to produce back-trajectories in order to assess possible regional emission sources.

  12. Stable isotope measurement techniques for atmospheric greenhouse gases

    International Nuclear Information System (INIS)

    The technical requirements to perform useful measurements of atmospheric greenhouse gas concentrations and of their isotope ratios are of direct relevance for all laboratories engaged in this field. A meaningful interpretation of isotopes in global models on sources and sinks of CO2 and other greenhouse gases depends on strict laboratory protocols and data quality control measures ensuring comparable data in time and space. Only with this precondition met, the isotope techniques can serve as a potentially powerful method for reducing uncertainties in the global CO2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. This publication provides four contributions describing methods for the determination of the isotopic composition of trace gases in atmospheric air and in ice cores. These contributions have been indexed separately

  13. Elements for a policy of greenhouse effect gases reduction

    International Nuclear Information System (INIS)

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO2 emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  14. Emissions of greenhouse gases in the United States 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  15. Our changing atmosphere: Trace gases and the greenhouse effect

    International Nuclear Information System (INIS)

    A very important factor in the scientific evaluation of greenhouse warming during the last decade has been the realization that this is not just a problem of increasing CO2 but is rather a more general problem of increasing concentrations of many trace gases. CFCs are increasing at 5% per year with CFC-113 going up at a more rapid rate; methane approximately 1% per year; CO2 by 0.5% per year; N2O about 0.2% per year. These rates of increase have been fed into detailed models of the infrared absorbing characteristics of the atmosphere, and have provided the estimated relative contributions from the various trace gases. Carbon dioxide is still the major contributor to the greenhouse effect, and its yearly contribution appears to be increasing. An important question for dealing with the greenhouse effect will be the full understanding of these CO2 concentration changes. The total amount of carbon from the burning of fossil fuel that is going into the atmosphere is considerably larger than the carbon dioxide increase registered in the atmosphere. Appreciable CO2 contributions are also being received from the burning of the tropical forests. The procedures necessary to solve the chlorofluorocarbon problem have been put into place on an international scale and have begun to be implemented. We still have left for the future, however, efforts to reduce emissions of carbon dioxide, methane, and nitrous oxide methane, and nitrous oxide

  16. Organic Halogen and Related Trace Gases in the Tropical Atmosphere: Results from Recent Airborne Campaigns Over the Pacific

    Science.gov (United States)

    Atlas, E. L.; Navarro, M. A.; Donets, V.; Schauffler, S.; Lueb, R.; Hendershot, R.; Gabbard, S.; Hornbrook, R. S.; Apel, E. C.; Riemer, D. D.; Pan, L.; Salawitch, R. J.; Nicely, J. M.; Montzka, S. A.; Miller, B.; Moore, F. L.; Elkins, J. W.; Hintsa, E. J.; Campos, T. L.; Quack, B.; Zhu, X.; Pope, L.

    2014-12-01

    Organic halogen gases, especially containing bromine and iodine, play a significant role as precursors to active halogen chemistry and ozone catalytic loss. Much of the reactive organic halogen originates from biological processes in the surface ocean, which can be quite variable by season and location. The tropics and coastal margins are potentially important sources that are being examined. The recent coordinated CONTRAST/ATTREX/CAST missions were conducted in the Western Tropical Pacific, a region that is a major transport pathway for tropospheric air entering the stratosphere. One of the goals of the missions was to identify sources, distributions, and transport of organic halogens from the ocean surface into the tropical lower stratosphere. The missions were conducted during the NH winter season, Jan-Feb, 2014. In this presentation, we will discuss the distributions and variability of organic halogen gases in the study region and will examine the input of organic halogen species into the Tropical Tropopause Layer (TTL). Comparison with other tracers, such as methyl nitrate and NMHC, will help identify source regions for these gases. We will focus on the measurements obtained in the CONTRAST and ATTREX missions with data from in-situ GC/MS measurements and whole air samples collected on the NSF GV and NASA Global Hawk aircraft. Comparisons with other recent airborne campaigns, such as HIPPO and TC4, and with several ship-based studies will provide an additional context for evaluating the variability of organic halogen species in the tropical atmosphere and their role in transporting reactive halogen compounds into the UT/LS.

  17. The greenhouse gases emissions allowances trading in the Czech Republic

    International Nuclear Information System (INIS)

    The energy policy of the State is very important for a state development. The aim of this policy is power energy development, which is essential for improving the quality of life and standards of people's living in every country. Unfortunately, power energy development also has a negative impact; primarily on the environment. Some possible solutions exist for reduction of the power energy negative impacts. This paper deals with reduction of greenhouse gases (GHG) emissions in the Czech Republic according to the Kyoto protocol to the United Nations Framework Convention climate change. The ultimate objective of the United Nations Framework Convention on Climate Change is to achieve stabilization of greenhouse gas concentrations in the atmosphere. The GHG emissions allowances trading as one of the instruments for stabilisation of GHG emissions is described in the paper. (authors)

  18. National and international emissions trading for greenhouse gases

    International Nuclear Information System (INIS)

    In the Kyoto Protocol the flexibility mechanisms - Joint Implementation (Art. 6), Clean Development Mechanism (Art. 12), Emissions Trading (Art. 17)- and Bubble (Art. 4) are roughly defined, leaving much questions open about their design and functioning, about eligibility criteria, impact on compliance and their political acceptation. In the NRP research project on national and international emissions trading for greenhouse gases these questions have been researched, mainly from an economic perspective and focussing on Emissions Trading. This report summarises the major results of the research project. refs

  19. Mitigation of greenhouse gases from agriculture : Role of models

    DEFF Research Database (Denmark)

    Schils, R.L.M.; Ellis, J. L.

    2013-01-01

    Models are widely used to simulate the emission of greenhouse gases (GHG). They help to identify knowledge gaps, estimate total emissions for inventories, develop mitigation options and policies, raise awareness and encourage adoption. These models vary in scale, scope and methodological approach. The scale increases from field, manure storage or rumen via herd or farm to country or continent. The scope may be restricted to a single GHG or include all gases. Multidisciplinary models may include nutrients, other substances or socio-economic parameters. Mechanistic process-based models have been developed from the knowledge of how GHG are produced in soils, animals and manures. These types of models often operate at the lower end of the scale, but they are also incorporated in farm and regional models. This paper discusses how the different types of models, as well as tools for farmers, are used to develop and evaluate mitigation strategies.

  20. Verification of national halogenated greenhouse gas emissions in Europe using top-down estimates inferred from ambient air measurements

    Science.gov (United States)

    Brunner, D.; Keller, C. A.; Vollmer, M. K.; Reimann, S.; O'Doherty, S.

    2010-12-01

    To check for compliance with the reduction targets defined under the Kyoto protocol, each country has to report its greenhouse gas emissions to the UNFCCC (United Nations Framework Convention on Climate Change). These emissions are calculated using a bottom-up approach, by combining categories of com-pound use with specific activity functions and using import/export statistics. The uncertainties of these estimates are not well defined, thereby making an independent validation of the reported emissions highly desirable. In this study, a novel Kalman filter inversion technique was implemented to estimate European emissions of halogenated greenhouse gases including hydrofluorocarbons (HFC), perfluorocarbons (PFC) and SF6. The inversion is based on high-frequency measurements at two European background sites (Jungfraujoch and Mace Head) coupled to backward simulations from the Lagrangian particle dispersion model FLEXPART. The sequential nature of the inversion approach allows tracing slow seasonal and interannual emission changes. Furthermore, by including the estimation of a smoothly varying concentration background into the inversion, potential inconsistencies introduced by independent background subtraction methods are avoided. Further advantages are the applicability to a potentially large number of receptor (measurement) locations and the quantification of uncertainties along with absolute emissions. Annual emissions were estimated for the years 2006 to 2009 on a country-by-country basis and compared with numbers reported to the UNFCCC. Good agreement was found for HFC-134a and HFC-125, which are ubiquitously used for refrigeration and air conditioning. Much higher emissions than reported, however, were estimated for HFC-23, a potent greenhouse gas with a 100-yr global warming potential of 14’800. HFC-23 is an unintentional by-product of HCFC-22 manufacture and our source attribution reveals significant contributions from HCFC-22 production plants in Italy, Spain and Germany. Total HFC-23 emissions over Central Europe are estimated to account for more than 6% of global emissions, which is approximately 3 times higher than calculated by the bottom-up inventories. Similar discrepancies were found for HFC-152 which, however, is only a minor greenhouse gas.

  1. 76 FR 59542 - Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To...

    Science.gov (United States)

    2011-09-27

    ...2060-AR26 Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics...Manufacturing portion of the Greenhouse Gas Reporting Rule for the ``largest...utilization and by-product formation rates for the plasma...

  2. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2011-04-25

    ...published Subpart W: Petroleum and Natural Gas Systems of the Greenhouse...Association (GPA), Interstate Natural Gas Association of America...Reconsideration and reserves the right to further consider those issues...Greenhouse Gases: Petroleum and Natural Gas Systems,''...

  3. Greenhouse gases regional fluxes estimated from atmospheric measurements

    International Nuclear Information System (INIS)

    build up a new system to measure continuously CO2 (or CO), CH4, N2O and SF6 mixing ratios. It is based on a commercial gas chromatograph (Agilent 6890N) which have been modified to reach better precision. Reproducibility computed with a target gas on a 24 hours time step gives: 0.06 ppm for CO2, 1.4 ppb for CO, 0.7 ppb for CH4, 0.2 ppb for N2O and 0.05 ppt for SF6. The instrument's run is fully automated, an air sample analysis takes about 5 minutes. In July 2006, I install instrumentation on a telecommunication tall tower (200 m) situated near Orleans forest in Trainou, to monitor continuously greenhouse gases (CO2, CH4, N2O, SF6), atmospheric tracers (CO, Radon-222) and meteorological parameters. Intake lines were installed at 3 levels (50, 100 and 180 m) and allow us to sample air masses along the vertical. Continuous measurement started in January 2007. I used Mace Head (Ireland) and Gif-sur-Yvette continuous measurements to estimate major greenhouse gases emission fluxes at regional scale. To make the link between atmospheric measurements and surface fluxes, we need to quantify dilution due to atmospheric transport. I used Radon-222 as tracer (radon tracer method) and planetary boundary layer heights estimates from ECMWF model (boundary layer budget method) to parameterize atmospheric transport. In both cases I compared results to available emission inventories. (author)

  4. Emissions of greenhouse gases in the United States 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  5. Radiative forcings for 28 potential Archean greenhouse gases

    CERN Document Server

    Byrne, Brendan

    2014-01-01

    Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP). CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITRAN 2012 line data for background pressures of 0.5, 1, and 2 bar of atmospheric N2. For CO2 to resolve the FYSP alone at 2.8 Gyr BP (80% of present solar luminosity), 0.32 bar is needed with 0.5 bar of atmospheric N2, 0.20 bar with 1 bar of atmospheric N2, or 0.11 bar with 2 bar of atmospheric N2. For CH4, we find that near-infrared absorption is much stronger than previously thought, arising from updates to the HITRAN database. CH4 radiative forcing peaks at 10.3, 9, or 8.3 Wm-2 for background pressures of 0.5, 1 or 2 bar, likely limiting ...

  6. Using a refrigerant leak detector to monitor waste gases from halogenated anesthetics.

    Science.gov (United States)

    Rasmussen, Henrik; Thorud, Syvert

    2007-09-01

    Although halogenated gas anesthetics are indispensable in laboratory animal medicine, they are hazardous when present in the working environment. A simple technique of real-time leak detection and environmental spot monitoring can provide valuable adjunct information to current techniques of time-weighted monitoring. We investigated the minimal limit of detection of halothane, isoflurane, sevoflurane, and desflurane of a leak detector for halogenated gas refrigerants which provides a qualitative response only. We connected a container to an infrared gas analyzer to create a 135-l closed-circuit system and injected liquid halothane, isoflurane, sevoflurane, and desflurane to create calculated gas concentrations of 0.7 to 3.4 parts per million (ppm). The infrared absorbance and response of the leak detector were recorded, and a total of 5 measurements were made per concentration. The actual gas concentrations were calculated by comparison with the agent-specific absorbance standard curve. The leak detector clearly and consistently responded to halothane, isoflurane, sevoflurane, and desflurane from minimal concentrations of 2.1 +/- 0.2, 1.4 +/- 0.04, 0.8 +/- 0.04, and 1.2 +/- 0.4 ppm, respectively, as determined by infrared analysis. Although the detector does not provide numerical and time-weighted results, leak testing of equipment and repeated monitoring of the environment (spot monitoring) can provide valuable real-time information. In addition, with appropriate consideration of the methodological limitations, spot monitoring can be used to predict the likelihood of compliance with time-weighted exposure recommendations. A leak detector therefore represents a simple, effective, and inexpensive instrument for monitoring the leakage of halogenated anesthetic gases from equipment and into the working environment. PMID:17877331

  7. Avoidance of fluorinated greenhouse gases. Possibilities of an early exit; Fluorierte Treibhausgase vermeiden. Wege zum Ausstieg

    Energy Technology Data Exchange (ETDEWEB)

    Becken, Katja; Graaf, Daniel de; Elsner, Cornelia; Hoffmann, Gabriele; Krueger, Franziska; Martens, Kerstin; Plehn, Wolfgang; Sartorius, Rolf

    2010-11-15

    In comparison to carbon dioxide, fluorinated greenhouse gases are more harmful up to a factor of 24,000. Today the amount of fluorinated greenhouse gases of the world-wide emissions of climatic harmful gases amounts 2 % and increases to 6 % in the year 2050. The authors of the contribution under consideration report on possibilities for the avoidance of the emissions of fluorinated greenhouse gases. The characteristics and ecological effects of fluorinated gases as well as the development of the emission in Germany are presented. Subsequently, the applications of fluorinated hydrocarbons are described.

  8. Direct and ozone-mediated forcing of the Southern Annular Mode by greenhouse gases

    Science.gov (United States)

    Morgenstern, Olaf; Zeng, Guang; Dean, Sam M.; Joshi, Manoj; Abraham, N. Luke; Osprey, Annette

    2014-12-01

    We assess the roles of long-lived greenhouse gases and ozone depletion in driving meridional surface pressure gradients in the southern extratropics; these gradients are a defining feature of the Southern Annular Mode. Stratospheric ozone depletion is thought to have caused a strengthening of this mode during summer, with increasing long-lived greenhouse gases playing a secondary role. Using a coupled atmosphere-ocean chemistry-climate model, we show that there is cancelation between the direct, radiative effect of increasing greenhouse gases by the also substantial indirect—chemical and dynamical—feedbacks that greenhouse gases have via their impact on ozone. This sensitivity of the mode to greenhouse gas-induced ozone changes suggests that a consistent implementation of ozone changes due to long-lived greenhouse gases in climate models benefits the simulation of this important aspect of Southern Hemisphere climate.

  9. Remote Sensing of Greenhouse Gases and Their Sources and Sinks

    Science.gov (United States)

    Butz, Andre; Babenhauserheide, Arne; Bertleff, Marco; Checa-Garcia, Ramiro; Hahne, Philipp; Hase, Frank; Klappenbach, Friedrich; Kostinek, Julian; Aben, Ilse; Hasekamp, Otto; Landgraf, Jochen; Galli, Andre; Basu, Sourish

    2014-06-01

    The man-made emissions of the greenhouse gases carbon dioxide (CO2) and methane (CH4) are considered the main drivers of anthropogenically induced climate change. Major uncertainties persist when it comes to quantifying regional scale surface fluxes of these gases or predicting the evolution of the relevant source/sink processes in a changing climate. Remote sensing of the atmospheric greenhouse gas concentrations from space-borne and ground-based platforms offers the opportunity to significantly advance our knowledge on spatial and temporal scales that are suitable for process attribution and mitigation actions. Overall, the most promising remote-sensing strategy exploits the rotational-vibrational absorption of CO2 and CH4 in sunlight penetrating the Earth's atmosphere. Typically, satellite sounders such as GOSAT (Greenhouse Gases Observing Satellite), OCO-2 (Orbiting Carbon Observatory), and S5P (Sentinel-5 precursor) as well as the ground-based spectrometers of the TCCON (Total Carbon Column Observing Network) cover various CO2, CH4, and O2 absorption bands in the near and shortwave infrared spectral range between 0.75 micron (13400cm-1) and 2.5 micron (4000cm-1). Accuracy of the inferred gas concentrations is contingent on the accuracy of the adopted spectroscopic parameters and spectroscopic models available in these spectral regions. Here, I will report on recent achievements and challenges within our greenhouse-gas remote-sensing activities mainly focusing on the GOSAT observational record. Since its launch in early 2009, the Fourier Transform Spectrometer onboard GOSAT delivers solar absorption spectra with good spectral resolution and high signal-to-noise. It has been shown that the CO2 and CH4 retrievals from these observations can achieve an accuracy on the order of fractions of a percent which makes them suitable for tracking regional scale source/sink processes and their response to climate events. In order to achieve the required accuracy, it is crucial to develop highly accurate radiative-transfer algorithms and to validate the satellite soundings by ground-based observations. I will illustrate some cases where the excellent quality of the absorption spectra collected by GOSAT reveals spectroscopic deficiencies and inconsistencies among the various absorption bands covered. As such, lessons learned from GOSAT can be used as a feedback to the spectroscopy community. Beyond GOSAT, future satellite missions such as S5P or the planned S5 (Sentinel-5, launch ˜2020) will cover spectral ranges which have not yet been spectroscopically optimized for remote-sensing purposes. In that case, simulations and studies based on ground-based observations show that spectroscopic uncertainties constitute a dominant contribution to the error budget of the retrieved gas concentrations. Therefore, further improvements of spectroscopic parameters and line-shape models is of paramount interest for remote sensing of greenhouse gases.

  10. Projections of global emissions of fluorinated greenhouse gases in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Gschrey, Barbara; Schwarz, Winfried [Oeko-Recherche Buero fuer Umweltforschung und -beratung GmbH, Frankfurt/Main (Germany)

    2009-11-15

    Emissions of fluorinated greenhouse gases are currently covered under the Montreal Protocol, which focuses on ozone-depleting substances such as CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons), and under the Kyoto Protocol, which controls emissions of HFCs (hydrofluorocarbons), PFCs (perfluorocarbons) and SF{sub 6} (sulfur hexafluoride). This study bridges the gap between political regimes and their reporting systems by giving an overview of banks and emissions of all fluorinated gases in 2005, and projections of banks and emissions of fluorinated gases in 2050. The Montreal Protocol and its amendments will eventually result in the full phase out of CFCs and HCFCs. Developed countries have already completed the phase out of CFCs and will reach full phase out of HCFCs by 2020. Developing countries, in contrast, will phase out CFCs by 2010 and HCFCs by 2030. Although climate-friendly technology is available for most applications, the risk occurs that substitutes for ozone-depleting substances rely on HFCs, which cause global warming. This study determines global emissions of HFCs, PFCs and SF{sub 6} (Kyoto F-gases) in 2050 in a ''business-as-usual'' scenario. The global population is expected to increase to ca. 8.7 billion people, and high economic growth of 3.5% per year is assumed. Emissions in 2050 are quantified for each sector of application as well as for developed and developing countries based on growth rates of each sector. In 2050, total global emissions of fluorinated greenhouse gases are projected to amount to 4 GT CO{sub 2} eq. which equals ca. 5.9% of the total greenhouse gas emissions at this time. Compared to a relatively small share of F-gas emissions ranging around 1.3% of total greenhouse gas emissions in 2004, this percentage reflects an enormous increase. Relative to projected direct CO{sub 2} emissions alone, the 2050 F-gas emissions will even account for ca. 7.9%. In case of CO{sub 2} mitigation, this share would be significantly higher. The commercial refrigeration sub sector and the air conditioning (stationary and mobile) sector will account for about 75% of F-gas emissions in 2050. In most sectors, emissions from developing countries will exceed emissions from developed countries. Large banks of HFCs will cause F-gas emissions well beyond 2050. In order to limit F-gas emissions, it appears crucial to consider measures to reduce emissions from all sectors in both developed and developing countries. The current post- Kyoto negotiation process might provide an opportunity to address these issues within a wider scope. A switch from substances that cause global warming to climate friendly alternatives is considered inevitable to be undertaken in the near future in developed countries. Developing countries, in contrast, are facing the chance to replace ozonedepleting substances directly by climate friendly alternatives, and could hence benefit from technologies developed in the last decades. The study does not exclude other scenarios on future HFC emissions. Like earlier projections, it underlines the urgent need for mitigation measures of F-gas emissions. (orig.)

  11. Energy Information Administration: Emissions of Greenhouse Gases in the United States 1996

    Science.gov (United States)

    The Energy Information Agency (EIA) has released a new report, "Emissions of Greenhouse Gases in the United States 1996. The report shows that in 1996, "U.S. emissions of greenhouse gases increased by 3.4 percent over 1995 emissions, the highest rate of increase in recent years." EIA also released updated Country Analysis Briefs for OPEC, North Sea and Kuwait.

  12. Greenhouse gases in the Earth system: setting the agenda to 2030.

    Science.gov (United States)

    Manning, Andrew C; Nisbet, Euan G; Keeling, Ralph F; Liss, Peter S

    2011-05-28

    What do we need to know about greenhouse gases? Over the next 20 years, how should scientists study the role of greenhouse gases in the Earth system and the changes that are taking place? These questions were addressed at a Royal Society scientific Discussion Meeting in London on 22-23 February 2010, with over 300 participants. PMID:21502164

  13. Greenhouse gases mitigation policies in the agriculture of Aragon, Spain

    Directory of Open Access Journals (Sweden)

    José Albiac

    2013-05-01

    Full Text Available Climate change is an important threat to human society. Agriculture is a source of greenhouse gases (GHG, but it also provides alternatives to confront climate change. The expansion of intensive agriculture around the world during recent decades has generated significant environmental damages from pollution emissions. The spatial distribution of emissions is important for the design of local abatement measures. This study makes an assessment of GHG emissions in an intensive agricultural area of Aragon (Spain, and then an economic optimization model is developed to analyze several GHG mitigation measures. The results indicate that adequate management of manure, emissions limits, and animal production restrictions are appropriate measures to abate pollution. Economic instruments such as input and emission taxes could be only ancillary measures to address nonpoint pollution problems. Suitable pollution abatement policies should be based on institutional instruments adapted to local conditions, and involve the cooperation of stakeholders.

  14. Good practices reducing the greenhouse gases in the transport sector

    International Nuclear Information System (INIS)

    Public policies addressing the reduction of the greenhouse gases emission have to give response to the improvement of mobility in three aspects: passengers, freights, and urban and metropolitan areas. Passenger transport, because it involves long transportation distances consuming an important part of transport energy and raises difficult organizational problems. Freight transport, due to the complexity of interconnecting a lot of modes of transportation and the big range for improvement. Urban and metropolitan mobility, by the impact of actions in this field in the quality of life of a big part of the population. According to the peculiarities of their respective territories, different strategies of sustainable mobility that address the three considered aspects have been set up in Spain and its neighbouring countries. This article reviews some action lines implemented in spain, France and Germany, as a previous step to assess their possible adaptation to other territories. (Author) 6 refs.

  15. Study of greenhouse gases emission factor for nuclear power chain of China

    International Nuclear Information System (INIS)

    The Greenhouse Gases Emission Factor (GGEF) for nuclear power chain of China is calculated based on Life Cycle Analysis method and the definition of full energy chain. There is no greenhouse gases released directly from nuclear power plant. The greenhouse gases emission from nuclear power plant is mainly from coal-fired electricity supply to nuclear power plant for its normal operation and the production of construction materials those are used in the nuclear power plant. The total GGEF of nuclear power chain in China is 13.71 g-co2/kWh. It is necessary to regulate un-rational power source mix and to use the energy sources in rational way for reducing the greenhouse gas effect. Nuclear power for electricity generation is one of effective ways to reduce greenhouse gases emission and retard the greenhouse effect

  16. Sources and emission of greenhouse gases in Danube Delta lakes.

    Science.gov (United States)

    Pavel, Alina; Durisch-Kaiser, Edith; Balan, Sorin; Radan, Silviu; Sobek, Sebastian; Wehrli, Bernhard

    2009-08-01

    Production of methane and carbon dioxide as well as methane concentrations in surface waters and emissions to the atmosphere were investigated in two flow-through lake complexes (Uzlina-Isac and Puiu-Rosu-Rosulet) in the Danube Delta during post-flood conditions in May and low water level in September 2006. Retained nutrients fueled primary production and remineralization of bioavailable organic matter. This led to an observable net release of methane, particularly in the lakes Uzlina, Puiu and Rosu in May. Input from the Danube River, from redbuds and benthic release contributed to CH(4) concentrations in surface waters. In addition to significant river input of CO(2), this trace gas was released via aerobic remineralization within the water column and in top sediments. Emission patterns of CO(2) widely overlapped with those of CH(4). Generally, greenhouse gas emissions peaked in the lake complex adjacent to the Danube River in May due to strong winds and decreased with increasing hydrological distance from the Danube River. Intense remineralization of organic matter in the Danube Delta lakes results in a net source of atmospheric greenhouse gases. PMID:19506929

  17. The Use of Greenhouse Gases as Climate Proxy Data in Interpreting Climatic Variability

    OpenAIRE

    Oluseyi Enitan Ogunsola; Ezekiel Oluyemi Oladiran

    2013-01-01

    Greenhouse gas data were utilized as proxy data in interpreting climate variability. These greenhouse gases were related to temperature records using standard deviation (SD) as the transfer function based on observed correlations between them and global warming records. The annual SD used as warming index for the concentrations of these greenhouse gases for the period 1996 to 2005 at the various stations considered showed good correlation with 1998 as the warmest for these stations.

  18. Persistence of climate changes due to a range of greenhouse gases

    OpenAIRE

    Solomon, Susan; Daniel, John S.; Sanford, Todd J.; Murphy, Daniel M.; Plattner, Gian-kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-01-01

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO2 greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a give...

  19. Prototype System for Monitoring and Computing Greenhouse gases

    Directory of Open Access Journals (Sweden)

    R. Jaichandran

    2011-07-01

    Full Text Available Global warming is not only the problem of the government or individual organization it is the fundamental problem of every individual. The main cause for global warming is green house gases (GHG. Monitoring and computing the greenhouse gases are a major challenging work. Globally, over the past several decades, human-induced activities like industrial revolution and burning of fossil fuels in power stations, vehicle transport systems and industries contribute significantly to the emission and concentration of GHG in atmosphere. Avoiding their usage may reduce the emission of GHG, but it may not be a practical approach as they are mandatory in modern day-to-day life, alternatively regular monitoring and reporting of GHG parameters may create awareness to individuals and organization for effective and proper use of human induced activities. There are very few works done in developing embedded systems for computing GHG. We have implemented a prototype system for sensing and computing the level of existence of GHG parameters (like CO2, CO, temperature and humidity in atmosphere using environmental sensors and advanced microcontrollers and energy efficient wireless technologies. The Prototype supports quality in terms of low cost, energy efficiency, flexibility and user friendliness. Data is collected, consistency models are define for analyzing the quality of data and the level of GHG in the deployed environment is computed. The results show that the prototype is capable for monitoring and computation of GHG in the deployed environment and can be applied at all levels of organization for creating awareness, performing scientific studies and to forecast re mediation policies by the authorities to individuals and organization in controlling GHG parameters.

  20. Greenhouse gases: How does heavy oil stack up?

    International Nuclear Information System (INIS)

    Life-cycle emissions of direct greenhouse gases (GHG) have been calculated to elucidate the global warming impacts of various fossil fuel feedstocks. Calculations were made for the transportation sector using five fossil fuel sources: natural gas, light crude oil, conventional heavy oil, crude bitumen recovered through in-situ steam stimulation, and crude bitumen recovered through mining. Results suggest that fuels sourced from light crude oil have the lowest GHG emissions, while conventional heavy oil has the highest GHG emission levels for this application. Emissions of methane can constitute a significant portion of the life-cycle GHG emissions of a fossil fuel. For all the fossil fuels examined, except conventional heavy oil, GHG emissions associated with their production, transport, processing, and distribution are less than one third of their total life-cycle emissions. The remainder is associated with end use. This confirms that consumers of fossil fuel products, rather than fossil fuel producers, have the most leverage to reduce GHG emissions. 2 figs

  1. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  2. Greenhouse effect gases (GEI) by energy consumption; Gases efecto invernadero (GEI) por consumo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Ledo C, Ramon; Bazan N, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The purpose of this article is to present the calculation methodology of greenhouse effect gases (GEI) emissions that are produced by the power sector in Mexico, as well as to discuss its possible impact in the subject of climatic change and the possible mitigating actions to lower the amount of emissions that can be taken and, therefore, the possible climate changes. In Mexico GEI inventories have been made since 1991, year in which the National Inventory of Gases with Greenhouse Effect was obtained for year 1988. The GEI include carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), methane (CH4), nitrous oxide (NO) and volatile organic carbides that are not methane (NMVOC) and are secondary products and harmful that are obtained from the processes that turn fuels into energy (combustion). The main sources of GEI are: fixed sources (industries, residences, commerce, public services and energy transformation, such as power generation); movable sources (that include all type of transport that uses fuel). The fuels that, by their volume and efficiency, generate more emissions of GEI are crude oil, natural gas and solid biomass (firewood-cane bagasse). Any effort to reduce these emissions is very important and remarkable if it affects the consumption of these fuels. [Spanish] El proposito de este articulo es presentar la metodologia de calculo de las emisiones de los gases con efecto invernadero (GEI) que son producidos por el sector energetico en Mexico, asi como discutir su posible impacto en las cuestiones de cambio climatico y las posibles acciones de mitigacion que se pueden realizar para abatir la cantidad de emisiones y, por ende, los posibles cambios de clima. En Mexico se han realizado inventarios de GEI desde 1991, ano en que se obtuvo el Inventario Nacional de Gases con Efecto Invernadero para el ano de 1988. Los GEI comprenden al dioxido de carbono (CO2), monoxido de carbono (CO), oxidos de nitrogeno (NOx), metano (CH4), oxido nitroso (N2O) y carburos organicos volatiles que no son metano (NMVOC, por sus siglas en ingles) y son productos secundarios y nocivos que se obtienen de los procesos que convierten los combustibles en energia (combustion). Las principales fuentes de GEI son: fuentes fijas (industrias, residencias, comercios, servicios publicos y transformacion de energia, como la produccion de electricidad); fuentes moviles (que incluyen todo tipo de transporte que use combustible). Los combustibles que, por su volumen y eficiencia, generan mas emisiones de GEI son el petroleo crudo, gas natural y biomasa solida (lena - bagazo de cana). Cualquier esfuerzo por reducir estas emisiones es muy importante y notable si incide en estos combustibles.

  3. Observation of greenhouse gases from ground-based telescope "Subaru" and "TAO"

    Science.gov (United States)

    Hayashi, Y.; Imasu, R.; Miyata, T.

    2009-12-01

    Long-term observation of greenhouse gases is very important to understand temporal variations of greenhouse gases. This January, Japanese satellite, GOSAT (greenhouse gases observing satellite) was launched and its operational observation has started. For supporting satellite observations, validation data such as obtained by ground-based observations are very important. However, there is no observation site in South America. In this study, I propose new data analysis procedure for the observation of greenhouse gases using a ground-based astronomical telescope, which is placed in South America. The purpose of this study is to measure the vertical distribution and temporal variation of greenhouse gases such as methane and ozone from infrared spectrum data measured by an astronomical telescope on the ground. Although solar radiation is generally used to measure greenhouse gases, we use stellar radiation in order to measure the gases even in the night. The method developed in this study can be applicable for analysis of the data observed at world wide astronomical observatories. Institute of Astronomy, The University of Tokyo has conducted an international project, TAO (University of Tokyo Atacama Observatory) Project. In this project they are constructing a very big size telescope (diameter of the main mirror is 6m) at the observation site in Chile, South America. We are going to measure greenhouse gases using the telescope. However, as it is still under construction, we use the data from another Japanese telescope, “Subaru” in Hawaii. Subaru telescope, which has 7 instruments, is located at the top of Mauna Kea, Hawaii. In this study, we use mid-infrared grating spectrometer, called COMICS. This instrument provides spectroscopic capabilities from 7.5-13.5 um, which include absorption bands methane and ozone. To analyze these greenhouse gases, we developed a new method using two stars which have different zenith angles observed in a short interval. I will present some preliminary results retrieved from Subaru data.

  4. Automotive industry program and strategy for control of ozone depleting substances and greenhouse gases

    International Nuclear Information System (INIS)

    This paper outlines the program status and strategy for the short and long term periods for ozone depleting substances and greenhouse gases from both stationary sources in manufacturing plants and mobile sources in motor vehicles. 5 refs

  5. Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases 1990-2020

    U.S. Environmental Protection Agency — The data in these Appendices to the Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases (1990-2020) report provide historical and projected estimates of...

  6. NACP Greenhouse Gases Multi-Source Data Compilation, 2000-2009

    National Aeronautics and Space Administration — ABSTRACT: This data set is a collection of measurements of carbon dioxide (CO2) and non-CO2 greenhouse gases made across North America by nine independent...

  7. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation

    Science.gov (United States)

    Auto Classics ShipVehicles

    This page explains concepts related to the interaction between greenhouse gasses, transportation, and government regulations. A list of links is given for three main categories: greenhouse gasses, regulated emissions, and transportation energy use.

  8. Contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    Directory of Open Access Journals (Sweden)

    D. A. Plummer

    2010-04-01

    Full Text Available A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs and Ozone Depleting Substances (ODSs. The experiments are designed to investigate the mechanisms by which GHGs and ODSs affect the evolution of ozone, including changes in the Brewer-Dobson circulation of the stratosphere and cooling of the upper stratosphere by CO2. Separating the effects of GHGs and ODSs on ozone, we find the decrease in upper stratospheric ozone from ODSs up to the year 2000 is approximately 30% larger than the actual decrease in ozone due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in upper stratospheric ozone. Changes below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation, while globally averaged the amount of ozone below 20 hPa decreases over the 21st century. Further analysis by linear regression shows that changes associated with GHGs do not appreciably alter the recovery of stratospheric ozone from the effects of ODSs; over much of the stratosphere ozone recovery follows the decline of halogen concentrations within statistical uncertainty, though the lower polar stratosphere of the Southern Hemisphere is an exception with ozone concentrations recovering more slowly than indicated by the halogen concentrations. These results also reveal the degree to which climate change, and stratospheric CO2 cooling in particular, mutes the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the residual circulation of the atmosphere and chemical effects from CO2 cooling more than halve the increase in reactive nitrogen in the mid to upper stratosphere that results from the specified increase in N2O between 1950 and 2100.

  9. On surface temperature, greenhouse gases, and aerosols: models and observations

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.F.B.; Davis, R.A.; Ingram, W.J.; Senior, C.A. [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)

    1995-10-01

    The effect of changes in atmospheric carbon dioxide concentrations and sulphate aerosols on near-surface temperature is investigated using a version of the Hadley Centre atmospheric model coupled to a mixed layer ocean. The scattering of sunlight by sulphate aerosols is represented by appropriately enhancing the surface albedo. On doubling atmospheric carbon dioxide concentrations, the global mean temperature increases by 5.2 K. An integration with a 39% increase in CO{sub 2}, giving the estimated change in radiative heating due to increases in greenhouse gases since 1900, produced an equilibrium warming of 2.3 K, which, even allowing for oceanic inertia, is significantly higher than the observed warming over the same period. Furthermore, the simulation suggests a substantial warming everywhere, whereas the observations indicate isolated regions of cooling, including parts of the northern midlatitude continents. The addition of an estimate of the effect of scattering by current industrial aerosols (uncertain by a factor of at least 3) leads to improved agreement with the observed pattern of changes over the northern continents and reduces the global mean warming by about 30%. Doubling the aerosol forcing produces patterns that are still compatible with the observations, but further increase leads to unrealistically extensive cooling in the midlatitudes. The diurnal range of surface temperature decreases over most of the northern extratropics on increasing CO{sub 2}, in agreement with recent observations. The addition of the current industrial aerosol had little detectable effect on the diurnal range in the model because the direct effect of reduced solar heating at the surface is approximately balanced by the indirect effects of cooling. Thus, the ratio of the reduction in diurnal range to the mean warming is increased, in closer agreement with observations. Results from further sensitivity experiments with larger increases in aerosol and CO{sub 2} are presented.

  10. Emissions of greenhouse gases in the United States, 1985--1990

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  11. Quantification of the greenhouse effect gases at the territorial scale. Final report

    International Nuclear Information System (INIS)

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  12. Flow of greenhouse gases from mires and organic soils

    International Nuclear Information System (INIS)

    This report describes the Swedish research regarding greenhouse gas emissions from wetlands, both natural and those created for other purposes. Effects on the greenhouse gas balance due to different actions in the ecosystem, like cultivation, peat mining or inundation, is also discussed

  13. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the ozone layer here. The difference in the impact of the greenhouse gases on the ozone layer at the southern and northern polar latitudes through PCS modification is determined by the difference in temperature regimes of the Polar Regions. The mechanism of the impact of the greenhouse gases on the polar ozone by means of modification of sulphate aerosol distribution in the atmosphere has been revealed and investigated, too. Numerical experiments show that enhancement of the surface area density of sulphate aerosol in the stratosphere caused by the growth of the greenhouse gases will reduce significantly the ozone depletion during the Antarctic ozone hole.

  14. Agriculture and greenhouse gases emissions reduction; Agriculture et reduction des emissions de gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Leguet, B.

    2005-09-15

    In France, the agriculture is the third sector of greenhouse gases emitter. Meanwhile since 1990 this sector poorly reduces its greenhouse gases. It is necessary to find mechanisms which allow the valorization of emissions reduction. In this framework the author presents the specificities of the greenhouse gases emissions of the agricultural sector, the possible incentives of emissions reduction, the reduction projects in France and abroad. (A.L.B.)

  15. Greenhouse gases accounting and reporting for waste management - A South African perspective

    International Nuclear Information System (INIS)

    This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level.

  16. Evaluation of fission gases and halogens release out of failed fuel running at constant power and in power cycling regime

    International Nuclear Information System (INIS)

    Kinetics was analysed of radioactive fission product emission into the coolant: noble gases, halogens, delayed neutron emitters. The source term which describes the release rates of the volatile fission products from a defected PWR fuel rod is essentially not dependent on power and much higher than that of the sound fuel. This high emission rate is mainly due to overstoichiometry of the fuel arising from water intrusion. Iodine release happens to be at a level comparable to that of the noble gases if the thermal power is cycled or when the leak defect is close to the fuel; otherwise it is lowered as a consequence of chemical interactions with the inner surfaces of the rod

  17. Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, C.L.; Hermansen, O.; Fjaeraa, A.M.; Lunder, C.; Fiebig, M.; Schmidbauer, N.; Krognes, T.; Stebel, K.

    2012-07-01

    The report summaries the activities and results of the greenhouse gas monitoring at the Zeppelin and observatory situated on Svalbard in Arctic Norway during the period 2001-2010 and the greenhouse gas monitoring and aerosol observations from Birkenes for 2010. The monitoring programme is performed by the NILU - Norwegian Institute for Air Research and funded by the Norwegian Pollution Control Authority (SFT) (now Climate and Pollution Agency) and NILU - Norwegian Institute for Air Research.(Author)

  18. GREENHOUSE GASES REDUCTION THROUGH WASTE MANAGEMENT IN CROATIA

    Directory of Open Access Journals (Sweden)

    Aleksandra Ani? Vu?ini?

    2010-01-01

    Full Text Available The climate change policy is one of the key factors in the achievement of sustainable development in the Republic of Croatia. Control and mitigation of green house gases is correlated with all economy activities. Waste management is one of the main tasks of environmental protection in Croatia. The Waste Management Strategy of the Republic of Croatia and the Waste Management Plan in the Republic of Croatia define the concept of waste management hierarchy and direct and indirect measures as criteria for sustainable waste management establishment. The main constituent of this system is avoiding and minimizing waste, as well as increasing the recycling and recovery level of waste and land fill gas, which also represent green house gases mitigation measures. The Waste Management Plan consists of several direct and indirect measures for green house gases emission reduction and their implementation also affects the green house gases emissions. The contribution of the methane emission from land fills amounts to about 2% of the total green house gases emissions in Croatia. The climate change control and mitigation measures as an integral part of waste management sector strategies represent the measures of achieving the national objectives to wards green house gases emission reduction which Croatia has accepted in the frame work of the Kyoto Protocol.

  19. Study of greenhouse gases reduction alternatives for the exploitation of non conventional oil sands in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bouchonneau, Deborah [Institut Francais du Petrole (IFP), Paris (France)

    2008-07-01

    High energy prices and greenhouse gases reduction represent the main challenges the current worldwide energetic situation has to face. As a consequence, paradox strategies can be highlighted: oil prices are sufficiently high to exploit non conventional oil resources, like extra heavy oils and oil sands. But the production of these resources emits larger GHG than the conventional oil path and implies other major environmental issues (water management, risks of soil pollution, destruction of the boreal forest), incompatible with the rules validated by the protocol of Kyoto. At the light of the new greenhouse gases reduction regulation framework announced by the Canadian Federal government, this work focuses on the study of greenhouse gases reduction alternatives applied to the non conventional oil sands exploitation in Canada. (author)

  20. The emissions of greenhouse gases are reduced by a new proposal for trade of quotas

    International Nuclear Information System (INIS)

    The emission quota system will stimulate enterprises that do not currently have to pay a CO2 tax and which are not subjected to any other political instrument to cut their emissions of greenhouse gases. Consequently, the main part of the total Norwegian emission of greenhouse gases will be covered by climate policy instruments. The quota system enters into force on January 1, 2005, from which date the EU quota system will also be in force. The quota system will comprise CO2 emissions from oil refineries, iron and steel manufacturers, producers of cement, lime, glass and ceramic products, and certain energy plants. Not all firms that are obliged to obtain quotas will receive as many quotas as they are expected to need. Norway introduced a CO2 tax in 1991 and is among the countries with the strongest and most extensive political instruments against emission of greenhouse gases

  1. The macroeconomic consequences of controlling greenhouse gases: a survey

    Energy Technology Data Exchange (ETDEWEB)

    Boero, Gianna; Clarke, Rosemary; Winters, L.A. (Birmingham Univ. (GB). Dept. of Economics)

    1991-01-01

    This is the summary of a major report which provides a survey of existing estimates of the macroeconomic consequences of controlling greenhouse gas emissions, particularly carbon dioxide (CO{sub 2}). There are broadly speaking two main questions. What are the consequences of global warming for economic activity and welfare What, if any, are the economic consequences of reducing the levels of greenhouse gas (GHG) emissions This survey covers only those studies which quantify the overall (macroeconomic) costs of abating greenhouse gas emissions. It is not concerned with whether any particular degree of abatement is sufficient to reduce global warming, nor whether it is worth undertaking in the light of its benefits. These are topics for other researchers and other papers. Here we are concerned only to map the relationship between economic welfare and GHG abatement. (author).

  2. Nonlinear response of modeled stratospheric ozone to changes in greenhouse gases and ozone depleting substances in the recent past

    Directory of Open Access Journals (Sweden)

    S. Meul

    2015-03-01

    Full Text Available In the recent past, the evolution of stratospheric ozone (O3 was affected by both increasing ozone depleting substances (ODSs and greenhouse gases (GHGs. The impact of the single forcings on O3 is well known. Interactions between the simultaneously increased GHG and ODS concentrations, however, can occur and lead to nonlinear O3 changes. In this study, we investigate if nonlinear processes have affected O3 changes between 1960 and 2000. This is done with an idealized set of timeslice simulations with the chemistry–climate model (CCM EMAC. Nonlinearity leads to a net reduction of ozone decrease throughout the stratosphere, with a maximum of 1.2% at 3 hPa. The total ozone column loss between 1960 and 2000 that is mainly attributed to the ODS increase is mitigated in the extra-polar regions by up to 1.1% due to nonlinear processes. A separation of the O3 changes into the contribution from chemistry and transport shows that nonlinear interactions occur in both. In the upper stratosphere a reduced efficiency of the ClOx-catalysed O3 loss chiefly causes the nonlinear O3 increase. An enhanced formation of halogen reservoir species through the reaction with methane (CH4 reduces the abundance of halogen radicals significantly. The temperature induced deceleration of the O3 loss reaction rate in the Chapman cycle is reduced, which leads to a nonlinear O3 decrease and counteracts the increase due to ClOx. Nonlinear effects on the NOx abundance cause hemispheric asymmetric nonlinear changes of the O3 loss. Nonlinear changes in O3 transport occur in particular in the Southern Hemisphere (SH during the months September to November. Here, the residual circulation is weakened in the lower stratosphere, which goes along with a reduced O3 transport from the tropics to high latitudes. Thus, O3 decreases in the SH polar region, but increases in the SH midlatitudes.

  3. Nonlinear response of modeled stratospheric ozone to changes in greenhouse gases and ozone depleting substances in the recent past

    Science.gov (United States)

    Meul, S.; Oberländer-Hayn, S.; Abalichin, J.; Langematz, U.

    2015-03-01

    In the recent past, the evolution of stratospheric ozone (O3) was affected by both increasing ozone depleting substances (ODSs) and greenhouse gases (GHGs). The impact of the single forcings on O3 is well known. Interactions between the simultaneously increased GHG and ODS concentrations, however, can occur and lead to nonlinear O3 changes. In this study, we investigate if nonlinear processes have affected O3 changes between 1960 and 2000. This is done with an idealized set of timeslice simulations with the chemistry-climate model (CCM) EMAC. Nonlinearity leads to a net reduction of ozone decrease throughout the stratosphere, with a maximum of 1.2% at 3 hPa. The total ozone column loss between 1960 and 2000 that is mainly attributed to the ODS increase is mitigated in the extra-polar regions by up to 1.1% due to nonlinear processes. A separation of the O3 changes into the contribution from chemistry and transport shows that nonlinear interactions occur in both. In the upper stratosphere a reduced efficiency of the ClOx-catalysed O3 loss chiefly causes the nonlinear O3 increase. An enhanced formation of halogen reservoir species through the reaction with methane (CH4) reduces the abundance of halogen radicals significantly. The temperature induced deceleration of the O3 loss reaction rate in the Chapman cycle is reduced, which leads to a nonlinear O3 decrease and counteracts the increase due to ClOx. Nonlinear effects on the NOx abundance cause hemispheric asymmetric nonlinear changes of the O3 loss. Nonlinear changes in O3 transport occur in particular in the Southern Hemisphere (SH) during the months September to November. Here, the residual circulation is weakened in the lower stratosphere, which goes along with a reduced O3 transport from the tropics to high latitudes. Thus, O3 decreases in the SH polar region, but increases in the SH midlatitudes.

  4. The contribution of direct energy use for livestock breeding to the greenhouse gases emissions of Cyprus

    International Nuclear Information System (INIS)

    This paper presents a methodology for the estimation of the contribution of direct energy use to the greenhouse gases emissions of cattle, pig and poultry breeding in Cyprus. The energy consumption was estimated using the factors of 2034 MJ/cow, 2182 MJ/sow and 0.002797 MJ/bird. The greenhouse gases emissions for each animal species and energy source were estimated using emission factor of each greenhouse gas according to fuel type as proposed by the IPCC 2006 guidelines and for electricity according to national verified data from the Electricity Authority of Cyprus. Livestock breeding in Cyprus consumes electricity, diesel oil and LPG. The results obtained, show that the emissions from energy use in livestock breeding contribute 16% to the total agricultural energy emissions. Agricultural energy emissions contribute 0.7% to the total energy greenhouse gases (GHG) emissions. The three species of animal considered contribute 3% to their total livestock breeding emissions when compared with enteric fermentation and manure management, of which 2.6% is CO2. These results agree with the findings in available literature. The contribution of direct energy use in the greenhouse gases emissions of livestock breeding could be further examined with the influence of anaerobic digestion to the emissions. -- Highlights: ? Energy use contribution to greenhouse gases emissions of Cyprus livestock breeding. ? Energy consumption estimated using 2.034 GJ/ cow, 2.182 GJ/ sow and 2.797 kJ/ bird. ?Energy use in livestock breeding found to be 16% of agriculture energy emissions. ? Energy use found to be 3% of total livestock breeding emissions. ? 87% of the energy emissions is CO2.

  5. 75 FR 17331 - Public Hearings for the Mandatory Reporting Rule for Greenhouse Gases

    Science.gov (United States)

    2010-04-06

    ...which is in the Washington, DC, area) on April 19, 2010...Reporting of Greenhouse Gases: Injection and Geologic Sequestration of...will be held in Washington, DC, on April 20, 2010. It will...emissions and carbon dioxide injection and geologic...

  6. Energy and climatic change: within 30 years, divide France's emissions of greenhouse gases in three

    International Nuclear Information System (INIS)

    Fighting against global warming means cutting down on greenhouse gases. France can significantly reduce its emissions by seriously modifying life-styles without disrupting them. The population will accept this all the better as far as it is deeply concerned with the issues. (author)

  7. Emission of greenhouse gases 1990-2010. Trends and driving forces

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-01

    Emissions of greenhouse gases in Norway from 1990-2010 - trends and driving forces, a report that presents emission trends in Norway with the analysis of the main drivers and trends, and a review and analysis of the effectiveness of implemented measures.(Author)

  8. GREENHOUSE GASES REDUCTION THROUGH WASTE MANAGEMENT IN CROATIA

    OpenAIRE

    Aleksandra Ani? Vu?ini?; Andrea Hublin; Nikola Ružinski

    2010-01-01

    The climate change policy is one of the key factors in the achievement of sustainable development in the Republic of Croatia. Control and mitigation of green house gases is correlated with all economy activities. Waste management is one of the main tasks of environmental protection in Croatia. The Waste Management Strategy of the Republic of Croatia and the Waste Management Plan in the Republic of Croatia define the concept of waste management hierarchy and direct and indirect measures as cri...

  9. Emissions of greenhouse gases in the United States, 1987--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  10. Impact of greenhouse gases on the ozone layer in the polar regions

    International Nuclear Information System (INIS)

    Full text: A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2, CH4, and N2O in the future long-term changes of the earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the south to north poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from climate change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the earth's ozone layer in the polar regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles oencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the ozone layer here. The mechanism of the impact of the greenhouse gases on the polar ozone by means of modification of sulphate aerosol distribution in the atmosphere has been revealed and investigated, too. Numerical experiments show that enhancement of the surface area density of sulphate aerosol in the stratosphere caused by the growth of the greenhouse gases will reduce significantly the ozone depletion during the antarctic ozone hole. As for the global total ozone, continuous anthropogenic growth of the greenhouse gases will lead to significant acceleration of its recovery. In the case of the used scenario of expected long-term changes of the greenhouse gases, the global ozone will reach its undisturbed level of 1980 by about 2043. If the CO2 growth stops, the global total ozone will reach this level only by the end of the 21st century. (author)

  11. Greenhouse gases and ammonia emissions from organic mixed crop-dairy systems: a critical review of mitigation options

    OpenAIRE

    Novak, S M; Fiorelli, J.L.

    2010-01-01

    Dairy production systems represent a significant source of air pollutants such as greenhouse gases (GHG), that increase global warming, and ammonia (NH3), that leads to eutrophication and acidification of natural ecosystems. Greenhouse gases and ammonia are emitted both by conventional and organic dairy systems. Several studies have already been conducted to design practices that reduce greenhouse gas and ammonia emissions from dairy systems. However, those studies did not consider options sp...

  12. Effect of noble gases on an atmospheric greenhouse /Titan/.

    Science.gov (United States)

    Cess, R.; Owen, T.

    1973-01-01

    Several models for the atmosphere of Titan have been investigated, taking into account various combinations of neon and argon. The investigation shows that the addition of large amounts of Ne and/or Ar will substantially reduce the hydrogen abundance required for a given greenhouse effect. The fact that a large amount of neon should be present if the atmosphere is a relic of the solar nebula is an especially attractive feature of the models, because it is hard to justify appropriate abundances of other enhancing agents.

  13. Greenhouse gases in the corn-to-fuel ethanol pathway

    International Nuclear Information System (INIS)

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen

  14. The trade-off between short- and long-lived greenhouse gases under uncertainty and learning

    International Nuclear Information System (INIS)

    To find an optimal climate policy we must balance abatement of different greenhouse gases. There is substantial uncertainty about future damages from climate change, but we will learn more over the next few decades. Gases vary in terms of how long they remain in the atmosphere, which means that equivalent pulse emissions have very different climate impacts. Such differences between gases are important in consideration of uncertainty and learning about future damages, but they are disregarded by the conventional concept of Global Warming Potential We have developed a numerical model to analyze how uncertainty and learning affect optimal emissions of both CO2 and CH4. In the model, emissions of these greenhouse gases lead to global temperature increases and production losses. New information about the severity of the climate problem arrives either in 2010 or in 2020. We find that uncertainty causes increased optimal abatement of both gases, compared to the certainty case. This effect amounts to 0.08 oC less expected temperature increase by year 2200. Learning leads to less abatement for both gases since expected future marginal damages from emissions are reduced. This effect is less pronounced for the short-lived CH4. (author)

  15. ACCOUNTING FOR GREENHOUSE GASES EMISSIONS ALLOWANCES IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Marius Deac

    2013-02-01

    Full Text Available The present paper tries to analyze the accounting challenges that the implementation of EU Emissions Trading Scheme has risen. On 2 December 2004, IASB has issued an interpretation regarding the accounting of the GHG emissions allowances (IFRIC 3 „Emission Rights”. This interpretation should have been effective for annual periods beginning after 1 March 2005, the first year of the EU Emission Trading Scheme implementation. Less than a year after it was issued, IFRIC has withdrawn IFRIC 3. In December 2007, IASB has started a new project in order to provide guidance on accounting for carbon allowances called Emissions Trading Schemes Project. In the absence of an accounting standard regarding the accounting of these emissions allowances a diversity of accounting practices have been identified. Nowadays, there are three main accounting practices for the recognition of the emissions allowances and the GHG emissions liabilities: IFRIC 3 approach, the government grants approach and the net liability or off balance sheet approach. The accounting treatment of greenhouse gas emissions allowances by Romanian companies resembles the net liability or off balance sheet approach. Finance Ministry Order no. 1118/2012 states that GHG emission certificates should be recognized as fixed assets (if the entity is expecting a profit in the long term or in the category of short term investments (if the entity is expecting a profit in the short term. The accounting of the greenhouse gas emissions allowances described above is applicable mainly to traders of such certificates and not for the installations in the scope of the EU ETS directive, which should recognize GHG emissions off balance sheet, at their nominal value (nil if received for free. The shortfall or excess of allowances will be recognized in the profit or loss as they are bought or sold by the entity (the accounting treatment imposed by Finance Ministry Order no. 3055/2009.

  16. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  17. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    International Nuclear Information System (INIS)

    Greenhouse gases other than CO2 make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO2 emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO2 and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO2 following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by ? 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO2 from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied. calculated and applied.

  18. Comparison of the Different Land Use on the Emission of Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Mahdipuor

    2010-07-01

    Full Text Available An increase in the emission of greenhouse gases such as carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O from the soil surface to the atmosphere has been of worldwide concern over the last several decades. Carbon dioxide is recognized as a significant contributor to global warming and climatic change, accounting for 60% of total greenhouse effect. The aim of this research was to determinate the emission of greenhouse gases from different land under agricultural uses. Four types of agricultural land farm, including wheat field, canola field, citrus garden and fallow land were selected to investigate the fate of CO2 in these fields. Gas chromatography technique and close chamber method were used to analyze soil gas samples. Total carbon losses from soil in form of greenhouse gases was 4.47, 3.72, 3.38 and 1.89 Mg C ha-1 yr-1 for wheat field, canola field, citrus garden and fallow land, respectively. Total additional carbon to soil from biomass for wheat field and canola field was 4.1 and 4.6 Mg C ha-1 yr-1, respectively. ECB (ecosystem carbon budget = ? C input - ? C output. For wheat field and canola field ECB was -0.37 and +0.88, respectively. This indicated that in wheat field carbon was lost and in canola field carbon was sequestrated. Under citrus garden due to changes in soil organic carbon form previous year has showed that carbon was sequestrated.

  19. Energy and environment - greenhouse effect. The international, european and national actions to control the greenhouse gases emissions: which accounting and which perspectives?

    International Nuclear Information System (INIS)

    The scientific knowledge concerning the climatic change justifies today immediate fight actions against the greenhouse reinforcement. This fight is based on an ambitious international device which must take into account more global challenges. At the european and national scale, the exploitation of the potential of greenhouse gases reduction must be reinforced and more specially the evolution of the life style. (A.L.B.)

  20. A New Laser Based Approach for Measuring Atmospheric Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Jeremy Dobler

    2013-11-01

    Full Text Available In 2012, we developed a proof-of-concept system for a new open-path laser absorption spectrometer concept for measuring atmospheric CO2. The measurement approach utilizes high-reliability all-fiber-based, continuous-wave laser technology, along with a unique all-digital lock-in amplifier method that, together, enables simultaneous transmission and reception of multiple fixed wavelengths of light. This new technique, which utilizes very little transmitted energy relative to conventional lidar systems, provides high signal-to-noise (SNR measurements, even in the presence of a large background signal. This proof-of-concept system, tested in both a laboratory environment and a limited number of field experiments over path lengths of 680 m and 1,600 m, demonstrated SNR values >1,000 for received signals of ~18 picoWatts averaged over 60 s. A SNR of 1,000 is equivalent to a measurement precision of ±0.001 or ~0.4 ppmv. The measurement method is expected to provide new capability for automated monitoring of greenhouse gas at fixed sites, such as carbon sequestration facilities, volcanoes, the short- and long-term assessment of urban plumes, and other similar applications. In addition, this concept enables active measurements of column amounts from a geosynchronous orbit for a network of ground-based receivers/stations that would complement other current and planned space-based measurement capabilities.

  1. Quantification Of Greenhouse Gases From Three Danish Composting Facilities

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Andersen, Jacob Kragh

    2011-01-01

    A measurement method combining a controlled trace gas release with downwind concentrations measurements was successfully used to quantify greenhouse gas (GHG) emissions from three Danish open windrow composting facilities. Overall, the results showed that composting of organic waste generate GHG emissions in terms of methane (CH4) and nitrous oxide (N2O) and thus contribute to climate change. At all three facilities significant CH4 emissions were occurring. The CH4 emission varied between 0.50 and 5.73 kg CH4 h-1. The highest CH4 emission (5.73 kg CH4 h-1) were measured at the Aarhus composting facility and was believed to be a result of the windrow lay-out with very broad and high windrows and a low turning frequency. The lowest CH4 emission (0.50 kg CH4 h-1) was measured at Fakse composting area and was most likely a result of the relatively small windrows and frequent weekly turnings. For all three facilities, the N2O emissions were significantly smaller than the CH4 emissions ranging from 0.08 to 1.18 kg N2O h-1.

  2. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    OpenAIRE

    Mohammad Songolzadeh; Mansooreh Soleimani; Maryam Takht Ravanchi; Reza Songolzadeh

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion c...

  3. Greenhouse effect gases inventory in France during the years 1990-1999; Inventaire des emissions de gaz a effet de serre en France au cours de la periode 1990-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO{sub x}, 23% as regards NMVOCs, 33% for CO and by 44% regarding SO{sub 2}. Out of the six greenhouse gases covered by the Kyoto Protocol, CO{sub 2} accounts for the largest share in total GWP emissions (70 %), followed by N{sub 2}O (16 %), CH{sub 4} (12 %), HFCs (0.99 %), SF{sub 6} (0.5 %), and PFCs (0.39 %). (author)

  4. Greenhouse effects due to man-made perturbations of trace gases

    Science.gov (United States)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  5. The greenhouse gases HFCs, PFCs and SF{sub 6}, Danish consumption and emissions, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T.; Bode, I.

    2009-07-01

    The objective of this project was to determine the Danish consumption and actual emissions of HFCs, PFCs, and SF{sub 6} for 2007. Further, if methodology changes are made in connection to the work on 2007 data, the data for previous years are considered and updated accordingly. The emission calculation is made in accordance with the IPCC guidelines and following the method employed in previous year calculation. The methodology includes calculation of the actual emissions of HFCs, PFCs, and SF{sub 6}. In this calculation of actual emissions, the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. Specific emission factors are presented. (ln)

  6. Potential of reduction of greenhouse gases emissions in ukraine on period to 2020 year ????????? ?????????? ???????? ?????????? ????? ? ??????? ?? ?????? ?? 2020 ???? ????????? ?????????? ??????? ?????????? ????? ? ??????? ?? ?????? ?? 2020 ????

    Directory of Open Access Journals (Sweden)

    ?.?. ??????????

    2010-01-01

    Full Text Available

     Article is devoted to the assessment of potential of green-house gases mitigation, taking into account basic priorities of national development and providing an implementation of international obligations of Ukraine in this question after 2012 year. A macroeconomic and particular branch forecasting of national development was carried out, basic scenarios were defined, an analysis and estimation of technological potential of measures on reduction of green-house gases due to different scenarios were done on a period between 2010?2020 years. Recommendations are given in relation to optimization of energy-efficient approaches in Ukraine.

     ?????? ?????????? ???????? ?????????? ????? ????????? ? ?????? ???????? ??????????? ????????????? ???????? ? ??????????? ?????????? ????????????? ???????????? ??????? ????? 2012 ?. ?????????? ?????????????????? ? ?????????? ??????? ???????? ?????????. ??????????? ?????? ?????????? ???????? ?????????? ????? ??? ?????? ????????? ???????? ? ????????? ?????? ???????????????? ?????????? ?????????? ???????? ?? 2010?2020 ??. ???? ???????????? ?? ??????????? ??????????????????? ????????? ???????.

     ?????????? ????????? ?????????? ??????? ?????????? ????? ?? ???????? ???????? ???????? ????????? ??????? ? ????????? ? ???????? ???????????? ???????????? ?? ?????????? ??????? ? ????????? ??????????? ????????????? ???????? ?? ???????????? ????????? ??????????? ??????????? ?????’????? ??????? ???? ???? ?? ????????????? ?????? (2012?2020 ??.

  7. Estimating the Greenhouse Gases Emission and the Most Important Factors in Dairy Farms (Case Study Iran

    Directory of Open Access Journals (Sweden)

    M. Ghorbani

    2008-01-01

    Full Text Available In this study, the amount of greenhouse gases emission of some important factors was calculated using life cycle assessment. Sample was 85 dairy farms that were selected by simple random sampling method in 2007. Results showed that electricity and diesel used are the most effective parameters on greenhouse gases emissions in dairy farms, respectively and the other effective parameters are the number of other cattle, the distance of food transferring, cows manure, the No. of calves and dairy cows. It is recommended that the policy makers use some methods like environmental taxes, improving management and carbon sequestration to reduce these kinds of costs. This study results could help policy makers to decide better with considering to effective factors.

  8. Reduced emissions of greenhouse gases 2050: Technological wedges - Input to the Commission on Low Emissions

    International Nuclear Information System (INIS)

    The Commission on Low Emissions was established in March 2005 and has been charged with the task of describing how Norway can achieve a 50-80 percent reduction in emissions of greenhouse gases by 2050. The commission describes the desired total reduction in emissions to be a set of actions or 'wedges', meaning that the reduction in emissions are linked to an array of technological and behavioural changes. The technological wedges are described here, while the behavioural wedges are treated in a different report. The potentials described are based on the Low Emission's reference line. Possible changes in the reference line will result in changed potentials. The technological wedges studied comprise to a great extent a potential of 50-80 percent reduction in greenhouse gases by 2050. This depends on considerable effort from research and development, and a determination to change external conditions

  9. Counteracting the climate effects of volcanic eruptions using short-lived greenhouse gases

    Science.gov (United States)

    Fuglestvedt, Jan S.; Samset, Bjørn H.; Shine, Keith P.

    2014-12-01

    A large volcanic eruption might constitute a climate emergency, significantly altering global temperature and precipitation for several years. Major future eruptions will occur, but their size or timing cannot be predicted. We show, for the first time, that it may be possible to counteract these climate effects through deliberate emissions of short-lived greenhouse gases, dampening the abrupt impact of an eruption. We estimate an emission pathway countering a hypothetical eruption 3 times the size of Mount Pinatubo in 1991. We use a global climate model to evaluate global and regional responses to the eruption, with and without counteremissions. We then raise practical, financial, and ethical questions related to such a strategy. Unlike the more commonly discussed geoengineering to mitigate warming from long-lived greenhouse gases, designed emissions to counter temporary cooling would not have the disadvantage of needing to be sustained over long periods. Nevertheless, implementation would still face significant challenges.

  10. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    OpenAIRE

    Morgan, E J; Lavric, J.V.; Seifert, T.; Chicoine, T.; Day, A.; Gomez, J.; LOGAN, R; Sack, J.; Shuuya, T.; Uushona, E.G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R

    2015-01-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the north...

  11. Contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    OpenAIRE

    Plummer, D.A.; Scinocca, J.F.; Shepherd, T. G.; M. C. Reader; Jonsson, A. I.

    2010-01-01

    A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs) and Ozone Depleting Substances (ODSs). The experiments are designed to investigate the mechanisms by which GHGs and ODSs affect the evolution of ozone, including changes in the Brewer-Dobson circulation of the stratosphere and cooling of the upper stratosp...

  12. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    OpenAIRE

    Morgan, E. J.; Lavric, J. V.; Seifert, T.; Chicoine, T.; Day, A.; Gomez, J.; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E. G.; Vincent, K.; Schultz, U.; Brunke, E. -g; Labuschagne, C.; Thompson, R.

    2015-01-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated, continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g....

  13. An alternative to the Global Warming Potential for comparing climate impacts of emissions of greenhouse gases

    OpenAIRE

    Shine, Keith P.; Fuglestvedt, Jan S.; Stuber, Nicola

    2003-01-01

    The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subject to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here a new metric, which we call the Global Tem...

  14. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution

    OpenAIRE

    Eisted, Rasmus; Larsen, Anna Warberg; Christensen, Thomas Højlund

    2009-01-01

    The collection, transfer and transport of waste are basic activities of waste management systems all over the world. These activities all use energy and fuels, primarily of fossil origin. Electricity and fuel consumptions of the individual processes were reviewed and greenhouse gases (GHG) emissions were quantified. The emission factors were assigned a global warming potential (GWP) and aggregated into global warming factors (GWFs), which express the potential contribution to global warmi...

  15. Emissions, activity data, and emission factors of fluorinated greenhouse gases (F-Gases) in Germany 1995-2002

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Winfried [Oeko-Recherche, Buero fuer Umweltforschung und -beratung GmbH, Frankfurt am Main (Germany)

    2005-06-15

    Before the 1997 Kyoto Protocol on Climate Protection, the fluorinated greenhouse gases HFCs, PFCs, and SF6 (F-gases) aroused little public attention. Since then, the standards on surveying and reporting on national emissions have been rising constantly. Amongst others, the annual reporting to the UNFCCC secretariat makes detailed declarations on use and emissions of F-gases necessary, which have to be filled in specified formats for submission (Common Reporting Format = CRF). The scientific basis has been set out by the UNFCCC guidelines on reporting, in accordance with the instructions laid down in IPCC good practice guidance. Additionally, in Germany the Centralised System of Emissions (ZSE) shall provide a suitable tool to satisfy any quality needs of both activity data and emission factors. From 1995 onwards, activity data and emissions of each individual application sector shall be presented in a comprehensible and transparent way. Therefore, the way of data collection as well as the estimation methods applied must be well documented. Moreover, data has to be prepared for appropriate importation into ZSE. It is the objective of this study to provide the transparency demanded within 40 national application sectors of F-gases, for the period between 1995 and 2002. - Firstly, all the activity data as well as the emissions related to them are presented and commented. This applies to manufacturing of products, F-gases banked in operating systems, and decommissioning. - Secondly, the methodologies applied to calculate the emissions are described and all sources of information are revealed, e.g. literature, names of experts from the manufacturing industry, users, trade, and academia. - Thirdly, reliability and safety of data are discussed. - Fourthly, possible deviations from the IPCC default values are stated and given reasons for. Wherever this intensive reviewing of 40 sectors through eight years of reporting uncovers gaps or inconsistencies in previous reports, later corrections can be made by means of recalculations. (orig.)

  16. Assessment of Public Perception of Greenhouse Gases as Precursor to Climate Change Mitigation in Nigeria

    Science.gov (United States)

    Nwankwo, L.

    2013-12-01

    The rising concentrations of both CO2 and Non-CO2 Greenhouse Gases in the earth's atmosphere are leading to global climate change. The need to address this climate change has gained momentum in recent times, and as a result public awareness of such greenhouse gases serves as a precursor to climatic change mitigation strategy. Therefore, this study entails collection of information about public perception of Climate Change and identification of carbon dioxide, methane, fluorocarbons, and aerosols as contributors to climate forcing. The assessment was completed using conventional survey technique applied amid 1000 people in Ilorin metropolis, Nigeria. The results show 34.9%, 23.6%, 4.5%, 12.3% and 0.2% levels of recognition or understanding of climate change, carbon dioxide, methane, fluorocarbons and aerosols respectively. The results reveal that public awareness of climate change is low in the study area, while Non-CO2 Greenhouse Gases as contributor to Climate Change is extremely low compared to CO2. The study is a preliminary effort to elicit public views and therefore, would assist decision makers and enhance communication with the public in the context of Science and Environment Policy.

  17. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran

    International Nuclear Information System (INIS)

    The objectives of this study were to analyze energy use and greenhouse gases (GHG) emissions in various wheat production scenarios in north eastern Iran and to identify measures to reduce energy use and GHG emissions. Three high-input, a low-input, a better crop management and a usual production scenarios were included. All activities and production processes were monitored and recorded. Averages of total energy input and output were 15.58 and 94.4 GJ ha?1, respectively. Average across scenarios, GHG emissions of 1137 kg CO2-eq ha?1 and 291 kg CO2-eq t?1 were estimated. The key factors relating to energy use and GHG emissions were seedbed preparation and sowing and applications of nitrogen fertilizer. The better crop management production scenario required 38% lower nitrogen fertilizer (and 33% lower total fertilizer), consumed 11% less input energy and resulted in 33% more grain yield and output energy compared to the usual production scenario. It also resulted in 20% less GHG emissions per unit field area and 40% less GHG emissions per ton of grain. It was concluded that this scenario was the cleaner production scenario in terms of energy use and GHG emissions. Measures of improvement in energy use and GHG emission were identified. - Highlights: ? Wheat production scenarios were evaluated for energy use and greenhouse gases emission. ? A better crop management production scenario was the cleaner production scenario. ? Measures to reduce energy use and greenhouse gases emission were identified

  18. Greenhouse gases, climate change and the transition from coal to low-carbon electricity

    International Nuclear Information System (INIS)

    A transition from the global system of coal-based electricity generation to low-greenhouse-gas-emission energy technologies is required to mitigate climate change in the long term. The use of current infrastructure to build this new low-emission system necessitates additional emissions of greenhouse gases, and the coal-based infrastructure will continue to emit substantial amounts of greenhouse gases as it is phased out. Furthermore, ocean thermal inertia delays the climate benefits of emissions reductions. By constructing a quantitative model of energy system transitions that includes life-cycle emissions and the central physics of greenhouse warming, we estimate the global warming expected to occur as a result of build-outs of new energy technologies ranging from 100 GWe to 10 TWe in size and 1–100 yr in duration. We show that rapid deployment of low-emission energy systems can do little to diminish the climate impacts in the first half of this century. Conservation, wind, solar, nuclear power, and possibly carbon capture and storage appear to be able to achieve substantial climate benefits in the second half of this century; however, natural gas cannot. (letter)

  19. Metrology for laser spectroscopic concentration and isotope ratio measurements of atmospheric greenhouse gases

    Science.gov (United States)

    Nwaboh, Javis; Manninen, Albert; Mohn, Joachim; Petersen, Jan C.; Werhahn, Olav; Ebert, Volker

    2015-04-01

    Continuous, accurate and precise measurements of greenhouse gases (GHG) and their isotopic composition are required to understand the global cycle as well as source and sink processes of these environmentally harmful substances. Part of the EMRP project HIGHGAS (Metrology for high-impact greenhouse gases) [1] focuses on spectroscopic methods for GHG isotopic composition measurements and optical transfer standards. Harmonization of terminologies and concepts used in the GHG measurement communities and the metrology community are in focus, especially for isotope ratio measurements by laser spectroscopy, where gas metrology is still at an early stage. The focus of the HIGHGAS project here is on 13C/12C and 18O/16O ratios in CO2, 15N/14N ratios in N2O and 13C/12C and 2H/1H ratios in CH4. As an alternative and complement of gas mixture standards, optical spectroscopic transfer standards for CO2 and CO shall be developed providing concentration results that are directly traceable to the international system of units (SI). Optical transfer standards offer an alternative in situ calibration route for other GHG measurement devices operating in the field. An optical transfer standard becomes particularly interesting when measuring sticky or reactive gases where cylinder-based reference gas mixtures may not be feasible. We present an approach to perform IR-spectrometry on gases with results directly traceable to the SI. This is crucial for the development of optical spectroscopic transfer standards providing SI-traceability to field measurements. Ideas for spectroscopic isotope ratio measurements aiming at SI-traceability will be discussed. Finally, we demonstrate the current performance and limitations of our measurement approaches and project possible solutions. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS (Metrology for high-impact greenhouse gases). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] EMRP project ENV52-HIGHGAS (Metrology for high-impact greenhouse gases), available at: http://www.euramet.org/

  20. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, Nathan P [Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 3V6 (Canada); Matthews, H Damon, E-mail: nathan.gillett@ec.gc.ca [Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve West, H 1255-26, Montreal, QC, H3G 1M8 (Canada)

    2010-07-15

    Greenhouse gases other than CO{sub 2} make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO{sub 2} emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO{sub 2} and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO{sub 2} following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by {approx} 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO{sub 2} from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  1. The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND

    Energy Technology Data Exchange (ETDEWEB)

    Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.; Tol, Richard

    2014-10-01

    We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papers have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.

  2. Long term changes in the ionosphere over Indian low latitudes: Impact of greenhouse gases

    Science.gov (United States)

    Sharma, Som; Chandra, H.; Beig, G.

    2015-06-01

    Increased concentration of greenhouse gases due to anthropogenic activities warm the troposphere and have a cooling effect in the middle and upper atmosphere. Ionospheric densities and heights are affected due to cooling. Carbon dioxide is one of the most dominant gases for the cause of long term ionospheric trends along with other radiatively active greenhouse gases. Regular ionospheric soundings are made over Ahmedabad (23.1°N, 72.7°E), since 1953. Long term changes in the ionosphere as a consequence of the cooling of the mesosphere and thermosphere due to the increased concentration of greenhouse gases have been studied. Ionospheric observations over Ahmedabad, a low latitude station in the anomaly crest region, for the years 1955-2003 are examined to study the long term changes in the critical frequencies of the various ionospheric layers and the height of the maximum ionization as characterized by hPF2. A decrease in foF2 (1.9 MHz for midday, 1.4 MHz for midnight) and hPF2 (18 km for midday, 17 km for midnight) during about five decades are noted. An increase is noted in foF1 (0.4 MHz). The foF2 data are also examined over an equatorial station Kodaikanal (10.2°N, 77.5°E), situated near the magnetic equator for the years 1960-1995 and a decrease of 0.5 MHz for midday and 0.7 MHz for midnight are noted in ~35 years.

  3. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    Energy Technology Data Exchange (ETDEWEB)

    DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  4. Temperature and Precipitation Extremes in the United States: Quantifying the Responses to Aerosols and Greenhouse Gases

    Science.gov (United States)

    Mascioli, N. R.; Fiore, A. M.; Previdi, M. J.; Correa, G. J. P.

    2014-12-01

    Changes in extreme temperatures, heat waves, heavy rainfall events, and precipitation frequency can have adverse impacts on human health, air quality, agricultural productivity, and water resources. Using the aerosol only (AER) and greenhouse gas only (GHG) "single forcing" simulations (3 ensemble members each) from the GFDL CM3 chemistry-climate model, we investigate aerosol- versus greenhouse gas-induced changes in high temperature and precipitation extremes over the United States. We identify changes in these events from 1860 to 2005 and the associated large-scale dynamical conditions. Small changes in these extremes in the "all forcing" simulations reflect cancellations between the individual, opposite-signed effects of increasing anthropogenic aerosols and greenhouse gases. In AER, aerosols lead to lower extreme high temperatures and fewer warm spells over the western US (-2.1 K regional average; -20 days/year) and over the central and northeast US (-1.5 K; -12 days/year). In GHG, a similar but opposite-signed response pattern occurs (+2.7 K and +14 days/year over the western US; +2.5 K and +10 days/year in the central and northeast US). The similar spatial response patterns in AER versus GHG suggest a preferred regional mode of response that is largely independent of the regional distribution of the forcing agent. The influence of both greenhouse gases and aerosols on extreme high temperature is weakest in the southeast US, collocated with the observed "warming hole". No statistically significant change occurs in AER, and a warming of only +1.8 K occurs in GHG. Warming in this region continues to be muted over the 21st century under the RCP 8.5 scenario, with increases in extreme temperatures more than 1 K smaller than elsewhere. Aerosols induce decreases in the number of days per year with at least 10mm of precipitation (R10mm) over the eastern US in summer and winter and over the southern US in spring of roughly 1 day/year. In contrast, greenhouse gases induce increases in R10mm over the eastern US in winter (+0.8 days/year), the northern and central US during spring (+1 day/year), and the southeast US during summer (+0.5 days/year), but decreases over the northeast US in summer (-0.2 days/year). In RCP 8.5, the patterns of extreme temperature and precipitation associated with greenhouse gas forcing dominate.

  5. MODEL OF EMISSIONS OF GREENHOUSE GASES (GHG'S IN THE OIL AND GAS INDUSTRY

    Directory of Open Access Journals (Sweden)

    Amarildo da Cruz Fernandes

    2012-06-01

    Full Text Available The warming of Earth's atmosphere is a natural phenomenon and necessary to sustain life on the planet, being caused by the balance between the electromagnetic radiation received by the Earth from the Sun and the infrared radiation emitted by the Earth back into space. Since the mid-eighteenth century, with the advent of the Industrial Revolution and the consequent increase in burning fossil fuels, changes in land use and agriculture, the concentrations of carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O has increased significantly. By the year 2010, the concentrations of these three gases showed increments respectively in the order of 39%, 158% and 20% (WMO 2009, 2010 and 2011. Such increases in the concentrations of these gases are changing the Earth's radioactive balance, intensifying the natural greenhouse effect, which over millions of years has been essential to support life on the planet. The main objective of this paper is to present the development of a model based on the language of System Dynamics (SD, of how the emission of Greenhouse Gases (GHGs is in complex installations Exploration and Production (E & P of oil and gas. To illustrate one of the results of this modeling process a computer simulation was performed involving emissions from production estimate for the Pilot Production System and Drainage Area Tupi - Tupi Pilot (ICF, 2008 .

  6. Biogenic feedbacks on the atmospheric concentrations of greenhouse gases: overview of the GREENCYCLES network

    International Nuclear Information System (INIS)

    Full text: GREENCYCLES is a Marie Curie research training network focussed on the roles of global biogeochemistry for climate change. The project aims to reduce uncertainties associated with biogenic feedbacks on global environmental change and foster the education of the next generation of Earth system scientists. GREENCYCLES young scientists are offered a unique environment bringing together key European research modelling teams with complementary expertise in coupled earth system, oceans, field-based understanding of the terrestrial and oceanic processes, and space based observations. To improve the understanding of the important biogeochemical processes that control the concentrations of anthropogenic greenhouse gases, the network is spread across six key science objectives, each involving different individual research projects undertaken by Early-Stage Researchers (ESRs) and Experienced Researchers (ERs): quantify feedbacks in the global carbon cycle; determine the effects of changing land use on climate; improve understanding of natural sources of CH4 and their responses to human activities; quantify impacts of climate change and climate variability on fire-induced emissions of greenhouse gases; quantify impacts of climate change on terrestrial and oceanic biogenic emissions of aerosols and chemically active gases, and their effects on tropospheric chemistry; quantify impacts of vegetation and climate changes on atmospheric dust, and its feedbacks on on atmospheric dust, and its feedbacks on CO2 and climate. An overview of the research and training progress to date will be presented. (author)

  7. Monitoring Greenhouse Gases and Their Pollutions in Sarakhs Region Influenced by the Sourest Natural Gas Resource in the Middle East

    OpenAIRE

    Nader Nabhani; Mojtaba Mirdrikvand; Saeedeh Imani Moqadam2; Amirali Rezazadeh; Seyed Alireza Sakaki

    2012-01-01

    Shahid Hashemi-Nezhad Gas Processing Company (S.G.P.C.), located in Sarakhs region of Iran, processes wells that consist of the sourest gases in Middle East. The gas entering the company from gas wells includes 3.5 percent H2S and 6.5 percent CO2 that is quite rare among similar wells for sweetening such large quantities as it does. As a result, greenhouse gases and their possible harmful results are sometimes unavoidable in the area. In this study, greenhouse gases in Sarakhs region, the atm...

  8. Mass spectrometer characterization of halogen gases in air at atmospheric pressure.

    Science.gov (United States)

    Ivey, Michelle M; Foster, Krishna L

    2005-03-01

    We have developed a new interface for a commercial ion trap mass spectrometer equipped with APCI capable of real-time measurements of gaseous compounds with limits of detection on the order of pptv. The new interface has been tested using the detection of Br2 and Cl2 over synthetic seawater ice at atmospheric pressure as a model system. A mechanical pump is used to draw gaseous mixtures through a glass manifold into the corona discharge area, where the molecules are ionized. Analysis of bromine and chlorine in dry air show that ion intensity is affected by the pumping rate and the position of the glass manifold. The mass spectrometer signals for Br2 are linear in the 0.1-10.6 ppbv range, and the estimated 3sigma detection limit is 20 pptv. The MS signals for Cl2 are linear in the 0.2-25 ppbv range, and the estimated 3sigma detection limit is 1 ppbv. This new interface advances the field of analytical chemistry by introducing a practical modification to a commercially available ion trap mass spectrometer that expands the available methods for performing highly specific and sensitive measurements of gases in air at atmospheric pressure. PMID:15732932

  9. Greenhouse gases study in Amazonia; Estudo de gases de efeito estufa na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    D' Amelio, Monica Tais Siqueira

    2006-07-01

    The Amazon plays an important role on the global carbon cycle, as changing as carbon storage, since Amazon Basin is the biggest area of tropical forest, around 50% of global. Natural's process, deforestation, and use land are CO{sub 2} sources. The Amazon forest is a significant source of N{sub 2}O by soil process, and CH{sub 4} by anaerobic process like flooded areas, rice cultures, and others sources. This project is part of the LBA project (Large-Scale Biosphere Atmosphere Experiment in Amazonia), and this project is 'Vertical profiles of carbon dioxide and other trace gas species over the Amazon basin using small aircraft'. Since December 2000 vertical profiles of CO{sub 2}, CH{sub 4}, CO, H{sub 2}, N{sub 2}O and SF{sub 6} have been measured above central Amazonia. The local sampling was over Tapajos National Forest, a primary forest in Para State, where had a CO{sub 2} flux tower and an east impact area with sources like animals, rice cultivation, biomass burning, etc, to compare the influence of an impact area and a preserved area in the profiles. The Reserva Biologica de Cuieiras, at Amazon State, is the other studied place, where there already exists a CO{sub 2} flux tower, and an east preserved area at this State, to compare with the Cuieiras. The sampling has been carried out on vertical profile from 1000 ft up to 12000 ft using a semi-automated sampling package developed at GMD/NOAA and a small aircraft. The analysis uses the MAGICC system (Multiple Analysis of Gases Influence Climate Change) which is installed at the Atmospheric Chemistry Laboratory (LQA) in IPEN (Instituto de Pesquisas Energeticas e Nucleares). The results showed that all gases studied, except H{sub 2} gas, has been following the global trend. At the Para State, for the studied years, the Amazonian Forest performed as small CO{sub 2} sink. To compare Wet and Dry Seasons, subtracted the Ascension concentration values in the period to remove the global influence. So that, in the 2004 and 2005 wet seasons and 2004 dry season comparison it was observed 2 ppm CO{sub 2} concentration higher on wet seasons. At Amazon State the wet season profiles had source behavior presenting 10 ppm CO{sub 2} concentration higher under PBL (Planetary Boundary Layer) . In both states concentrations were higher than Ascension Island concentration. CH{sub 4} concentration over Para and Amazonia States presented higher values than in Ascension in 80 ppb and 25 ppb, respectively. Dry Season concentrations have been higher than Wet Season concentrations. N{sub 2}O concentrations in Para State was similar to Ascension concentration until 2003, when its concentration has been and enhancement, because of N fertilizer utilization at near area. N{sub 2}O concentration was similar in the two studied States, presenting discreet source at Wet Season. The SF{sub 6} concentration presented the global trend, and it was a little beat higher over Amazon State, suggesting different air origin. The CO concentration was higher under PBL and presented values during Dry Season higher in 130 ppb and 150 ppb than Wet Season, for burning contribution. The highest average concentration was over Amazon State, which agrees with the different air origin hypothesis. H{sub 2} gas presented behavior similar to CO gas in the Dry Season. The Amazon State performed a small sink role during Wet Season and in Para State is higher during dry season performed like a source and during wet season like a sink. (author)

  10. Lower emission of greenhouse gases in spite of a cold winter; Lagere uitstoot broeikasgassen ondanks winterkou

    Energy Technology Data Exchange (ETDEWEB)

    Denneman, A. [Centraal Bureau voor de Statistiek CBS, Den Haag (Netherlands); Peek, K. [Rijksinstituut voor Volksgezondheid en Milieu RIVM, Bilthoven (Netherlands)

    2013-09-09

    In 2012, the emission of greenhouse gases in the Netherlands was almost 1 percent lower than 2011. Although it has been a cold winter a higher consumption of natural gas for heating was compensated by a lower production of electricity and a lower consumption of automotive fuels [Dutch] In 2012 was de uitstoot van broeikasgassen in Nederland bijna 1 procent lager dan een jaar eerder. De koude winter zorgde voor een hoger aardgasverbruik voor verwarming. Dit werd echter meer dan gecompenseerd door een lagere elektriciteitsproductie en door een lager verbruik van motorbrandstoffen.

  11. Increasing greenhouse gases lead to dramatic thinning of the upper atmosphere

    Science.gov (United States)

    AGU

    Scientists at the Naval Research Laboratory (NRL) analyzed changes in the orbits of selected objects to derive the yearly average density encountered by each object in different levels of the atmosphere. After adjusting for other factors, the data from every object indicated a long-term decline in the density of the thermosphere. It was found that the observed decrease in density with increased distance in the troposphere depends on height in the same way as predicted by the theoretical simulations, indicating that greenhouse gases are a likely source of the change.

  12. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    OpenAIRE

    Plummer, D.A.; Scinocca, J.F.; Shepherd, T. G.; M. C. Reader; Jonsson, A. I.

    2010-01-01

    A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs) and Ozone Depleting Substances (ODSs). The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of t...

  13. Regional development and greenhouse gases emission: the case of the Amazon Region

    OpenAIRE

    Imori, Denise; Guilhoto, Joaquim José Martins; David, Letícia Scretas; Gutierre, Leopoldo Millan; Waisman, Caio

    2011-01-01

    The purpose of this work is to verify the existence of possible tradeoffs between policies direct to reduce the emissions of greenhouse gases (GHGs) with the ones direct to foster the development of the Brazilian Amazon Region, considering its economic relations with the rest of the country and the international markets. In order to achieve this goal, this paper uses an interregional input-output (I-O) model, estimated for the Brazilian economy for the year of 2004. The I-O model is used to m...

  14. The development of the brazilian amazon region and greenhouse gases emission: a dilemma to be faced!

    OpenAIRE

    Imori, Denise; Guilhoto, Joaquim José Martins; David, Leticia Scretas; Gutierre, Leopoldo Millan; Waisman, Caio

    2011-01-01

    The purpose of this work is to verify the existence of possible tradeoffs between policies direct to reduce the emissions of greenhouse gases (GHGs) with the ones direct to foster the development of the Brazilian Amazon Region, which is one of the poorest in the country. In order to achieve this goal, this paper uses an interregional input-output (I-O) model, estimated for the Brazilian economy for the year of 2004. The I-O model is used to make a comparison between the economical and the en...

  15. Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases

    International Nuclear Information System (INIS)

    The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subjected to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here, two new metrics are proposed, which are based on a simple analytical climate model. The first metric is called the Global Temperature Change Potential and represents the temperature change at a given time due to a pulse emission of a gas (GTPP); the second is similar but represents the effect of a sustained emission change (hence GTPS). Both GTPP and GTPS are presented as relative to the temperature change due to a similar emission change of a reference gas, here taken to be carbon dioxide. Both metrics are compared against an upwelling-diffusion energy balance model that resolves land and ocean and the hemispheres. The GTPP does not perform well, compared to the energy balance model, except for long-lived gases. By contrast, the GTPS is shown to perform well relative to the energy balance model, for gases with a wide variety of lifetimes. It is also shown that for time horizons in excess of about 100 years, the GTPS and GWP produce very similar results, indicating an alternative interpretation for the GWP. The GTPS reve interpretation for the GWP. The GTPS retains the advantage of the GWP in terms of transparency, and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance, as it is further down the cause-effect chain of the impacts of greenhouse gases emissions and has an unambiguous interpretation. It appears to be robust to key uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP

  16. Relative Contribution of Greenhouse Gases and Ozone Change to Temperature Trends in the Stratosphere: A Chemistry/Climate Model Study

    Science.gov (United States)

    Stolarski, Richard S.; Douglass, A. R.; Newman, P. A.; Pawson, S.; Schoeberl, M. R.

    2006-01-01

    Long-term changes in greenhouse gases, primarily carbon dioxide, are expected to lead to a warming of the troposphere and a cooling of the stratosphere. We examine the cooling of the stratosphere and compare the contributions greenhouse gases and ozone change for the decades between 1980 and 2000. We use 150 years of simulation done with our coupled chemistry/climate model (GEOS 4 GCM with GSFC CTM chemistry) to calculate temperatures and constituents fiom,1950 through 2100. The contributions of greenhouse gases and ozone to temperature change are separated by a time-series analysis using a linear trend term throughout the period to represent the effects of greenhouse gases and an equivalent effective stratospheric chlorine (EESC) term to represent the effects of ozone change. The temperature changes over the 150 years of the simulation are dominated by the changes in greenhouse gases. Over the relatively short period (approx. 20 years) of ozone decline between 1980 and 2000 changes in ozone are competitive with changes in greenhouse gases. The changes in temperature induced by the ozone change are comparable to, but smaller than, those of greenhouse gases in the upper stratosphere (1-3 hPa) at mid latitudes. The ozone term dominates the temperature change near both poles with a negative temperature change below about 3-5 hPa and a positive change above. At mid latitudes in the upper stratosphere and mesosphere (above about 1 hPa) and in the middle stratosphere (3 to 70 ma), the greenhouse has term dominates. From about 70 hPa down to the tropopause at mid latitudes, cooling due to ozone changes is the largest influence on temperature. Over the 150 years of the simulation, the change in greenhouse gases is the most important contributor to temperature change. Ozone caused a perturbation that is expected to reverse over the coming decades. We show a model simulation of the expected temperature change over the next two decades (2006-2026). The simulation shows a crossover between lower atmospheric heating and upper atmospheric cooling that is located at about 90 hPa in the tropics and 30-40 hPa in the polar regions. This results from the combination of continuing increases in greehouse gases and recovery from ozone depletion.

  17. The state of greenhouse gases in the atmosphere using global observations through 2013

    Science.gov (United States)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed; Montzka, Stephen A.; Keeling, Ralph; Tanhua, Toste; Lorenzoni, Laura

    2015-04-01

    We present results from the tenth annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG), and for the first time, it includes a summary of ocean acidification. Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. The summary of ocean acidification and trends in ocean pCO2 was jointly produced by the International Ocean Carbon Coordination Project (IOCCP) of the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), the Scientific Committee on Oceanic Research (SCOR), and the Ocean Acidification International Coordination Centre (OA-ICC) of the International Atomic Energy Agency (IAEA). The tenth Bulletin included a special edition published prior to the United Nations Climate Summit in September 2014. The scope of this edition was to demonstrate the level of emission reduction necessary to stabilize radiative forcing by long-lived greenhouse gases. It shows in particular that a reduction in radiative forcing from its current level (2.92 W m-2 in 2013) requires significant reductions in anthropogenic emissions of all major greenhouse gases. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of carbon dioxide, methane and nitrous oxide derived from this network reached new highs in 2013, with CO2 at 396.0 ± 0.1 ppm, CH4 at 1824 ± 2 ppb and N2O at 325.9 ± 0.1 ppb. These values constitute 142%, 253% and 121% of pre-industrial (before 1750) levels, respectively. The atmospheric increase of CO2 from 2012 to 2013 was 2.9 ppm, which is the largest year to year change from 1984 to 2013. The rise of CO2 concentration has been only about a half of what is expected if all the excess CO2 from the burning of fossil-fuel stayed in the air. The other half has been absorbed by the land biosphere and the oceans, but the split between land and oceans is not easily resolved from CO2 data alone. As described in the Bulletin, O2 measurements have been used to estimate the magnitude of the terrestrial biosphere sink. For N2O the increase from 2012 to 2013 is smaller than the one observed from 2011 to 2012 but comparable to the average growth rate over the past 10 years. Atmospheric CH4 continued to increase at a rate similar to the mean rate over the past 5 years. The National Oceanic and Atmospheric Administration (NOAA) Annual Greenhouse Gas Index shows that from 1990 to 2013 radiative forcing by long-lived greenhouse gases increased by 34%, with CO2 accounting for about 80% of this increase. The radiative forcing by all long-lived greenhouse gases in 2013 corresponded to a CO2-equivalent mole fraction of 479 ppm (http://www.esrl.noaa.gov/gmd/aggi). Uptake of anthropogenic CO2 by the ocean results in increased CO2 concentrations and increased acidity levels in sea-water. During the last two decades ocean water pH decreased by 0.0011 - 0.0024 per year, and the amount of CO2 dissolved in see water (pCO2) increased by 1.2 - 2.8 ?atm per year for time-series from several featured ocean stations.

  18. An alternative to the global warming potential for comparing climate impacts of emissions of greenhouse gases

    International Nuclear Information System (INIS)

    The global warming potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climate impact of emissions of different greenhouse gases. The GQP has been subject at many criticism because of its formulation but nevertheless it has retained some favour because of the simplicity of this design and application and its transparency compared to proposed alternatives. Here a new metric which we call the Global Temperature Change Potential (GTP) is proposed which is based on a simple analytical climate model that represents the temperature change as a given time due to either a pulse emission of a gas or a sustained emission change relative to a similar emission change of carbon dioxide. The GTP for a pulse emission illustrates that the GWP does not represent well the relative temperature response; however, the GWP is shown to be very close to the GTP for a sustained emission change for time horizons of 100 years or more. The new metric retains the advantage of the GWP in terms of transparency and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance as it is further down the cause-effect chain of the impacts of greenhouse gases emissions. The GTP for a sustained emission appears to be robust to a number of uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP. (Author)

  19. Greenhouse gases concentrations in the atmosphere along selected roads in Abeokuta, Ogun State, Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Bada, S.B.; AKande, E.A.

    2010-07-01

    This study investigated effect of vehicular emission on greenhouse gases concentrations along selected roads of different traffic densities in Abeokuta, Ogun State, Nigeria. Nine roads comprised of highway, commercial and residential were selected. Greenhouse Gases (GHGs) were determined from both sides of the roads by using gas samplers placed at 1, 5 and 10m away from the roads at different road segments (up/downhill, bend and flat surface) and replicated three times. The data collected were subjected to descriptive statistics and ANOVA. Means were separated using Duncan's Multiple Range test. The concentrations of GHGs were CO{sub 2} > CO > NO{sub x} > NO > SO{sub x} > CH{sub 4} and decreased significantly (P<0.05) as distance increased from the road. Highway with significantly (P<0.05) highest traffic density had the highest concentrations of NO, NO{sub x}, CO, CO{sub 2}, SO{sub x} and CH{sub 4} with 1.51ppm, 2.22ppm, 22.15ppm, 15.33%, 1.43ppm and 0.85ppm respectively followed by the commercial and residential. Up/downhill had the highest concentrations of GHGs among the road segments followed by flat surface and road bend.

  20. Regulation of Emission of Greenhouse Gases and Hazardous Air Pollutants from Motor Vehicles

    Directory of Open Access Journals (Sweden)

    Steven G. Davison

    2007-04-01

    Full Text Available Emissions from motor vehicles of toxic and hazardous air pollutants, carbon dioxide, and other greenhouse gases1-emissions that currently are not regulated under the federal Clean Air Act2-are receiving increasing attention at both the federal and state government levels as government officials and members of the public express increasing concern that these substances may pose as much of a threat to public health and welfare as other pollutants from motor vehicles which currently are regulated under the Clean Air Act.Many scientists are reporting a "25-year trend of rising globaltemperatures" and "other dramatic signs of global warming, such as the record shrinkage of the Arctic sea ice cover and unprecedented high ocean temperatures in the Gulf of Mexico."3 Many people attribute global warming to emissions of carbon dioxide and other greenhouse gases resulting fromhuman activities such as the burning of fossil fuels by power plants and motor vehicles.4 Scientists recently have found that the year 2005 was the hottest year on record for the Northern Hemisphere, with temperatures approximately1.3 degrees Fahrenheit above historical average temperatures.5

  1. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  2. Evaluation of the greenhouse effect gases (CO2, CH4, N2O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002

    International Nuclear Information System (INIS)

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO2 and CH4 (by the breeding animals on grass) and N2O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  3. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF{sub 6}. Danish consumption and emissions, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [PlanMiljoe (Denmark)

    2007-06-15

    An evaluation of Danish consumption and emissions of ozone-depleting substances and industrial greenhouse gases has been carried out in continuation of previous evaluations, partly to fulfil Denmark's international obligations to provide information within this area and partly to follow the trend in consumption of ozone-depleting substances as well as the consumption and emissions of HFCs, PFCs and SF{sub 6}. The evaluation includes a calculation of actual emissions of HFCs, PFCs, and SF{sub 6} for 2006. In this calculation the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. (BA)

  4. Isotope aided studies of atmospheric carbon dioxide and other greenhouse gases. Phase II

    International Nuclear Information System (INIS)

    The substantial increase in atmospheric greenhouse gas concentrations and their role in global warming have become major concerns of world governments. Application of isotope techniques to label sources and sinks of CO2 and other greenhouse gases has emerged as a potentially powerful method for reducing uncertainties in the global CO2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. As with CO2 concentration measurements, meaningful integration of isotopes in global models requires careful attention to quality assurance, quality control and inter-comparability of measurements made by a number of networks and laboratories. To support improvements in isotope measurement capabilities, the IAEA began implementing Co-ordinated Research Projects (CRPs) in 1992. The first project, entitled Isotope Variations of Carbon Dioxide and other Trace Gases in the Atmosphere, was implemented from 1992 to 1994. A significant contribution was made towards a better understanding of the global carbon cycle and especially of the sources and sinks of carbon with data on the 14C and 13C content of atmospheric CO2, pointing to a better understanding of the problem of the 'missing sink' in the global carbon cycle. Important methodological developments in the field of high precision stable isotope mass spectrometry and improved data acquisition procedures emerged from work carried out within the framework of this programme. The development of pressurized gas standards and planning for an associated interlaboratory calibration were initiated. Due to the good progress and long standing nature of the required work a second CRP was initiated and implemented from 1996 to 1999. It was entitled Isotope aided Studies of Atmospheric Carbon Dioxide and Other Trace Gases - Phase II, to document the close relationship of both programmes. This publication provides an overview of the scientific outcomes of the studies conducted within Phase II of the project, which incorporate the findings of both CRPs

  5. Improving Solid Waste Management in Gulf Co-operation Council States: Developing Integrated Plans to Achieve Reduction in Greenhouse Gases

    OpenAIRE

    Mohammed Saleh Al.Ansari

    2012-01-01

    Landfills are a significant source of greenhouse gases, which contribute to the process of global warming. In the region covered by the Gulf Co-operation Council (GCC), changes in consumption patterns have led to an excessive dump of municipal solid waste (MSW). Thus, it is clearly an important time to re-evaluate conventional waste management protocols in order to establish methods that not only deal with increased demand but also minimize greenhouse gas emissions and improve efficiency of r...

  6. Working group results on the division by four of the greenhouse gases emissions in France, at 2050, called factor four

    International Nuclear Information System (INIS)

    This working group aims to evaluate and propose different ways to divide by four the greenhouse gases emissions at 2050 in France. This objective was decided by the Government and fixed in the Climate Plan and in the Program law of 13 July 2005. In this framework, this meeting presents studies of the working group, concerning the following topics: buildings and greenhouse gases, a scenario for the UE25 realized by Greenpeace, the agriculture and the forests facing the climate, the biomass the nature the agriculture and the silviculture facing the climate. (A.L.B.)

  7. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992: General Guidelines

    International Nuclear Information System (INIS)

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, Congress authorized a voluntary program for the public to report achievements in reducing those gases. This document offers guidance on recording historic and current greenhouse gas emissions, emissions reductions, and carbon sequestration. Under the Energy Policy Act (EPAct) reporters will have the opportunity to highlight specific achievements. If you have taken actions to lessen the greenhouse gas effect, either by decreasing greenhouse gas emissions or by sequestering carbon, the Department of Energy (DOE) encourages you to report your achievements under this program. The program has two related, but distinct parts. First, the program offers you an opportunity to report your annual emissions of greenhouse gases. Second, the program records your specific projects to reduce greenhouse gas emissions and increase carbon sequestration. Although participants in the program are strongly encouraged to submit reports on both, reports on either annual emissions or emissions reductions and carbon sequestration projects will be accepted. These guidelines and the supporting technical documents outline the rationale for the program and approaches to analyzing emissions and emissions reduction projects. Your annual emissions and emissions reductions achievements will be reported

  8. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4 during BARCA

    Directory of Open Access Journals (Sweden)

    V. Y. Chow

    2009-12-01

    Full Text Available High-accuracy continuous measurements of greenhouse gases (CO2 and CH4 during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  9. Inventory of greenhouse effect gases in France under the united nation framework convention on climatic change; Inventaire des emissions de gaz a effet de serre en France au titre de la convention cadre des nations unies sur le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    The present report supplies emission data, for France and for the period 1990 - 2000 concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. For the period 1990 - 1999 as a whole, estimates provided in the previous inventories have been reviewed and corrected to take into account updated statistics, improved knowledge, possible changes in methodology and specifications contained in the guidelines (FCCC/CP/1999/7) defined by the UNFCCC on reporting for inventories of emissions, in particular the use of the Common Reporting Format (CRF). (author)

  10. A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures

    International Nuclear Information System (INIS)

    Highlights: ? The mass transport phenomena of greenhouse gas uptake by a quiescent water droplet are analyzed theoretically. ? Four common greenhouse gases of CO2, N2O, CH4 and O3 are taken into consideration. ? A semi-analytical method is developed to predict the mass diffusion. ? The entire mass transfer is controlled by the liquid phase. ? A unified formula has been successfully established to estimate the solute uptake process. -- Abstract: Gas absorption by droplets is an important route to reduce greenhouse gas emissions, especially for carbon dioxide. To recognize the fundamental absorption processes of greenhouse gases by single droplets, the mass transport phenomena of greenhouse gas uptake by a quiescent water droplet at atmospheric and elevated pressures are analyzed theoretically and four common greenhouse gases of CO2, N2O, CH4 and O3 are taken into consideration. On account of piecewise function encountered at the droplet surface, it is impossible to obtain a fully analytical solution for describing the mass transfer process. Instead, a semi-analytical method is developed to predict the mass diffusion between the gas phase and the liquid phase. The obtained results indicate that, by virtue of the four greenhouse gases characterized by low mass diffusion number, the entire mass transfer is controlled by the liquid phase. A unified formula has been successfully established to aid in estimating the dimensionless solute uptake process and the dimensionless aqueous diffusion time of 0.45 is sufficiently long the implement the absorption process. For the ambient temperature and pressure in the ranges of 280-350 K and 1-20 atm, respectively, it is found that increasing the two parameters will intensify the solute absorption amount significantly and the absorption process can be accelerated by increasing temperature.

  11. Remote sensing of some greenhouse gases by Fourier-spectrometry in Kyiv

    International Nuclear Information System (INIS)

    The values of the total N2O and O3 amount (column amounts) in the atmosphere above Kyiv city were determined using observed IR spectra of direct solar radiation. The modelling of N2O and O3 spectra was carried out with MODTRAN3 (MODTRAN Report 01/11/96, The MODTRAN 2/3 Report and LOWTRAN 7 MODEL, Phillips Laboratory, Geophysics Directorate PL/G POS, 1996) program by scaling the species profiles of standard mid-latitude summer model atmosphere. The comparison with the data of other ground based and space experiments shows the good agreement. The accuracy of the experiment is enough for greenhouse gases monitoring in the observational point

  12. European trends in greenhouse gases emissions from integrated solid waste management.

    Science.gov (United States)

    Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio

    2015-08-01

    The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately [Formula: see text]. PMID:25704238

  13. Differences between the glacial cycles of Antarctic temperature and greenhouse gases

    Directory of Open Access Journals (Sweden)

    A. W. Omta

    2012-03-01

    Full Text Available Ice-core measurements have indicated that the atmospheric concentrations of the greenhouse gases CO2 and CH4 show glacial-interglacial variations in step with Antarctic temperature. To obtain more insight into the nature of this relationship for cycles of different frequencies, measured time series of temperature, CO2, and CH4 are reanalysed. The results indicate that the temperature signal consists of a linear superposition of a component related to CO2 with a period of ~100 000 yr and a component related to variations in the obliquity of the Earth's orbital plane with a period of ~41 000 yr. This suggests that either there operate very different feedback mechanisms at the different time scales or that CO2 is not merely a~passive follower and amplifier of the glacial-interglacial variations in Antarctic temperature.

  14. Biomass fuel burning and its implications: Deforestation and greenhouse gases emissions in Pakistan

    International Nuclear Information System (INIS)

    Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO2, CH4 and N2O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO2-equivalent has been estimated to be 533019 t y-1. - Consumption of forest wood in the brick industry poses the problem of deforestation in Pakistan in addition to release of GHGs in the environment owing to biomass burning.

  15. Global CO2 Distributions over Land from the Greenhouse Gases Observing Satellite (GOSAT)

    Science.gov (United States)

    Hammerling, Dorit M.; Michalak, Anna M.; O'Dell, Christopher; Kawa, Randolph S.

    2012-01-01

    January 2009 saw the successful launch of the first space-based mission specifically designed for measuring greenhouse gases, the Japanese Greenhouse gases Observing SATellite (GOSAT). We present global land maps (Level 3 data) of column-averaged CO2 concentrations (X(sub CO2)) derived using observations from the GOSAT ACOS retrieval algorithm, for July through December 2009. The applied geostatistical mapping approach makes it possible to generate maps at high spatial and temporal resolutions that include uncertainty measures and that are derived directly from the Level 2 observations, without invoking an atmospheric transport model or estimates of CO2 uptake and emissions. As such, they are particularly well suited for comparison studies. Results show that the Level 3 maps for July to December 2009 on a lO x 1.250 grid, at six-day resolution capture much of the synoptic scale and regional variability of X(sub CO2), in addition to its overall seasonality. The uncertainty estimates, which reflect local data coverage, X(sub CO2) variability, and retrieval errors, indicate that the Southern latitudes are relatively well-constrained, while the Sahara Desert and the high Northern latitudes are weakly-constrained. A probabilistic comparison to the PCTM/GEOS-5/CASA-GFED model reveals that the most statistically significant discrepancies occur in South America in July and August, and central Asia in September to December. While still preliminary, these results illustrate the usefulness of a high spatiotemporal resolution, data-driven Level 3 data product for direct interpretation and comparison of satellite observations of highly dynamic parameters such as atmospheric CO2.

  16. Possible future scenarios for atmospheric concentration of greenhouse gases. A simplified thermodynamic approach

    International Nuclear Information System (INIS)

    Most of the increase in concentrations of greenhouse gases in the Earth's atmosphere is mainly due to anthropogenic activities. This is particularly significant in the case of CO2. The atmospheric concentration of CO2 has systematically increased since the Industrial Revolution (260 ppm), with a remarkable raise after the 1970s until the present day (380 ppm). If this increasing tendency is maintained, the last report of the Intergovernmental Panel on Climate Change (IPCC) estimates that, for the year 2100, the CO2 concentration can augment up to approximately 675 ppm. In this work it is assumed that the quantity of anthropogenic greenhouse gases emitted to the Earth's atmosphere is proportional to the quantity of heat rejected to the environment by internal combustion heat engines. It is also assumed that this increasing tendency of CO2 due to men's activity stems from a mode of energy production mainly based on a maximum-power output paradigm. With these hypotheses, a thermoeconomic optimization of a thermal engine model under two regimes of performance: the maximum-power regime and the so-called ecological function criterion is presented. This last regime consists in maximizing a function that represents a good compromise between high power output and low entropy production. It is showed that, under maximum ecological conditions, the emissions of thermal energy to the environment are reduced approximately up to 50%. Thus are reduced approximately up to 50%. Thus working under this mode of performance the slope of the curves of CO2 concentration, for instance, drastically diminishes. A simple qualitative criterion to design ecological taxes is also suggested. (author)

  17. Air Pollution Policy in Europe. Quantifying the Interaction with Greenhouse Gases and Climate Change Policies

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, J. [CPB Netherlands Bureau for Economic Policy Analysis, Den Haag (Netherlands); Brink, C. [Netherlands Environmental Assessment Agency PBL, Den Haag (Netherlands)

    2012-10-15

    In this study the Computable General Equilibrium Model called WorldScan is used to analyse interactions between European air pollution policies and policies aimed at addressing climate change. WorldScan incorporates the emissions of both greenhouse gases (CO2, N2O and CH4) and air pollutants (SO2, NOx, NH3 and PM2.5). WorldScan has been extended with equations that enable the simulation of end-of-pipe measures that remove pollutants without affecting the emission-producing activity itself. Air pollution policy will depend on end-of-pipe controls for not more than 50%, thus also at least 50% of the required emission reduction will come from changes in the use of energy through efficiency improvements, fuel switching and other structural changes in the economy. Greenhouse gas emissions thereby decrease which renders climate change policies less costly. Our results show that carbon prices will fall, but not more than 33%, although they could drop to zero when the EU agrees on a more stringent air pollution policy.

  18. Joint implementation, clean development mechanism and tradable permits. International regulation of greenhouse gases

    DEFF Research Database (Denmark)

    Nielsen, L.; Olsen, K.R.

    2000-01-01

    This report deals with international environmental instruments aimed at a cost-effective reduction of greenhouse gas emissions. More precisely the instruments mentioned in the Kyoto Protocol, namely Joint Implementation (JI), the Clean DevelopmentMechanism (CDM) and Tradable Permits (TP). The report describes the background for the international co-operation on reducing the greenhouse gases and the background for the instruments. How the instruments work in theory and what the practical problemsmay be. What agents' incentives are when they engage in JI or CDM, and how the initiation of the instruments can be organised. The institutional frameworks for JI, CDM and TP are discussed. The report describes how the Kyoto instruments and the Kyotocommitments interact with other instruments and describe distributive effects between countries. It is analysed how the use of CDM may influence the developing countries incentives to participate in the coalition of committed countries. In the concludingchapter some recommendations on the use of JI, TP and CDM are given. The recommendations are a kind of dialog with especially the Norwegian and Swedish reports on tradable permits. Some of the issues described in this main report are analysed in separateworking papers. The working papers are collected in an appendix to the main report.

  19. Atmospheric Station Kresin u Pacova, Czech Republic - a central European research infrastructure for studying greenhouse gases, aerosols and air quality.

    Czech Academy of Sciences Publication Activity Database

    Dvorská, Alice; Fusek, M.; Hanuš, Vlastimil; Hošková, K.; Michálek, J.; Prošek, P.; Schwarz, Jaroslav; Sedlák, Pavel; Vá?a, Milan; Veselik, P.; Vodi?ka, Petr; Ždímal, Vladimír; Zíková, Nad?žda

    Berlín : European Meteorological Society, 2014, "192-1". [EMS Annual Meeting, 14th & European Conference on Applications of Meteorology (ECAM), 10th. Prague (CZ), 06.10.2014-10.10.2014] Institutional support: RVO:67179843 Keywords : atmospheric station K?ešín * Czech Republic * greenhouse gases * Aerosol- climate model * air qualiti Subject RIV: EH - Ecology, Behaviour

  20. Limiting the emission of green-house gases: objectives and results in EU and non-EU countries

    Directory of Open Access Journals (Sweden)

    Hellrigl B

    2008-06-01

    Full Text Available Based on UNFCCC and EEA (European Environmental Agency data, changes in the emissions (no LULUCF considered of green-house gases in the period 1990-2004 either in the Annex 1 as well in the UE-27 countries are summarized and commented.

  1. Recent trends of inorganic chlorine and halogenated source gases above the Jungfraujoch and Kitt Peak stations derived from high-resolution FTIR solar observations

    Science.gov (United States)

    Mahieu, Emmanuel; Rinsland, Curtis P.; Gardiner, Tom; Zander, Rodolphe; Demoulin, Philippe; Chipperfield, Martyn P.; Ruhnke, Roland; Chiou, Linda S.; de Mazière, Martine

    2010-05-01

    The longest series of Fourier Transform Infrared (FTIR) high spectral resolution solar absorption observations are available from the Jungfraujoch and Kitt Peak stations, located at 46.5°N and 30.9°N, respectively. State-of-the-art interferometers are operated at these sites within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). These instruments allow to record spectra on a regular basis, under clear-sky conditions, using a suite of optical filters which altogether cover the 2 to 16 micron spectral range. Numerous absorption features characterized in the HITRAN compilations (e.g. Rothman et al., 2008) are encompassed in this mid-infrared region. Their analyses with either the SFIT-1 or SFIT-2 algorithm allow retrieving total columns of the target gases. Moreover, information on their distribution with altitude can generally be derived when using SFIT-2 which implements the Optimal Estimation Method of Rodgers (1990). Among the two dozen gases of atmospheric interest accessible to the ground-based FTIR technique, we have selected here a suite of long-lived halogenated species: HCl, ClONO2, CCl2F2, CCl3F, CHClF2, CCl4 and SF6. Time series available from the two sites will be presented, compared and critically discussed. In particular, changes in the abundances of theses gases since the peak in inorganic chlorine (Cly, which occurred in 1996-1997) and their intra-annual variability will be characterized with a statistical tool using bootstrap resampling (Gardiner et al., 2008). Trends and their associated uncertainties will be reported and put into perspective with the phase-out regulations of the production of ozone depleting substances adopted and implemented by the Montreal Protocol, its Amendments and Adjustments. For instance, the trends affecting the reservoir species HCl, ClONO2, and their summation which is a good proxy of the total inorganic chlorine, have been calculated using all available daily mean measurements from January 1996 onwards. The following values were obtained for Jungfraujoch, when using 1996 as the reference year: -0.90±0.10%/yr for HCl, -0.92±0.26 %/yr for ClONO2, and -0.96±0.14 %/yr for Cly; in all cases, the uncertainties define the 95% confidence interval around the trend values. For Kitt Peak (covering 1977-2009 but with far fewer measurements than from Jungfraujoch), the corresponding trends are: -0.55±0.34 %/yr for HCl, -1.27±0.84 %/yr for ClONO2 and -0.61±0.51 %/yr for Cly, they are statistically consistent with the Jungfraujoch rates of decrease. Further trend data will be presented at the EGU General Assembly while supplementary information on Jungfraujoch results will be available from communications at the same meeting by Duchatelet et al. (2010), Lejeune et al (2010) and Rinsland et al (2010). Comparisons with model data are also foreseen. Acknowledgments The University of Liège contribution to present work has primarily been supported by the AGACC and SECPEA projects funded by the Belgian Federal Science Policy Office (BELSPO), Brussels. We further acknowledge the support of the GEOMon European project. Work at the NASA Langley Research Center was supported by NASA's Upper Atmospheric Chemistry and Modeling Program (ACMAP). References Duchatelet et al., Updating hydrogen fluoride (HF) FTIR time series above Jungfraujoch: comparison of two retrieval algorithms and impact of line shape models, this issue, 2010. Gardiner, T., A. Forbes, M. De Mazière et al., Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments, Atmos. Chem. Phys., 8, 6719-6727, 2008. Lejeune et al., Optimized approach to retrieve information on the Tropospheric and Stratospheric Carbonyl Sulfide (OCS) vertical distributions above Jungfraujoch from high-resolution FTIR solar spectra, this issue, 2010. Rinsland et al., Long-term trend of carbon tetrachloride (CCl4) from ground-based high-resolution infrared solar spectra recorded at the Jungfraujoch, this issue, 2010. Rodgers, C.D., Char

  2. A comparative analysis of methodology for inventory of greenhouse gases emissions - IPCC and CORINAIR

    International Nuclear Information System (INIS)

    The inventory of greenhouse gases (GHG) is performed by two accepted methods - CORINAIR (of EU) and IPCC (of UN Intergovernmental Panel on Climate Changes). The first one is applied only in European countries, the second is conformable to GHG emissions from all over the world. The versions IPCC-95 and CORINAIR94 are compared from theoretical and methodological point of view. In Bulgaria the version CORINAIR95 is not applied yet and the inventory analysis for 1994 uses CORINAIR90. The emissions of main GHG and gases-precursors are compared. The main elements of inventory are analyzed. The values recommended by CORINAIR94 are taken into account. A table for accordance between the two methods is used. The differences concerning transport vehicles are taken into account also. Differences between the two methods are noticed in the following directions: nomenclature of the activities emitting GHG; organization of the inventory guides; kind of the activities and technologies included. The qualitative comparison are done for energy sector and for industry separately. The results show too big differences in the volume of the emitted GHG and the reasons could be classified as methodological ones and differences in the kind and values of the emission coefficients. For their determining standard values for Eastern Europe from IPCC guide have been applied as well as data from experimental investigations. Respectively, in the method CORINAIR emission coefficients CORINAIR90 are used. The differences between the emission coefficients determined in the two methods are as big as twice or even more for CO at solid fuels, i.g. at energy production; as big as three times at NOx and up to twenty times at methane also at solid fuels. The two methods do not read the emissions of gases-precursors at some industrial processes. This disadvantage is overcome at IPCC96 and it is necessary to complement the emission coefficients in the data base, especially for gases-precursors regarding the local investigations and the latest assessments of climate changes done by IPCC. Data of the method CORINAIR94 could be used for this purpose

  3. Emission of greenhouse gases from sewage installations; Emissies van broeikasgassen van rwzi's

    Energy Technology Data Exchange (ETDEWEB)

    Van Voorthuizen, E.; Van Leusden, M.; Visser, A.; Kruit, J. [Royal Haskoning, Amersfoort (Netherlands); Kampschreur, M.; Van Dongen, U.; Van Loosdrecht, M. [Technische Universiteit Delft TUD, Delft (Netherlands)

    2010-03-15

    Emissions of greenhouse gases (CO2, CH4, N2O) from wastewater treatment plants (WWTPs) are monitored. The emission of CO2 from waste water treatment plants (WWTPs) is related to the use of electricity, natural gas or other fossil fuels. The amount and origin of the emission of CH4 and N2O, however, is unknown. Presently emission factors from the IPCC (Intergovernmental Panel on Climate Change) and the Dutch Ministry of Housing, Spatial Planning and the Environment (VROM) are used to estimate those emissions. The aim of the study on the title subject was to determine the level of N2O and CH4 emission from Dutch WWTPs to understand the accuracy of the existing emission factors. In this way an estimation of the total greenhouse gas emission from a Dutch WWTP can be made. The emission of N2O and CH4 was measured at three WWTPs in the Netherlands: Papendrecht, Kortenoord and Kralingseveer [Dutch] In deze studie zijn de indirecte en directe emissies van broeikasgassen (CO2, CH4 en N2O) van rwzi's in kaart gebracht aan de hand van metingen. De resultaten hebben aanleiding gegeven voor een vervolgonderzoek waarbij onder meer kennis wordt ontwikkeld op het gebied van methaanvorming (CH4) in de riolering en mogelijkheden om de emissie van methaan op een zuivering te reduceren. Met betrekking tot lachgas N2O wordt onderzoek gedaan naar de vormingsprocessen van lachgas en de wijze waarop deze vrijkomt vanuit een rwzi. Verder worden relaties tussen lachgasemissie en procesparameters inzichtelijk gemaakt. Met deze kennis is het hopelijk in de toekomst mogelijk om maatregelen te nemen die de vorming en emissie van lachgas vanuit rwzi's te reduceren.

  4. Methane and other greenhouse gases in the Arctic - Measurements, Process Studies and Modelling (MAMM)

    Science.gov (United States)

    Pyle, John; Cain, Michelle; Warwick, Nicola

    2014-05-01

    The Arctic is a major source of atmospheric methane and other greenhouse gases, of both natural and anthropogenic origin. Arctic greenhouse gas sources need to be quantified, by strength, geographic location, character (e.g. wetlands, gas fields, hydrates), and by temporal variation (daily, seasonally and annually), and their vulnerability to change assessed. To this end, the MAMM project was commissioned as part of the NERC Arctic Research Programme. It involves an integrated series of measurement and modelling activities. Analysis of atmospheric gas concentrations, isotopic character, and source fluxes, are being made from both the ground and from the FAAM aircraft. The measurements (historic and new) are being interpreted using a suite of models (trajectory, forward and inverse) to improve the understanding of the local/regional scale, placing the role of Arctic emissions in the context of large-scale global atmospheric change. The first measurement campaign was held in August 2012. Surface flux measurements were made at the Sodankylä research station in Finland, together with in-situ surface and aircraft measurements over a wider area. In addition to flights over the Sodankylä wetlands, the aircraft also flew out to Svalbard to investigate marine sources of methane. Further campaigns are taking place in Sweden in August and September 2013. The initial measurements have been used to infer wetland emission fluxes and confirm that Scandinavian wetlands are a major source of methane in this region. The aircraft also measured a high-CH4 plume over the sea between Norway and Svalbard, which was likely advected from mainland wetland sources. An overview of results from the field campaign will be presented, alongside results from the NAME model (the UK Met Office's Numerical Atmospheric dispersion Modelling Environment) to help understand the air mass histories of the observations.

  5. Emissions of Greenhouse Gases from Urban Xi'an, China - Direct Measurements by Eddy Covariance

    Science.gov (United States)

    VanReken, T. M.; Mwaniki, G. R.; VanderSchelden, G.; O'Keeffe, P.; Waldo, S.; Erickson, M. H.; Lamb, B. K.; Jobson, B. T.; Tie, X.; Cao, J.

    2012-12-01

    Throughout the world and especially in Asia, rapid urbanization is resulting in an increasing number of very large cities. In these areas, the rate of development can outpace the perceived need for environmental regulation, and frequently there are inadequate resources available to monitor pollution or enforce compliance with those environmental regulations that do exist. These limitations obviously impact air quality on a local scale, but cities also have significant environmental impacts on regional and even global scales. In order to understand and mitigate these impacts on the surrounding environment, it is first necessary to robustly characterize the pollutant emissions themselves. This can be a significant challenge. Major discrepancies arise when comparing emissions inventories based on bottom-up compilations of source types, number, and activity levels to estimates inferred from satellite observations and other large-scale techniques. Direct measurements of neighborhood-scale emission fluxes via micrometeorological approaches provide a means to resolve these differences. Such measurements can be used to quantify the integrated vertical exchange for a wide variety of greenhouse gases and other pollutants, typically with spatial footprints of tens of square kilometers and with temporal resolutions of ~30 minutes. Here we present the results of an urban flux study conducted in Xi'an, China in August 2011. For the study a 23 m tower was erected atop the ~100 m tall administration building at Xi'an Jiaotong University. From the tower, we employed an eddy covariance approach to measure concentrations and fluxes of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and carbon monoxide (CO). Here we present an analysis of the air-surface exchange of these gases. Results indicate that while our study site in Xi'an was a net source of these species, the greenhouse gas fluxes were significantly smaller than at other sites around the world and exhibited a different diurnal pattern. We attribute these results to two factors: 1) the relatively low traffic density at the Xi'an study site relative to other urban flux sites; and 2) the presence of a large urban park in the northerly sector of the study footprint, where the vegetative sink for CO2 was often greater than anthropogenic sources. Overall the analysis suggests that even in heavily urbanized regions land use and activity profiles can have significant impacts on air pollutant emissions.

  6. Progress and opportunities for monitoring greenhouse gases fluxes in Mexican ecosystems: the MexFlux network

    Scientific Electronic Library Online (English)

    R., VARGAS; E. A., YÉPEZ; J. L., ANDRADE; G., ÁNGELES; T., ARREDONDO; A. E., CASTELLANOS; J., DELGADO-BALBUENA; J., GARATUZA-PAYÁN; E., GONZÁLEZ DEL CASTILLO; W., OECHEL; J. C., RODRÍGUEZ; A., SÁNCHEZ-AZOFEIFA; E., VELASCO; E. R., VIVONI; C., WATTS.

    2013-06-01

    Full Text Available Para entender los procesos de los ecosistemas desde un punto de vista funcional es fundamental entender las relaciones entre la variabilidad climática, los ciclos biogeoquímicos y las interacciones superficie-atmósfera. En las últimas décadas se ha aplicado de manera creciente el método de covarianz [...] a de flujos turbulentos (EC, por sus siglas en inglés) en ecosistemas terrestres, marinos y urbanos para medir los flujos de gases de invernadero (p. ej., CO2, H2O ) y energía (p. ej., calor sensible y latente). En diversas regiones se han establecido redes de sistemas EC que han aportado información científica para el diseño de políticas ambientales y de adaptación. En este contexto, el presente trabajo delimita el marco conceptual y técnico para el establecimiento de una red regional de medición de flujos de gases de efecto invernadero en México, denominada MexFlux, cuyo objetivo principal es mejorar nuestra comprensión de la forma en que la variabilidad climática y la transformación ambiental influye en la dinámica de los ecosistemas mexicanos ante los factores de cambio ambiental global. En este documento se analiza primero la importancia del intercambio de CO2 y vapor de agua entre los ecosistemas terrestres y la atmósfera. Después se describe brevemente la técnica de covarianza de flujos turbulentos para la medición de éstos, y se presentan ejemplos de mediciones en dos ecosistemas terrestres y uno urbano en México. Por último, se describen las bases conceptuales y operativas a corto, mediano y largo plazo para la continuidad de la red MexFlux. Abstract in english Understanding ecosystem processes from a functional point of view is essential to study relationships among climate variability, biogeochemical cycles, and surface-atmosphere interactions. Increasingly during the last decades, the eddy covariance (EC) method has been applied in terrestrial, marine a [...] nd urban ecosystems to quantify fluxes of greenhouse gases (e.g., CO2, H2O) and energy (e.g., sensible and latent heat). Networks of EC systems have been established in different regions and have provided scientific information that has been used for designing environmental and adaptation policies. In this context, this article outlines the conceptual and technical framework for the establishment of an EC regional network (i.e., MexFlux) to measure the surface-atmosphere exchange of heat and greenhouse gases in Mexico. The goal of the network is to improve our understanding of how climate variability and environmental change influence the dynamics of Mexican ecosystems. First, we discuss the relevance of CO2 and water vapor exchange between terrestrial ecosystems and the atmosphere. Second, we briefly describe the EC basis and present examples of measurements in terrestrial and urban ecosystems of Mexico. Finally, we describe the conceptual and operational goals at short-, medium-, and long-term scales for continuity of the MexFlux network.

  7. Carbon sequestration and greenhouse gases emissions in soil under sewage sludge residual effects

    Scientific Electronic Library Online (English)

    Leonardo Machado, Pitombo; Janaina Braga do, Carmo; Isabela Clerici de, Maria; Cristiano Alberto de, Andrade.

    2015-02-01

    Full Text Available The large volume of sewage sludge (SS) generated with high carbon (C) and nutrient content suggests that its agricultural use may represent an important alternative to soil carbon sequestration and provides a potential substitute for synthetic fertilizers. However, emissions of CH4 and N2O could neu [...] tralize benefits with increases in soil C or saving fertilizer production because these gases have a Global Warming Potential (GWP) 25 and 298 times greater than CO2, respectively. Thus, this study aimed to determine C and N content as well as greenhouse gases (GHG) fluxes from soils historically amended with SS. Sewage sludge was applied between 2001 and 2007, and maize (Zea mays L.) was sowed in every year between 2001 and 2009. We evaluated three treatments: Control (mineral fertilizer), 1SS (recommended rate) and 2SS (double rate). Carbon stocks (0-40 cm) were 58.8, 72.5 and 83.1 Mg ha–1in the Control, 1SS and 2SS, respectively, whereas N stocks after two years without SS treatment were 4.8, 5.8, and 6.8 Mg ha–1, respectively. Soil CO2 flux was highly responsive to soil temperature in SS treatments, and soil water content greatly impacted gas flux in the Control. Soil N2O flux increased under the residual effects of SS, but in 1SS, the flux was similar to that found in moist tropical forests. Soil remained as a CH4sink. Large stores of carbon following historical SS application indicate that its use could be used as a method for carbon sequestration, even under tropical conditions.

  8. A new method for estimating greenhouse gases and ammonia emissions from livestock buildings

    Science.gov (United States)

    Barrancos, José; Briz, Susana; Nolasco, Dácil; Melián, Gladys; Padilla, Germán; Padrón, Eleazar; Fernández, Isabel; Pérez, Nemesio; Hernández, Pedro A.

    2013-08-01

    It is widely known that carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are the main greenhouse gases contributing to global climate change. Emission factors for the aforementioned gases have been proposed in order to calculate the contribution of livestock farming to global climate change. However, these emission factors depend on many additional factors such as the housing system, environmental conditions, etc., which implies some uncertainties in their estimation. Therefore, works that aim at improving experimental calculation of these emissions are crucial to provide reliable estimates of the emissions produced by livestock. The purpose of this work was to apply a new methodology inspired by the accumulation chamber method to estimate emission rates from livestock buildings. The work was based on measuring the increase of gas emissions inside the livestock building by means of the remote sensing technique Open-Path FTIR (OP-FTIR). Previously to the measurements, livestock building cattle was confined outside of the building. Utilization of fan ventilation system favoured the homogenization of air inside the building. This experiment proved that evolution of CH4 and CO2 concentrations inside the livestock building behaved like an accumulation chamber unlike the N2O which did not show such behaviour. Results showed CH4, CO2 and NH3 emissions of 167 ± 54,700 ± 200 and 1.3 ± 0.2 kg head-1 year-1, respectively. One of the main parameters affecting the estimated emission factors is the type of animal feeding. Therefore, it is essential to investigate the influence of food composition on CH4 and CO2 emission in a relative larger number of operating cattle buildings since the methodology herein proposed is an easy and cheap tool to study livestock emission factors and their variability.

  9. Emission estimates for some acidifying and greenhouse gases and options for their control in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pipatti, R. [VTT Energy, Espoo (Finland). Energy Systems

    1998-11-01

    This thesis presents estimates and options for control of anthropogenic ammonia (NH{sub 3}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and some halocarbon emissions in Finland. Ammonia is an air pollutant which contributes to both acidification and nitrogen eutrophication of ecosystems. Its emissions are mainly caused by livestock manure. In Finland the anthropogenic emissions of NH{sub 3} have been estimated to be approximately 44 Gg in 1985 and 43 Gg in 1990. In the 1990`s the emissions have declined due to the reduced number of cattle and voluntary implementation of emission reducing measures. The impact of NH{sub 3} emissions on acidification is serious but in Finland it is less than the impact of the other acidifying gases sulphur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}). All three gases and their transformation products are transported by the atmosphere up to distances of hundreds or even more than a thousand kilometres. NH{sub 3} emissions can be reduced with relatively cost-effective measures and the measures can partly replace the implementation of more costly abatement measures on SO{sub 2} and NO{sub x} emissions needed to lower the acidifying deposition in Finland. The other gases studied in this thesis are greenhouse gases. Some of the gases also deplete stratospheric ozone. Finnish anthropogenic CH{sub 4} emissions have been estimated to be around 250 Gg per year during the 1990`s. The emissions come mainly from landfills and agricultural sources (enteric fermentation and manure). The significance of other CH{sub 4} sources in Finland is minor. The potential to reduce the Finnish CH{sub 4} emissions is estimated to be good. Landfill gas recovery offers an option to reduce the emissions significantly at negligible cost if the energy produced can be utilised in electricity and/or heat production. Measures directed at reducing the emissions from livestock manure management are more costly, and the achievable reduction in the emissions small. The potential to reduce the CH{sub 4} emissions from enteric fermentation in Finland is not known. If measures to reduce these emissions prove efficient and economically promising in future studies, the total reduction in the Finnish CH{sub 4} emissions will be higher and in the long run the halving of the emission level of 1990 seems achievable. The anthropogenic N{sub 2}O emissions in Finland are considerably smaller than the CH{sub 4} emissions, around 20 Gg per year during the 1990`s, but the greenhouse impact of the Finnish N{sub 2}O emissions is of similar magnitude as that of the Finnish CH{sub 4} emissions. The most important anthropogenic N{sub 2}O emission sources in Finland are nitrogen fertilisation, nitric acid production and burning processes in the energy sector. The indirect emissions caused by nitrogen deposition due to NH{sub 3} and NO{sub x} emissions are also of significance. The N{sub 2}O emissions are estimated to grow due to the increasing use of fluidized bed combustion and catalytic converters in the energy sector. These otherwise environmentally friendly technologies produce significantly more N{sub 2}O than the corresponding conventional technologies. Measures for N{sub 2}O emission control are not known very well and many of the measures are still at an experimental stage. Promising measures to reduce the N{sub 2}O emissions from nitric acid production and fluidized bed combustion have been put forward but plant scale applications of the measures are still lacking. If the measures can be implemented on plant scale, emission reductions of the same order of magnitude as the estimated growth in the emissions are anticipated. The CFCs and other considered halocarbons are already partly phased out. The halocarbons that destroy stratospheric O{sub 3} are subject to regulations under the Montreal protocol and in Finland most of the consumption ceased in 1996. The O{sub 3} depleting substances are partly substituted with substances that are effective greenhouse gases, the most important of which are the HFCs. The emission estimates and i

  10. Energy scenarios and greenhouse effect gases emissions model for Mexico; Modelo de escenarios energeticos y de emisiones de gases de efecto invernadero para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia; Rodriguez Viqueira, Luis [Instituto de Ingenieria de la UNAM, Mexico, D. F. (Mexico)

    1998-12-31

    This paper presents the bases for the Model of Energy and Greenhouse Emission Scenarios (MEEEM) developed by the Instituto de Ingenieria de la UNAM (Universidad Nacional Autonoma de Mexico`s Engineering Institute). This model was built with the objective of analyzing the different technological options for the mitigation of the greenhouse gases effect on Mexico. The MEEEM is a model for the end uses that simulate in a simple way the energy demand, transformation and supply and calculates the differential leveled costs among a basic scenario and several mitigation scenarios of the greenhouse emissions. The article also presents some of the results in evaluating three technologies of renewable energy sources. Although the model is perfectible, its development shows its usefulness in this type of models in the decision taking for the energy and environmental planning of the country. [Espanol] Este articulo presenta las bases del Modelo de Escenarios Energeticos y de Emisiones de Gases de Efecto Invernadero para Mexico (MEEEM), desarrollado por el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM). Este modelo fue construido con el objetivo de analizar las diversas opciones tecnologicas de mitigacion de gases de efecto invernadero para Mexico. El MEEEM es un modelo de usos finales que simula de una manera sencilla, la demanda, transformacion y oferta de la energia y calcula la diferencia de costos nivelados entre un escenario base y diversos escenarios de mitigacion de emisiones de gases de efecto invernadero. El articulo presenta tambien algunos resultados obtenidos al evaluar tres tecnologias de fuentes renovables de energia. Aun cuando el modelo es perfectible, su desarrollo demuestra la utilidad de este tipo de modelos en la toma de decisiones para planeacion energetica y ambiental del pais.

  11. Assessing the impact on global climate from general anesthetic gases

    DEFF Research Database (Denmark)

    Andersen, Mads P. Sulbæk; Nielsen, Ole John

    2012-01-01

    Although present in the atmosphere with a combined concentration approximately 100,000 times lower than carbon dioxide (i.e., the principal anthropogenic driver of climate change), halogenated organic compounds are responsible for a warming effect of approximately 10% to 15% of the total anthropogenic radiative forcing of climate, as measured relative to the start of the industrial era (approximately 1750). The family of anesthetic gases includes several halogenated organic compounds that are strong greenhouse gases. In this short report, we provide an overview of the state of knowledge regarding the impact of anesthetic gas release on the environment, with particular focus on its contribution to the radiative forcing of climate change.

  12. Long open path Fourier transform spectroscopy measurements of greenhouse gases in the near infrared

    Science.gov (United States)

    Griffith, David; Pöhler, Denis; Schmidt, Stefan; Hammer, Samuel; Vardag, Sanam; Levin, Ingeborg; Platt, Ulrich

    2015-04-01

    Atmospheric composition measurements are an important tool to quantify local and regional emissions and sinks of greenhouse gases. But how representative are in situ measurements at one point in an inhomogeneous environment? Open path Fourier Transform Spectroscopy (FTS) measurements potentially offer spatial averaging and continuous measurements of several trace gases (including CO2, CH4, CO and N2O) simultaneously in the same airmass. Spatial averaging over kilometre scales is a better fit to the finest scale atmospheric models becoming available, and helps bridge the gap between models and in situ measurements. With what precision, accuracy and reliability can such measurements be made? Building on our pooled experience in ground-level open path Fourier transform spectroscopy and TCCON solar FTS in the infrared (Wollongong) and long path DOAS techniques in the UV-visible (Heidelberg), we set up a new type of open path measurement system across a 1.5 km one-way path in urban Heidelberg, Germany, using FTS in the near infrared. Direct open-atmosphere measurements of trace gases CO2, CH4, CO and N2O as well as O2 were retrieved from several absorption bands between 4000 and 8000 cm-1 (2.5 - 1.25 micron). At one end of the path an in situ FTIR analyser simultaneously collected well calibrated measurements of the same species for comparison with the open path-integrated measurements. The measurements ran continuously from June - November 2014. We introduce the open path FTS measurement system and present an analysis of the results, including assessment of precision, accuracy relative to co-incident in situ measurements, reliability, and avenues for further improvements and extensions. Short term precision of the open path measurement of CO2 was better than 1 ppm for 5 minute averages and thus sufficient for studies in urban and other non-background environments. Measurement bias relative to calibrated in situ measurements was stable across the measurement period. The system operated reliably with data losses mainly due only to weather events such as rain and fog preventing transmission of the IR beam. In principle the system can be improved to provide longer pathlengths and higher precision.

  13. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution

    DEFF Research Database (Denmark)

    Eisted, Rasmus; Larsen, Anna Warberg

    2009-01-01

    The collection, transfer and transport of waste are basic activities of waste management systems all over the world. These activities all use energy and fuels, primarily of fossil origin. Electricity and fuel consumptions of the individual processes were reviewed and greenhouse gases (GHG) emissions were quantified. The emission factors were assigned a global warming potential (GWP) and aggregated into global warming factors (GWFs), which express the potential contribution to global warming from collection, transport and transfer of 1 tonne of wet waste. Six examples involving collection, transfer and transport of waste were assessed in terms of GHG emissions, including both provision and use of energy. (GHG emissions related to production, maintenance and disposal of vehicles, equipment, infrastructure and buildings were excluded.) The estimated GWFs varied from 9.4 to 368 kg CO2-equivalent (kg CO2-eq.) per tonne of waste, depending on method of collection, capacity and choice of transport equipment, andtravel distances. The GHG emissions can be reduced primarily by avoiding transport of waste in private cars and by optimization of long distance transport, for example, considering transport by rail and waterways.

  14. Emissions of greenhouse gases from the use of transportation fuels and electricity

    International Nuclear Information System (INIS)

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO2), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO2-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO2-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles

  15. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate

    Science.gov (United States)

    Postawko, S. E.; Kuhn, W. R.

    1986-01-01

    There is general agreement that certain surface features on Mars are indicative of the presence of liquid water at various times in the geologic past. In particular, the valley networks are difficult to explain by a mechanism other than the flow of liquid water. It has been suggested in several studies that a thick CO2 atmosphere on Mars early in its history could have provided a greenhouse warming that would have allowed the flow of water either on the surface or just below the surface. However, this effect was examined with a detailed radiation model, and it was found that if reduced solar luminosity early in the history of the solar system is taken into account, even three bars of CO2 will not provide sufficient greeenhouse warming. The addition of water vapor and sulflur dioxide (both plausible gases that may have been emitted by Martian volcanoes) to the atmosphere also fail to warm the surface above 273 K for reduced solar luminosity conditions. The increase in temperature may be large enough, however, for the formation of these features by brines.

  16. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2009-01-01

    Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate change. An objective of this paper is to increase awareness that the GWP of GHGs has been re-adjusted as the concentration and relative proportion of these GHGs has changed with time (e.g., the GWP of methane has changed from 21 to 25 CO2-eq). Improved understanding of the indirect effects of GHGs has also led to a modification in the methodology for calculating GWP. Following a presentation of theory behind GHG, RF and GWP concepts, the paper briefly describes the most important GHG sources and sinks in the context of the waste management industry. The paper serves as a primer for more detailed research publications presented in this special issue of Waste Management & Research providing a technology-based assessment of quantitative GHG emissions from different waste management technologies.

  17. Are Greenhouse Gases Changing ENSO Precursors in the Western North Pacific?

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S-Y (Simon); Heureux, Michelle L.; Yoon, Jin-Ho

    2013-09-01

    Using multiple observational and modeling datasets, we document a strengthening relationship between boreal winter sea surface temperature anomalies (SSTA) in the western North Pacific (WNP) and the development of the El Nino-Southern Oscillation (ENSO) one year later. The increased WNP-ENSO association emerged in the mid 20th century and has grown through the present, reaching correlation coefficients as high as ~0.70 in recent decades. Fully coupled climate experiments with the Community Earth System Model (CESM) replicate the WNP-ENSO association and indicate that greenhouse gases (GHG) are largely responsible for the observed increase. We speculate that shifts in the location and amplitudes of positive SST trends in the subtropical-tropical western Pacific impacts the low-level circulation so that WNP variability is increasingly influencing the development of ENSO one year later. A strengthened GHG-driven relationship between the WNP and ENSO provides an example of how anthropogenic climate change can potentially improve the skill of intraseasonal-to-interannual climate prediction.

  18. Greenhouse Gases Emissions Inventory in 2005 by the Mexican Energy Sector

    Directory of Open Access Journals (Sweden)

    D. Villalba–Valle.

    2010-01-01

    Full Text Available In the present work, it is estimated the greenhouse gases (GHG, GEI in this paper emissions in 2005 by the consumption and/or transformation of energy in Mexico. This document is not official, and it is used as reference the fuel consumption reported in the Balance Nacional de Energia 2005 published by the Secretaria de Energia. In this way, it is standardized the emission sources that will be used in the near future to estimated the official 2005 GHG Emissions Inventory. In order to solve the absence of own emission factors in Mexico, it is used the default global emission factors proposed by the Intergovernmental Panel for Climate Change. The Sectorial Method was used to estimate the GHG emissions taking in account the fuel consumption in each subsector considered in the energy sector. It was found that the transport and energy industries sectors had the most GHG emissions, and that Mexico as a non–industrialized country had lower per capita emissions that developed countries.

  19. Frequency Comb-Based Remote Sensing of Greenhouse Gases over Kilometer Air Paths

    CERN Document Server

    Rieker, Gregory B; Swann, William C; Kofler, Jon; Zolot, Alex M; Sinclair, Laura C; Baumann, Esther; Cromer, Christopher; Petron, Gabrielle; Sweeney, Colm; Tans, Pieter P; Coddington, Ian; Newbury, Nathan R

    2014-01-01

    We demonstrate coherent dual frequency-comb spectroscopy for detecting variations in greenhouse gases. High signal-to-noise spectra are acquired spanning 5990 to 6260 cm^-1 (1600 to 1670 nm) covering ~700 absorption features from CO2, CH4, H2O, HDO, and 13CO2, across a 2-km open-air path. The transmission of each frequency comb tooth is resolved, leading to spectra with <1 kHz frequency accuracy, no instrument lineshape, and a 0.0033-cm^-1 point spacing. The fitted path-averaged concentrations and temperature yield dry-air mole fractions. These are compared with a point sensor under well-mixed conditions to evaluate current absorption models for real atmospheres. In heterogeneous conditions, time-resolved data demonstrate tracking of strong variations in mole fractions. A precision of <1 ppm for CO2 and <3 ppb for CH4 is achieved in 5 minutes in this initial demonstration. Future portable systems could support regional emissions monitoring and validation of the spectral databases critical to global s...

  20. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model.

    Science.gov (United States)

    Chen, Tsao-Chou; Lin, Cheng-Fang

    2008-06-30

    When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions. PMID:18164811

  1. The potentional of renewable energy sources for greenhouse gases emissions reduction in Macedonia

    Directory of Open Access Journals (Sweden)

    Dedinec Aleksandar

    2012-01-01

    Full Text Available As European Union (EU candidate country, Macedonia is in the process of adoption of the EU strategic energy policies, harmonization of the national legislation with the EU legislation and defining the respective national goals. In this regard, the government has recently adopted a National Strategy for Utilization of Renewable Energy Sources (RES, prepared by ICEIM-MANU. The main goal of this paper is to assess the potential for greenhouse gases (GHG emissions reduction by implementation of 21%-RES-scenarios from the Strategy. The corresponding emissions reduction is calculated against the baseline (reference scenario developed within the Second National Communication on Climate Change. Furthermore, all potential RES technologies are analyzed from economic aspect and combined in a form of emissions reduction cost curve, displaying the total marginal cost of the GHG emissions reduction by RES. Finally, on the bases of the environmental and economic effectiveness of the considered RES technologies, as well as taking into account the country specific barriers, the priority actions for GHG emissions reduction are identified.

  2. A fully automated FTIR system for remote sensing of greenhouse gases in the tropics

    Directory of Open Access Journals (Sweden)

    M. C. Geibel

    2010-07-01

    Full Text Available This article introduces a new fully automated FTIR system that is part of the Total Carbon Column Observing Network. It will provide continuous ground-based measurements of column-averaged volume mixing ratio for CO2, CH4 and several other greenhouse gases in the tropics.

    Housed in a 20-foot shipping container it was developed as a transportable system that could be deployed almost anywhere in the world. We describe the automation concept which relies on three autonomous subsystems and their interaction. Crucial components like a sturdy and reliable solar tracker dome are described in detail.

    First results of total column measurements at Jena, Germany show that the instrument works well and can provide diurnal as well as seasonal cycle for CO2. Instrument line shape measurements with an HCl cell suggest that the instrument stays well-aligned over several months.

    After a short test campaign for side by side intercomaprison with an existing TCCON instrument in Australia, the system will be transported to its final destination Ascension Island.

  3. A new fully automated FTIR system for total column measurements of greenhouse gases

    Directory of Open Access Journals (Sweden)

    M. C. Geibel

    2010-10-01

    Full Text Available This article introduces a new fully automated FTIR system that is part of the Total Carbon Column Observing Network (TCCON. It will provide continuous ground-based measurements of column-averaged volume mixing ratio for CO2, CH4 and several other greenhouse gases in the tropics.

    Housed in a 20-foot shipping container it was developed as a transportable system that could be deployed almost anywhere in the world. We describe the automation concept which relies on three autonomous subsystems and their interaction. Crucial components like a sturdy and reliable solar tracker dome are described in detail. The automation software employs a new approach relying on multiple processes, database logging and web-based remote control.

    First results of total column measurements at Jena, Germany show that the instrument works well and can provide parts of the diurnal as well as seasonal cycle for CO2. Instrument line shape measurements with an HCl cell suggest that the instrument stays well-aligned over several months.

    After a short test campaign for side by side intercomaprison with an existing TCCON instrument in Australia, the system will be transported to its final destination Ascension Island.

  4. Olympic Games promote the reduction in emissions of greenhouse gases in Beijing

    International Nuclear Information System (INIS)

    Global climate change is one of the most serious global environmental problems faced by humankind at present. Serious attention should be paid and precautions should be taken before disasters occur. The amount of CO2 emissions in China has increased during the past few years and the Chinese government and people have attached great importance to this phenomenon and treated it seriously. With the instruction of scientific development viewpoint, Beijing has made significant progress in emissions reduction through technological innovation, industrial structure adjustment, promoting energy efficiency and utilization of renewable energy, and absorption of CO2 using forest and wetland, since bidding for Olympic Games. At the same time, energy conservation and emissions reduction measures taken in the construction of Beijing Olympic stadiums just incarnate the Beijing Green Olympics. Using the Beijing Olympic Games as a turning-point, adopting energy conservation and emissions reduction measures, Beijing will make contributions to reduction of greenhouse gases and slowing down climate changes and Beijing Olympic Games will leave behind an inheritance for future generations to enjoy

  5. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution.

    Science.gov (United States)

    Eisted, Rasmus; Larsen, Anna W; Christensen, Thomas H

    2009-11-01

    The collection, transfer and transport of waste are basic activities of waste management systems all over the world. These activities all use energy and fuels, primarily of fossil origin. Electricity and fuel consumptions of the individual processes were reviewed and greenhouse gases (GHG) emissions were quantified. The emission factors were assigned a global warming potential (GWP) and aggregated into global warming factors (GWFs), which express the potential contribution to global warming from collection, transport and transfer of 1 tonne of wet waste. Six examples involving collection, transfer and transport of waste were assessed in terms of GHG emissions, including both provision and use of energy. (GHG emissions related to production, maintenance and disposal of vehicles, equipment, infrastructure and buildings were excluded.) The estimated GWFs varied from 9.4 to 368 kg CO(2)-equivalent (kg CO(2)-eq.) per tonne of waste, depending on method of collection, capacity and choice of transport equipment, and travel distances. The GHG emissions can be reduced primarily by avoiding transport of waste in private cars and by optimization of long distance transport, for example, considering transport by rail and waterways. PMID:19808734

  6. Effect of increasing greenhouse gases on Indian monsoon rainfall as downscaled from the ECHAM coupled model

    International Nuclear Information System (INIS)

    It is more or less accepted that the increasing anthropogenic gases will result in global warming through the greenhouse effect. The major influence of this will be felt in the form of ice melts and rising sea levels. The influence on regional climates like monsoons is not very clear. Since the monsoons arise due to surface heating, one would expect that global warming will lead to more vigorous monsoons. The expected change in a climate parameter can be studied by analyzing the historical data and then extrapolating in time. Alternatively, one can use the state-of-the-art coupled GCMs which are able to simulate the earth's climate with reasonable accuracy. Both methods have some limitations. The first method cannot adequately consider the nonlinearity, and the second method may not be efficient for regional scales. So that the projections can be trusted, the regional features should be well simulated. None of the current models are able to simulate the Indian monsoon satisfactorily. Therefore it is desirable to infer the expected change in monsoons from other large and near global scale features which are better simulated. This approach, which depends on the concurrent association between a large-scale modeled feature and a regional scale, is known as downscaling, after Storch et al., and is adopted here to project the Indian monsoon rainfall for the next 100 years from the ECHAM T21 coupled model

  7. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model

    International Nuclear Information System (INIS)

    When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions

  8. Information on non-CO2 greenhouse gases in BANS II; Informatiedocument Niet-CO2 Broeikasgassen in BANS II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-12-15

    Next to CO2, nitrous oxide (N20), methane (CH4) and fluoridated greenhouse gases are responsible for one fifth of the climate problem. This fact sheet informs policy officers in municipalities and provinces about what they can do to decrease the emissions of non CO2 greenhouse gases in their province or municipality. [mk]. [Dutch] Naast CO2 dragen ook lachgas (N2O), methaan (CH4) en gefluoreerde broeikasgassen (PFK, HFK en SF6) bij aan de opwarming van de aarde. Deze niet CO2-broeikasgassen zijn verantwoordelijk voor ongeveer een vijfde deel van het klimaatprobleem. In dit factsheet wordt beleidsmedewerker klimaat en energie in gemeenten en provincies uitgelegd wat men kan doen om de emissie van niet CO2-broeikasgassen in hun provincie of gemeente te verlagen.

  9. Energy Consumption and Greenhouse Gases Emission form Canned Fish Production in Iran a Case Study: Khuzestan Province

    OpenAIRE

    Abbas Asakereh; Asadalah Akram; Shahin Rafiee; Afshin Marzban

    2010-01-01

    Energy is a fundamental ingredient in the process of economic development, as it provides essential services that maintain economic activity and the quality of human life but intensive use of it causes problems threatening public health and environment. The aim of this study was to evaluate energy consumption and greenhouse gases emission from canned fish production in the Khuzestan province, Iran, to determine the losing energy factors and pollutant emission. In this research, canneries, con...

  10. Comparison of gas-solid chromatography and MM2 force field molecular binding energies for greenhouse gases on a carbonaceous surface.

    Science.gov (United States)

    Rybolt, Thomas R; Bivona, Kevin T; Thomas, Howard E; O'Dell, Casey M

    2009-10-01

    Gas-solid chromatography was used to determine B(2s) (gas-solid virial coefficient) values for eight molecular adsorbates interacting with a carbon powder (Carbopack B, Supelco). B(2s) values were determined by multiple size variant injections within the temperature range of 313-553 K. The molecular adsorbates included: carbon dioxide (CO(2)); tetrafluoromethane (CF(4)); hexafluoroethane (C(2)F(6)); 1,1-difluoroethane (C(2)H(4)F(2)); 1-chloro-1,1-difluoroethane (C(2)H(3)ClF(2)); dichlorodifluoromethane (CCl(2)F(2)); trichlorofluoromethane (CCl(3)F); and 1,1,1-trichloroethane (C(2)H(3)Cl(3)). Two of these molecules are of special interest because they are "super greenhouse gases". The global warming potential, GWP, for CF(4) is 6500 and for C(2)F(6) is 9200 relative to the reference value of 1 for CO(2). The GWP index considers both radiative blocking and molecular lifetime. For these and other industrial greenhouse gases, adsorptive trapping on a carbonaceous solid, which depends on molecule-surface binding energy, could avoid atmospheric release. The temperature variations of the gas-solid virial coefficients in conjunction with van't Hoff plots were used to find the experimental adsorption energy or binding energy values (E(*)) for each adsorbate. A molecular mechanics based, rough-surface model was used to calculate the molecule-surface binding energy (Ecal(*)) using augmented MM2 parameters. The surface model consisted of parallel graphene layers with two separated nanostructures each containing 17 benzene rings arranged in linear strips. The separation of the parallel nanostructures had been optimized in a prior study to appropriately represent molecule-surface interactions for Carbopack B. Linear regressions of E(*) versus Ecal(*) for the current data set of eight molecules and the same surface model gave E(*)=0.926 Ecal(*) and r(2)=0.956. A combined set of the current and prior Carbopack B adsorbates studied (linear alkanes, branched alkanes, cyclic alkanes, ethers, and halogenated hydrocarbons) gave a data set with 33 molecules and a regression of E(*)=0.991 Ecal(*) and r(2)=0.968. These results indicated a good correlation between the experimental and the MM2 computed molecule-surface binding energies. PMID:19560156

  11. Life cycle greenhouse gases and non-renewable energy benefits of kraft black liquor recovery

    International Nuclear Information System (INIS)

    The life cycle greenhouse gas (GHG) and fossil fuel benefits of black liquor recovery are analyzed. These benefits are due to the production of energy that can be used in the pulping process or sold, and the recovery of the pulping chemicals that would otherwise need to be produced from other resources. The fossil GHG emissions and non-renewable energy consumption of using black liquor in the kraft recovery system are approximately 90% lower than those for a comparable fossil fuel-based system. Across all scenarios, the systems relying on black liquor solids achieve a median reduction of approximately 140 kg CO2 eq./GJ of energy produced, compared to the systems relying on fossil fuels to provide the same energy and pulping chemical production functions. The benefits attributable to the recovery of pulping chemicals vary from 44% to 75% of the total benefit. Applied to the total production of kraft pulp in the U.S., the avoided emissions are equivalent to the total Scopes 1 and 2 emissions from the entire U.S. forest products industry. These results do not depend on the accounting method for biogenic carbon (because biogenic CO2 emissions are the same for the systems compared) and the results are valid across a range of assumptions about the displaced fossil fuel, the GHG-intensity of the electricity grid, the fossil fuels used in the lime kiln, and the level of cogeneration at pulp and paper mills. The benefits occur without affecting the amount of wood harvested or the amount of chemical pulp produced. -- Highlights: ? Black liquor, a by-product of kraft pulping, represents about half of the energy used in the paper industry. ? The greenhouse gases (GHG) benefits of black liquor recovery compared to an equivalent fossil fuel system were analyzed. ? The GHG emissions of the black liquor system are approximately 90% lower than those for the fossil fuel system. ? The benefits from the recovery of the chemicals vary from 44% to 75% of the total benefit. ? These avoided emissions are equivalent to the total Scope 1 and 2 emissions from the U.S. forest products industry.

  12. Proceedings of the International Workshop on Sustainable ForestManagement: Monitoring and Verification of Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye (Ed.), Jayant; Makundi (Ed.), Willy; Goldberg (Ed.),Beth; Andrasko (Ed.), Ken; Sanchez (Ed.), Arturo

    1997-07-01

    The International Workshop on Sustainable Forest Management: Monitoring and Verification of Greenhouse Gases was held in San Jose, Costa Rica, July 29-31, 1996. The main objectives of the workshop were to: (1) assemble key practitioners of forestry greenhouse gas (GHG) or carbon offset projects, remote sensing of land cover change, guidelines development, and the forest products certification movement, to offer presentations and small group discussions on findings relevant to the crucial need for the development of guidelines for monitoring and verifying offset projects, and (2) disseminate the findings to interested carbon offset project developers and forestry and climate change policy makers, who need guidance and consistency of methods to reduce project transaction costs and increase probable reliability of carbon benefits, at appropriate venues. The workshop brought together about 45 participants from developed, developing, and transition countries. The participants included researchers, government officials, project developers, and staff from regional and international agencies. Each shared his or her perspectives based on experience in the development and use of methods for monitoring and verifying carbon flows from forest areas and projects. A shared sense among the participants was that methods for monitoring forestry projects are well established, and the techniques are known and used extensively, particularly in production forestry. Introducing climate change with its long-term perspective is often in conflict with the shorter-term perspective of most forestry projects and standard accounting principles. The resolution of these conflicts may require national and international agreements among the affected parties. The establishment of guidelines and protocols for better methods that are sensitive to regional issues will be an important first step to increase the credibility of forestry projects as viable mitigation options. The workshop deliberations led to three primary outputs: (1) a Workshop Statement in the JI Quarterly, September, 1996; (2) the publication of a series of selected peer-reviewed technical papers from the workshop in a report of the Lawrence Berkeley National Laboratory (LBNL. 40501); and (3) a special issue of the journal ''Mitigation and Adaptation Strategies for Global Change'', Kluwer Academic Publishers. The outputs will be distributed to practitioners in this field and to negotiators attending the Framework Convention on Climate Change (FCCC) deliberations leading up to the Third conference of Parties in Kyoto, in December 1997.

  13. Mobility as a territorial key factor in the emission of greenhouse gases; La movilidad como factor territorial dominante en la emision de gases de efecto invernadero

    Energy Technology Data Exchange (ETDEWEB)

    Crespo Garcia, L.; Montane Lopez, M. M.; Garcia Cortes, A.; Jimenez Arroyo, F.

    2011-07-01

    Transport and energy generation are the two dominant sectors in the overall balance of energy consumption, and thus of greenhouse gases emissions. Placement of energy generation plants responds to strategic reasons relate to energy supply in the Spanish territory, while transport is an economic activity tightly related to the productive structure and territorial characteristics: density of populations, geographic situation, efficient space organization, etc. The analysis of these factors enables to prioritize different strategies according the their energetic efficiency in order to pursue an economy less dependent of fossil fuels, focused in activities of higher added value and that keeps in mind limits and strengths of Spanish reality. (Author) 9 refs.

  14. Inventory of greenhouse gases at the municipality level. Description of calculation methods; Denmark; Drivhusgasopgoerelse paa kommuneniveau. Beskrivelse af beregningsmetoder

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Gyldenkaerne, S.; Lyck, E.; Thomsen, Marianne; Hoffmann, L.; Fauser, P.

    2009-02-15

    This report includes a description of methodologies, data and algorithms behind the inventories of greenhouse gases at the municipality level divided into sectors. The starting point for the sectors in this report is the sectors used for the official Danish emission inventories. A simplified generalization of the equations used in emission calculations is based on the assumption that emissions of a given activity is estimated using data descriptive for the size of the activity multiplied by an emission factor pr unit of activity. Emissions of CH{sub 4} and N{sub 2}O are converted to CO{sub 2} equivalents. In this project this generalization and these conversions are also the basis for all methodologies. The sectors included in this report are: the collective power and heating, individual heating, mobile sources, transportation and machinery, industrial processes, solvents, agriculture, land use and waste depositing and wastewater. The methods include calculations of the greenhouse gases that are most important for the sectors. The importance is estimated from the national emission inventory. This report covers methodologies for the greenhouse gases CO{sub 2}, CH{sub 4} and N{sub 2}O. Due to the mentioned importance criteria for some sectors not all greenhouse gases are included. As for the national inventories the calculation is built into several levels (Tiers) with increased requirements for municipalities regarding data. Tier 1 is mainly based on the Danish national greenhouse gas inventory data using appropriate distribution keys for a given activity into municipality level. Tier 2 is more detailed and includes emission factors used in the Danish national greenhouse gas inventories, for some sectors the emission factors are aggregated, while municipalities can enter their own activity data. At Tier 3, which is the most detailed level, there is - for some sectors - the opportunity to enter municipality specific emission factors and activity data. For other sectors Tier 3 is a further disaggregation of emission factors compared to Tier 2. Each municipality may use different tiers for different sectors depending on the data availability. (au)

  15. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    Science.gov (United States)

    Morgan, E. J.; Lavri?, J. V.; Seifert, T.; Chicoine, T.; Day, A.; Gomez, J.; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E. G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R. L.; Schmidt, S.; Manning, A. C.; Heimann, M.

    2015-02-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated, continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a working tank.

  16. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    Directory of Open Access Journals (Sweden)

    E. J. Morgan

    2015-02-01

    Full Text Available A new coastal background site has been established for observations of greenhouse gases (GHGs in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated, continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA. Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS; nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS. Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a working tank.

  17. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    Science.gov (United States)

    Morgan, E. J.; Lavri?, J. V.; Seifert, T.; Chicoine, T.; Day, A.; Gomez, J.; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E. G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R. L.; Schmidt, S.; Manning, A. C.; Heimann, M.

    2015-06-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a reference cylinder.

  18. Potential of native forests for the mitigation of greenhouse gases in Salta, Argentina

    International Nuclear Information System (INIS)

    Carbon stocks were assessed in three archetypal forest ecosystems in the province of Salta, Argentina, namely Yungas, Chaco, and shrublands located around Chaco. Over a total area of about 7000 m2, detailed measurements of woody biomass were conducted using structural information such as diameter at breast height (dbh), total height, and stem height. At the same time, the wet weight of herbaceous, shrubs, and litter was registered within that area. Soil samples were also collected to determine parameters such as bulk density and organic carbon. The above-ground tree biomass (AGB) was quantified by two non-destructive methods. This biomass was expressed from each reservoir studied in t.ha-1 and the carbon content was then calculated using a factor of 0.5. Carbon stocks in the ecosystems studied were 162, 92, and 48 tC.ha-1 for Yungas, Chaco, and shrublands, respectively. Our results show that carbon is concentrated in the soil or as AGB. The latter is the most important reservoir in Yungas, while the soil plays this role in the other two, drier environments. In the province of Salta, native forests play a significant role in the mitigation of greenhouse gases. Our results reveal the magnitude of carbon stocks in some characteristic regional native forests, and estimate their carbon sequestration potential. These results could be useful to inform policy makers in charge of negotiations related to conservation and sustainable management of native forests, and be a relevant input for the formulation of more comprehensive land use planning processes in the region. -- Highlights: ? We assessed carbon stocks in forest ecosystems in the province of Salta, Argentina. ? The studied areas are located within ecosystems called Yungas, Chaco and shrublands. ? Main carbon reservoirs in all ecosystems were found in above-ground tree biomass and soil. ? Carbon stocks could be restored, maintained or increased with forest management. ? We conclude that the studied forests have a high potential for the mitigation of GHG.

  19. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models

    Science.gov (United States)

    Iacono, Michael J.; Delamere, Jennifer S.; Mlawer, Eli J.; Shephard, Mark W.; Clough, Shepard A.; Collins, William D.

    2008-07-01

    A primary component of the observed recent climate change is the radiative forcing from increased concentrations of long-lived greenhouse gases (LLGHGs). Effective simulation of anthropogenic climate change by general circulation models (GCMs) is strongly dependent on the accurate representation of radiative processes associated with water vapor, ozone, and LLGHGs. In the context of the increasing application of the Atmospheric and Environmental Research, Inc. (AER), radiation models within the GCM community, their capability to calculate longwave and shortwave radiative forcing for clear sky scenarios previously examined by the radiative transfer model intercomparison project (RTMIP) is presented. Forcing calculations with the AER line-by-line (LBL) models are very consistent with the RTMIP line-by-line results in the longwave and shortwave. The AER broadband models, in all but one case, calculate longwave forcings within a range of -0.20 to 0.23 W m-2 of LBL calculations and shortwave forcings within a range of -0.16 to 0.38 W m-2 of LBL results. These models also perform well at the surface, which RTMIP identified as a level at which GCM radiation models have particular difficulty reproducing LBL fluxes. Heating profile perturbations calculated by the broadband models generally reproduce high-resolution calculations within a few hundredths K d-1 in the troposphere and within 0.15 K d-1 in the peak stratospheric heating near 1 hPa. In most cases, the AER broadband models provide radiative forcing results that are in closer agreement with high-resolution calculations than the GCM radiation codes examined by RTMIP, which supports the application of the AER models to climate change research.

  20. Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis

    International Nuclear Information System (INIS)

    Input-output modeling of primary energy and greenhouse gas embodiments in goods and services is a useful technique for designing greenhouse gas abatement policies. The present paper describes direct and indirect primary energy and greenhouse gas requirements for a given set of Australian final consumption. It considers sectoral disparities in energy prices, capital formation and international trade flows and it accounts for embodiments in the Gross National Expenditure as well as the Gross Domestic Product. Primary energy and greenhouse gas intensities in terms of MJ/$ and kg CO2-e/$ are reported, as well as national balance of primary energy consumption and greenhouse gas emissions. (author)

  1. Man -made greenhouse gases trigger unified force to start global warming impacts referred to as climate change

    International Nuclear Information System (INIS)

    Global warming problems due to man-made greenhouse gases (GHGs), appear to be a serious concern and threat to the globe. CO/sub 2/, O/sub 3, NOx and HFC's are the main greenhouse gases and CO/sub 2/ is one of the main cause of global warming. CO/sub 2/ is emitted from burning fossil fuels to produce electricity from power plants and burning of gasoline in vehicles and airplanes. Global greenhouse gases and its sources in regions are discussed in this paper. This paper initially discusses the CO/sub 2/ emissions and the recycle of CO/sub 2/ in biodiesel. This paper mainly focuses on 'Unified Force'. The increase of H/sub 2/O in the sea due to warming of the globe triggers the 'Unified Force' or 'Self-Compressive Surrounding Pressure Force' which is proportional to the H/sub 2/O level in the sea to start global warming impacts referred to as climate change. This paper also points out the climate change and the ten surprising results of global warming. Finally, this paper suggests switching from fossil fuel technology to green energy technologies like biodiesel which recycles CO/sub 2/ emissions and also Hydrogen Energy and Fuel Cell Technologies which eradicates global warming impacts. The benefits of switching from fossil fuel to biodiesel and Hydrogen Energy utilization includes reduction of greenhouse gas emissions and pollution, economic independence by having distributed production and burning of biodiesel does not add extra CO/sub 2/ to the air that contributes gla CO/sub 2/ to the air that contributes global warming impacts. (author)

  2. Catching the role of anisotropic electronic distribution and charge transfer in halogen bonded complexes of noble gases

    Science.gov (United States)

    Bartocci, Alessio; Belpassi, Leonardo; Cappelletti, David; Falcinelli, Stefano; Grandinetti, Felice; Tarantelli, Francesco; Pirani, Fernando

    2015-05-01

    The systems studied in this work are gas-phase weakly bound adducts of the noble-gas (Ng) atoms with CCl4 and CF4. Their investigation was motivated by the widespread current interest for the intermolecular halogen bonding (XB), a structural motif recognized to play a role in fields ranging from elementary processes to biochemistry. The simulation of the static and dynamic behaviors of complex systems featuring XB requires the formulation of reliable and accurate model potentials, whose development relies on the detailed characterization of strength and nature of the interactions occurring in simple exemplary halogenated systems. We thus selected the prototypical Ng-CCl4 and Ng-CF4 and performed high-resolution molecular beam scattering experiments to measure the absolute scale of their intermolecular potentials, with high sensitivity. In general, we expected to probe typical van der Waals interactions, consisting of a combination of size (exchange) repulsion with dispersion/induction attraction. For the He/Ne-CF4, the analysis of the glory quantum interference pattern, observable in the velocity dependence of the integral cross section, confirmed indeed this expectation. On the other hand, for the He/Ne/Ar-CCl4, the scattering data unravelled much deeper potential wells, particularly for certain configurations of the interacting partners. The experimental data can be properly reproduced only including a shifting of the repulsive wall at shorter distances, accompanied by an increased role of the dispersion attraction, and an additional short-range stabilization component. To put these findings on a firmer ground, we performed, for selected geometries of the interacting complexes, accurate theoretical calculations aimed to evaluate the intermolecular interaction and the effects of the complex formation on the electron charge density of the constituting moieties. It was thus ascertained that the adjustments of the potential suggested by the analysis of the experiments actually reflect two chemically meaningful contributions, namely, a stabilizing interaction arising from the anisotropy of the charge distribution around the Cl atom in CCl4 and a stereospecific electron transfer that occurs at the intermolecular distances mainly probed by the experiments. Our model calculations suggest that the largest effect is for the vertex geometry of CCl4 while other geometries appear to play a minor to negligible role.

  3. Catching the role of anisotropic electronic distribution and charge transfer in halogen bonded complexes of noble gases.

    Science.gov (United States)

    Bartocci, Alessio; Belpassi, Leonardo; Cappelletti, David; Falcinelli, Stefano; Grandinetti, Felice; Tarantelli, Francesco; Pirani, Fernando

    2015-05-14

    The systems studied in this work are gas-phase weakly bound adducts of the noble-gas (Ng) atoms with CCl4 and CF4. Their investigation was motivated by the widespread current interest for the intermolecular halogen bonding (XB), a structural motif recognized to play a role in fields ranging from elementary processes to biochemistry. The simulation of the static and dynamic behaviors of complex systems featuring XB requires the formulation of reliable and accurate model potentials, whose development relies on the detailed characterization of strength and nature of the interactions occurring in simple exemplary halogenated systems. We thus selected the prototypical Ng-CCl4 and Ng-CF4 and performed high-resolution molecular beam scattering experiments to measure the absolute scale of their intermolecular potentials, with high sensitivity. In general, we expected to probe typical van der Waals interactions, consisting of a combination of size (exchange) repulsion with dispersion/induction attraction. For the He/Ne-CF4, the analysis of the glory quantum interference pattern, observable in the velocity dependence of the integral cross section, confirmed indeed this expectation. On the other hand, for the He/Ne/Ar-CCl4, the scattering data unravelled much deeper potential wells, particularly for certain configurations of the interacting partners. The experimental data can be properly reproduced only including a shifting of the repulsive wall at shorter distances, accompanied by an increased role of the dispersion attraction, and an additional short-range stabilization component. To put these findings on a firmer ground, we performed, for selected geometries of the interacting complexes, accurate theoretical calculations aimed to evaluate the intermolecular interaction and the effects of the complex formation on the electron charge density of the constituting moieties. It was thus ascertained that the adjustments of the potential suggested by the analysis of the experiments actually reflect two chemically meaningful contributions, namely, a stabilizing interaction arising from the anisotropy of the charge distribution around the Cl atom in CCl4 and a stereospecific electron transfer that occurs at the intermolecular distances mainly probed by the experiments. Our model calculations suggest that the largest effect is for the vertex geometry of CCl4 while other geometries appear to play a minor to negligible role. PMID:25978888

  4. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results

    Directory of Open Access Journals (Sweden)

    O. Schneising

    2011-10-01

    Full Text Available SCIAMACHY onboard ENVISAT (launched in 2002 enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4. In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling.

    It is shown that there are generally no significant differences between the SCIAMACHY and CarbonTracker carbon dioxide annual increases (2.00 ± 0.16 ppm yr?1 compared to 1.94 ± 0.03 ppm yr?1 on global average. The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision of about 2.2 ppm and a relative accuracy of 1.1–1.2 ppm for monthly average composites within a radius of 500 km.

    For methane, prior to November 2005, the regional relative precision amounts to 12 ppb and the relative accuracy is about 3 ppb with respect to model simulations for monthly composite averages within the same radius. The loss of some spectral detector pixels results in a degradation of performance thereafter in the spectral range currently used for the methane column retrieval. This leads to larger scatter and less methane retrieved in the tropics for the subsequent time period degrading the relative accuracy. As a result, the overall relative precision is estimated to be 17 ppb and the relative accuracy is in the range of about 10–20 ppb for monthly averages within a radius of 500 km.

    The derived estimates show that the SCIAMACHY XCH4 data set before November 2005 is suitable for regional source/sink determination via inverse modelling worldwide. In addition, the XCO2 monthly data potentially provide valuable information in continental regions, where there is sparse sampling by surface flask measurements.

  5. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results

    Directory of Open Access Journals (Sweden)

    O. Schneising

    2012-02-01

    Full Text Available SCIAMACHY onboard ENVISAT (launched in 2002 enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4. In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling.

    It is shown that there are generally no significant differences between the carbon dioxide annual increases of SCIAMACHY and the assimilation system CarbonTracker (2.00 ± 0.16 ppm yr?1 compared to 1.94 ± 0.03 ppm yr?1 on global average. The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant for a subset of the analysed TCCON sites when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision (mean standard deviation of the differences of about 2.2 ppm and a relative accuracy (standard deviation of the mean differences of 1.1–1.2 ppm for monthly average composites within a radius of 500 km.

    For methane, prior to November 2005, the regional relative precision amounts to 12 ppb and the relative accuracy is about 3 ppb for monthly composite averages within the same radius. The loss of some spectral detector pixels results in a degradation of performance thereafter in the spectral range currently used for the methane column retrieval. This leads to larger scatter and lower XCH4 values are retrieved in the tropics for the subsequent time period degrading the relative accuracy. As a result, the overall relative precision is estimated to be 17 ppb and the relative accuracy is in the range of about 10–20 ppb for monthly averages within a radius of 500 km.

    The derived estimates show that the SCIAMACHY XCH4 data set before November 2005 is suitable for regional source/sink determination and regional-scale flux uncertainty reduction via inverse modelling worldwide. In addition, the XCO2 monthly data potentially provide valuable information in continental regions, where there is sparse sampling by surface flask measurements.

  6. O(1D) kinetic study of key ozone depleting substances and greenhouse gases.

    Science.gov (United States)

    Baasandorj, Munkhbayar; Fleming, Eric L; Jackman, Charles H; Burkholder, James B

    2013-03-28

    A key stratospheric loss process for ozone depleting substances (ODSs) and greenhouse gases (GHGs) is reaction with the O((1)D) atom. In this study, rate coefficients, k, for the O((1)D) atom reaction were measured for the following key halocarbons: chlorofluorocarbons (CFCs) CFCl3 (CFC-11), CF2Cl2 (CFC-12), CFCl2CF2Cl (CFC-113), CF2ClCF2Cl (CFC-114), CF3CF2Cl (CFC-115); hydrochlorofluorocarbons (HCFCs) CHF2Cl (HCFC-22), CH3CClF2 (HCFC-142b); and hydrofluorocarbons (HFCs) CHF3 (HFC-23), CHF2CF3 (HFC-125), CH3CF3 (HFC-143a), and CF3CHFCF3 (HFC-227ea). Total rate coefficients, kT, corresponding to the loss of the O((1)D) atom, were measured over the temperature range 217-373 K using a competitive reactive technique. kT values for the CFC and HCFC reactions were >1 × 10(-10) cm(3) molecule(-1) s(-1), except for CFC-115, and the rate coefficients for the HFCs were in the range (0.095-0.72) × 10(-10) cm(3) molecule(-1) s(-1). Rate coefficients for the CFC-12, CFC-114, CFC-115, HFC-23, HFC-125, HFC-143a, and HFC-227ea reactions were observed to have a weak negative temperature dependence, E/R ? -25 K. Reactive rate coefficients, kR, corresponding to the loss of the halocarbon, were measured for CFC-11, CFC-115, HCFC-22, HCFC-142b, HFC-23, HFC-125, HFC-143a, and HFC-227ea using a relative rate technique. The reactive branching ratio obtained was dependent on the composition of the halocarbon and the trend in O((1)D) reactivity with the extent of hydrogen and chlorine substitution is discussed. The present results are critically compared with previously reported kinetic data and the discrepancies are discussed. 2D atmospheric model calculations were used to evaluate the local and global annually averaged atmospheric lifetimes of the halocarbons and the contribution of O((1)D) chemistry to their atmospheric loss. The O((1)D) reaction was found to be a major global loss process for CFC-114 and CFC-115 and a secondary global loss process for the other molecules included in this study. PMID:23441917

  7. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    Directory of Open Access Journals (Sweden)

    D. A. Plummer

    2010-09-01

    Full Text Available A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs and Ozone Depleting Substances (ODSs. The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHG-related effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the residual circulation of the atmosphere and chemical effects from CO2 cooling more than halve the increase in reactive nitrogen in the mid to upper stratosphere that results from the specified increase in N2O between 1950 and 2100.

  8. Ecosystem Metabolism and Air-Water Fluxes of Greenhouse Gases in High Arctic Wetland Ponds

    Science.gov (United States)

    Lehnherr, I.; Venkiteswaran, J.; St. Louis, V. L.; Emmerton, C.; Schiff, S. L.

    2012-12-01

    Freshwater lakes and wetlands can be very productive systems on the Arctic landscape compared to terrestrial tundra ecosystems and provide valuable resources to many organisms, including waterfowl, fish and humans. Rates of ecosystem productivity dictate how much energy flows through food webs, impacting the abundance of higher-level organisms (e.g., fish), as well as the net carbon balance, which determines whether a particular ecosystem is a source or sink of carbon. Climate change is predicted to result in warmer temperatures, increased precipitation and permafrost melting in the Arctic and is already altering northern ecosystems at unprecedented rates; however, it is not known how freshwater systems are responding to these changes. To predict how freshwater systems will respond to complex environmental changes, it is necessary to understand the key processes, such as primary production and ecosystem respiration, that are driving these systems. We sampled wetland ponds (n=8) and lakes (n=2) on northern Ellesmere Island (81° N, Nunavut, Canada) during the open water season for a suite of biogeochemical parameters, including concentrations of dissolved gases (O2, CO2, CH4, N2O) as well as stable-isotope ratios of dissolved inorganic carbon (?13C-DIC), dissolved oxygen (?18O-DO), and water (?18O-H2O). We will present rates of primary production and ecosystem respiration, modeled from the concentration and stable isotope ratios of DIC and DO, as well as air-water gas exchange of greenhouse gases in these high Arctic ponds and lakes. Preliminary results demonstrate that ecosystem metabolism in these ponds was high enough to result in significant deviations in the isotope ratios of DIC and DO from atmospheric equilibrium conditions. In other words ecosystem rates of primary production and respiration were faster than gas exchange even in these small, shallow, well-mixed ponds. Furthermore, primary production was elevated enough at all sites except Lake Hazen, a large cold ultra-oligotrophic lake, to result in a shift in the ?18O of DO towards more depleted values. Two of the ponds also exhibited enriched ?13C-DIC indicative of high rates of DIC uptake and primary production. However most sites appear to be net heterotrophic systems, with the exception of a few net autotrophic ponds. Interestingly, due to the high DIC concentrations in pond waters, ?13C-DIC values are reflective of ecosystem metabolism on a somewhat longer time scale than ?18O-DO values, which might be useful for examining temporal changes in production and respiration. Finally, most ponds were sources of both CO2 and CH4 to the atmosphere, but were surprisingly under-saturated with respect to N2O, demonstrating that they are sinks for atmospheric N2O. Rates of N2O consumption (denitrification) were modeled from concentration-time data and ranged from <0.1 to 1.1 nmol L-1 h-1.

  9. Greenhouse gases mitigation against climate change: United States-Mexico border study case

    Scientific Electronic Library Online (English)

    N., SANTILLÁN SOTO; O. R., GARCÍA CUETO; S., OJEDA BENÍTEZ; N., VELÁZQUEZ LIMÓN; M., QUINTERO NÚÑEZ; M., SCHORR.

    2013-10-01

    Full Text Available La radiación solar es una de las fuentes de energía más importantes de nuestro planeta. El interés por su uso como energía renovable y limpia para mitigar los efectos de los gases de efecto invernadero (GEI) se ha incrementado de manera significativa. Este artículo presenta una evaluación de las med [...] iciones de radiación solar y la estimación del potencial energético, así como una comparación de ambas, como ejemplo del esfuerzo para reducir los GEI. Las mediciones fueron realizadas con piranómetros instalados en la ciudad de Mexicali, Baja California, localizada en el noroeste de México, y en la ciudad de Yuma, Arizona, en el suroeste de EUA, que están separadas por una distancia de 96 km. Ambas ciudades muestran un desarrollo sostenido y características climáticas similares con numerosos días soleados, elevadas temperaturas extremas y escasa precipitación. Los resultados muestran diferencias tanto en su comportamiento como en las mediciones de radiación solar global, especialmente durante las estaciones críticas primavera y verano, con valores 15.73% (0.042 KW/m²) superiores en Mexicali con respecto a Yuma a pesar a pesar de su cercanía. Esto indica que los flujos de mesoescala parecen dominar los sistemas sinópticos prevalentes en la región. Se estima el potencial energético, y se analiza con algunas variables como radiación solar global, precipitación, temperatura del aire, humedad relativa y climatología de los días claros, parcialmente nublados y nublados. Con esto se estima la energía proyectada para Mexicali en caso de que se utilizara el recurso solar, y se calcula que se evitarían 291 ton de GEI. Los valores de energía potencial obtenidos en Mexicali son mayores que los registrados en Yuma, por lo que este estudio comparativo de radiación solar y energía contribuye al desarrollo de estas tecnologías en México. Los resultados de las mediciones en la región demuestran la importancia de la estrategia propuesta para mitigar el cambio climático. Abstract in english Solar radiation is one of the most important energy resources of our planet. The interest in its use as a renewable and clean energy to mitigate the greenhouse gases (GHG) effects has increased significantly. This paper evaluates the measurements of global solar radiation and its energy potential an [...] d presents a comparison between both of them, as an example of the effort to reduce GHG emissions. The measurements were made with pyranometers installed in the city of Mexicali, Baja California, located in northwestern Mexico, and the city of Yuma, Arizona, located in the southwestern United States. Separated by a distance of 96 km, both cities have a sustained development and are climatically similar, since they present numerous sunny days, extreme hot temperatures and little precipitation. The results presented show differences in their behavior and in the solar radiation measurement values, especially for the critical spring and summer seasons, with values 15.73% (0.042 kW/m²) higher in Mexicali with respect to Yuma. Energy power is estimated, and it is discussed with some variables as global solar radiation, rainfall, air temperature, relative humidity and climatology of clear, partly cloudy, and cloudy days. With this estimation, the solar energy used and GHG avoided is projected for Mexicali. It is assessed that 291 tons of GHG are prevented. The Mexicali values of potential energy are higher than those of Yuma; therefore, this solar and energy comparative study provides reasons to develop these technologies in Mexico, but solar technologies should be deployed also in Yuma. The measured data at the regional level demonstrate their importance, and the relevance of the proposed mitigation strategy for climate change.

  10. Comportamiento de los gases de efecto invernadero y las temperaturas atmosféricas con sus escenarios de incremento potencial / Behavior of greenhouse gases and atmospheric temperatures with increased potential scenarios

    Scientific Electronic Library Online (English)

    María de Lourdes, Olivo; Alejandra, Soto-Olivo.

    2010-12-01

    Full Text Available En los últimos decenios se ha establecido que las actividades antropogénicas han incrementado las concentraciones de los gases de efecto invernadero en la atmósfera, así, la posibilidad de un cambio climático global se ha convertido en una preocupación real. El objetivo de la investigación es analiz [...] ar el comportamiento de las concentraciones de los principales gases de efecto invernadero (GEI), y el de las temperaturas atmosféricas, desde las épocas geológicas hasta la actualidad, con sus escenarios potenciales de incremento al año 2100, bajo varias hipótesis. Adicionalmente, se presentan sus potenciales impactos ambientales. El estudio consiste en una extensa investigación documental, realizada con el propósito de ampliar los conocimientos sobre el cambio climático antropogénico y sus impactos potenciales sobre el ecosistema humano, a fin de renovar el alerta a la comunidad científica y público en general. Se basa en la revisión y discusión de trabajos científicos recientes publicados por varios investigadores. Se concluye que las concentraciones globales de los principales GEI han aumentado como resultado de las actividades humanas, incidiendo en el aumento de la temperatura con impactos ambientales negativos. Se propone promover la participación ciudadana para lograr políticas a fin de enfrentar las consecuencias del cambio climático. Abstract in english In recent decades, it has been established that anthropogenic activities have increased concentrations of greenhouse gases in the atmosphere, so the possibility of global climate change has become a concern. The objective of this research is to analyze the behavior of the concentrations of major gre [...] enhouse gases and air temperatures from geological times to the present, with increased potential scenarios to 2100, under various hypotheses. Additionally, there are potential social and environmental impacts. The study consists of an extensive desk research, conducted with the aim of expanding knowledge about anthropogenic climate change and its impacts on the human ecosystem in order to renew the alert to the scientific community and general public. It is based on review and discussion of recent scientific papers published by various researchers. We conclude that global concentrations of the main greenhouse gases have increased as a result of human activities, focusing on increasing the temperature with negative environmental impacts. It aims to promote citizen participation to achieve policies to deal with the consequences of climate change.

  11. 75 FR 70254 - PSD and Title V Permitting Guidance for Greenhouse Gases

    Science.gov (United States)

    2010-11-17

    ...EPA-HQ-OAR-2010-0841; FRL-9228-2] PSD and Title V Permitting Guidance for Greenhouse...EPA has posted its guidance titled, ``PSD and Title V Permitting Guidance for Greenhouse...EPA's recently posted guidance titled, ``PSD and Title V Permitting Guidance for...

  12. Impact of rising greenhouse gases on mid-latitude storm tracks and associated hydroclimate variability and change

    Energy Technology Data Exchange (ETDEWEB)

    Seager, Richard

    2014-12-08

    Project Summary This project aimed to advance physical understanding of how and why the mid-latitude jet streams and storm tracks shift in intensity and latitude in response to changes in radiative forcing with an especial focus on rising greenhouse gases. The motivation, and much of the work, stemmed from the importance that these mean and transient atmospheric circulation systems have for hydroclimate. In particular drying and expansion of the subtropical dry zones has been related to a poleward shift of the mid-latitude jets and storm tracks. The work involved integrated assessment of observation and model projections as well as targeted model simulations.

  13. Method and system for reducing or eliminating the greenhouse-gas content of a gas or mixture of gases

    OpenAIRE

    García García, Ricardo; Zerbetto, Francesco

    2009-01-01

    The method comprises the use of an atomic force microscope (AFM) for the application of a high electric field (~10 V/nm) by means of the application of a corresponding moderate (10-100 V) voltage (V) across a point (P) of the microscope and a semiconductor or conducting substrate (S) between which there is a volume of greenhouse gas or mixture of gases (G) containing same, such as carbon dioxide or methane, the molecules of which are thus chemically activated and subsequently react with one a...

  14. The effects of blue energy on future emissions of greenhouse gases and other atmospheric pollutants in China

    OpenAIRE

    Gao, X; Kroeze, C.

    2012-01-01

    Blue energy is the electricity generated from salinity gradients in rivers. About half of the global electricity demand could be satisfied if the technical potential was implemented. However, the technique is not yet implemented in full-scale operational plants. We estimate the potential effects of blue energy on future emissions of CO2, non-CO2 greenhouse gases (CH4 and N2O) and other atmospheric pollutants in China, assuming it would replace coal in electricity and heat production. We focus...

  15. The national-economic cost of reduction of greenhouse gases emission. Comparison of investments aimed towards a reduced greenhouse gas emission in power industry, agriculture, transportation sector and other essential greenhouse gas sources

    International Nuclear Information System (INIS)

    For a number of years the cost of reducing CO2 emissions in the energy sector in Denmark has been investigated in detail. The same has not been the case what concerns the cost of reducing other greenhouse gases (CH4 and N2O) and especially not what concerns the possibilities of reducing greenhouse gases in other sectors in the Danish economy, i.e. agriculture, transport, industry, domestic waste and forestry. Thus, the objective of this project was twofold: 1) To calculate the national economic costs related to a number of options for reducing Danish greenhouse gas emissions (CO2, CH4 and N2O) by using the same methodology for all important sectors in the economy and 2) To compare the cost efficiency of these options not only wihtin the individual sectors but also across the sectoral boundaries to achieve an overall view of the reduction possibilities in society and the associated costs. (au) 80 refs.; Prepared by Forskningscenter Risoe and Danmarks Miljoeundersoegelser. Afdeling for Systemanalyse

  16. Good practices reducing the greenhouse gases in the transport sector; Buenas practicas en la reduccion de emisiones de gases de efecto invernadero en el sector del transporte

    Energy Technology Data Exchange (ETDEWEB)

    Crespo Garcia, L.; Garcia Cortes, A.; Jimenez Arroyo, F.; Montane Lopez, M. M.

    2010-07-01

    Public policies addressing the reduction of the greenhouse gases emission have to give response to the improvement of mobility in three aspects: passengers, freights, and urban and metropolitan areas. Passenger transport, because it involves long transportation distances consuming an important part of transport energy and raises difficult organizational problems. Freight transport, due to the complexity of interconnecting a lot of modes of transportation and the big range for improvement. Urban and metropolitan mobility, by the impact of actions in this field in the quality of life of a big part of the population. According to the peculiarities of their respective territories, different strategies of sustainable mobility that address the three considered aspects have been set up in Spain and its neighbouring countries. This article reviews some action lines implemented in spain, France and Germany, as a previous step to assess their possible adaptation to other territories. (Author) 6 refs.

  17. Fluxes of greenhouse gases CH4, CO2 and N2O on some peat mining areas in Finland

    International Nuclear Information System (INIS)

    The increase in concentration of greenhouse gases (CO2, CH4 and N2O) in atmosphere is associated with burning of fossil fuels and also changes in biogeochemistry due to land use activities. Virgin peatlands are globally important stores of carbon and sources of CH4. Peatland drainage changes the processes in carbon and nitrogen cycles responsible for the fluxes of CO2, CH4 and N2O. Preparing of peatlands for peat mining greatly change their biogeochemical processes. Effective drainage decreases water table and allows air to penetrate deep into peat profile. Aerobic conditions inhibit activities of anaerobic microbes, including the methanogens, whereas aerobic processes like methane oxidation are stimulated. Destruction of vegetation cover stops the carbon input to peat. In Finland the actual peat mining area is 0.05 x 106 hectares and further 0.03 x 106 hectares have been prepared or are under preparation for peat mining. The current total peatland area in the world used for mining is 0.94 x 106 ha and the area already mined is 1.15 x 106 ha. In this presentation fluxes of greenhouse gases (CH4, CO2 and N2O) on some mires under peat mining are reported and compared with those on natural mires and with the emissions from peat combustion. (15 refs.)

  18. Taxation of multiple greenhouse gases and the effects on income distribution. A case study of the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Kerkhof, Annemarie C.; Moll, Henri C. [Center for Energy and Environmental Studies IVEM, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Drissen, Eric; Wilting, Harry C. [The Netherlands Environmental Assessment Agency (MNP), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven (Netherlands)

    2008-09-15

    Current economic instruments aimed at climate change mitigation focus on CO{sub 2} emissions only, but the Kyoto Protocol refers to other greenhouse gases (GHG) as well as CO{sub 2}. These are CH{sub 4}, N{sub 2}O, HFCs, PFCs and SF{sub 6}. Taxation of multiple greenhouse gases improves the cost-effectiveness of climate change mitigation. It is not yet clear, however, what the effect is of multigas taxation on the distribution of the tax burden across income groups. This paper examines and compares distributional effects of a CO{sub 2} tax and a comprehensive tax that covers all six GHG of the Kyoto Protocol. The study concentrates on the Netherlands in the year 2000. We established tax rates on the basis of marginal abatement cost curves and the Dutch policy target. The distributional effects have been determined by means of environmentally extended input-output analysis and data on consumer expenditures. Our results show that taxation of multiple GHG improves not only the cost-effectiveness of climate change mitigation, but also distributes the tax burden more equally across income groups as compared to a CO{sub 2} tax. These findings are relevant for the debate on the role of non-CO{sub 2} GHG in climate change mitigation. (author)

  19. Cost effective method for valuation of impacts caused by greenhouse gases emissions for oil and gas companies; Metodo de custo-efetividade para avaliacao de impactos causados pelas emissoes de gases de efeito estufa em empresas de oleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Elisa Vieira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Barros, Sergio Ricardo da Silveira [Universidade Federal Fluminense (LATEC/UFF), Niteroi, RJ (Brazil). Mestrado em Sistemas de Gestao

    2012-07-01

    The objective of this work is to apply the method of cost-effectiveness in economic evaluation of new investment projects, based on information about reducing greenhouse gases emissions. In the context of the commitment of companies with the Climate Change and Sustainability, this work is important and contributes to the oil and gas industry, because it integrates information on reducing emissions of greenhouse gases in negative Net Present Value (NPV) projects, helping the portfolio manager on decision making between alternative projects. In this article, examples are given of two investment projects, in which the cost effectiveness methodology is applied, considering the reduction of emission of greenhouse gases such as additional environmental benefit, or cost avoidance, in an adjusted model of the economic viability analysis of meritorious projects. (author)

  20. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil.

    Science.gov (United States)

    Ahn, Jae-Hyung; Choi, Min-Young; Kim, Byung-Yong; Lee, Jong-Sik; Song, Jaekyeong; Kim, Gun-Yeob; Weon, Hang-Yeon

    2014-08-01

    The effects of water-saving irrigation on emissions of greenhouse gases and soil prokaryotic communities were investigated in an experimental rice field. The water layer was kept at 1-2 cm in the water-saving (WS) irrigation treatment and at 6 cm in the continuous flooding (CF) irrigation treatment. WS irrigation decreased CH(4) emissions by 78 % and increased N(2)O emissions by 533 %, resulting in 78 % reduction of global warming potential compared to the CF irrigation. WS irrigation did not affect the abundance or phylogenetic distribution of bacterial/archaeal 16S rRNA genes and the abundance of bacterial/archaeal 16S rRNAs. The transcript abundance of CH(4) emission-related genes generally followed CH(4) emission patterns, but the difference in abundance between mcrA transcripts and amoA/pmoA transcripts best described the differences in CH(4) emissions between the two irrigation practices. WS irrigation increased the relative abundance of 16S rRNAs and functional gene transcripts associated with Anaeromyxobacter and Methylocystis spp., suggesting that their activities might be important in emissions of the greenhouse gases. The N(2)O emission patterns were not reflected in the abundance of N(2)O emission-related genes and transcripts. We showed that the alternative irrigation practice was effective for mitigating greenhouse gas emissions from rice fields and that it did not affect the overall size and structure of the soil prokaryotic community but did affect the activity of some groups. PMID:24682309

  1. Assessment of the greenhouse gases in Mexico: Importance of the electric sector; Inventario de gases de invernadero en Mexico: Importancia del sector electrico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia [Instituto de Ingenieria, UNAM, Mexico, D. F. (Mexico)

    1996-12-31

    In this paper are presented the principal results of the various studies on energy end uses developed by the Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM Group of Energy and Environment) for years 1987 and 1993, emphasizing on the emissions originated by the generation of electricity and for the following greenhouse effect gases: carbon dioxide (CO{sub 2}), carbon monoxide (CO), nitrogen oxides (NOx) and methane (CH{sub 4}). Also, a comparison is presented among Mexico and other Latin America countries based on statistics of OLADE (Latin American Organization of Energy) [Espanol] En este trabajo se presentan los principales resultados de estudios diversos sobre usos finales de energia desarrollados por el Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM) para los anos 1987 y 1993, poniendo enfasis en las emisiones debidas a la generacion de electricidad y para los siguientes gases de efecto invernadero: bioxido de carbono (CO{sub 2}), monoxido de carbono (CO), oxidos de nitrogeno (NOx) y metano (HC{sub 4}). Asi mismo se presenta una comparacion entre Mexico y otros paises de Latinoamerica basado en estadisticas de la Organizacion Latinoamericana de Energia

  2. Shipboard monitoring of non-CO2 greenhouse gases in Asia and Oceania using commercially cargo vessels

    Science.gov (United States)

    Nara, H.; Tanimoto, H.; Mukai, H.; Nojiri, Y.; Tohjima, Y.; Machida, T.; Hashimoto, S.

    2011-12-01

    The National Institute for Environmental Studies (NIES) has been performing a long-term program for monitoring trace gases of atmospheric importance over the Pacific Ocean since 1995. The NIES Voluntary Observing Ships (NIES-VOS) program currently makes use of commercial cargo vessels because they operate regularly over fixed routes for long periods and sail over a wide area between various ports (e.g., between Japan and the United States, between Japan and Australia/New Zealand, and between Japan and southeast Asia). This program allows systematic and continuous measurements of non-CO2 greenhouse gases, providing long-term datasets for background air over the Pacific Ocean and regionally polluted air around east Asia. We observe both long-lived greenhouse gases (e.g., carbon dioxide) and short-lived air pollutants (e.g., tropospheric ozone, carbon monoxide) on a continuous basis. Flask samples are collected for later laboratory analysis of carbon dioxide, methane, nitrous oxide, and carbon monoxide by using gas chromatographic techniques. In addition, we recently installed cavity ringdown spectrometers for high-resolution measurement of methane and carbon dioxide to capture their highly variable features in regionally polluted air around southeast Asia (e.g., Hong Kong, Thailand, Singapore, Malaysia, Indonesia and Philippine), which is now thought to be a large source due to expanding socioeconomic activities as well as biomass burnings. Contrasting the Japan-Australia/New Zealand and Japan-southeast Asia cruises revealed regional characteristics of sources and sinks of these atmospherically important species, suggesting the existence of additional sources for methane, nitrous oxides, and carbon monoxide in this tropical Asian region.

  3. A influência dos gases estufa no oceano Atlântico Sul: estudo climatológico The effect of greenhouse gases on South Atlantic Ocean: a climatological study

    Directory of Open Access Journals (Sweden)

    Andréa S. Taschetto

    2003-01-01

    Full Text Available O presente trabalho tem como objetivo analisar os impactos climáticos no oceano Atlântico Sul causados pela industrialização e conseqüente aumento da emissão de gases estufa para a atmosfera. Para isso utilizou-se o modelo numérico acoplado National Center for Atmospheric Research - Community Climate System Model, sob duas condições climáticas: a primeira para o período pré-industrial e, a segunda, para o pós-industrial. Os resultados mostraram aquecimento da superfície do mar na climatologia do período pós-industrial em relação ao pré-industrial, principalmente durante a primavera quando alcança 2,5°C ao sul do continente sulamericano. O comportamento climatológico do transporte barotrópico e da pressão ao nível do mar também mostraram diferenças significativas de um período para o outro, sugerindo a intensificação da Alta Subtropical, Giro Subtropical e Corrente Circumpolar Antártica. Sazonalmente, as diferenças no transporte barotrópico foram maiores no outono, exibindo valores superiores a 25 Sv, em torno de 0°E, 55°S. A pressão atmosférica ao nível do mar foi levemente fortalecida no verão e outono, com intensificação máxima de 2mbar, e enfraquecida no inverno do período pré-industrial para a simulação do presente.The purpose of this study is to analyze the impact of the increase in greenhouse gases caused by the industrialization in the climate of the South Atlantic Ocean. We used the National Center for Atmospheric Research - Community Climate System Model. Two climate conditions were used to force the model, one relative to the pre-industrial levels of greenhouse gases emissions and the other to the levels of the present days. The results have shown a significant sea surface warming in pos-industrial climatology in relation to the pre-industrial one, mainly during the spring season when it reaches 2.5°C south of South America. The climatological behavior of the barotropic streamfunction and the sea level pressure also showed relevant differences from one period to the next. This suggests an intensification of the subtropical high, the subtropical gyre and the Antarctic Circumpolar Current. Seasonally, the differences in the barotropic streamfunction were larger in autumn with values as high as 25 Sv around 0°E, 55°S. The sea level pressure for present simulation shows a straightening in summer and autumn with an intensification of 2mbar, and a weakening in winter in relation to the pre-industrial period.

  4. A influência dos gases estufa no oceano Atlântico Sul: estudo climatológico / The effect of greenhouse gases on South Atlantic Ocean: a climatological study

    Scientific Electronic Library Online (English)

    Andréa S., Taschetto; Ilana, Wainer.

    Full Text Available O presente trabalho tem como objetivo analisar os impactos climáticos no oceano Atlântico Sul causados pela industrialização e conseqüente aumento da emissão de gases estufa para a atmosfera. Para isso utilizou-se o modelo numérico acoplado National Center for Atmospheric Research - Community Climat [...] e System Model, sob duas condições climáticas: a primeira para o período pré-industrial e, a segunda, para o pós-industrial. Os resultados mostraram aquecimento da superfície do mar na climatologia do período pós-industrial em relação ao pré-industrial, principalmente durante a primavera quando alcança 2,5°C ao sul do continente sulamericano. O comportamento climatológico do transporte barotrópico e da pressão ao nível do mar também mostraram diferenças significativas de um período para o outro, sugerindo a intensificação da Alta Subtropical, Giro Subtropical e Corrente Circumpolar Antártica. Sazonalmente, as diferenças no transporte barotrópico foram maiores no outono, exibindo valores superiores a 25 Sv, em torno de 0°E, 55°S. A pressão atmosférica ao nível do mar foi levemente fortalecida no verão e outono, com intensificação máxima de 2mbar, e enfraquecida no inverno do período pré-industrial para a simulação do presente. Abstract in english The purpose of this study is to analyze the impact of the increase in greenhouse gases caused by the industrialization in the climate of the South Atlantic Ocean. We used the National Center for Atmospheric Research - Community Climate System Model. Two climate conditions were used to force the mode [...] l, one relative to the pre-industrial levels of greenhouse gases emissions and the other to the levels of the present days. The results have shown a significant sea surface warming in pos-industrial climatology in relation to the pre-industrial one, mainly during the spring season when it reaches 2.5°C south of South America. The climatological behavior of the barotropic streamfunction and the sea level pressure also showed relevant differences from one period to the next. This suggests an intensification of the subtropical high, the subtropical gyre and the Antarctic Circumpolar Current. Seasonally, the differences in the barotropic streamfunction were larger in autumn with values as high as 25 Sv around 0°E, 55°S. The sea level pressure for present simulation shows a straightening in summer and autumn with an intensification of 2mbar, and a weakening in winter in relation to the pre-industrial period.

  5. Electric energy auctions in Brazil and its effect on emissions of greenhouse gases by the electric sector; Leiloes de energia eletrica no Brasil e sua influencia nas emissoes de gases de efeito estufa pelo setor eletrico

    Energy Technology Data Exchange (ETDEWEB)

    Alpire, Ricardo; Pereira, Osvaldo Livio Soliano [Universidade Salvador (UNIFACS), BA (Brazil)

    2010-07-01

    The result of the auctions of electricity, after the new regulatory framework in 2004, has shown the increased participation of fossil sources of thermal generation, contributing to increased emission of greenhouse gases by the Brazilian Electricity Sector. This article aims to analyze the correlation between growth in electric generation sector and rising greenhouse gases, especially through the study of the winning projects of electric power auctions conducted with the advent of the New Institutional Model of the Power Sector from 2004, comparing with the existing policies and prospects of the next auction of the electric sector. (author)

  6. The marginal damage costs of different greenhouse gases: An application of FUND

    OpenAIRE

    Waldhoff, Stephanie; Anthoff, David; Rose, Steven; Tol, Richard S. J.

    2014-01-01

    We use FUND 3.5 to estimate the social cost of carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. We show the results of a range of sensitivity analyses, focusing on the impact of carbon dioxide fertilization. Ignored in previous studies of the social cost of greenhouse gas emissions, carbon dioxide fertilization has a positive effect at the margin, but only for carbon dioxide. Because of this, the ratio of the social cost of a greenhouse gas to that of carbon dioxide...

  7. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    OpenAIRE

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2010-01-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 w...

  8. PLANIFICACIÓN CONTABLE Y DERECHOS DE EMISIÓN DE GASES DEEFECTO INVERNADERO ACCOUNTING PLANNING AND GREENHOUSE GAS EMISSION RIGHTS

    Directory of Open Access Journals (Sweden)

    Ana Isabel Mateos Ansótegui

    2008-02-01

    Full Text Available A implementação do comércio de direitos de emissão de Gases do Efeito Estufa (GEE, em 2005, na Espanha, tem suscitado múltiplas incertezas tanto contábeis como fiscais. Antes de junho de 2005, as empresas espanholas deviam ter recebido a cota de CO2 fixada pelo Governo através da abertura de uma conta no Registro Nacional de emissões. Qualquer empresa que pretender exceder a sua cota de emissão de gases deve adquirir ou gerar os direitos de emissão correspondentes que não detenha. Porém, toda companhia, que tenha emitido um volume de gases inferior à cota recebida ou que tenha gerado direitos num montante superior ao que necessitava, poderá repassá-los a outros atores econômicos. Este regime de comércio de direitos de emissão recém-lançado gera um novo cenário, pleno de desafios e oportunidades e uma ou outra ameaça derivada da possibilidade de se gerarem excedentes ou a necessidade de se adquirirem novos direitos, com as conseqüentes receitas e aumentos de custos. O problema que estudamos neste trabalho é como contabilizar estes movimentos e que efeito essas operações podem ter na determinação da base de cálculo do Imposto de Sociedades à luz da recente publicação da Resolução do ICAC sobre direitos de emissão. A única referência disponível para as empresas espanholas que devem apresentar contas em conformidade com as NIIF era a Final Interpretation 3 (IFRIC 3, publicada em dezembro de 2004, através do IASB, mas revogada em junho de 2005, devido às numerosas críticas recebidas de outros organismos privados. Palavras-chave: Planejamento Contábil. Direitos de Emissão de Gases do Efeito Estufa. Provisões. Normas Internacionais de Contabilidade. In January 2005, the European Union established a greenhouse gas emission trading plan. In Spain, several doubts about the accountant effects of this plan have arisen. All installations emitting greenhouse gases must be in possession of an appropriate permit issued by competent authorities. A government (or government agency issues rights (allowances to participating entities for them to emit a specified level of emissions. Participants in the scheme are able to buy and sell allowances in the CO2 stock exchange market. At the end of a specified period, participants are required to deliver allowances equal to their actual emissions. The accounting to be adopted by participants and its effect on earnings due to the new Spanish regulation (ICAC Resolution is the study objective of this paper. For firms ruled by IFR’s the only reference was IFRIC 3 which, however, was withdrawn in June 2005 due to the EFRAG recommendation. The Spanish Accounting Plan and the ICAC Resolutions remain the legal frameworks for the rest of the firms. We demonstrate how in the new Spanish legal context it will be possible to differ or anticipate incomes, making for a very useful tool for accounting planning. Keywords: Allowances. Accounting planning. Provisions. IFRs. Earnings. La implantación del comercio de los derechos de emisión de Gases de Efecto Invernadero (GEI en 2005 en España ha suscitado múltiples incertidumbres tanto contables como fiscales. Antes de junio de 2005 las empresas españolas debían haber recibido la asignación de CO2 fijada por el Gobierno a través de la apertura de una cuenta en el Registro Nacional de emisiones. Cualquier empresa que pretenda emitir más gases de los que se le han asignado, deberá adquirir o generar los correspondientes derechos de emisión de los que carezca. En cambio, toda aquella compañía que haya emitido gases por debajo de la cantidad asignada o que haya generado derechos en cuantía superior a la que necesitaba podrá transmitirlos a otros agentes económicos. Este recién estrenado régimen de comercio de derechos de emisión genera un nuevo entorno repleto de retos y oportunidades y alguna que otra amenaza, derivadas de la posibilidad de generar excedentes o la necesidad de adquirir nuevos derechos con los consiguientes beneficios o incremento de costes. El problema que nos ocupa en

  9. 77 FR 5514 - Mandatory Reporting of Greenhouse Gases: Notice of Preliminary Determinations Regarding Requests...

    Science.gov (United States)

    2012-02-03

    ...calculations in the Fluorinated Gas Production portion of the Mandatory Greenhouse...an ``anonymous access'' system, which means EPA will not...considered to be fluorinated gas production facilities under subpart L...by a leading subject matter expert on GWP estimation who was...

  10. MANAGING FOR MITIGATION OF GREENHOUSE GASES AND CARBON SEQUESTRATION IN THE MIDWEST

    Science.gov (United States)

    The central USA contains some of the most productive agricultural land in the world. Due to the high proportion of land area committed to crops and pasture in this region, the carbon (C) stored and greenhouse gas (GHG) emissions represent a large percentage of the total for US agriculture. Our objec...

  11. Emissões de gases de efeito estufa pela deposição de palha de cana-de-açúcar sobre o solo / Greenhouse gases emissions due to sugarcane trash on the soil

    Scientific Electronic Library Online (English)

    Diana, Signor; Luísa Lorentz Magalhães, Pissioni; Carlos Eduardo Pellegrino, Cerri.

    2014-06-01

    Full Text Available Biocombustíveis contribuem para reduzir as emissões de gases de efeito estufa (GEE). No Brasil, o principal biocombustível é o etanol de cana-de-açúcar. Além dos colmos, as folhas de cana-de-açúcar também podem ser usadas para produzir etanol. O objetivo deste trabalho foi avaliar as emissões de GEE [...] (CO2, CH4 e N2O) induzidas pela presença de palha sobre o solo. Três experimentos foram conduzidos em Latossolos, em Piracicaba: imediatamente após a colheita, aos seis e aos 12 meses após a colheita. Foram avaliados os efeitos de três doses de palha (0%, 50% e 100% da quantidade disponível na superfície) sobre as emissões. Imediatamente após a colheita, as emissões de CO2 e CH4 aumentaram com o aumento da quantidade de palha. Aos seis meses após a colheita houve consumo de CH4 à medida que a quantidade de palha aumentou. Doze meses após a colheita, as emissões dos três gases foram similares, independentemente da quantidade de palha. Remover a palha de cana-de-açúcar não aumenta as emissões de GEE do solo em comparação ao manejo sem retirada da palha da superfície. Contudo, estudos adicionais são necessários para investigar os efeitos sobre a produtividade de cana-de-açúcar, sobre a erosão e sobre outros atributos do solo. Abstract in english Biofuels are important to reduce greenhouse gases (GHGs) emissions to atmosphere. In Brazil, the main biofuel is ethanol from sugarcane. Beyond stalk, sugarcane sheets are also stating to be used to produce second generation ethanol. The objective of this work was evaluate soil GHGs (CO2, CH4 and N2 [...] O) emissions induced by sugarcane trash on soil surface. Three experiments were done in an Oxisol, in Piracicaba region, taking in account three periods: immediately after sugarcane harvest, six and twelve months after harvest. In each experiment, we evaluated the effects of three sugarcane trash rates (0%, 50% and 100% of the quantity available at soil surface). Immediately after harvest, CO2 and CH4 emissions increased linearly with trash rate on soil surface. Six months after harvest there were CH4 consumption by soil as trash on surface increased. Twelve months after harvest, emissions of the three gases were similar in all trash rates. Removing sugarcane straw from soil surface do not increase soil GHGs emissions as compared to the current management, in which 100% of trash is maintained on the soil surface. However, other studies are needed to investigate its effects under sugarcane yield, soil erosion and under other soil attributes.

  12. GREENHOUSE GASES FROM SMALL-SCALE COMBUSTION IN DEVELOPING COUNTRIES -- A PILOT STUDY IN MANILA

    Science.gov (United States)

    The report gives results of sampling of combustion gases released by household cookstoves in Manila, Philippines. n a total of 24 samples, 14 cookstoves were tested, fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Five ambient sample...

  13. GREENHOUSE GASES FROM BIOMASS AND FOSSIL FUEL STOVES IN DEVELOPING COUNTRIES: A MANILA PILOT STUDY

    Science.gov (United States)

    Samples were taken of the combustion gases released by household cookstoves in Manila, Philippines. In a total of 24 samples, 14 cookstoves were tested. These were fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Ambient samples were ...

  14. The role of district cooling systems in reducing the emission of ozone depleting substances and greenhouse gases

    International Nuclear Information System (INIS)

    Some existing and emerging technologies that can be applied in the near term to eliminate or reduce ozone depleting substances (ODS) and greenhouse gases were discussed. A large fraction of the total ODS emissions can be attributed to the cooling (air conditioning) of buildings. From an ecological point of view, the preferred solution to the problem of CFC-elimination in buildings is to connect to a district cooling system where cold energy storage can be applied in a cost effective manner. Ice slurry- based district cooling systems were reviewed, as well as seasonal energy storage such as deep lake water cooling, aquifer energy storage, abandoned mine thermal storage, and ice ponds. Integrated energy systems such as trigeneration, absorption chillers and combined heat and power, were outlined. The advantages of ice slurry based district cooling systems were identified. 15 refs., 10 figs

  15. Effects of 17?-estradiol on emissions of greenhouse gases in simulative natural water body.

    Science.gov (United States)

    Ruan, Aidong; Zhao, Ying; Liu, Chenxiao; Zong, Fengjiao; Yu, Zhongbo

    2015-05-01

    Environmental estrogens are widely spread across the world and are increasingly thought of as serious contaminators. The present study looks at the influence of different concentrations of 17?-estradiol on greenhouse gas emissions (CO2 , CH4 , and N2 O) in simulated systems to explore the relationship between environmental estrogen-pollution and greenhouse gas emissions in natural water bodies. The present study finds that 17?-estradiol pollution in simulated systems has significant promoting effects on the emissions of CH4 and CO2 , although no significant effects on N2 O emissions. The present study indicates that 17?-estradiol has different effects on the different elements cycles; the mechanism of microbial ecology is under review. Environ Toxicol Chem 2015;34:977-982. © 2015 SETAC. PMID:25639264

  16. Recycling of plastic: accounting of greenhouse gases and global warming contributions

    OpenAIRE

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas Højlund

    2009-01-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic...

  17. An international agreement with full participation to tackle the stock of greenhouse gases

    OpenAIRE

    Kratzsch, Uwe; Sieg, Gernot; Stegemann, Ulrike

    2011-01-01

    This paper analyzes greenhouse gas emissions that build up an atmospheric stock which depreciates over time. Weakly renegotiation- proof and subgame perfect equilibria in a game of international emission reduction exist if countries put a sufficiently high weight on future payoffs, even though there is a discontinuity in the required discount factor due to the integrity of the number of punishing countries. Treaties are easier to reach if the gas depreciates slowly.

  18. Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution

    OpenAIRE

    Møller, Jacob; Boldrin, Alessio; Christensen, Thomas Højlund

    2009-01-01

    Anaerobic digestion (AD) of source-separated municipal solid waste (MSW) and use of the digestate is presented from a global warming (GW) point of view by providing ranges of greenhouse gas (GHG) emissions that are useful for calculation of global warming factors (GWFs), i.e. the contribution to GW measured in CO2-equivalents per tonne of wet waste. The GHG accounting was done by distinguishing between direct contributions at the AD facility and indirect upstream or downstream contributions. ...

  19. Composting and compost utilization: accounting of greenhouse gases and global warming contributions

    OpenAIRE

    Boldrin, Alessio; Andersen, Jacob Kragh; Møller, Jacob; Christensen, Thomas Højlund; Favoino, E.

    2009-01-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficie...

  20. Assessing the balance between greenhouse gases and ammonia emissions from Irish pastures amended with cattle slurry

    OpenAIRE

    Bourdin, Frederic

    2012-01-01

    Agriculture in Ireland is the main source of ammonia (NH3) and contributes 30% of greenhouse gas emissions (GHG), with the majority of these emissions associated with livestock production. As a result, strategies promoting reductions in NH3 and GHG emissions are required. The aim of this work was: (i) to assess the impact of various NH3 abatement techniques on GHG release from a grassland soil; (ii) to investigate the consequences of organic nitrogen (N) applications in terms of carbon (C) se...

  1. CARIBIC observations of greenhouse gases and non-methane hydrocarbons on flights between Germany and South Africa

    Science.gov (United States)

    Brenninkmeijer, C. A.; Schuck, T. J.; Baker, A. K.; van Velthoven, P.

    2012-12-01

    Since May 2005 the CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic-atmospheric.com) has made near-monthly deployments of an atmospheric observatory making measurements from aboard a Lufthansa Airbus A340-600 during routine passenger flights. Flights originate in Frankfurt, Germany and serve a large number of destinations, among them Cape Town and Johannesburg in South Africa. On these flights, which took place primarily during northern hemisphere winter 2010/2011, a near-meridional profile was obtained over Europe and Africa, in similar fashion to HIPPO flight tracks over the Pacific, be it without vertical profiles. Over Central Africa, deep convection transports boundary layer air to the free troposphere, linking observations at cruise altitude to surface emissions and allowing for the investigation of emissions and sources of atmospherically relevant species in Africa. Mixing ratios of greenhouse gases (methane, carbon dioxide, sulfur hexafluoride and nitrous oxide) and a suite of C2-C8 non-methane hydrocarbons (NMHC) are measured from flask samples collected at cruise altitude during flight. Several tracers, for example methane, carbon monoxide, and various NMHC, exhibit enhanced mixing ratios over tropical Africa. Using tracer-tracer correlations to characterize methane emissions from Africa, we find that biomass burning made a major contribution to the methane burden, but that also biogenic sources, such as wetlands, play a significant role. We also compare these measurements to those conducted earlier over India, which were used to investigate sources and emissions of greenhouse gases during the South Asian summer monsoon.

  2. Using ocean-glint scattered sunlight as a diagnostic tool for satellite remote sensing of greenhouse gases

    Directory of Open Access Journals (Sweden)

    A. Butz

    2013-09-01

    Full Text Available Spectroscopic measurements of sunlight backscattered by the Earth's surface is a technique widely used for remote sensing of atmospheric constituent concentrations from space. Thereby, remote sensing of greenhouse gases poses particularly challenging accuracy requirements for instrumentation and retrieval algorithms which, in general, suffer from various error sources. Here, we investigate a method that helps disentangle sources of error for observations of sunlight backscattered from the glint spot on the ocean surface. The method exploits the backscattering characteristics of the ocean surface, which is bright for glint geometry but dark for off-glint angles. This property allows for identifying a set of clean scenes where light scattering due to particles in the atmosphere is negligible such that uncertain knowledge of the lightpath can be excluded as a source of error. We apply the method to more than 3 yr of ocean-glint measurements by the Thermal And Near infrared Sensor for carbon Observation (TANSO Fourier Transform Spectrometer (FTS onboard the Greenhouse Gases Observing Satellite (GOSAT, which aims at measuring carbon dioxide (CO2 and methane (CH4 concentrations. The proposed method is able to clearly monitor recent improvements in the instrument calibration of the oxygen (O2 A-band channel and suggests some residual uncertainty in our knowledge about the instrument. We further assess the consistency of CO2 retrievals from several absorption bands between 6400 cm?1 (1565 nm and 4800 cm?1 (2100 nm and find that the absorption bands commonly used for monitoring of CO2 dry air mole fractions from GOSAT allow for consistency better than 1.5 ppm. Usage of other bands reveals significant inconsistency among retrieved CO2 concentrations pointing at inconsistency of spectroscopic parameters.

  3. Using ocean-glint scattered sunlight as a diagnostic tool for satellite remote sensing of greenhouse gases

    Directory of Open Access Journals (Sweden)

    A. Butz

    2013-05-01

    Full Text Available Spectroscopic measurements of sunlight backscattered by the Earth's surface is a technique widely used for remote sensing of atmospheric constituent concentrations from space. Thereby, remote sensing of greenhouse gases poses particularly challenging accuracy requirements for instrumentation and retrieval algorithms which, in general, suffer from various error sources. Here, we investigate a method that helps disentangle sources of error for observations of sunlight backscattered from the glint spot on the ocean surface. The method exploits the backscattering characteristics of the ocean surface which is bright for glint geometry but dark for off-glint angles. This property allows for identifying a set of clean scenes where light scattering due to particles in the atmosphere is negligible such that uncertain knowledge of the lightpath can be excluded as a source of error. We apply the method to more than 3 yr of ocean-glint measurements by the Thermal And Near infrared Sensor for carbon Observation (TANSO – Fourier Transform Spectrometer (FTS onboard the Greenhouse Gases Observing Satellite (GOSAT which aims at measuring carbon dioxide (CO2 and methane (CH4 concentrations. The proposed method is able to clearly monitor recent improvements in the instrument calibration of the oxygen (O2 A-band channel and suggests some residual uncertainty in our knowledge about the instrument. We further assess the consistency of CO2 retrievals from several absorption bands between 6400 cm?1 (1565 nm and 4800 cm?1 (2100 nm and find that the absorption bands commonly used for monitoring of CO2 dry air mole fractions from GOSAT allow for consistency better than 1.5 ppm. Usage of other bands reveals significant inconsistency among retrieved CO2 concentrations pointing at inconsistency of spectroscopic parameters.

  4. Potential contribution of the Clean Coal Program to reducing global emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Environmental considerations of Clean Coal Program (CCP) initially focused on reducing emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) to the atmosphere. However, it has also become apparent that some Clean Coal Technologies (CCTs) may contribute appreciably to reducing emissions of carbon dioxide (CO2), thereby diminishing the rate of any global warming that may result from greenhouse effects. This is particularly true for CCTs involving replacement of a major portion of an existing facility and/or providing the option of using a different fuel form (the repowering CCTs). Because the subject of global-scale climate warming is receiving increased attention, the effect of CCTs on Co2 emissions has become a topic of increasing interest. The Final Programmatic Environmental Impact Statement for the Clean Coal Technology Demonstration Program projected that with full implementation of those repowering CCTs that would be most effective at reducing CO2 emissions (Pressurized Fluidized Bed and Coal Gasification Fuel Cell technologies), the national fossil-fuel Co2 emissions by the year 2010 would be roughly 90% of the emissions that would occur with no implementation of any CCTs by the same date. It is the purpose of this paper to examine the global effect of such a reduction in greenhouse gas emissions, and to compare that effect with effects of other strategies for reducing global greenhouse gas emissions

  5. Cost-effectiveness of greenhouse gases mitigation measures in the European agro-forestry sector: a literature survey

    International Nuclear Information System (INIS)

    Over the last 20 years, climate change has become an increasing concern for scientists, public opinions and policy makers. Due to the pervasive nature of its impacts for many important aspects of human life, climate change is likely to influence and be influenced by the most diverse policy or management choices. This is particularly true for those interventions affecting agriculture and forestry: they are strongly dependent on climate phenomena, but also contribute to climate evolution being sources of and sinks for greenhouse gases (GHG). This paper offers a survey of the existing literature assessing cost-effectiveness and efficiency of greenhouse gas mitigation strategies or the effects of broader economic reforms in the agricultural and forestry sectors. The focus is mainly on European countries. Different methodological approaches, research questions addressed and results are examined. The main findings are that agriculture can potentially provide emissions reduction at a competitive cost, mainly with methane abatement, while carbon sequestration seems more cost-effective with appropriate forest management measures. Afforestation, cropland management and bioenergy are less economically viable measures due to competition with other land use. Mitigation policies should be carefully designed either to balance costs with expected benefits in terms of social welfare. Regional variability is one of the main drawbacks to fully assess the cost-effectiveness of different ssess the cost-effectiveness of different measures. Integration of models to take into account both social welfare and spatial heterogeneity seems to be the frontier of the next model generation

  6. Cost-effectiveness of greenhouse gases mitigation measures in the European agro-forestry sector: a literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Povellato, Andrea [Istituto Nazionale di Economia Agraria (INEA), Via dell' Universita, 14, I-35020 Legnaro (PD) (Italy); Fondazione Eni Enrico Mattei, Castello, 5252, I-30122 Venice (Italy); Bosello, Francesco [Fondazione Eni Enrico Mattei, Castello, 5252, I-30122 Venice (Italy); Giupponi, Carlo [Fondazione Eni Enrico Mattei, Castello, 5252, I-30122 Venice (Italy) and Universita degli Studi di Milano, Dipartimento di Produzione Vegetale, Via Celoria, 2, I-20133 Milan (Italy)]. E-mail: carlo.giupponi@unimi.it

    2007-08-15

    Over the last 20 years, climate change has become an increasing concern for scientists, public opinions and policy makers. Due to the pervasive nature of its impacts for many important aspects of human life, climate change is likely to influence and be influenced by the most diverse policy or management choices. This is particularly true for those interventions affecting agriculture and forestry: they are strongly dependent on climate phenomena, but also contribute to climate evolution being sources of and sinks for greenhouse gases (GHG). This paper offers a survey of the existing literature assessing cost-effectiveness and efficiency of greenhouse gas mitigation strategies or the effects of broader economic reforms in the agricultural and forestry sectors. The focus is mainly on European countries. Different methodological approaches, research questions addressed and results are examined. The main findings are that agriculture can potentially provide emissions reduction at a competitive cost, mainly with methane abatement, while carbon sequestration seems more cost-effective with appropriate forest management measures. Afforestation, cropland management and bioenergy are less economically viable measures due to competition with other land use. Mitigation policies should be carefully designed either to balance costs with expected benefits in terms of social welfare. Regional variability is one of the main drawbacks to fully assess the cost-effectiveness of different measures. Integration of models to take into account both social welfare and spatial heterogeneity seems to be the frontier of the next model generation.

  7. Presentation of conclusions of the 9. meeting of the working group on the division by four of the greenhouse gases emissions in France for 2050, called factor 4

    International Nuclear Information System (INIS)

    This document provides opinions and recommendations of the working group on the factor 4. It deals with the individual behaviors and their positive evolution, the part of the public policies, the actions of the CITEPA, the scientific context about the greenhouse gases decrease objectives, the works of the factor 4 and the long dated reduction aboard. (A.L.B.)

  8. Energy Consumption and Greenhouse Gases Emission form Canned Fish Production in Iran a Case Study: Khuzestan Province

    Directory of Open Access Journals (Sweden)

    Abbas Asakereh

    2010-08-01

    Full Text Available Energy is a fundamental ingredient in the process of economic development, as it provides essential services that maintain economic activity and the quality of human life but intensive use of it causes problems threatening public health and environment. The aim of this study was to evaluate energy consumption and greenhouse gases emission from canned fish production in the Khuzestan province, Iran, to determine the losing energy factors and pollutant emission. In this research, canneries, consuming human labor, electricity and diesel fuel energy sources w ere investigated. Total input energy was 22681.8 MJ/t that diesel fuel had the biggest share in the total energy up to 98%. Energy of labour was a small amount of total input energy, but it is the most expensive input in the canned fish production. Primary cooking and sterilization operations are most consumers of input energy in canning fish production with 21202.6 MJ/t. Manual operations of fish cleaning and transferring, includes the lowest energy and this stage includes 43.33% of total human labour. Amount of greenhouse gas and air pollutant emissions from diesel fuel is much greater than electricity in fish cannery. Emission of CO2, NOX and SO2 are the most gas emission with 1071.282, 7.264 and 6.52 Kg/t, respectively. Productivity of labour and electricity, diesel fuel and labour energy were 0.025 t/La 1h and 2.2, 0.044 t/GJ and 0.056 t/MJ, respectively. Using agitating retorts in steed of still retorts and reform path of transferring vapor will decrease the diesel fuel consumption and greenhouse gas emission.

  9. The Danish government's climate plan. Towards a society without greenhouse gases; Regeringens klimaplan. Pae vej mod et samfund uden drivhusgasser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The Danish government's goal is to reduce greenhouse gas emissions with 40% by the year 2020, compared to 1990 levels. A major step towards reaching that goal was accomplished in March 2012, with the political agreement on energy policy. The remaining reductions to achieve the goal will come primarily from the transportation, agriculture and construction sectors, and from waste management. In order to reach the government's goal, we must eliminate the equivalent of approximately four million tonnes of CO{sub 2} emissions by 2020. Reaching the goal in 2020 also depends on factors such as the economy as we progress toward 2020, as well as on EU climate policy. The government will continue to work proactively to ensure that ambitious climate and energy policies are pursued by the EU. The EU policies will contribute significantly in order to achieve the national objectives. The government will engage in a dialogue with parliament, business society and civil society to discuss what kind of national policy initiatives to be decided on to reduce greenhouse gas emissions. The government will introduce a climate change bill during the upcoming session of parliament. The purpose of this upcoming bill is to ensure progress and transparency in the climate policy development. The bill will include requirements for an annual climate policy progress report to show whether Denmark is on track to meet the goal of a 40% reduction in greenhouse gases by 2020. As part of its work on the climate policy plan, an inter-ministerial working group has developed a catalogue of about 80 possible climate policy initiatives to address climate change. These policy proposals, along with the proposed legislation, will be the government's main instruments in the coming years in order to continuously monitor and adjust its climate policy. (Author)

  10. THE SENSITIVITY OF THE GREENHOUSE EFFECT TO CHANGES IN THE CONCENTRATION OF GASES IN PLANETARY ATMOSPHERES

    Directory of Open Access Journals (Sweden)

    Smadar Bressler

    2013-12-01

    Full Text Available We present a radiative transfer model for Earth-Like-Planets (ELP. The model allows the assessment of the effect of a change in the concentration of an atmospheric component, especially a greenhouse gas (GHG, on the surface temperature of a planet. The model is based on the separation between the contribution of the short wavelength molecular absorption and the long wavelength one. A unique feature of the model is the condition of energy conservation at every point in the atmosphere. The radiative transfer equation is solved in the two stream approximation without assuming the existence of an LTE in any wavelength range. The model allows us to solve the Simpson paradox, whereby the greenhouse effect (GHE has no temperature limit. On the contrary, we show that the temperature saturates, and its value depends primarily on the distance of the planet from the central star. We also show how the relative humidity affects the surface temperature of a planet and explain why the effect is smaller than the one derived when the above assumptions are neglected.

  11. Greenhouse gases emission from sanitary landfills in Lombardy: estimation and uncertainty analysis

    International Nuclear Information System (INIS)

    Quantification of methane emissions from landfills is important to evaluate measures for reduction of greenhouse gas emissions. A census has been conducted across all landfills in Lombardy in order to get a double assessment of greenhouse gas emissions in the period 1973-2007. The first approach is of a deterministic kind: it produced a GHG emission assessment of about 2,240 ktCO2 (like 2.4% of GHG emission in Lombardy in 2005). The second approach is a probabilistic approach according to Monte Carlo simulation, and allows an assessment of probabilistic distribution of emissions and uncertainty. Uncertainty in GHG emission from landfill in Lombardy is about 20% and efficiency of LFG collection and biodegradable carbon content are the most relevant parameters in this assessment. Also, a projection of GHG emission was made. Two scenarios were analyzed for the 2008-2020 period: a business as usual (BAU) one and an alternative one. It results that we are expecting a 50% reduction of GHG emission, with alternative scenario, from 2007 level: at regional scale it is like a 1% of overall GHG emissions in Lombardy.

  12. Investigation into the emission of greenhouse effect gases; Onshitsu koka gas no haishutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper grasped the situation of greenhouse effect gas emissions of advanced countries based on the reports from them. The advanced countries which concluded the U.N. Framework Convention on Climate Change (OECD member countries, the former U.S.S.R., and East European countries) are to be reported to the office concerned with work for the framework the situation of their greenhouse effect gas emissions according to the obligation of the framework. In and after April 1997, they made the second report. The paper summarized changes in emission amount, the future trend, and the policies/measures mainly taken of nine countries which have already presented the second report (the U.S., the U.K., Germany, Holland, Italy, Norway, Sweden, Finland, and New Zealand) and one country (Russia) which has made only the first report. Moreover, the literature was collected and summed up concerning the mechanism and coefficients of the emission of nitrous oxide and methane. The collected literature was classified into all fields/plural number of fields, energy relation, industrial process relation, relation with the use of organic solvent and other products, agricultural relation, relation with changes in land use and forests, and waste relation. 4 figs., 228 tabs.

  13. Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Christensen, Thomas HØjlund

    2009-01-01

    The greenhouse gas (GHG) emissions related to the recycling of wood waste have been assessed with the purpose to provide useful data that can be used in accounting of greenhouse gas emissions. Here we present data related to the activities in a material recovery facility (MRF) where wood waste is shredded and foreign objects are removed in order to produce wood chips for use in the production of particleboard. The data are presented in accordance with the UOD (upstream, operational, downstream) framework presented in Gentil et al. (Waste Management & Research, 27, 2009). The GHG accounting shows that the emissions related to upstream activities (5 to 41 kg CO2-equivalents tonne —1 wood waste) and to activities at the MRF (approximately 5 kg CO2-equivalents tonne—1 wood waste) are negligible compared to the downstream processing (—560 to —120 kg CO2equivalents tonne—1 wood waste). The magnitude of the savings in GHG emissions downstream are mainly related to savings in energy consumption for drying of fresh wood for particleboard production. However, the GHG account highly depends on the choices made in the modelling of the downstream system. The inclusion of saved electricity from avoided chipping of virgin wood does not change the results radically (—665 to —125 kg CO2-equivalents tonne— 1 wood waste). However, if in addition it is assumed that the GHG emissions from combustion of wood has no global warming potential (GWP) and that the energy produced from excess wood due to recycling substitutes energy from fossil fuels, here assumed to be coal, potentially large downstream GHG emissions savings can be achieved by recycling of waste wood (—1.9 to —1.3 tonnes CO2-equivalents tonne— 1 wood waste). As the data ranges are broad, it is necessary to carefully evaluate the feasibility of the data in the specific system which the GHG accounting is to be applied to.

  14. Infrared Spectroscopy of Halogenated Species for Atmospheric Remote Sensing

    Science.gov (United States)

    Harrison, Jeremy J.

    2014-06-01

    Fluorine- and chlorine-containing molecules in the atmosphere are very strong greenhouse gases, meaning that even small amounts of these gases contribute significantly to the radiative forcing of climate. Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are regulated by the 1987 Montreal Protocol because they deplete the ozone layer. Hydrofluorocarbons (HFCs), which do not deplete the ozone layer and are not regulated by the Montreal Protocol, have been introduced as replacements for CFCs and HCFCs. HFCs have global-warming potentials many times greater than carbon dioxide, and are increasing in the atmosphere at a very fast rate. Various satellite instruments monitor many of these molecules by detecting infrared radiation that has passed through the Earth's atmosphere. However, the quantification of their atmospheric abundances crucially requires accurate quantitative infrared spectroscopy. This talk will focus on new and improved laboratory spectroscopic measurements for a number of important halogenated species.

  15. Control of greenhouse gases emission by radiation induced formation of useful products

    International Nuclear Information System (INIS)

    Carbon dioxide (CO2) is produced in enormous quantities by combustion of fossil fuels in power plants and heavy industries. It is strongly influencing the environment and the climate. However, it can be separated from the exhaust gases and utilized as row material for making value-added products by irradiation. Results of experiments in laboratory scale showed, e.g. that amino acids and short chain proteins can be produced by carboxylation of amines, whereas salicylic acid results from phenol and malonic acid formation in observed from acetic acid. The yield dependence from various experimental factors as well as the reaction mechanisms of the studied systems are discussed and an outlook of future developments is given. (author)

  16. Anticipated changes in the emissions of green-house gases and ammonia from pork production due to shifts from fattening of barrows towards fattening of boars

    DEFF Research Database (Denmark)

    Dämmgen, Ulrich; Berk, Andreas

    2013-01-01

    Greenhouse gases and of ammonia emissions from pork production will change when fattening of barrows switches towards to fattening of (intact) boars. The results of an accurate feeding experiment allow for the differentiation of the effects on emissions of gender (differentiating in boars, barrows and gilts) and of diet composition. The modified fattening pig module of the agricultural emission model GAS-EM was used to estimate emissions in 2020 when the fattening of barrows will no longer be common practice. The scenarios also reflect the effect of the expected increased weight gains and the related effect of increased numbers of animals produced. The fattening of intact boars as compared to barrows is associated with a reduction of emissions of greenhouse gases and of ammonia per animal. For ammonia, all scenarios result in reduced emissions, most markedly when this shift is combined with increased weight gains. To a lesser extent, this also applies to nitric and nitrous oxide emissions. Methane emissions are less affected; increased weight gains result in increased emissions. As the greenhouse gas balance is dominated by methane emissions, the overall emission of greenhouse gases (expressed as CO2 equivalents) is likely to increase slightly in 2020 despite the reductions in nitrous oxide emissions.

  17. Greenhouse gases emissions inventory in 2005 by the Mexican energy sector; Inventario de emisiones en 2005 de gases de efecto invernadero por el sector energetico mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Flores Velazquez, R.; Munoz Lerdo Carranza, R.; Villalba Valle, D. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rfv@iie.org.mx; rml@iie.org.mx; danviva17@yahoo.com.mx

    2010-01-15

    In the present work, it is estimated the greenhouse gases (GHG, GEI in this paper) emissions in 2005 by the consumption and/or transformation of energy in Mexico. This document is not official, and it is used as reference the fuel consumption reported in the Balance National de Energia 2005 published by the Secretaria de Energia. In this way, it is standardized the emission source that will be used in the near future to estimated the official 2005 GHG Emissions Inventory. In order to solve the absence of own emission factors in Mexico, it is used the default global emission factors proposed by the Intergovernmental Panel for Climate Change. The Sectorial Method was used to estimate the GHG emissions taking in account the fuel consumption in each subsector considered in the energy sector. It was found that the transport and energy industries sector had the most GHG emissions, and that Mexico as a non-industrialized country had lower per capita emissions that developed countries. [Spanish] En este trabajo se calcularon las emisiones de Gases de Efecto de inventario (GEI's) del 2005 por la seccion de consumo y/o transformacion de energia en Mexico. El documento obtenido no es oficial, y como referencia, se utiliza el consumo de combustible que refiere el Balance Nacional de Energia 2005, publicado por la Secretaria de Energia. Con esto, se estandarizan las fuentes de emision que en algun momento usara el Inventario Nacional de Emisiones de GEI's 2005. Para resolver la falta de factores de emision propios de Mexico, se recurre a los factores globales de emision propuestos como valores por omision por el Panel Intergubernamental de Cambio Climatico. Para la estimacion de las emisiones de GEI's se utilizo el Metodo Sectorial tomando en consideracion el consumo de combustible de cada uno de los subsectores en que se encuentra dividido el sector energetico. Se encontro que los sectores transporte y de la industria de la transformacion de energia son los que mas emisiones de GEI's presentan, y que Mexico como pais no industrializado tiene menos emisiones per capita que los paises desarrollados.

  18. Renewable energies and reduction of greenhouse gases within the framework of the Kyoto protocol; Energias renovables y reduccion de gases invernadero en el marco del protocolo de Kioto

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Castellanos, Carolina [Comision Nacional para el Ahorro de Energia, Mexico, D.F. (Mexico)

    2001-07-01

    The modern societies face diverse environmental problems among which appear the air pollution, the deterioration of seas and coasts, the acidification of soils, acid rain and the climatic change, phenomena, all of them, related in greater or smaller degree to the conventional practices of production and consumption of energy. Specifically, the climatic change puts in risk the well-being of the future generations, and even, the future of the life in the planet. Although uncertainty around the possible repercussions of this phenomenon exists, one knows that one of its main sources is burning of fossil fuels, when affecting the increase of the atmospheric concentrations of greenhouse gases. However, in spite of the achievement that represents the creation of an instrument so sophisticated as the commonly denominated Kyoto Protocol, reluctance on part of some developed countries exists to ratify it and assume their commitments, and in the last session of the Conference of the Parts, (COP-6), celebrated at The Hague, Holland, it was not managed to consolidate to put in action the mechanisms that Kyoto establishes. [Spanish] Las sociedades modernas enfrentan diversos problemas ambientales entre los que figuran la contaminacion del aire, el deterioro de mares y costas, la acidificacion de suelos, la lluvia acida y el cambio climatico, fenomenos, todos ellos, relacionados en mayor o menor medida con las practicas convencionales de produccion y consumo de energia. De manera especifica, el cambio climatico pone en riesgo el bienestar de las futuras generaciones, e incluso, el futuro de la vida en el planeta. Si bien existe incertidumbre en torno a las posibles repercusiones de este fenomeno, se sabe que una de sus principales fuentes es la quema de combustibles fosiles, al incidir en el aumento en las concentraciones atmosfericas de gases invernadero. No obstante, pese al logro que representa la creacion de un instrumento tan sofisticado como el comunmente denominado Protocolo de Kioto, existe reticencia por parte de algunos paises desarrollados para ratificarlo y asumir sus compromisos, y en la ultima sesion de la Conferencia de las Partes, (COP-6), celebrada en la Haya, Holanda, no se logro consolidar la entrada en operacion de los mecanismos que establece Kioto.

  19. Inventario de emisiones en 2005 de gases de efecto invernadero por el sector energético mexicano / Greenhouse Gases Emissions Inventory in 2005 by the Mexican Energy Sector

    Scientific Electronic Library Online (English)

    R., Flores-Velázquez; R., Muñoz Ledo-Carranza; D., Villalba-Valle.

    2010-03-01

    Full Text Available En este trabajo se calcularon las emisiones de Gases de Efecto de Invernadero (GEI's) del 2005 por la sección de consumo y/o transformación de energía en México. El documento obtenido no es oficial, y como referencia, se utiliza el consumo de combustible que refiere el Balance Nacional de Energía 20 [...] 05, publicado por la Secretaría de Energía. Con esto, se estandarizan las fuentes de emisión que en algún momento usará el Inventario Nacional de Emisiones de GEI's 2005. Para resolver la falta de factores de emisión propios de México, se recurre a los factores globales de emisión propuestos como valores por omisión por el Panel Intergubernamental de Cambio Climático. Para la estimación de las emisiones de GEI's se utilizó el Método Sectorial tomando en consideración el consumo de combustible de cada uno de los subsectores en que se encuentra dividido el sector energético. Se encontró que los sectores transporte y de la industria de la transformación de energía son los que más emisiones de GEI's presentan, y que México como país no industrializado tiene menos emisiones percápita que los países desarrollados. Abstract in english In the present work, it is estimated the greenhouse gases (GHG, GEI in this paper) emissions in 2005 by the consumption and/or transformation of energy in Mexico. This document is not official, and it is used as reference the fuel consumption reported in the Balance Nacional de Energia 2005 publishe [...] d by the Secretaria de Energia. In this way, it is standardized the emission sources that will be used in the near future to estimated the official 2005 GHG Emissions Inventory. In order to solve the absence of own emission factors in Mexico, it is used the default global emission factors proposed by the Intergovernmental Panel for Climate Change. The Sectorial Method was used to estimate the GHG emissions taking in account the fuel consumption in each subsector considered in the energy sector. It was found that the transport and energy industries sectors had the most GHG emissions, and that Mexico as a non-industrialized country had lower per capita emissions that developed countries.

  20. A new UK Greenhouse Gas measurement network providing ultra high-frequency measurements of key radiatively active trace gases taken from a network of tall towers

    Science.gov (United States)

    Grant, A.; O'Doherty, S.; Manning, A. J.; Simmonds, P. G.; Derwent, R. G.; Moncrieff, J. B.; Sturges, W. T.

    2012-04-01

    Monitoring of atmospheric concentrations of gases is important in assessing the impact of international policies related to the atmospheric environment. The effects of control measures on greenhouse gases introduced under the Montreal and Kyoto Protocols are now being observed. Continued monitoring is required to assess the overall success of the Protocols. For over 15 years the UK Government have funded high-frequency measurements of greenhouse gases and ozone depleting gases at Mace Head, a global background measurement station on the west coast of Ireland. These continuous, high-frequency, high-precision measurements are used to estimate regional (country-scale) emissions of greenhouse gases across the UK using an inversion methodology (NAME-Inversion) that links the Met Office atmospheric dispersion model (Numerical Atmospheric dispersion Modelling Environment - NAME) with the Mace Head observations. This unique inversion method acts to independently verify bottom up emission estimates of radiatively active and ozone-depleting trace gases. In 2011 the UK government (DECC) funded the establishment and integration of three new tall tower measurements stations in the UK, to provide enhanced resolution emission maps and decrease uncertainty of regional emission estimates produced using the NAME-Inversion. One station included in this new UK network was already established in Scotland and was used in collaboration with Edinburgh University. The two other new stations are in England and were set-up early in 2012, they contain brand new instrumentation for measurements of greenhouse gases. All three additional stations provide ultra high-frequency (1 sec) data of CO2 and CH4 using the Picarro© Cavity Ring Down Spectrometer and high frequency (20 min) measurements of N2O and SF6 from custom built sample modules with GC-ECD. We will present the new tall tower UK measurement network in detail. Using high-frequency measurements at new operational sites, including Mace Head, we will present the latest inversion results from the new network highlighting the enhanced resolution in regional emission maps for the UK. These results are presented to the UK government periodically and provide independent verification of the emission estimates of radiatively active trace gases. These results also inform policy makers on the accuracy of inventory emissions estimates of radiatively active and ozone-depleting trace gases.

  1. Increased spring flooding of agricultural fields will exhibit altered production of greenhouse gases

    Science.gov (United States)

    Paul, R. F.; Smith, C. M.; Smyth, E. M.; Kantola, I. B.; DeLucia, E. H.

    2013-12-01

    The U.S. Corn Belt currently is a net source of carbon dioxide and nitrous oxide to the atmosphere, but is also a sink of methane. Among the proposed effects of climate change in the North American Midwest region is an increase in the frequency and duration of spring flooding events. This would cause ponding in fields which may change the greenhouse gas balance of the region, especially by providing a suitable anoxic environment for the proliferation of methanogens, increasing methane emissions. To determine whether methanogenesis occurs in flooded agricultural soils of the Midwest and how other gas fluxes are affected, we installed collars into the ground of a research field located in central Illinois. The control group was maintained at the same conditions as the surrounding field. Two groups of collars were sustained with water flooding the headspaces via a drip irrigation system; one treatment was analyzed for gas fluxes of CH4, N2O, and CO2 evolving from the collars, and a separate treatment of flooded collars was used for soil sampling. Comparing flooded soils versus control we measured reduced N2O fluxes (-3.12 x 10-6 × 6.8 x 10-7 g N m-2 min-1), reduced CO2 fluxes (-6.13 x 10-3 × 9.3 x 10-4 g CO2 m-2 min-1), and increased methane fluxes (+2.72 x 10-6 × 5.8 x 10-7 g CH4 m-2 min-1). After only one week of treatment the flooded soils switched from being sinks to sources of methane, which continued across the duration of the experiment. These preliminary results indicate that methanogenesis occurs in flooded agricultural fields, and suggest including regional modeling into further study. Although the global warming potential of methane is 25 times greater than CO2, our measured rates of methane production were compensated by reductions in nitrous oxide and CO2 fluxes, reducing the total 100-year horizon global warming potential of the flooded soils we studied by 64.8%. This indicates that accounting for more frequent seasonal ponding would significantly revise the estimates of future greenhouse gas emissions for Midwest agroecology.

  2. Interaction of biochar and organic residues from sugarcane industry in soil chemical attributes and greenhouse gases emissions.

    Science.gov (United States)

    Fernanda Abbruzzini, Thalita; Feola Conz, Rafaela; Pellegrino Cerri, Carlos Eduardo

    2014-05-01

    Researchers have highlighted the importance of providing soil quality in agricultural systems, besides mitigating greenhouse gases (GHG) emissions to the atmosphere and increasing soil carbon sequestration. Therefore, several studies have demonstrated the effectiveness of biochar as a soil conditioner, both in relation to increased C sequestration and improvements in soil chemical, physical and biological attributes, resulting in better conditions for plant growth. The aim of this study was to assess the impact of applying biochar produced from sugarcane straw to soils in relation to changes in soil chemical attributes and mitigation of greenhouse gases emissions into the atmosphere. To do so, we conducted a laboratory incubation under controlled environmental conditions (ie temperature and humidity) with and without the application of filter cake and vinasse (ie organic residues from sugarcane industry) and rates of biochar application (0, 10, 20 and 50 Mg ha-1). The fluxes of CO2, N2O and CH4 of each incubation unity were measured periodically (in days 1, 2, 5, 9, 13, 16, 20, 24, 28, 30, 47, 60, 91, 105, 123, 130, 138 and 150). Each treatment consisted of eight replicates with destructive samples evaluated at 30, 60, 90 and 150 days after incubation to characterize the chemical attributes of the incubated soil, besides GHG (CO2, N2O and CH4) emissions. In general, there was an increase in carbon dioxide (CO2) fluxes over time due to the application of filter cake and vinasse and increasing dose of biochar. Regarding nitrous oxide (N2O) emissions, there was an increase of 82.35% with the application of vinasse and filter cake compared to the control treatment. However, different doses of biochar (10, 20 and 50 Mg ha-1) reduced N2O emissions by 29, 38.7 and 70.9%, respectively. The methane (CH4) flux was negligible in all treatments. We observed improvements in soil chemical attributes, such as higher pH, a substantial increase in the soil CEC, reduced exchangeable Al3+ and higher available P regarding the condition of the original soil.

  3. Comparison of energy sources in terms of their full-energy-chain emission factors of greenhouse gases. Proceedings of an IAEA advisory group meeting/workshop

    International Nuclear Information System (INIS)

    Sustainable and therefore climate benign energy planning is becoming a cornerstone of national energy policies in many countries that ratified the United Nations Framework Convention on Climate Change. The ratification implies a commitment to lowering greenhouse gas emissions by the so-called Annex I countries, i.e. the developed countries. Sustainable energy planning requires comparing the advantages and disadvantages of different energy sources. Such comparison cannot be done objectively without accounting for the emissions of all greenhouse gases (GHGs) - not only CO2 - from the whole energy chain, from ''cradle to grave''. The greenhouse gas emissions upstream and downstream of the energy conversion step are inherently associated with the production of any energy carrier, such as electricity. Therefore, analysis of the emissions of all greenhouse gases from the full energy chain FENCH is considered to be the only fair approach in comparing energy sources for climate benign energy planning. This publication reports on the IAEA Advisory Group Meeting on Analysis of Net Energy Balance and Full-Energy-Chain Greenhouse Gas Emissions for Nuclear and Other Energy Systems, held in Beijing, China, 4-7 October 1994. Refs., figs., tabs

  4. Quantifying the Sources and Sinks of Greenhouse Gases: What Does It Take to Satisfy Scientific and Decision-Making Needs?

    Science.gov (United States)

    Davis, K. J.; Keller, K.; Ogle, S. M.; Smith, S.

    2014-12-01

    Changes in the sources and sinks of greenhouse gases (GHGs) are key drivers of anthropogenic climate change. It is hence not surprising that current and emerging U.S. governmental science priorities and programs focused on climate change (e.g. a U.S. Carbon Cycle Science Plan; the U.S. Carbon Cycle Science Program, the U.S. Global Change Research Program, Executive Order 13653 'Preparing the U.S. for the Impacts of Climate Change') all call for an improved understanding of these sources and sinks.. Measurements of the total atmospheric burden of these gases are well established, but measurements of their sources and sinks are difficult to make over spatial and temporal scales that are relevant for scientific and decisionmaking needs. Quantifying the uncertainty in these measurements is particularly challenging. This talk reviews the intersection of the state of knowledge of GHG sources and sinks, focusing in particular on CO2 and CH4, and science and decision-making needs for this information. Different science and decision-making needs require differing levels of uncertainty. A number of high-priority needs (early detection of changes in the Earth system, projections of future climate, support of markets or regulations) often require a high degree of accuracy and/or precision. We will critically evaluate current U.S. planning to documents to infer current perceived needs for GHG source/sink quantification, attempting to translate these needs into quantitative uncertainty metrics. We will compare these perceived needs with the current state of the art of GHG source/sink quantification, including the apparent pattern of systematic differences between so-called "top down" and "bottom-up" flux estimates. This comparison will enable us to identify where needs can be readily satisfied, and where gaps in technology exist. Finally, we will examine what steps could be taken to close existing gaps.

  5. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant.

    Science.gov (United States)

    Masuda, Shuhei; Suzuki, Shunsuke; Sano, Itsumi; Li, Yu-You; Nishimura, Osamu

    2015-12-01

    The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2m(-3). The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3°C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank. PMID:25439128

  6. Prospects of and requirements for nuclear power as a contributor toward managing greenhouse gases

    International Nuclear Information System (INIS)

    The world's population, energy demand, and rate of carbon emissions are increasing, but the rates of increase are uncertain. Even modest growth rates present significant challenges to existing and developing technologies for reducing carbon and greenhouse gas emissions while meeting growing energy demands. Nuclear power is currently the most developed alternative to fossil fuel combustion and is one of the options for meeting these challenges. However, there remain significant technical, economic and institutional barriers inhibiting growth of nuclear capacity in the U.S. and slowing implementation worldwide. In the near-term, the major barriers to nuclear power, especially in the U.S., appear to be economic and institutional, with the risks such as safety, waste management and proliferation having reasonably acceptable limits considering the current installed capacity. Future growth of nuclear power, however, may well hinge on continuous evolutionary and perhaps revolutionary reduction of these risks such that the overall risk of nuclear power, aggregated over the entire installed capacity, remains at or below today's risks

  7. Greenhouse gases emissions and energy use of wheat grain-based bioethanol fuel blends.

    Science.gov (United States)

    Scacchi, C C O; González-García, S; Caserini, S; Rigamonti, L

    2010-10-01

    This study focuses on the potential energetic and environmental impacts associated with the production of wheat grain-based bioethanol in Lombardia (Italy), with a "seed-to-wheel" approach (i.e. taking into account the production and use phase). Greenhouse gas emissions (GHGs) were estimated through the CML 2 baseline 2000 methodology counting the CO(2) equivalent emissions, while the energy flow indicator was estimated using the Ecoindicator 95 methodology. The impact of the different phases involved in the production and use of bioethanol have been analysed: the agricultural production of wheat grain, its transformation into bioethanol, the production of gasoline and the use of 5 different blends (from pure gasoline to pure ethanol). The results show that ethanol fuel, used in the form of blends in gasoline, can help reduce energy use and GHGs. In particular, the use of pure ethanol was found to be the best alternative presenting the lowest GHGs (saving about 32% of CO(2)eq emissions in comparison to gasoline) and the minor energy use (63% saving). Differences between low-ethanol blends and gasoline are minimal and dependent on the specific fuel consumption of the vehicle. The sensitivity analysis performed to test the robustness of results through the change of some basic assumptions (specific fuel consumption, N(2)O emissions from agricultural phase, allocation method) shows the sensitivity of GHGs saving to the adopted allocation method. PMID:20692687

  8. Greenhouse gases emissions and energy use of wheat grain-based bioethanol fuel blends

    International Nuclear Information System (INIS)

    This study focuses on the potential energetic and environmental impacts associated with the production of wheat grain-based bioethanol in Lombardia (Italy), with a 'seed-to-wheel' approach (i.e. taking into account the production and use phase). Greenhouse gas emissions (GHGs) were estimated through the CML 2 baseline 2000 methodology counting the CO2 equivalent emissions, while the energy flow indicator was estimated using the Ecoindicator 95 methodology. The impact of the different phases involved in the production and use of bioethanol have been analysed: the agricultural production of wheat grain, its transformation into bioethanol, the production of gasoline and the use of 5 different blends (from pure gasoline to pure ethanol). The results show that ethanol fuel, used in the form of blends in gasoline, can help reduce energy use and GHGs. In particular, the use of pure ethanol was found to be the best alternative presenting the lowest GHGs (saving about 32% of CO2eq emissions in comparison to gasoline) and the minor energy use (63% saving). Differences between low-ethanol blends and gasoline are minimal and dependent on the specific fuel consumption of the vehicle. The sensitivity analysis performed to test the robustness of results through the change of some basic assumptions (specific fuel consumption, N2O emissions from agricultural phase, allocation method) shows the sensitivity of GHGs saving to the adopted allocation methodGs saving to the adopted allocation method.

  9. Composting and compost utilization: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Andersen, Jacob Kragh

    2009-01-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (—900 kg CO2-equivalents tonne—1 wet waste (ww)) and a net load (300 kg CO2-equivalents tonne —1 ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.

  10. Achieving reductions in greenhouse gases in the US road transportation sector

    International Nuclear Information System (INIS)

    It is well established that GHG emissions must be reduced 50 to 80% by 2050 in order to limit global temperature increase to 2 °C. Achieving reductions of this magnitude in the transportation sector is a challenge and requires a multitude of policies and technology options. The research presented here analyzes three scenarios: changes in the perceived price of travel, land use intensification, and increases in transit. Elasticity estimates are derived using an activity-based travel model for the state of California and broadly representative of the US. The VISION model is used to forecast changes in technology and fuel options that are currently forecast to occur in the US for the period 2000–2040, providing a life-cycle GHG forecast for the road transportation sector. Results suggest that aggressive policy action is required, especially pricing policies, but also more on the technology side, especially increases in the carbon efficiency of medium and heavy-duty vehicles. - Highlights: • Travel elasticities are calculated for policy scenarios using an activity-based travel model. • These elasticities are used to estimate changes in total life-cycle greenhouse gas emissions. • Current technology and fuel policy and the strongest behavioral policy will not meet targets. • Heavy and medium-duty trucks need more aggressive technology and fuel options

  11. Estimación de gases de efecto invernadero en humedales construidos de flujo subsuperficial / Assessment of Greenhouse Effect Gases in Sub-Superficial Flow Constructed Wetlands / Estimativa de gases de efeito estufa em pantanais construídos de fluxo subsuperficial

    Scientific Electronic Library Online (English)

    Juan Pablo, Silva-Vinasco; Arlyn, Valverde-Solís.

    2011-07-01

    Full Text Available Os pantanais construídos são sistemas atraentes, de baixo custo de operação e manutenção, para países em desenvolvimento, quanto a tratamento das águas residuais. Entretanto, estes ao reduzir as cargas poluidoras das águas residuais, podem gerar metano, dióxido de carbono e óxido nitroso, chamados g [...] ases de efeito estufa. Neste sentido, foram comparadas duas espécies ornamentais e estimaram-se as emissões de metano, dióxido de carbono e óxido nitroso, mediante câmara estática, em tres pantanais construídos, a escala real, dos quais um foi plantado com Heliconia psittacorum, outro com Phragmites australis e o terceiro sem plantar (controle). Cada um, foi submetido a uma carga hidráulica de 3,5 m³d-1, equivalente a um tempo nominal de retenção hidráulico de 1,8 dias. Além disso, foram realizadas as caracterizações fisioquímicas habituais. A eficiência ficou entre 66,2% e 87,8% para a DQO, a temperatura média esteve entre 29 e 31 °C e o pH entre 6,3 a 7, em os sistemas plantados e sem plantar. Além disso, não foram encontradas diferenças significativas entre a vegetação estudada. Por tanto, conclui-se que as espécies Heliconia psittacorum e Phragmites australis não afetam a emissão de gases de efeito estufa nos sistemas estudados. Abstract in spanish Los humedales construidos son sistemas atractivos, de bajo costo de operación y mantenimiento, para países en vía de desarrollo, en cuanto a tratamiento de las aguas residuales. Sin embargo, estos al reducir las cargas contaminantes de las aguas residuales, pueden generar metano, dióxido de carbono [...] y óxido nitroso, llamados gases de efecto invernadero. En este sentido, se compararon dos especies ornamentales y se estimaron las emisiones de metano, dióxido de carbono y óxido nitroso, mediante cámara estática, en tres humedales construidos, a escala real, de los cuales se plantaron uno con Heliconia psittacorum, otro con Phragmites australis y un tercero sin plantar (control). Cada uno, sometido a una carga hidráulica de 3,5 m³d-1, equivalente a un tiempo nominal de retención hidráulico de 1,8 días. Además, se realizaron las caracterizaciones fisicoquímicas habituales. La eficiencia se situó entre 66,2% y 87,8% para la DQO, la temperatura tuvo en promedio del 29 y 31 °C y el pH entre 6,3 a 7, en los sistemas plantados y sin plantar. Además, no se encontraron diferencias significativas entre la vegetación estudiada. Por tanto, se concluye que las especies Heliconia psittacorum y Phragmites australis no afectan la emisión de gases de efecto invernadero en los sistemas estudiados. Abstract in english In developing countries, constructed wetlands are attractive systems with low operational and maintenance costs in terms of wastewater treatment. However, by reducing the pollution load of wastewater they might contribute to produce some greenhouse gases such as methane, carbon dioxide and nitrous o [...] xide. This research compared two ornamental species and assessed the emissions of these gases through the use of static cameras in three full-scale constructed wetlands of which two were planted: one with Heliconia psittacorum, one with Phragmites australis, and the third one, which was not planted, was the control wetland. Each one of them received a hydraulic load of 3.5 m³d-1, which is equivalent to a nominal hydraulic retention time of 1.8 days. In addition, physicochemical characterizations were performed. Efficiency was between 66.2% and 87.8% for COD; on average, the temperature was between 29 and 31 °C, and the pH was between 6.3 and 7, in both planted and unplanted systems. Additionally, no significant differences in the vegetation studied were found. We conclude that the ornamental species used do not affect the emission of greenhouse gases in the systems analyzed.

  12. Ozone-depleting chemicals and certain greenhouse gases - 1995. Consumption and emissions

    International Nuclear Information System (INIS)

    In this section summarizing estimations of Danish consumption figures and emission data for 1995 are given of the ozone depleting substances: CFCs, chlorinated hydrocarbons, halons, methyl bromide, HCFCs, HFCs, sulphur hexafluoride and per-fluorinated hydrocarbons. An overview over all estimations for 1995 is given. The ODP-weighted consumption has decreased to 122-179 ODP-tons and the GWP-weighted emission of the so-called 'pure' green house gases has decreased to 420,000 tons CO2-equivalents. The HFCFs comprise 55% and CFCs 20% of the Danish ODP-weighted consumption. 3-60 tons of CFCs and 1355 tons of HCFCs are consumed in 1995 (650 tons HCFC-22 as refrigerant). The consumption of HFCs was 750 tons in 1995. The consumption and emissions of per-fluorinated hydrocarbons are insignificant. Only per-fluoropropane is used. Formation of per-fluorinated hydrocarbons does not occur in the Danish industry according to the received information. The consumption of ozone depleting substances in Greenland has been 9 ODP-tons in 1995. (EG)

  13. Recycling of metals: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Damgaard, Anders; Larsen, Anna Warberg

    2009-01-01

    Greenhouse gas (GHG) emissions related to recycling of metals in post-consumer waste are assessed from a waste management perspective; here the material recovery facility (MRF), for the sorting of the recovered metal. The GHG accounting includes indirect upstream emissions, direct activities at the MRF as well as indirect downstream activities in terms of reprocessing of the metal scrap and savings in terms of avoided production of virgin metal. The global warming factor (GWF) shows that upstream activities and the MRF causes negligible GHG emissions (12.8 to 52.6 kg CO2-equivalents tonne—1 recovered metal) compared to the reprocessing of the metal itself (360—1260 kg CO2-equivalents tonne—1 of recovered aluminium and 400— 1020 kg CO2-equivalents tonne— 1 of recovered steel).The reprocessing is however counterbalanced by large savings of avoided virgin production of steel and aluminium. The net downstream savings were found to be 5040—19 340 kg CO2-equivalents tonne—1 of treated aluminium and 560—2360 kg CO2-equivalents tonne—1 of treated steel. Due to the huge differences in reported data it is hard to compare general data on the recovery of metal scrap as they are very dependent on the technology and data choices. Furthermore, the energy used in both the recovery process as well as the avoided primary production is crucial. The range of avoided impact shows that recovery of metals will always be beneficial over primary production, due to the high energy savings, and that the GHG emissions associated with the sorting of metals are negligible.

  14. Recycling of plastic: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; Fruergaard, Thilde

    2009-01-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO2-eq. tonne —1 of plastic waste depending on treatment at the MRF and CO2 emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60— 1600 kg CO2-eq. tonne —1 of plastic waste depending on substitution ratios and CO2 emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.

  15. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; MØller, Jacob

    2009-01-01

    Important greenhouse gas (GHG) emissions related to waste incineration and co-combustion of waste were identified and considered relative to critical aspects such as: the contents of biogenic and fossil carbon, N2O emissions, fuel and material consumptions at the plants, energy recovery, and solid residues generated. GHG contributions were categorized with respect to direct emissions from the combustion plant as well as indirect upstream contributions (e.g. provision of fuels and materials) and indirect downstream contributions (e.g. substitution of electricity and heat produced elsewhere). GHG accounting was done per tonne of waste received at the plant. The content of fossil carbon in the input waste, for example as plastic, was found to be critical for the overall level of the GHG emissions, but also the energy conversion efficiencies were essential. The emission factors for electricity provision (also substituted electricity) affected the indirect downstream emissions with a factor of 3—9 depending on the type of electricity generation assumed. Provision of auxiliary fuels, materials and resources corresponded to up to 40% of the direct emission from the plants (which were 347—371 kg CO2-eq. tonne —1 of waste for incineration and 735—803 kg CO2-eq. tonne—1 of waste for co-combustion). Indirect downstream savings were within the range of —480 to —1373 kg CO2eq. tonne—1 of waste for incineration and within —181 to —2607 kg CO2-eq. tonne— 1 of waste for co-combustion. N2O emissions and residue management did not appear to play significant roles.

  16. A South African perspective on livestock production in relation to greenhouse gases and water usage

    Scientific Electronic Library Online (English)

    M.M., Scholtz; J.B.J., van Ryssen; H.H., Meissner; M.C., Laker.

    Full Text Available The general perception that livestock is a major contributor to global warming resulted mainly from the FAO publication, Livestock's Long Shadow, in 2006, which indicated that livestock is responsible for 18% of the world's greenhouse gas (GHG) emissions. This figure has since been proved to be an o [...] verestimation, since it includes deforestation and other indirect contributions. The most recent figure is in the order of 5% - 10%. Although only ruminants can convert the world's high-fibre vegetation into high-quality protein sources for human consumption, ruminant production systems are targeted as they are perceived to produce large quantities of GHG. Livestock is also accused of using large quantities of water, an allegation that is based on questionable assumptions and the perception that all sources of food production require a similar and equal quantity and quality of water. In the case of ruminants, extensive systems are usually found to have a lower per-area carbon footprint than grain-fed systems, but a higher footprint if expressed in terms of kg product. Feedlots maximize efficiency of meat production, resulting in a lower carbon footprint, whereas organic production systems consume more energy and have a bigger carbon footprint than conventional production systems. Cows on pastures produce more methane than cows on high concentrate diets. In South Africa, as in most of the countries in the sub-tropics, livestock production is the only option on about 70% of the agricultural land, since the marginal soils and rainfall do not allow for crop production and the utilization of green water. An effective way to reduce the carbon and water footprint of livestock is to decrease livestock numbers and increase production per animal, thereby improving their efficiency.

  17. Landfilling of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide

    2009-01-01

    Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recovery, and landfills receiving low-organic-carbon waste. The results showed that direct emissions of GHG from the landfill systems (primarily dispersive release of methane) are the major contributions to the GHG accounting, up to about 1000 kg CO2-eq. tonne —1 for the open dump, 300 kg CO2-eq. tonne —1 for conventional landfilling of mixed waste and 70 kg CO2-eq. tonne—1 for low-organic-carbon waste landfills. The load caused by indirect, upstream emissions from provision of energy and materials to the landfill was low, here estimated to be up to 16 kg CO2-eq. tonne—1. On the other hand, utilization of landfill gas for electricity generation contributed to major savings, in most cases, corresponding to about half of the load caused by direct GHG emission from the landfill. However, this saving can vary significantly depending on what the generated electricity substitutes for. Significant amounts of biogenic carbon may still be stored within the landfill body after 100 years, which here is counted as a saved GHG emission. With respect to landfilling of mixed waste with energy recovery, the net, average GHG accounting ranged from about —70 to 30 kg CO2-eq. tonne— 1, obtained by summing the direct and indirect (upstream and downstream) emissions and accounting for stored biogenic carbon as a saving. However, if binding of biogenic carbon was not accounted for, the overall GHG load would be in the range of 60 to 300 kg CO2-eq. tonne —1. This paper clearly shows that electricity generation as well as accounting of stored biogenic carbon are crucial to the accounting of GHG of waste landfilling.

  18. Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution

    DEFF Research Database (Denmark)

    MØller, Jacob; Boldrin, Alessio

    2009-01-01

    Anaerobic digestion (AD) of source-separated municipal solid waste (MSW) and use of the digestate is presented from a global warming (GW) point of view by providing ranges of greenhouse gas (GHG) emissions that are useful for calculation of global warming factors (GWFs), i.e. the contribution to GW measured in CO2-equivalents per tonne of wet waste. The GHG accounting was done by distinguishing between direct contributions at the AD facility and indirect upstream or downstream contributions. GHG accounting for a generic AD facility with either biogas utilization at the facility or upgrading of the gas for vehicle fuel resulted in a GWF from —375 (a saving) to 111 (a load) kg CO2-eq. tonne—1 wet waste. In both cases the digestate was used for fertilizer substitution. This large range was a result of the variation found for a number of key parameters: energy substitution by biogas, N2O-emission from digestate in soil, fugitive emission of CH 4, unburned CH4, carbon bound in soil and fertilizer substitution. GWFfor a specific type of AD facility was in the range —95 to —4 kg CO2-eq. tonne—1 wet waste. The ranges of uncertainty, especially of fugitive losses of CH4 and carbon sequestration highly influenced the result. In comparison with the few published GWFs for AD, the range of our data was much larger demonstrating the need to use a consistent and robust approach to GHG accounting and simultaneously accept that some key parameters are highly uncertain.

  19. Heterogeneous saline formations : long-term benefits for geo-sequestration of greenhouse gases

    International Nuclear Information System (INIS)

    The feasibility of sequestering carbon dioxide (CO2) into deep saline formations as a means of reducing atmospheric greenhouse gas emissions was discussed with particular reference to reservoir performance of heterogenous formations with varying permeability and porosity distributions. If CO2 is injected into such formations, the increased baffling and reduced permeability may inhibit the flow of CO2 towards potential leak points in the reservoir. Injectivity into low-quality rock is a concern for heterogeneous formations. Injection programs involving multiple wells and appropriate well- completion strategies may be able to overcome injectivity problems for these candidate formations. The opportunity for geosequestration increases if low-quality heterogeneous saline formations are considered as possible target formations. Dynamic simulation of CO2 injection into a formation was used to model possible outcomes for geosequestration projects. Heterogeneity may include stratigraphic layering in the reservoir, faults, depositional mixing, compartmentalization, and channel systems. It was determined that for underground storage, CO2 should be injected at the bottom of a heterogeneous formation to take the best advantage of vertical baffling in the reservoir to stratigraphically trap CO2 and increase reservoir contact with the formation. The trapping mechanisms for CO2 sequestration were discussed wsub>2 sequestration were discussed with reference to solubility; gas-water relative permeability hysteresis; geological seals; and, mineralization. Pressure rise reservoir simulation studies have shown that permeability has a pronounced influence on reservoir performance in terms of CO2 migration, local pressure changes in the formation and long-term status of the CO2. The increased travel path of CO2 causes increased trapping through greater reservoir contact and potentially improves the storage project. 28 refs., 4 tabs., 5 figs

  20. Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution.

    Science.gov (United States)

    Møller, Jacob; Boldrin, Alessio; Christensen, Thomas H

    2009-11-01

    Anaerobic digestion (AD) of source-separated municipal solid waste (MSW) and use of the digestate is presented from a global warming (GW) point of view by providing ranges of greenhouse gas (GHG) emissions that are useful for calculation of global warming factors (GWFs), i.e. the contribution to GW measured in CO(2)-equivalents per tonne of wet waste. The GHG accounting was done by distinguishing between direct contributions at the AD facility and indirect upstream or downstream contributions. GHG accounting for a generic AD facility with either biogas utilization at the facility or upgrading of the gas for vehicle fuel resulted in a GWF from -375 (a saving) to 111 (a load) kg CO(2)-eq. tonne(-1) wet waste. In both cases the digestate was used for fertilizer substitution. This large range was a result of the variation found for a number of key parameters: energy substitution by biogas, N(2)O-emission from digestate in soil, fugitive emission of CH( 4), unburned CH(4), carbon bound in soil and fertilizer substitution. GWF for a specific type of AD facility was in the range -95 to -4 kg CO(2)-eq. tonne(-1) wet waste. The ranges of uncertainty, especially of fugitive losses of CH(4) and carbon sequestration highly influenced the result. In comparison with the few published GWFs for AD, the range of our data was much larger demonstrating the need to use a consistent and robust approach to GHG accounting and simultaneously accept that some key parameters are highly uncertain. PMID:19748957

  1. Recycling of plastic: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas H

    2009-11-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO(2)-eq. tonne( -1) of plastic waste depending on treatment at the MRF and CO(2) emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60- 1600 kg CO(2)-eq. tonne( -1) of plastic waste depending on substitution ratios and CO(2) emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming. PMID:19748943

  2. Recycling of glass: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina

    2009-01-01

    Greenhouse gas (GHG) emissions related to recycling of glass waste were assessed from a waste management perspective. Focus was on the material recovery facility (MRF) where the initial sorting of glass waste takes place. The MRF delivers products like cullet and whole bottles to other industries. Two possible uses of reprocessed glass waste were considered: (i) remelting of cullet added to glass production; and (ii) re-use of whole bottles. The GHG emission accounting included indirect upstream emissions (provision of energy, fuels and auxiliaries), direct activities at the MRF and bottle-wash facility (combustion of fuels) as well as indirect downstream activities in terms of using the recovered glass waste in other industries and, thereby, avoiding emissions from conventional production. The GHG accounting was presented as aggregated global warming factors (GWFs) for the direct and indirect upstream and downstream processes, respectively. The range of GWFs was estimated to 0—70 kg CO2eq. tonne —1 of glasswaste for the upstream activities and the direct emissions from the waste management system. The GWF for the downstream effect showed some significant variation between the two cases. It was estimated to approximately —500 kg CO2-eq. tonne— 1 of glass waste for the remelting technology and —1500 to —600 kg CO2-eq. tonne—1 of glass waste for bottle re-use. Including the downstream process, large savings of GHG emissions can be attributed to the waste management system. The results showed that, in GHG emission accounting, attention should be drawn to thorough analysis of energy sources, especially electricity, and the downstream savings caused by material substitution.

  3. Recycling of paper: Accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Damgaard, Anders

    2009-01-01

    Greenhouse gas (GHG) emissions have been established for recycling of paper waste with focus on a material recovery facility (MRF). The MRF upgrades the paper and cardboard waste before it is delivered to other industries where new paper or board products are produced. The accounting showed that the GHG contributions from the upstream activities and operational activities, with global warming factors (GWFs) of respectively 1 to 29 and 3 to 9 kg CO2-eq. tonne— 1 paper waste, were small in comparison wih the downstream activities. The GHG contributions from the downstream reprocessing of the paper waste ranged from approximately 490 to 1460 kg CO2-eq. tonne —1 of paper waste. The system may be expanded to include crediting of avoided virgin paper production which would result in GHG contributions from —1270 to 390 kg CO2-eq. tonne— 1 paper waste. It may also be assumed that the wood not used for virgin paper production instead is used for production of energy that in turn is assumed to substitute for fossil fuel energy. This would result in GHG contributions from —1850 to —4400 kg CO2-eq. tonne— 1 of paper waste. These system expansions reveal very large GHG savings, suggesting that the indirect upstream and operational GHG contributions are negligible in comparison with the indirect downstream emissions. However, the data for reprocessing of paper waste and the data for virgin paper production are highly variable. These differences are mainly related to different energy sources for the mills, both in regards to energy form (heat or electricity) and fuel (biomass or fossil fuels).

  4. Carbon and nitrogen dynamics and greenhouse gases emissions in constructed wetlands: a review

    Science.gov (United States)

    Jahangir, M. M. R.; Fenton, O.; Gill, L.; Müller, C.; Johnston, P.; Richards, K. G.

    2014-07-01

    The nitrogen (N) removal efficiency of constructed wetlands (CWs) is very inconsistent and does not alone explain if the removed species are reduced by physical attenuation or if they are transformed to other reactive forms (pollution swapping). There are many pathways for the removed N to remain in the system: accumulation in the sediments, leaching to groundwater (nitrate-NO3- and ammonium-NH4+), emission to atmosphere via nitrous oxide- N2O and ammonia and/or conversion to N2 gas and adsorption to sediments. The kinetics of these pathways/processes varies with CWs management and therefore needs to be studied quantitatively for the sustainable use of CWs. For example, the quality of groundwater underlying CWs with regards to the reactive N (Nr) species is largely unknown. Equally, there is a dearth of information on the extent of Nr accumulation in soils and discharge to surface waters and air. Moreover, CWs are rich in dissolved organic carbon (DOC) and produce substantial amounts of CO2 and CH4. These dissolved carbon (C) species drain out to ground and surface waters and emit to the atmosphere. The dynamics of dissolved N2O, CO2 and CH4 in CWs is a key "missing piece" in our understanding of global greenhouse gas budgets. In this review we provide an overview of the current knowledge and discussion about the dynamics of C and N in CWs and their likely impacts on aquatic and atmospheric environments. We suggest that the fate of various N species in CWs and their surface emissions and subsurface drainage fluxes need to be evaluated in a holistic way to better understand their potential for pollution swapping. Research on the process based N removal and balancing the end products into reactive and benign forms are critical to assess environmental impacts of CWs. Thus we strongly suggest that in situ N transformation and fate of the transformation products with regards to pollution swapping requires further detailed examination.

  5. Anthropogenic effects on the subtropical jet in the Southern Hemisphere: aerosols versus long-lived greenhouse gases

    International Nuclear Information System (INIS)

    We use single-forcing historical simulations with a coupled atmosphere–ocean global climate model to compare the effects of anthropogenic aerosols (AAs) and increasing long-lived greenhouse gases (LLGHGs) on simulated winter circulation in the Southern Hemisphere (SH). Our primary focus is on the subtropical jet, which is an important source of baroclinic instability, especially in the Australasian region, where the speed of the jet is largest. For the period 1950 to 2005, our simulations suggest that AAs weaken the jet, whereas increasing LLGHGs strengthen the jet. The different responses are explained in terms of thermal wind balance: increasing LLGHGs preferentially warm the tropical mid-troposphere and upper troposphere, whereas AAs have a similar effect of opposite sign. In the mid-troposphere, the warming (cooling) effect of LLGHGs (AAs) is maximal between 20S and 30S; this coincides with the descending branch of the Hadley circulation, which may advect temperature changes from the tropical upper troposphere to the subtropics of the SH. It follows that LLGHGs (AAs) increase (decrease) the mid-tropospheric temperature gradient between low latitudes and the SH mid-latitudes. The strongest effects are seen at longitudes where the southward branches of the Hadley cell in the upper troposphere are strongest, notably at those that correspond to Asia and the western Pacific warm pool. (letter)

  6. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    International Nuclear Information System (INIS)

    Highlights: ? GHGs emissions from sludge digestion + residue land use in China were calculated. ? The AD unit contributes more than 97% of total biogenic GHGs emissions. ? AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO2, biogenic CO2, CH4, and avoided CO2 as the main objects is discussed respectively. The results show that the total CO2-eq is about 1133 kg/t DM (including the biogenic CO2), while the net CO2-eq is about 372 kg/t DM (excluding the biogenic CO2). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO2-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO2-eq reduction.

  7. An Environmental and Economic Evaluation of Pyrolysis for Energy Generation in Taiwan with Endogenous Land Greenhouse Gases Emissions

    Directory of Open Access Journals (Sweden)

    Chih-Chun Kung

    2014-03-01

    Full Text Available Taiwan suffers from energy insecurity and the threat of potential damage from global climate changes. Finding ways to alleviate these forces is the key to Taiwan’s future social and economic development. This study examines the economic and environmental impacts when ethanol, conventional electricity and pyrolysis-based electricity are available alternatives. Biochar, as one of the most important by-product from pyrolysis, has the potential to provide significant environmental benefits. Therefore, alternative uses of biochar are also examined in this study. In addition, because planting energy crops would change the current land use pattern, resulting in significant land greenhouse gases (GHG emissions, this important factor is also incorporated. Results show that bioenergy production can satisfy part of Taiwan’s energy demand, but net GHG emissions offset declines if ethanol is chosen. Moreover, at high GHG price conventional electricity and ethanol will be driven out and pyrolysis will be a dominant technology. Fast pyrolysis dominates when ethanol and GHG prices are low, but slow pyrolysis is dominant at high GHG price, especially when land GHG emissions are endogenously incorporated. The results indicate that when land GHG emission is incorporated, up to 3.8 billion kWh electricity can be produced from fast pyrolysis, while up to 2.2 million tons of CO2 equivalent can be offset if slow pyrolysis is applied.

  8. Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants

    Science.gov (United States)

    Tao, Lei; Sun, Kang; Miller, David J.; Pan, Dan; Golston, Levi M.; Zondlo, Mark A.

    2015-04-01

    A low-power mobile sensing platform has been developed with multiple open-path gas sensors to measure the ambient concentrations of greenhouse gases and air pollutants with high temporal and spatial resolutions over extensive spatial domains. The sensing system consists of four trace gas sensors including two custom quantum cascade laser-based open-path sensors and two LICOR open-path sensors to measure CO2, CO, CH4, N2O, NH3, and H2O mixing ratios simultaneously at 10 Hz. In addition, sensors for meteorological and geolocation data are incorporated into the system. The system is powered by car batteries with a low total power consumption (~200 W) and is easily transportable due to its low total mass (35 kg). Multiple measures have been taken to ensure robust performance of the custom, open-path sensors located on top of the vehicle where the optics are exposed to the harsh on-road environment. The mobile sensing system has been integrated and installed on top of common passenger vehicles and participated in extensive field campaigns (>400 h on-road time with >18,000 km total distance) in both the USA and China. The simultaneous detection of multiple trace gas species makes the mobile sensing platform a unique and powerful tool to identify and quantify different emission sources through mobile mapping.

  9. Wood materials used as a means to reduce greenhouse gases (GHGs). An examination of wooden utility poles

    International Nuclear Information System (INIS)

    There has been growing concern over the build-up of greenhouse gases (GHGs) in the atmosphere, particularly carbon dioxide (CO2), as a cause of global warming. The IPCC Third Assessment Report (2001) suggests two ways in which the choice of materials could be relevant. First, some materials, particularly wood, have the advantage that they continue to hold carbon (C)in their cells even after being converted to products. The implications of this feature are well researched. Second, an area that is not well researched relates to the different energy requirements for producing similar products made with different materials. Using the findings of recent research, this paper compares the energy requirements and C emissions of manufacturing a product using wood with that of other materials. The case study of utility poles demonstrates the positive C and global warming consequences of the lower energy requirements of wood in the U.S., compared to other materials such as steel or concrete. It demonstrates that GHG emissions associated with utility poles are a small but significant percent of total US annual emissions. Wood utility poles are associated with GHG emission reductions of 163 Terragrams (Tg) of CO2 when compared with steel poles. This is about 2.8 percent of US annual GHG emissions, which are estimated at about 5.28 Petragrams (Pg) of CO2 annually. Thus, the use of wooden utility poles rather than steel results in a small but significant reduction in total US emissit significant reduction in total US emissions

  10. Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants

    Science.gov (United States)

    Tao, Lei; Sun, Kang; Miller, David J.; Pan, Dan; Golston, Levi M.; Zondlo, Mark A.

    2015-03-01

    A low-power mobile sensing platform has been developed with multiple open-path gas sensors to measure the ambient concentrations of greenhouse gases and air pollutants with high temporal and spatial resolutions over extensive spatial domains. The sensing system consists of four trace gas sensors including two custom quantum cascade laser-based open-path sensors and two LICOR open-path sensors to measure CO2, CO, CH4, N2O, NH3, and H2O mixing ratios simultaneously at 10 Hz. In addition, sensors for meteorological and geolocation data are incorporated into the system. The system is powered by car batteries with a low total power consumption (~200 W) and is easily transportable due to its low total mass (35 kg). Multiple measures have been taken to ensure robust performance of the custom, open-path sensors located on top of the vehicle where the optics are exposed to the harsh on-road environment. The mobile sensing system has been integrated and installed on top of common passenger vehicles and participated in extensive field campaigns (>400 h on-road time with >18,000 km total distance) in both the USA and China. The simultaneous detection of multiple trace gas species makes the mobile sensing platform a unique and powerful tool to identify and quantify different emission sources through mobile mapping.

  11. A dynamic model to optimize a regional energy system with waste and crops as energy resources for greenhouse gases mitigation

    International Nuclear Information System (INIS)

    A dynamic model of a regional energy system has been developed to support sustainable waste treatment with greenhouse gases (GHG) mitigation, addressing the possibility for development towards a regional fossil fuel-free society between 2011 and 2030. The model is based on conventional mixed integer linear programming (MILP) techniques to minimize the total cost of regional energy systems. The CO2 emission component in the developed model includes both fossil and biogenic origins when considering waste, fossil fuels and other renewable sources for energy production. A case study for the county of Västmanland in central Sweden is performed to demonstrate the applicability of the developed MILP model in five distinct scenarios. The results show significant potential for mitigating CO2 emission by gradually replacing fossil fuels with different renewable energy sources. The MILP model can be useful for providing strategies for treating wastes sustainably and mitigating GHG emissions in a regional energy system, which can function as decision bases for formulating GHG reduction policies and assessing the associated economic implications. -- Highlights: ? A dynamic MILP model is developed to study a regional energy system under five waste scenarios. ? Municipal waste and energy crops work as main raw materials to replace fossil fuels. ? Gradual GHG mitigation is achieved for a fossil fuel free energy system. ? The obstacles to achieve a fossil fuel free energy system have been investigated and studied. ? How to come to a fossil fuel free energy system is given in this study.

  12. Carbon and nitrogen dynamics and greenhouse gases emissions in constructed wetlands: a review

    Directory of Open Access Journals (Sweden)

    M. M. R. Jahangir

    2014-07-01

    Full Text Available The nitrogen (N removal efficiency of constructed wetlands (CWs is very inconsistent and does not alone explain if the removed species are reduced by physical attenuation or if they are transformed to other reactive forms (pollution swapping. There are many pathways for the removed N to remain in the system: accumulation in the sediments, leaching to groundwater (nitrate-NO3- and ammonium-NH4+, emission to atmosphere via nitrous oxide- N2O and ammonia and/or conversion to N2 gas and adsorption to sediments. The kinetics of these pathways/processes varies with CWs management and therefore needs to be studied quantitatively for the sustainable use of CWs. For example, the quality of groundwater underlying CWs with regards to the reactive N (Nr species is largely unknown. Equally, there is a dearth of information on the extent of Nr accumulation in soils and discharge to surface waters and air. Moreover, CWs are rich in dissolved organic carbon (DOC and produce substantial amounts of CO2 and CH4. These dissolved carbon (C species drain out to ground and surface waters and emit to the atmosphere. The dynamics of dissolved N2O, CO2 and CH4 in CWs is a key "missing piece" in our understanding of global greenhouse gas budgets. In this review we provide an overview of the current knowledge and discussion about the dynamics of C and N in CWs and their likely impacts on aquatic and atmospheric environments. We suggest that the fate of various N species in CWs and their surface emissions and subsurface drainage fluxes need to be evaluated in a holistic way to better understand their potential for pollution swapping. Research on the process based N removal and balancing the end products into reactive and benign forms are critical to assess environmental impacts of CWs. Thus we strongly suggest that in situ N transformation and fate of the transformation products with regards to pollution swapping requires further detailed examination.

  13. Why the developing nations like India need strong capacity building efforts in greenhouse gases mitigation?

    Science.gov (United States)

    Vishal, V.; Sudhakaran, A.; Singh, T. N.

    2014-12-01

    Today, India rubs shoulders with nations like USA and China for being the major shareholders in global greenhouse emissions and has more emissions than Russia! Carbon Capture, Utilization and Storage (CCUS) has been proven as a reliable method to counter global warming and keep the 2ºC per year policy in check and is currently in the pilot stage in many developed nations. The three major requirements for CCUS are: manpower in diverse fields, implementation potential and capital. Keeping other social problems aside, India still has sufficient mankind in all spheres of research ranging from earth science, engineering, basic sciences, economy, policy making, regulation, public outreach etc. to successfully work on such challenges. India has leading academic institutions, research labs and universities in science and engineering. They also have a working power force in aspects like economy, policy making, regulation, public outreach etc. in various management institutes of repute. India, however, lacks in sufficient funding for advanced research and capacity building schemes to support projects of such scale. Deployment of facts and concepts on climate change need an approach of much greater scope than what is anticipated. The above workforces can put forth a clear picture about the various entities surrounding CCUS and provide sensible planning and implementation information through scientific research. CCUS is only possible when the direct anthropogenic emitters like fossil fuel plants modify their features to incorporate the methods associated with it. The rural population has to be educated in context to the safety of the storage sites. Above all, the Indian government must holistically divert funds for such programs and provide economic incentives to the industries for the industries. The bottom line is that India has been working in lots of aspects with not very clear cuts objectives. There are CO2 capture technologies like amine scrubbing and membrane separation that is available and immense storage potential is also seen in the Gondwana coal fields and basalt rocks of the Deccan plateau. For successful working of such ideas, the confidence of a big section of public comprising of academicians, researchers, industrialists, sustainable energy workers, politicians etc. is required apart from the key workforce.

  14. Reduced emissions of greenhouse gases 2050: Technological wedges - Input to the Commission on Low Emissions; Reduserte klimagassutslipp 2050: Teknologiske kiler - Innspill til Lavutslippsutvalget

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Espegren, Kari Aamodt; Finden, Per; Hageman, Rolf; Stenersen, Dag

    2006-09-15

    The Commission on Low Emissions was established in March 2005 and has been charged with the task of describing how Norway can achieve a 50-80 percent reduction in emissions of greenhouse gases by 2050. The commission describes the desired total reduction in emissions to be a set of actions or 'wedges', meaning that the reduction in emissions are linked to an array of technological and behavioural changes. The technological wedges are described here, while the behavioural wedges are treated in a different report. The potentials described are based on the Low Emission's reference line. Possible changes in the reference line will result in changed potentials. The technological wedges studied comprise to a great extent a potential of 50-80 percent reduction in greenhouse gases by 2050. This depends on considerable effort from research and development, and a determination to change external conditions.

  15. The role of non-CO2 greenhouse gases in cost-effective strategies to reduce pollution by dairy cattle in the Czech Republic

    OpenAIRE

    Havlikova, M.; Kroeze, C.

    2010-01-01

    Agriculture is an important source of greenhouse gases, including methane (CH4) and nitrous oxide (N2O). In addition, it is a source of compounds contributing to other environmental problems such as acidification, terrestrial and aquatic eutrophication, tropospheric ozone formation, and human health problems. These compounds include, for instance, ammonia (NH3), nitrogen oxides (NOx), and particulate matter (PM) volatile organic compounds or nitrate ( NO-3). In this article, we address the qu...

  16. Impacts of greenhouse and local gases mitigation options on air pollution in the Buenos Aires Metropolitan Area: Valuation of human health effects

    OpenAIRE

    Conte Grand, Mariana; Gaioli, Fabián; Perone, Elizabeth; Sörensson, Anna; Svensson, Tomas; Tarela, Pablo

    2002-01-01

    The objective of this work is to assess through the avoided health cost method what would be the economic benefits of undertaking greenhouse (and local) gases mitigation policies in the Buenos Aires Metropolitan Area. To do so, we have developed six steps: Mitigation Scenarios (which policies to undertake), Emissions Inventory according to those, an Ambient Air Pollution Model to calculate the physical impacts, Health Effects Estimation to assess the health consequences of reducing air pollut...

  17. Atmospheric station K?ešín u Pacova, Czech Republic – a Central European research infrastructure for studying greenhouse gases, aerosols and air quality.

    Czech Academy of Sciences Publication Activity Database

    Dvorská, A.; Sedlák, Pavel; Schwarz, J.; Fusek, M.; Hanuš, V.; Vodi?ka, P.; Trusina, J.

    Göttingen : Copernicus GmbH, 2015, s. 79-83. ISSN 1992-0628. [EMS Annual Meeting /14./ and European Conference on Applied Climatology /10./. Praha (CZ), 06.10.2014-10.10.2014] Institutional support: RVO:68378289 Keywords : air quality * atmospheric station K?ešín * greenhouse gases * Czech Republic * aerosols Subject RIV: DG - Athmosphere Science s, Meteorology http://www.adv-sci-res.net/12/79/2015/asr-12-79-2015.pdf

  18. Atmospheric station K?ešín u Pacova, Czech Republic – a Central European research infrastructure for studying greenhouse gases, aerosols and air quality.

    Czech Academy of Sciences Publication Activity Database

    Dvorská, Alice; Sedlák, Pavel; Schwarz, Jaroslav; Fusek, M.; Vodi?ka, Petr; Trusina, Jan

    Göttingen : Copernicus GmbH, 2015, s. 79-83. ISSN 1992-0628. [EMS Annual Meeting /14./ and European Conference on Applied Climatology /10./. Praha (CZ), 06.10.2014-10.10.2014] R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 ; RVO:67985858 Keywords : air quality * atmospheric station K?ešín * greenhouse gases * Czech Republic * aerosols Subject RIV: EH - Ecology, Behaviour; CF - Physical ; Theoretical Chemistry (UCHP-M)

  19. Laser-based sensors on UAVs for quantifying local emissions of greenhouse gases

    Science.gov (United States)

    Zondlo, Mark; Tao, Lei; O'Brien, Anthony; Ross, Kevin; Khan, Amir; Pan, Da; Golston, Levi; Sun, Kang; DiGangi, Josh

    2015-04-01

    Small unmanned aerial systems (UAS) provide an ideal platform to sample both locally near an emission source as well as within the atmospheric boundary layer. However, small UAS (those with wingspans or rotors on the order of a meter) place severe constraints on sensor size (~ liter volume), mass (~ kg), and power (10s W). Laser-based sensors employing absorption techniques are ideally suited for such platforms due to their high sensitivity, high selectivity, and compact footprint. We have developed and flown compact sensors for water vapor, carbon dioxide and methane using new advances in open-path, laser-based spectroscopy on a variety of platforms ranging from remote control helicopters to long-duration UAS. Open-path spectroscopy allows for high frequency sampling (10-25 Hz) while avoiding the size/mass/power of sample delays, inlet lines, and pumps. To address the challenges of in-flight stability in changing environmental conditions and any associated flight artifacts on the measurement itself (e.g. vibrations), we use an in-line reference cell at a reduced pressure (10 hPa) to account for systematic drift continuously while in flight. Wavelength modulation spectroscopy is used at different harmonics to isolate the narrow linewidth of the in-line reference signal from the ambient, pressure-broadened absorption lineshape of the trace gas of interest. As a result, a metric of in-flight performance is achieved in real-time on the same optical pathlength as the ambient signal. To demonstrate the great potential of laser-based sensors on UAS, we deployed a 1.65 micron-based methane sensor (4 kg, 50 W, 100 ppbv precision at 10 Hz) on a UT-Dallas remote control aircraft for two weeks around gas/oil extraction activities as part of the EDF Barnett Coordinated Campaign in October 2013. We conducted thirty-four flights around a compressor station to examine the spatial and temporal characteristics of its emissions. Leaks of methane were typically lofted to altitudes well above the surface (up to 100 m). In addition, plumes were very narrow horizontally (10-30 m width) within 200 m of the emission origin. By using a mass balance approach of upwind versus downwind CH4 concentrations, coupled to meteorological wind data, the CH4 emission rate from the compressor station averaged 13 ± 5 g CH4 s-1, consistent with individual, leak surveys measured within the compressor station itself. More recently, we developed a mid-infrared version of the same sensor using an antimonide laser at 3.3 microns. This sensor has a precision of 2 ppbv CH4 at 10 Hz, a mass of 1.3 kg, and consumes 10 W of power. Flight tests show the improved precision is capable of detecting methane leaks from landfills and cattle feedlots at higher altitudes (500 m) and greater distances downwind (several km) than the near infrared CH4 sensor. Sampling strategy is particularly important for not only UAS-based flight patterns but also sensor design. Many tradeoffs exist between the sampling density of the flight pattern, sensor precision, accuracy of wind data, and geographic isolation of the source of interest, and these will be discussed in the context of airborne-based CH4 measurements in the field. The development of compact yet robust trace gas sensors to be deployed on small UAS opens new capabilities for atmospheric sensing such as quantifying local source emissions (e.g. farms, well pads), vertical profiling of trace gases in a forest canopy, and trace gas distributions in complex areas (mountains, urban canyons).

  20. An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2009-03-01

    Full Text Available A new analytical inversion method has been developed to determine the regional and global emissions of long-lived atmospheric trace gases. It exploits in situ measurement data from three global networks and builds on backward simulations with a Lagrangian particle dispersion model. The emission information is extracted from the observed concentration increases over a baseline that is itself objectively determined by the inversion algorithm. The method was applied to two hydrofluorocarbons (HFC-134a, HFC-152a and a hydrochlorofluorocarbon (HCFC-22 for the period January 2005 until March 2007. Detailed sensitivity studies with synthetic as well as with real measurement data were done to quantify the influence on the results of the a priori emissions and their uncertainties as well as of the observation and model errors. It was found that the global a posteriori emissions of HFC-134a, HFC-152a and HCFC-22 all increased from 2005 to 2006. Large increases (21%, 16%, 18%, respectively from 2005 to 2006 were found for China, whereas the emission changes in North America (?9%, 23%, 17%, respectively and Europe (11%, 11%, ?4%, respectively were mostly smaller and less systematic. For Europe, the a posteriori emissions of HFC-134a and HFC-152a were slightly higher than the a priori emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC. For HCFC-22, the a posteriori emissions for Europe were substantially (by almost a factor 2 higher than the a priori emissions used, which were based on HCFC consumption data reported to the United Nations Environment Programme (UNEP. Combined with the reported strongly decreasing HCFC consumption in Europe, this suggests a substantial time lag between the reported time of the HCFC-22 consumption and the actual time of the HCFC-22 emission. Conversely, in China where HCFC consumption is increasing rapidly according to the UNEP data, the a posteriori emissions are only about 40% of the a priori emissions. This reveals a substantial storage of HCFC-22 and potential for future emissions in China. Deficiencies in the geographical distribution of stations measuring halocarbons in relation to estimating regional emissions are also discussed in the paper. Applications of the inversion algorithm to other greenhouse gases such as methane, nitrous oxide or carbon dioxide are foreseen for the future.

  1. A new analytical inversion method for determining regional and global emissions of greenhouse gases: sensitivity studies and application to halocarbons

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2008-11-01

    Full Text Available A new analytical inversion method has been developed to determine the regional and global emissions of long-lived atmospheric trace gases. It exploits in situ measurement data from a global network and builds on backward simulations with a Lagrangian particle dispersion model. The emission information is extracted from the observed concentration increases over a baseline that is itself objectively determined by the inversion algorithm. The method was applied to two hydrofluorocarbons (HFC-134a, HFC-152a and a hydrochlorofluorocarbon (HCFC-22 for the period January 2005 until March 2007. Detailed sensitivity studies with synthetic as well as with real measurement data were done to quantify the influence on the results of the a priori emissions and their uncertainties as well as of the observation and model errors. It was found that the global a posteriori emissions of HFC-134a, HFC-152a and HCFC-22 all increased from 2005 to 2006. Large increases (21%, 16%, 18%, respectively from 2005 to 2006 were found for China, whereas the emission changes in North America and Europe were modest. For Europe, the a posteriori emissions of HFC-134a and HFC-152a were slightly higher than the a priori emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC. For HCFC-22, the a posteriori emissions for Europe were substantially (by almost a factor 2 higher than the a priori emissions used, which were based on HCFC consumption data reported to the United Nations Environment Programme (UNEP. Combined with the reported strongly decreasing HCFC consumption in Europe, this suggests a substantial time lag between the reported timing of the HCFC-22 consumption and the actual timing of the HCFC-22 emission. Conversely, in China where HCFC consumption is increasing rapidly according to the UNEP data, the a posteriori emissions are only about 40% of the a priori emissions. This reveals a substantial storage of HCFC-22 and potential for future emissions in China. Deficiencies in the station locations of the current global network measuring halocarbons in relation to estimating regional emissions are also discussed in the paper. Applications of the inversion algorithm to other greenhouse gases such as methane, nitrous oxide or carbon dioxide are foreseen for the future.

  2. GHG (Greenhouse Gases) emission inventory and mitigation measures for public district heating plants in the Republic of Serbia

    International Nuclear Information System (INIS)

    As a non-Annex I Party to the United Nations Framework Convention on Climate Change and Kyoto Protocol signatory, the Republic of Serbia has committed to develop GHG (Greenhouse Gases) emission inventory and prepare comprehensive program of mitigation measures at national level. The paper presents results of 2000–2008 GHG emission inventory assembled for PDH (Public District Heating) sub-sector in accordance with revised IPCC (Intergovernmental Panel on Climate Change) Tier 1 methodology. Evaluation of proposed mitigation measures was performed based on 2012 and 2015 GHG emission projections, obtained for basic and four alternative scenarios, all characterized by the same energy demand but with different fuel mix used. The first alternative scenario addresses GHG emissions in case that solid fuel is substituted by natural gas. The second alternative scenario represents a sub-scenario of the first alternative scenario, with additional substitution of liquid fuel with locally available biomass. Third alternative scenario addresses emissions resulting from complete fuel switch from natural gas to liquid fuel oil, while the final alternative scenario considers the case when natural gas is the only energy resource used. GHG emission trends in the period until 2015, examined in case of previously mentioned basic and four alternative scenarios, point out to the positive impact of fuel switch on GHG emission reduction and pathways for future implementation of proposed mitigation measures. Results obtained clearly quantified assumption that fuel substitution by locally available biomass could solve environmental problems, overcome problems associated with high prices of imported fuels, improve energy supply security and increase local employment

  3. The effect of land-use change on the net exchange rates of greenhouse gases: a meta-analytical approach

    Directory of Open Access Journals (Sweden)

    D.-G. Kim

    2014-01-01

    Full Text Available One of the environmental impacts of land-use change (LUC is a change in the net exchange of the greenhouse gases (GHGs carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O. Here we summarize findings based on a new global database containing data sets of changes in soil organic carbon stocks and soil CH4 and N2O fluxes. We combine that with estimates of biomass carbon stock changes and enteric CH4 emissions following LUC. Data were expressed in common units by converting net CH4 and N2O fluxes to CO2 equivalents (CO2 eq using established global warming potentials, and carbon-stock changes were converted to annual net fluxes by averaging stock changes over 100 yr. Conversion from natural forest to cropland resulted in the greatest increase in net GHG fluxes, while conversion of cropland to secondary forest resulted in the greatest reduction in net GHG emissions. Specifically, LUC from natural forest to crop and grasslands led to net fluxes of 6.2 ± 1.6 (Mean ± 95% confidence intervals and 4.8 ± 1.6 t CO2 eq ha?1 yr?1 to the atmosphere, respectively. Conversely, conversion from crop and grasslands to secondary forest reduced net emissions by 6.1 ± 4.1 and 3.9 ± 1.2 t CO2 eq ha?1 yr?1, respectively. Land-use change impacts were generally dominated by changes in biomass carbon. A retrospective analysis indicated that LUC from natural forests to agricultural lands contributed a cumulative 1326 ± 449 Gt CO2 eq between 1765 and 2005, which is equivalent to average emissions of 5.5 ± 1.6 Gt CO2 eq yr?1. This study demonstrates how specific LUCs can positively or negatively affect net GHG fluxes to the atmosphere.

  4. Ground-based demonstration of imaging SWIR-FTS for space-based detection of air pollution and greenhouse gases

    Science.gov (United States)

    Imai, Tadashi; Murooka, Jumpei; Kuze, Akihiko; Suto, Hiroshi; Sato, Ryota

    2013-10-01

    Fourier transform spectrometer (FTS) has many advantages, especially for greenhouse gases and air pollution detection in the atmosphere, because a single instrument can provide wide spectral coverage and high spectral resolution with highly stabilized instrumental line function for all wavenumbers. Several channels are usually required to derive the column amount or vertical profile of a target species. Near infrared (NIR) and shortwave infrared (SWIR) spectral regions are very attractive for remote sensing applications. The GHG and CO of precursors of air pollution have absorption lines in the SWIR region, and the sensitivity against change in the amounts in the boundary layer is high enough to measure mole fractions near the Earth surface. One disadvantage of conventional space-based FTS is the spatial density of effective observation. To improve the effective numbers of observations, an imaging FTS coupled with a two-dimensional (2D)-camera was considered. At first, a mercury cadmium telluride (MCT)-based imaging FTS was considered. However, an MCT-based system requires a calibration source (black body and deep-space view) and a highly accurate and super-low temperature control system for the MCT detector. As a result, size, weight, and power consumption are increased and the cost of the instrument becomes too high. To reduce the size, weight, power consumption, and cost, a commercial 2D indium gallium arsenide (InGaAs) camera can be used to detect SWIR light. To demonstrate a small imaging SWIR-FTS (IS-FTS), an imaging FTS coupled with a commercial 2D InGaAs camera was developed. In the demonstration, the CH4 gas cell was equipped with an IS-FTS for the absorber to make the spectra in the SWIR region. The spectra of CH4 of the IS-FTS demonstration model were then compared with those of traditional FTS. The spectral agreement between the traditional and IS-FTS instruments was very good.

  5. Spatial variations in immediate greenhouse gases and aerosol emissions and resulting radiative forcing from wildfires in interior Alaska

    Science.gov (United States)

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shuguang

    2015-01-01

    Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001-2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m-2 and a standard deviation of 2,589 g C m-2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (-583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m-2 with a standard deviation of 2.87 W m-2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.

  6. Greenhouse effect gases sources and sinks (CO2, CH4, N2O) in grasslands and reduction strategies. Greenhouse effect gases prairies. Final report of the second part of the project. April 2004

    International Nuclear Information System (INIS)

    The project 'GES-Prairies' (Greenhouse Gases - Grasslands) had two main objectives: 1. To measure more accurately the fluxes of CO2, CH4 and N2O of French grasslands and determine the greenhouse gas (GHG) balance of these areas. 2. To calculate the net GHG emissions of cattle production farms and finally to propose and evaluate some management scenarios leading to a reduction of GHG emissions. This project deals with three different spatial scales: the field scale, the farm scale and finally, the regional scale. At the field scale, during two years, fluxes of CO2, CH4 and N2O were measured in a mid-mountain permanent grassland, previously managed intensively by cutting and grazing (Laqueuille, Auvergne, France). Results from the first complete year of measurements show that the extensification process (reduction of the stocking rate and stopping N fertilization) allows to stock more carbon in the ecosystem. At the farm scale, We developed a model (FARMSIM, coupled to PASIM) able to simulate the GHG balance of a livestock farm. FARMSIM has been tested with data obtained from a mixed livestock farm in Lorraine (dairy and meat production, annual average stocking rate = 1.3 LU ha-1) of 100 ha (including 76 ha of grasslands and 21 of annual crops). The results indicate a net emission of 175 t equivalent C-CO2 for this farm. If expressed per unit of product, it represents 1.34 t equivalent C-CO2 per LU and per year or 0.54 kg CO2 per kg of milk and per year. At the regional scale/. The PASIM model has been used to simulate the European grasslands with a spatial resolution of 1' (about 200 * 200 km). For each grid cell, a sensibility analysis allowed to determine the N application which correspond to 30% of the N application that would maximize the annual yield of the pasture. Simulation runs on mixed systems (combining grazing and cutting) show that almost one half of the grassland area is, on average, used for cutting. These simulations predict N2O emission factors that are relatively stable for the different grid cells across Europe wit values ranging between 1 and 2% in cut systems and between 3 and 4% under grazing (with organic N application through faeces and urine deposition). Under cutting, the simulations predict a important annual C storage (varying between 0.5 to 6 t C ha-1 y-1). However one must consider that an important part of this storage occurs in the harvested forage. C storage in grazed grasslands (0.3 to 2 t C ha-1 y-1) is lower than in cut grasslands. The simulations indicates therefore that cut grassland could represent an important net GHG sink. In France, the amplitude of this sink could vary between 0.5 and 2 t C CO2 equivalent ha-1 y-1. The simulations combining cut and grazed grassland, in proportion to the dietary needs, show that,in France, these systems would be a net GHG sink of 2 to 3 t C CO2 equivalent ha-1 y-1. More realistic results would be obtained if the differences between farming systems were taken into account more specifically. (author)

  7. Quantification of the greenhouse effect gases at the territorial scale. Final report; Quantification des emissions de gaz a effet de serre a l'echelle territoriale. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, G.; Lacassagne, S

    2003-07-01

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  8. INVENTARIO DE GASES CON EFECTO INVERNADERO EMITIDOS POR LA ACTIVIDAD AGROPECUARIA CHILENA / Inventory of greenhouse gas emissions by Chilean agriculture

    Scientific Electronic Library Online (English)

    Rafael, Novoa S.A.; Sergio, González M.; Rosemary, Novoa J.; Rosa, Rojas.

    2000-04-01

    Full Text Available Se realizó una estimación de los gases con efecto invernadero emitidos por la agricultura chilena. Los resultados indican que el año 1994, la agricultura chilena emitió 321,92 Gg de metano, 21,80 Gg de N2O; 2,96 Gg de NOx y 51,97 Gg de CO. Además, se estimó que las emisiones de COVNM llegan a 2,59 G [...] g año-1. Estas cifras expresadas como porcentaje de las emisiones del sector no energía chileno llegan a un 74,3 % para el metano, un 5,1 % para el CO; un 93,8 % para el N2O; un 9,8 % para los NOx y un 4,9 % para los COVNM. Al sumar el potencial de calentamiento de las emisiones de metano y óxidos de N resulta que la agricultura estaría emitiendo un total equivalente a 10.504 Gg de CO2 año-1. La silvicultura, el cambio de uso del suelo y la gestión de residuos del país, generan una captación neta de CO2 de 29.709 Gg año-1, por ello se reduce este excedente en un 32 % el que quedaría en 19.205 Gg. Abstract in english The greenhouse gas emissions from Chilean agriculture were estimated. The results showed that during 1994, Chilean agriculture emitted 321.92 Gg of methane; 21.80 Gg of N2O; 2.96 Gg of NOx and 51.97 Gg of CO. Also, agriculture generated 2.59 Gg year-1 of non-methane volatile compound emissions (NMVO [...] C). These figures as a percentage of the non-energy sector emissions are as follows: 74.3% for methane; 5.1 % for CO; 93.8 % for N2O; 9.8 % for NOx and 4.9 % for NMVOC. Taking into account the potential warming effects of methane and nitrous oxide as CO2 equivalent amounts, agriculture is responsible for 10,504 Gg CO2 year-1. Since forestry, land-use changes and handling of residues in Chile represent a net capture of 29,709 CO2 Gg year-1, agriculture reduces this surplus to 35.4 %. So, the total surplus is about 19.205 Gg year-1.

  9. Laser Atmospheric Transmitter Receiver-Network (LAnTeRN): A new approach for active measurement of atmospheric greenhouse gases

    Science.gov (United States)

    Dobler, J. T.; Braun, M.; Zaccheo, T.

    2012-12-01

    The Laser Atmospheric Transmitter Receiver-Network (LAnTeRN) is a new measurement concept that will enable local, regional and continental determination of key greenhouse gases, with unparalleled accuracy and precision. This new approach will offer the ability to make low bias, high precision, quasi-continuous, measurements to the accuracies required for separating anthropogenic and biogenic sources and sinks. In 2004 ITT Exelis developed an airborne demonstration unit, based on an intensity modulated continuous wave (IM-CW) lidar approach, for actively measuring atmospheric CO2 and O2. The multi-functional fiber laser lidar (MFLL) system relies on low peak power, high reliability, and efficient telecom laser components to implement this unique measurement approach. While evaluating methods for discriminating against thin clouds for the MFLL instrument, a new measurement concept was conceived. LAnTeRN has several fundamental characteristics in common with the MFLL instrument, but is a fundamentally different implementation and capability. The key difference is that LAnTeRN operates in transmission rather than in the traditional backscatter lidar configuration, which has several distinct advantages. Operating as a forward scatter, bistatic lidar system, LAnTeRN enables consideration of continuous monitoring from a geostationary orbit to multiple locations on the ground. Having the receivers on the ground significantly lowers cost and risk compared to an all space based mission, and allows the transmitter subsystem to be implemented, near term, as a hosted payload. Furthermore, the LAnTeRN measurement approach is also applicable for ground to ground measurements where high precision measurements over a long open path is required, such as facilities monitoring, or monitoring of passive volcanoes and fault lines. Using narrow linewidth laser sources allows flexibility to select the position on the absorption feature being probed. This feature allows for weighting the absorption toward lower altitudes for the space implementation or to handle large dynamic range measurements as would be required for volcano monitoring. This presentation will discuss results from a detailed instrument performance analyses, retrieval simulations, and from initial testing of a proof of concept demonstration unit being developed by Exelis. Initial analysis indicate that measurements from a transmitter in geostationary orbit to 25 ground receivers in the eastern U.S. can retrieve column integrated CO2 values to a precision of aircraft and in-situ instrumentation), for quantification of bias. Furthermore, the ability to selectively locate the ground receivers can enable focused studies for specific applications.

  10. Profiling Wind and Greenhouse Gases by Infrared-laser Occultation: Algorithm and Results from Simulations in Windy Air

    Science.gov (United States)

    Plach, Andreas; Proschek, Veronika; Kirchengast, Gottfried

    2014-05-01

    We employ the Low Earth Orbit (LEO-LEO) microwave and infrared-laser occultation (LMIO) method to derive a full set of thermodynamic state variables from microwave signals and climate benchmark profiling of greenhouse gases (GHGs) and line-of-sight (l.o.s.) wind using infrared-laser signals. The focus lies on the upper troposphere/lower stratosphere region (UTLS - 5 km to 35 km). The GHG retrieval errors are generally smaller than 1% to 3% r.m.s., at a vertical resolution of about 1 km. In this study we focus on the infrared-laser part of LMIO, where we introduce a new, advanced wind retrieval algorithm to derive accurate l.o.s. wind profiles. The wind retrieval uses the reasonable assumption of the wind blowing along spherical shells (horizontal winds) and therefore the l.o.s. wind speed can be retrieved by using an Abel integral transform. A 'delta-differential transmission' principle is applied to two thoroughly selected infrared-laser signals placed at the wings of the highly symmetric C18OO absorption line (nominally ±0.004 cm-1 from the line center near 4767 cm-1) plus a related 'off-line' reference signal. The delta-differential transmission obtained by differencing these signals is clear from atmospheric broadband effects and is proportional to the wind-induced Doppler shift; it serves as the integrand of the Abel transform. The Doppler frequency shift calculated along with the wind retrieval is in turn also used in the GHG retrieval to correct the frequency of GHG-sensitive infrared-laser signals for the wind-induced Doppler shift, which enables improved GHG estimation. This step therefore provides the capability to correct potential wind-induced residual errors of the GHG retrieval in case of strong winds. We performed end-to-end simulations to test the performance of the new retrieval in windy air. The simulations used realistic atmospheric conditions (thermodynamic state variables and wind profiles) from an analysis field of the European Centre for Medium-Range Weather Forecasts (ECMWF). GHG profiles were taken from the Fast Atmospheric Signature Code (FASCODE) model. Three geographic regions were investigated, representing three different atmospheric conditions: Tropics (TRO) - a warm and moist atmosphere, Standard (STD) - an intermediate atmosphere at mid-latitudes, and Sub-Arctic Winter (SAW) - a cold and dry atmosphere. We will discuss the results in windy air, which show an encouraging performance both for the wind retrieval throughout the stratosphere (essentially unbiased l.o.s. winds with rms errors within 2 m/s over about 15 to 35 km) and for the GHG estimation.

  11. INVENTARIO DE GASES CON EFECTO INVERNADERO EMITIDOS POR LA ACTIVIDAD AGROPECUARIA CHILENA Inventory of greenhouse gas emissions by Chilean agriculture

    Directory of Open Access Journals (Sweden)

    Rafael Novoa S.A.

    2000-04-01

    Full Text Available Se realizó una estimación de los gases con efecto invernadero emitidos por la agricultura chilena. Los resultados indican que el año 1994, la agricultura chilena emitió 321,92 Gg de metano, 21,80 Gg de N2O; 2,96 Gg de NOx y 51,97 Gg de CO. Además, se estimó que las emisiones de COVNM llegan a 2,59 Gg año-1. Estas cifras expresadas como porcentaje de las emisiones del sector no energía chileno llegan a un 74,3 % para el metano, un 5,1 % para el CO; un 93,8 % para el N2O; un 9,8 % para los NOx y un 4,9 % para los COVNM. Al sumar el potencial de calentamiento de las emisiones de metano y óxidos de N resulta que la agricultura estaría emitiendo un total equivalente a 10.504 Gg de CO2 año-1. La silvicultura, el cambio de uso del suelo y la gestión de residuos del país, generan una captación neta de CO2 de 29.709 Gg año-1, por ello se reduce este excedente en un 32 % el que quedaría en 19.205 Gg.The greenhouse gas emissions from Chilean agriculture were estimated. The results showed that during 1994, Chilean agriculture emitted 321.92 Gg of methane; 21.80 Gg of N2O; 2.96 Gg of NOx and 51.97 Gg of CO. Also, agriculture generated 2.59 Gg year-1 of non-methane volatile compound emissions (NMVOC. These figures as a percentage of the non-energy sector emissions are as follows: 74.3% for methane; 5.1 % for CO; 93.8 % for N2O; 9.8 % for NOx and 4.9 % for NMVOC. Taking into account the potential warming effects of methane and nitrous oxide as CO2 equivalent amounts, agriculture is responsible for 10,504 Gg CO2 year-1. Since forestry, land-use changes and handling of residues in Chile represent a net capture of 29,709 CO2 Gg year-1, agriculture reduces this surplus to 35.4 %. So, the total surplus is about 19.205 Gg year-1.

  12. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    Science.gov (United States)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the Tropics and high latitudes, are consistent with predictions of a number of previous GCM studies. Finally, direct radiative forcing of anthropogenic aerosols is predicted to induce strong regional cooling over East and South Asia. Wintertime rainfall over southeastern China and the Indian subcontinent is predicted to decrease because of the increased atmospheric stability and decreased surface evaporation, while the geographic distribution of precipitation is also predicted to be altered as a result of aerosol-induced changes in wind flow.

  13. Greenhouse blues?

    International Nuclear Information System (INIS)

    An account is given of the main issues of the greenhouse debate. It is emphasised that for the medium to longer terms - and certainly within the timeframe set by the Toronto Conference for the reduction of CO2 built up, fossil fuels (particularly coal) and nuclear remain the real options for power generation. While Australia continue to play a key role in the greenhouse debate, especially as a contributor to scientific knowledge on greenhouse gases and climate change, it is estimated that it will take many years before governments at domestic and international level come to grips with the greenhouse problem and its potential effects

  14. Energy balance, bioelectricity and emission of greenhouse gases from power plants in Mato Grosso do Sul; Balanco energetico, bioeletricidade e emissao de gases estufa das usinas de Mato Grosso do Sul

    Energy Technology Data Exchange (ETDEWEB)

    Turdera, Eduardo Mirko Valenzuela [Universidade Federal da Grande Dourados (UFGD), MS (Brazil)], email: eduardoturdera@ufgd.edu.br

    2010-07-01

    First we present in this paper the most important greenhouse gases emitted by sugar cane crops. The principal reference of the energy balance methodology and its theory are described. Furthermore, we show the yields of the unique energy balance applied to the sugar cane mills of Mato Grosso do Sul. The yields brings information about land use of the sugar cane crops, efficiency of technologies and process to produce ethanol and inputs about how the companies could improve its competitive position which involves, to care of environment impacts. Finally, we present the yield of CO{sub 2} emissions of the five mills evaluated. (author)

  15. Energy and environment - greenhouse effect. The international, european and national actions to control the greenhouse gases emissions: which accounting and which perspectives?; Energie et environnement - effet de serre. Les actions internationales, europeennes et nationales pour maitriser les emissions de gaz a effet de serre: quel bilan et quelles perspectives?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-15

    The scientific knowledge concerning the climatic change justifies today immediate fight actions against the greenhouse reinforcement. This fight is based on an ambitious international device which must take into account more global challenges. At the european and national scale, the exploitation of the potential of greenhouse gases reduction must be reinforced and more specially the evolution of the life style. (A.L.B.)

  16. Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2

    OpenAIRE

    Kurokawa, J.; Ohara, T.; Morikawa, T.; Hanayama, S.; -m Greet, J.; Fukui, T.; Kawashima, K.; Akimoto, H.

    2013-01-01

    We have updated the Regional Emission inventory in ASia (REAS) as version 2.1. REAS 2.1 includes most major air pollutants and greenhouse gases from each year during 2000 and 2008 and following areas of Asia: East, Southeast, South, and Central Asia and the Asian part of Russia. Emissions are estimated for each country and region using updated activity data and parameters. Monthly gridded data with a 0.25 × 0.25° resolution are also provided. Asian emissions for each species in 20...

  17. Does the correlation between solar cycle lengths and Northern Hemisphere land temperatures rule out any significant global warming from greenhouse gases?

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1998-01-01

    Since the discovery of a striking correlation between solar cycle lengths and Northern Hemisphere land temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse gases. The present analysis shows that a similar degree of correlation is obtained when testing the solar data against a couple of fictitious temperature series representing different global warming trends. Therefore, the correlation cannot be used to estimate the magnitude of a possible contribution to global warming from human activities, nor to rule out a sizable contribution from that source.

  18. Emission projectories for Austria of the greenhouse gases CO2, CH4 and N2O. IPCC-sectors energy, industrial processes, agriculture and waste

    International Nuclear Information System (INIS)

    This report contains the results of emission projections for Austria of the greenhouse gases CO2, CH4 and N2O. The projections consider the IPCC sectors 'Energy', 'Industrial Processes', 'Agriculture' and 'Waste' and cover the period 1998-2020. The projections refer to the FCCC scenarios 'with measures' and 'with additional measures'. Assumptions for the possible future development are based on an existing energy prognosis (by the Austrian Economic Research Institute), on projections from a carbon flow model (by the Austrian Research Center Seibersdorf), and on expert knowledge. The projections were supported with a sensitivity and uncertainty analysis. (author)

  19. Greenhouse Gas (GHG) Widget

    U.S. Environmental Protection Agency — The Greenhouse Gase Widget allows the user to view greenhouse data in several geospatial and graphical formats for individual facilities or groups of facilities...

  20. Balance of greenhouse gases emission in the life cycle of ethanol fuel; Balanco de emissao de gases de efeito estufa no ciclo de vida do etanol combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cinthia Rubio Urbano da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Programa de Pos-Graduacao em Planejamento de Sistemas Energeticos; Walter, Arnaldo Cesar da Silva [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2008-07-01

    The environmental focus of the use of biofuels is the reduction of green houses gases emissions through automobile exhaust; furthermore, the European Union has discussed the necessity of the requirement these reduction between 30 to 50% compared with the gasoline cycle. Inside this context, this paper joins and compares recent studies about green house gases emission balance of environmental life cycle of ethanol fuel derived form corn, wheat and sugar cane with the goal of recognize the reduction these emissions from the use of ethanol in function of the different alternatives of production. Results show that production of ethanol from sugar cane results higher reduction of green house gases emission compared with the gasoline. Ethanol from corn and ethanol from wheat meet, in the current conditions of Canadian production and use, the least requirement of 30% of saved emission. (author)

  1. The Rhone-Alpes Observatory of Energy and Greenhouse Gases. Key data for 2012, February 2014 release

    International Nuclear Information System (INIS)

    Maps, graphs and tables related to greenhouse gas emissions are presented and briefly commented. They illustrate a comparison between the Rhone-Alpes region and France, the European objectives in this region, energy consumption, greenhouse gas emissions, and energy production. They also illustrate an analysis of final energy consumption and greenhouse gas emissions per sector (housing, office building, industry, transports, agriculture, and uses of energy). They present the renewable energy production in Rhone-Alpes: production of electricity from renewable sources, production of renewable heat, carbon sinks

  2. Analysis of the influence of the expansion of the South American electric system in emissions of greenhouse gases; Analise da influencia da expansao do sistema eletrico Sul-Americano nas emissoes de gases de efeito estufa

    Energy Technology Data Exchange (ETDEWEB)

    Castagna, Annemarlen Gehrke [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Blesl, Markus [Institute of Economics and the Rational Use of Energie (IER), Stuttgart (Germany)

    2010-07-01

    South America combines economic and population growth with a consequent rapid increase in electricity demand. This can only be covered by building new power plants, use of the remaining renewable potential and expansion of transmission lines. The expansion of supply in all regions, with reliable generation and transmission systems is the greatest challenge for the continent in order to reduce social differences and not to curb economic development. To support the energy planning the application of system models represents useful method. This paper intends to analyze the expansion effect of power plant parks in regard of greenhouse gases emissions using a regionalized model system 'TIMES (The Integrated Markal - EFOM System)'. The model includes 10 South American countries (Argentina, Brazil, Bolivia, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay and Venezuela) with their respective power parks and transmission lines, demand divided in sectors, potential use of renewable energy sources, gas pipelines and possibilities of new interconnections within and between countries. As results are obtained the future installed capacity and generation according the energy use, greenhouse gases emissions, as well as the investments needed to expand the electric system in different scenarios. (author)

  3. Final report on activities and findings under DOE grant “Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Prather, Michael J. [UCI

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  4. Fluxes of greenhouse gases CH{sub 4}, CO{sub 2} and N{sub 2}O on some peat mining areas in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, H.; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Biology; Silvola, J.; Alm, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The increase in concentration of greenhouse gases (CO{sub 2}, CH{sub 4} and N{sub 2}O) in atmosphere is associated with burning of fossil fuels and also changes in biogeochemistry due to land use activities. Virgin peatlands are globally important stores of carbon and sources of CH4. Peatland drainage changes the processes in carbon and nitrogen cycles responsible for the fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O. Preparing of peatlands for peat mining greatly change their biogeochemical processes. Effective drainage decreases water table and allows air to penetrate deep into peat profile. Aerobic conditions inhibit activities of anaerobic microbes, including the methanogens, whereas aerobic processes like methane oxidation are stimulated. Destruction of vegetation cover stops the carbon input to peat. In Finland the actual peat mining area is 0.05 x 106 hectares and further 0.03 x 106 hectares have been prepared or are under preparation for peat mining. The current total peatland area in the world used for mining is 0.94 x 106 ha and the area already mined is 1.15 x 106 ha. In this presentation fluxes of greenhouse gases (CH{sub 4}, CO{sub 2} and N{sub 2}O) on some mires under peat mining are reported and compared with those on natural mires and with the emissions from peat combustion. (15 refs.)

  5. Selection of groundwater sites in Egypt, using geographic information systems, for desalination by solar energy in order to reduce greenhouse gases

    Directory of Open Access Journals (Sweden)

    Mariam G. Salim

    2012-01-01

    Full Text Available Although Egypt has already reached the water poverty limit, it possesses a high potential of brackish groundwater available from different aquifers. All Arab countries lie in the best sun-belt region in the world and Egypt has the highest number of sun hours all year round. Solar energy for groundwater desalination is an independent infinite energy resource; it has low running costs and reduces the contribution of greenhouse gases (GHG to global warming. Perfect meteorological conditions and land space are available in remote areas, where solar desalination could supply freshwater for drinking, industry, and for greenhouse agriculture. The present study uses Geographic Information System(s (GIS as a spatial decision support tool to select appropriate sites in Egypt for groundwater solar desalination. Solar radiation, aquifer depth, aquifer salinity, distance from the Delta and the Nile Valley, incidence of flash floods, sand dunes, rock faults, and seawater intrusion in the North Delta, are the criteria that have been taken into consideration in the process of analysis. A specific weight is given to each criterion according to its relative influence on the process of decision making. The results from the application of the presented methodology determine the relative suitability of sites for groundwater solar desalination. These sites are ranked in descending order to help decision-makers in Egypt. The results show that groundwater solar desalination is suitable in remote regions on the North Western Coast, on the North Sinai Coast, and at the Southern Oasis, for reducing greenhouse gases and that it is particularly useful for poor communities suffering from polluted water.

  6. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, Andrew A.; Hansen, James E.; Russell, Gary L.; Oinas, Valdar; Jonas, Jeffrey [NASA Goddard Inst. for Space Studies, New York (United States)], e-mail: Andrew.A.Lacis@nasa.gov

    2013-11-15

    The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterised by non-condensing greenhouse gases (GHGs) that provide the core radiative forcing. Of these, the most important is atmospheric CO{sub 2}. There is a strong feedback contribution to the greenhouse effect by water vapour and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapour and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius-Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discern able long-term trend in solar irradiance since precise monitoring began in the late seventies. This leaves atmospheric CO{sub 2} as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO{sub 2}, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO{sub 2}, to increase by 2 ppm yr{sup -1}, whereas the interglacial rate has been 0.005 ppm yr{sup -1}. This is a geologically unprecedented rate to turn the CO{sub 2} climate control knob. This is causing the global warming that threatens the global environment.

  7. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change

    Directory of Open Access Journals (Sweden)

    Andrew A. Lacis

    2013-11-01

    Full Text Available The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterised by non-condensing greenhouse gases (GHGs that provide the core radiative forcing. Of these, the most important is atmospheric CO2. There is a strong feedback contribution to the greenhouse effect by water vapour and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapour and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius–Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discernable long-term trend in solar irradiance since precise monitoring began in the late 1970s. This leaves atmospheric CO2 as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO2, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO2, to increase by 2 ppm yr?1, whereas the interglacial rate has been 0.005 ppm yr?1. This is a geologically unprecedented rate to turn the CO2 climate control knob. This is causing the global warming that threatens the global environment.

  8. Turnover and transport of greenhouse gases in a Danish wetland : Effects of water level changes and plant-mediated gas transport on N2O production, consumption and emission dynamics

    OpenAIRE

    Jørgensen, Christian Juncher

    2011-01-01

    Natural wetlands act as both sources and sinks of greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil to the atmosphere. Production and consumption of these gases in the soil are controlled by a series of highly dynamic and interrelated processes involving plants, soil and microorganisms. These processes are regulated by different physio-chemical drivers such as soil moisture content, soil temperature, nutrient and oxygen (O2) availability. In we...

  9. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite

    OpenAIRE

    Morino, I.; Tran, H.; Nobuta, K.; Eguchi, N.; Kikuchi, N.; Ota, Y.; Yoshida, Y.; Yokota, T.

    2010-01-01

    The Greenhouse gases Observing SATellite (GOSAT) was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here, we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS). The algorithm consists of three steps. First, cloud-free obs...

  10. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4 using the cavity ring-down spectroscopy (CRDS technique

    Directory of Open Access Journals (Sweden)

    V. Y. Chow

    2010-03-01

    Full Text Available High-accuracy continuous measurements of greenhouse gases (CO2 and CH4 during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  11. Greenhouse earth

    International Nuclear Information System (INIS)

    The book presents the scientific findings of the past few years. They suggest that the anthropogenic increase in the concentrations of several greenhouse gases will result in dramatic climate changes within the next century and present an existential threat to a large part of mankind. (orig.)

  12. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation / Campos do sul do Brasil: estoques de carbono no solo, fluxos de gases de efeito estufa e algumas opções para mitigação

    Scientific Electronic Library Online (English)

    VD, Pillar; CG, Tornquist; C, Bayer.

    2012-08-01

    Full Text Available Os campos do sul do Brasil são ecossistemas naturais com alta diversidade e têm sido há séculos importantes para a atividade pastoril e para outros importantes serviços ambientais. Este trabalho aponta os principais fatores que controlam os processos ecossistêmicos, revisa e discute os dados disponí [...] veis sobre os estoques de carbono no solo e as emissões de gases de efeito estufa dos solos, e sugere oportunidades de mitigação das mudanças climáticas. A pesquisa sobre as emissões de carbono e gases de efeito estufa nos campos do sul do Brasil é recente e os resultados são ainda fragmentados. Os dados disponíveis indicam que os ecossistemas campestres naturais manejados adequadamente contêm estoques importantes de carbono orgânico no solo e, portanto, sua conservação é relevante para a mitigação das mudanças climáticas. Além disso, esses ecossistemas apresentam uma grande e rápida perda de carbono orgânico do solo quando convertidos para lavouras com preparo convencional do solo. No entanto, nas áreas já convertidas, há potencial para mitigar as emissões de gases de efeito estufa por meio de sistemas de cultivo usando plantio direto e rotações de culturas baseadas em plantas de cobertura de solo. O efeito está relacionado principalmente ao potencial desses sistemas de cultivo para acumular matéria orgânica do solo em taxas que superam o aumento das emissões de óxido nitroso. O uso de modelos com esses resultados associados aos sistemas de informação geográfica poderá gerar estimativas regionais de balanço de carbono. Abstract in english The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available d [...] ata on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  13. Historical contribution by country of three greenhouse gases (CO2, CH4, N2O) to the climate change and Equity principle

    International Nuclear Information System (INIS)

    The historical contribution by country to climate change can be used as a basis of analysis for a second period of commitments to the burden share. The historical greenhouse gases emission inventory is an important tool to evaluate the common but differentiated responsibilities of groups according to the principle of the UN Framework Convention on Climate Convention (1992). This paper aims to discuss the differences among the meaning of the GHG historical emissions in terms of development patterns and suggests that different weights for different sectors should be taken into account. GHG emissions due to enteric fermentation from domestic livestock, for example, are linked to different regional activities such as food production, cultural expression or even religion meaning, depending on the region analyzed. Emissions due to fossil fuel sector represent in the majority a not feasible consumption pattern in terms of sustainable development

  14. Distinguishing the impacts of ozone-depleting substances and well-mixed greenhouse gases on Arctic stratospheric ozone and temperature trends

    Science.gov (United States)

    Rieder, Harald E.; Polvani, Lorenzo M.; Solomon, Susan

    2014-04-01

    Whether stratospheric cooling due to increases in well-mixed greenhouse gases (WMGHG) could increase the depletion of Arctic stratospheric ozone has been the subject of scientific and public attention for decades. Here we provide evidence that changes in the concentrations of ozone-depleting substances (ODS), not WMGHG, have been the primary driver of observed Arctic lower stratospheric trends in both ozone and temperature. We do so by analyzing polar cap ozone and temperature trends in reanalysis data: these clearly suggest that both trends are mainly driven by ODS in the lower stratosphere. This observation-based finding is supported by results from a stratosphere-resolving chemistry-climate model driven with time-varying ODS and WMGHG, specified in isolation and in combination. Taken together, these results provide strong evidence that ODS are the main driver of changes in the Arctic lower stratospheric temperatures and ozone, whereas WMGHG are the primary driver of changes in the upper stratosphere.

  15. Impacts of greenhouse gases on epicuticular waxes of Populus tremuloides Michx.: Results from an open-air exposure and a natural O3 gradient

    International Nuclear Information System (INIS)

    Epicuticular waxes of three trembling aspen (Populus tremuloides Michx.) clones differing in O3 tolerance were examined over six growing seasons (1998-2003) at three bioindicator sites in the Lake States region of the USA and at FACTS II (Aspen FACE) site in Rhinelander, WI. Differences in epicuticular wax structure were determined by scanning electron microscopy and quantified by a coefficient of occlusion. Statistically significant increases in stomatal occlusion occurred for the three O3 bioindicator sites, with the higher O3 sites having the most affected stomata for all three clones as well as for all treatments including elevated CO2, elevated O3, and elevated CO2+O3. We recorded statistically significant differences between aspen clones and between sampling period (spring, summer, fall). We found no statistically significant differences between treatments or aspen clones in stomatal frequency. - Structure of epicuticular waxes indicated phytotoxic effects of greenhouse gases on Populus tremuloides Michx

  16. Guideline for the reduction of greenhouse gases from air conditioners in utility buildings; Richtlijn reductie broeikasgassen airco-installaties in utiliteitsbouw

    Energy Technology Data Exchange (ETDEWEB)

    Van Wolferen, H.

    2005-10-15

    This guideline is intended for building owners / decision makers, building consultants and installers that, with regard to new construction or major renovation plans of utility buildings, aim for cooling systems with low emission of greenhouse gases and low energy consumption. Thus, they contribute to reducing global warming. The guideline is limited to the cooling function of HVAC systems in medium-sized and large office buildings, health centers and nursing homes. [Dutch] Deze richtlijn is bedoeld voor gebouweigenaren/beslissers, bouwadviseurs en installatiebureau's die bij nieuwbouw of grote renovatie van utiliteitsgebouwen streven naar koelsystemen met een lage uitstoot van broeikasgassen en een laag energiegebruik. Hiermee leveren zij een bijdrage aan het verminderen van de opwarming van de aarde. De richtlijn beperkt zich tot de koelfunctie van klimaatinstallaties in middelgrote en grotere kantoorgebouwen, zorgcentra en verpleeghuizen.

  17. Future concentrations of atmospheric greenhouse gases CO2, CFC and CH4 - an assessment on the educational level

    International Nuclear Information System (INIS)

    A model on the educational level is described to estimate effective future atmospheric CO2 concentrations. The effects of chlorofluorocarbon and methane emission and deforestation are taken into account. The influence of different emission scenarios on the time evolution of greenhouse-gas concentration are illustrated. Future global energy policies are discussed both under the aspects of rising world population and the reduction in global CO2 emissions. The model can be handled on a PC or even on a pocket calculator

  18. Switching from 20% to 30% of greenhouse gases emissions in case of international agreement: consequences for the ETS sector

    International Nuclear Information System (INIS)

    After a commitment to reduce of 8%, and then 20% its greenhouse gas emissions with respect to 1990, the European Union could set this objective to 30% for the ETS (Emission Trading Scheme) sector if an international agreement is signed to succeed the Kyoto protocol. The authors describe this European Commission proposition, and give an overview of the current negotiations. Then, they comment the domestic implications for the UE and the 'Climate and Energy' package, and the international dimension of these negotiations

  19. Emission reduction of greenhouse trace gases in the Federal Republic of Germany and in Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    The importance of individual energy sectors for greenhouse gas emission -above all CO2 - is explained. Different ways for CO2 reductions are presented and evaluated with regard to costs. Particularly the variants ''price policy'', ''abandonment of nuclear energy'' and ''efficient measures'' are analysed. In case of the third variant even cost reductions can be attained by simultaneously reducing CO2 emissions by up to 30% till the year 2005. (KW)

  20. Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions

    OpenAIRE

    Fruergaard, Thilde; Astrup, Thomas; Ekvall, T.

    2009-01-01

    The energy system plays an essential role in accounting of greenhouse gas (GHG) emissions from waste management systems and waste technologies. This paper focuses on energy use and energy recovery in waste management and outlines how these aspects should be addressed consistently in a GHG perspective. Essential GHG emission data for the most common fuels, electricity and heat are provided. Average data on electricity provision show large variations from country to country due to different fu...

  1. Greenhouse gases regional fluxes estimated from atmospheric measurements; Estimation des flux de gaz a effet de serre a l'echelle regionale a partir de mesures atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Messager, C

    2007-07-15

    build up a new system to measure continuously CO{sub 2} (or CO), CH{sub 4}, N{sub 2}O and SF{sub 6} mixing ratios. It is based on a commercial gas chromatograph (Agilent 6890N) which have been modified to reach better precision. Reproducibility computed with a target gas on a 24 hours time step gives: 0.06 ppm for CO{sub 2}, 1.4 ppb for CO, 0.7 ppb for CH{sub 4}, 0.2 ppb for N{sub 2}O and 0.05 ppt for SF{sub 6}. The instrument's run is fully automated, an air sample analysis takes about 5 minutes. In July 2006, I install instrumentation on a telecommunication tall tower (200 m) situated near Orleans forest in Trainou, to monitor continuously greenhouse gases (CO{sub 2}, CH{sub 4}, N{sub 2}O, SF{sub 6}), atmospheric tracers (CO, Radon-222) and meteorological parameters. Intake lines were installed at 3 levels (50, 100 and 180 m) and allow us to sample air masses along the vertical. Continuous measurement started in January 2007. I used Mace Head (Ireland) and Gif-sur-Yvette continuous measurements to estimate major greenhouse gases emission fluxes at regional scale. To make the link between atmospheric measurements and surface fluxes, we need to quantify dilution due to atmospheric transport. I used Radon-222 as tracer (radon tracer method) and planetary boundary layer heights estimates from ECMWF model (boundary layer budget method) to parameterize atmospheric transport. In both cases I compared results to available emission inventories. (author)

  2. The role of transport sector within the German energy system under greenhouse gas reduction constraints and effects on other exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Walbeck, M.; Martinsen, D. [Research Center Juelich (Germany)

    1996-12-01

    The German Federal Government pledged itself to make a 25% reduction in national CO{sub 2} emissions by 2005 on the basis of 1990 CO{sub 2} emissions. This reduction target is valid for the entire Federal Republic. Within that context the Federal Ministry of Education, Science, Research and Technology initiated the IKARUS project (Instruments for Greenhouse Gas Reduction Strategies) in 1990. The aim of the project is to provide tools for developing strategies to reduce energy-related emissions of greenhouse gases in Germany. A range of instruments has been developed consisting of models, a data base and various tools with the aid of which different action sequences can be simulated and evaluated until the year 2020. By using the database and mainly one of the models of the project a scenario in terms of energy and carbon dioxide emissions will be sown as it could be expected for the year 2005. For this scenario as base two different strategies that hit the 25% reduction target will be discussed. Special attention is given to the transport sector. (au)

  3. Método basado en teledetección para estimar la emisión de gases efecto invernadero por quema de biomasa / A remote sensing method to estimate greenhouse gas emissions from biomass burning

    Scientific Electronic Library Online (English)

    Jesús Adolfo, Anaya Acevedo; Emilio, Chuvieco Salinero; Alicia, Palacios-Orueta.

    2011-01-01

    Full Text Available La quema de biomasa es una fuente importante de gases efecto invernadero en países en vías de desarrollo. En Colombia, el cambio de uso del suelo, la silvicultura y el sector agropecuario superan el 50% de las emisiones totales de efecto invernadero. El fuego se utiliza con frecuencia como un mecani [...] smo para cambiar el uso del suelo. Los Llanos orientales y la Amazonía colombiana están sometidos todos los años a la quema de biomasa, especialmente entre enero y marzo. Los estudios en la distribución espacial y temporal de las emisiones son importantes de cara a los informes en el ámbito nacional. Este artículo de revisión describe el método para hacer estas estimaciones utilizando teledetección y algunos de los resultados disponibles para Colombia. Abstract in english Biomass burning is a major source of greenhouse gas emissions in developing countries. In Colombia, land use change, forestry and agriculture are responsible for more than 50% of the total greenhouse gas emissions. Fire is commonly used as a mechanism for land use change. In Colombia the Llanos Orie [...] ntales and the Amazonia are subject to biomass burning every year during the dry season, especially from January to March. Studies of the spatial and temporal distribution of emissions are required for emissions report at a national level. The goal of this state of the art article is to describe a method to estimate emissions with a remote sensing approach and to present some of the variables already measured in Colombia.

  4. Método basado en teledetección para estimar la emisión de gases efecto invernadero por quema de biomasa A remote sensing method to estimate greenhouse gas emissions from biomass burning

    Directory of Open Access Journals (Sweden)

    Jesús Adolfo Anaya Acevedo

    2011-01-01

    Full Text Available La quema de biomasa es una fuente importante de gases efecto invernadero en países en vías de desarrollo. En Colombia, el cambio de uso del suelo, la silvicultura y el sector agropecuario superan el 50% de las emisiones totales de efecto invernadero. El fuego se utiliza con frecuencia como un mecanismo para cambiar el uso del suelo. Los Llanos orientales y la Amazonía colombiana están sometidos todos los años a la quema de biomasa, especialmente entre enero y marzo. Los estudios en la distribución espacial y temporal de las emisiones son importantes de cara a los informes en el ámbito nacional. Este artículo de revisión describe el método para hacer estas estimaciones utilizando teledetección y algunos de los resultados disponibles para Colombia.Biomass burning is a major source of greenhouse gas emissions in developing countries. In Colombia, land use change, forestry and agriculture are responsible for more than 50% of the total greenhouse gas emissions. Fire is commonly used as a mechanism for land use change. In Colombia the Llanos Orientales and the Amazonia are subject to biomass burning every year during the dry season, especially from January to March. Studies of the spatial and temporal distribution of emissions are required for emissions report at a national level. The goal of this state of the art article is to describe a method to estimate emissions with a remote sensing approach and to present some of the variables already measured in Colombia.

  5. A comparative study of vertical flow and free-water surface constructed wetlands for low C/N ratio domestic wastewater treatment and its greenhouse gases emission

    Science.gov (United States)

    Xu, K.; Liu, C.; Ebie, Y.; Inamori, Y.

    2008-12-01

    Constructed wetland (CW) systems are reliable, flexible in design, and can be built, operated, and maintained at lower costs compared to conventional methods of chemical treatment. Therefore, CW systems are widely used for controlling water-body eutrophication as an ease-operation and cost-effective ecological technology in developing countries. However, growing attention has been directed to its greenhouse side-effect and global-warming potential in recent years. In this study, two typical constructed wetlands: Vertical flow (VF) and Free-water surface (FWS) constructed wetlands were used not only to compare the nutrients removal performance for treatment of low C/N ratio loading domestic wastewater, but also to investigate and compare their CH4 and N2O greenhouse gases emission characteristics. The results indicated that the VF CW showed a comparatively good performance for nitrogen and phosphorus removal than FWS constructed wetland, which was 98.5, 95.9, 93.2 and 90.7 percent for BOD5, SS, NH4-N and TP under 6 days HRT, respectively. It was found that the FWS CW had the higher tendency to emit CH4 than the VF CW during four seasons of one year.

  6. Results of the working group on the division by four of greenhouse gases emissions in France, at the horizon of 2050, called ''factor 4''. DGEMP- Observatory of the energy

    International Nuclear Information System (INIS)

    This group, created by the french Government in march 2005, aims to evaluate the different possibilities to reach the objective of division by four the greenhouse gases emissions. This document presents some recalls on the climatic change and the situation today, the positions of the France and the foreign and the conclusions and the recommendations of the group. (A.L.B.)

  7. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite

    Directory of Open Access Journals (Sweden)

    I. Morino

    2010-11-01

    Full Text Available The Greenhouse gases Observing SATellite (GOSAT was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS. The algorithm consists of three steps. First, cloud-free observational scenes are selected by several cloud-detection methods. Then, column abundances of carbon dioxide and methane are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. Most of the retrieval random errors come from the instrumental noise. The interferences by auxiliary parameters retrieved simultaneously with gas abundances are small. The evaluated precisions of the retrieved column abundances for single observations are less than 1% in most cases. The interhemispherical differences and the temporal variation patterns of the retrieved column abundances agree well with the current state of knowledge.

  8. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite

    Directory of Open Access Journals (Sweden)

    I. Morino

    2011-04-01

    Full Text Available The Greenhouse gases Observing SATellite (GOSAT was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here, we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS. The algorithm consists of three steps. First, cloud-free observational scenes are selected by several cloud-detection methods. Then, column abundances of carbon dioxide and methane are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. Most of the retrieval random errors come from instrumental noise. The interferences due to auxiliary parameters retrieved simultaneously with gas abundances are small. The evaluated precisions of the retrieved column abundances for single observations are less than 1% in most cases. The interhemispherical differences and temporal variation patterns of the retrieved column abundances show features similar to those of an atmospheric transport model.

  9. The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index

    International Nuclear Information System (INIS)

    High-precision measurements of CO2, CH4, N2O, CFC-12, CFC-11 (major greenhouse gases) and 10 minor halogenated gases from a globally distributed network of air sampling sites are used to calculate changes in radiative climate forcing since the pre-industrial era (1750) for the period of measurement, 1979-2004. The five major greenhouse gases account for about 97% of the direct radiative forcing by long-lived gases. The fraction of the sum of radiative forcings by all long-lived gases that is due to CO2 has grown from 60% to 63% over this time. Though the long-term increase in this sum is due primarily to increased anthropogenic emissions of these radiatively important gases, interannual variations in the growth rate of radiative forcing due to CO2 are large and likely related to natural phenomena such as volcanic eruptions and ENSO events. The annual value of the total global radiative forcing of the long-lived gases is used to define an Annual Greenhouse Gas Index (AGGI). The AGGI is normalized to 1990, the Kyoto Protocol baseline year

  10. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck

    Science.gov (United States)

    Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon

    2015-04-01

    As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically significant increases in nitrogen oxides (NOx) emissions for 50% or higher biodiesel blends. The 20% blends of the biodiesels showed no statistically significant effect on NOx emissions on any cycle. In contrast, renewable diesel slightly decreased NOx emissions and the degree of reduction was statistically significant for 50% or higher blends over the UDDS cycle, but not at the 20% blends. The highway cruise cycles did not show a statistically strong NOx emission trend with increasing blend level of renewable diesel. Biodiesel and renewable fuel impacts on two greenhouse gases, CO2 and N2O emissions were of lower magnitude when compared to other regulated pollutants emissions, showing a change in their emissions within approximately ±3% from the CARB ULSD.

  11. Determinación de las tasas de ventilación natural en un invernadero mediante modelos teóricos y gases trazadores / Determination of rates of natural ventilation in a greenhouse using theoretical models and tracer gases

    Scientific Electronic Library Online (English)

    Daniel, Espejel Trujano; Irineo Lorenzo, López Cruz.

    2013-03-01

    Full Text Available La mayoría de los invernaderos en México utilizan ventilación natural como mecanismo principal de controlar el clima. La cuantificación de las tasas de ventilación es difícil porque éstas dependen del efecto de la fluctuación de viento, resistencia de las ventanas al paso del aire y geometría del in [...] vernadero en el campo de presiones del viento sobre la estructura. El objetivo del presente trabajo fue determinar las tasas de ventilación natural de un invernadero, bajo tres configuraciones de ventilación: ventanas laterales, cenitales y laterales-cenitales, mediante el método dinámico de gases trazadores. Se compararon mediciones contra predicciones de modelos teóricos de ventilación natural y se analizó el efecto de velocidad del viento sobre las tasas de ventilación. El invernadero está ubicado en el campo experimental San Ignacio en la Universidad Autónoma Chapingo, Chapingo, México. El experimento se realizó en 2010 y el invernadero estuvo libre de cultivo. El gas trazador utilizado fue dióxido de carbono. Para la estimación de parámetros se usó el algoritmo de mínimos cuadrados no lineales. Los resultados mostraron que las tasas de ventilación son dependientes de la velocidad del viento y de la configuración de ventanas existente. Las tasas de ventilación más altas se observaron cuando ambas ventanas laterales y cenitales estuvieron abiertas. Los modelos teóricos predijeron de manera aceptable las tasas de ventilación tomando en cuenta los valores de los estadísticos coeficientes de determinación y cuadrado medio de error, así como el comportamiento de la línea 1:1 entre predicciones y mediciones. Abstract in english In Mexico, most greenhouses use natural ventilation as the main mechanism to control the weather. Quantification of ventilation rates is difficult because these depend on the effect of fluctuating wind, resistance to airflow windows and geometry ofthe greenhouse in the field ofwind pressure on the s [...] tructure. The objective of the present study was to determine the rates of natural ventilation in a greenhouse under three ventilation configurations: side windows, zenith and side-zenith, by the dynamic method of tracer gases. Measurements were compared against predictions of theoretical models of natural ventilation and analyzed the effect of wind speed on ventilation rates. The greenhouse is located at the experimental field of San Ignacio in the University of Chapingo, Chapingo, Mexico. The experiment was conducted in 2010 and the greenhouse was free of crops. The tracer gas used was carbon dioxide. To estimate the parameters the non-linear least squares algorithm was used. The results showed that ventilation rates are dependent on the wind speed and configuration ofthe existing windows. The higher ventilation rates were observed when both side and zenith windows were open. Theoretical models acceptably predicted ventilation rates, taking into account the values of the statistical coefficients of determination and mean square error, as the behavior ofthe 1:1 line between predictions and measurements.

  12. Forests and Greenhouse gases. Fluxes of CO2, CH4 and N2O from drained forests on organic soils

    OpenAIRE

    Arnold, Karin Von

    2004-01-01

    One of the largest environmental threats believed to be facing us today is global warming due to the accumulation of green house gases (GHG). The concentrations of GHG in the atmosphere are a result of the net strength of different sinks and sources. Forests, in this context, are of particular interest because of their dual role as both sinks and sources. Most forests are net sinks for CO2 but others, such as drained forests, may be significant sources of both CO2 and N20. Consequently, it is...

  13. Renewable Energy Production and Urban Remediation: Modeling the biogeochemical cycle at contaminated urban brownfields and the potential for renewable energy production and mitigation of greenhouse gases

    Science.gov (United States)

    Gopalakrishnan, G.

    2014-12-01

    Brownfields or urban sites that have been contaminated as a result of historic practices are present throughout the world. In the United States alone, the National Research Council has estimated that there are approximately 300,000 to 400,000 sites which have been contaminated by improper use and disposal of chemicals (NRC 1993). The land available at these sites is estimated at several million acres; however, the presence of high levels of contamination in the soil and groundwater makes it difficult to utilize these sites for traditional purposes such as agriculture. Further, the time required to remediate these contaminants to regulated levels is in the order of decades, which often results in long-term economic consequences for the areas near these sites. There has been significant interest in developing these sites as potential sources of renewable energy production in order to increase the economic viability of these sites and to provide alternative land resources for renewable energy production (EPA 2012). Solar energy, wind energy, and bioenergy from lignocellulosic biomass production have been identified as the main sources of renewable energy that can be produced at these locations. However, the environmental impacts of such a policy and the implications for greenhouse gas emissions, particularly resulting from changes in land-use impacting the biogeochemical cycle at these sites, have not been studied extensively to date. This study uses the biogeochemical process-based model DNDC to simulate carbon sequestration, nitrous oxide emissions and methane emissions from typical urban brownfield systems in the United States, when renewable energy systems are deployed. Photovoltaic solar energy and lignocellulosic biomass energy systems are evaluated here. Plants modeled include those most widely used for both bioenergy and remediation such as woody trees. Model sensitivity to soil conditions, contaminant levels and local weather data and the resulting impacts on greenhouse gas emissions are explored. Tradeoffs between renewable energy production,contaminant removal, and mitigation of greenhouse gases are also evaluated. Results indicate that a decrease in greenhouse gas emissions of 29-43% is possible, together with an estimated increase in renewable energy production of 7-22%.

  14. Fixação de carbono e a emissão dos gases de efeito estufa na exploração da cana-de-açúcar Fixing of carbon and emission of greenhouse gases in the exploitation of sugar cane

    Directory of Open Access Journals (Sweden)

    Mauro de Paula

    2010-06-01

    Full Text Available A produção de uma tonelada (t de fitomassa em matéria seca (MS de cana-de-açúcar fixa, no mínimo, 0,42 t em carbono (C, o que corresponde a mitigar 1,54 t de dióxido de carbono (CO2 da atmosfera. Neste trabalho, objetivou-se efetuar um levantamento da quantidade de fitomassa da cana-de-açúcar produzida em 1 ha anualmente. Além de analisar o total de C fixado e a emissão de diversos gases de efeito estufa (GEE, em CO2 equivalente (eqCO2, em consequência da adubação nitrogenada; da queima da fitomassa na colheita e da oxidação de combustíveis fósseis usados na produção, colheita e no transporte da cana até a indústria. Com base na análise dos dados, concluiu-se que ao adotar como procedimento a colheita da cana-de-açúcar crua, o produtor canavieiro estará deixando de emitir 0,286 t ha-1 ano-1 de material particulado, 13,53 t ha-1 ano-1 em eqCO2 de outros gases, além de fixar o C na fitomassa, gerando um ativo ambiental de 52,50 t ha-1 ano-1 de eqCO2. Ao somar-se o total da fixação, mais a redução que deixará de ser emitida, a mitigação total será de 66,03 t ha-1 ano-1 de eqCO2.The production of one tonne (t of phytomass in dry matter (DM of sugar cane assimilates at least 0.42 t in carbon (C which corresponds to 1.54 t of carbon dioxide (CO2 from the atmosphere. This work aimed to make a survey of the quantity of phytomass from sugar cane produced in 1 ha annually, and also to examine the total C fixed and the emission of greenhouse gases (GHGs, in CO2 equivalent as a consequence of nitrogen fertilization, burning of phytomass at harvest and the oxidation of fossil fuels during production, harvest, and transport of the sugar cane to the industrial plant. Based on the analysis of data, it was concluded that by harvesting the sugar cane without burning, the farmer will not emit 0.286 t ha-1 year-1 of particulate matter, 13,53 t ha-1 year-1 in eqCO2 of other gases. This will also assimilate carbon in the phytomass, generating an environmental active of 52,50 t ha-1 year-1 of eqCO2. By adding up the total fixation and the reduction of emissions, the mitigation will total 66,03 t ha-1 year-1 of eqCO2.

  15. The Berkeley Atmospheric CO2 Observation Network (BEACON): Measuring Greenhouse Gases and Criteria Pollutants within the Urban Dome

    Science.gov (United States)

    Teige, V. E.; Weichsel, K.; Hooker, A.; Wooldridge, P. J.; Cohen, R. C.

    2012-12-01

    Efforts to curb greenhouse gas emissions, while global in their impacts, often focus on local and regional scales for execution and are dependent on the actions of communities and individuals. Evaluating the effectiveness of local policies requires observations with much higher spatial resolution than are currently available---kilometer scale. The Berkeley Atmospheric CO2 Observation Network (BEACON):, launched at the end of 2011, aims to provide measurements of urban-scale concentrations of CO2, temperature, pressure, relative humidity, O3, CO, and NO2 with sufficient spatial and temporal resolution to characterize the sources of CO2 within cities. Our initial deployment in Oakland, California uses ~40 sensor packages at a roughly 2 km spacing throughout the city. We will present an initial analysis of the vertical gradients and other spatial patterns observed to date.

  16. Greenhouse Gas vs. Smog Forming Emissions

    Science.gov (United States)

    ... What You Can Do Learn About the Label Greenhouse Gas vs. Smog Forming Emissions Why are there different ... pollutants that affect different layers in our atmosphere. Greenhouse Gas Emissions Greenhouse gases (GHGs) are emitted from the ...

  17. Projection of Denmark's energy consumption and emission of greenhouse gases 2012; Danmarks energifremskrivning 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    The Danish energy Agency's baseline projection of Denmark's energy consumption and greenhouse gas emissions is not a forecast, but describes the development which may occur in the coming years, based on a number of assumptions about technological development, prices, economic development, etc., hypothetically assuming that no new initiatives or measures beyond those already taken are implemented. The consumption of coal and natural gas are expected to fall by 50 % and 27 %, respectively, the next 8 years, and overall Denmark's fossil fuel consumption is reduced by approx. 120 PJ by 2020. Instead, renewable energy consumption will increase by more than 40 % from 2011 to 2020. The largest contribution to new renewable energy comes from the future offshore wind farms at Anholt, Krieger's Flak and Horns Rev, and from the increased use of biomass. With this conversion, the share of renewable energy in electricity supply is expected to increase from approx. 40 % in 2011 to around 69 % in 2020 and to 75 % in 2025. Final energy consumption drops from 640 PJ in 2011 to 632 PJ in 2020 as a consequence of a decline in industrial and household energy consumption, while the transport sector's energy consumption is expected to increase. With the projection's assumptions, a renewable energy share in the transport sector of 11 % may be achieved. Denmark's total greenhouse gas emissions are expected to decrease to 45.1 million tons of CO{sub 2} equivalent in 2020. This corresponds directly to the total emissions being reduced by 35 % compared to emissions in the 1990 base year. The figure is, however, highly uncertain. (LN)

  18. Control of greenhouse gases emission by radiation-induced formation of useful products. Utilization of CO2

    International Nuclear Information System (INIS)

    Carbon dioxide (CO2) is produced in enormous quantities by combustion of fossil fuels in power plants and heavy industries. It is strongly influencing the environment and the climate. However, it can be separated from the exhaust gases and utilized as row material for making value-added products by irradiation. Results of experiments in laboratory scale showed, e.g. that amino acids and short chain proteins can be produced by carboxylation of amines, whereas salicylic acid results from phenol and malonic acid formation is observed from acetic acid. The yield dependence from various experimental factors as well as the reaction mechanisms of the studied systems are discussed and an outlook of future developments is given

  19. Balanço de emissões e remoções de Gases de Efeito Estufa no campus da Universidade Federal de Viçosa / Balance of emissions and removals of Greenhouse Gases at campus of Universidade Federal de Viçosa

    Scientific Electronic Library Online (English)

    Daniel, Brianezi; Laércio Antônio Gonçalves, Jacovine; Carlos Pedro Boechat, Soares; Wantuelfer, Gonçalves; Samuel José Silva Soares da, Rocha.

    2014-06-01

    Full Text Available Objetivou-se com este estudo realizar o balanço das emissões e remoções de Gases de Efeito Estufa (GEE) do campus-sede da Universidade Federal de Viçosa - UFV (Viçosa, MG), comparando a emissão de GEE do ano-base adotado (outubro de 2010 a outubro de 2011) e o incremento médio anual de carbono pelos [...] sumidouros da universidade (arborização urbana, florestas nativas e plantadas). Utilizou-se dados coletados na universidade e metodologias da ABNT NBR ISO 14064 e do IPCC. Os resultados encontrados apontaram que o campus-sede da UFV possui uma grande cobertura vegetal que representam 39,84% de sua área total. No entanto, estas áreas não foram suficientes para compensar as 6.034,18 tCO2eq. emitidas pela universidade. Portanto, o balanço geral das emissões e remoções de GEE do campus-sede da UFV foi negativo (déficit de 727,02 tCO2eq.). Embora tenha apresentado este resultado, os sumidouros de carbono foram importantes para a compensação de parte dos GEE gerados. Abstract in english The objective of this study was to generate the balance of Greenhouse Gases (GHG) emissions and removals at main campus of Universidade Federal de Viçosa - UFV (Viçosa, MG), contrasting GHG emissions in base-year (October 2010 to October 2011) and the annual average carbon increment of university si [...] nks (urban trees, native and planted forests). We used data collected at university, and ABNT NBR ISO 14064 and IPCC database. The final results indicated that main campus of UFV own huge forest field that represents 39.84% overall. However, these areas were not enough to compensate 6,034.18 tCO2eq. released of the university. Therefore, the global GHG emissions and removals at main campus of UFV was negative (727.02 tCO2eq. of shortfall). Although this result, carbon sinks were important to offset part of GHG generated.

  20. Simulating last interglacial climate with NorESM: role of insolation and greenhouse gases in the timing of peak warmth

    Directory of Open Access Journals (Sweden)

    P.M. Langebroek

    2014-07-01

    Full Text Available The last interglacial (LIG, ~130–116 ka, ka = 1000 yr ago is characterized by high-latitude warming and is therefore often considered as a possible analogue for future warming. However, in contrast to predicted future greenhouse warming, the LIG climate is largely governed by variations in insolation. Greenhouse gas (GHG concentrations were relatively stable and similar to pre-industrial values, with the exception of the early LIG when, on average, GHGs were slightly lower. We performed six time-slice simulations with the low-resolution version of the Norwegian Earth System Model covering the LIG. In four simulations only the orbital forcing was changed. In two other simulations, representing the early LIG, additionally the GHG forcing was reduced. With these simulations we investigate (1 the different effects of GHG versus insolation forcing on the temperatures during the LIG; (2 whether reduced GHGs can explain the low temperatures reconstructed for the North Atlantic; and (3 the timing of the observed LIG peak warmth. Our simulations show that the insolation forcing results in seasonal and hemispheric differences in temperature. In contrast, a reduction in the GHG forcing causes a global and seasonal-independent cooling. Furthermore, we compare modelled temperatures with proxy-based LIG sea-surface temperatures along a transect in the North Atlantic. The modelled North Atlantic summer sea-surface temperatures capture the general trend of the reconstructed summer temperatures, with low values in the early LIG, a peak around 125 ka, and a steady decrease towards the end of the LIG. Simulations with reduced GHG forcing improve the model–data fit as they show lower temperatures in the early LIG. Furthermore we show that the timing of maximum summer and winter surface temperatures is in line with the local summer and winter insolation maximum at most latitudes. Two regions where the maximum local insolation and temperature do not occur at the same time are Antarctica and the Southern Ocean. The austral summer insolation has a late maximum at ~115 ka. In contrast the austral summer temperatures in Antarctica show maxima at both ~130 ka and ~115 ka, and the Southern Ocean temperatures peak only at ~130 ka. This is probably due to the integrating effect of the ocean, storing heat from other seasons and resulting in relatively warm austral summer temperatures. Reducing the GHG concentrations in the early LIG (125 and 130 ka results in a similar timing of peak warmth, except over Antarctica. There, the lower austral summer temperatures at 130 ka shift the maximum warmth to a single peak at 115 ka.

  1. Research and development on climate change and greenhouse gases in support of climate-smart livestock production and a vibrant industry

    Scientific Electronic Library Online (English)

    M.M, Scholtz; H.C, Schonfeldt; F.W.C, Neser; G.M, Schutte.

    Full Text Available Climate change represents a feedback-loop in which livestock production both contributes to the problem and suffers from the consequences. The impact of global warming and continued, uncontrolled release of greenhouse gasses (GHG) has twofold implications for the livestock industry, and consequently [...] food security. Firstly, the continuous increase in ambient temperature is predicted to have a direct effect on the animal, as well as on food and nutrition security, due to changes associated with temperature itself, relative humidity, rainfall distribution in time and space, altered disease distribution, changes in the ecosystem and biome composition. Secondly, the responsibility of livestock production is to limit the release of greenhouse gases (GHG) or the carbon footprint, in order to ensure future sustainability. This can be done by implementing new or adapted climate-smart production systems, the use of known and new technologies to turn waste into assets, and by promoting sustainable human diets with low environmental impacts. The following elements, which are related to livestock production and climate change, are discussed in this paper: (1) restoring the value of grasslands/rangelands, (2) pastoral risk management and decision support systems, (3) improved production efficiency, (4) global warming and sustainable livestock production, (5) the disentanglement between food and nutritional needs, focusing on nutrient rich core foods, (6) GHG from livestock and carbon sequestration, and (7) water and waste management. No single organization (or industry) within South Africa can perform this research and the implementation thereof on its own. The establishment of a (virtual) centre of excellence in climate-smart livestock production and the environment for the livestock industries, with the objective to share research expertise and information, build capacity and conduct research and development studies, should be a priority.

  2. Switching to a U.S. hydrogen fuel cell vehicle fleet: The resultant change in emissions, energy use, and greenhouse gases

    Science.gov (United States)

    Colella, W. G.; Jacobson, M. Z.; Golden, D. M.

    This study examines the potential change in primary emissions and energy use from replacing the current U.S. fleet of fossil-fuel on-road vehicles (FFOV) with hybrid electric fossil fuel vehicles or hydrogen fuel cell vehicles (HFCV). Emissions and energy usage are analyzed for three different HFCV scenarios, with hydrogen produced from: (1) steam reforming of natural gas, (2) electrolysis powered by wind energy, and (3) coal gasification. With the U.S. EPA's National Emission Inventory as the baseline, other emission inventories are created using a life cycle assessment (LCA) of alternative fuel supply chains. For a range of reasonable HFCV efficiencies and methods of producing hydrogen, we find that the replacement of FFOV with HFCV significantly reduces emission associated with air pollution, compared even with a switch to hybrids. All HFCV scenarios decrease net air pollution emission, including nitrogen oxides, volatile organic compounds, particulate matter, ammonia, and carbon monoxide. These reductions are achieved with hydrogen production from either a fossil fuel source such as natural gas or a renewable source such as wind. Furthermore, replacing FFOV with hybrids or HFCV with hydrogen derived from natural gas, wind or coal may reduce the global warming impact of greenhouse gases and particles (measured in carbon dioxide equivalent emission) by 6, 14, 23, and 1%, respectively. Finally, even if HFCV are fueled by a fossil fuel such as natural gas, if no carbon is sequestered during hydrogen production, and 1% of methane in the feedstock gas is leaked to the environment, natural gas HFCV still may achieve a significant reduction in greenhouse gas and air pollution emission over FFOV.

  3. Greenhouse Gas (CO2 AND N2O) Emissions from Soils: A Review / Emisión de Gases invernadero (CO2 y N2O) desde Suelos

    Scientific Electronic Library Online (English)

    Cristina, Muñoz; Leandro, Paulino; Carlos, Monreal; Erick, Zagal.

    2010-09-01

    Full Text Available En actividades agrícolas los principales gases de efecto invernadero (GHG) son los relacionados con los ciclos globales de C y N. El impacto de la agricultura sobre las emisiones GHG se ha convertido en una cuestión clave, especialmente si se considera que los ciclos naturales C y N se ven influidos [...] por el desarrollo agrícola. Esta revisión se centra en emisiones de CO2 y N2O del suelo en los ecosistemas terrestres, con énfasis en agro-ecosistemas de Chile y similares alrededor del mundo. Se analiza la influencia del uso del suelo y las prácticas de manejo del cultivo sobre emisiones de CO2 y N2O, se discuten medidas de mitigación para reducir estas emisiones. Un mayor conocimiento sobre los procesos biológicos que promueven las emisiones GHG del suelo permitirá la creación de oportunidades para el desarrollo agrícola en condiciones ambientalmente amigables, donde el suelo puede actuar como un reservorio y/o emisor de GHG, dependiendo del balance de entradas y salidas. Abstract in english In agricultural activities, the main greenhouse gases (GHG) are those related to C and N global cycles. The impact of agriculture on GHG emissions has become a key issue, especially when considering that natural C and N cycles are influenced by agricultural development. This review focuses on CO2 an [...] d N2O soil emissions in terrestrial ecosystems, with emphasis in Chilean and similar agro-ecosystems around the world. The influence of land use and crop management practices on CO2 and N2O emissions is analyzed; some mitigation measures to reduce such emissions are also discussed here. More knowledge on the biological processes that promote of GHG emissions from soil will allow creating opportunities for agricultural development under friendly-environmental conditions, where soil can act as a reservoir and/or emitter of GHG, depending on the balance of inputs and outputs.

  4. Radiative Forcing by Well-Mixed Greenhouse Gases: Estimates from Climate Models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)

    Science.gov (United States)

    Collins, W. D.; Ramaswamy, V.; Schwarzkopf, M. D.; Sun, Y.; Portmann, R. W.; Fu, Q.; Casanova, S. E. B.; Dufresne, J.-L.; Fillmore, D. W.; Forster, P. M. D.; Galin, V. Y.; Gohar, L. K.; Ingram, W. J.; Kratz, D. P.; Lefebvre, M.-P.; Li, J.; Marquet, P.; Oinas, V.; Tsushima, Y.; Uchiyama, T.; Zhong, W. Y.

    2006-01-01

    The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO2, CH4, N2O, CFC-11, CFC-12, and the increased H2O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH4 and N2O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.

  5. Greenhouse Gas (CO2 AND N2O Emissions from Soils: A Review Emisión de Gases invernadero (CO2 y N2O desde Suelos

    Directory of Open Access Journals (Sweden)

    Cristina Muñoz

    2010-09-01

    Full Text Available In agricultural activities, the main greenhouse gases (GHG are those related to C and N global cycles. The impact of agriculture on GHG emissions has become a key issue, especially when considering that natural C and N cycles are influenced by agricultural development. This review focuses on CO2 and N2O soil emissions in terrestrial ecosystems, with emphasis in Chilean and similar agro-ecosystems around the world. The influence of land use and crop management practices on CO2 and N2O emissions is analyzed; some mitigation measures to reduce such emissions are also discussed here. More knowledge on the biological processes that promote of GHG emissions from soil will allow creating opportunities for agricultural development under friendly-environmental conditions, where soil can act as a reservoir and/or emitter of GHG, depending on the balance of inputs and outputs.En actividades agrícolas los principales gases de efecto invernadero (GHG son los relacionados con los ciclos globales de C y N. El impacto de la agricultura sobre las emisiones GHG se ha convertido en una cuestión clave, especialmente si se considera que los ciclos naturales C y N se ven influidos por el desarrollo agrícola. Esta revisión se centra en emisiones de CO2 y N2O del suelo en los ecosistemas terrestres, con énfasis en agro-ecosistemas de Chile y similares alrededor del mundo. Se analiza la influencia del uso del suelo y las prácticas de manejo del cultivo sobre emisiones de CO2 y N2O, se discuten medidas de mitigación para reducir estas emisiones. Un mayor conocimiento sobre los procesos biológicos que promueven las emisiones GHG del suelo permitirá la creación de oportunidades para el desarrollo agrícola en condiciones ambientalmente amigables, donde el suelo puede actuar como un reservorio y/o emisor de GHG, dependiendo del balance de entradas y salidas.

  6. Nitric oxide and greenhouse gases emissions following the application of different cattle slurry particle size fractions to soil

    Science.gov (United States)

    Fangueiro, David; Coutinho, João; Cabral, Fernanda; Fidalgo, Paula; Bol, Roland; Trindade, Henrique

    2012-02-01

    The application to soil of different slurry particle size fractions may lead to variable gaseous soil emissions and associated differential environmental impacts. An incubation experiment was carried out during 70 d to assess the influence on nitric oxide (NO) and greenhouse gas (GHG; i.e. nitrous oxide, carbon dioxide and methane) emissions following incorporation of 4 particle size fractions, obtained through laboratorial separation from cattle slurry, to agricultural sandy loam soil (Dystric Cambisol). The response to these applied slurry fractions (>2000 ?m, 2000-500 ?m, 500-100 ?m, 2000 ?m) induced significantly higher N 2O emissions (1.8 mg N 2O-N kg -1 dry soil) compared to the other smaller sized fractions (1.0 mg N 2O-N kg -1 dry soil). The >2000 ?m, fraction, being more than 55% of the slurry by weight, was the major contributor to daily and cumulative N 2O emissions. Hence, for N 2O, the application of WS to agricultural soil is a better option that amendment with the >2000 ?m, fraction. Low CH 4 emissions (potential suitable management tool to reduce GHG emissions. However, the largest fractions have to be used for other purposes as anaerobic digestion rather than applied to soil.

  7. Greenhouse gases mitigation potential and costs for Brazil's energy system from 2010 to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Bruno S.M.C.; Lucena, Andre F.P. de; Rathmann, Regis; Costa, Isabella V.L. da; Nogueira, Larissa P.P.; Rochedo, Pedro R.R.; H. Junior, Mauricio F.; Szklo, Alexandre; Schaeffer, Roberto [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PPE/COPPE/UFRJ), RJ (Brazil). Programa de Planejamento Energetico

    2012-07-01

    This paper analyses the potential for energy-related greenhouse gas (GHG) emission reductions and their abatement costs in the energy system of Brazil. The analysis of mitigation options and their costs focuses on the following sectors: industry, transportation and energy supply (electricity generation and oil refining), given their large contribution to the Brazil's GHGs emissions. For the industrial and oil refining sectors, the paper estimated abatement costs based on the investments along with the energy and operational costs of the measures considered. Two discount rates were used: 15% a year (private discount rate) and 8% a year (social discount rate). Compared to a business-as-usual reference scenario, results show a potential to reduce future energy-related GHG emissions by 27% in 2030. This study shows, however, that in relation to a reference year (2007), the examined abatement measures, along with the socioeconomic dynamics of an emerging country such as Brazil, would not be enough to attain absolute reductions in GHG emissions by 2030. This result is valid both each sector individually and for the sum of the emissions from all the sectors analyzed. (author)

  8. Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Fruergaard, Thilde; Astrup, Tomas; Ekvall, Thomas

    2009-11-01

    The energy system plays an essential role in accounting of greenhouse gas (GHG) emissions from waste management systems and waste technologies. This paper focuses on energy use and energy recovery in waste management and outlines how these aspects should be addressed consistently in a GHG perspective. Essential GHG emission data for the most common fuels, electricity and heat are provided. Average data on electricity provision show large variations from country to country due to different fuels being used and different efficiencies for electricity production in the individual countries (0.007-1.13 kg CO(2)-eq. kWh(-1)). Marginal data on electricity provision show even larger variations (0.004-3 kg CO(2)-eq. kWh( -1)). Somewhat less variation in GHG emissions is being found for heat production (0.01-0.69 kg CO(2)-eq. kWh( -1)). The paper further addresses allocation principles and the importance of applying either average or marginal energy data, and it discusses the consequences of introducing reduction targets on CO( 2) emissions. All discussed aspects were found to significantly affect the outcome of GHG accounts suggesting transparent reporting to be critical. Recommendations for use of average/marginal energy data are provided. PMID:19808739

  9. Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Fruergaard, Thilde; Astrup, Thomas

    2009-01-01

    The energy system plays an essential role in accounting of greenhouse gas (GHG) emissions from waste management systems and waste technologies. This paper focuses on energy use and energy recovery in waste management and outlines how these aspects should be addressed consistently in a GHG perspective. Essential GHG emission data for the most common fuels, electricity and heat are provided. Average data on electricity provision show large variations from country to country due to different fuels being used and different efficiencies for electricity production in the individual countries (0.007—1.13 kg CO2-eq. kWh—1). Marginal data on electricity provision show even larger variations (0.004—3 kg CO2-eq. kWh —1). Somewhat less variation in GHG emissions is being found for heat production (0.01—0.69 kg CO2-eq. kWh —1). The paper further addresses allocation principles and the importance of applying either average or marginal energy data, and it discusses the consequences of introducing reduction targets on CO 2emissions. All discussed aspects were found to significantly affect the outcome of GHG accounts suggesting transparent reporting to be critical. Recommendations for use of average/marginal energy data are provided.

  10. Measurements and modeling of greenhouse gases and the planetary boundary layer for the Boston metro area and the Northeastern Megalopolis

    Science.gov (United States)

    DeCola, Philip; Jones, Taylor; Wofsy, Steven; McKain, Kathryn; Chen, Jia; Bererra, Yanina; Gottlieb, Elaine; Nehrkorn, Thomas; Hegarty, Jennifer; Eluszkiewicz, Janusz; Henderson, John; Mountain, Marikate; Hutyra, Lucy; Callahan, William

    2014-05-01

    The accuracy of greenhouse gas (GHG) emission and air quality simulations reflects the fidelity of the atmospheric transport model employed that in turn is highly dependent on the accuracy of the meteorological input data. We begin by describing a multi-scale measurement network and model-data analysis framework for the Boston Metro region, with extension to the mid-Atlantic urban corridor. Observations include a network of automated concentrations of CO2 and CH4 inside and outside the urban domain, near the surface, on towers and tall buildings, total column measurements using the sun as a source, aerosol LiDAR data defining atmospheric structure, and meteorological data. The model-data analysis framework includes a Lagrangian particle dispersion model (LPDM), the Stochastic Time-Inverted Lagrangian Transport (STILT), driven by meteorological fields from the North American Regional Reanalysis (NARR) and Weather Research and Forecasting (WRF) model, and an inversion framework. We show examples of data and discuss the observational network's sampling design and a plan for extension to the NE urban corridor of the US. These urban studies are demonstrating the feasibility and value of incorporating advanced instrumentation such as the Mini Micro Pulse LiDAR to evaluate and improve the fidelity of the WRF simulations of atmospheric transport and structure in the planetary boundary layer. We also present examples of inverse analyses assessing anthropogenic emission rates for CH4 and CO2 in the urban region of metro Boston and along the urban-rural gradient.

  11. Métodos para avaliação das emissões de gases do efeito estufa no sistema solo-atmosfera / Methods for the assessment of greenhouse gases emissions in the soil-atmosphere system

    Scientific Electronic Library Online (English)

    Falberni de Souza, Costa; Juliana, Gomes; Cimélio, Bayer; João, Mielniczuk.

    2006-04-01

    Full Text Available A escolha do método para avaliar as emissões de gases do efeito estufa (GEE) é uma etapa importante para o conhecimento e/ou desenvolvimento de práticas agrícolas com potencial de mitigação do aquecimento global. A presente revisão tem por objetivo apresentar vantagens e limitações de métodos utiliz [...] ados para quantificação dos fluxos de dióxido de carbono (CO2), metano (CH4) e óxido nitroso (N2O) no sistema solo-atmosfera. O balanço dos estoques de C orgânico no solo em sistemas conservacionistas de manejo permite avaliar o influxo líquido anual de C-CO2 atmosférico no solo em comparação a sistemas de manejo convencional. Maior sensibilidade na determinação direta das emissões de CO2 in situ pode ser obtida pelo uso de câmaras sobre o solo. Nesse caso, podem ser determinadas taxas diárias com o método da captura do CO2 em solução alcalina e quantificação por titulação, e taxas horárias com o uso de analisadores automáticos de infravermelho ou cromatógrafos a gás. Pelo uso de cromatografia, é possível também a avaliação das emissões de N2O e CH4 os quais apresentam, respectivamente, potencial de aquecimento global 296 e 23 vezes superior ao do CO2. A análise dos três GEE é necessária quando se objetiva avaliar o potencial de um dado sistema de manejo na mitigação do aquecimento global, o qual pode ser expresso em C equivalente. Abstract in english The sellection of the method for evaluating greenhouse gases (GHG) emissions is an important step in studies aiming at the development of agricultural practices with potential to mitigate the global warming. The objective of this review was to present advantages and disvantages of available methods [...] to quantify fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in the soil-atmosphere system. Carbon sequestration or annual net influx rates of C-CO2 in conservation tillage systems can be evaluated through the soil carbon budget. In situ evaluations can be carried out with closed chambers, where alkaline traps are used to determination of daily influxes of CO2 while gas chromatography and automatic infrared gas analyzers permit to estimate horary fluxes. In addition to CO2, gas chromatography is able to measure N2O and CH4 emissions, gases that have a global warming potential 296 and 23 times higher than CO2, respectively. Measurement of the three GHG emissions permit to estimate the net effect of soil management systems on atmosphere rodiative forcing in equivalent C.

  12. Métodos para avaliação das emissões de gases do efeito estufa no sistema solo-atmosfera Methods for the assessment of greenhouse gases emissions in the soil-atmosphere system

    Directory of Open Access Journals (Sweden)

    Falberni de Souza Costa

    2006-04-01

    Full Text Available A escolha do método para avaliar as emissões de gases do efeito estufa (GEE é uma etapa importante para o conhecimento e/ou desenvolvimento de práticas agrícolas com potencial de mitigação do aquecimento global. A presente revisão tem por objetivo apresentar vantagens e limitações de métodos utilizados para quantificação dos fluxos de dióxido de carbono (CO2, metano (CH4 e óxido nitroso (N2O no sistema solo-atmosfera. O balanço dos estoques de C orgânico no solo em sistemas conservacionistas de manejo permite avaliar o influxo líquido anual de C-CO2 atmosférico no solo em comparação a sistemas de manejo convencional. Maior sensibilidade na determinação direta das emissões de CO2 in situ pode ser obtida pelo uso de câmaras sobre o solo. Nesse caso, podem ser determinadas taxas diárias com o método da captura do CO2 em solução alcalina e quantificação por titulação, e taxas horárias com o uso de analisadores automáticos de infravermelho ou cromatógrafos a gás. Pelo uso de cromatografia, é possível também a avaliação das emissões de N2O e CH4 os quais apresentam, respectivamente, potencial de aquecimento global 296 e 23 vezes superior ao do CO2. A análise dos três GEE é necessária quando se objetiva avaliar o potencial de um dado sistema de manejo na mitigação do aquecimento global, o qual pode ser expresso em C equivalente.The sellection of the method for evaluating greenhouse gases (GHG emissions is an important step in studies aiming at the development of agricultural practices with potential to mitigate the global warming. The objective of this review was to present advantages and disvantages of available methods to quantify fluxes of carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O in the soil-atmosphere system. Carbon sequestration or annual net influx rates of C-CO2 in conservation tillage systems can be evaluated through the soil carbon budget. In situ evaluations can be carried out with closed chambers, where alkaline traps are used to determination of daily influxes of CO2 while gas chromatography and automatic infrared gas analyzers permit to estimate horary fluxes. In addition to CO2, gas chromatography is able to measure N2O and CH4 emissions, gases that have a global warming potential 296 and 23 times higher than CO2, respectively. Measurement of the three GHG emissions permit to estimate the net effect of soil management systems on atmosphere rodiative forcing in equivalent C.

  13. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Alexander Malaver

    2015-02-01

    Full Text Available Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs and Unmanned Aerial Vehicles (UAVs currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.

  14. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases.

    Science.gov (United States)

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  15. For a better control of the greenhouse gases emissions of the international maritime and aerial baggage holds: evaluation and possible actions; Pour une maitrise des emissions de gaz a effet de serre des soutes internationales aeriennes et maritimes: constat et actions possibles

    Energy Technology Data Exchange (ETDEWEB)

    Sassi, O. [Ecole Nationale des Ponts et Chaussees, 77 - Marne la Vallee (France)

    2003-07-01

    The greenhouse gases emissions resulting from the aerial and marine baggage holds, are not taken into account in the national objectives of greenhouse gases reduction, defined by the Kyoto protocol. Thus they have to be controlled separately by each country concerned by the Kyoto protocol and urgent actions to reduce the greenhouse gases emissions are necessary. This study brings in first parts information on the context (legislation, traffic), the emission inventories and the options of allocation. It proposes then control methods and analyzes the possible measures. (A.L.B.)

  16. Effect of cattle urine addition on the surface emissions and subsurface concentrations of greenhouse gases from a UK lowland peatland.

    Science.gov (United States)

    Boon, Alex; Robinson, Steve; Chadwick, David; Cardenas, Laura

    2014-05-01

    Grazing systems represent a substantial percentage of the global anthropogenic flux of nitrous oxide (N2O) as a result of nitrogen addition to the soil. Cattle urine has been shown to stimulate N2O production due to the dual effect of a large pool of readily available N and C and increased soil water content. Studies indicate that even short-term grazing can cause a significant increase in N2O emissions, particularly when combined with compaction and seasonal water-table rise. Peat soils have different physical and chemical characteristics to mineral soils including higher organic carbon content, higher porosity and greater variation in hydraulic properties due to swell and shrink. Peat soils have been shown to have increased N2O emissions with respect to mineral soils as a result of a combination of these factors, particularly when amended with fertilisers or livestock excreta. Many lowland peatland environments in the UK are under seasonal grazing management and cattle are increasingly being introduced to manage fen vegetation in lowland peatland. In this study, we simulated small urination events on a conservation area of UK peat grassland that is intensively grazed for a short period of time during autumn seasonal water-table rise. We measured subsurface and surface emissions of N2O, methane (CH4) and carbon dioxide (CO2) alongside soil physical and chemical changes to determine the key mechanisms of greenhouse gas production and transport. CO2emission peaked at 5200 mg CO2 m-2 d-1 directly after application from a background value of 905 mg CO2 m-2 d-1. CH4 flux decreased to -2000 ?g CH4 m-2 d-1two days after application (control plots -580 ?g CH4 m-2 d-1); however, net CH4 flux was positive from urine treated plots and negative from control plots. N2O emission peaked at 37 mg N2O m-2 d-1 12 days after application (1.08 mg N2O m-2 d-1 in control plots). Subsurface CH4 and N2O concentrations were higher in the urine treated plots than the controls. There was no effect of treatment on subsurface CO2 concentrations. Subsurface N2O peaked at 500ppm 12 days after and 1200ppm 56 days after application. Subsurface NO3- concentration peaked at approximately 300 mg N kg dry soil-112 days after application. Results indicate that denitrification is the key driver for N2O release in peatlands and that production is strongly related to increased soil moisture. N2O production at depth continued long after emissions were detected at the surface. Increased study of the interaction between subsurface gas concentrations, surface emissions and soil hydrological conditions is required to successfully predict greenhouse gas production and emission.

  17. Landscape position affects the emission of greenhouse gases from a prairie pot-hole soil in western Canada

    International Nuclear Information System (INIS)

    In order to reliably estimate the contribution of agricultural soils to nitrous oxide and methane emissions, it is necessary to understand the role of landscape position in greenhouse (GHG) emissions from the prairie pot-hole region. A study was conducted at the Manitoba Zero-Tillage Research Association (MTRZA) farm located near Brandon, Manitoba. The site represents an undulating landscape with a Newdale clay loam soil. Static vented chambers were used to monitor GHG emissions from Upper, Middle, and Lower slope positions and Riparian positions from the spring to fall of 2005 to determine the impact of annual variation in weather conditions. Soil atmosphere was also sampled from August to November using silicone gas probes installed at depths of 5, 15, 35 and 65 cm. Laboratory incubations during July and September provided information on net nitrous oxide (N2O) production and denitrification rates from the 4 slopes. Soil was sampled in October and treated in the laboratory to determine freeze-thaw emissions of soil from the landscape positions. Emissions of N2O were found to be highest during spring-thaw and also after the application of fertilizer in the spring. Emissions were typically higher for Middle and Lower slope positions and lowest in the Riparian position. Only the Riparian position had considerable methane emission rates, while the other positions consumed methane. Surface soil consumed N2O in the Riparian position, whileb>2O in the Riparian position, while it consumed methane in the Lower slope position. Denitrification rates were high in July with little net N2O production. Poor soil aeration at this time probably caused a reduction in N2O to N2. However, during drier in September, denitrification was very low, and nearly the same as net N2O production. Freeze-thaw N2O emissions were unexpectedly highest for Riparian soil. The pattern of emission was linked to denitrifying enzyme activity at the landscape positions

  18. Comparison of Life Cycle Greenhouse Gases from Natural Gas Pathways for Medium and Heavy-Duty Vehicles.

    Science.gov (United States)

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks. PMID:25938939

  19. The "Lung": a software-controlled air accumulator for quasi-continuous multi-point measurement of agricultural greenhouse gases

    Directory of Open Access Journals (Sweden)

    R. J. Martin

    2011-10-01

    Full Text Available We describe the design and testing of a flexible bag ("Lung" accumulator attached to a gas chromatographic (GC analyzer capable of measuring surface-atmosphere greenhouse gas exchange fluxes in a wide range of environmental/agricultural settings. In the design presented here, the Lung can collect up to three gas samples concurrently, each accumulated into a Tedlar bag over a period of 20 min or longer. Toggling collection between 2 sets of 3 bags enables quasi-continuous collection with sequential analysis and discarding of sample residues. The Lung thus provides a flexible "front end" collection system for interfacing to a GC or alternative analyzer and has been used in 2 main types of application. Firstly, it has been applied to micrometeorological assessment of paddock-scale N2O fluxes, discussed here. Secondly, it has been used for the automation of concurrent emission assessment from three sheep housed in metabolic crates with gas tracer addition and sampling multiplexed to a single GC.

    The Lung allows the same GC equipment used in laboratory discrete sample analysis to be deployed for continuous field measurement. Continuity of measurement enables spatially-averaged N2O fluxes in particular to be determined with greater accuracy, given the highly heterogeneous and episodic nature of N2O emissions. We present a detailed evaluation of the micrometeorological flux estimation alongside an independent tuneable diode laser system, reporting excellent agreement between flux estimates based on downwind vertical concentration differences. Whilst the current design is based around triplet bag sets, the basic design could be scaled up to a larger number of inlets or bags and less frequent analysis (longer accumulation times where a greater number of sampling points are required.

  20. Dissolved greenhouse gases (nitrous oxide and methane associated with the natural iron-fertilized Kerguelen region (KEOPS 2 cruise in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    L. Farías

    2014-08-01

    Full Text Available The concentrations of greenhouse gases (GHGs like nitrous oxide (N2O and methane (CH4 were measured in the Kerguelen Plateau Region (KPR, an area with annual microalgal bloom caused by natural Fe fertilization, which may stimulate microbes involved in GHG cycling. This study was carried out during the KEOPS 2 cruise during the austral spring of 2011. Two transects were sampled along and across the KRP, the north–south (N–S transect (46–51° S, 72° E meridian and the west–east (W–E transect (66–75° E, 48.3° S latitude, both associated with the presence of a plateau, polar fronts and other mesoscale features. The W–E transect had N2O levels ranging from equilibrium (105% to light supersaturation (120% with respect to the atmosphere. CH4 levels fluctuated dramatically, with intense supersaturations (120–970% in areas close to the coastal waters of Kerguelen Island and in the polar front (PF. There, Fe and nutrient fertilization seem to promote high total chlorophyll a (TChl a levels. The distribution of both gases was more homogenous in the N–S transect, but CH4 peaked at southeastern stations of the KPR (A3 stations, where phytoplankton bloom was observed. Both gases responded significantly to the patchy distribution of particulate matter as Chl a, stimulated by Fe supply by complex mesoscale circulation. While CH4 appears to be produced mainly at the pycnoclines, N2O seems to be consumed superficially. Air–sea fluxes for N2O (from ?10.5 to 8.65, mean 1.71 ?mol m?2d?1, and for CH4 (from 0.32 to 38.1, mean 10.07 ?mol m?2d?1 reflected sink and source behavior for N2O and source behavior for CH4, with considerable variability associated with a highly fluctuating wind regime and, in the case of CH4, due to its high superficial levels that had not been reported before in the Southern Ocean and may be caused by an intense microbial CH4 cycling.

  1. Dissolved greenhouse gases (nitrous oxide and methane) associated with the naturally iron-fertilized Kerguelen region (KEOPS 2 cruise) in the Southern Ocean

    Science.gov (United States)

    Farías, L.; Florez-Leiva, L.; Besoain, V.; Sarthou, G.; Fernández, C.

    2015-03-01

    The concentrations of greenhouse gases (GHGs), such as nitrous oxide (N2O) and methane (CH4), were measured in the Kerguelen Plateau region (KPR). The KPR is affected by an annual microalgal bloom caused by natural iron fertilization, and this may stimulate the microbes involved in GHG cycling. This study was carried out during the KEOPS 2 cruise during the austral spring of 2011. Oceanographic variables, including N2O and CH4, were sampled (from the surface to 500 m depth) in two transects along and across the KRP, the north-south (TNS) transect (46°-51° S, ~ 72° E) and the east-west (TEW) transect (66°-75° E, ~ 48.3° S), both associated with the presence of a plateau, polar front (PF) and other mesoscale features. The TEW presented N2O levels ranging from equilibrium (105%) to slightly supersaturated (120%) with respect to the atmosphere, whereas CH4 levels fluctuated dramatically, being highly supersaturated (120-970%) in areas close to the coastal waters of the Kerguelen Islands and in the PF. The TNS showed a more homogenous distribution for both gases, with N2O and CH4 levels ranging from 88 to 171% and 45 to 666% saturation, respectively. Surface CH4 peaked at southeastern stations of the KPR (A3 stations), where a phytoplankton bloom was observed. Both gases responded significantly, but in contrasting ways (CH4 accumulation and N2O depletion), to the patchy distribution of chlorophyll a. This seems to be associated to the supply of iron from various sources. Air-sea fluxes for N2O (from -10.5 to 8.65, mean 1.25 ± 4.04 ?mol m-2 d-1) and for CH4 (from 0.32 to 38.1, mean 10.01 ± 9.97 ?mol-2 d-1) indicated that the KPR is both a sink and a source for N2O, as well as a considerable and variable source of CH4. This appears to be associated with biological factors, as well as the transport of water masses enriched with Fe and CH4 from the coastal area of the Kerguelen Islands. These previously unreported results for the Southern Ocean suggest an intense microbial CH4 production in the study area.

  2. Atmospheric station K?ešín u Pacova, Czech Republic - a Central European research infrastructure for studying greenhouse gases, aerosols and air quality

    Science.gov (United States)

    Dvorská, A.; Sedlák, P.; Schwarz, J.; Fusek, M.; Hanuš, V.; Vodi?ka, P.; Trusina, J.

    2015-05-01

    Long-lasting research infrastructures covering the research areas of atmospheric chemistry, meteorology and climatology are of highest importance. The Atmospheric Station (AS) K?ešín u Pacova, central Czech Republic, is focused on monitoring of the occurence and long-range transport of greenhouse gases, atmospheric aerosols, selected gaseous atmospheric pollutants and basic meteorological characteristics. The AS and its 250 m tall tower was built according to the recommendations of the Integrated Carbon Observation System (ICOS) and cooperates with numerous national and international projects and monitoring programmes. First measurements conducted at ground started in 2012, vertical profile measurements were added in 2013. A seasonal variability with slightly higher autumn and winter concentrations of elemental and organic carbon was revealed. The suitability of the doubly left-censored Weibull distribution for modelling and interpretation of elemental carbon concentrations, which are often lower than instrumental quantification limits, was verified. Initial data analysis also suggests that in summer, the tower top at 250 m is frequently above the nocturnal surface inversions, thus being decoupled from local influences.

  3. Space-borne remote sensing with active optical instruments for the measurement of temperature, pressure, ozone and the greenhouse gases CO2, CH4, and N2O

    Science.gov (United States)

    Ehret, G.; Fix, A.; Kiemle, C.; Wirth, M.

    Lidar Light Detection and Ranging is regarded as an innovative component of the global observing system It offers the possibility to directly sample the four-dimensional variability of the atmosphere with unprecedented accuracy and spatial resolution In Europe space-borne lidar systems have been the subject of extensive investigations since mid 1970 s resulting in mission and instrument concepts such as ATLID a backscatter lidar for aerosol and clouds for the EarthCARE mission or ALADIN a Doppler wind lidar considered for the ADM Aeolus mission Major advances particularly in humidity profiling are expected from the space-borne Differential Absorption Lidar DIAL being the Core instrument of the WALES Water Vapour Lidar Experiment in Space mission which was studied up to a level of Phase A In this presentation we report on the background definition of a future lidar system capable of monitoring the greenhouse gases carbon dioxide CO 2 methane CH 4 and nitrous oxide N 2 O stratospheric and tropospheric ozone O 3 and the meteorological parameter pressure p and temperature T The idea of this study which was initiated by the European Space Agency ESA was to select one or two candidate instruments for follow-on activities on sensor and mission level For each parameter appropriate performance models of active optical instruments either for range-resolved or for total column measurements were defined and implemented as computer codes for parametric analysis The sampling strategy and error characteristics for the

  4. Reduction of greenhouse gases emissions in Romania, by rehabilitation of the aged power plants based on a new circulating fluidized bed combustion technology - CFBC

    International Nuclear Information System (INIS)

    The low quality of coal available for Romania power generation, mainly lignite with a low calorific value (6.5-7 MJ/kg) and high in sulfur content (1.5-2%) has caused severe damage to the stations and environmental problems. The local capability existing in clean and efficient Circulating Fluidized Bed Combustion (CFBC) technology, well suited to least costs refurbishment, is discussed. The retrofit operation using this clean technology would also address the problem of serious air pollution caused by local coal use with little or no control of dust or greenhouse gases like NOx and SOx. The paper presents the results obtained on an experimental facility, 1 MWth CFBC pilot plant. A comparison among several rehabilitation possibilities with the view to diminishing polluting emissions is included. The CFBC technology advantages and environmental benefits for Romania and its neighbouring countries, by choosing this clean coal technology, are reviewed. In addition, the paper presents the main aspects of technical investments for a few power plants equipped with supplementary devices for controlling the SOx and NOx in comparison with retrofit by using CFBC boilers. 6 refs., 6 figs., 1 tab

  5. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology

    International Nuclear Information System (INIS)

    One way of producing nearly CO2 free electricity is by using biomass as a combustible. In many cases, removal of CO2 in biomass grown is almost the same as the emissions for the bioelectricity production at the power plant. For this reason, bioelectricity is generally considered CO2 neutral. For large-scale biomass electricity generation two alternatives can be considered: biomass-only fired power plants, or cofiring in an existing coal power plant. Among other factors, two important aspects should be analyzed in order to choose between the two options. Firstly, which is the most appealing alternative if their Greenhouse Gases (GHG) Emissions savings are taken into account. Secondly, which biomass resource is the best, if the highest impact reduction is sought. In order to quantify all the GHG emissions related to each system, a Life Cycle Assessment (LCA) methodology has been performed and all the processes involved in each alternative have been assessed in a cradle-to-grave manner. Sensitivity analyses of the most dominant parameters affecting GHG emissions, and comparisons between the obtained results, have also been carried out.

  6. Multispectral information from TANSO-FTS instrument - Part 1: Application to greenhouse gases (CO2 and CH4) in clear sky conditions

    Science.gov (United States)

    Herbin, H.; Labonnote, L. C.; Dubuisson, P.

    2013-11-01

    The Greenhouse gases Observing SATellite (GOSAT) mission, and in particular the Thermal And Near infrared Sensor for carbon Observations-Fourier Transform Spectrometer (TANSO-FTS) instrument, has the advantage of being able to measure simultaneously the same field of view in different spectral ranges with a high spectral resolution. These features allow studying the benefits of using multispectral measurements to improve the CO2 and CH4 retrievals. In order to quantify the impact of the spectral synergy on the retrieval accuracy, we performed an information content (IC) analysis from simulated spectra corresponding to the three infrared bands of TANSO-FTS. The advantages and limitations of using thermal and shortwave infrared simultaneously are discussed according to surface type and state vector composition. The IC is then used to determine the most informative spectral channels for the simultaneous retrieval of CO2 and CH4. The results show that a channel selection spanning the three infrared bands can improve the computation time and retrieval accuracy. Therefore, a selection of less than 700 channels from the thermal infrared (TIR) and shortwave infrared (SWIR) bands allows retrieving CO2 and CH4 simultaneously with a similar accuracy to using all channels together to retrieve each gas separately.

  7. Biogeochemistry, transport fluxes and emission of greenhouse gases from the Niger River (West Africa): preliminary results after two years of monitoring

    Science.gov (United States)

    Darchambeau, François; Bouillon, Steven; Alhou, Bassirou; Borges, Alberto V.

    2013-04-01

    The Niger River is Africa's third longest river and drains an area of ~2,120,000 km2. It encompasses six hydrographic regions and crosses almost all possible ecosystem zones in West Africa. Yet, there is surprisingly little or no information on carbon (C) and nitrogen (N) cycling in this river. Here, we report initial results of a monitoring campaign whereby 2-weekly samples have been collected at Niamey (Niger) [2.01° E 13.57° N] between April 2011 and March 2013 for a suite of physico-chemical and biogeochemical characteristics, including total suspended matter (TSM) concentrations, quantification and stable isotope composition of particulate organic carbon (POC and ?13C-POC) and particulate nitrogen (PN and ?15N-PN), dissolved organic carbon (DOC ?13C-DOC) and dissolved inorganic carbon (DIC and ?13C-DIC), concentration of greenhouse gases (GHGs) (partial pressure of CO2, CH4 and N2O), as well as major elements, total alkalinity, and oxygen isotope signatures of water (?18O-H2O). This dataset allows us to construct an annual budget for both particulate and dissolved carbon fluxes, as well as a first seasonally resolved characterisation of the matter transported by the Niger River and of the GHGs emitted to the atmosphere.

  8. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    International Nuclear Information System (INIS)

    Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities’ boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management

  9. Greenhouse gases embodied in the international trade and final consumption of Finland: An input-output analysis

    International Nuclear Information System (INIS)

    The estimation of greenhouse gas (GHG) emissions associated with international trade and final consumption gives a more complete and balanced picture of the responsibilities of various countries for the emissions that cause the climate change. The aim of this study was to look at the impact of the coverage of the GHGs and their sources and assumptions regarding the emissions of imports on the results of GHG emissions associated with international trade and final consumption of Finland. In addition to a single year study, a trend covering years 1990-2003 was produced for Finland to study the development of the GHG emissions associated with domestic consumption and the reasons behind the development. According to our results Finland was in 1999 a net exporter of CO2 from fossil fuel combustion, CO2 from all sources and GHGs of 4(4.2), 5 or 7 Gkg, respectively. The impact of different assumptions concerning the emissions embodied in imports in the case of Finland was tested by using the domestic emission intensities and the ratios of embodied emissions in imports in relation to domestic products by utilizing the data from the study by (OECD, 2003b. Carbon Dioxide Emissions Embodied in International Trade of Goods, STI Working Paper 2003/15, OECD, Paris). In the case of Finland, the differences of results calculated with these two methods remained rather small. The total emissions embodied in the imports changed from 33.8 to 34.4 Gkg and consequentlyged from 33.8 to 34.4 Gkg and consequently the net export of CO2 from fossil fuel combustion changed from 4.2 to 3.6 Gkg. The results for 1990-2003 show that the GHG emissions embodied in the exports have exceeded the GHG emissions embodied in the imports from early 1990s. The reason for the increasingly positive GHG trade balance in the case of Finland has been the change in the magnitude of trade rather than the changes in its structure. The results show also that the impact of international transport on the emission intensity of imports is significant and merits further research

  10. Forest science and technology to reduce atmospheric greenhouse gases - an overview, with emphasis on carbon in Canada's forests

    International Nuclear Information System (INIS)

    The forest as a CO2 sink comprises, in addition to mature and immature trees, C accumulated in understorey plants, animals, forest soils, peat bogs and wetlands. Estimates of how much carbon (C) is entering and leaving a forest ecosystem cannot be obtained merely by estimating gaseous CO2 fluxes. The C cycle also involves direct transfer of CO2 to soil in rain and snow, non-photosynthetic or 'dark' fixation of CO2 by myriad soil and aquatic micro-organisms, roots, fungi and animals, and loss of C in forms other than CO2 via air, groundwater flow and runoff. The complexity of the carbon cycle challenges us to develop reliably accurate means of inventorying C accumulation in trees. In productive forests the C of wood can be determined by estimating tree merchantable volume and, by density conversion, mass of dry wood. Percentage C in dry wood varies by species and type of wood, but otherwise C of wood can be readily calculated. The C present in foliage, branches, bark and roots can, as a first approximation, be assumed to be equivalent to that in the merchantable boles. National Forestry Database statistics and our elemental analysis data on total carbon in wood were used to determine how much C is present in and being removed annually from Canadian forests. In 1998 Canada extracted 45 million tonnes of C of wood from 0.5% of its more than 244 million hectares (ha) of productive forest area. That annual harvest conttive forest area. That annual harvest contained less than 0.001% of the 6400 gigatonnes of C of wood existing in boles of merchantable trees. However, harvesting over the last three centuries has reduced C content m productive forests to well below 50% of their pre-1700 sink capacity. To refill the sink, it is proposed that a ceiling of 50 million tonnes C of wood be set as the annual allowable cut. Mean temperature increases of as much as 8 oC have been forecast for Canada over the next 100 years. The impact of those increases on tree growth and survival will depend not so much on changes in the annual mean but on what individual trees actually experience during the growing season in relation to the extremes they are able to tolerate. From a physiological perspective, maintaining shelterwoods with canopies approaching full closure is the only option for modulating extremes, thus for keeping forests growing healthily. Recycling and refabricating wood and paper represent major societal and industrial opportunities to offset greenhouse gas emissions. Canadians can contribute to the C sink level of the nation by ensuring that paper and wood products have longer in-service lifetimes. (author)

  11. Chemolithoautotrophic production mediating the cycling of the greenhouse gases N2O and CH4 in an upwelling ecosystem

    Directory of Open Access Journals (Sweden)

    M. E. Alcaman

    2009-12-01

    Full Text Available The high availability of electron donors occurring in coastal upwelling ecosystems with marked oxyclines favours chemoautotrophy, in turn leading to high N2O and CH4 cycling associated with aerobic NH4+ (AAO and CH4 oxidation (AMO. This is the case of the highly productive coastal upwelling area off central Chile (36° S, where we evaluated the importance of total chemolithoautotrophic vs. photoautotrophic production, the specific contributions of AAO and AMO to chemosynthesis and their role in gas cycling. Chemolithoautotrophy was studied at a time-series station during monthly (2007–2009 and seasonal cruises (January 2008, September 2008, January 2009 and was assessed in terms of the natural C isotopic ratio of particulate organic carbon (?13POC, total and specific (associated with AAO and AMO dark carbon assimilation (CA, and N2O and CH4 cycling experiments. At the oxycline, ?13POC averaged ?22.2‰; this was significantly lighter compared to the surface (?19.7‰ and bottom layers (?20.7‰. Total integrated dark CA in the whole water column fluctuated between 19.4 and 2.924 mg C m?2 d?1, was higher during active upwelling, and contributed 0.7 to 49.7% of the total integrated autotrophic CA (photo plus chemoautotrophy, which ranged from 135 to 7.626 mg C m?2 d?1, and averaged 20.3% for the whole sampling period. Dark CA was reduced by 27 to 48% after adding a specific AAO inhibitor (ATU and by 24 to 76% with GC7, a specific archaea inhibitor. This indicates that AAO and AMO microbes (most of them archaea were performing dark CA through the oxidation of NH4+ and CH4. Net N2O cycling rates varied between 8.88 and 43 nM d?1, whereas net CH4 cycling rates ranged from ?0.41 to ?26.8 nM d?1. The addition of both ATU and GC7 reduced N2O accumulation and increased CH4 consumption, suggesting that AAO and AMO were responsible, in part, for the cycling of these gases. These findings show that chemically driven chemolithoautotrophy (with NH4+ and CH4 acting as electron donors could be more important than previously thought in upwelling ecosystems, raising new questions concerning its relevance in the future ocean.

  12. Effects of ploughing on land-atmosphere exchange of greenhouse gases in a managed temperate grassland in central Scotland

    Science.gov (United States)

    Helfter, Carole; Drewer, Julia; Anderson, Margaret; Scholtes, Bob; Rees, Bob; Skiba, Ute

    2015-04-01

    Grasslands are important ecosystems covering > 20% and > 30% of EU and Scotland's land area respectively. Management practices such as grazing, fertilisation and ploughing can have significant short- and long-term effects on greenhouse gas exchange. Here we report on two separate ploughing events two years apart in adjacent grasslands under common management. The Easter Bush grassland, located 10 km south of Edinburgh (55° 52'N, 3° 2'W), comprises two fields separated by a fence and is used for grazing by sheep and cattle. The vegetation is predominantly Lolium perenne (> 90%) growing on poorly drained clay loam. The fields receive several applications of mineral fertiliser a year in spring and summer. Net ecosystem exchange (NEE) of carbon dioxide (CO2) has been monitored continuously by eddy-covariance (EC) since 2002 which has demonstrated that the site is a consistent yet variable sink of atmospheric CO2. The EC system comprises a LI-COR 7000 closed-path analyser and a Gill Instruments Windmaster Pro ultrasonic anemometer mounted atop a 2.5 m mast located along the fence line separating the fields. In addition, fluxes of nitrous oxide (N2O), methane (CH4)and CO2were measured with static chambers installed along transects in each field. Gas samples collected from the chambers were analysed by gas chromatography and fluxes calculated for each 60-minute sampling period. The ploughing events in 2012 and 2014 exhibited multiple similarities in terms of NEE. The light response (i.e. relationship between CO2 flux, and photosynthetically active radiation, PAR) of the NF and SF during the month preceding each ploughing event was of comparable magnitude in both years. Following ploughing, CO2 uptake ceased in the ploughed field for approximately one month and full recovery of the photosynthetic potential was observed after ca. 2 months. During the month following the 2014 ploughing event, the ploughed NF released on average 333 ± 17 mg CO2-C m-2 h-1. In contrast, the SF net uptake during the same period was -79 ± 19 mg CO2-C m-2 h-1. Ploughing caused a net release of carbon of 183 g CO2-C m-2 during the month following ploughing, thus turning the grassland into a potent CO2 source. Chamber measurements of CH4 and N2O exhibited high spatial variability in 2012 and no statistical difference could be established between fields and treatments. CH4 fluxes were high in both fields after ploughing which was presumably linked to air temperature. N2O fluxes in the ploughed SF reached on average 100 ?g N2O-N m-2 h-1 29 days after ploughing which corresponded to ca. 20 times the background level recorded at the site. Fluxes of N2O were however considerably larger in 2014, peaking at 2570 ?g N2O-N m-2 h-1 29 days after ploughing. Contrarily to 2012, substantial and statistically significant CH4 emissions were recorded in 2014 in the ploughed field. Whilst spatial variability was high in both years it can nevertheless be concluded that ploughing had substantial adverse short term effects on emissions and that environmental conditions greatly impacted the magnitude of CH4 and N2O fluxes.

  13. Fixação de carbono e a emissão dos gases de efeito estufa na exploração da cana-de-açúcar / Fixing of carbon and emission of greenhouse gases in the exploitation of sugar cane

    Scientific Electronic Library Online (English)

    Mauro de, Paula; Francisco Assis Rolim, Pereira; Edison Rubens Arrabal, Arias; Bruno Ricardo, Scheeren; Celso Correia de, Souza; Danúbia Sales da, Mata.

    2010-06-01

    Full Text Available A produção de uma tonelada (t) de fitomassa em matéria seca (MS) de cana-de-açúcar fixa, no mínimo, 0,42 t em carbono (C), o que corresponde a mitigar 1,54 t de dióxido de carbono (CO2) da atmosfera. Neste trabalho, objetivou-se efetuar um levantamento da quantidade de fitomassa da cana-de-açúcar pr [...] oduzida em 1 ha anualmente. Além de analisar o total de C fixado e a emissão de diversos gases de efeito estufa (GEE), em CO2 equivalente (eqCO2), em consequência da adubação nitrogenada; da queima da fitomassa na colheita e da oxidação de combustíveis fósseis usados na produção, colheita e no transporte da cana até a indústria. Com base na análise dos dados, concluiu-se que ao adotar como procedimento a colheita da cana-de-açúcar crua, o produtor canavieiro estará deixando de emitir 0,286 t ha-1 ano-1 de material particulado, 13,53 t ha-1 ano-1 em eqCO2 de outros gases, além de fixar o C na fitomassa, gerando um ativo ambiental de 52,50 t ha-1 ano-1 de eqCO2. Ao somar-se o total da fixação, mais a redução que deixará de ser emitida, a mitigação total será de 66,03 t ha-1 ano-1 de eqCO2. Abstract in english The production of one tonne (t) of phytomass in dry matter (DM) of sugar cane assimilates at least 0.42 t in carbon (C) which corresponds to 1.54 t of carbon dioxide (CO2) from the atmosphere. This work aimed to make a survey of the quantity of phytomass from sugar cane produced in 1 ha annually, an [...] d also to examine the total C fixed and the emission of greenhouse gases (GHGs), in CO2 equivalent as a consequence of nitrogen fertilization, burning of phytomass at harvest and the oxidation of fossil fuels during production, harvest, and transport of the sugar cane to the industrial plant. Based on the analysis of data, it was concluded that by harvesting the sugar cane without burning, the farmer will not emit 0.286 t ha-1 year-1 of particulate matter, 13,53 t ha-1 year-1 in eqCO2 of other gases. This will also assimilate carbon in the phytomass, generating an environmental active of 52,50 t ha-1 year-1 of eqCO2. By adding up the total fixation and the reduction of emissions, the mitigation will total 66,03 t ha-1 year-1 of eqCO2.

  14. Oxidation of hydrogen halides to elemental halogens

    Science.gov (United States)

    Rohrmann, Charles A. (Kennewick, WA); Fullam, Harold T. (Richland, WA)

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  15. Economic efficiency assessment of greenhouse gases mitigation for agriculture; Analyse af omkostningseffektiviteten ved drivhusgasreducerende tiltag i relation til landbruget

    Energy Technology Data Exchange (ETDEWEB)

    Dubgaard, A.; Moeller Laugesen, F.; Staehl, E.E.; Bang, J.R.; Schou, E.; Jacobsen, Brian H.; Oerum, J.E.; Dejgaerd Jensen, J.

    2013-08-15

    The report contains the contributions by the Institute of Food and Resource Economics (IFRO) to a Danish Government appraisal of greenhouse gas (GHG) reduction measures. The policy goal is a 40 per cent reduction in total Danish GHG emissions by 2020 compared to 1990. The GHGs analysed in the present study include emissions of CO{sub 2}, nitrous oxide and methane plus soil carbon sequestration. The purpose of the study is to identify GHG mitigation measures related to agriculture which can deliver cost-effective contributions to the targeted reduction in GHG emissions in Denmark. A total of 21 GHG mitigation measures are included in the assessment. The stipulated implementation period is 2013 to 2020. The cost calculations have a time horizon equal to 30 years, i.e. from 2013 to 2042. The GHG reduction potential, expressed in CO{sub 2} equivalents (CO{sub 2}-eq), is calculated as the sum of the effect on the emission of CO{sub 2} (with and without changes in soil carbon), methane and nitrous oxide. The 21 mitigation measures are listed below (figures in brackets show the assumed implementation potential): 1. Biogas from livestock manure/slurry (10 % of total slurry production) 2. Biogas from slurry and maize (10 % of total slurry production) 3. Biogas from organic clover 4. Additional fat in diet for dairy cows (80% of conventional dairy cow stock and 20 % of organic dairy cow stock) 5. Additional concentrated feed in diet for other cattle (25 % of cattle stock under 2 years of age) 6. Prolonged lactation period for dairy cows (10 % of dairy cow stock) 7. Acidification of slurry (10 % of total slurry production) 8. Covers on slurry containers (40 % of total slurry production) 9. Cooling of pig slurry (10 % of pig slurry) 10. Nitrification inhibitors in nitrate fertilisers (100 % of chemical fertilisers with nitrogen) 11. Increased nitrogen utilization requirement for degassed slurry in nitrogen quota system (50 % of total slurry production) 12. Increased nitrogen utilization requirement for certain types of slurry in nitrogen quota system (5 % mink, 10 % poultry, and 20 % liquid manure) 13. Reduction of nitrogen quota (10 % of total nitrogen quota) 14. Energy willow (100,000 ha) 15. Straw for combustion (100,000 ha) 16. Catch crops ( 240,000ha, whereof 110,000 ha on clay soil and 130,000 ha on sandy soil) 17. Short term catch crops (240,000 ha, whereof 110,000 ha on clay soil and 130,000 ha on sandy soil) 18. Conversion of arable land (not naturally wet) to permanent grass (100,000 ha) 19. Afforestation of arable land (50,000 ha, whereof 31,000 ha on clay soil and 19,000 ha on sandy soil ha) 20. Conversion of arable, organogenic land to permanent grass with continued drainage (35,000 ha) 21. Conversion of arable, organogenic land to permanent grass with termination of drainage (35,000 ha). The mitigation measures and their assumed implementation potentials have been chosen in cooperation with the Faculty of Agricultural Sciences, Aarhus University. Marginal abatement cost functions have been constructed. The levels of the implementation potential for the individual measures have been stipulated at a scale assumed to allow implementation at approximately constant marginal costs when using existing technologies. For some measures the specified implementation potential is limited by the assumptions of the overall Government appraisal of GHG reduction measures for the non-ETS area. The focus of the Government appraisal is on the identification of cost-effective GHG reduction potentials which are not already covered by existing policy programs - such as the Danish Government's Green Growth program. For example, when the present study was initiated the Green Growth program stipulated that up to 50 per cent of the animal manure produced in Denmark should be used in biogas production by 2020. The 10 per cent specified here is in addition to this target. (LN)

  16. The Norwegian Emission Inventory 2011. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond

    2012-07-01

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency1 and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emission models like, e.g., the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2011b) for documentation on this topic. This report replaces the previous documentation of the emission model (Sandmo 2010), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: To define the different economic sectors in the Norwegian emission model, the standard industrial classification SIC2007 has replaced the previous SIC2002 (Appendix F) A new model for calculating emissions to air (HBEFA) from road traffic has been incorporated. The time series for CH4, N2O, NOX, NMVOC, CO, NH3 and particle emissions from road traffic have thus been recalculated. There have been some changes made to the activity data, e.g. a new data source on annual driving lengths has been utilised and more detailed information on traffic activity has been taken into account. Emissions of CH4 from gas distribution have for the first time been included in the inventory, The calculation method for NOx emissions from production of silicon metal has been revised. For national navigation, revised emission factors for NOX emissions from gas engines and emissions of particulate matter from oil based fuels and LNG have been introduced. A new uncertainty analysis for greenhouse gases has been performed, and the main results are documented in this report Furthermore, there are lower emission figures for CH4 for all years since 1990 due to revisions of Statistics Norway's waste statistics, but there are no methodological changes in the calculation of these emissions. There have also been several minor changes in the emission figures, e.g. due to changes in figures on energy combustion. Chapter 8 Recalculations gives a more thorough description of changes in the most recent emission calculations.(Author)

  17. Transport fluxes and emission of greenhouse gases of the Middle Niger River (west Africa): disproprotionate importance of the recent red floods in the Niamey region

    Science.gov (United States)

    Darchambeau, François; Bouillon, Steven; Alhou, Bassirou; Lambert, Thibault; Borges, Alberto V.

    2014-05-01

    The Niger River is Africa's third longest river and drains an area of ~2,120,000 km². It encompasses six hydrographic regions and crosses almost all possible ecosystem zones in West Africa. Since few decades, the Middle Niger River presents a two flood hydrograph, the local flood, or red flood, occurring during the rainy season being the more pronounced one. Here, we report initial results of a monitoring campaign whereby 2-weekly samples were collected at Niamey (Niger) [2.01°E 13.57°N] between April 2011 and March 2013 for a suite of physico-chemical and biogeochemical characteristics, including total suspended matter (TSM) concentrations, concentration and stable isotope composition of particulate organic carbon (POC and ?13C-POC) and particulate nitrogen (PN and ?15N-PN), chromophoric dissolved organic matter (CDOM), dissolved organic carbon (DOC and ?13C-DOC), dissolved inorganic carbon (DIC and ?13C-DIC), concentration of greenhouse gases (GHGs) (CO2, CH4 and N2O), as well as major elements, total alkalinity, and oxygen isotope signatures of water (?18O-H2O). This dataset allows us to construct seasonal budgets for particulate and dissolved carbon fluxes, nutrient exports, as well as a first seasonally resolved characterisation of the GHGs emitted to the atmosphere by the Middle Niger River. The red flood, concentrated on 2 months (August-September), contributed to more than 80% of the annual transport fluxes of TSM and POC and to approximately 30% of the annual transport fluxes of DIC and DOC.

  18. Significance of the structural properties of CaO catalyst in the production of biodiesel: An effect on the reduction of greenhouse gases emission

    Directory of Open Access Journals (Sweden)

    Ljupkovi? Radomir B.

    2014-01-01

    Full Text Available The influence of the physicochemical properties of a series of CaO catalysts activated at different temperatures on the biodiesel production was investigated. These catalysts show dissimilar yields in the transesterification of triglycerides with methanol. We have found significant relationships between structural properties (the type of the pore system, the typical CaO crystal phase and the sizes of crystallites (up to 25 nm, the minimal weight percentage of CaO phase, the total surface basicity and potential existence of two types of basic active sites of CaO prepared and activated by means of thermal treatment at highest temperature and catalytic efficiency. Benefits of this catalyst are short contact time, standard operating temperature and atmospheric conditions, relatively low molar ratios and small catalyst loading. These all together resulted in a very high biodiesel yield of high purity. The properties of different biodiesel (obtained with the use of the prepared CaO catalyst blends with different diesel and biodiesel ratios indicate that the higher the fraction of biodiesel fuel the better the achieved fuel properties according to the EU standards. A significant reduction of CO2 and CO emissions and only a negligible NOx increase occurred when blends with an increased biodiesel portion was used. The use of biodiesel derived blends, and the eventual complete replacement of fossil fuels with biodiesel as a renewable, alternative fuel for diesel engines, would greatly contribute to the reduction of greenhouse gases emissions. [Projekat Ministarstva nauke Republike Srbije, br. ON 172061 i TR 34008

  19. Emissão de gases do efeito estufa em diferentes usos da terra no bioma Cerrado / Greenhouse gas emission caused by different land-uses in brazilian Savannah

    Scientific Electronic Library Online (English)

    Marcos, Siqueira Neto; Marisa de Cássia, Piccolo; Ciniro, Costa Junior; Carlos Clemente, Cerri; Martial, Bernoux.

    2011-02-01

    Full Text Available A conversão de áreas nativas com o corte e queima de vegetação seguida do cultivo do solo resultam em mudanças na dinâmica da matéria orgânica do solo, com alterações nas emissões dos gases causadores de efeito estufa (GEE: CO2, CH4 e N2O) da biosfera para a atmosfera, que causam a elevação da tempe [...] ratura média e, consequentemente, as mudanças climáticas globais. O objetivo deste estudo foi verificar as relações entre os fluxos de CO2, CH4 e N2O com a umidade, biomassa microbiana e as formas inorgânicas de N no solo com diferentes usos das terras no bioma Cerrado (Rio Verde, Goiás). O clima da região é do tipo Aw (Köppen-Geiger), e o solo foi classificado como Latossolo Vermelho distrófico caulinítico textura argilosa com vegetação original de Cerradão. O delineamento experimental foi inteiramente casualizado (DIC), com quatro tratamentos (áreas): vegetação nativa - Cerradão (CE); pastagem (PA) de braquiária, semeadura convencional (SC) de soja; e semeadura direta (SD) de milho sucedido por milheto. As emissões anuais de CO2 e N2O não mostraram diferenças significativas entre os tratamentos; isso ocorreu devido à elevada variação nos fluxos dos gases em decorrência da sazonalidade no clima, com as menores emissões observadas durante o inverno, devido à ausência da umidade do solo. A média na emissão de CO2 foi de 108,9 ± 85,6 mg m-2 h-1 , e para o N2O, de 13,5 ± 7,6 µg m-2 h-1. Os fluxos de CH4 apresentaram diferenças significativas somente para a pastagem, com emissão de 32 µg m-2 h-1 , enquanto nas demais áreas foram observados influxos entre 46 e 15 µg m-2 h-1 . Com os resultados das correlações, pode-se verificar que a umidade foi a variável do solo que apresentou maior correlação com o fluxo dos três gases de efeito estufa. O teor de N-NO3- e as emissões de CO2 mostraram correlações para todas as áreas. Quando consideradas as correlações para todos os tratamentos conjuntamente, verificou-se que os fluxos dos três gases apresentaram correlações significativas com os teores de C e N-microbiano. Contudo, a relação Cmicro:Nmicro não mostrou correlação significativa com o fluxo dos gases de efeito estufa. A pastagem foi a única situação em que os fluxos de CO2 e N2O apresentaram correlação com as quantidades de N-inorgânico. Os resultados sugerem que os fluxos dos GEE são dependentes do regime pluvial no bioma Cerrado, principalmente nas áreas cultivadas que recebem altas doses de fertilizantes para o aumento da produtividade. Abstract in english The conversion of native forests by cutting and burning into farming areas leads to alterations in the dynamics of soil organic matter, with changes in emissions of greenhouse gases (GHGs: CO2, CH4 and N2O) from the biosphere to the atmosphere. These cause an average temperature rise and, consequent [...] ly, global climate change. The aim of this study was to examine relationships between the fluxes of CO2, CH4 and N2O with moisture, microbial biomass and inorganic N forms in soil with different land uses in the Cerrado biome (Rio Verde county, State of Goias - Brazil). The climate (Köppen-Geiger) was classified as Aw and the soil as Latossolo Vermelho distrófico caulinítico / a clayey kaolinitic Oxisol under original Cerrado (Brazilian savanna) vegetation. The experiment was arranged in a completely randomized design (CRD) with four treatments (areas): Native vegetation - Cerrado (CE); brachiaria pasture (PA); soybean in conventional tillage (SC) and no-tillage (NT) corn followed by millet. No significant differences in annual CO2 and N2O emissions were observed between treatments. This can be explained by the variability of gas fluxes due to climate seasonality, with lower emissions in the winter due to low soil moisture. Mean emissions of CO2 were 108.9 ± 85.6 mg m-2 h-1 , and of N2O 13.5 ± 7.6 mg m-2 h-1 . For CH4 significant differences in the fluxes were only observed in pasture (32 mg m-2 h-1 ), while in the other areas inflows between 46 and 15 mg m-2 h-1 wer

  20. Emissão de gases do efeito estufa em diferentes usos da terra no bioma Cerrado Greenhouse gas emission caused by different land-uses in brazilian Savannah

    Directory of Open Access Journals (Sweden)

    Marcos Siqueira Neto

    2011-02-01

    Full Text Available A conversão de áreas nativas com o corte e queima de vegetação seguida do cultivo do solo resultam em mudanças na dinâmica da matéria orgânica do solo, com alterações nas emissões dos gases causadores de efeito estufa (GEE: CO2, CH4 e N2O da biosfera para a atmosfera, que causam a elevação da temperatura média e, consequentemente, as mudanças climáticas globais. O objetivo deste estudo foi verificar as relações entre os fluxos de CO2, CH4 e N2O com a umidade, biomassa microbiana e as formas inorgânicas de N no solo com diferentes usos das terras no bioma Cerrado (Rio Verde, Goiás. O clima da região é do tipo Aw (Köppen-Geiger, e o solo foi classificado como Latossolo Vermelho distrófico caulinítico textura argilosa com vegetação original de Cerradão. O delineamento experimental foi inteiramente casualizado (DIC, com quatro tratamentos (áreas: vegetação nativa - Cerradão (CE; pastagem (PA de braquiária, semeadura convencional (SC de soja; e semeadura direta (SD de milho sucedido por milheto. As emissões anuais de CO2 e N2O não mostraram diferenças significativas entre os tratamentos; isso ocorreu devido à elevada variação nos fluxos dos gases em decorrência da sazonalidade no clima, com as menores emissões observadas durante o inverno, devido à ausência da umidade do solo. A média na emissão de CO2 foi de 108,9 ± 85,6 mg m-2 h-1 , e para o N2O, de 13,5 ± 7,6 µg m-2 h-1. Os fluxos de CH4 apresentaram diferenças significativas somente para a pastagem, com emissão de 32 µg m-2 h-1 , enquanto nas demais áreas foram observados influxos entre 46 e 15 µg m-2 h-1 . Com os resultados das correlações, pode-se verificar que a umidade foi a variável do solo que apresentou maior correlação com o fluxo dos três gases de efeito estufa. O teor de N-NO3- e as emissões de CO2 mostraram correlações para todas as áreas. Quando consideradas as correlações para todos os tratamentos conjuntamente, verificou-se que os fluxos dos três gases apresentaram correlações significativas com os teores de C e N-microbiano. Contudo, a relação Cmicro:Nmicro não mostrou correlação significativa com o fluxo dos gases de efeito estufa. A pastagem foi a única situação em que os fluxos de CO2 e N2O apresentaram correlação com as quantidades de N-inorgânico. Os resultados sugerem que os fluxos dos GEE são dependentes do regime pluvial no bioma Cerrado, principalmente nas áreas cultivadas que recebem altas doses de fertilizantes para o aumento da produtividade.The conversion of native forests by cutting and burning into farming areas leads to alterations in the dynamics of soil organic matter, with changes in emissions of greenhouse gases (GHGs: CO2, CH4 and N2O from the biosphere to the atmosphere. These cause an average temperature rise and, consequently, global climate change. The aim of this study was to examine relationships between the fluxes of CO2, CH4 and N2O with moisture, microbial biomass and inorganic N forms in soil with different land uses in the Cerrado biome (Rio Verde county, State of Goias - Brazil. The climate (Köppen-Geiger was classified as Aw and the soil as Latossolo Vermelho distrófico caulinítico / a clayey kaolinitic Oxisol under original Cerrado (Brazilian savanna vegetation. The experiment was arranged in a completely randomized design (CRD with four treatments (areas: Native vegetation - Cerrado (CE; brachiaria pasture (PA; soybean in conventional tillage (SC and no-tillage (NT corn followed by millet. No significant differences in annual CO2 and N2O emissions were observed between treatments. This can be explained by the variability of gas fluxes due to climate seasonality, with lower emissions in the winter due to low soil moisture. Mean emissions of CO2 were 108.9 ± 85.6 mg m-2 h-1 , and of N2O 13.5 ± 7.6 mg m-2 h-1 . For CH4 significant differences in the fluxes were only observed in pasture (32 mg m-2 h-1 , while in the other areas inflows between 46 and 15 mg m-2 h-1 were observed. The GHG fluxes showed close correlation wit

  1. Ozone depleting substances and greenhouse gases HFCs, PFCs and SF{sub 6} consumption and emissions; Ozonlagsnedbrydende stoffer og drivhusgasserne HFC'er, PFC'er og SF{sub 6}. Forbrug og emissioner 2002

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [Planmiljoe, Veksoe Sjaelland (Denmark)

    2004-07-01

    The aim of the project is to map the 2002 Danish consumption of produced ozone depleting substances and the consumption and actual emission of the greenhouse gases HFCs, PFCs and SF{sub 6}. The inventory is performed, partly according to the guidelines recommended by IPCC (Intergovernmental Panel on Climate Change), and partly according to the method that has been used for previous mappings. The mapping is done partly in order to meet Denmark's international commitments to report and partly in order to monitor how the consumption of ozone depleting substances and the emissions of greenhouse gases develop. The mapping of ozone depleting substances includes the net consumption, meaning the amount of the imported raw materials in bulk or in drums minus any re-export of the substances in the form of raw materials. Mapping of the actual emissions of HFCs, PFCs and SF{sub 6} is done in continuation of previous greenhouse gas inventories. The inventory process is continuously improving due to development of international approved guidelines (IPCC) and the production of increasingly detailed data. (BA)

  2. The greenhouse gas balance of the oil palm industry in Colombia: a preliminary analysis. II. Greenhouse gas emissions and the carbon budget / Balance de gases de efecto invernadero de la agroindustria de la palma de aceite en Colombia: análisis preliminar. II. Emisión de gases de efecto invernadero y balance de carbono

    Scientific Electronic Library Online (English)

    Ian E, Henson; Rodrigo, Ruiz R; Hernán Mauricio, Romero.

    2012-09-01

    Full Text Available Se evaluó el secuestro de carbono por parte de plantaciones de palma de aceite y en los productos del procesamiento y sus subproductos, como parte de un estudio del balance de gases de la producción de aceite de palma en Colombia, mostrando como este ha cambiado a través del tiempo. Se examinaron lo [...] s procesos opuestos de la emisión de gases de efecto invernadero y calcula el balance neto de carbono resultante para la industria. La principales fuentes de emisiones en orden decreciente de magnitud, usando las opciones "por defecto" o "más probables" fueron el cambio de uso de tierra (40,9% del total), producción de metano en las plantas de procesamiento (21,4%), uso directo de combustibles fósiles (18,5%), uso indirecto de los combustibles fósiles (11,9%) y producción de óxido nitroso (7.3%). El total de emisiones (valor bruto) expresadas en carbono equivalente (Ceq.) fue menor que la cantidad de carbono secuestrado, resultando en un balance positivo neto de Ceq. Todas las zonas palmeras mostraron una ganancia neta con excepción de la zona Occidental en donde las emisiones dadas por el cambio de uso de tierra fueron sustanciales. De los 11 escenarios alternativos analizados solamente tres resultaron en un menor balance de Ceq. comparado al utilizado por defecto y solamente dos de ellos tuvieron un balance negativo Abstract in english In the preceding paper we examined carbon sequestration in oil palm plantations and in mill products and by-products as part of a study of the greenhouse gas balance of palm oil production in Colombia, showing how this has changed over time. Here, we look at the opposing processes of greenhouse gas [...] (GHG) emission and calculate the resulting net carbon budget for the industry. The main emission sources, in decreasing order of magnitude, assessed using "default" or "most probable" options, were found to be land use change (40.9% of total), mill methane production (21.4%), direct use of fossil fuel (18.5%), indirect use of fossil fuel (11.9%) and nitrous oxide production (7.3%). The total (gross) emissions, expressed in carbon equivalents (Ceq.), were less than the amount of sequestered carbon, resulting in a positive net Ceq. balance. All oil palm growing regions showed a net gain with the exception of the western zone, where emissions due to land-use change were judged to be substantial. Of the 11 alternative scenarios tested, only three resulted in Ceq. balances lower than the default and only two gave a negative balance

  3. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    Directory of Open Access Journals (Sweden)

    J. Ofner

    2012-01-01

    Full Text Available Reactive halogen species (RHS, such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA and organic aerosol derived from biomass-burning (BBOA has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols.

    Model SOA from ?-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS released from simulated natural halogen sources like salt pans. Subsequently the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which result in new functional groups, changed UV/VIS absorption, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  4. Los métodos gravitacionales como herramienta para el cálculo de las emisiones de gases de efecto invernadero derivadas del tráfico rodado en la planificación urbana / Gravity methods as a tool to calculate greenhouse gas emissions from road traffic in urban planning

    Scientific Electronic Library Online (English)

    Sergio, Zubelzu Mínguez; Alfonso, López Díaz; Miguel Ángel, Gutiérrez García; Fernando, Blanco Silva.

    2011-08-01

    Full Text Available El presente artículo propone una metodología para la estimación de las emisiones de gases de efecto invernadero que se producen consecuencia del tráfico rodado en las ciudades. El método adopta como punto de partida la información relativa a los núcleos existentes en el término y los crecimientos pr [...] evistos por la actividad urbanística estimando el tráfico que se prevé generarán ambos mediante un modelo gravitacional. Este modelo permite identificar los recorridos que presumiblemente seguirán los vehículos y así calcular sus emisiones de gases de efecto invernadero. De esta forma se dispone de información respecto de la huella de carbono pueden incluirse medidas correctoras o compensatorias de las emisiones en la fase de diseño urbanístico. Abstract in english This paper proposes a methodology for estimating greenhouse gas emissions from road traffic. The method uses information about the cities and their growth estimates in order to model traffic by using a gravity model. These kind of mathematical models allow study the number of trips "originated in" o [...] r "destined for" a particular area and distribute them to calculate the greenhouse gases emissions from these trips. In this way the information regarding these emissions can be used in urban planning phase and preventive and compensatory measures can be included in these processes.

  5. Gas chromatography and photoacoustic spectroscopy for the assessment of soil greenhouse gases emissions / Cromatografia gasosa e espectroscopia fotoacústica para avaliação das emissões de gases de efeito estufa do solo

    Scientific Electronic Library Online (English)

    Rodrigo da Silveira, Nicoloso; Cimélio, Bayer; Genuir Luis, Denega; Paulo Armando Victória de, Oliveira; Martha Mayumi, Higarashi; Juliano Corulli, Corrêa; Letícia dos Santos, Lopes.

    2013-02-01

    Full Text Available As avaliações das emissões de dióxido de carbono (CO2), metano (CH4) e óxido nitroso (N2O) do solo são fundamentais para a determinação do potencial de práticas agrícolas em mitigar o aquecimento global. Este estudo avaliou a espectroscopia fotoacústica (EFA) para a determinação dos fluxos de gases [...] de efeito estufa (GEE) do solo em comparação com o método padrão de cromatografia gasosa (CG). Dois experimentos de longa duração com diferentes sistemas de preparo do solo e rotação de culturas sobre um Argissolo foram avaliados usando câmaras estáticas. As medidas das concentrações de CO2 e N2O realizadas por EFA mostraram boa correlação e linearidade (R2=0,98 e 0,94; respectivamente) com os resultados de CG. Entretanto, as medidas de CH4 foram significativamente afetadas pela umidade da amostra de ar que interferiu na detecção do CH4 por EFA. A superestimativa das concentrações de CO2 e N2O nas amostras analisadas por EFA (14,6 e 18,7%; respectivamente) também foram relacionadas com o conteúdo de umidade da amostra. Os fluxos de CO2 e N2O mostraram boa correlação entre os métodos (R2=0,96 e 0,95; respectivamente), apesar da superestimativa dos fluxos determinados por EFA ter sido de 18,6 e 13,6% em relação aos resultados obtidos por CG, respectivamente. A EFA mostrou boa sensibilidade e foi capaz de detectar fluxos de CO2 e N2O tão baixos quanto 332mg CO2 m-2 h-1 and 21µg N2O m-2 h-1. A calibração detalhada do analisador fotoacústico para reduzir a interferência da umidade das amostras nas medidas das concentrações de CO2, CH4 e N2O deve ser realizada a fim de evitar superestimativa ou erro na determinação dos fluxos de GEE do solo. Abstract in english Assessments of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions are critical for determination of the agricultural practices' potential to mitigate global warming. This study evaluated the photoacoustic spectroscopy (PAS) for the assessment of soil greenhouse gases (GHG) f [...] luxes in comparison to the standard gas chromatography (GC) method. Two long-term experiments with different tillage and cropping systems over a Paleudult were evaluated using static chambers. PAS measurements of CO2 and N2O concentrations showed good relationship and linearity (R2=0.98 and 0.94, respectively) with GC results. However, CH4 measurements were significantly affected by air sample moisture which interfered on CH4 detection by PAS. Overestimation of CO2 and N2O concentrations in air samples determined by PAS (14.6 and 18.7%, respectively) were also related to sampling moisture. CO2 and N2O fluxes showed good agreement between methods (R2=0.96 and 0.95, respectively), though PAS overestimated fluxes by 18.6 and 13.6% in relation to GC results, respectively. PAS showed good sensitivity and was able to detect CO2 and N2O fluxes as low as 332mg CO2 m-2 h-1 and 21µg N2O m-2 h-1. PAS analyzer should be detailed calibrated to reduce humidity interference on CO2, CH4 and N2O concentrations measurements avoiding overestimation or erroneous determination of soil GHG fluxes.

  6. Gas chromatography and photoacoustic spectroscopy for the assessment of soil greenhouse gases emissions Cromatografia gasosa e espectroscopia fotoacústica para avaliação das emissões de gases de efeito estufa do solo

    Directory of Open Access Journals (Sweden)

    Rodrigo da Silveira Nicoloso

    2013-02-01

    Full Text Available Assessments of soil carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O emissions are critical for determination of the agricultural practices' potential to mitigate global warming. This study evaluated the photoacoustic spectroscopy (PAS for the assessment of soil greenhouse gases (GHG fluxes in comparison to the standard gas chromatography (GC method. Two long-term experiments with different tillage and cropping systems over a Paleudult were evaluated using static chambers. PAS measurements of CO2 and N2O concentrations showed good relationship and linearity (R2=0.98 and 0.94, respectively with GC results. However, CH4 measurements were significantly affected by air sample moisture which interfered on CH4 detection by PAS. Overestimation of CO2 and N2O concentrations in air samples determined by PAS (14.6 and 18.7%, respectively were also related to sampling moisture. CO2 and N2O fluxes showed good agreement between methods (R2=0.96 and 0.95, respectively, though PAS overestimated fluxes by 18.6 and 13.6% in relation to GC results, respectively. PAS showed good sensitivity and was able to detect CO2 and N2O fluxes as low as 332mg CO2 m-2 h-1 and 21µg N2O m-2 h-1. PAS analyzer should be detailed calibrated to reduce humidity interference on CO2, CH4 and N2O concentrations measurements avoiding overestimation or erroneous determination of soil GHG fluxes.As avaliações das emissões de dióxido de carbono (CO2, metano (CH4 e óxido nitroso (N2O do solo são fundamentais para a determinação do potencial de práticas agrícolas em mitigar o aquecimento global. Este estudo avaliou a espectroscopia fotoacústica (EFA para a determinação dos fluxos de gases de efeito estufa (GEE do solo em comparação com o método padrão de cromatografia gasosa (CG. Dois experimentos de longa duração com diferentes sistemas de preparo do solo e rotação de culturas sobre um Argissolo foram avaliados usando câmaras estáticas. As medidas das concentrações de CO2 e N2O realizadas por EFA mostraram boa correlação e linearidade (R2=0,98 e 0,94; respectivamente com os resultados de CG. Entretanto, as medidas de CH4 foram significativamente afetadas pela umidade da amostra de ar que interferiu na detecção do CH4 por EFA. A superestimativa das concentrações de CO2 e N2O nas amostras analisadas por EFA (14,6 e 18,7%; respectivamente também foram relacionadas com o conteúdo de umidade da amostra. Os fluxos de CO2 e N2O mostraram boa correlação entre os métodos (R2=0,96 e 0,95; respectivamente, apesar da superestimativa dos fluxos determinados por EFA ter sido de 18,6 e 13,6% em relação aos resultados obtidos por CG, respectivamente. A EFA mostrou boa sensibilidade e foi capaz de detectar fluxos de CO2 e N2O tão baixos quanto 332mg CO2 m-2 h-1 and 21µg N2O m-2 h-1. A calibração detalhada do analisador fotoacústico para reduzir a interferência da umidade das amostras nas medidas das concentrações de CO2, CH4 e N2O deve ser realizada a fim de evitar superestimativa ou erro na determinação dos fluxos de GEE do solo.

  7. SAFT-? force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes.

    Science.gov (United States)

    Avendaño, Carlos; Lafitte, Thomas; Adjiman, Claire S; Galindo, Amparo; Müller, Erich A; Jackson, George

    2013-03-01

    In the first paper of this series [C. Avendaño, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, and E. A. Müller, J. Phys. Chem. B2011, 115, 11154] we introduced the SAFT-? force field for molecular simulation of fluids. In our approach, a molecular-based equation of state (EoS) is used to obtain coarse-grained (CG) intermolecular potentials that can then be employed in molecular simulation over a wide range of thermodynamic conditions of the fluid. The macroscopic experimental data for the vapor-liquid equilibria (saturated liquid density and vapor pressure) of a given system are represented with the SAFT-VR Mie EoS and used to estimate effective intermolecular parameters that provide a good description of the thermodynamic properties by exploring a wide parameter space for models based on the Mie (generalized Lennard-Jones) potential. This methodology was first used to develop a simple single-segment CG Mie model of carbon dioxide (CO2) which allows for a reliable representation of the fluid-phase equilibria (for which the model was parametrized), as well as an accurate prediction of other properties such as the enthalpy of vaporization, interfacial tension, supercritical density, and second-derivative thermodynamic properties (thermal expansivity, isothermal compressibility, heat capacity, Joule-Thomson coefficient, and speed of sound). In our current paper, the methodology is further applied and extended to develop effective SAFT-? CG Mie force fields for some important greenhouse gases including carbon tetrafluoride (CF4) and sulfur hexafluoride (SF6), modeled as simple spherical molecules, and for long linear alkanes including n-decane (n-C10H22) and n-eicosane (n-C20H42), modeled as homonuclear chains of spherical Mie segments. We also apply the SAFT-? methodology to obtain a CG homonuclear two-segment Mie intermolecular potential for the more challenging polar and asymmetric compound 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), a novel replacement refrigerant with promising properties. The description of the fluid-phase behavior and the prediction of the other thermophysical properties obtained by molecular simulation using our SAFT-? CG Mie force fields are found to be of comparable quality (and sometimes superior) to that obtained using the more sophisticated all-atom (AA) and united-atom (UA) models commonly employed in the field. We should emphasize that though the focus of our current work is on simple homonuclear models, the SAFT-? methodology is based on a group contribution methodology which is naturally suited to the development of more sophisticated heteronuclear models. PMID:23311931

  8. The Norwegian Emission Inventory 2012. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sandmo, Trond (ed.)

    2012-07-01

    The Norwegian emission inventory is a joint undertaking between the Climate and Pollution Agency1 and Statistics Norway. Statistics Norway is responsible for the collection and development of activity data, and emission figures are derived from models operated by Statistics Norway. The Climate and Pollution Agency is responsible for the emission factors, for providing data from specific industries and sources and for considering the quality, and assuring necessary updating, of emission models like, e.g., the road traffic model and calculation of methane emissions from landfills. Emission data are used for a range of national applications and for international reporting. The Climate and Pollution Agency is responsible for the Norwegian reporting to United Nations Framework Convention on Climate Change (UNFCCC) and to United Nations Economic Commission Europe (UN-ECE). This report documents the methodologies used in the Norwegian emission inventory of greenhouse gases (GHG), acidifying pollutants, heavy metals (HM) and persistent organic pollutants (POPs). The documentation will also serve as a part of the National Inventory Report submitted by Norway to the United Nations Framework Convention on Climate Change (UNFCCC), and as documentation of the reported emissions to UNECE for the pollutants restricted by CLRTAP (Convention on Long-Range Transboundary Air Pollution). LULUCF (land use, land-use change and forestry) is not considered in this report, see the National Inventory Report (Climate and Pollution Agency 2012) for documentation on this topic.This report replaces the previous documentation of the emission model (Sandmo 2011), and is the latest annually updated version of a report edited by Britta Hoem in 2005. The most important changes since last year's documentation are: Minor NOx emissions from production of rock wool, which previously not have been estimated, have been included, Some factors for estimation of N2O from agriculture have been altered, The emission factors for particles from wood waste have been increased significantly. There are no methodical changes in the present emission documentation. In addition to changes brought about by the mentioned causes, there are several minor changes in the emission figures, e.g. due to changes in figures on energy combustion. Chapter 8 Recalculations gives a more thorough description of changes in the most recent emission calculations.(Author)

  9. Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2

    Science.gov (United States)

    Kurokawa, J.; Ohara, T.; Morikawa, T.; Hanayama, S.; Janssens-Maenhout, G.; Fukui, T.; Kawashima, K.; Akimoto, H.

    2013-11-01

    We have updated the Regional Emission inventory in ASia (REAS) as version 2.1. REAS 2.1 includes most major air pollutants and greenhouse gases from each year during 2000 and 2008 and following areas of Asia: East, Southeast, South, and Central Asia and the Asian part of Russia. Emissions are estimated for each country and region using updated activity data and parameters. Monthly gridded data with a 0.25° × 0.25° resolution are also provided. Asian emissions for each species in 2008 are as follows (with their growth rate from 2000 to 2008): 56.9 Tg (+34%) for SO2, 53.9 Tg (+54%) for NOx, 359.5 Tg (+34%) for CO, 68.5 Tg (+46%) for non-methane volatile organic compounds, 32.8 Tg (+17%) for NH3, 36.4 Tg (+45%) for PM10, 24.7 Tg (+42%) for PM2.5, 3.03 Tg (+35%) for black carbon, 7.72 Tg (+21%) for organic carbon, 182.2 Tg (+32%) for CH4, 5.80 Tg (+18%) for N2O, and 16.0 Pg (+57%) for CO2. By country, China and India were respectively the largest and second largest contributors to Asian emissions. Both countries also had higher growth rates in emissions than others because of their continuous increases in energy consumption, industrial activities, and infrastructure development. In China, emission mitigation measures have been implemented gradually. Emissions of SO2 in China increased from 2000 to 2006 and then began to decrease as flue-gas desulphurization was installed to large power plants. On the other hand, emissions of air pollutants in total East Asia except for China decreased from 2000 to 2008 owing to lower economic growth rates and more effective emission regulations in Japan, South Korea, and Taiwan. Emissions from other regions generally increased from 2000 to 2008, although their relative shares of total Asian emissions are smaller than those of China and India. Tables of annual emissions by country and region broken down by sub-sector and fuel type, and monthly gridded emission data with a resolution of 0.25° × 0.25° for the major sectors are available from the following URL: http://www.nies.go.jp/REAS/.

  10. Profiling wind and greenhouse gases by infrared-laser occultation: algorithm and results from end-to-end simulations in windy air

    Directory of Open Access Journals (Sweden)

    A. Plach

    2015-01-01

    Full Text Available The new mission concept of microwave and infrared-laser occultation between low-Earth-orbit satellites (LMIO is designed to provide accurate and long-term stable profiles of atmospheric thermodynamic variables, greenhouse gases (GHGs, and line-of-sight (l.o.s. wind speed with focus on the upper troposphere and lower stratosphere (UTLS. While the unique quality of GHG retrievals enabled by LMIO over the UTLS has been recently demonstrated based on end-to-end simulations, the promise of l.o.s. wind retrieval, and of joint GHG and wind retrieval, has not yet been analyzed in any realistic simulation setting so far. Here we describe a newly developed l.o.s. wind retrieval algorithm, which we embedded in an end-to-end simulation framework that also includes the retrieval of thermodynamic variables and GHGs, and analyze the performance of both standalone wind retrieval and joint wind and GHG retrieval. The wind algorithm utilizes LMIO laser signals placed on the inflection points at the wings of the highly symmetric C18OO absorption line near 4767 cm?1 and exploits transmission differences from wind-induced Doppler shift. Based on realistic example cases for a diversity of atmospheric conditions, ranging from tropical to high-latitude winter, we find that the retrieved l.o.s wind profiles are of high quality over the lower stratosphere under all conditions, i.e., unbiased and accurate to within about 2 m s?1 over about 15 to 35 km. The wind accuracy degrades into the upper troposphere due to decreasing signal-to-noise ratio of the wind-induced differential transmission signals. The GHG retrieval in windy air is not vulnerable to wind speed uncertainties up to about 10 m s?1 but is found to benefit in case of higher speeds from the integrated wind retrieval that enables correction of wind-induced Doppler shift of GHG signals. Overall both the l.o.s. wind and GHG retrieval results are strongly encouraging towards further development and implementation of a LMIO mission.

  11. Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS version 2

    Directory of Open Access Journals (Sweden)

    J. Kurokawa

    2013-04-01

    Full Text Available We have updated the Regional Emission inventory in ASia (REAS as version 2.1. REAS 2.1 includes most major air pollutants and greenhouse gases from each year during 2000 and 2008 and following areas of Asia: East, Southeast, South, and Central Asia and the Asian part of Russia. Emissions are estimated for each country and region using updated activity data and parameters. Monthly gridded data with a 0.25 × 0.25° resolution are also provided. Asian emissions for each species in 2008 are as follows (with their growth rate from 2000 to 2008: 56.9 Tg (+34% for SO2, 53.9 Tg (+54% for NOx, 359.5 Tg (+34% for CO, 68.5 Tg (+46% for non-methane volatile organic compounds, 32.8 Tg (+17% for NH3, 36.4 Tg (+45% for PM10, 24.7 Tg (+42% for PM2.5, 3.03 Tg (+35% for black carbon, 7.72 Tg (+21% for organic carbon, 182.2 Tg (+32% for CH4, 5.80 Tg (+18% for N2O, and 16.7 Pg (+59% for CO2. By country, China and India were respectively the largest and second largest contributors to Asian emissions. Both countries also had higher growth rates in emissions than others because of their continuous increases in energy consumption, industrial activities, and infrastructure development. In China, emission mitigation measures have been implemented gradually. Emissions of SO2 in China increased from 2000 to 2006 and then began to decrease as flue-gas desulfurization was installed to large power plants. On the other hand, emissions of air pollutants in total East Asia except for China decreased from 2000 to 2008 owing to lower economic growth rates and more effective emission regulations in Japan, South Korea, and Taiwan. Emissions from other regions generally increased from 2000 to 2008, although their relative shares of total Asian emissions are smaller than those of China and India. Tables of annual emissions by country and region broken down by sub-sector and fuel type, and monthly gridded emission data with a resolution of 0.25 × 0.25° for the major sectors are available from the following url: http://www.nies.go.jp/REAS/ .

  12. Biases in greenhouse gases static chambers measurements in stabilization ponds: Comparison of flux estimation using linear and non-linear models

    Science.gov (United States)

    Silva, Juan P.; Lasso, Ana; Lubberding, Henk J.; Peña, Miguel R.; Gijzen, Hubert J.

    2015-05-01

    The closed static chamber technique is widely used to quantify greenhouse gases (GHG) i.e. CH4, CO2 and N2O from aquatic and wastewater treatment systems. However, chamber-measured fluxes over air-water interfaces appear to be subject to considerable uncertainty, depending on the chamber design, lack of air mixing in the chamber, concentration gradient changes during the deployment, and irregular eruptions of gas accumulated in the sediment. In this study, the closed static chamber technique was tested in an anaerobic pond operating under tropical conditions. The closed static chambers were found to be reliable to measure GHG, but an intrinsic limitation of using closed static chambers is that not all the data for gas concentrations measured within a chamber headspace can be used to estimate the flux due to gradient concentration curves with non-plausible and physical explanations. Based on the total data set, the percentage of curves accepted was 93.6, 87.2, and 73% for CH4, CO2 and N2O, respectively. The statistical analyses demonstrated that only considering linear regression was inappropriate (i.e. approximately 40% of the data for CH4, CO2 and N2O were best fitted to a non-linear regression) for the determination of GHG flux from stabilization ponds by the closed static chamber technique. In this work, it is clear that when R2adj-non-lin > R2adj-lin, the application of linear regression models is not recommended, as it leads to an underestimation of GHG fluxes by 10-50%. This suggests that adopting only or mostly linear regression models will affect the GHG inventories obtained by using closed static chambers. According to our results, the misuse of the usual R2 parameter and only the linear regression model to estimate the fluxes will lead to reporting erroneous information on the real contribution of GHG emissions from wastewater. Therefore, the R2adj and non-linear regression model analysis should be used to reduce the biases in flux estimation by the inappropriate application of only linear regression models.

  13. The Warming Trend and the Greenhouse Effect

    Science.gov (United States)

    ThinkTV

    2010-11-30

    This video segment produced by ThinkTV explains the greenhouse effect and its connection to the recent rise in Earth's average temperature. Scientists explore the role of human activity in the increase of greenhouse gases and the warming trend.

  14. Potencial de seqüestro de carbono em solos agrícolas sob manejo orgânico para redução da emissão de gases de efeito estufa / Carbon sequestration potential in agricultural soils under organic management to reduce greenhouse effect gas emissions

    Scientific Electronic Library Online (English)

    Jacimar Luis, de Souza; Luiz Carlos, Prezotti; André, Guarçoni M.

    2012-04-01

    Full Text Available O aumento da concentração dos gases de efeito estufa na atmosfera poderá ter conseqüências graves para toda sociedade. O desflorestamento e o uso dos solos para a produção de alimentos têm contribuído significativamente para aumentar a emissão desses gases. Com o objetivo de monitorar o teor de maté [...] ria orgânica e contabilizar o estoque de carbono de diversas unidades de solos, em área experimental de agricultura orgânica no estado do Espírito Santo, Brasil, foi realizado um estudo, caracterizando anualmente 12 unidades de solo, no período de 1990 a 2000. Observou-se acréscimo nos teores de matéria orgânica e de carbono do sistema. Na camada de 0 a 40 cm de profundidade, o estoque de carbono elevou-se de 34,57 t ha-1 para 58,19 t ha-1, com fixação de 23,62 t ha-1 em 10 anos, o que corresponde a 86,62 t ha-1 de CO2. Conclui-se que o manejo agroecológico em sistema orgânico de produção permite elevar o teor de matéria orgânica dos solos, pela reciclagem e seqüestro de carbono atmosférico, confirmando elevado potencial para reduzir as emissões de Gases de Efeito Estufa, podendo contribuir para a redução do aquecimento global. Abstract in english The increase in the concentration of greenhouse gases in the atmosphere will have serious consequences for all of society. Deforestation and the use of soils for production of food have contributed significantly to increase the emission of greenhouse gases. With objectives to monitor the levels of o [...] rganic matter and quantify the carbon content of diverse soil units in an organic agriculture research area in the State of Espírito Santo, Brazil, a study was carried out characterizing annually 12 units of soil, during the period of 1990 to 2000. An increase in the levels of organic matter and carbon in the system was observed. In the soil layer from 0 to 40 cm deep, the carbon content increasedfrom 34.571 ha-1 to 58.191 ha-1, with fixation of23.62 t ha-1 in 10 years, which corresponds to 86.621 ha-1 of COt It is concluded that agroecological management in an organic production system enables an increase in the level of organic matter of soils by recycling and sequestering atmospheric carbon, confirming the increased potential of organic agriculture to reduce greenhouse gas emissions and contribute to a reduction in global warming.

  15. Potencial de seqüestro de carbono em solos agrícolas sob manejo orgânico para redução da emissão de gases de efeito estufa Carbon sequestration potential in agricultural soils under organic management to reduce greenhouse effect gas emissions

    Directory of Open Access Journals (Sweden)

    Jacimar Luis de Souza

    2012-04-01

    Full Text Available O aumento da concentração dos gases de efeito estufa na atmosfera poderá ter conseqüências graves para toda sociedade. O desflorestamento e o uso dos solos para a produção de alimentos têm contribuído significativamente para aumentar a emissão desses gases. Com o objetivo de monitorar o teor de matéria orgânica e contabilizar o estoque de carbono de diversas unidades de solos, em área experimental de agricultura orgânica no estado do Espírito Santo, Brasil, foi realizado um estudo, caracterizando anualmente 12 unidades de solo, no período de 1990 a 2000. Observou-se acréscimo nos teores de matéria orgânica e de carbono do sistema. Na camada de 0 a 40 cm de profundidade, o estoque de carbono elevou-se de 34,57 t ha-1 para 58,19 t ha-1, com fixação de 23,62 t ha-1 em 10 anos, o que corresponde a 86,62 t ha-1 de CO2. Conclui-se que o manejo agroecológico em sistema orgânico de produção permite elevar o teor de matéria orgânica dos solos, pela reciclagem e seqüestro de carbono atmosférico, confirmando elevado potencial para reduzir as emissões de Gases de Efeito Estufa, podendo contribuir para a redução do aquecimento global.The increase in the concentration of greenhouse gases in the atmosphere will have serious consequences for all of society. Deforestation and the use of soils for production of food have contributed significantly to increase the emission of greenhouse gases. With objectives to monitor the levels of organic matter and quantify the carbon content of diverse soil units in an organic agriculture research area in the State of Espírito Santo, Brazil, a study was carried out characterizing annually 12 units of soil, during the period of 1990 to 2000. An increase in the levels of organic matter and carbon in the system was observed. In the soil layer from 0 to 40 cm deep, the carbon content increasedfrom 34.571 ha-1 to 58.191 ha-1, with fixation of23.62 t ha-1 in 10 years, which corresponds to 86.621 ha-1 of COt It is concluded that agroecological management in an organic production system enables an increase in the level of organic matter of soils by recycling and sequestering atmospheric carbon, confirming the increased potential of organic agriculture to reduce greenhouse gas emissions and contribute to a reduction in global warming.

  16. Piso de bambu chinês vs. piso de eucalipto brasileiro: estudo de caso comparativo das emissões de gases de efeito estufa no transporte / Chinese Bamboo flooring vs. Brazilian eucalyptus wooden floor: case study of the greenhouse gas emissions by transportation

    Scientific Electronic Library Online (English)

    Thiago Zaldini, Hernandes.

    2015-03-01

    Full Text Available Com a disseminação de produtos para construção supostamente mais sustentáveis, tais como o piso de bambu importado da China, surge a necessidade de compreender, de fato, o quão mais sustentáveis são tais opções diante de soluções locais. Analisando apenas as emissões de gases de efeito estufa relaci [...] onados ao transporte, esta pesquisa comparou duas soluções de acabamento de piso maciço: o piso de bambu chinês e o assoalho de madeira de eucalipto brasileiro. A análise do saldo de emissão de gases de efeito estufa demonstrou que o transporte do piso de bambu ao redor do mundo não consegue sozinho comprometer todo o potencial de sequestro de carbono desse material. No entanto, sua contribuição para a diminuição do saldo é significativa. A contribuição do transporte diminuiu em 28,1% o potencial de sequestro do material bambu contra a diminuição de 1,4% para o material assoalho de madeira de eucalipto produzido localmente. Ainda, a pesquisa demonstrou que, apesar da maior massa de material utilizada por metro quadrado de piso acabado, a emissão de gases de efeito estufa no transporte do eucalipto é cerca de 8 vezes menor do que a do piso de bambu. Abstract in english The dissemination of allegedly more sustainable construction products, such as bamboo flooring imported from China, makes it crucial to understand how much more sustainable those products actually are when compared with their local equivalents. By analysing exclusively the emissions of greenhouse ga [...] ses related to their transportation, this study compared two floor finish products: Chinese bamboo flooring and Brazilian eucalyptus wood floor. The analysis of the net emissions of greenhouse gases demonstrated that in the case of the bamboo flooring, its transportation across the world alone does not undermine the entire carbon sequestration potential of the material. However, its contribution to reducing the balance is significant. The transportation reduced the sequestration potential of the bamboo material by 28.1%, as opposed to a reduction of 1.4% for the locally produced eucalyptus wood. In addition, the study showed that despite the greater mass of material used per square meter of finished floor, the emissions of greenhouse gases by the transportation of eucalyptus wood is about 8 times lower than that of the bamboo flooring.

  17. Mapping Greenhouse Gas Emissions Where You Live

    Science.gov (United States)

    United States Environmental Protection Agency

    2014-04-30

    In this lesson plan, learners examine some of the of greenhouse gas emissions sources in their community. To investigate the sources of greenhouse gas emissions, learners use the Environmental Protection Agency’s (EPA) Facility Level Information on GreenHouse gases Tool (FLIGHT). The FLIGHT Tool is a publicly accessible repository of data submitted to EPA by power plants, factories, refineries, and other U.S. facilities that emit large amounts of greenhouse gases.

  18. Biogeochemistry of Halogenated Hydrocarbons

    Science.gov (United States)

    Adriaens, P.; Gruden, C.; McCormick, M. L.

    2003-12-01

    Halogenated hydrocarbons originate from both natural and industrial sources. Whereas direct anthropogenic emissions to the atmosphere and biosphere are often easy to assess, particularly when they are tied to major industrial activities, the attribution of emissions to other human activities (e.g., biomass burning), diffuse sources (e.g., atmospheric discharge, run off), and natural production (e.g., soils, fungi, algae, microorganisms) are difficult to quantify. The widespread occurrence of both alkyl and aryl halides in groundwater, surface water, soils, and various trophic food chains, even those not affected by known point sources, suggests a substantial biogeochemical cycling of these compounds (Wania and Mackay, 1996; Adriaens et al., 1999; Gruden et al., 2003). The transport and reactive fate mechanisms controlling their reactivity are compounded by the differences in sources of alkyl-, aryl-, and complex organic halides, and the largely unknown impact of biogenic processes, such as enzymatically mediated halogenation of organic matter, fungal production of halogenated hydrocarbons, and microbial or abiotic transformation reactions (e.g., Asplund and Grimvall, 1991; Gribble, 1996; Watling and Harper, 1998; Oberg, 2002). The largest source may be the natural halogenation processes in the terrestrial environment, as the quantities detected often exceed the amount that can be explained by human activities in the surrounding areas ( Oberg, 1998). Since biogeochemical processes result in the distribution of a wide range of halogenated hydrocarbon profiles, altered chemical structures, and isomer distributions in natural systems, source apportionment (or environmental forensics) can often only be resolved using multivariate statistical methods (e.g., Goovaerts, 1998; Barabas et al., 2003; Murphy and Morrison, 2002).This chapter will describe the widespread occurrence of halogenated hydrocarbons, interpret their distribution and biogeochemical cycling in light of natural and anthropogenic sources, biotic and abiotic reactivity, and prevailing cycling mechanisms. Specific emphasis will be placed on the potential role of biotic and abiotic transformation reactions in soil, water, and sediment environments resulting in environmental sequestration and phase transfer.

  19. Greenhouse gases in the life cycle of fossil fuels: critical aspects in upstream emissions estimate and their repercussions on the overall life-cycle

    International Nuclear Information System (INIS)

    Combustion accounts for the main contribution to greenhouse-gas (GHG) emissions in electricity generation via fossil fuels. To date, minor attention has been paid to pre combustion emissions associated with fossil fuel upstream segment (production, processing and transportation). This study seeks to provide insight into GHG emissions in the pre combustion step of natural gas and coal. Owing to the size/complexity of the upstream processes and to a lack of detailed site-specific data, this study just outlines some of the key aspects involved. The attention will be focused on the elements that may have a significant impact on fossil fuel life-cycle and no on the evaluation of GHG: the sources, the extent of the pre combustion GHG emissions and the accuracy of their estimate. Some key results are summarized in the following. The first one is that pre combustion GHG, owing of the huge Italy reliance on fossil fuels imports, are mainly emitted abroad. In addition, they are released to the atmosphere mainly as fugitive emissions (methane and carbon dioxide being the predominant gases). Moreover, although pre combustion emissions give a modest contribution to GHG of the whole energy sector, they may account for a consistent part of the aver all fuel life-cycle in power generation even though combustion technologies efficiency plays a key role in emission reduction. Some examples are reported, showing the potential impact of pre combustion emissions on coal and natural gas listion emissions on coal and natural gas life-cycle in Italy's electricity generation. The second one is that pre combustion emissions are very site specific as they depend on several factors which may vary greatly between countries and even between individual companies. The sources and the extent of upstream emissions are in fact a function of a least three factor types: (a) technical parameters (design and operating practices, process operating conditions, efficiency of potential emission control/reduction equipment, age and conditions of infrastructure,..); (b) raw gas composition (CH4/Co2); (c) methodologies used to evaluate/measure emissions. Thus, while the uncertainly in Co2 emissions by combustion is rather low, the estimate of pre combustion emissions evaluated by using default emission factors coupled with different methodologies and/or different system boundaries, may have a wide (and, most of all, unknown) range of uncertainty especially in some fuel producing countries. All this suggests that. owing to the heavy Italian reliance on fossil imports, the emission reduction projects aimed to earn carbon credits by the Kyoto mechanisms might really play a significant role to help Italy to fulfil the Kyoto commitments and to give the private sector growth opportunities abroad. At the same time, it seems obvious that the carbon emissions can be really t rated just when data concerning them are reliable. Thus, the harmonization of the emission evaluation approaches and the adoption of recognized methodologies of measure/estimate, constitute binding items to make it possible that the Kyoto mechanisms and their environmental targets can work

  20. Cytotoxicity of halogenated graphenes

    Science.gov (United States)

    Teo, Wei Zhe; Khim Chng, Elaine Lay; Sofer, Zden?k; Pumera, Martin

    2013-12-01

    Graphene and its family of derivatives possess unique and remarkable physicochemical properties which make them valuable materials for applications in many areas like electronics, energy storage and biomedicine. In response to the possibility of its large-scale manufacturing as commercial products in the future, an investigation was conducted to determine the cytotoxicity of one particular family of graphene derivatives, the halogenated graphenes, for the first time. Halogenated graphenes were prepared through thermal exfoliation of graphite oxide in gaseous chlorine, bromine or iodine atmospheres to yield chlorine- (TRGO-Cl), bromine- (TRGO-Br) and iodine-doped graphene (TRGO-I) respectively. 24 h exposure of human lung carcinoma epithelial cells (A549) to the three halogenated graphenes and subsequent cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays revealed that all the halogenated graphenes examined are rather cytotoxic at the concentrations tested (3.125 ?g mL-1 to 200 ?g mL-1) and the effects are dose-dependent, with TRGO-Cl reducing the cell viability to as low as 25.7% at the maximum concentration of 200 ?g mL-1. Their levels of cytotoxicity can be arranged in the order of TRGO-Cl > TRGO-Br > TRGO-I, and it is suggested that the amount of halogen present in the graphene material is the determining factor for the observed trend. Control experiments were carried out to test for possible nanomaterial-induced interference as a consequence of reaction between the halogenated graphenes and the viability markers (MTT/WST-8 reagent) or binding of the formazan products under cell-free conditions. The data obtained eliminate the probability of significant influence by these interferents as the change in the normalized percentage of formazan formed is relatively small and thorough washings were performed prior to the viability assessments to reduce the amount of halogenated graphenes that could eventually interact with the MTT/WST-8 assays. More studies need to be carried out in the future to complement the results obtained in this initial study in an attempt to develop a better understanding of the health hazards that the halogenated graphenes pose.

  1. Asymmetric bifurcated halogen bonds.

    Science.gov (United States)

    Novák, Martin; Foroutan-Nejad, Cina; Marek, Radek

    2015-03-01

    Halogen bonding (XB) is being extensively explored for its potential use in advanced materials and drug design. Despite significant progress in describing this interaction by theoretical and experimental methods, the chemical nature remains somewhat elusive, and it seems to vary with the selected system. In this work we present a detailed DFT analysis of three-center asymmetric halogen bond (XB) formed between dihalogen molecules and variously 4-substituted 1,2-dimethoxybenzene. The energy decomposition, orbital, and electron density analyses suggest that the contribution of electrostatic stabilization is comparable with that of non-electrostatic factors. Both terms increase parallel with increasing negative charge of the electron donor molecule in our model systems. Depending on the orientation of the dihalogen molecules, this bifurcated interaction may be classified as '?-hole - lone pair' or '?-hole - ?' halogen bonds. Arrangement of the XB investigated here deviates significantly from a recent IUPAC definition of XB and, in analogy to the hydrogen bonding, the term bifurcated halogen bond (BXB) seems to be appropriate for this type of interaction. PMID:25656525

  2. Working group results on the division by four of the greenhouse gases emissions in France, at 2050, called factor four; Les travaux du groupe de travail sur la division par quatre des emissions de gaz a effet de serre de la France, a l'horizon 2050, dit facteur 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This working group aims to evaluate and propose different ways to divide by four the greenhouse gases emissions at 2050 in France. This objective was decided by the Government and fixed in the Climate Plan and in the Program law of 13 July 2005. In this framework, this meeting presents studies of the working group, concerning the following topics: buildings and greenhouse gases, a scenario for the UE25 realized by Greenpeace, the agriculture and the forests facing the climate, the biomass the nature the agriculture and the silviculture facing the climate. (A.L.B.)

  3. Turnover and transport of greenhouse gases in a Danish wetland : Effects of water level changes and plant-mediated gas transport on N2O production, consumption and emission dynamics

    DEFF Research Database (Denmark)

    JØrgensen, Christian Juncher

    2011-01-01

    Natural wetlands act as both sources and sinks of greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil to the atmosphere. Production and consumption of these gases in the soil are controlled by a series of highly dynamic and interrelated processes involving plants, soil and microorganisms. These processes are regulated by different physio-chemical drivers such as soil moisture content, soil temperature, nutrient and oxygen (O2) availability. In wetlands, the position of the free standing water level (WL) influences the spatiotemporal variation in these drivers, thereby influencing the net emission or uptake of greenhouse gas. In this PhD thesis the complex aspects in the exchange of N2O across the soil-atmosphere is investigated with special focus on the spatiotemporal variations in drivers for N2O production and consumption in the soil and their relation to observed flux patterns. It is demonstrated how the seasonal variations in N2O emissions are linked to the subsurface concentrations of N2O at the capillary fringe above the WL by regulating the apparent diffusion rates of oxygen (O2) into the soil which availability regulates sequential nitrification-denitrification processes in the soil. It is shown that fast acting N-transformation processes both produce and consume large concentration of N2O over short distances in response to rapid WL variations, and that these processes are crucial for explaining the spatiotemporal variation in observed net N2O dynamics. Similarly, plant-mediated gas transport by the subsurface aerating macrophyte Phalaris arundinacea played a major part in regulating and facilitating emissions of greenhouse gases across the soil-atmosphere interface. It is concluded that the spatiotemporal distribution of dominating N2O producing and consuming processes below the surface, in combination with the variations in the diffusive exchange rates due to soil water content and apparent diffusivity, control the magnitude and timing of N2O emissions to the atmosphere in close connection with the plant-mediated gas transport. It is evident, that the inclusion of the aboveground biomass in these types of flux measurements is essential to avoid significant underestimations of net N2O fluxes, whereas an inadequate sampling frequency or nonuniform temporal coverage could impose an undesirable bias to the net flux estimates.

  4. Life Cycle Assessment of Selected Biomass and Fossil Fuel Energy Systems in Denmark and Ghana - with a focus on greenhouse gases

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts

    1996-01-01

    The aim of the present project has been to establish an LCA methodology for assessing different biomass energy systems in Denmark and Ghana in relation to their emission of greenhouse gases. The biomass systems which have been studied are willow chips, surplus straw and biogas from manure for Denmark and energy forest and use of saved wood in the food preparation process for electricity production in Ghana.DenmarkThe life cycle analysis has been relatively well defined for the case of willow chips and straw as their system boundaries are relatively well-defined, whereas the definition of system boundaries are more difficult for the biogas case. For the willow chip production the uncertainty is the possible enhanced emission of N2O when the energy forest is fertilised. For the biogas study, the uncertainties are related to the definition of alternative uses and handling of the manure, and for the definition of reference technology. For all Danish case studies the reference technology has been energy produced by natural gas. The total emission for willow chips in Denmark is 99 g CO2-eq per kWh of electricity produced for willow chips, 68 g CO2-eq per kWh for surplus straw and 58 g CO2-eq per kWh for biogas. The CO2 reduction potential is determined as 310 g CO2 per kWh for willow chips, 340 g CO2-eq per kWh for surplus straw and 350 g CO2 per kWh for biogas, when they replace energy produced in a natural gas system. With a potential of 32 PJ energy forest (200,000 ha), 33 PJ of surplus straw and 20 PJ of biogas, the total CO2 reduction will be 3.8 million tonnes or 6% of present CO2 emission if biomass substitute natural gas. This relates to the use of present available technologies. In the decades to come new and more efficient technologies will be developed for biomass plants. This will increase the reduction potential for CO2. GhanaTwo different case studies have been carried out for Ghana. The first is a life cycle analysis of an energy forest plantation in Ghana which has been cultivated with modern equipment.The second LCA is extended with an energy end use chain to determine the energy conservation options in the food preparation process. The idea has been to use the saved wood in the food preparation process for electricity production.The results for the energy forest in Ghana are not very different from the willow forest in Denmark. Similar assumptions about energy consumption for use of machines have been made in the two cases. The main difference is that the energy forest in Ghana uses Nitrogen fixing species to avoid the use of fertilisers. The second Ghanaian case study was established so that one-third of the electricity produced at the power plant should be supplied by savings in the food preparation process to cover the domestic electricity consumption. The remaining two-thirds of the electricity has been produced in an energy forest to cover industrial demand.The saving options have been determined to be 65% by use of an improved woodstove and efficient cooking performances compared to the traditionalcooking performance and the use of three-stone stove. The results indicate that the energy saving options are higher by changing habits than by changing cooking stove. This implies that it is better to use an efficient cooking performance on a three-stone stove than inefficient cooking performance on an improved stove. The efficiency options for the improved stove have also been compared with the use of LPG and electric stoves.The use of a life cycle analysis for the saved wood case indicate that the energy saving options have to be taken into account when assessing the different cooking options. This is an important issue as long as cooking is the main energy service in Ghana. Life cycle analysis can be a useful tool for assessing the different saving options and for identifying environmental impacts from the cooking process.To supply sufficient woodfuel to cover one-third of the electricity production two-thirds of the households would have to change into efficient cooking performance and to use improved sto

  5. Brazilian greenhouse gas emissions: the importance of agriculture and livestock Emissões de gases do efeito estufa do Brasil: importância da agricultura e pastagem

    Directory of Open Access Journals (Sweden)

    Carlos Clemente Cerri

    2009-12-01

    Full Text Available Data from the 1990-1994 period presented in the "Brazil's Initial National Communication" document indicated that the country is one of the top world greenhouse gas (GHG emitters. A large majority of Brazil's GHG emissions come from deforestation mainly of the Amazon biome for agriculture and livestock land uses. This unique inventory is now out of date. Thus, the aims of this review were (i to update estimates of the GHG emissions for the Brazilian territory, (ii to estimate the sinks to provide calculations of the GHG net emissions for the 1990-2005 period, (iii to calculate the actual and estimate shares of agricultural and livestock activities, and (iv to discuss in light of the new figures and patterns the best mitigation options for Brazil. Total emissions in CO2-eq increased by 17% during the 1994-2005 period. CO2 represented 72.3% of the total, i.e. a small decrease, in favour of non-CO2 GHG, in relation to 1994 when its share was 74.1%. The increase of all GHG excluding Land Use Change and Forestry (LUCF was 41.3% over the period 1994-2005. Climate Analysis Indicators Tool (CAIT - World Resources Institute (WRI estimated a higher increase (48.9% that classified Brazil at the 69th position. Using our estimates Brazil will fall to the 78th position. But in both cases Brazil increased in clearly lower values than the tendency calculated for China and India, two major emitters, with increases of 88.8% and 62.1%, respectively. Brazil's increase is less than those presented for some countries in Annex 1 that are submitted to a quota of reduction, e.g. Spain with 55.6% of increase and New Zealand with 45.8%. Brazil also is below the average increase shown by non-Annex I countries, estimated to be 61.3%, but above the world average (28.1%. Besides the effort to curb emissions from the energy and deforestation sectors, it is now a top priority to implement a national program to promote mitigation efforts concerning the agricultural and livestock sectors. These mitigation options should not be only focused on emission reductions, but also prone enhancement of the carbon sink. Such a program would be easy to be implemented, because several mitigation strategies have already proven to be efficient, simple to adopt and economically viable.Os resultados referentes ao período de 1990-1994 apresentados na Comunicação Nacional brasileira indicam que o país é um dos maiores emissores de gases do efeito estufa (GEE do mundo. O documento também estabelece que a maior parte da emissão de GEE advém do desmatamento, principalmente do bioma Amazônia, para dar lugar á agricultura e pecuária. Este único inventário está agora ultrapassado. Os objetivos desta revisão foram: (i atualizar a estimativa da emissão de GEE para o território brasileiro; (ii estimar a possível fixação de C que permita calcular a emissão líquida de GEE para o período de 1990-2005; (iii calcular a contribuição efetiva e compartilhada das atividades agrícolas e pecuárias; e (iv discutir sob a luz dos novos conhecimentos as melhores opções de mitigação para o Brasil. A emissão total de GEE em equivalente em CO2 aumentou em 17% durante o período de 1994-2005. O CO2 foi responsável por 72,3% do total, ou seja, houve uma pequena diminuição em relação aos outros GEE, uma vez que em 1994 sua participação foi de 74,1%. O aumento de todas as fontes dos GEE, excluída mudança do uso da terra e reflorestamento, foi de 41,3% durante o período de 1994-2005. Climate Analysis Indicators Tool (CAIT - World Resources Institute (WRI estimaram um crescimento maior (48,9%, que classifica o Brasil na 69ª posição no ranking mundial de emissores. Utilizando as estimativas deste estudo, o Brasil ocuparia a 78ª posição. Em ambos os casos, porém, o Brasil claramente aumentou suas emissões num ritmo menor do que os que foram calculados para a China e Índia, dois dos maiores emissores, com aumentos de respectivamente 88,8 e 62,1%. O Brasil reduziu suas emissões em taxa maior do que alguns países do Anexo I, sujeitos a uma

  6. Brazilian greenhouse gas emissions: the importance of agriculture and livestock / Emissões de gases do efeito estufa do Brasil: importância da agricultura e pastagem

    Scientific Electronic Library Online (English)

    Carlos Clemente, Cerri; Stoecio Malta Ferreira, Maia; Marcelo Valadares, Galdos; Carlos Eduardo Pellegrino, Cerri; Brigitte Josefine, Feigl; Martial, Bernoux.

    2009-12-01

    Full Text Available Os resultados referentes ao período de 1990-1994 apresentados na Comunicação Nacional brasileira indicam que o país é um dos maiores emissores de gases do efeito estufa (GEE) do mundo. O documento também estabelece que a maior parte da emissão de GEE advém do desmatamento, principalmente do bioma Am [...] azônia, para dar lugar á agricultura e pecuária. Este único inventário está agora ultrapassado. Os objetivos desta revisão foram: (i) atualizar a estimativa da emissão de GEE para o território brasileiro; (ii) estimar a possível fixação de C que permita calcular a emissão líquida de GEE para o período de 1990-2005; (iii) calcular a contribuição efetiva e compartilhada das atividades agrícolas e pecuárias; e (iv) discutir sob a luz dos novos conhecimentos as melhores opções de mitigação para o Brasil. A emissão total de GEE em equivalente em CO2 aumentou em 17% durante o período de 1994-2005. O CO2 foi responsável por 72,3% do total, ou seja, houve uma pequena diminuição em relação aos outros GEE, uma vez que em 1994 sua participação foi de 74,1%. O aumento de todas as fontes dos GEE, excluída mudança do uso da terra e reflorestamento, foi de 41,3% durante o período de 1994-2005. Climate Analysis Indicators Tool (CAIT) - World Resources Institute (WRI) estimaram um crescimento maior (48,9%), que classifica o Brasil na 69ª posição no ranking mundial de emissores. Utilizando as estimativas deste estudo, o Brasil ocuparia a 78ª posição. Em ambos os casos, porém, o Brasil claramente aumentou suas emissões num ritmo menor do que os que foram calculados para a China e Índia, dois dos maiores emissores, com aumentos de respectivamente 88,8 e 62,1%. O Brasil reduziu suas emissões em taxa maior do que alguns países do Anexo I, sujeitos a uma quota de redução. É o caso da Espanha e a Nova Zelândia que aumentaram em 55,6% e 45,8% suas emissões. O Brasil também está abaixo da média de aumento apresentado pelos países que não são do Anexo I, o qual foi estimado em 61,3%. No entanto, está acima da média global que foi de 28,1%. Além de trabalhar pela redução das emissões dos setores de energia e desmatamento, o Brasil deve agora ter como meta prioritária a implantação de um programa nacional de incentivo ás mitigações nos setores agrícola e pecuário. Tais opções de mitigação não deverão se concentrar somente na redução das emissões, mas também favorecer a fixação de carbono. Tal programa seria de fácil implementação, pois diversas estratégias de mitigação já provaram ser eficientes, fáceis de adotar e economicamente viáveis. Abstract in english Data from the 1990-1994 period presented in the "Brazil's Initial National Communication" document indicated that the country is one of the top world greenhouse gas (GHG) emitters. A large majority of Brazil's GHG emissions come from deforestation mainly of the Amazon biome for agriculture and lives [...] tock land uses. This unique inventory is now out of date. Thus, the aims of this review were (i) to update estimates of the GHG emissions for the Brazilian territory, (ii) to estimate the sinks to provide calculations of the GHG net emissions