WorldWideScience

Sample records for ha-coated implants compared

  1. Designing, preparing and evaluation of novel HA/Ti composite coating for endodontic dental implant

    Directory of Open Access Journals (Sweden)

    Fathi MH.

    2002-08-01

    Full Text Available Nowadays, application of implants as a new method for replacing extracted teeth have been improved. So, many researches have been performed for improving the characteristics of implants. The aim of this study was to design and produce a desired coating in order to obtaining two goals including; improvement of the corrosion behavior of metallic endodontic implant and the bone osseointegration simultaneously. Stainless steel 316L (SS, cobalt-chromium alloy (Vit and commercial pure titanium (cpTi were chosen as metallic substrates and hydroxyapatite coating (HAC were performed by plasma-spraying (PS process on three different substrates. A novel double layer Hydroxyapatite/Titanium (HA/Ti composite coating composed of a HA top layer and a Ti under layer was prepared using PS and physical vapor deposition (PVD process respectively on SS. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure, morpholgy and crystallinity of the coatings. Electrochemical potentiodynamic tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens behavior as an indication of biocmpatibility. Results indicated that the cpTi possesses the highest and SS the lowest corrosion resistance (highest corrosion current density between uncoated substrates. This trend was independent to the type of physiological environment. The HA coating decreased the corrosion current density of HA coated metallic implants but did not change that trend. HAC acted as a mechanical barrier on the metallic substrate but could not prevent the interaction between metallic substrate and environment completely. The HA/Ti composite coating improved the corrosion behavior of SS. The corrosion current density of HA/Ti coated SS decreased and was exactly similar to single HA coated cpTi in physiological solutions. The results indicated that HA/Ti composite coated SS

  2. HA-Coated Implant

    DEFF Research Database (Denmark)

    Daugaard, Henrik; Søballe, Kjeld; Bechtold, Joan E

    2014-01-01

    of improving the fixation of implants. Of these, hydroxyapatite (HA) is the most widely used and most extensively investigated. HA is highly osseoconductive, and the positive effect is well documented in both basic and long-term clinical research [1–6]. This chapter describes experimental and clinical studies...

  3. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Zhou-Shan [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Zhou, Wan-Shu [Endocrine & Metabolic Diseases Unit, Affiliated Hospital of Guizhou Medical University, Guizhou 550001 (China); He, Xing-Wen [Department of Orthopaedic Surgery, Hangzhou Bay Hospital of Ningbo, 315000 (China); Liu, Wei [Department of Orthopaedic Surgery, Jingmen No. 1 People' s Hospital, Jingmen 44800, Hubei (China); Bai, Bing-Li; Zhou, Qiang; Huang, Zheng-Liang; Tu, Kai-kai; Li, Hang; Sun, Tao [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Lv, Yang-Xun [Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000 (China); Cui, Wei [Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Chengdu, Sichuan 610000 (China); Yang, Lei, E-mail: tzs19900327@163.com [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China)

    2016-05-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), magnesium (Mg), and strontium (Sr) present a beneficial effect on bone growth, and positively affect bone regeneration. The aim of this study was to confirm the different effects of the fixation strength of Zn, Mg, Sr-substituted hydroxyapatite-coated (Zn-HA-coated, Mg-HA-coated, Sr-HA-coated) titanium implants via electrochemical deposition in the osteoporotic condition. Female Sprague–Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group Zn-HA; group Mg-HA and group Sr-HA. Afterwards, all rats from groups HA, Zn-HA, Mg-HA and Sr-HA received implants with hydroxyapatite containing 0%, 10% Zn ions, 10% Mg ions, and 10% Sr ions. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, there are significant differences in bone formation and push-out force was observed between groups Zn-HA and Mg-HA. This finding suggests that Zn, Mg, Sr-substituted hydroxyapatite coatings can improve implant osseointegration, and the 10% Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats. - Highlights: • Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. • However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), Magnesium(Mg), Strontium (Sr) present a benificial effect on bone

  4. Adhesive strength of hydroxyl apatite(HA) coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    OpenAIRE

    Tian-yang ZHANG; Yong-hong DUAN; Shu ZHU; Jin-yu ZHU; Qing-sheng ZHU

    2011-01-01

    Objective To explore the influence of adhesive strength of hydroxyapatite(HA) coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti)-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01).Hist...

  5. Adhesive strength of hydroxyl apatite(HA coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    Directory of Open Access Journals (Sweden)

    Tian-yang ZHANG

    2011-05-01

    Full Text Available Objective To explore the influence of adhesive strength of hydroxyapatite(HA coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01.Histopathological examination and bone morphometry showed that,at the early stage of prosthesis implantation,the bony growth around HA-coated prosthesis was significantly higher than that around Ti-coated prosthesis(P < 0.01,but the ultimate shear strength of HA-coated prosthesis was much lower than that of Ti-coated prosthesis(P < 0.01.After the push-out test with prosthesis,histopathological observation showed that there were accumulations of clump-and strip-like granular residues on the surface of bones that newly grew around the HA-coated prosthesis,and surface energy-dispersive X-ray spectroscopy(EDX analysis also confirmed that the shear stress induced HA decohesion from the substrate of prosthesis.Conclusions Although HA coating showed a satisfactory effect on early bone formation and prosthetic stability,due to the deficiencies of adhesive strength,the early stability of prosthesis may be gradually destroyed by the shear loads of human body and coating degradation.

  6. Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits

    DEFF Research Database (Denmark)

    Gotfredsen, K; Wennerberg, A; Johansson, C

    1995-01-01

    The purpose of this study was to evaluate the histometrical and biomechanical anchorage of TiO2-blasted implants and TiO2-blasted implants coated with hydroxyapatite. The control implants were machined. Twenty-six rabbits had a total of 156 implants placed in the proximal part of the tibia. Each...... rabbit had a machined, a TiO2-blasted, and a TiO2-blasted, HA-coated implant placed in each tibia. After a healing period of 3 and 12 weeks, respectively, the implants placed in the right tibia were used for removal torque test, and the implants placed in the left tibia were used for histomorphometrical...

  7. Novel surface coating materials for endodontic dental implant

    International Nuclear Information System (INIS)

    Fathi, M.H.; Mortazavi, V.; Moosavi, S.B.

    2003-01-01

    The aim of this study was to design and produce novel coating materials in order to obtain two goals including; improvement of the corrosion behavior of metallic dental endodontic implant and the bone osteointegration simultaneously. Stainless steel 316L (SS) was used as a metallic substrate and a novel Hydroxyapatite/Titanium (HA/Ti) composite coating was prepared on it. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure and morphology of the coating. Electrochemical tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Two types of endodontic implants including; SS with and without (HA/Ti) composite coating were prepared and subsequently implanted in the mandibular canine of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, osteointegration evaluation and histopathological interpretation was carried out using SEM and optical microscopy. Results indicate that the novel HA/Ti composite coating improves the corrosion behavior and biocompatibility of SS endodontic dental implant. The clinical evaluation (in vivo test) results showed that there was significant difference in osteointegration between coated and uncoated endodontic dental implants and average bone osteointegration of coated implants were more than uncoated implants. The histopathological results and bone tissue response to the coated implants was acceptable and it was concluded that HA/Ti composite coated SS could be used as well as an endodontic dental implant. (author)

  8. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    Directory of Open Access Journals (Sweden)

    Suzuki T

    2012-02-01

    Full Text Available Masahiro Yamada*, Takeshi Ueno*, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro OgawaLaboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA *These authors contributed equally to this workAbstract: The mechanism by which hydroxyapatite (HA-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nanostructured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 µm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 µm border was lower around HA-coated implants. Thus, this study

  9. Characterization of electrolytic HA/ZrO{sub 2} double layers coatings on Ti-6Al-4V implant alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yen, S.K. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)]. E-mail: skyen@dragon.nchu.edu.tw; Chiou, S.H. [Graduate Institute of Veterinary Microbiology, National Chung Hsing University, Taichung 40227, Taiwan (China); Wu, S.J. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Chang, C.C. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Lin, S.P. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Lin, C.M. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2006-01-15

    Hydroxyapatite (HA) coating was proved having bioactive property and hence improving the bonding strength on bone tissue without inducing the growth of fiber tissue. However, the weak adhesion between HA and metal implants is still the major problem. In this study, a novel method of electrolytic HA/ZrO{sub 2} double layers coating was successfully conducted on F-136 Ti-6Al-4V implant alloy in ZrO{sub 2}(NO{sub 3}){sub 2} aqueous solution and subsequently in the mixed solution of Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4}. After annealing at 400 deg. C, 500 deg. C and 600 deg. C for 4 h in air, the coated specimens were evaluated by X-ray diffraction analyses, surface morphology observations, scratch tests, dynamic polarization tests, immersion tests and cell culture assays. In addition to corrosion resistance, the adhesion strength of electrolytic deposited HA on Ti alloy was dramatically improved from the critical scratch load 2 N to 32 N by adding the intermediate electrolytic deposition of ZrO{sub 2}, which showed the strong bonding effects between Ti alloy substrate and HA coating. Based on the cell morphology and cell proliferation data, HA/ZrO{sub 2} double layers coating revealed the better substrate for the adhesion and proliferation of osteoblasts than the others. It was also found that the crystallization of HA had positive effect on the proliferation of osteoblasts.

  10. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Durham, John W. [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Montelongo, Sergio A.; Ong, Joo L.; Guda, Teja [Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 (United States); Allen, Matthew J. [Department of Veterinary Medicine, University of Cambridge, Cambridge (United Kingdom); Rabiei, Afsaneh, E-mail: arabiei@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2016-11-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18 weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. - Highlights: • Method for improving osseointegration of PEEK implants is analyzed in vivo. • Uniform multilayer coatings were deposited on cylindrical PEEK implants. • Microwave and hydrothermal heat treatments crystallized the hydroxyapatite coating. • Healing response shows coated implants increase bone growth and implant fixation.

  11. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model

    International Nuclear Information System (INIS)

    Durham, John W.; Montelongo, Sergio A.; Ong, Joo L.; Guda, Teja; Allen, Matthew J.; Rabiei, Afsaneh

    2016-01-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18 weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. - Highlights: • Method for improving osseointegration of PEEK implants is analyzed in vivo. • Uniform multilayer coatings were deposited on cylindrical PEEK implants. • Microwave and hydrothermal heat treatments crystallized the hydroxyapatite coating. • Healing response shows coated implants increase bone growth and implant fixation.

  12. Nanosized Hydroxyapatite Coating on PEEK Implants Enhances Early Bone Formation: A Histological and Three-Dimensional Investigation in Rabbit Bone

    Directory of Open Access Journals (Sweden)

    Pär Johansson

    2015-06-01

    Full Text Available Polyether ether ketone (PEEK has been frequently used in spinal surgery with good clinical results. The material has a low elastic modulus and is radiolucent. However, in oral implantology PEEK has displayed inferior ability to osseointegrate compared to titanium materials. One idea to reinforce PEEK would be to coat it with hydroxyapatite (HA, a ceramic material of good biocompatibility. In the present study we analyzed HA-coated PEEK tibial implants via histology and radiography when following up at 3 and 12 weeks. Of the 48 implants, 24 were HA-coated PEEK screws (test and another 24 implants served as uncoated PEEK controls. HA-coated PEEK implants were always osseointegrated. The total bone area (BA was higher for test compared to control implants at 3 (p < 0.05 and 12 weeks (p < 0.05. Mean bone implant contact (BIC percentage was significantly higher (p = 0.024 for the test compared to control implants at 3 weeks and higher without statistical significance at 12 weeks. The effect of HA-coating was concluded to be significant with respect to early bone formation, and HA-coated PEEK implants may represent a good material to serve as bone anchored clinical devices.

  13. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model.

    Science.gov (United States)

    Durham, John W; Montelongo, Sergio A; Ong, Joo L; Guda, Teja; Allen, Matthew J; Rabiei, Afsaneh

    2016-11-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Superior sealing effect of hydroxyapatite in porous-coated implants

    DEFF Research Database (Denmark)

    Rahbek, Ole; Kold, Søren; Bendix, Knud

    2005-01-01

    Migration of wear debris to the periprosthetic bone is a major cause of osteolysis and implant failure. Both closed-pore porous coatings and hydroxyapatite (HA) coatings have been claimed to prevent the migration of wear debris. We investigated whether HA could augment the sealing effect of a por......Migration of wear debris to the periprosthetic bone is a major cause of osteolysis and implant failure. Both closed-pore porous coatings and hydroxyapatite (HA) coatings have been claimed to prevent the migration of wear debris. We investigated whether HA could augment the sealing effect...

  15. Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response.

    Science.gov (United States)

    Kim, Sae-Mi; Jo, Ji-Hoon; Lee, Sung-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Estrin, Yuri; Lee, Jong-Ho; Lee, Jung-Woo; Koh, Young-Hag

    2014-02-01

    Magnesium and its alloys are candidate materials for biodegradable implants; however, excessively rapid corrosion behavior restricts their practical uses in biological systems. For such applications, surface modification is essential, and the use of anticorrosion coatings is considered as a promising avenue. In this study, we coated Mg with hydroxyapatite (HA) in an aqueous solution containing calcium and phosphate sources to improve its in vitro and in vivo biocorrosion resistance, biocompatibility and bone response. A layer of needle-shaped HA crystals was created uniformly on the Mg substrate even when the Mg sample had a complex shape of a screw. In addition, a dense HA-stratum between this layer and the Mg substrate was formed. This HA-coating layer remarkably reduced the corrosion rate of the Mg tested in a simulated body fluid. Moreover, the biological response, including cell attachment, proliferation and differentiation, of the HA-coated samples was enhanced considerably compared to samples without a coating layer. The preliminary in vivo experiments also showed that the biocorrosion of the Mg implant was significantly retarded by HA coating, which resulted in good mechanical stability. In addition, in the case of the HA-coated implants, biodegradation was mitigated, particularly over the first 6 weeks of implantation. This considerably promoted bone growth at the interface between the implant and bone. These results confirmed that HA-coated Mg is a promising material for biomedical implant applications. © 2013 Wiley Periodicals, Inc.

  16. Laser fabrication of Ag-HA nanocomposites on Ti6Al4V implant for enhancing bioactivity and antibacterial capability

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangmei; Man, H.C., E-mail: mfhcman@polyu.edu.hk

    2017-01-01

    For titanium alloy implants, both surface bioactivity and antibacterial infection are the two critical factors in determining the success of clinical implantation of these metallic implants. In the present work, a novel nanocomposite layer of nano-silver-containing hydroxyapatite (Ag-HA) was prepared on the surface of biomedical Ti6Al4V by laser processing. Analysis using SEM, EDS and XRD shows the formation of an Ag-HA layer of about 200 μm fusion bonded to the substrate. Mineralization tests in simulated body fluid (SBF) showed that laser fabricated Ag-HA nanocomposite layer favors the deposition of apatite on the surface of the implants. Antibacterial tests confirmed that all Ag-HA nanocomposite layers can kill bacteria while a higher Ag content would lower the cytocompatibility of these coatings. Cell viability decreases when the Ag content reaches 5% in these coatings, due to the larger amount of Ag leached out, as confirmed by ion release evaluation. Our results reveal that laser fabricated Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability. - Highlights: • Silver-containing hydroxyapatite (Ag-HA) nanocomposite layer was fabricated on Ti6Al4V by laser technique. • Both bioactivity and antibacterial capability were significantly enhanced compared with bare Ti6Al4V. • Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability.

  17. Microstructure, mechanical properties, and biological response to functionally graded HA coatings

    International Nuclear Information System (INIS)

    Rabiei, Afsaneh; Blalock, Travis; Thomas, Brent; Cuomo, Jerry; Yang, Y.; Ong, Joo

    2007-01-01

    Hydroxyapatite (HA) [Ca 10 (PO 4 ) 6 (OH) 2 ] is the primary mineral content, representing 43% by weight, of bone. Applying a thin layer of HA, to the surface of a metal implant, can promote osseointegration and increase the mechanical stability of the implant. In this study, a biocompatible coating comprising an HA film with functionally graded crystallinity is being deposited on a heated substrate in an Ion Beam Assisted Deposition (IBAD) system. The microstructure of the film was studied using Transmission Electron Microscopy techniques. Finally, initial cell adhesion and cell differentiation on the coating was evaluated using ATCC CRL 1486 human embryonic palatal mesenchymal cell, an osteoblast precursor cell line. The results have shown superior mechanical properties and biological response to the functionally graded HA film

  18. The evaluation of hydroxyapatite (HA) coated and uncoated porous tantalum for biomedical material applications

    International Nuclear Information System (INIS)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-01-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  19. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    Science.gov (United States)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  20. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone.

    Science.gov (United States)

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito; Kjellin, Per; Currie, Fredrik; Wennerberg, Ann

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test), and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone-implant contact was higher for test compared to control (P<0.05). The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01). With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential.

  1. Osteoblast interaction with laser cladded HA and SiO2-HA coatings on Ti-6Al-4V

    International Nuclear Information System (INIS)

    Yang Yuling; Serpersu, Kaan; He Wei; Paital, Sameer R.; Dahotre, Narendra B.

    2011-01-01

    In order to improve the bioactivity and biocompatibility of titanium endosseous implants, the morphology and composition of the surfaces were modified. Polished Ti-6Al-4V substrates were coated by a laser cladding process with different precursors: 100 wt.% HA and 25 wt.% SiO 2 -HA. X-ray diffraction of the laser processed samples showed the presence of CaTiO 3 , Ca 3 (PO 4 ) 2 , and Ca 2 SiO 4 phases within the coatings. From in vitro studies, it was observed that compared to the unmodified substrate all laser cladded samples presented improved cellular interactions and bioactivity. The samples processed with 25 wt.% SiO 2 -HA precursor showed a significantly higher HA precipitation after immersion in simulated body fluid than 100 wt.% HA precursor and titanium substrates. The in vitro biocompatibility of the laser cladded coatings and titanium substrate was investigated by culturing of mouse MC3T3-E1 pre-osteoblast cell line and analyzing the cell viability, cell proliferation, and cell morphology. A significantly higher cell attachment and proliferation rate were observed for both laser cladded 100 wt.% HA and 25 wt.% SiO 2 -HA samples. Compared to 100 wt.% HA sample, 25 wt.% SiO 2 -HA samples presented a slightly improved cellular interaction due to the addition of SiO 2 . The staining of the actin filaments showed that the laser cladded samples induced a normal cytoskeleton and well-developed focal adhesion contacts. Scanning electron microscopic image of the cell cultured samples revealed better cell attachment and spreading for 25 wt.% SiO 2 -HA and 100 wt.% HA coatings than titanium substrate. These results suggest that the laser cladding process improves the bioactivity and biocompatibility of titanium. The observed biological improvements are mainly due to the coating induced changes in surface chemistry and surface morphology. Highlights: → Laser cladding of Ti alloys with bioceramics creates new phases. → Laser cladded samples with SiO 2 -doped

  2. Hydroxyapatite coating affects the Wnt signaling pathway during peri-implant healing in vivo.

    Science.gov (United States)

    Thorfve, A; Lindahl, C; Xia, W; Igawa, K; Lindahl, A; Thomsen, P; Palmquist, A; Tengvall, P

    2014-03-01

    Owing to its bio- and osteoconductivity, hydroxyapatite (HA) is a widely used implant material, but its osteogenic properties are only partly evaluated in vitro and in vivo. The present study focused on bone healing adjacent to HA-coated titanium (Ti) implants, with or without incorporated lithium ions (Li(+)). Special attention was given to the Wnt signaling pathway. The implants were inserted into rat tibia for 7 or 28 days and analyzed ex vivo, mainly by histomorphometry and quantitative real-time polymerase chain reaction (qPCR). HA-coated implants showed, irrespective of Li(+) content, bone-implant contact (BIC) and removal torque values significantly higher than those of reference Ti. Further, the expression of OCN, CTSK, COL1A1, LRP5/6 and WISP1 was significantly higher in implant-adherent cells of HA-coated implants, with or without Li(+). Significantly higher β-catenin expression and significantly lower COL2A1 expression were observed in peri-implant bone cells from HA with 14 ng cm(-2) released Li(+). Interestingly, Ti implants showed a significantly larger bone area (BA) in the threads than HA with 39 ng cm(-2) released Li(+), but had a lower BIC than any HA-coated implant. This study shows that HA, with or without Li(+), is a strong activator of the Wnt signaling pathway, and may to some degree explain its high bone induction capacity. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Controlling the Biodegradation of Magnesium Implants Through Nanostructured Calcium-Phosphate Coating

    Science.gov (United States)

    Iskandar, Maria Emil

    Magnesium (Mg) alloys, a novel class of degradable, metallic biomaterials, have attracted growing interest as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. Moreover, Mg is biodegradable in the physiological environments. However, the major obstacle for Mg to be used as medical implants is its rapid degradation in physiological fluids. Therefore, the present key challenge lies in controlling Mg degradation rate in the physiological environment. The objective of this study was to develop a nanostructured-hydroxyapatite (nHA) coating on polished Mg implants to control the degradation and bone tissue integration of the implants. The nHA coatings were deposited on Mg using the Spire's patented TPA process to moderate the aggressive degradation of Mg and to improve quick osteointegration between Mg and natural bone. Nanostructured-HA coatings mimic the nanostructure and chemistry of natural bone, which will provide a desirable environment for bone tissue regeneration. Surface morphology, element compositions, and crystal structures were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and x-ray diffractometry (XRD), respectively. SEM images of the deposited nHA-coating was analyzed using ImageJ's quantitative image analysis tool, to determine the nHA-coating particle size and thickness. The degradation of nHA-coated and non-coated Mg samples was investigated by incubating samples in phosphate buffered saline (PBS) and revised simulated body fluid (r-SBF), under standard cell culture conditions. To mimic the in vivo cell response in the physiological environment, rat bone marrow stromal cells (BMSC) were harvested and cultured with nHA-coated and non-coated polished Mg samples to determine cytocompatibilty. The degradation results suggested that the nanocoatings positively mediated Mg degradation. It can therefore be concluded that nHA-coatings

  4. Osteoblast interaction with laser cladded HA and SiO{sub 2}-HA coatings on Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yuling [Department of Physics, Northeastern University, Shenyang 110004 (China); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Serpersu, Kaan [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); He Wei, E-mail: whe5@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Paital, Sameer R. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Dahotre, Narendra B. [Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207 (United States)

    2011-12-01

    In order to improve the bioactivity and biocompatibility of titanium endosseous implants, the morphology and composition of the surfaces were modified. Polished Ti-6Al-4V substrates were coated by a laser cladding process with different precursors: 100 wt.% HA and 25 wt.% SiO{sub 2}-HA. X-ray diffraction of the laser processed samples showed the presence of CaTiO{sub 3}, Ca{sub 3}(PO{sub 4}){sub 2}, and Ca{sub 2}SiO{sub 4} phases within the coatings. From in vitro studies, it was observed that compared to the unmodified substrate all laser cladded samples presented improved cellular interactions and bioactivity. The samples processed with 25 wt.% SiO{sub 2}-HA precursor showed a significantly higher HA precipitation after immersion in simulated body fluid than 100 wt.% HA precursor and titanium substrates. The in vitro biocompatibility of the laser cladded coatings and titanium substrate was investigated by culturing of mouse MC3T3-E1 pre-osteoblast cell line and analyzing the cell viability, cell proliferation, and cell morphology. A significantly higher cell attachment and proliferation rate were observed for both laser cladded 100 wt.% HA and 25 wt.% SiO{sub 2}-HA samples. Compared to 100 wt.% HA sample, 25 wt.% SiO{sub 2}-HA samples presented a slightly improved cellular interaction due to the addition of SiO{sub 2}. The staining of the actin filaments showed that the laser cladded samples induced a normal cytoskeleton and well-developed focal adhesion contacts. Scanning electron microscopic image of the cell cultured samples revealed better cell attachment and spreading for 25 wt.% SiO{sub 2}-HA and 100 wt.% HA coatings than titanium substrate. These results suggest that the laser cladding process improves the bioactivity and biocompatibility of titanium. The observed biological improvements are mainly due to the coating induced changes in surface chemistry and surface morphology. Highlights: {yields} Laser cladding of Ti alloys with bioceramics creates new

  5. Design and fabrication of carbon fibers with needle-like nano-HA coating to reinforce granular nano-HA composites.

    Science.gov (United States)

    Wang, Xudong; Zhao, Xueni; Zhang, Li; Wang, Wanying; Zhang, Jing; He, Fuzhen; Yang, Jianjun

    2017-08-01

    Carbon fibers (CFs) with needle-like nano-hydroxyapatite (nHA) coating were first used as reinforcing materials named nHA-CFs to improve the mechanical properties of pure HA. A powder mixture containing nHA-CFs and granular nano-HA (gHA) was directly sintered by hot pressing at appropriate sintering pressure and temperature. A three-phase nHA-CFs/gHA composite was designed, fabricated, and used as an artificial bone. Results show that the bending strengths of the nHA-CFs/gHA composite are approximately 41.1% and 59.2% higher than those of CFs/gHA composite and pure HA, respectively. The possible reinforcing mechanism of nHA-CFs in the composite is also proposed at the end. When nHA-CFs are applied for preparation of nHA-CFs/gHA composites, the internal stress on its phase boundary with gHA matrix generated during cooling of sintered is significantly reduced due to the presence of the nHA coatings. It infers that nHA coatings on CFs might act as a bridge to control the forming of interfacial gaps between the gHA matrix and the CFs effectively. Our work provides additional insights into the feasibility of nHA-CFs/gHA composites as load-bearing implant materials in clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hydroxyapatite coating on cobalt alloys using electrophoretic deposition method for bone implant application

    Science.gov (United States)

    Aminatun; M, Shovita; I, Chintya K.; H, Dyah; W, Dwi

    2017-05-01

    Damage on bone due to osteoporosis and cancer triggered high demand for bone implant prosthesis which is a permanent implant. Thus, a prosthesis coated with hydroxyapatite (HA) is required because it is osteoconductive that can trigger the growth of osteoblast cells. The purpose of this study is to determine the optimum concentration of HA suspension in terms of the surface morphology, coating thickness, adhesion strength and corrosion rate resulting in the HA coating with the best characteristics for bone implant. Coating using electrophoretic deposition (EPD) method with concentrations of 0.02M, 0.04M, 0.06M, 0.08M, and 0.1M was performed on the voltage and time of 120V and 30 minutes respectively. The process was followed by sintering at the temperature of 900 °C for 10 minutes. The results showed that the concentration of HA suspension influences the thickness and the adhesion of layer of HA. The higher the concentration of HA-ethanol suspension the thicker the layer of HA, but its coating adhesion strength values became lower. The concentration of HA suspension of 0.04 M is the best concentration, with characteristics that meet the standards of the bone implant prosthesis. The characteristics are HA coating thickness of 199.93 ± 4.85 μm, the corrosion rate of 0.0018 mmpy and adhesion strength of 4.175 ± 0.716 MPa.

  7. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone

    Directory of Open Access Journals (Sweden)

    Johansson P

    2016-04-01

    Full Text Available Pär Johansson,1 Ryo Jimbo,1 Yoshihito Naito,2 Per Kjellin,3 Fredrik Currie,3 Ann Wennerberg1 1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Oral Implant Center, Tokushima University Hospital, Tokushima, Japan; 3Promimic AB, Stena Center, Göteborg, Sweden Abstract: Polyether ether ketone (PEEK possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test, and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone–implant contact was higher for test compared to control (P<0.05. The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01. With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential. Keywords: HA, PEEK, osseointegration, histology, orthopedics, in vivo

  8. Silver oxide-containing hydroxyapatite coating supports osteoblast function and enhances implant anchorage strength in rat femur.

    Science.gov (United States)

    Eto, Shuichi; Miyamoto, Hiroshi; Shobuike, Takeo; Noda, Iwao; Akiyama, Takayuki; Tsukamoto, Masatsugu; Ueno, Masaya; Someya, Shinsuke; Kawano, Shunsuke; Sonohata, Motoki; Mawatari, Masaaki

    2015-09-01

    Antibacterial silver with hydroxyapatite (Ag-HA) is a promising coating material for imparting antibacterial properties to implants. We previously reported that 3% (w/w) silver with HA (3% Ag-HA) has both antibacterial activity and osteoconductivity. In this study, we investigated the effects of Ag-HA on the in vitro osteoblast function and the in vivo anchorage strength and osteoconductivity of implants. Production of the osteoblast marker alkaline phosphatase, but not cytotoxicity, was observed in cells of the osteoblast cell line MC3T3-E1 cultured on the 3% Ag-HA-coated surface. These results were similar to those observed with silver-free HA coating. In contrast, a significant high level of cytotoxicity was observed when the cells were cultured on a 50% Ag-HA-coated surface. The anchorage strength of implants inserted into the femur of Sprague-Dawley (SD) rats was enhanced by coating the implants with 3% Ag-HA. On the 3% Ag-HA-coated surface, both metaphyseal and diaphyseal areas were largely covered with new bone and had adequate osteoconductivity. These results suggest that 3% Ag-HA, like conventional HA, promotes osteogenesis by supporting osteoblast viability and function and thereby contributes to sufficient anchorage strength of implants. Application of 3% Ag-HA, which combines the osteoconductivity of HA and the antibacterial activity of silver, to prosthetic joints will help prevent postoperative infections. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Histomorphometric Assessment of Implant Coating with A Mixture of Strontium Chloride and Hydroxyapatite at Different Concentration

    Directory of Open Access Journals (Sweden)

    Jani Ghasak H

    2018-01-01

    Full Text Available Background/purpose: Surface properties are one of the major keys of successful implant osseointegration in addition to mechanical strength and excellent biocompatibility of implant material. The purpose of this study is to make histological and histomorphometric analysis of an implant coated with strontium chloride (SrCl2 mixed with hydroxyapatite (HA at different concentrations, in rabbit tibia at 2 and 6 weeks of implantation time. Method: 48 commercially pure titanium screw shaped implants were placed in 24 healthy adult New Zeeland rabbits, each rabbit received 2 implants; one coated with mixture 1 (25% HA and 75% SrCl2 and the other coated with mixture 2 (75% HA and 25% SrCl2. Twelve rabbits were sacrificed at 2 weeks of healing and other twelve after 6 weeks. The new bone area and number of cells (osteoblast and osteoclast were assessed by light microscope. Result: Statistical analysis showed significant differences in new bone formation ratio after 2 weeks of healing and non-significant differences after 6 weeks of healing. Data also suggested that osteoblast was increased, and osteoclast was decreased in mixture 2 (75% HA and 25% SrCl2 more than mixture 1 (25% HA and 75% SrCl2. Conclusion: There was a significantly higher new bone formation ratio of mix 2 (25%Sr-75%HA coated Cp-Ti implants than mix 1 (75% Sr- 25% HA coated Cp-Ti implant at 2 weeks healing period, also there was an increase in new bone formation ratio with time for both coated materials (SrCl2 implants.

  10. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    International Nuclear Information System (INIS)

    Pardun, Karoline; Treccani, Laura; Volkmann, Eike; Streckbein, Philipp; Heiss, Christian; Destri, Giovanni Li; Marletta, Giovanni; Rezwan, Kurosch

    2015-01-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic

  12. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    Energy Technology Data Exchange (ETDEWEB)

    Pardun, Karoline [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Treccani, Laura, E-mail: treccani@uni-bremen.de [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Volkmann, Eike [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Streckbein, Philipp [University Hospital, Justus-Liebig-University Giessen, Department of Cranio-Maxillo-Facial Surgery, Klinikstrasse 33, 35385 Giessen (Germany); Heiss, Christian [University Hospital of Giessen-Marburg, Department of Trauma Surgery, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany, (Germany); Laboratory of Experimental Surgery, Kerkraderstrasse 9, 35392 Giessen (Germany); Destri, Giovanni Li; Marletta, Giovanni [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemistry, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany)

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic.

  13. Mechanical properties of titanium-hydroxyapatite (Ti-HA) composite coating on stainless steel prepared by thermal spraying

    Science.gov (United States)

    Rosmamuhamadani, R.; Azhar, N. H.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.

    2017-09-01

    Addition of hydroxyapatite (HA) can enhance the bioactivity of the common metallic implant due to its similarity with natural bones and teeth. In this investigation, high velocity oxy-fuel (HVOFT) technique was used to deposit titanium-hydroxyapatite (Ti-HA) composite on stainless steel substrate plate with different percentage of HA for biomedical applications. The aim of this research is to investigate the mechanical properties of Ti-HA coating such as hardness, adhesion strength and wear behaviour. The hardness and strength was determined by using SHIMADZU-microhardness Vickers tester and PosiTest AT portable adhesion tester respectively. The wear test was performed by using pin-on-disk equipment and field emission scanning electron microscope (FESEM) used to determine the extent of surface damage. From the results obtained, mechanical properties such as hardness and adhesion strength of titanium (Ti) coating decreased with the increased of HA contents. Meanwhile, the coefficient of friction of Ti-10% HA coating shows the highest value compare to others as three-body abrasion had occurred during the test.

  14. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    Energy Technology Data Exchange (ETDEWEB)

    Gryshkov, Oleksandr, E-mail: gryshkov@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Klyui, Nickolai I., E-mail: klyuini@ukr.net [College of Physics, Jilin University, 130012 Changchun (China); V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Temchenko, Volodymyr P., E-mail: tvp@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Kyselov, Vitalii S., E-mail: kyselov@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Chatterjee, Anamika, E-mail: chatterjee@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Belyaev, Alexander E., E-mail: belyaev@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Lauterboeck, Lothar, E-mail: lauterboeck@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Iarmolenko, Dmytro, E-mail: iarmolenko.dmytro@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Glasmacher, Birgit, E-mail: glasmacher@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany)

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO{sub 2}) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO{sub 2} using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO{sub 2} to the initial HA powder resulted in significant decomposition of the final HA/ZrO{sub 2} coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO{sub 2} coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of Si

  15. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    International Nuclear Information System (INIS)

    Gryshkov, Oleksandr; Klyui, Nickolai I.; Temchenko, Volodymyr P.; Kyselov, Vitalii S.; Chatterjee, Anamika; Belyaev, Alexander E.; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-01-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO 2 ) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO 2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO 2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO 2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO 2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of SiC ceramics depend on wood

  16. Comparison of new bone formation, implant integration, and biocompatibility between RGD-hydroxyapatite and pure hydroxyapatite coating for cementless joint prostheses--an experimental study in rabbits.

    Science.gov (United States)

    Bitschnau, Achim; Alt, Volker; Böhner, Felicitas; Heerich, Katharina Elisabeth; Margesin, Erika; Hartmann, Sonja; Sewing, Andreas; Meyer, Christof; Wenisch, Sabine; Schnettler, Reinhard

    2009-01-01

    This is the first work to report on additional Arginin-Glycin-Aspartat (RGD) coating on precoated hydroxyapatite (HA) surfaces regarding new bone formation, implant bone contact, and biocompatibility compared to pure HA coating and uncoated stainless K-wires. There were 39 rabbits in total with 6 animals for the RGD-HA and HA group for the 4 week time period and 9 animals for each of the 3 implant groups for the 12 week observation. A 2.0 K-wire either with RGD-HA or with pure HA coating or uncoated was placed into the intramedullary canal of the tibia. After 4 and 12 weeks, the tibiae were harvested and three different areas of the tibia were assessed for quantitative and qualitative histology for new bone formation, direct implant bone contact, and formation of multinucleated giant cells. Both RGD-HA and pure HA coating showed statistically higher new bone formation and implant bone contact after 12 weeks than the uncoated K-wire. There were no significant differences between the RGD-HA and the pure HA coating in new bone formation and direct implant bone contact after 4 and 12 weeks. The number of multinucleated giant did not differ significantly between the RGD-HA and HA group after both time points. Overall, no significant effects of an additional RGD coating on HA surfaces were detected in this model after 12 weeks. (c) 2008 Wiley Periodicals, Inc.

  17. Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, Carl [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Engineering Sciences, Ångstrom Laboratory, Uppsala University, Uppsala (Sweden); Xia, Wei, E-mail: wei.xia@angstrom.uu.se [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Engineering Sciences, Ångstrom Laboratory, Uppsala University, Uppsala (Sweden); Engqvist, Håkan [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Engineering Sciences, Ångstrom Laboratory, Uppsala University, Uppsala (Sweden); Snis, Anders [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Arcam AB, Krokslätts Fabriker 27 A, SE-431 37 Mölndal (Sweden); Lausmaa, Jukka [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås (Sweden); Palmquist, Anders [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Biomaterials, Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden)

    2015-10-30

    Highlights: • A route for coating complex shaped electron beam melted implants is presented. • Biomimetic HA coatings were deposited on CoCr alloys using a solution method. • Deposited biomimetic coating was partially crystalline, slightly calcium deficient. • Coating morphology was plate-like with crystallites forming roundish flowers. • Present coating procedure could be useful for porous implants made by EBM. - Abstract: The aim of this work was to study the feasibility to use a biomimetic method to prepare biomimetic hydroxyapatite (HA) coatings on CoCr substrates with short soaking times and to characterize the properties of such coatings. A second objective was to investigate if the coatings could be applied to porous CoCr implants manufactured by electron beam melting (EBM). The coating was prepared by immersing the pretreated CoCr substrates and EBM implants into the phosphate-buffered solution with Ca{sup 2+} in sealed plastic bottles, kept at 60 °C for 3 days. The formed coating was partially crystalline, slightly calcium deficient and composed of plate-like crystallites forming roundish flowers in the size range of 300–500 nm. Cross-section imaging showed a thickness of 300–500 nm. In addition, dissolution tests in Tris–HCl up to 28 days showed that a substantial amount of the coating had dissolved, however, undergoing only minor morphological changes. A uniform coating was formed within the porous network of the additive manufactured implants having similar thickness and morphology as for the flat samples. In conclusion, the present coating procedure allows coatings to be formed on CoCr and could be used for complex shaped, porous implants made by additive manufacturing.

  18. Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants

    International Nuclear Information System (INIS)

    Lindahl, Carl; Xia, Wei; Engqvist, Håkan; Snis, Anders; Lausmaa, Jukka; Palmquist, Anders

    2015-01-01

    Highlights: • A route for coating complex shaped electron beam melted implants is presented. • Biomimetic HA coatings were deposited on CoCr alloys using a solution method. • Deposited biomimetic coating was partially crystalline, slightly calcium deficient. • Coating morphology was plate-like with crystallites forming roundish flowers. • Present coating procedure could be useful for porous implants made by EBM. - Abstract: The aim of this work was to study the feasibility to use a biomimetic method to prepare biomimetic hydroxyapatite (HA) coatings on CoCr substrates with short soaking times and to characterize the properties of such coatings. A second objective was to investigate if the coatings could be applied to porous CoCr implants manufactured by electron beam melting (EBM). The coating was prepared by immersing the pretreated CoCr substrates and EBM implants into the phosphate-buffered solution with Ca"2"+ in sealed plastic bottles, kept at 60 °C for 3 days. The formed coating was partially crystalline, slightly calcium deficient and composed of plate-like crystallites forming roundish flowers in the size range of 300–500 nm. Cross-section imaging showed a thickness of 300–500 nm. In addition, dissolution tests in Tris–HCl up to 28 days showed that a substantial amount of the coating had dissolved, however, undergoing only minor morphological changes. A uniform coating was formed within the porous network of the additive manufactured implants having similar thickness and morphology as for the flat samples. In conclusion, the present coating procedure allows coatings to be formed on CoCr and could be used for complex shaped, porous implants made by additive manufacturing.

  19. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants.

    Science.gov (United States)

    Fathi, M H; Salehi, M; Saatchi, A; Mortazavi, V; Moosavi, S B

    2003-05-01

    The most common metals and alloys used in dentistry may be exposed to a process of corrosion in vivo that make them cytotoxic. The biocompatibility of dental alloys is primarily related to their corrosion behavior. The aim of this work was to evaluate the corrosion behavior and thus the biocompatibility of the uncoated and coated stainless steels and compare the effect of type of coatings on corrosion behavior. Three types of coatings, hydroxyapatite (HA), titanium (Ti), and a double-layer HA/Ti on AISI 316L stainless steel were made. HA coating was produced using plasma-spraying technique and Ti coating was made using physical vapor deposition process. In order to perform a novel double-layer composite coating, a top layer of HA was plasma-sprayed over a physical vapor deposited Ti layer on AISI 316L stainless steel. Structural characterization techniques including XRD, SEM and EDX were used to investigate the microstructure, morphology and crystallinity of the coatings. Electrochemical potentiodynamic tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Double-layer HA/Ti coating on AISI 316L SS had a positive effect on improvement of corrosion behavior. The decrease in corrosion current densities was significant for these coated specimens and was much lower than the values obtained for uncoated and single HA coated specimens. Ti coating on AISI 316L SS also has a beneficial effect on corrosion behavior. The results were compared with the results of corrosion behavior of HA coated commercially pure titanium (cpTi) and uncoated cpTi. These results demonstrated that the double-layer HA/Ti coated 316L SS can be used as an endodontic implant and two goals including improvement of corrosion resistance and bone osteointegration can be obtained simultaneously.

  20. Experimental study on bone tissue reaction around HA implants radiated after implantation

    International Nuclear Information System (INIS)

    Kudo, Masato; Matsui, Yoshiro; Tamura, Sayaka; Chen, Xuan; Uchida, Haruo; Mori, Kimie; Ohno, Kohsuke; Michi, Ken-ichi

    1998-01-01

    This study was conducted to investigate histologically and histomorphometrically the tissue reaction around hydroxylapatite (HA) implants that underwent irradiation in 3 different periods in the course of bone healing after implantation. The cylindrical high-density HA implants were implanted in 48 Japanese white rabbit mandibles. A single 15 Gy dose was applied to the mandible 5, 14, or 28 days after implantation. The rabbits were sacrificed 7, 14, 28, and 90 days after irradiation. Nonirradiated rabbits were used as controls. CMR, labeling with tetracycline and calcein, and non-decalcified specimens stained with toluidine blue were used for histological analyses and histomorphometric measurements. The results were as follows: In the rabbits irradiated 5 days after implantation, the HA-bone contact was observed later than that in the controls and the bone-implant contact surface ratio was lower than that in the controls at examination because necrosis of the newly-formed bone occurred just after irradiation. HA-bone contact of the rabbits irradiated 14 and 28 days after implantation was similar to that of the controls. And, bone remodeling was suppressed in rabbits of each group sacrificed at 90 days after irradiation. The results suggested that a short interval between implantation and irradiation causes direct contact between HA implant and bone and a long lapse of time before irradiation hardly affects the bone-implant contact, but delays bone remodeling. Therefore, it is necessary to prevent overloading the HA implants irradiated after implantation and pay utmost attention to conditions around the bone-implant contact. (author)

  1. An in vivo study on the effect of coating stability on osteointegration performance of collagen/hyaluronic acid multilayer modified titanium implants.

    Science.gov (United States)

    Ao, Haiyong; Zong, Jiajia; Nie, Yanjiao; Wan, Yizao; Zheng, Xiebin

    2018-03-01

    Aseptic loosening of implant is one of the main causes of Ti-based implant failure. In our previous work, a novel stable collagen/hyaluronic acid (Col/HA) multilayer modified titanium coatings (TCs) was developed by layer-by-layer (LBL) covalent immobilization technique, which showed enhanced biological properties compared with TCs that were physically absorbed with Col/HA multilayer in vitro . In this study, a rabbit model with femur condyle defect was employed to compare the osteointegration performance of them. Results indicated that Col/HA multilayer with favourable stability could better facilitate osteogenesis around implants and bone-implant contact. The Col/HA multilayer covalent-immobilized TC may reduce aseptic loosening of implant.

  2. The osteogenic capacity of biomimetic hierarchical micropore/nanorod-patterned Sr-HA coatings with different interrod spacings.

    Science.gov (United States)

    Zhou, Jianhong; Li, Bo; Han, Yong; Zhao, Lingzhou

    2016-07-01

    Advanced titanium based bone implant with fast established, rigid and stable osseointegration is stringently needed in clinic. Here the hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca9Sr1(PO4)6(OH)2, Sr1-HA) coatings (MNRs) with different interrod spacings varying from about 300 to 33nm were developed. MNRs showed dramatically differential biological performance closely related to the interrod spacing. Compared to micropore/nanogranule-patterned Sr1-HA coating (MNG), MNRs with an interrod spacing of larger than 137nm resulted in inhibited in vitro mesenchymal stem cell functions and in vivo osseointegration, while those of smaller than 96nm gave rise to dramatically enhanced the biological effect, especially those of mean 67nm displayed the best effect. The differential biological effect of MNRs was related to their modulation on the focal adhesion mediated mechanotransduction. These results suggest that MNRs with a mean interrod spacing of 67nm may give rise to an advanced implant of improved clinical performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Enhanced osseous implant fixation with strontium-substituted bioactive glass coating

    NARCIS (Netherlands)

    Newman, S.D.; Lotfibakhshaiesh, N.; O'Donnell, M.; Walboomers, X.F.; Horwood, N.; Jansen, J.A.; Amis, A.A.; Cobb, J.P.; Stevens, M.M.

    2014-01-01

    The use of endosseous implants is firmly established in skeletal reconstructive surgery, with rapid and permanent fixation of prostheses being a highly desirable feature. Implant coatings composed of hydroxyapatite (HA) have become the standard and have been used with some success in prolonging the

  4. Interface mechanics and histomorphometric analysis of hydroxyapatite-coated and porous glass-ceramic implants in canine bone

    DEFF Research Database (Denmark)

    Nimb, L; Jensen, J S; Gotfredsen, K

    1995-01-01

    A canine study was performed to make a histological and biomechanical evaluation of the interface between bone and two different bioceramic implants. A newly developed glass-ceramic formed by P2O5, CaO, SiO2, and Al2O3, giving a crystal phase composed of CaP2O6-AlPO4-SiP2O7, was compared...... analysis. The ultimate shear strength for the HA-coated implants was significantly higher than in the glass-ceramic group. When these values were related to the histomorphometric measurements, the difference could be explained by the tissue-to-implant contact. The glass-ceramic showed direct contact only...... with nonmineralized, osteoid bone. The HA-coated implants, however, were integrated into the bone. The study indicated that porous glass-ceramic containing AlPO4 causes local osteomalacia and might not be suitable for clinical purposes....

  5. Morphological and chemical evaluation of bone with apatite-coated Al2O3 implants as scaffolds for bone repair

    Directory of Open Access Journals (Sweden)

    A. L. M. Maia F.

    2013-12-01

    Full Text Available The clinical challenge in the reconstruction of bone defects has stimulated several studies in search of alternatives to repair these defects. The ceramics are considered as synthetic scaffolds and are used in dentistry and orthopedics. This study aimed to evaluate by micro energy-dispersive X-ray fluorescence spectrometry (µ-EDXRF and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS, the influence of uncoated and apatite-coated Al2O3 implants on bone regeneration. Twelve samples of Al2O3 implants were prepared and half of this samples (n = 6 were apatite-coated by the modified biomimetic method and then the ceramic material were implanted in the tibia of rabbits. Three experimental groups were tested: Group C - control, surgery procedure without ceramic implant, Group Ce - uncoated Al2O3 implants (n = 6 and Group CeHA - apatite-coated Al2O3 implants (n = 6. The deposition of bone tissue was determined by measuring the weight content of Ca and P through surface mapping of bone-implant interface by µ-EDXRF and through point analysis by EDS. It was observed after thirty days of treatment a greater deposition of Ca and P in the group treated with CeHA (p <0.001 compared to group C. The results suggest that ceramic coated with hydroxyapatite (CeHA can be an auxiliary to bone deposition in tibia defect model in rabbits.

  6. HVOF-Sprayed Nano TiO2-HA Coatings Exhibiting Enhanced Biocompatibility

    Science.gov (United States)

    Lima, R. S.; Dimitrievska, S.; Bureau, M. N.; Marple, B. R.; Petit, A.; Mwale, F.; Antoniou, J.

    2010-01-01

    Biomedical thermal spray coatings produced via high-velocity oxy-fuel (HVOF) from nanostructured titania (n-TiO2) and 10 wt.% hydroxyapatite (HA) (n-TiO2-10wt.%HA) powders have been engineered as possible future alternatives to HA coatings deposited via air plasma spray (APS). This approach was chosen due to (i) the stability of TiO2 in the human body (i.e., no dissolution) and (ii) bond strength values on Ti-6Al-4V substrates more than two times higher than those of APS HA coatings. To explore the bioperformance of these novel materials and coatings, human mesenchymal stem cells (hMSCs) were cultured from 1 to 21 days on the surface of HVOF-sprayed n-TiO2 and n-TiO2-10 wt.%HA coatings. APS HA coatings and uncoated Ti-6Al-4V substrates were employed as controls. The profiles of the hMSCs were evaluated for (i) cellular proliferation, (ii) biochemical analysis of alkaline phosphatase (ALP) activity, (iii) cytoskeleton organization (fluorescent/confocal microscopy), and (iv) cell/substrate interaction via scanning electron microscopy (SEM). The biochemical analysis indicated that the hMSCs cultured on n-TiO2-10 wt.%HA coatings exhibited superior levels of bioactivity than hMSCs cultured on APS HA and pure n-TiO2 coatings. The cytoskeleton organization demonstrated a higher degree of cellular proliferation on the HVOF-sprayed n-TiO2-10wt.%HA coatings when compared to the control coatings. These results are considered promising for engineering improved performance in the next generation of thermally sprayed biomedical coatings.

  7. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    Science.gov (United States)

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. In vivo evaluation of the bone integration of coated poly(vinyl-alcohol) hydrogel fiber implants.

    Science.gov (United States)

    Moreau, David; Villain, Arthur; Bachy, Manon; Proudhon, Henry; Ku, David N; Hannouche, Didier; Petite, Hervé; Corté, Laurent

    2017-08-01

    Recently, it has been shown that constructs of poly(vinyl alcohol) (PVA) hydrogel fibers reproduce closely the tensile behavior of ligaments. However, the biological response to these systems has not been explored yet. Here, we report the first in vivo evaluation of these implants and focus on the integration in bone, using a rabbit model of bone tunnel healing. Implants consisted in bundles of PVA hydrogel fibers embedded in a PVA hydrogel matrix. Half of the samples were coated with a composite coating of hydroxyapatite (HA) particles embedded in PVA hydrogel. The biological integration was evaluated at 6 weeks using histology and micro-CT imaging. For all implants, a good biological tolerance and growth of new bone tissue are reported. All the implants were surrounded by a fibrous layer comparable to what was previously observed for poly(ethylene terephthalate) (PET) fibers currently used in humans for ligament reconstruction. An image analysis method is proposed to quantify the thickness of this fibrous capsule. Implants coated with HA were not significantly osteoconductive, which can be attributed to the slow dissolution of the selected hydroxyapatite. Overall, these results confirm the relevance of PVA hydrogel fibers for ligament reconstruction and adjustments are proposed to enhance its osseointegration.

  9. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.

    Science.gov (United States)

    Khor, K A; Gu, Y W; Pan, D; Cheang, P

    2004-08-01

    Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA

  10. Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant.

    Science.gov (United States)

    Abdal-Hay, Abdalla; Hasan, Anwarul; Kim, Yu-Kyoung; Yu-Kyoung; Lee, Min-Ho; Hamdy, Abdel Salam; Khalil, Khalil Abdelrazek

    2016-01-01

    This article demonstrates the use of hybrid nanofibers to improve the biodegradation rate and biocompatibility of AM50 magnesium alloy. Biodegradable hybrid membrane fiber layers containing nano-hydroxyapatite (nHA) particles and poly(lactide)(PLA) nanofibers were coated layer-by-layer (LbL) on AM50 coupons using a facile single-step air jet spinning (AJS) approach. The corrosion performance of coated and uncoated coupon samples was investigated by means of electrochemical measurements. The results showed that the AJS 3D membrane fiber layers, particularly the hybrid membrane layers containing a small amount of nHA (3 wt.%), induce a higher biocorrosion resistance and effectively decrease the initial degradation rate compared with the neat AM50 coupon samples. The adhesion strength improved highly due to the presence of nHA particles in the AJS layer. Furthermore, the long biodegradation rates of AM50 alloy in Hank's balanced salt solution (HBSS) were significantly controlled by the AJS-coatings. The results showed a higher cytocompatibility for AJS-coatings compared to that for neat Mg alloys. The nanostructured nHA embedded hybrid PLA nanofiber coating can therefore be a suitable coating material for Mg alloy as a potential material for biodegradable metallic orthopedic implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Herath, H.M.T.U. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Premachandra, T.N. [Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Ranasinghe, C.S.K. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.P.V.J. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Edirisinghe, Mohan; Mahalingam, S. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Bandara, I.M.C.C.D. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia); Singh, Sanjleena [Central Analytical Research Facility, Institute of Future Environments, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia)

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO{sub 2} thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO{sub 2} thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  12. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    International Nuclear Information System (INIS)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G.; Herath, H.M.T.U.; Premachandra, T.N.; Ranasinghe, C.S.K.; Rajapakse, R.P.V.J.; Rajapakse, R.M.G.; Edirisinghe, Mohan; Mahalingam, S.; Bandara, I.M.C.C.D.; Singh, Sanjleena

    2016-01-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO_2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO_2 thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  13. Glass/ceramic coatings for implants

    Science.gov (United States)

    Tomsia, Antoni P [Pinole, CA; Saiz, Eduardo [Berkeley, CA; Gomez-Vega, Jose M [Nagoya, JP; Marshall, Sally J [Larkspur, CA; Marshall, Grayson W [Larkspur, CA

    2011-09-06

    Glass coatings on metals including Ti, Ti6A14V and CrCo were prepared for use as implants. The composition of the glasses was tailored to match the thermal expansion of the substrate metal. By controlling the firing atmosphere, time, and temperature, it was possible to control the reactivity between the glass and the alloy and to fabricate coatings (25-150 .mu.m thick) with excellent adhesion to the substrate. The optimum firing temperatures ranged between 800 and 840.degree. C. at times up to 1 min in air or 15 min in N.sub.2. The same basic technique was used to create multilayered coatings with concentration gradients of hydroxyapatite (HA) particles and SiO.sub.2.

  14. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite

    DEFF Research Database (Denmark)

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its...... fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants...

  15. Innovative micro-textured hydroxyapatite and poly(l-lactic)-acid polymer composite film as a flexible, corrosion resistant, biocompatible, and bioactive coating for Mg implants.

    Science.gov (United States)

    Kim, Sae-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Lim, Ho-Kyung; Byun, Soo-Hwan; Lee, Jong-Ho; Lee, Sung-Mi

    2017-12-01

    The utility of a novel ceramic/polymer-composite coating with a micro-textured microstructure that would significantly enhance the functions of biodegradable Mg implants is demonstrated here. To accomplish this, bioactive hydroxyapatite (HA) micro-dots can be created by immersing a Mg implant with a micro-patterned photoresist surface in an aqueous solution containing calcium and phosphate ions. The HA micro-dots can then be surrounded by a flexible poly(l-lactic)-acid (PLLA) polymer using spin coating to form a HA/PLLA micro-textured coating layer. The HA/PLLA micro-textured coating layer showed an excellent corrosion resistance when it was immersed in a simulated body fluid (SBF) solution and good biocompatibility, which was assessed by in vitro cell tests. In addition, the HA/PLLA micro-textured coating layer had high deformation ability, where no apparent changes in the coating layer were observed even after a 5% elongation, which would be unobtainable using HA and PLLA coating layers; furthermore, this allowed the mechanically-strained Mg implant with the HA/PLLA micro-textured coating layer to preserve its excellent corrosion resistance and biocompatibility in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    Science.gov (United States)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-05-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  17. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    Science.gov (United States)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-04-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  18. The effects of hydroxyapatite coating and bone allograft on fixation of loaded experimental primary and revision implants.

    Science.gov (United States)

    Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A; Overgaard, Søren; Bechtold, Joan E

    2003-06-01

    We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability for the presence of particulate polyethylene. During this procedure, a sclerotic endosteal bone rim forms, and a dense fibrous membrane is engendered, having macrophages with ingested polyethylene and high levels of inflammatory cytokines. At the time of revision after 8 weeks, the cavity is revised with either a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included in each of the 8 treatment groups (total 64 implants in 32 dogs). The observation period was 4 weeks after revision. Outcome measures are based on histomorphometry and mechanical pushout properties. The revision setting was always inferior to its primary counterpart. Bone graft improved the revision fixation in all treatment groups, as also did the HA coating. The sole exception was revision-grafted HA implants, which reached the same fixation as primary Ti and HA grafted implants. The revision, which was less active in general, seems to need the dual stimulation of bone graft and HA implant surface, to obtain the same level of fixation associated with primary implants. Our findings suggest that the combination of HA implant and bone graft may be of benefit in the clinical revision implant setting.

  19. Can the Hydroxyapatite-Coated Skin-Penetrating Abutment for Bone Conduction Hearing Implants Integrate with the Surrounding Skin?

    Science.gov (United States)

    van Hoof, Marc; Wigren, Stina; Duimel, Hans; Savelkoul, Paul H M; Flynn, Mark; Stokroos, Robert Jan

    2015-01-01

    Percutaneous implants, such as bone conduction hearing implants, suffer from complications that include inflammation of the surrounding skin. A sealed skin-abutment interface can prevent the ingress of bacteria, which should reduce the occurrence of peri-abutment dermatitis. It was hypothesized that a hydroxyapatite (HA)-coated abutment in conjunction with soft tissue preservation surgery should enable integration with the adjacent skin. Previous research has confirmed that integration is never achieved with as-machined titanium abutments. Here, we investigate, in vivo, if skin integration is achievable in patients using a HA-coated abutment. One titanium abutment (control) and one HA-coated abutment (case) together with the surrounding skin were surgically retrieved from two patients who had a medical indication for this procedure. Histological sections of the skin were investigated using light microscopy. The abutment was qualitatively analyzed using scanning electron microscopy. The titanium abutment only had a partial and thin layer of attached amorphous biological material. The HA-coated abutment was almost fully covered by a pronounced thick layer of organized skin, composed of different interconnected structural layers. Proof-of-principle evidence that the HA-coated abutment can achieve integration with the surrounding skin was presented for the first time.

  20. Mechanical failure of hydroxyapatite-coated titanium and cobalt-chromium-molybdenum alloy implants. An animal study

    DEFF Research Database (Denmark)

    Nimb, L; Gotfredsen, K; Steen Jensen, J

    1993-01-01

    Defects in the hydroxyapatite (HA) ceramic coatings applied to metallic implant systems may occur at the time of insertion or at the time of in vivo loading. However, defects may also occur with time because of interaction with physiological fluids. A canine study was performed to make a histolog......Defects in the hydroxyapatite (HA) ceramic coatings applied to metallic implant systems may occur at the time of insertion or at the time of in vivo loading. However, defects may also occur with time because of interaction with physiological fluids. A canine study was performed to make...

  1. Comparative Evaluation of Osseointegration of Dental Endodontic Implants with and without Plasma- Sprayed Hydroxy apatite Coating

    Directory of Open Access Journals (Sweden)

    Moosavi SB

    2001-05-01

    Full Text Available Bone osseointegration around dental implant can cause earlier stabilization and fixation of implant and reduce healing time. Hydroxyapatite coating can affect bone osseointegration and enhance its rates. The aim of this study was comparison of osseointegration between plasma sprayed hydroxyapatite coated and uncoated dental implants in cats. Four endodontic implants including, vitallium and two stainless steel with and without hydroxyapatite coating were prepared and placed in mandibular canines of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, investigation by scanning electron microscopy showed significant difference in ossointegration between coated and uncoated dental implants and average bone osseointegration of coated implants was more than uncoated implants.

  2. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    OpenAIRE

    Ogawa, Takahiro; Yamada,Masahiro; Ueno,; Tsukimura,Naoki; Ikeda,; Nakagawa,; Hori,; Suzuki,

    2012-01-01

    Masahiro Yamada*, Takeshi Ueno*, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro OgawaLaboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA *These authors contributed equally to this workAbstract: The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integratio...

  3. Effects of substitute coated with hyaluronic acid or poly-lactic acid on implant fixation. Experimental study in ovariectomized and glucocorticoid treated sheep

    DEFF Research Database (Denmark)

    Andreasen, Christina M; Ding, Ming; Andersen, Thomas L

    2018-01-01

    Investigated in healthy animal models, hyaluronic acid (HyA) and poly-D,L -lactic acid (PDLLA) demonstrate osteoconductive properties when coated onto hydroxyapatite (HA) and β-tricalcium phosphate (βTCP) scaffolds. In this study, we examined the efficacy of HA/βTCP granules coated with HyA or PD...... formation, HyA and PDDLA are indeed considered valuable as new coating materials for composite ceramics when tested in a sheep model - even in bones of a compromised quality.......Investigated in healthy animal models, hyaluronic acid (HyA) and poly-D,L -lactic acid (PDLLA) demonstrate osteoconductive properties when coated onto hydroxyapatite (HA) and β-tricalcium phosphate (βTCP) scaffolds. In this study, we examined the efficacy of HA/βTCP granules coated with Hy...... allograft obtained from a healthy donor sheep (control), pure HA/βTCP, HA/βTCP-HyA or HA/βTCP-PDLLA. After 12 weeks, the bone formation adjacent to the implant surface was evaluated by histology and histomorphometry, while the implant fixation was measured by a push-out test. The investigation showed a bone...

  4. Natural History of Bone Response to Hydroxyapatite-Coated Hip Prostheses Implanted in Humans

    OpenAIRE

    Frayssinet, P.; Hardy, D.; Hanker, J. S.; Giammara, B. L.

    1995-01-01

    A series of 15 autopsied femurs containing hydroxyapatite- coated (HA-coated) prostheses was analysed histologically. Their implantation time ranged from 5 days up to 3 years. The coating thickness of some prostheses and the percentage of the coating in contact with bone at different levels were evaluated using an image analysis device. After the newly formed bone tissue had became mature, several bone morphotypes were identified at the coating contact. From the proximal to the distal part of...

  5. Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg-Zn-Ca alloy.

    Science.gov (United States)

    Feng, Yashan; Zhu, Shijie; Wang, Liguo; Chang, Lei; Yan, Bingbing; Song, Xiaozhe; Guan, Shaokang

    2017-06-01

    The poor corrosion resistance of biodegradable magnesium alloys is the dominant factor that limits their clinical application. In this study, to deal with this challenge, fluoride coating was prepared on Mg-Zn-Ca alloy as the inner coating and then hydroxyapatite (HA) coating as the outer coating was deposited on fluoride coating by pulse reverse current electrodeposition (PRC-HA/MgF 2 ). As a comparative study, the microstructure and corrosion properties of the composite coating with the outer coating fabricated by traditional constant current electrodeposition (TED-HA/MgF 2 ) were also investigated. Scanning electron microscopy (SEM) images of the coatings show that the morphology of PRC-HA/MgF 2 coating is dense and uniform, and presents nano-rod-like structure. Compared with that of TED-HA/MgF 2 , the corrosion current density of Mg alloy coated with PRC-HA/MgF 2 coatings decreases from 5.72 × 10 -5 A/cm 2 to 4.32 × 10 -7 A/cm 2 , and the corrosion resistance increases by almost two orders of magnitude. In immersion tests, samples coated with PRC-HA/MgF 2 coating always show the lowest hydrogen evolution amount, and could induce deposition of the hexagonal structure-apatite on the surface rapidly. The results show that the corrosion resistance and the bioactivity of the coatings have been improved by adopting double-pulse current mode in the process of preparing HA on fluoride coating, and the PRC-HA/MgF 2 coating is worth of further investigation.

  6. Characterization, Corrosion Resistance, and Cell Response of High-Velocity Flame-Sprayed HA and HA/TiO2 Coatings on 316L SS

    Science.gov (United States)

    Singh, Tejinder Pal; Singh, Harpreet; Singh, Hazoor

    2012-09-01

    The main aim of this study is to evaluate corrosion and biocompatibility behavior of thermal spray hydroxyapatite (HA) and hydroxyapatite/titania bond (HA/TiO2)-coated 316L stainless steel (316L SS). In HA/TiO2 coatings, TiO2 was used as a bond coat between HA top coat and 316L SS substrate. The coatings were characterized by x-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy, and corrosion resistance determined for the uncoated substrate and the two coatings. The biological behavior was investigated by the cell culture studies using osteosarcoma cell line KHOS-NP (R-970-5). The corrosion resistance of the steel was found to increase after the deposition of the HA and HA/TiO2 bond coatings. Both HA, as well as, HA/TiO2 coatings exhibit excellent bond strength of 49 and 47 MPa, respectively. The cell culture studies showed that HA-coated 316L SS specimens appeared more biocompatible than the uncoated and HA/TiO2-coated 316L SS specimens.

  7. Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation

    Directory of Open Access Journals (Sweden)

    Indu Bajpai

    2016-01-01

    Full Text Available Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass was coated on sintered hydroxyapatite (HA and HA-TCP (TCP stands for tricalcium phosphate samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples. Samples without coating, with water-glass coating, and heat-treated after water-glass coating were used to observe the adhesion and proliferation response of bone marrow derived-mesenchymal stem cells (MSCs. Cell culture was carried out for 4 hrs, 1 day, and 7 days. Interestingly, all samples showed similar response for cell adhesion and proliferation up to 7-day culture but fibronectin, E-cadherin, and osteogenic differentiation related genes (osteocalcin and osteopontin were significantly induced in heat-treated water-glass coated HA-TCP samples. A water-glass coating on Ca-P samples was not found to influence the cell proliferation response significantly but activated some extracellular matrix genes and induced osteogenic differentiation in the MSCs.

  8. Systematic review of the effectiveness of polyurethane-coated compared with textured silicone implants in breast surgery.

    Science.gov (United States)

    Duxbury, Paula J; Harvey, James R

    2016-04-01

    Silicone gel implants are used worldwide for breast augmentation and breast reconstruction. Textured silicone implants are the most commonly placed implant, but polyurethane-coated implants are increasingly being used in an attempt to ameliorate the long-term complications associated with implant insertion. This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Electronic searches of MEDLINE, EMBASE, the Cochrane Library and www.ClinicalTrials.gov were undertaken in March 2014 using keywords. Following data extraction, 18 studies were included in the review, including four core studies of textured silicone implants and five studies reporting outcomes for polyurethane-coated silicone implants. There are no clear data reporting revision rates in patients treated with polyurethane implants. In the primary reconstructive setting, capsular contracture rates with silicone implants are 10-15% at 6 years, whilst studies of polyurethane implants report rates of 1.8-3.4%. In the primary augmentation setting, core studies show a capsular contracture rate of 2-15% at 6 years compared with 0.4-1% in polyurethane-coated implants; however, the polyurethane studies are limited by their design and poor follow-up. The use of polyurethane implants should be considered a safe alternative to textured silicone implants. It is likely that an implant surface does influence short- and long-term outcomes; however, the extent of any benefit cannot be determined from the available evidence base. Future implant studies should target the short- and long-term benefits of implant surfacing by procedure with defined outcome measures; a head-to-head comparison would help clarify outcomes. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Wear performance of laser processed tantalum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dittrick, Stanley; Balla, Vamsi Krishna; Bose, Susmita; Bandyopadhyay, Amit, E-mail: amitband@wsu.edu

    2011-12-01

    This first generation investigation evaluates the in vitro tribological performance of laser-processed Ta coatings on Ti for load-bearing implant applications. Linear reciprocating wear tests in simulated body fluid showed one order of magnitude less wear rate, of the order of 10{sup -4} mm{sup 3}(N.m){sup -1}, for Ta coatings compared to Ti. Our results demonstrate that Ta coatings can potentially minimize the early-stage bone-implant interface micro-motion induced wear debris generation due to their excellent bioactivity comparable to that of hydroxyapatite (HA), high wear resistance and toughness compared to popular HA coatings. Highlights: {yields} In vitro wear performance of laser processed Ta coatings on Ti was evaluated. {yields} Wear tests in SBF showed one order of magnitude less wear for Ta coatings than Ti. {yields} Ta coatings can minimize early-stage micro-motion induced wear debris generation.

  10. Influence of extracellular matrix coatings on implant stability and osseointegration: an animal study.

    Science.gov (United States)

    Stadlinger, Bernd; Pilling, Eckart; Huhle, Matthias; Mai, Ronald; Bierbaum, Susanne; Bernhardt, Ricardo; Scharnweber, Dieter; Kuhlisch, Eberhard; Hempel, Ute; Eckelt, Uwe

    2007-10-01

    Aim of the present study was to test the hypothesis that the application of components of the extracellular matrix such as glycosaminoglycans used as implant surface coatings in combination with collagen, with and without growth factor, can lead to enhanced ossification and thus improve implant stability compared with collagen coatings alone. Twenty miniature pigs received 120 experimental titanium implants in the mandible. Three types of surface coatings were created: (1) collagen type I (coll), (2) collagen type I/chondroitin sulphate (coll/CS), (3) collagen type I/chondroitin sulphate/BMP-4 (coll/CS/BMP). Periimplant bone formation was assessed within a defined recess along the length axis of the implant. Bone-implant contact (BIC) and bone volume density (BVD) were determined, using both histomorphometry and synchrotron radiation micro computed tomography (SRmicroCT). To measure implant stability, resonance frequency analysis was applied after implantation and 1, 3, 7, and 22 weeks after placement. BIC was highest for coll/CS coated implants, followed by coll, p = 0.082. Histomorphometric BVD did not significantly change for any coating. SRmicroCT analysis showed an increased BVD for collagen coated implants, compared with the other two surface coatings. Implant stability showed a decrease for all coatings up to the third week. At 22 weeks, all coatings showed an increase in stability without reaching their initial level. Highest stability was reached for coll coated implants, p = 0.051. It was concluded that collagen and coll/CS implant coatings have advantageous characteristics for peri-implant bone formation, compared with the further integration of BMP-4.

  11. Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants.

    Science.gov (United States)

    Memarzadeh, Kaveh; Sharili, Amir S; Huang, Jie; Rawlinson, Simon C F; Allaker, Robert P

    2015-03-01

    Orthopedic and dental implants are prone to infection. In this study, we describe a novel system using zinc oxide nanoparticles (nZnO) as a coating material to inhibit bacterial adhesion and promote osteoblast growth. Electrohydrodynamic atomisation (EHDA) was employed to deposit mixtures of nZnO and nanohydroxyapatite (nHA) onto the surface of glass substrates. Nano-coated substrates were exposed to Staphylococcus aureus suspended in buffered saline or bovine serum to determine antimicrobial activity. Our results indicate that 100% nZnO and 75% nZnO/25% nHA composite-coated substrates have significant antimicrobial activity. Furthermore, osteoblast function was explored by exposing cells to nZnO. UMR-106 cells exposed to nZnO supernatants showed minimal toxicity. Similarly, MG-63 cells cultured on nZnO substrates did not show release of TNF-α and IL-6 cytokines. These results were reinforced by both proliferation and differentiation studies which revealed that a substrate coated with exclusively nZnO is more efficient than composite surface coatings. Finally, electron and light microscopy, together with immunofluorescence staining, revealed that all cell types tested, including human mesenchymal cell (hMSC), were able to maintain normal cell morphology when adhered onto the surface of the nano-coated substrates. Collectively, these findings indicate that nZnO can, on its own, provide an optimal coating for future bone implants that are both antimicrobial and biocompatible. © 2014 Wiley Periodicals, Inc.

  12. Acute and Subacute Toxicity In Vivo of Thermal-Sprayed Silver Containing Hydroxyapatite Coating in Rat Tibia

    Science.gov (United States)

    Tsukamoto, Masatsugu; Miyamoto, Hiroshi; Ando, Yoshiki; Eto, Shuichi; Akiyama, Takayuki; Yonekura, Yutaka; Mawatari, Masaaki

    2014-01-01

    To reduce the incidence of implant-associated infection, we previously developed a novel coating technology using hydroxyapatite (HA) containing silver (Ag). This study examined in vivo acute and subacute toxicity associated with the Ag-HA coating in rat tibiae. Ten-week-old rats received implantation of HA-, 2% Ag-HA-, or 50% Ag-HA-coated titanium rods. Concentrations of silver in serum, brain, liver, kidneys, and spleen were measured in the acute phase (2–4 days after treatment) and subacute phase (4–12 weeks after treatment). Biochemical and histological examinations of those organs were also performed. Mean serum silver concentration peaked in the acute phase and then gradually decreased. Mean silver concentrations in all examined organs from the 2% Ag-HA coating groups showed no significant differences compared with the HA coating group. No significant differences in mean levels of glutamic-oxaloacetic transaminase, glutamic-pyruvic transaminase, lactate dehydrogenase, creatinine, or blood urea nitrogen were seen between the three groups and controls. Histological examinations of all organs revealed no abnormal pathologic findings. No acute or subacute toxicity was seen in vivo for 2% Ag-HA coating or HA coating. Ag-HA coatings on implants may represent biologically safe antibacterial biomaterials and may be of value for reducing surgical-site infections related to implantation. PMID:24779019

  13. Enhanced biocompatibility and osseointegration of calcium titanate coating on titanium screws in rabbit femur.

    Science.gov (United States)

    Wang, Zi-Li; He, Rong-Zhen; Tu, Bin; Cao, Xu; He, Jin-Shen; Xia, Han-Song; Liang, Chi; Zou, Min; Wu, Song; Wu, Zhen-Jun; Xiong, Kun

    2017-06-01

    This study aimed to examine the biocompatibility of calcium titanate (CaTiO 3 ) coating prepared by a simplified technique in an attempt to assess the potential of CaTiO 3 coating as an alternative to current implant coating materials. CaTiO 3 -coated titanium screws were implanted with hydroxyapatite (HA)-coated or uncoated titanium screws into medial and lateral femoral condyles of 48 New Zealand white rabbits. Imaging, histomorphometric and biomechanical analyses were employed to evaluate the osseointegration and biocompatibility 12 weeks after the implantation. Histology and scanning electron microscopy revealed that bone tissues surrounding the screws coated with CaTiO 3 were fully regenerated and they were also well integrated with the screws. An interfacial fibrous membrane layer, which was found in the HA coating group, was not noticeable between the bone tissues and CaTiO 3 -coated screws. X-ray imaging analysis showed in the CaTiO 3 coating group, there was a dense and tight binding between implants and the bone tissues; no radiation translucent zone was found surrounding the implants as well as no detachment of the coating and femoral condyle fracture. In contrast, uncoated screws exhibited a fibrous membrane layer, as evidenced by the detection of a radiation translucent zone between the implants and the bone tissues. Additionally, biomechanical testing revealed that the binding strength of CaTiO 3 coating with bone tissues was significantly higher than that of uncoated titanium screws, and was comparable to that of HA coating. The study demonstrated that CaTiO 3 coating in situ to titanium screws possesses great biocompatibility and osseointegration comparable to HA coating.

  14. Laser treatment of plasma sprayed HA coatings

    NARCIS (Netherlands)

    Khor, KA; Vreeling, A; Dong, ZL; Cheang, P

    1999-01-01

    Laser treatment was conducted on plasma sprayed hydroxyapatite (HA) coatings using a Nd-YAG pulse laser. Various laser parameters were investigated. The results showed that the HA surface melted when an energy level of greater than or equal to 2 J and a spot size of 2 mm was employed during

  15. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    International Nuclear Information System (INIS)

    Miroiu, F.M.; Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N.; Sima, L.E.; Petrescu, S.M.; Andronie, A.; Stamatin, I.; Moga, S.; Ducu, C.

    2010-01-01

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, λ = 248 nm, τ = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm 2 laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm -1 amide II, 1654 cm -1 amide I, 1243 cm -1 amide III, while the peak from 1027 cm -1 appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  16. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Miroiu, F.M., E-mail: marimona.miroiu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Sima, L.E.; Petrescu, S.M. [Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest (Romania); Andronie, A.; Stamatin, I. [3Nano-SAE Alternative Energy Sources-University of Bucharest, Faculty of Physics, 409 Atomistilor Street, RO-77125, Magurele-Ilfov (Romania); Moga, S.; Ducu, C. [University of Pitesti, Targul din Vale Str, no. 1, 110040 Pitesti (Romania)

    2010-05-25

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, {lambda} = 248 nm, {tau} = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm{sup 2} laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm{sup -1} amide II, 1654 cm{sup -1} amide I, 1243 cm{sup -1} amide III, while the peak from 1027 cm{sup -1} appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  17. Formation of Biomimetic Hydroxyapatite Coating on Titanium Plates

    Directory of Open Access Journals (Sweden)

    Ievgen Volodymyrovych PYLYPCHUK

    2014-09-01

    Full Text Available Hydroxyapatite (HA has long been used as a coating material in the implant industry for orthopedic implant applications. HA is the natural inorganic constituent of bone and teeth. By coating titanium (base material of implant engineering because of its lightness and durability with hydroxyapatite, we can provide higher biocompatibility of titanium implants, according to HA ability to form a direct biochemical bond with living tissues. This article reports a biomimetic approach for coating hydroxyapatite with titanium A method of modifying the surface of titanium by organic modifiers (for creating functional groups on the surface, followed by formation "self-assembled" layer of biomimetic hydroxyapatite in simulated body fluid (SBF. FTIR and XPS confirmed the formation of hydroxyapatite coatings on titanium surface. Comparative study of the formation of HA on the surface of titanium plates modified by different functional groups: Ti(≡OH, Ti/(≡Si-OH and Ti/(≡COOH is conducted. It was found that the closest to natural stoichiometric hydroxyapatite Ca/P ratio was obtained on Ti/(≡COOH samples. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4974

  18. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    Science.gov (United States)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  19. Implanted Deuterium Retention and Release in Carbon-Coated Beryllium

    Science.gov (United States)

    Anderl, R. A.; Longhurst, G. R.; Pawelko, R. J.; Oates, M. A.

    1997-06-01

    Deuterium implantation experiments have been conducted on samples of clean and carbon-coated beryllium. These studies entailed preparation and characterization of beryllium samples coated with carbon thicknesses of 100, 500, and 1000 Å. Heat treatment of a beryllium sample coated with carbon to a thickness of approximately 100 Å revealed that exposure to a temperature of 400°C under high vacuum conditions was sufficient to cause substantial diffusion of beryllium through the carbon layer, resulting in more beryllium than carbon at the surface. Comparable concentrations of carbon and beryllium were observed in the bulk of the coating layer. Higher than expected oxygen levels were observed throughout the coating layer as well. Samples were exposed to deuterium implantation followed by thermal desorption without exposure to air. Differences were observed in deuterium retention and postimplantation release behavior in the carbon-coated samples as compared with bare samples. For comparable implantation conditions (sample temperature of 400°C and an incident deuterium flux of approximately 6 × 1019 D/m2-s), the quantity of deuterium retained in the bare sample was less than that retained in the carbon-coated samples. Further, the release of the deuterium took place at lower temperatures for the bare beryllium surfaces than for carbon-coated beryllium samples.

  20. A comparative study of two advanced spraying techniques for the deposition of biologically active enzyme coatings onto bone-substituting implants

    International Nuclear Information System (INIS)

    Jonge, Lise T. de; Ju, J.; Leeuwenburgh, S.C.G.; Yamagata, Y.; Higuchi, T.; Wolke, J.G.C.; Inoue, K.; Jansen, J.A.

    2010-01-01

    Surface modification of implant materials with biomolecule coatings is of high importance to improve implant fixation in bone tissue. In the current study, we present two techniques for the deposition of biologically active enzyme coatings onto implant materials. The well-established thin film ElectroSpray Deposition (ESD) technique was compared with the SAW-ED technique that combines high-frequency Surface Acoustic Wave atomization with Electrostatic Deposition. By immobilizing the enzyme alkaline phosphatase (ALP) onto implant surfaces, the influence of both SAW-ED and ESD deposition parameters on ALP deposition efficiency and ALP biological activity was investigated. ALP coatings with preserved enzyme activity were deposited by means of both the SAW-ED and ESD technique. The advantages of SAW-ED over ESD include the possibility to spray highly conductive protein solutions, and the 60-times faster deposition rate. Furthermore, significantly higher deposition efficiencies were observed for the SAW-ED technique compared to ESD. Generally, it was shown that protein inactivation is highly dependent on both droplet dehydration and the applied electrical field strength. The current study shows that SAW-ED is a versatile and flexible technique for the fabrication of functionally active biomolecule coatings.

  1. Implanted deuterium retention and release in carbon-coated beryllium

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Oates, M.A.

    1997-01-01

    Deuterium implantation experiments have been conducted on samples of clean and carbon-coated beryllium. These studies entailed preparation and characterization of beryllium samples coated with carbon thicknesses of 100, 500, and 1000 angstrom. Heat treatment of a beryllium sample coated with carbon to a thickness of approximately 100 angstrom revealed that exposure to a temperature of 400 degrees C under high vacuum conditions was sufficient to cause substantial diffusion of beryllium through the carbon layer, resulting in more beryllium than carbon at the surface. Comparable concentrations of carbon and beryllium were observed in the bulk of the coating layer. Higher than expected oxygen levels were observed throughout the coating layer as well. Samples were exposed to deuterium implantation followed by thermal desorption without exposure to air. Differences were observed in deuterium retention and postimplantation release behavior in the carbon-coated samples as compared with bare samples. For comparable implantation conditions (sample temperature of 400 degrees C and an incident deuterium flux of approximately 6 X 10 19 D/m 2 sec), the quantity of deuterium retained in the bare sample was less than that retained in the carbon-coated samples. Further, the release of the deuterium took place at lower temperatures for the bare beryllium surfaces than for carbon-coated beryllium samples. 4 refs., 8 figs., 1 tab

  2. Cementless Hydroxyapatite Coated Hip Prostheses

    Science.gov (United States)

    Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda

    2015-01-01

    More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality. PMID:25802848

  3. Cementless Hydroxyapatite Coated Hip Prostheses

    Directory of Open Access Journals (Sweden)

    Antonio Herrera

    2015-01-01

    Full Text Available More than twenty years ago, hydroxyapatite (HA, calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality.

  4. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Byung-Dong, E-mail: cera72@kims.re.kr [Functional Ceramics Group, Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeong-Nam, 641-010 (Korea, Republic of); Park, Dong-Soo; Choi, Jong-Jin; Ryu, Jungho; Yoon, Woon-Ha; Choi, Joon-Hwan; Kim, Jong-Woo; Ahn, Cheol-Woo [Functional Ceramics Group, Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeong-Nam, 641-010 (Korea, Republic of); Kim, Hyoun-Ee [School of Materials Science and Engineering, Seoul National University, San 56-1 Sillim-Dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of); Yoon, Byung-Ho; Jung, In-Kwon [GENOSS, Gyeonggi R and DB Center, Iui-dong, Yeongtong-gu, Suwon, Gyeonggi-do, 443-270 (Korea, Republic of)

    2013-10-15

    Polyetheretherketone (PEEK) has attracted much interest as biomaterial for interbody fusion cages due to its similar stiffness to bone and good radio-transparency for post-op visualization. Hydroxyapatite (HA) coating stimulates bone growth to the medical implant. The objective of this work is to make an implant consisting of biocompatible PEEK with an osteoconductive HA surface for spinal or orthopedic applications. Highly dense and well-adhered HA coating was developed on medical-grade PEEK using aerosol deposition (AD) without thermal degradation of the PEEK. The HA coating had a dense microstructure with no cracks or pores, and showed good adhesion to PEEK at adhesion strengths above 14.3 MPa. The crystallinity of the HA coating was remarkably enhanced by hydrothermal annealing as post-deposition heat-treatment. In addition, in vitro and in vivo biocompatibility of PEEK, in terms of cell adhesion morphology, cell proliferation, differentiation, and bone-to-implant contact ratio, were remarkably enhanced by the HA coating through AD.

  5. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery

    International Nuclear Information System (INIS)

    Hahn, Byung-Dong; Park, Dong-Soo; Choi, Jong-Jin; Ryu, Jungho; Yoon, Woon-Ha; Choi, Joon-Hwan; Kim, Jong-Woo; Ahn, Cheol-Woo; Kim, Hyoun-Ee; Yoon, Byung-Ho; Jung, In-Kwon

    2013-01-01

    Polyetheretherketone (PEEK) has attracted much interest as biomaterial for interbody fusion cages due to its similar stiffness to bone and good radio-transparency for post-op visualization. Hydroxyapatite (HA) coating stimulates bone growth to the medical implant. The objective of this work is to make an implant consisting of biocompatible PEEK with an osteoconductive HA surface for spinal or orthopedic applications. Highly dense and well-adhered HA coating was developed on medical-grade PEEK using aerosol deposition (AD) without thermal degradation of the PEEK. The HA coating had a dense microstructure with no cracks or pores, and showed good adhesion to PEEK at adhesion strengths above 14.3 MPa. The crystallinity of the HA coating was remarkably enhanced by hydrothermal annealing as post-deposition heat-treatment. In addition, in vitro and in vivo biocompatibility of PEEK, in terms of cell adhesion morphology, cell proliferation, differentiation, and bone-to-implant contact ratio, were remarkably enhanced by the HA coating through AD.

  6. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery

    Science.gov (United States)

    Hahn, Byung-Dong; Park, Dong-Soo; Choi, Jong-Jin; Ryu, Jungho; Yoon, Woon-Ha; Choi, Joon-Hwan; Kim, Jong-Woo; Ahn, Cheol-Woo; Kim, Hyoun-Ee; Yoon, Byung-Ho; Jung, In-Kwon

    2013-10-01

    Polyetheretherketone (PEEK) has attracted much interest as biomaterial for interbody fusion cages due to its similar stiffness to bone and good radio-transparency for post-op visualization. Hydroxyapatite (HA) coating stimulates bone growth to the medical implant. The objective of this work is to make an implant consisting of biocompatible PEEK with an osteoconductive HA surface for spinal or orthopedic applications. Highly dense and well-adhered HA coating was developed on medical-grade PEEK using aerosol deposition (AD) without thermal degradation of the PEEK. The HA coating had a dense microstructure with no cracks or pores, and showed good adhesion to PEEK at adhesion strengths above 14.3 MPa. The crystallinity of the HA coating was remarkably enhanced by hydrothermal annealing as post-deposition heat-treatment. In addition, in vitro and in vivo biocompatibility of PEEK, in terms of cell adhesion morphology, cell proliferation, differentiation, and bone-to-implant contact ratio, were remarkably enhanced by the HA coating through AD.

  7. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF_2 or MgO for implants functionalization

    International Nuclear Information System (INIS)

    Mihailescu, Natalia; Stan, G.E.; Duta, L.; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Sopronyi, M.; Luculescu, C.; Oktar, F.N.; Mihailescu, I.N.

    2016-01-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF_2 (2 wt.%) or MgO (5 wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ = 248 nm, τ_F_W_H_M ≤ 25 ns) excimer laser source was used. The deposited structures were characterized from a physical–chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72 h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72 h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. - Highlights: • Novel biological derived HA coatings fabricated by pulsed laser deposition. • Renewable resources • Reinforcement with MgF_2 and MgO improves the HA coatings' bonding strength. • Significant anti-biofilm effect obtained for MgO reinforced HA films. • Alternative low cost solutions for a new generation of dental implants.

  8. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    International Nuclear Information System (INIS)

    Pei, Xibo; Zeng, Yongxiang; He, Rui; Li, Zhongjie; Tian, Lingyang; Wang, Jian; Wan, Qianbing; Li, Xiaoyu; Bao, Hong

    2014-01-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants

  9. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xibo; Zeng, Yongxiang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); He, Rui [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Stomatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015 (China); Li, Zhongjie; Tian, Lingyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Jian, E-mail: fero@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wan, Qianbing, E-mail: pxb1024@hotmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Bao, Hong [Department of Stomatology, Hospital of Chengdu Office of People' s Government of Tibetan Autonomous Region, Chengdu 610000 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants.

  10. Engineered Protein Coatings to Improve the Osseointegration of Dental and Orthopaedic Implants

    Science.gov (United States)

    Raphel, Jordan; Karlsson, Johan; Galli, Silvia; Wennerberg, Ann; Lindsay, Christopher; Haugh, Matthew; Pajarinen, Jukka; Goodman, Stuart B.; Jimbo, Ryo; Andersson, Martin; Heilshorn, Sarah C.

    2016-01-01

    Here we present the design of an engineered, elastin-like protein (ELP) that is chemically modified to enable stable coatings on the surfaces of titanium-based dental and orthopaedic implants by novel photocrosslinking and solution processing steps. The ELP includes an extended RGD sequence to confer bio-signaling and an elastin-like sequence for mechanical stability. ELP thin films were fabricated on cp-Ti and Ti6Al4V surfaces using scalable spin and dip coating processes with photoactive covalent crosslinking through a carbene insertion mechanism. The coatings withstood procedures mimicking dental screw and hip replacement stem implantations, a key metric for clinical translation. They promoted rapid adhesion of MG63 osteoblast-like cells, with over 80% adhesion after 24 hours, compared to 38% adhesion on uncoated Ti6Al4V. MG63 cells produced significantly more mineralization on ELP coatings compared to uncoated Ti6Al4V. Human bone marrow mesenchymal stem cells (hMSCs) had an earlier increase in alkaline phosphatase activity, indicating more rapid osteogenic differentiation and mineral deposition on adhesive ELP coatings. Rat tibia and femur in vivo studies demonstrated that cell-adhesive ELP-coated implants increased bone-implant contact area and interfacial strength after one week. These results suggest that ELP coatings withstand surgical implantation and promote rapid osseointegration, enabling earlier implant loading and potentially preventing micromotion that leads to aseptic loosening and premature implant failure. PMID:26790146

  11. Do Bone Graft and Cracking of the Sclerotic Cavity Improve Fixation of Titanium and Hydroxyapatite-coated Revision Implants in an Animal Model?

    Science.gov (United States)

    Elmengaard, Brian; Baas, Joergen; Jakobsen, Thomas; Kold, Soren; Jensen, Thomas B; Bechtold, Joan E; Soballe, Kjeld

    2017-02-01

    We previously introduced a manual surgical technique that makes small perforations (cracks) through the sclerotic bone shell that typically forms during the process of aseptic loosening ("crack" revision technique). Perforating just the shell (without violating the proximal cortex) can maintain overall bone continuity while allowing marrow and vascular elements to access the implant surface. Because many revisions require bone graft to fill defects, we wanted to determine if bone graft could further increase implant fixation beyond what we have experimentally shown with the crack technique alone. Also, because both titanium (Ti6Al4V) and hydroxyapatite (HA) implant surfaces are used in revisions, we also wanted to determine their relative effectiveness in this model. We hypothesized that both (1) allografted plasma-sprayed Ti6Al4V; and (2) allografted plasma-sprayed HA-coated implants inserted with a crack revision technique have better fixation compared with a noncrack revision technique in each case. Under approval from our Institutional Animal Care and Use Committee, a female canine animal model was used to evaluate the uncemented revision technique (crack, noncrack) using paired contralateral implants while implant surface (Ti6Al4V, HA) was qualitatively compared between the two (unpaired) series. All groups received bone allograft tightly packed around the implant. This revision model includes a cylindrical implant pistoning 500 μm in a 0.75-mm gap, with polyethylene particles, for 8 weeks. This engenders a bone and tissue response representative of the metaphyseal cancellous region of an aseptically loosened component. At 8 weeks, the original implants were revised and followed for an additional 4 weeks. Mechanical fixation was assessed by load, stiffness, and energy to failure when loaded in axial pushout. Histomorphometry was used to determine the amount and location of bone and fibrous tissue in the grafted gap. The grafted crack revision improved

  12. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF{sub 2} or MgO for implants functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, Natalia [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Stan, G.E. [National Institute of Materials Physics, Magurele RO-077125 (Romania); Duta, L. [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Chifiriuc, Mariana Carmen [Department of Microbiology, Faculty of Biology, Bucharest RO-060101 (Romania); Bleotu, Coralia [Stefan S. Nicolau Institute of Virology, 85 Mihai Bravu Avenue, Bucharest RO-030304 (Romania); Sopronyi, M.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Oktar, F.N. [Department of Bioengineering, Faculty of Engineering, Marmara University, Goztepe, Istanbul TR-34722 (Turkey); Advance Nanomaterials Research Laboratory, Marmara University, Goztepe, Istanbul TR-34722 (Turkey); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania)

    2016-02-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF{sub 2} (2 wt.%) or MgO (5 wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ = 248 nm, τ{sub FWHM} ≤ 25 ns) excimer laser source was used. The deposited structures were characterized from a physical–chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72 h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72 h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. - Highlights: • Novel biological derived HA coatings fabricated by pulsed laser deposition. • Renewable resources • Reinforcement with MgF{sub 2} and MgO improves the HA coatings' bonding strength. • Significant anti-biofilm effect obtained for MgO reinforced HA films. • Alternative low cost solutions for a new generation of dental implants.

  13. Vancomycin–chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chi-Chuan [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Lin, Chien-Chung [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Department of Orthopaedic Surgery, Taichung Armed Force General Hospital, 348, Sec. 2, Jhongshan Road, Taiping City, Taichung 411, Taiwan (China); Liao, Jiunn-Wang [Graduate Institute of Veterinary Pathobiology, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Yen, Shiow-Kang, E-mail: skyen@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China)

    2013-05-01

    Through the hydrogen bonds and the deprotonation, the vancomycin–chitosan composite has been originally deposited on Ti4Al4V by electrochemical technology. However, the rapid destruction of the hydrogen bonding between them by polar water molecules during immersion tests revealed 80% drug burst in a few hours. In this study, the post porous hydroxyapatite (HA) coated Ti4Al4V is prepared for the subsequent electrolytic deposition of vancomycin–chitosan composite to control the drug release. As expected, the initial burst is reduced to 55%, followed by a steady release about 20% from day 1 to day 5 and a slower release of the retained 25% after day 6, resulting in bacterial inhibition zone diameter of 30 mm which can last for more than a month in antibacterial tests, compared with the coated specimen without HA gradually loosing inhibition zone after 21 days. Besides, the cell culture indicates that the vancomycin–chitosan/HA composite coated has enhanced the proliferation, the differentiation and the mineralization of the osteoblast-like cell. In general, it is helpful for the osteointegration on permanent implants. Consistently, it effectively provides the prophylaxis and therapy of osteomyelitis according to the results of the rabbit infection animal model. - Highlights: ► The releasing curve of the vancomycin–chitosan/HA composite revealed three periods. ► The drug release sustained one month due to the effect of post porous HA coating. ► The composite coating could treat the osteomyelitis in the rabbit infection model.

  14. The effects of hydroxyapatite coating and bone allograft on fixation of loaded experimental primary and revision implants

    DEFF Research Database (Denmark)

    Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A

    2003-01-01

    We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability...... a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included...

  15. Residual stress in deuterium implanted nominal copper coatings

    International Nuclear Information System (INIS)

    Inal, M. Y.; Alam, M.; Peascoe, R. A.; Watkins, T. R.

    2000-01-01

    The effects of deuterium (D) implantation on the residual stresses in Cu and CuAl 2 phases present in nominal Cu coatings (containing Al) deposited on Al-alloy (Al-6061) substrates were measured using an x-ray diffraction technique. The coatings were deposited by radio frequency magnetron sputtering of a pure Cu target under identical conditions and Al was incorporated in the coatings during growth by diffusion from the substrate. Deuterium was implanted in the coatings at energies of 40 or 40+120 keV with fluences of 1x10 21 , 2x10 21 , or 3x10 21 D + /m 2 . Pole figures of the Cu phase in the coatings prior to and after implantation indicated no effect of implantation on the fibrous texture. Triaxial stress analysis indicated the surface normal stress component to be negligible in Cu and slightly tensile in CuAl 2 under all conditions. Furthermore, under all conditions, the in-plane residual stresses in both phases were found to be compressive and nearly isotropic. The magnitude of the isotropic compressive stress was always higher in CuAl 2 as compared to Cu. The compressive residual stresses in the Cu phase changed only mildly with increasing coating weight, ion energy, and fluence. However, in the CuAl 2 phase the compressive residual stresses changed markedly with increasing ion energy (initial decrease followed by leveling off) and increasing ion fluence (initial decrease followed by an increase), but remained unaffected by increasing coating weight. (c) 2000 American Institute of Physics

  16. Pedicle screws with a thin hydroxyapatite coating for improving fixation at the bone-implant interface in the osteoporotic spine: experimental study in a porcine model.

    Science.gov (United States)

    Ohe, Makoto; Moridaira, Hiroshi; Inami, Satoshi; Takeuchi, Daisaku; Nohara, Yutaka; Taneichi, Hiroshi

    2018-03-30

    OBJECTIVE Instrumentation failure caused by the loosening of pedicle screws (PSs) in patients with osteoporosis is a serious problem after spinal surgery. The addition of a thin hydroxyapatite (HA) surface coating applied by using a sputtering process was reported recently to be a promising method for providing bone conduction around an implant without a significant risk of coating-layer breakage. In this study, the authors evaluated the biomechanical and histological features of the bone-implant interface (BII) of PSs with a thin HA coating in an in vivo porcine osteoporotic spine model. METHODS Three types of PSs (untreated/standard [STPS], sandblasted [BLPS], and HA-coated [HAPS] PSs) were implanted into the thoracic and lumbar spine (T9-L6) of 8 mature Clawn miniature pigs (6 ovariectomized [osteoporosis group] and 2 sham-operated [control group] pigs). The spines were harvested from the osteoporosis group at 0, 2, 4, 8, 12, or 24 weeks after PS placement and from the control group at 0 or 24 weeks. Their bone mineral density (BMD) was measured by peripheral quantitative CT. Histological evaluation of the BIIs was conducted by performing bone volume/tissue volume and bone surface/implant surface measurements. The strength of the BII was evaluated with extraction torque testing. RESULTS The BMD decreased significantly in the osteoporosis group (p < 0.01). HAPSs exhibited the greatest mean extraction peak torque at 8 weeks, and HAPSs and BLPSs exhibited significantly greater mean torque than the STPSs at 12 weeks (p < 0.05). The bone surface/implant surface ratio was significantly higher for HAPSs than for STPSs after 2 weeks (p < 0.05), and bonding between bone and the implant surface was maintained until 24 weeks with no detachment of the coating layer. In contrast, the bone volume/tissue volume ratio was significantly higher for HAPSs than for BLPSs or STPSs only at 4 weeks. CONCLUSIONS Using PSs with a thin HA coating applied using a sputtering process

  17. Tantalum, Niobium and Titanium Coatings for Biocompatibility Improvement of Dental Implants

    Directory of Open Access Journals (Sweden)

    Vajihesadat Mortazavi

    2007-01-01

    Full Text Available Introduction: Metals have a wide range of applications in implant and prosthetic materials in dentistry.Corrosion resistance and biocompatibility of metals should be improved in order to utilizethem as biomaterials. The aim of this work was to prepare metallic coatings on 316L stainless steel dental implants, to evaluate the corrosion characteristics of the uncoated and metallic coated dentalimplants as an indication of biocompatibility and, to compare the effect of the type of the coatings on biocompatibility.Materials and Methods: In this in vitro evaluation, three types of metallic coatings including tantalum, niobium and titanium coatings were compared using a physical vapor deposition process on 316L stainless steel dental implants. Structural characterization techniques including X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis were utilized to investigatethe microstructure and morphology of the coatings. Electrochemical potentiodynamic tests were performed in two types of physiological solutions at 37±1°C in order to determine and compare the corrosioncurrent density and corrosion potential characteristics. The mean values were statistically compared by ANOVA at a 95% level of confidence.Results: the findings showed that all of the three types of metallic coatings had a positive effect on improvement of the corrosion behavior. The coatings could increase the corrosion resistance of 316L stainless steel and this trend was independent of the type of physiological environment.Conclusion: The biocompatible metallic coatings could decrease the corrosion current density and is a distinct advantage for prevention of ion release. Decreasing ion release can improve the biocompatibility of the dental implant, and consequently can prevent tissue damage, tissue inflammation and irritation, and can also lead to obtaining a desirable histopathological response.

  18. Analyses of Biofilm on Implant Abutment Surfaces Coating with Diamond-Like Carbon and Biocompatibility.

    Science.gov (United States)

    Huacho, Patricia Milagros Maquera; Nogueira, Marianne N Marques; Basso, Fernanda G; Jafelicci Junior, Miguel; Francisconi, Renata S; Spolidorio, Denise M P

    2017-01-01

    The aim of this study was to evaluate the surface free energy (SFE), wetting and surface properties as well as antimicrobial, adhesion and biocompatibility properties of diamond-like carbon (DLC)-coated surfaces. In addition, the leakage of Escherichia coli through the abutment-dental implant interface was also calculated. SFE was calculated from contact angle values; R a was measured before and after DLC coating. Antimicrobial and adhesion properties against E. coli and cytotoxicity of DLC with human keratinocytes (HaCaT) were evaluated. Further, the ability of DLC-coated surfaces to prevent the migration of E. coli into the external hexagonal implant interface was also evaluated. A sterile technique was used for the semi-quantitative polymerase chain reaction (semi-quantitative PCR). The surfaces showed slight decreases in cell viability (p0.05). It was concluded that DLC was shown to be a biocompatible material with mild cytotoxicity that did not show changes in R a, SFE, bacterial adhesion or antimicrobial properties and did not inhibit the infiltration of E. coli into the abutment-dental implant interface.

  19. Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2018-04-01

    The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.

  20. Fortifying the Bone-Implant Interface Part 1: An In Vitro Evaluation of 3D-Printed and TPS Porous Surfaces.

    Science.gov (United States)

    MacBarb, Regina F; Lindsey, Derek P; Bahney, Chelsea S; Woods, Shane A; Wolfe, Mark L; Yerby, Scott A

    2017-01-01

    An aging society and concomitant rise in the incidence of impaired bone health have led to the need for advanced osteoconductive spinal implant surfaces that promote greater biological fixation ( e.g. for interbody fusion cages, sacroiliac joint fusion implants, and artificial disc replacements). Additive manufacturing, i.e. 3D-printing, may improve bone integration by generating biomimetic spinal implant surfaces that mimic bone morphology. Such surfaces may foster an enhanced cellular response compared to traditional implant surfacing processes. This study investigated the response of human osteoblasts to additive manufactured (AM) trabecular-like titanium implant surfaces compared to traditionally machined base material with titanium plasma spray (TPS) coated surfaces, with and without a nanocrystalline hydroxyapatite (HA) coating. For TPS-coated discs, wrought Ti6Al4V ELI was machined and TPS-coating was applied. For AM discs, Ti6Al4V ELI powder was 3D-printed to form a solid base and trabecular-like porous surface. The HA-coating was applied via a precipitation dip-spin method. Surface porosity, pore size, thickness, and hydrophilicity were characterized. Initial cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium production of hFOB cells ( n =5 per group) were measured. Cells on AM discs exhibited expedited proliferative activity. While there were no differences in mean ALP expression and calcium production between TPS and AM discs, calcium production on the AM discs trended 48% higher than on TPS discs ( p =0.07). Overall, HA-coating did not further enhance results compared to uncoated TPS and AM discs. Results demonstrate that additive manufacturing allows for controlled trabecular-like surfaces that promote earlier cell proliferation and trends toward higher calcium production than TPS coating. Results further showed that nanocrystalline HA may not provide an advantage on porous titanium surfaces. Additive manufactured porous

  1. Does PEEK/HA Enhance Bone Formation Compared With PEEK in a Sheep Cervical Fusion Model?

    Science.gov (United States)

    Walsh, William R; Pelletier, Matthew H; Bertollo, Nicky; Christou, Chris; Tan, Chris

    2016-11-01

    Polyetheretherketone (PEEK) has a wide range of clinical applications but does not directly bond to bone. Bulk incorporation of osteoconductive materials including hydroxyapatite (HA) into the PEEK matrix is a potential solution to address the formation of a fibrous tissue layer between PEEK and bone and has not been tested. Using in vivo ovine animal models, we asked: (1) Does PEEK-HA improve cortical and cancellous bone ongrowth compared with PEEK? (2) Does PEEK-HA improve bone ongrowth and fusion outcome in a more challenging functional ovine cervical fusion model? The in vivo responses of PEEK-HA Enhanced and PEEK-OPTIMA ® Natural were evaluated for bone ongrowth in the form of dowels implanted in the cancellous and cortical bone of adult sheep and examined at 4 and 12 weeks as well as interbody cervical fusion at 6, 12, and 26 weeks. The bone-implant interface was evaluated with radiographic and histologic endpoints for a qualitative assessment of direct bone contact of an intervening fibrous tissue later. Gamma-irradiated cortical allograft cages were evaluated as well. Incorporating HA into the PEEK matrix resulted in more direct bone apposition as opposed to the fibrous tissue interface with PEEK alone in the bone ongrowth as well as interbody cervical fusions. No adverse reactions were found at the implant-bone interface for either material. Radiography and histology revealed resorption and fracture of the allograft devices in vivo. Incorporating HA into PEEK provides a more favorable environment than PEEK alone for bone ongrowth. Cervical fusion was improved with PEEK-HA compared with PEEK alone as well as allograft bone interbody devices. Improving the bone-implant interface with a PEEK device by incorporating HA may improve interbody fusion results and requires further clinical studies.

  2. Electrodeposited silk coatings for functionalized implant applications

    Science.gov (United States)

    Elia, Roberto

    The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was

  3. Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings

    Directory of Open Access Journals (Sweden)

    Bill G. X. Zhang

    2014-07-01

    Full Text Available Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants.

  4. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants

    International Nuclear Information System (INIS)

    Rigo, E.C.S.; Boschi, A.O.; Yoshimoto, M.; Allegrini, S.; Konig, B.; Carbonari, M.J.

    2004-01-01

    Among several materials used as dental implants, metals present relatively high tensile strengths. Although metals are biotolerable, they do not adhere to bone tissues. On the other hand, bioactive ceramics are known to chemically bind to bone tissues, but they are not enough mechanically resistant to tension stresses. To overcome this drawback, biotolerable metals can be coated with bioactive ceramics. Various methods can be employed for coating ceramic layers on metal substrates, among them ion sputtering, plasma spray, sol-gel, electrodeposition and a biomimetic process [E.C.S. Rigo, L.C. Oliveira, L.A. Santos, A.O. Boschi, R.G. Carrodeguas. Implantes metalicos recobertos com hidroxiapatita. Revista de Engenharia Biomedica, vol. 15 (1999), numeros 1-2, 21-29. Rio de Janeiro]. The aim of this work was to study the effect of the substitution of G glass, employed in the conventional biomimetic method during the nucleation stage, by a solution of sodium silicate (SS) on the chemical and morphological characteristics, and the adhesion of biomimetic coatings deposited on Ti implants. The obtained coatings were analyzed by diffuse reflectance FTIR spectroscopy (DRIFT) and scanning electron microscopy (SEM). Titanium implants were immersed in synthetic body fluid (SBF) and SS. All implants were left inside an incubator at 37 deg. C for 7 days, followed by immersion in 1.5 SBF and taken back to the incubator for additional 6 days at 37 deg. C. The 1.5 SBF were refreshed every 2 days. At the end of the treatment, the implants were washed in distilled and deionized water and dried at room temperature. To check the osseointegration, titanium implants coated with biomimetic method were inserted in rabbit's tibia, remaining there for 8 weeks. During the healing period, polyfluorochrome sequential labeling was inoculated in the rabbits to determine the period of bone remodeling. Results from DRIFT and SEM showed that, for all processing variants employed, a HA coating was

  5. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite

    Science.gov (United States)

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments. PMID:25482413

  6. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite.

    Science.gov (United States)

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments.

  7. Comparison of biological characteristics of mesenchymal stem cells grown on two different titanium implant surfaces

    International Nuclear Information System (INIS)

    Wang Chengyue; Zhao Baohong; Ai Hongjun; Wang Yiwei

    2008-01-01

    This study examined the biological characteristics of mesenchymal stem cells (MSCs) grown on sand-blasted, large-grit, acid-etched (SLA) surface and hydroxyapatite (HA) coating on the SLA (HA/SLA) surface of titanium dental implants. The HA/SLA surfaces of titanium dental implants were formed by the ion beam assisted deposition (IBAD) method. Rabbit bone marrow derived mesenchymal stem cells cultured in vitro were seeded onto the surface of SLA and HA/SLA; the growth states of MSCs on the two samples were observed by a scanning electron microscope; the proliferation index, alkaline phosphatase (ALP) activity, osteocalcin (OCN) content of MSCs and mRNA relative expression level of osteopontin (opn) were compared between two groups. MSCs were found to be easier to adhere to the HA/SLA surface compared to the SLA surface. At the same time, the ALP activity and the OCN content of MSCs grown on the HA/SLA surface were obviously higher, and the relative expression level of opn mRNA was 4.78 times higher than that on the SLA surface. The HA coating formed by the IBAD method on the SLA surface of titanium dental implants significantly improves proliferation and well-differentiated osteoblastic phenotype of MSCs, which indicates a promising method for the surface modification of titanium dental implants

  8. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior

    International Nuclear Information System (INIS)

    Zhao, Changhong; Lu, Xiuzhen; Liu, Johan; Zanden, Carl

    2015-01-01

    To investigate the potential application of graphene oxide (GO) in bone repair, this study is focused on the preparation, characterization and cell behavior of graphene oxide coatings on quartz substrata. GO coatings were prepared on the substrata using a modified dip-coating procedure. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy results demonstrated that the as-prepared coatings in this study were homogeneous and had an average thickness of ∼67 nm. The rapid formation of a hydroxyapatite (HA) layer in the simulated body fluid (SBF) on GO coated substrata at day 14, as proved by SEM and x-ray diffraction (XRD), strongly indicated the bioactivity of coated substrata. In addition, MC3T3-E1 cells were cultured on the coated substrata to evaluate cellular activities. Compared with the non-coated substrata and tissue culture plates, no significant difference was observed on the coated substrata in terms of cytotoxicity, viability, proliferation and apoptosis. However, interestingly, higher levels of alkaline phosphatase (ALP) activity and osteocalcin (OC) secretion were observed on the coated substrata, indicating that GO coatings enhanced cell differentiation compared with non-coated substrata and tissue culture plates. This study suggests that GO coatings had excellent biocompatibility and more importantly promoted MC3T3-E1 cell differentiation and might be a good candidate as a coating material for orthopedic implants. (paper)

  9. Novel Development of Biocompatible Coatings for Bone Implants

    Directory of Open Access Journals (Sweden)

    Nicholas Yue Hou

    2015-10-01

    Full Text Available Prolonged life expectancy also results in an increased need for high-performance orthopedic implants. It has been shown that a compromised tissue-implant interface could lead to adverse immune-responses and even the dislodging of the implant. To overcome these obstacles, our research team has been seeking ways to decrease the risk of faulty tissue-implant interfaces by improving the biocompatibility and the osteo-inductivity of conventional orthopedic implants using ultrafine particle coatings. These particles were enriched with various bioactive additives prior to coating, and the coated biomaterial surfaces exhibited significantly increased biocompatibility and osteoinductivity. Physical assessments firstly confirmed the proper incorporation of the bioactive additives after examining their surface chemical composition. Then, in vitro assays demonstrated the biocompatibility and osteo-inductivity of the coated surfaces by studying the morphology of attached cells and their mineralization abilities. In addition, by quantifying the responses, activities and gene expressions, cellular evaluations confirmed the positive effects of these polymer based bioactive coatings. Consequently, the bioactive ultrafine polymer particles demonstrated their ability in improving the biocompatibility and osteo-inductivity of conventional orthopedic implants. As a result, our research team hope to apply this technology to the field of orthopedic implants by making them more effective medical devices through decreasing the risk of implant-induced immune responses and the loosening of the implant.

  10. The Technology and Properties of Digital Double Pulse Electrodepositing Ni-HA Composite Coating of Bioceramics

    Institute of Scientific and Technical Information of China (English)

    DONG He-yan; WANG Zhou; SHI Gu-guizhi; FU Chuan-qi; CHEN Wei-rong; JIN Zhong-hong; LI Yan

    2004-01-01

    This article discusses and analyses the technology, the surface image, microstructure and ability of digital double pulse electrodepositing Ni-HA composite coatings of bioceramics made on 1Crl8Ni9Ti substrate by SEM ,XRD and so on. The results shows that ( 1 ) the HA particles exit in substrate uniformly; (2) XRD result shows that there are HA peaks at 78. 023 ° ,43. 246°and 73. 120°differently; (3) The microhardnees of the composite coatings is increased with the rise of content of HA particles, and on the same conditions the microhardnees value is greater than that of common non-pulse electrodepositing Ni-HA composite coatings of bioceramics. (4) The grain size of digital double pulse electrodepositing Ni-HA composite coatings of bioceramics is much thinner than that of common D. C.

  11. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    Science.gov (United States)

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A novel graded bioactive high adhesion implant coating

    International Nuclear Information System (INIS)

    Brohede, Ulrika; Zhao, Shuxi; Lindberg, Fredrik; Mihranyan, Albert; Forsgren, Johan; Stromme, Maria; Engqvist, Hakan

    2009-01-01

    One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 deg. C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 deg. C for one week. The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.

  13. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration.

    Science.gov (United States)

    Carradò, A; Perrin-Schmitt, F; Le, Q V; Giraudel, M; Fischer, C; Koenig, G; Jacomine, L; Behr, L; Chalom, A; Fiette, L; Morlet, A; Pourroy, G

    2017-03-01

    The aim of this study was to improve the strength and quality of the titanium-hydroxyapatite interface in order to prevent long-term failure of the implanted devices originating from coating delamination and to test it in an in-vivo model. Ti disks and dental commercial implants were etched in Kroll solution. Thermochemical treatments of the acid-etched titanium were combined with sol-gel hydroxyapatite (HA) coating processes to obtain a nanoporous hydroxyapatite/sodium titanate bilayer. The sodium titanate layer was created by incorporating sodium ions onto the Ti surface during a NaOH alkaline treatment and stabilized using a heat treatment. HA layer was added by dip-coating in a sol-gel solution. The bioactivity was assessed in vitro with murine MC3T3-E1 and human SaOs-2 cells. Functional and histopathological evaluations of the coated Ti implants were performed at 22, 34 and 60days of implantation in a dog lower mandible model. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants was sensitive neither to crack propagation nor to layer delamination. The in vitro results on murine MC3T3-E1 and human SaOs-2 cells confirm the advantage of this coating regarding the capacity of cell growth and differentiation. Signs of progressive bone incorporation, such as cancellous bone formed in contact with the implant over the existing compact bone, were notable as early as day 22. Overall, osteoconduction and osteointegration mean scores were higher for test implants compared to the controls at 22 and 34 days. Nanoporous hydroxyapatite/sodium titanate bilayer improves the in-vivo osteoconduction and osteointegration. It prevents the delamination during the screwing and it could increase HA-coated dental implant stability without adhesive failures. The combination of thermochemical treatments with dip coating is a low-cost strategy. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Presence of Biofilms on Polyurethane-Coated Breast Implants: Preliminary Results.

    Science.gov (United States)

    Rieger, Ulrich M; Djedovic, Gabriel; Pattiss, Alexander; Raschke, Gregor F; Frei, Reno; Pierer, Gerhard; Trampuz, Andrej

    2016-01-01

    Polyurethane-coated breast implants seem to be associated with lower medium- and long-term capsular contracture rates in comparison to textured or smooth implant surfaces. Although the etiology of capsular contracture is uncertain, bacterial biofilms have been suggested to trigger chronic peri-implant inflammation, eventually leading to capsular contracture. It is unknown whether polyurethane-coated implants are less prone to biofilm colonization than other implant surfaces. We extracted data from patient records included in a prospective cohort between 2008 and 2011. All patients who underwent removal of polyurethane-coated implants were included in this current study and screened for presence of biofilms by sonication. In addition, implant- and patient-related data were analyzed. Of the ten included polyurethane-coated breast implants, six had been inserted for reconstructive purposes and four for aesthetic reasons. The median implant indwelling time was 28.3 mo. Overall, sonication cultures were positive in 50% of implants. Propionibacterium acnes and coagulase-negative staphylococci were the predominant pathogens isolated from biofilm cultures. Like other implant surfaces, polyurethane-coated implants are prone to biofilm colonization. Further investigations are needed to determine why capsular contracture rates seem to be lower in polyurethane implants than in other implant surfaces. Notably, in this study, 40% of the implants were explanted from breasts with severe capsular contracture.

  15. Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation.

    Science.gov (United States)

    Mehdikhani-Nahrkhalaji, M; Fathi, M H; Mortazavi, V; Mousavi, S B; Hashemi-Beni, B; Razavi, S M

    2012-02-01

    This study aimed at preparation and in vitro and in vivo evaluation of novel bioactive, biodegradable, and antibacterial nanocomposite coating for the improvement of stem cells attachment and antibacterial activity as a candidate for dental implant applications. Poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) nanocomposite coating was prepared via solvent casting process. The nanoparticle amounts of 10, 15, and 20 weight percent (wt%) were chosen in order to determine the optimum amount of nanoparticles suitable for preparing an uniform coating. Bioactivity and degradation of the coating with an optimum amount of nanoparticles were evaluated by immersing the prepared samples in simulated body fluid and phosphate buffer saline (PBS), respectively. The effect of nanocomposite coating on the attachment and viability of human adipose-derived stem cells (hASCs) was investigated. Kirschner wires (K-wires) of stainless steel were coated with the PBGHA nanocomposite coating, and mechanical stability of the coating was studied during intramedullary implantation into rabbit tibiae. The results showed that using 10 wt% nanoparticles (5 wt% HA and 5 wt% BG) in the nanocomposite could provide the desired uniform coating. The study of in vitro bioactivity showed rapid formation of bone-like apatite on the PBGHA coating. It was degraded considerably after about 60 days of immersion in PBS. The hASCs showed excellent attachment and viability on the coating. PBGHA coating remained stable on the K-wires with a minimum of 96% of the original coating mass. It was concluded that PBGHA nanocomposite coating provides an ideal surface for the stem cells attachment and viability. In addition, it could induce antibacterial activity, simultaneously.

  16. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration — A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Przekora, Agata, E-mail: agata.przekora@umlub.pl [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin (Poland); Palka, Krzysztof [Department of Materials Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland); Ginalska, Grazyna [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin (Poland)

    2016-01-01

    The aim of this work was to compare biomedical potential of chitosan/hydroxyapatite (chit/HA) and novel chitosan/β-1,3-glucan/hydroxyapatite (chit/glu/HA) materials as scaffolds for bone regeneration via characterization of their biocompatibility, porosity, mechanical properties, and water uptake behaviour. Biocompatibility of the scaffolds was assessed in direct-contact with the materials using normal human foetal osteoblast cell line. Cytotoxicity and osteoblast proliferation rate were evaluated. Porosity was assessed using computed microtomography analysis and mechanical properties were determined by compression testing. Obtained results demonstrated that chit/HA scaffold possessed significantly better mechanical properties (compressive strength: 1.23 MPa, Young's modulus: 0.46 MPa) than chit/glu/HA material (compressive strength: 0.26 MPa, Young's modulus: 0.25 MPa). However, addition of bacterial β-1,3-glucan to the chit/HA scaffold improved its flexibility and porosity. Moreover, chit/glu/HA scaffold revealed significantly higher water uptake capability (52.6% after 24 h of soaking) compared to the chit/HA (30.7%) and thus can serve as a very good drug delivery carrier. Chit/glu/HA scaffold was also more favourable to osteoblast survival (near 100% viability after 24-h culture), proliferation, and spreading compared to the chit/HA (63% viability). The chit/glu/HA possesses better biomedical potential than chit/HA scaffold. Nevertheless, poor mechanical properties of the chit/glu/HA limit its application to non-load bearing implantation area. - Highlights: • Chitosan/HA and chit/β-1,3-glucan/HA scaffolds for bone regeneration were compared. • Chit/HA significantly reduced osteoblast viability to 63% compared to chit/glu/HA. • Unlike chit/HA, chit/glu/HA favoured cell adhesion, spreading, and proliferation. • Chit/HA had better compressive strength and Young's modulus than chit/glu/HA. • Chit/glu/HA revealed significantly higher

  17. Silver-Containing Hydroxyapatite Coating Reduces Biofilm Formation by Methicillin-Resistant Staphylococcus aureus In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Masaya Ueno

    2016-01-01

    Full Text Available Biofilm-producing bacteria are the principal causes of infections associated with orthopaedic implants. We previously reported that silver-containing hydroxyapatite (Ag-HA coatings exhibit high antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA. In the present study, we evaluated the effects of Ag-HA coating of implant surfaces on biofilm formation. Titanium disks (14-mm diameter, 1-mm thickness, one surface of which was coated with HA or 0.5%–3.0% Ag-HA with a thermal spraying technique, were used. In vitro, the disks were inoculated with an MRSA suspension containing 4×105 CFU and incubated for 1-2 weeks. In vivo, MRSA-inoculated HA and 3% Ag-HA disks (8.8–10.0 × 108 CFU were implanted subcutaneously on the back of rats for 1–7 days. All disks were subsequently stained with a biofilm dye and observed under a fluorescence microscope, and biofilm coverage rates (BCRs were calculated. The BCRs on the Ag-HA coating were significantly lower than those on the HA coating at all time points in vitro (p<0.05. Similar results were observed in vivo (p<0.001 without argyria. Ag-HA coating reduced biofilm formation by MRSA in vitro and in vivo; therefore, Ag-HA coating might be effective for reducing implant-associated infections.

  18. In vivo osseointegration of dental implants with an antimicrobial peptide coating.

    Science.gov (United States)

    Chen, X; Zhou, X C; Liu, S; Wu, R F; Aparicio, C; Wu, J Y

    2017-05-01

    This study aimed to evaluate the in vivo osseointegration of implants with hydrophobic antimicrobial GL13K-peptide coating in rabbit femoral condyles by micro-CT and histological analysis. Six male Japanese Rabbits (4 months old and weighing 2.5 kg each) were included in this study. Twelve implants (3.75 mm wide, 7 mm long) were randomly distributed in two groups, with six implants in the experimental group coated with GL13K peptide and six implants in the control group without surface coating. Each implant in the test and the control group was randomly implanted in the left or right side of femoral condyles. On one side randomly-selected of the femur, each rabbit received a drill that was left without implant as control for the natural healing of bone. After 3 weeks of healing radiographic evaluation of the implant sites was taken. After 6 weeks of healing, rabbits were sacrificed for evaluation of the short-term osseointegration of the dental implants using digital radiography, micro-CT and histology analysis. To perform evaluation of osseointegration, implant location and group was double blinded for surgeon and histology/radiology researcher. Two rabbits died of wound infection in sites with non-coated implants 2 weeks after surgery. Thus, at least four rabbits per group survived after 6 weeks of healing. The wounds healed without suppuration and inflammation. No implant was loose after 6 weeks of healing. Radiography observations showed good osseointegration after 3 and 6 weeks postoperatively, which proved that the tissues followed a natural healing process. Micro-CT reconstruction and analysis showed that there was no statistically significant difference (P > 0.05) in volume of bone around the implant between implants coated with GL13K peptide and implants without coating. Histomorphometric analysis also showed that the mineralized bone area was no statistically different (P > 0.05) between implants coated with GL13K peptide and

  19. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review.

    Science.gov (United States)

    Graziani, Gabriela; Bianchi, Michele; Sassoni, Enrico; Russo, Alessandro; Marcacci, Maurilio

    2017-05-01

    One of the main critical aspects behind the failure or success of an implant resides in its ability to fast bond with the surrounding bone. To boost osseointegration, the ideal implant material should exhibit composition and structure similar to those of biological apatite. To this aim, the most common approach is to coat the implant surface with a coating of hydroxyapatite (HA), resembling the main component of mineralized tissues. However, bone apatite is a non-stoichiometric, multi-substituted poorly-crystalline apatite, containing significant amounts of foreign ions, with high biological relevance. Ion-substituted HAs can be deposited by so called "wet methods", which are however poorly reproducible and hardly industrially feasible; at the same time bioactive coatings realized by plasma assisted method, interesting for industrial applications, are generally made of stoichiometric (i.e. un-substituted) HA. In this work, the literature concerning plasma-assisted deposition methods used to deposit ion-substituted HA was reviewed and the last advances in this field discussed. The ions taken into exam are those present in mineralized tissues and possibly having biological relevance. Notably, literature about this topic is scarce, especially relating to in vivo animal and clinical trials; further on, available studies evaluate the performance of substituted coatings from different points of view (mechanical properties, bone growth, coating dissolution, etc.) which hinders a proper evaluation of the real efficacy of ion-doped HA in promoting bone regeneration, compared to stoichiometric HA. Moreover, results obtained for plasma sprayed coatings (which is the only method currently employed for deposition at the industrial scale) were collected and compared to those of novel plasma-assisted techniques, that are expected to overcome its limitations. Data so far available on the topic were discussed to highlight advantages, limitations and possible perspectives of these

  20. Porous Structure Characterization in Titanium Coating for Surgical Implants

    Directory of Open Access Journals (Sweden)

    M.V. Oliveira

    2002-09-01

    Full Text Available Powder metallurgy techniques have been used to produce controlled porous structures, such as the porous coatings applied for dental and orthopedic surgical implants, which allow bony tissue ingrowth within the implant surface improving fixation. This work presents the processing and characterization of titanium porous coatings of different porosity levels, processed through powder metallurgy techniques. Pure titanium sponge powders were used for coating and Ti-6Al7Nb powder metallurgy rods were used as substrates. Characterization was made through quantitative metallographic image analysis using optical light microscope for coating porosity data and SEM analysis for evaluation of the coating/substrate interface integrity. The results allowed optimization of the processing parameters in order to obtain porous coatings that meet the requirements for use as implants.

  1. The efficacy of poly-d,l-lactic acid- and hyaluronic acid-coated bone substitutes on implant fixation in sheep

    Directory of Open Access Journals (Sweden)

    Christina M. Andreasen

    2017-01-01

    Conclusion: This study demonstrates that HA/βTCP granules coated with PDLLA and HyA have similar bone ingrowth and implant fixation as those with allograft, and with mechanical properties resembling those of allograft in advance, they may be considered as alternative substitute materials for bone formation in sheep.

  2. Effects of gold coating on experimental implant fixation

    DEFF Research Database (Denmark)

    Zainali, Kasra; Danscher, Gorm; Jakobsen, Thomas

    2009-01-01

    Insertions of orthopedic implants are traumatic procedures that trigger an inflammatory response. Macrophages have been shown to liberate gold ions from metallic gold. Gold ions are known to act in an antiinflammatory manner by inhibiting cellular NF-kappa B-DNA binding and suppressing I-kappa B......-kinase activation. The present study investigated whether gilding implant Surfaces augmented early implant osseointegration and implant fixation by its modulatory effect on the local inflammatory response. Ion release was traced by autometallographic silver enhancement. Gold-coated cylindrical porous coated Ti6Al4V...

  3. Characterization of gas tunnel type plasma sprayed hydroxyapatite-nanostructure titania composite coatings

    Science.gov (United States)

    Yugeswaran, S.; Kobayashi, A.; Ucisik, A. Hikmet; Subramanian, B.

    2015-08-01

    Hydroxyapatite (HA) can be coated onto metal implants as a ceramic biocompatible coating to bridge the growth between implants and human tissue. Meanwhile many efforts have been made to improve the mechanical properties of the HA coatings without affecting its bioactivity. In the present study, nanostructure titania (TiO2) was mixed with HA powder and HA-nanostructure TiO2 composite coatings were produced by gas tunnel type plasma spraying torch under optimized spraying conditions. For this purpose, composition of 10 wt% TiO2 + 90 wt% HA, 20 wt% TiO2 + 80 wt% HA and 30 wt% TiO2 + 70 wt% HA were selected as the feedstock materials. The phase, microstructure and mechanical properties of the coatings were characterized. The obtained results validated that the increase in weight percentage of nanostructure TiO2 in HA coating significantly increased the microhardness, adhesive strength and wear resistance of the coatings. Analysis of the in vitro bioactivity and cytocompatibility of the coatings were done using conventional simulated body fluid (c-SBF) solution and cultured green fluorescent protein (GFP) labeled marrow stromal cells (MSCs) respectively. The bioactivity results revealed that the composite coating has bio-active surface with good cytocompatibility.

  4. Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants

    Science.gov (United States)

    Wang, Y.; Khor, K. A.; Cheang, P.

    1998-03-01

    Biomedical requirements in a prosthesis are often complex and diverse in nature. Biomaterials for implants have to display a wide range of adaptability to suit the various stages of the bio-integration process of any foreign material into the human body. Often, a combination of materials is needed. The preparation of a functionally graded bioceramic coating composed of essentially calcium phosphate compounds is explored. The coating is graded in accordance to adhesive strength, bioactivity, and bioresorbability. The bond coat on the Ti-6Al-4V stub is deposited with a particle range of the hydroxyapatite (HA) that will provide a high adhesive strength and bioactivity but have poor bioresorption properties. The top coat, however, is composed of predominantly α-tricalcium phosphate (α-TCP) that is highly bioresorbable. This arrangement has the propensity of allowing accelerated bio-integration of the coating by the body tissues as the top layer is rapidly resorbed, leaving the more bioactive intermediate layer to facilitate the much needed bioactive properties for proper osteoconduction. The processing steps and problems are highlighted, as well as the results of post-spray heat treatment.

  5. XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings

    International Nuclear Information System (INIS)

    McLeod, Kate; Kumar, Sunil; Smart, Roger St.C.; Dutta, Naba; Voelcker, Nicolas H.; Anderson, Gail I.; Sekel, Ron

    2006-01-01

    This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BP. XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP, confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells

  6. Improved dental implant drill durability and performance using heat and wear resistant protective coatings.

    Science.gov (United States)

    Er, Nilay; Alkan, Alper; İlday, Serim; Bengu, Erman

    2018-03-02

    Dental implant drilling procedure is an essential step for implant surgery and frictional heat appeared in bone during drilling is a key factor affecting the success of an implant. The aim of this study is to increase the dental implant drill lifetime and performance using heat- and wear-resistant protective coatings hence to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling procedure was performed on a bovine femoral cortical bone under the conditions mimicking clinical practice, where the tests were performed both under water-assisted cooling and under the conditions without any cooling was applied. Coated drill performances and durabilities were compared to that of three commonly used commercial drills which surfaces are made from namely; zirconia, black diamond and stainless steel. Protective coatings with boron nitride, titanium boron nitride and diamond-like carbon have significantly improved drill performance and durability. Especially boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even without any cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat and wear resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can reflect positively on surgical procedure and healing period afterwards. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  7. The in vivo response to a novel Ti coating compared with polyether ether ketone: evaluation of the periphery and inner surfaces of an implant.

    Science.gov (United States)

    Walsh, William Robert; Pelletier, Matthew H; Christou, Chris; He, Jiawei; Vizesi, Frank; Boden, Scott D

    2018-02-26

    Increasing bone ongrowth and ingrowth of polyether ether ketone (PEEK) interbody fusion devices has the potential to improve clinical outcomes. This study evaluated the in vivo response of promoting new bone growth and bone apposition with NanoMetalene (NM) compared with PEEK alone in a cancellous implantation site with an empty aperture. This is a randomized control animal study. Implants and funding for this study were provided by SeaSpine (60,000 USD). Cylindrical dowels with two apertures were prepared as PEEK with a sub-micron layer of the titanium (NM). The titanium coating was applied over the entire implant (Group 1) or just the apertures (Group 2). Polyether ether ketone implants with no coating served as controls (Group 3). Implants were placed in the cancellous bone of the distal femur or proximal tibia with no graft material placed in the apertures in eight adult sheep. Bone ongrowth to the surface of the implant and ingrowth into the apertures was assessed at 4 and 8 weeks after surgery with micro-computed tomography (CT) and undecalcified histology. The apertures in the implants were notably empty in the PEEK group at 4 and 8 weeks. In contrast, new bone formation into the apertures was found in samples coated with NM even though no graft material was placed into the defect. The bone growing into the aperture tracked along the titanium layer. Apertures with the titanium coating demonstrated significantly more bone by micro-CT qualitative grading compared with PEEK with average bone coverage scores of Group 1 (NM) 1.62±0.89, Group 2 (NM apertures only) 1.62±0.77, and Group 3 (PEEK) 0.43±0.51, respectively, at 4 weeks (p<.01) and Group 1 (NM) 1.79±1.19, Group 2 (NM apertures only) 1.98±1.18, and Group 3 (PEEK) 0.69±0.87, respectively, at 8 weeks (p<.05). The amount of bone in the apertures (ingrowth) quantified using the volumetric data from the micro-CT supported an overall increase in bone volume inside the apertures with the titanium coating

  8. Novel selenium-doped hydroxyapatite coatings for biomedical applications.

    Science.gov (United States)

    Rodríguez-Valencia, C; López-Álvarez, M; Cochón-Cores, B; Pereiro, I; Serra, J; González, P

    2013-03-01

    Nowadays there is a short-term need of investigating in orthopedic implants with a greater functionality, including an improved osseointegration and also antibacterial properties. The coating of metallic implants with hydroxyapatite (HA) remains to be the main proposal, but superior quality HA coatings with compositions closer to natural bone apatites, including carbonates, trace elements are required. Selenium is an essential nutrient in biological tissues and, at the same time, it also presents antibacterial properties. A pioneering study on the fabrication of selenium-doped carbonated hydroxyapatite (iHA:Se) coatings by Pulsed Laser Deposition (PLD) is presented. Different proportions of selenium were incorporated to obtain the iHA:Se coatings. Their physicochemical characterization, performed by SEM/EDS, FTIR, FT-Raman, Interferometric Profilometry and XPS, revealed typical columnar growth of HA in globular aggregates and the efficient incorporation of selenium into the HA coatings by the, most probably, substitution of SeO(3)(2-) groups in the CO(3)(2-) sites. Biological evaluation illustrated the absence of cytotoxicity when an amount of 0.6 at.% of Se was added to the iHA:Se coatings and excellent proliferation of the MC3T3-E1 preosteoblasts. Antibacterial properties were also proved with the inhibition of P. aeruginosa and S. aureus from establishing bacterial biofilms. Copyright © 2012 Wiley Periodicals, Inc.

  9. Vitamin E Phosphate Coating Stimulates Bone Deposition in Implant-related Infections in a Rat Model.

    Science.gov (United States)

    Lovati, Arianna B; Bottagisio, Marta; Maraldi, Susanna; Violatto, Martina B; Bortolin, Monica; De Vecchi, Elena; Bigini, Paolo; Drago, Lorenzo; Romanò, Carlo L

    2018-06-01

    Implant-related infections are associated with impaired bone healing and osseointegration. In vitro antiadhesive and antibacterial properties and in vivo antiinflammatory effects protecting against bone loss of various formulations of vitamin E have been demonstrated in animal models. However, to the best of our knowledge, no in vivo studies have demonstrated the synergistic activity of vitamin E in preventing bacterial adhesion to orthopaedic implants, thus supporting the bone-implant integration. The purpose of this study was to test whether a vitamin E phosphate coating on titanium implants may be able to reduce (1) the bacterial colonization of prosthetic implants and (2) bone resorption and osteomyelitis in a rat model of Staphylococcus aureus-induced implant-related infection. Twelve rats were bilaterally injected in the femurs with S aureus UAMS-1-Xen40 and implanted with uncoated or vitamin E phosphate-coated titanium Kirschner wires without local or systemic antibiotic prophylaxis. Eight rats represented the uninfected control group. A few hours after surgery, two control and three infected animals died as a result of unexpected complications. With the remaining rats, we assessed the presence of bacterial contamination with qualitative bioluminescence imaging and Gram-positive staining and with quantitative bacterial count. Bone changes in terms of resorption and osteomyelitis were quantitatively analyzed through micro-CT (bone mineral density) and semiquantitatively through histologic scoring systems. Six weeks after implantation, we found only a mild decrease in bacterial count in coated versus uncoated implants (Ti versus controls: mean difference [MD], -3.705; 95% confidence interval [CI], -4.416 to -2.994; p E-treated group compared with uncoated implants (knee joint: MD, -11.88; 95% CI, -16.100 to -7.664; p E-coated nails compared with the uncoated nails. These preliminary findings indicate that vitamin E phosphate implant coatings can exert a

  10. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  11. Comparison between alkali heat treatment and sprayed hydroxyapatite coating on thermally-sprayed rough Ti surface in rabbit model: Effects on bone-bonding ability and osteoconductivity.

    Science.gov (United States)

    Kawai, Toshiyuki; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Tanaka, Masashi; Akiyama, Haruhiko; Nakamura, Takashi; Matsuda, Shuichi

    2015-07-01

    In this study, we investigated the effect of different surface treatments (hydroxyapatite (HA) coating, alkali heat treatment, and no treatment) on the ability of bone to bond to a rough arc-sprayed Ti metal surface, using rabbit models. The bone-to-implant contacts for untreated, HA-coated, and alkali heat-treated implants were 21.2%, 72.1%, and 33.8% at 4 weeks, 21.8%, 70.9%, and 30.0% at 8 weeks, and 16.3%, 70.2%, and 29.9% at 16 weeks, respectively (n = 8). HA -coated implants showed significantly higher bone-to-implant contacts than the untreated and alkali heat-treated implants at all the time point, whereas alkali heat-treated implants showed significantly higher bone-to-implant contacts than untreated implants at 4 and 16 weeks. The failure loads in a mechanical test for untreated, HA coated, alkali heat-treated plates were 65.4 N, 70.7 N, and 90.8 N at 4 weeks, 76.1 N, 64.7 N, and 104.8 N at 8 weeks and 88.7 N, 92.6 N, and 118.5 N at 16 weeks, respectively (n = 8). The alkali heat-treated plates showed significantly higher failure loads than HA-coated plates at 8 and 16 weeks. The difference between HA-coated plates and untreated plates were not statistically significant at any time point. Thus HA coating, although it enables high bone-to-implant contact, may not enhance the bone-bonding properties of thermally-sprayed rough Ti metal surfaces. In contrast, alkali heat treatment can be successfully applied to thermally-sprayed Ti metal to enhance both bone-to-implant contact and bone-bonding strength. © 2014 Wiley Periodicals, Inc.

  12. A biodegradable gentamicin-hydroxyapatite-coating for infection prophylaxis in cementless hip prostheses

    Directory of Open Access Journals (Sweden)

    D Neut

    2015-01-01

    Full Text Available A degradable, poly (lactic-co-glycolic acid (PLGA, gentamicin-loaded prophylactic coating for hydroxyapatite (HA-coated cementless hip prostheses is developed with similar antibacterial efficacy as offered by gentamicin-loaded cements for fixing traditional, cemented prostheses in bone. We describe the development pathway, from in vitro investigation of antibiotic release and antibacterial properties of this PLGA-gentamicin-HA-coating in different in vitro models to an evaluation of its efficacy in preventing implant-related infection in rabbits. Bone in-growth in the absence and presence of the coating was investigated in a canine model. The PLGA-gentamicin-HA-coating showed high-burst release, with antibacterial efficacy in agar-assays completely disappearing after 4 days, minimising risk of inducing antibiotic resistance. Gentamicin-sensitive and gentamicin-resistant staphylococci were killed by the antibiotic-loaded coating, in a simulated prosthesis-related interfacial gap. PLGA-gentamicin-HA-coatings prevented growth of bioluminescent staphylococci around a miniature-stem mounted in bacterially contaminated agar, as observed using bio-optical imaging. PLGA-gentamicin-HA-coated pins inserted in bacterially contaminated medullary canals in rabbits caused a statistically significant reduction in infection rates compared to HA-coated pins without gentamicin. Bone ingrowth to PLGA-gentamicin-HA-coated pins, in condylar defects of Beagle dogs was not impaired by the presence of the degradable, gentamicin-loaded coating. In conclusion, the PLGA-gentamicin-HA-coating constitutes an effective strategy for infection prophylaxis in cementless prostheses.

  13. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  14. Osseoconductivity of a Specific Streptavidin-Biotin-Fibronectin Surface Coating of Biotinylated Titanium Implants - A Rabbit Animal Study.

    Science.gov (United States)

    Kämmerer, Peer W; Lehnert, Michael; Al-Nawas, Bilal; Kumar, Vinay V; Hagmann, Sebastien; Alshihri, Abdulmonem; Frerich, Bernhard; Veith, Michael

    2015-10-01

    Biofunctionalized implant surfaces may accelerate bony integration and increase long-term stability. The aim of the study was to evaluate the osseous reaction toward biomimetic titanium implants surfaces coated with quasicovalent immobilized fibronectin in an in vivo animal model. A total of 84 implants (uncoated [control 1, n = 36], streptavidin-biotin coated [test 1, n = 24], streptavidin-biotin-fibronectin coated [test 2, n = 24]) were inserted 1 mm supracortically in the proximal tibia of 12 rabbits. The samples were examined after 3 and 6 weeks. Total bone-implant contact (tBIC; %), bone-implant contact in the cortical (cBIC; %) and in the spongious bone (sBIC; %) as well as the percentage of linear bone fill (PLF; %) were evaluated. After 3 weeks, streptavidin-biotin-fibronectin implants had a significant higher sBIC (p = .043) and PLF (p = .007) compared with the uncoated samples. After 6 weeks, this difference was significant for tBIC (p = .016) and cBIC (p biotin-coated implants showed less bone growth at both time points of all examined parameters when compared with their counterparts (all p biotin-fibronectin system on smooth surface titanium shows a beneficial faster osseous healing in vivo. Besides, an antifouling effect of the streptavidin-biotin coating was proven. © 2015 Wiley Periodicals, Inc.

  15. Porous, Dexamethasone-loaded polyurethane coatings extend performance window of implantable glucose sensors in vivo.

    Science.gov (United States)

    Vallejo-Heligon, Suzana G; Brown, Nga L; Reichert, William M; Klitzman, Bruce

    2016-01-01

    Continuous glucose sensors offer the promise of tight glycemic control for insulin dependent diabetics; however, utilization of such systems has been hindered by issues of tissue compatibility. Here we report on the in vivo performance of implanted glucose sensors coated with Dexamethasone-loaded (Dex-loaded) porous coatings employed to mediate the tissue-sensor interface. Two animal studies were conducted to (1) characterize the tissue modifying effects of the porous Dex-loaded coatings deployed on sensor surrogate implants and (2) investigate the effects of the same coatings on the in vivo performance of Medtronic MiniMed SOF-SENSOR™ glucose sensors. The tissue response to implants was evaluated by quantifying macrophage infiltration, blood vessel formation, and collagen density around implants. Sensor function was assessed by measuring changes in sensor sensitivity and time lag, calculating the Mean Absolute Relative Difference (MARD) for each sensor treatment, and performing functional glucose challenge test at relevant time points. Implants treated with porous Dex-loaded coatings diminished inflammation and enhanced vascularization of the tissue surrounding the implants. Functional sensors with Dex-loaded porous coatings showed enhanced sensor sensitivity over a 21-day period when compared to controls. Enhanced sensor sensitivity was accompanied with an increase in sensor signal lag and MARD score. These results indicate that Dex-loaded porous coatings were able to elicit an attenuated tissue response, and that such tissue microenvironment could be conducive towards extending the performance window of glucose sensors in vivo. In the present article, a coating to extend the functionality of implantable glucose sensors in vivo was developed. Our study showed that the delivery of an anti-inflammatory agent with the presentation of micro-sized topographical cues from coatings may lead to improved long-term glucose sensor function in vivo. We believe that

  16. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats.

    Science.gov (United States)

    Diefenbeck, M; Schrader, C; Gras, F; Mückley, T; Schmidt, J; Zankovych, S; Bossert, J; Jandt, K D; Völpel, A; Sigusch, B W; Schubert, H; Bischoff, S; Pfister, W; Edel, B; Faucon, M; Finger, U

    2016-09-01

    Implant related infection is one of the most feared and devastating complication associated with the use of orthopaedic implant devices. Development of anti-infective surfaces is the main strategy to prevent implant contamination, biofilm formation and implant related osteomyelitis. A second concern in orthopaedics is insufficient osseointegration of uncemented implant devices. Recently, we reported on a macroporous titanium-oxide surface (bioactive TiOB) which increases osseointegration and implant fixation. To combine enhanced osseointegration and antibacterial function, the TiOB surfaces were, in addition, modified with a gentamicin coating. A rat osteomyelitis model with bilateral placement of titanium alloy implants was employed to analyse the prophylactic effect of gentamicin-sodiumdodecylsulfate (SDS) and gentamicin-tannic acid coatings in vivo. 20 rats were randomly assigned to four groups: (A) titanium alloy; PBS inoculum (negative control), (B) titanium alloy, Staphylococcus aureus inoculum (positive control), (C) bioactive TiOB with gentamicin-SDS and (D) bioactive TiOB plus gentamicin-tannic acid coating. Contamination of implants, bacterial load of bone powder and radiographic as well as histological signs of implant-related osteomyelitis were evaluated after four weeks. Gentamicin-SDS coating prevented implant contamination in 10 of 10 tibiae and gentamicin-tannic acid coating in 9 of 10 tibiae (infection prophylaxis rate 100% and 90% of cases, respectively). In Group (D) one implant showed colonisation of bacteria (swab of entry point and roll-out test positive for S. aureus). The interobserver reliability showed no difference in the histologic and radiographic osteomyelitis scores. In both gentamicin coated groups, a significant reduction of the histological osteomyelitis score (geometric mean values: C = 0.111 ± 0.023; D = 0.056 ± 0.006) compared to the positive control group (B: 0.244 ± 0.015; p < 0.05) was observed. The

  17. Effect of implant design and bioactive glass coating on biomechanical properties of fiber-reinforced composite implants.

    Science.gov (United States)

    Ballo, Ahmed M; Akca, Eralp; Ozen, Tuncer; Moritz, Niko; Lassila, Lippo; Vallittu, Pekka; Närhi, Timo

    2014-08-01

    This study aimed to evaluate the influence of implant design and bioactive glass (BAG) coating on the response of bone to fiber-reinforced composite (FRC) implants. Three different FRC implant types were manufactured for the study: non-threaded implants with a BAG coating; threaded implants with a BAG coating; and threaded implants with a grit-blasted surface. Thirty-six implants (six implants for each group per time point) were installed in the tibiae of six pigs. After an implantation period of 4 and 12 wk, the implants were retrieved and prepared for micro-computed tomography (micro-CT), push-out testing, and scanning electron microscopy analysis. Micro-CT demonstrated that the screw-threads and implant structure remained undamaged during the installation. The threaded FRC/BAG implants had the highest bone volume after 12 wk of implantation. The push-out strengths of the threaded FRC/BAG implants after 4 and 12 wk (463°N and 676°N, respectively) were significantly higher than those of the threaded FRC implants (416°N and 549°N, respectively) and the nonthreaded FRC/BAG implants (219°N and 430°N, respectively). Statistically significant correlation was found between bone volume and push-out strength values. This study showed that osseointegrated FRC implants can withstand the static loading up to failure without fracture, and that the addition of BAG significantly improves the push-out strength of FRC implants. © 2014 Eur J Oral Sci.

  18. A comparative physico-chemical study of chlorapatite and hydroxyapatite: from powders to plasma sprayed thin coatings.

    Science.gov (United States)

    Demnati, I; Grossin, D; Combes, C; Parco, M; Braceras, I; Rey, C

    2012-10-01

    Due to their bioactivity and osteoconductivity, hydroxyapatite (HA) plasma sprayed coatings have been widely developed for orthopedic uses. However, the thermodynamic instability of HA leads frequently to a mixture of phases which limit the functional durability of the coating. This study investigates the plasma spraying of chlorapatite (ClA) powder, known to melt without decomposition, onto pure titanium substrates using a low energy plasma spray system (LEPS). Pure ClA powder was prepared by a solid gas reaction at 950 °C and thermogravimetric analysis showed the good thermal stability of ClA powder in the range 30-1400 °C compared to that of the HA powder. Characterization of ClA coating showed that ClA had a very high crystalline ratio and no other crystalline phase was detected in the coating. HA and ClA coatings composition, microstructure and in vitro bioactivity potential were studied, compared and discussed. In vitro SBF test on HA and ClA coatings revealed the formation of a poorly crystalline apatite on the coating surface suggesting that we could expect a good osteoconductivity especially for the ClA coating prepared by the LEPS system.

  19. Calcium phosphate implants coatings as carriers for BMP-2

    NARCIS (Netherlands)

    Liu, Y.; He, J.F.; Hunziker, E.B.

    2009-01-01

    The osteoconductivity of dental implants can be improved by coating them with a layer of calcium phosphate (CaP), which can be rendered osteoinductive by functionalizing it with an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2). In the present study, we wished to compare the

  20. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  1. Polyurethane-Coated Breast Implants Revisited: A 30-Year Follow-Up

    Directory of Open Access Journals (Sweden)

    Nikki Castel

    2015-03-01

    Full Text Available BackgroundPolyurethane coating of breast implants has been shown to reduce capsular contracture in short-term follow-up studies. This 30-year study is the longest examination of the use of polyurethane-coated implants and their correlation with capsular contracture.MethodsThis study evaluates the senior surgeon's (F.D.P. experience with the use of polyurethane-coated implants in aesthetic breast augmentation in 382 patients over 30 years. Follow-up evaluations were conducted for six months after surgery. After the six-month follow-up period, 76 patients returned for reoperation. The gross findings, histology, and associated capsular contracture were noted at the time of explantation.ResultsNo patient during the six-month follow-up period demonstrated capsular contracture. For those who underwent reoperation for capsular contracture, Baker II/III contractures were noted nine to 10 years after surgery and Baker IV contractures were noted 12 to 21 years after surgery. None of the explanted implants had macroscopic evidence of polyurethane, which was only found during the first five years after surgery. The microscopic presence of polyurethane was noted in all capsules up to 30 years after the original operation.ConclusionsAn inverse correlation was found between the amount of polyurethane coating on the implant and the occurrence of capsular contracture. Increasingly severe capsular contracture was associated with a decreased amount of polyurethane coating on the surface of the implants. No contracture occurred in patients whose implants showed incomplete biodegradation of polyurethane, as indicated by the visible presence of polyurethane coating. We recommend research to find a non-toxic, non-biodegradable synthetic material as an alternative to polyurethane.

  2. Functionally graded bioactive coatings: From fabrication to testing

    Science.gov (United States)

    Foppiano, Silvia

    Every year about half a million Americans undergo total joint replacement surgery of some kind. This number is expected to steadily increase in the future. About 20% of these patients will need a revision surgery because of implant failure, with a significant increase in health care cost. Current implant materials for load bearing applications must be strong enough to support the loads involved in daily activities, and bioinert, to limit reactivity in the body that may cause inflammatory and other adverse reactions. Metal alloys are typically used as materials for load bearing implants and rely on mechanical interlocking to achieve fixation which can be improved by using bone cements. To improve implant osteointegration, metal implants have been coated with a bone-like mineral: hydroxyapatite (HA). The plasma spray technique is commonly used to apply the HA coating. Such implants do not require the use of bone cement. Plasma sprayed HA coated implants are FDA approved and currently on the market, but their properties are not reproducible or reliable. Thus, coating delamination can occur. Our research group developed a novel family of bioactive glasses which were enameled onto titanium alloy using a functionally graded approach. We stratified the coating with different glass compositions to fulfill different functions. We coupled a first glass layer, with a good CTE match to the alloy, with a second layer of bioactive glass obtaining a functionally graded bioactive coating (FGC). In this thesis for the first time the cytocompatibility of novel bioactive glasses, and their functionally graded coatings on Ti6Al4V, was studied with an in vitro bone model (MC3T3-E1.4 mouse preosteblast cells). The novel bioactive glasses are cytocompatible and no compositional change is required. The fabrication process is reproducible, introduces a small (average 6 vol%) amount of crystallization, which does not significantly affect bioactivity in SBF as tested. The coatings are

  3. One-stage exchange with antibacterial hydrogel coated implants provides similar results to two-stage revision, without the coating, for the treatment of peri-prosthetic infection.

    Science.gov (United States)

    Capuano, Nicola; Logoluso, Nicola; Gallazzi, Enrico; Drago, Lorenzo; Romanò, Carlo Luca

    2018-03-16

    Aim of this study was to verify the hypothesis that a one-stage exchange procedure, performed with an antibiotic-loaded, fast-resorbable hydrogel coating, provides similar infection recurrence rate than a two-stage procedure without the coating, in patients affected by peri-prosthetic joint infection (PJI). In this two-center case-control, study, 22 patients, treated with a one-stage procedure, using implants coated with an antibiotic-loaded hydrogel [defensive antibacterial coating (DAC)], were compared with 22 retrospective matched controls, treated with a two-stage revision procedure, without the coating. At a mean follow-up of 29.3 ± 5.0 months, two patients (9.1%) in the DAC group showed an infection recurrence, compared to three patients (13.6%) in the two-stage group. Clinical scores were similar between groups, while average hospital stay and antibiotic treatment duration were significantly reduced after one-stage, compared to two-stage (18.9 ± 2.9 versus 35.8 ± 3.4 and 23.5 ± 3.3 versus 53.7 ± 5.6 days, respectively). Although in a relatively limited series of patients, our data shows similar infection recurrence rate after one-stage exchange with DAC-coated implants, compared to two-stage revision without coating, with reduced overall hospitalization time and antibiotic treatment duration. These findings warrant further studies in the possible applications of antibacterial coating technologies to treat implant-related infections. III.

  4. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    International Nuclear Information System (INIS)

    Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm 2 /μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C gr , TiC and TiO x . • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  5. Cinnamon Oil and Chitosan Coating on Orthopaedic Implant Surface for Prevention of Staphylococcus Epidermidis Biofilm Formation

    Directory of Open Access Journals (Sweden)

    R Magetsari

    2014-11-01

    Full Text Available S. Epidermidis is among the most frequently isolated microorganisms found in -infection related to implanted devices and the formation of biofilm will be more resistantcompared to the planktonic form. This study was carried out determine the effect of coating on stainless steel orthopaedic implants surfaces with cinnamon oil and chitosan as bioadhesive to prevent biofilms formation of S. Epidermidis.The rod shaped stainless steel 316 L orthopaedic implant with 5 mm diameters was coated 2 times using a mixture of cinnamon oil and chitosan 3% and 2% respectively with serial concentration of cinnamon from 0.125% to 2%. The coated implants were then put into tubes that contained bacterial suspension and incubated. Subsequently, the implants were washed with PBS solution followed by MTT soulution and isopropanol acid solution that related to biofilm formation. The results were expressed in numbers which represents the absorbance level at ELISA readings on 575 nm (A575 wavelength.The stainless steel implant coated with chitosan and cinnamon oil 2% and 1% has lower absorbance level compared with the absorbance level of S.Epidermidis biofilm only. This study showed that mixture of cinnamon oil and chitosan coated on the surface of stainless steel orthopaedic implant has an effect against S.Epidermidis biofilm formation with minimum cinnamon oil concentration of 1%.

  6. Effect of hydroxyapatite coating on risk of revision after primary total hip arthroplasty in younger patients: findings from the Danish Hip Arthroplasty Registry

    DEFF Research Database (Denmark)

    Paulsen, Aksel; Pedersen, Alma B; Johnsen, Søren P

    2007-01-01

    BACKGROUND: The effect of hydroxyapatite (HA) on implant survival in the medium and long term is uncertain. We studied the effect of HA coating of uncemented implants on the risk of cup and stem revision in primary total hip arthroplasty (THA). PATIENTS AND METHODS: Using the Danish Hip Arthropla......BACKGROUND: The effect of hydroxyapatite (HA) on implant survival in the medium and long term is uncertain. We studied the effect of HA coating of uncemented implants on the risk of cup and stem revision in primary total hip arthroplasty (THA). PATIENTS AND METHODS: Using the Danish Hip...

  7. The Role of Bioceramics Coating in Dental Implant Reliability and Success

    Directory of Open Access Journals (Sweden)

    Mortazavi V

    2000-05-01

    Full Text Available Characterization of bioceramics coating and evaluation of the influence of kind of coating on"nthe implantation has been developed in recent years."nDifferent bioceramics coating like calcium phosphate, hydroxyapatite, fluorapatite and bioglass were"ncoated on dental and orthopedic implants. In-vitro and in-vivo experiments were done for evolution of"nimplant success and reliability and study of factors, which may influence the results."nResearches indicate that different bioceramic coating may affect the bone bonding mechanism."nBiodegredable calcium phosphate coating can be resorbed and be replaced with bone tissues."nHydroxyapatite cause earlier stabilization of dental implant in surrounding bone (biological fixation and"nreduce healing time. Bioglass can protect substrate and provide interfacial attachment to bone.

  8. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Tian, Bo [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Lei, Yong; Ke, Qin-Fei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Zhu, Zhen-An, E-mail: zhuzhenan2006@126.com [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Guo, Ya-Ping, E-mail: ypguo@shnu.edu.cn [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China)

    2016-10-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  9. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    International Nuclear Information System (INIS)

    Chen, Wei; Tian, Bo; Lei, Yong; Ke, Qin-Fei; Zhu, Zhen-An; Guo, Ya-Ping

    2016-01-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  10. Hydroxyapatite coating does not improve uncemented stem survival after total hip arthroplasty!

    DEFF Research Database (Denmark)

    Hailer, N. P.; Lazarinis, S.; MaKela, K. T.

    2015-01-01

    Background and purpose - It is still being debated whether HA coating of uncemented stems used in total hip arthroplasty (THA) improves implant survival. We therefore investigated different uncemented stem brands, with and without HA coating, regarding early and long-term survival. Patients and m...

  11. Elders with implant overdentures: a 22-year clinical report.

    Science.gov (United States)

    Alsabeeha, Nabeel H M

    2012-09-01

    To report on the long-term survival and prosthodontic maintenance of two edentulous adults with mandibular overdentures supported by hydroxyapatite (HA)-coated implants. Mandibular implant overdentures are a successful treatment option with positive impact on the quality of life of elderly edentulous adults. Long-term survival of the implants requires continued rigorous prosthodontic maintenance. Two elderly edentulous adults with mandibular overdentures supported by 2 HA-coated implants were presented for prosthodontic rehabilitation after 22 years of placement. The implants were osseo-integrated and surviving at presentation based on accepted criteria. The mandibular implant overdentures suffered recurrent loss of retention and stability. Prosthodontic treatment involving the replacement of defective attachment systems and construction of new sets of mandibular implant overdentures opposing complete maxillary dentures is presented. The long-term survival of mandibular 2-implant overdentures requires continued prosthodontic maintenance. A conservative approach in the rehabilitation of two older edentulous adults with mandibular 2-implant overdentures was described including proper selection of attachment systems. © 2012 The Gerodontology Society and John Wiley & Sons A/S.

  12. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes.

    Science.gov (United States)

    Chu, Chenyu; Deng, Jia; Man, Yi; Qu, Yili

    2017-09-01

    Collagen is the main component of extracellular matrix (ECM) with desirable biological activities and low antigenicity. Collagen materials have been widely utilized in guided bone regeneration (GBR) surgery due to its abilities to maintain space for hard tissue growth. However, pure collagen lacks optimal mechanical properties. In our previous study, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, with better biological activities and enhanced mechanical properties, may promote osteoblast proliferation, but their effect on osteoblast differentiation is not very significant. Nanohydroxyapatite (nano-HA) is the main component of mineral bone, which possesses exceptional bioactivity properties including good biocompatibility, high osteoconductivity and osteoinductivity, non-immunogenicity and non-inflammatory behavior. Herein, by analyzing the physical and chemical properties as well as the effects on promoting bone regeneration, we have attempted to present a novel EGCG-modified collagen membrane with nano-HA coating, and have found evidence that the novel collagen membrane may promote bone regeneration with a better surface morphology, without destroying collagen backbone. To evaluate the surface morphologies, chemical and mechanical properties of pure collagen membranes, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, nano-HA coated collagen membranes, nano-HA coated EGCG-collagen membranes, (ii) to evaluate the bone regeneration promoted by theses membranes. In the present study, collagen membranes were divided into 4 groups: (1) untreated collagen membranes (2) EGCG cross-linked collagen membranes (3) nano-HA modified collagen membranes (4) nano-HA modified EGCG-collagen membranes. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to evaluate surface morphologies and chemical properties, respectively. Mechanical properties were determined by differential scanning calorimeter (DSC

  13. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  14. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings.

    Science.gov (United States)

    Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J; Rodriguez-Emmenegger, Cesar

    2017-06-12

    Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.

  15. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL

    Science.gov (United States)

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Teske, Michael; Beyerbach, Martin; Kampmann, Andreas; Escobar, Hugo Murua; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2015-01-01

    Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating. PMID:26068455

  16. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Veronesi, Francesca [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Giavaresi, Gianluca; Fini, Milena [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Department Rizzoli RIT, Via Di Barbiano 1/10, Bologna 40136 (Italy); Longo, Giovanni [CNR Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Ioannidu, Caterina Alexandra; Scotto d' Abusco, Anna [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Superti, Fabiana; Panzini, Gianluca [Dept. of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 Roma (Italy); Misiano, Carlo [Romana Film Sottili, Anzio, Roma (Italy); Palattella, Alberto [Dept. of Clinical Sciences and Translational Medicine, Tor Vergata University, Via Montpellier 1, 00133 Roma (Italy); Selleri, Paolo; Di Girolamo, Nicola [Exotic Animals Clinic, Via S. Giovannini 53, 00137 Roma (Italy); Garbarino, Viola [Dept. of Radiology, S.M. Goretti Hospital, Via G. Reni 2, 04100 Latina (Italy); Politi, Laura [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Scandurra, Roberto, E-mail: roberto.scandurra@uniroma1.it [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy)

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm{sup 2}/μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C{sub gr}, TiC and TiO{sub x}. • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  17. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique

    International Nuclear Information System (INIS)

    Choy, Man Tik; Tang, Chak Yin; Chen, Ling; Wong, Chi Tak; Tsui, Chi Pong

    2014-01-01

    Failure of the bone–implant interface in a joint prosthesis is a main cause of implant loosening. The introduction of a bioactive substance, hydroxyapatite (HA), to a metallic bone–implant may enhance its fixation on human bone by encouraging direct bone bonding. Ti6Al4V/TiC/HA composites with a reproducible porous structure (porosity of 27% and pore size of 6–89 μm) were successfully fabricated by a rapid microwave sintering technique. This method allows the biocomposites to be fabricated in a short period of time under ambient conditions. Ti6Al4V/TiC/HA composites exhibited a compressive strength of 93 MPa, compressive modulus of 2.9 GPa and microhardness of 556 HV which are close to those of the human cortical bone. The in vitro preosteoblast MC3T3-E1 cells cultured on the Ti6Al4V/TiC/HA composite showed that the composite surface could provide a biocompatible environment for cell adhesion, proliferation and differentiation without any cytotoxic effects. This is among the first attempts to study the in vivo performance of load-bearing Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites in a live rabbit. The results indicated that the Ti6Al4V/TiC/HA composite had a better bone–implant interface compared with the Ti6Al4V/TiC implant. Based on the microstructural features, the mechanical properties, and the in vitro and in vivo test results from this study, the Ti6Al4V/TiC/HA composites have the potential to be employed in load-bearing orthopedic applications. - Highlights: • Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites were fabricated by microwave sintering. • Ti6Al4V/TiC/HA exhibited mechanical properties close to human cortical bone. • Ti6Al4V/TiC/HA could provide a biocompatible environment for bone cell growth. • Ti6Al4V/TiC/HA showed a better bone–implant interface than Ti6Al4V/TiC. • Ti6Al4V/TiC/HA could be used for bone replacement under load-bearing conditions

  18. Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guoxin, E-mail: tanguoxin@126.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Zhou, Lei [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China); Tan, Ying [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ni, Guoxin [Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 (China); Liao, Jingwen; Yu, Peng; Chen, Xiaofeng [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China)

    2013-08-15

    Immobilizing organic–inorganic hybrid composites onto the implant surface is a promising strategy to improve host acceptance of the implant. The objective of this present study was to obtain a unique macroporous titanium-surface with the organic–mineral composite coatings consisting of gelatin methacrylate hydrogel (GelMA) and hydroxyapatite (HA). A 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) layer was first coated onto the titanium surface, and surface was then covalently functionalized with GelMA using a photochemical method. Mineralization of the GelMA coating on the titanium surface was subsequently carried out by a biomimetic method. After 3-day mineralization, a large number of mineral phases comprising spherical amorphous nanoparticles were found randomly deposited inside GelMA matrix. The resulting mineralized hydrogel composites exhibited a unique rough surface of macroporous structure. The structure of the prepared GelMA/HA composite coating was studied by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectra (EDS), attenuated total refraction Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Water contact angle measurement revealed the hydrophilicity properties of composite coatings. GelMA/HA on titanium after the TMSPMA treatment is very stable when tested in vitro with a PBS solution at 37 °C, due to the role of TMSPMA as a molecular bridge. It was expected that the macroporous GelMA/HA composite coatings might potentially promote and accelerate titanium (Ti)-based implants osseointegration for bone repair and regeneration.

  19. Preparation, characterization and in vitro response of bioactive coatings on polyether ether ketone.

    Science.gov (United States)

    Durham, John W; Allen, Matthew J; Rabiei, Afsaneh

    2017-04-01

    Polyether ether ketone (PEEK) is a highly heat-resistant thermoplastic with excellent strength and elastic modulus similar to human bone, making it an attractive material for orthopedic implants. However, the hydrophobic surface of PEEK implants induces fibrous encapsulation which is unfavorable for stable implant anchorage. In this study, PEEK was coated via ion-beam-assisted deposition (IBAD) using a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to improve osseointegration. Microstructural analysis of the coatings showed a dense, uniform columnar grain structure in the YSZ layer and no delamination from the substrate. The HA layer was found to be amorphous and free of porosities in its as-deposited state. Subsequent heat treatment via microwave energy followed by autoclaving crystallized the HA layer, confirmed by SEM and XRD analysis. An in vitro study using MC3T3 preosteoblast cells showed improved bioactivity in heat-treated sample groups. Cell proliferation, differentiation, and mineralization were analyzed by MTT assay and DNA content, osteocalcin expression, and Alizarin Red S (AR-S) content, respectively. Initial cell growth was increased, and osteogenic maturation and mineralization were accelerated most on coatings that underwent a combined microwave and autoclave heat treatment process as compared to uncoated PEEK and amorphous HA surfaces. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 560-567, 2017. © 2015 Wiley Periodicals, Inc.

  20. In vivo comparative property study of the bioactivity of coated Mg–3Zn–0.8Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jin' e [School of Materials Science and Engineering, Tianjin University of Technology, 300384 Tianjin (China); Wang, Jingbo; Jiang, Hongfeng [Tianjin Hospital, 300211 Tianjin (China); Chen, Minfang, E-mail: mfchentj@126.com [School of Materials Science and Engineering, Tianjin University of Technology, 300384 Tianjin (China); Bi, Yanze; Liu, Debao [School of Materials Science and Engineering, Tianjin University of Technology, 300384 Tianjin (China)

    2013-08-01

    In this in vivo study, degradable Mg–3Zn–0.8Zr cylinders were coated with a calcium phosphorus compound (Ca–P) layer or a magnesium fluoride (MgF{sub 2}) layer; uncoated Mg–3Zn–0.8Zr alloy was used as a control. These were then implanted intramedullary into the femora of nine Japanese big-ear white rabbits for implantation periods of 1, 2 and 3 months. During the postoperative observation period with radiographic examination, the results showed that the MgF{sub 2}-coated implants were tolerated well compared to the Ca–P-coated implants and uncoated implants. Moreover, large amounts of cells, rich fibrillar collagen and calcium and phosphorus products were found on the surface of the MgF{sub 2}-coated implants using scanning electron microscopy. Micro-computed tomography further showed a slight decrease in volume (23.85%) and a greater increase in new bone mass (new bone volume fraction = 11.56%, tissue mineral density = 248.81 mg/cm{sup 3}) for the MgF{sub 2}-coated implants in comparison to uncoated and Ca–P compound-coated implants after 3 months of implantation. - Highlights: • Microstructure of uncoated, Ca–P and MgF{sub 2} coated Mg–3Zn–0.8Zr implants were analyzed. • The degradation, evolution and biocompatibility for implants were tested and analyzed. • New bone formation was further analyzed by using micro-computed tomography. • MgF{sub 2} coating is a potential candidate for biodegradable magnesium implant materials.

  1. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique.

    Science.gov (United States)

    Choy, Man Tik; Tang, Chak Yin; Chen, Ling; Wong, Chi Tak; Tsui, Chi Pong

    2014-09-01

    Failure of the bone-implant interface in a joint prosthesis is a main cause of implant loosening. The introduction of a bioactive substance, hydroxyapatite (HA), to a metallic bone-implant may enhance its fixation on human bone by encouraging direct bone bonding. Ti6Al4V/TiC/HA composites with a reproducible porous structure (porosity of 27% and pore size of 6-89 μm) were successfully fabricated by a rapid microwave sintering technique. This method allows the biocomposites to be fabricated in a short period of time under ambient conditions. Ti6Al4V/TiC/HA composites exhibited a compressive strength of 93 MPa, compressive modulus of 2.9 GPa and microhardness of 556 HV which are close to those of the human cortical bone. The in vitro preosteoblast MC3T3-E1 cells cultured on the Ti6Al4V/TiC/HA composite showed that the composite surface could provide a biocompatible environment for cell adhesion, proliferation and differentiation without any cytotoxic effects. This is among the first attempts to study the in vivo performance of load-bearing Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites in a live rabbit. The results indicated that the Ti6Al4V/TiC/HA composite had a better bone-implant interface compared with the Ti6Al4V/TiC implant. Based on the microstructural features, the mechanical properties, and the in vitro and in vivo test results from this study, the Ti6Al4V/TiC/HA composites have the potential to be employed in load-bearing orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium

    Science.gov (United States)

    Shi, Jue; Liu, Yu; Wang, Ying; Zhang, Jing; Zhao, Shifang; Yang, Guoli

    2015-11-01

    The prevention and control of peri-implantitis is a challenge in dental implant surgery. Dental implants with sustained antimicrobial coating are an ideal way of preventing peri-implantitis. This study reports development of a non- immunotoxicity multilayered coating on a titanium surface that had sustained antimicrobial activity and limited early biofilm formation. In this study, the broad spectrum AMP, Tet213, was linked to collagen IV through sulfo-SMPB and has been renamed as AMPCol. The multilayer AMPCol coatings were assembled on smooth titanium surfaces using a LBL technique. Using XPS, AFM, contact angle analysis, and QCM, layer-by-layer accumulation of coating thickness was measured and increased surface wetting compared to controls was confirmed. Non-cytotoxicity to HaCaT and low erythrocyte hemolysis by the AMPCol coatings was observed. In vivo immunotoxicity assays showed IP administration of AMPCol did not effect serum immunoglobulin levels. This coating with controlled release of AMP decreased the growth of both a Gram-positive aerobe (Staphylococcus aureus) and a Gram-negative anaerobe (Porphyromonas gingivalis) up to one month. Early S. aureus biofilm formation was inhibited by the coating. The excellent long-term sustained antimicrobial activity of this multilayer coating is a potential method for preventing peri-implantitis through coated on the neck of implants before surgery.

  3. Doxycycline-loaded coaxial nanofiber coating of titanium implants enhances osseointegration and inhibits Staphylococcus aureus infection.

    Science.gov (United States)

    Song, Wei; Seta, Joseph; Chen, Liang; Bergum, Christopher; Zhou, Zhubin; Kanneganti, Praveen; Kast, Rachel E; Auner, Gregory W; Shen, Ming; Markel, David C; Ren, Weiping; Yu, Xiaowei

    2017-07-05

    Few studies have been reported that focus on developing implant surface nanofiber (NF) coating to prevent infection and enhance osseointegration by local drug release. In this study, coaxial doxycycline (Doxy)-doped polycaprolactone/polyvinyl alcohol (PCL/PVA) NFs were directly deposited on a titanium (Ti) implant surface during electrospinning. The interaction of loaded Doxy with both PVA and PCL NFs was characterized by Raman spectroscopy. The bonding strength of Doxy-doped NF coating on Ti implants was confirmed by a stand single-pass scratch test. The improved implant osseointegration by PCL/PVA NF coatings in vivo was confirmed by scanning electron microscopy, histomorphometry and micro computed tomography (μCT) at 2, 4 and 8 weeks after implantation. The bone contact surface (%) changes of the NF coating group (80%) is significantly higher than that of the no NF group (coating effectively inhibited bacterial infection and enhanced osseointegration in an infected (Staphylococcus aureus) tibia implantation rat model. Doxy released from NF coating inhibited bacterial growth up to 8 weeks in vivo. The maximal push-in force of the Doxy-NF coating (38 N) is much higher than that of the NF coating group (6.5 N) 8 weeks after implantation (p coating doped with Doxy and/or other drugs have great potential in enhancing implant osseointegration and preventing infection.

  4. In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants

    Science.gov (United States)

    Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone. PMID:23483914

  5. In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants.

    Science.gov (United States)

    Yu, Jiangming; Li, Kai; Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.

  6. In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants.

    Directory of Open Access Journals (Sweden)

    Jiangming Yu

    Full Text Available The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I, osteocalcin, insulin-like growth factor-I (IGF-I, and transforming growth factor-β1 (TGF-β1. The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.

  7. Study of different biocomposite coatings on Ti alloy by a subsonic thermal spraying technique

    Energy Technology Data Exchange (ETDEWEB)

    Li Muqin [Provincial Key Laboratory of Biomaterials, Jiamusi University, Heilongjiang Province, 154007 (China); Zhang Rui [College of Stomatology, Jiamusi University, Heilongjiang Province, 154003 (China); Wang Jianping [College of Stomatology, Jiamusi University, Heilongjiang Province, 154003 (China); Yang Shiqin [State Key Laboratory Advanced Welding Production Technology, Harbin Institute of Technology, 150001 (China)

    2007-03-01

    A subsonic thermal spraying technique (STS) was used to make different biocomposite coatings on titanium alloys for preparing three kinds of implants: 8Ti2G, HA and 8H2B, respectively. The implants were embedded in a region of jaw of dogs whose teeth were pulled out three months previously. The dogs, in two groups, were killed 30 days and 90 days, respectively, after they were operated on. Osteointegration between the implants and host bone was investigated by x-ray, histology and the SEM technique. The results showed that the three kinds of coatings all exhibited good biocompatibility and synostosis, but their osteointegration capability showed a difference and decreased in the sequence of 8H2B, HA and 8Ti2G. The activity of coating, which promoted the reactions between implants and bone tissue, was further increased by the addition of bioglass in the 8H2B coating. Subsequently, chemical bonding was formed, and the osteointegration strength was increased. The study provided a new approach to prepare biocomposite coatings. The 8H2B implants, which formed an integral functional biocomposite coating on Ti alloys, showed a better osteointegration capability with bioactivity and pore gradient variation. A theoretical base was provided for the biocomposite coating application.

  8. Graphene-reinforced calcium silicate coatings for load-bearing implants.

    Science.gov (United States)

    Xie, Youtao; Li, Hongqing; Zhang, Chi; Gu, Xin; Zheng, Xuebin; Huang, Liping

    2014-04-01

    Owing to the superior mechanical properties and low coefficient of thermal expansion, graphene has been widely used in the reinforcement of ceramics. In the present study, various ratios of graphene (0.5 wt%, 1.5 wt% and 4 wt%) were reinforced into calcium silicate (CS) coatings for load-bearing implant surface modification. Surface characteristics of the graphene/calcium silicate (GC) composite coatings were characterized by scanning electron microscopy. Results show that the graphene plates (less than 4 wt% in the coatings) were embedded in the CS matrix homogeneously. The surfaces of the coatings showed a hierarchical hybrid nano-/microstructure, which is believed to be beneficial to the behaviors of the cell and early bone fixation of the implants. Wear resistance measured by a pin-on-disc model exhibited an obvious enhancement with the adoption of graphene plates. The weight losses of the GC coatings decreased with the increase of graphene content. However, too high graphene content (4 wt% or more) made the composite coatings porous and the wear resistance decreased dramatically. The weight loss was only 1.3 ± 0.2 mg for the GC coating containing 1.5 wt% graphene (denoted as GC1.5) with a load of 10 N and sliding distance of 500 m, while that of the pure CS coating reached up to 28.6 ± 0.5 mg. In vitro cytocompatibility of the GC1.5 coating was evaluated using a human marrow stem cell (hMSC) culture system. The proliferation and alkaline phosphatase, osteopontin and osteocalcin (OC) osteogenesis-related gene expression of the cells on the GC1.5 coating did not deteriorate with the adoption of graphene. Conversely, even better adhesion of the hMSCs was observed on the GC1.5 coating than on the pure CS coating. All of the results indicate that the GC1.5 coating is a good candidate for load-bearing implants.

  9. Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle

    Science.gov (United States)

    Guillot, R.; Pignot-Paintrand, I.; Lavaud, J.; Decambron, A.; Bourgeois, E.; Josserand, V.; Logeart-Avramoglou, D.; Viguier, E.; Picart, C.

    2016-01-01

    The aim of this study was to evaluate the osseointegration of titanium implants (Ti-6Al-4V, noted here TA6V) and poly(etheretherketone) PEEK implants induced by a BMP-2-delivering surface coating made of polyelectrolyte multilayer films. The in vitro bioactivity of the polyelectrolyte film-coated implants was assessed using the alkaline phosphatase assay. BMP-2-coated TA6V and PEEK implants with a total dose of 9.3 µg of BMP-2 were inserted into the femoral condyles of New Zealand white rabbits and compared to uncoated implants. Rabbits were sacrificed 4 and 8 weeks after implantation. Histomorphometric analyses on TA6V and PEEK implants and microcomputed tomography on PEEK implants revealed that the bone-to-implant contact and bone area around the implants were significantly lower for the BMP-2-coated implants than for the bare implants. This was confirmed by scanning electron microscopy imaging. This difference was more pronounced at 4 weeks in comparison to the 8-week time point. However, bone growth inside the hexagonal upper hollow cavity of the screws was higher in the case of the BMP-2 coated implants. Overall, this study shows that a high dose of BMP-2 leads to localized and temporary bone impairment, and that the dose of BMP-2 delivered at the surface of an implant needs to be carefully optimized. PMID:26965394

  10. Effect of trehalose coating on basic fibroblast growth factor release from tailor-made bone implants.

    Science.gov (United States)

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Suzuki, Shigeki; Mochizuki, Manabu; Nishimura, Ryohei; Chung, Ung-il; Sasaki, Nobuo

    2011-12-01

    Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (Pbone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.

  11. Antimicrobial particulate silver coatings on stainless steel implants for fracture management

    Energy Technology Data Exchange (ETDEWEB)

    DeVasConCellos, Paul; Bose, Susmita [W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA (United States); Beyenal, Haluk [School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA (United States); Bandyopadhyay, Amit, E-mail: amitband@wsu.edu [W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA (United States); Zirkle, Lewis G. [Surgical Implant Generation Network (SIGN), Richland, WA (United States)

    2012-07-01

    We have used particulate silver coating on stainless steel to prevent in vivo bacterial infection. Stainless steel is commonly used as an implant material for fracture management. The antimicrobial use of silver has been well documented and studied, therefore the novelty of this research is the use of a particulate coating as well as facing the real world challenges of a fracture repair implant. The variable parameters for applying the coating were time of deposition, silver solution concentration, voltage applied, heat treatment temperature between 400 and 500 Degree-Sign C and time. The resultant coating is shown to be non-toxic to human osteoblasts using an MTT assay for proliferation and SEM images for morphology. In vitro silver release studies of various treatments were done using simulated body fluid. The bactericidal effects were tested by challenging the coatings with Pseudomonas aeruginosa in a bioreactor and compared against uncoated stainless steel. A 13-fold reduction in bacteria was observed at 24 h and proved to be statistically significant. - Highlights: Black-Right-Pointing-Pointer Processing of particulate silver coating that are strongly adherent on SS surface. Black-Right-Pointing-Pointer Optimized the amount of silver that is sufficient to reduce bacterial colonization but non-toxic to human bone tissue. Black-Right-Pointing-Pointer The adhesion strength of silver was sufficient to survive industrial sterilization steps used for fracture management devices.

  12. Antimicrobial particulate silver coatings on stainless steel implants for fracture management

    International Nuclear Information System (INIS)

    DeVasConCellos, Paul; Bose, Susmita; Beyenal, Haluk; Bandyopadhyay, Amit; Zirkle, Lewis G.

    2012-01-01

    We have used particulate silver coating on stainless steel to prevent in vivo bacterial infection. Stainless steel is commonly used as an implant material for fracture management. The antimicrobial use of silver has been well documented and studied, therefore the novelty of this research is the use of a particulate coating as well as facing the real world challenges of a fracture repair implant. The variable parameters for applying the coating were time of deposition, silver solution concentration, voltage applied, heat treatment temperature between 400 and 500 °C and time. The resultant coating is shown to be non-toxic to human osteoblasts using an MTT assay for proliferation and SEM images for morphology. In vitro silver release studies of various treatments were done using simulated body fluid. The bactericidal effects were tested by challenging the coatings with Pseudomonas aeruginosa in a bioreactor and compared against uncoated stainless steel. A 13-fold reduction in bacteria was observed at 24 h and proved to be statistically significant. - Highlights: ► Processing of particulate silver coating that are strongly adherent on SS surface. ► Optimized the amount of silver that is sufficient to reduce bacterial colonization but non-toxic to human bone tissue. ► The adhesion strength of silver was sufficient to survive industrial sterilization steps used for fracture management devices.

  13. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects.

    Science.gov (United States)

    Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-12-22

    For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  14. Osseointegration and biocompatibility of different metal implants - a comparative experimental investigation in sheep

    Science.gov (United States)

    2012-01-01

    Background In the present study, 4 different metallic implant materials, either partly coated or polished, were tested for their osseointegration and biocompatibility in a pelvic implantation model in sheep. Methods Materials to be evaluated were: Cobalt-Chrome (CC), Cobalt-Chrome/Titanium coating (CCTC), Cobalt-Chrome/Zirconium/Titanium coating (CCZTC), Pure Titanium Standard (PTST), Steel, TAN Standard (TANST) and TAN new finish (TANNEW). Surgery was performed on 7 sheep, with 18 implants per sheep, for a total of 63 implants. After 8 weeks, the specimens were harvested and evaluated macroscopically, radiologically, biomechanically (removal torque), histomorphometrically and histologically. Results Cobalt-Chrome screws showed significantly (p = 0.031) lower removal torque values than pure titanium screws and also a tendency towards lower values compared to the other materials, except for steel. Steel screws showed no significant differences, in comparison to cobalt-chrome and TANST, however also a trend towards lower torque values than the remaining materials. The results of the fluorescence sections agreed with those of the biomechanical test. Histomorphometrically, there were no significant differences of bone area between the groups. The BIC (bone-to-implant-contact), used for the assessment of the osseointegration, was significantly lower for cobalt-chrome, compared to steel (p = 0.001). Steel again showed a lower ratio (p = 0.0001) compared to the other materials. Conclusion This study demonstrated that cobalt-chrome and steel show less osseointegration than the other metals and metal-alloys. However, osseointegration of cobalt-chrome was improved by zirconium and/or titanium based coatings (CCTC, TANST, TAN, TANNEW) being similar as pure titanium in their osseointegrative behavior. PMID:22400715

  15. In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants

    International Nuclear Information System (INIS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Razavi, Seyed Mohammad; Heidari, Fariba; Manshaei, Maziar; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Highlights: • In vitro biocompatibility of biodegradable Mg alloy was improved by diopside coating. • In vivo biocompatibility of biodegradable Mg alloy was improved by diopside coating. • Degradation behavior of biodegradable Mg alloy was improved by diopside coating. - Abstract: In order to improve the corrosion resistance and bioactivity of a biodegradable magnesium alloy, we have recently prepared a nanostructured diopside (CaMgSi 2 O 6 ) coating on AZ91 magnesium alloy through a combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method (reported elsewhere). In this work, we performed a detailed biocompatibility analysis of the implants made by this material and compared their performance with those of the uncoated and micro arc oxidized magnesium implants. The biocompatibility evaluation of samples was performed by culturing L-929 cells and in vivo animal study, including implantation of samples in greater trochanter of rabbits, radiography and histological examinations. The results from both the in vitro and in vivo studies indicated that the diopside/MAO coated magnesium implant significantly enhanced cell viability, biodegradation resistance and new bone formation compared with both the uncoated and the micro-arc oxidized magnesium implants. Our data provides an example of how the proper surface treatment of magnesium implants can overcome their drawbacks in terms of high degradation rate and gas bubble formation under physiological conditions

  16. Bone response to a titanium aluminium nitride coating on metallic implants.

    Science.gov (United States)

    Freeman, C O; Brook, I M

    2006-05-01

    The design, surface characteristics and strength of metallic implants are dependant on their intended use and clinical application. Surface modifications of materials may enable reduction of the time taken for osseointegration and improve the biological response of bio-mechanically favourable metals and alloys. The influence of a titanium aluminium nitride (TAN) coating on the response of bone to commercially pure titanium and austenitic 18/8 stainless steel wire is reported. TAN coated and plain rods of stainless steel and commercially pure titanium were implanted into the mid-shaft of the femur of Wistar rats. The femurs were harvested at four weeks and processed for scanning electron and light microscopy. All implants exhibited a favourable response in bone with no evidence of fibrous encapsulation. There was no significant difference in the amount of new bone formed around the different rods (osseoconduction), however, there was a greater degree of shrinkage separation of bone from the coated rods than from the plain rods (p = 0.017 stainless steel and p = 0.0085 titanium). TAN coating may result in reduced osseointegration between bone and implant.

  17. In vitro performance of Ag-incorporated hydroxyapatite and its adhesive porous coatings deposited by electrostatic spraying.

    Science.gov (United States)

    Gokcekaya, Ozkan; Webster, Thomas J; Ueda, Kyosuke; Narushima, Takayuki; Ergun, Celaletdin

    2017-08-01

    Bacterial infection of implanted materials is a significant complication that might require additional surgical operations for implant retrieval. As an antibacterial biomaterial, Ag-containing hydroxyapatite (HA) may be a solution to reduce the incidences of implant associated infections. In this study, pure, 0.2mol% and 0.3mol% Ag incorporated HA powders were synthesized via a precipitation method. Colloidal precursor dispersions prepared from these powders were used to deposit porous coatings onto titanium and stainless steel substrates via electrostatic spraying. The porous coating layers obtained with various deposition times and heat treatment conditions were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Scratch tests were conducted to assess the adhesion strength of the coating. Antibacterial activity of Ag-incorporated HA was tested towards Escherichia coli (E. coli) at various incubation times. Osteoblast adhesion on Ag-incorporated HA was evaluated to assess biocompatibility. Improvement in adhesion strength of the coating layer was observed after the heat treatment process due to mutual ionic diffusion at the interface. The Ag-incorporated HA killed all viable E. coli after 24h of incubation, whereas no antibacterial activity was detected with pure HA. In addition, in vitro cell culture tests demonstrated osteoblast adhesion similar to pure HA, which indicated good cytocompatibility. In summary, results of this study provided significant promise for the future study of Ag-incorporated HA for numerous medical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Similarities and differences in coatings for magnesium-based stents and orthopaedic implants

    Directory of Open Access Journals (Sweden)

    Jun Ma

    2014-07-01

    Full Text Available Magnesium (Mg-based biodegradable materials are promising candidates for the new generation of implantable medical devices, particularly cardiovascular stents and orthopaedic implants. Mg-based cardiovascular stents represent the most innovative stent technology to date. However, these products still do not fully meet clinical requirements with regards to fast degradation rates, late restenosis, and thrombosis. Thus various surface coatings have been introduced to protect Mg-based stents from rapid corrosion and to improve biocompatibility. Similarly, different coatings have been used for orthopaedic implants, e.g., plates and pins for bone fracture fixation or as an interference screw for tendon-bone or ligament-bone insertion, to improve biocompatibility and corrosion resistance. Metal coatings, nanoporous inorganic coatings and permanent polymers have been proved to enhance corrosion resistance; however, inflammation and foreign body reactions have also been reported. By contrast, biodegradable polymers are more biocompatible in general and are favoured over permanent materials. Drugs are also loaded with biodegradable polymers to improve their performance. The key similarities and differences in coatings for Mg-based stents and orthopaedic implants are summarized.

  19. Transforming growth factor-beta1 adsorbed to tricalciumphosphate coated implants increases peri-implant bone remodeling

    DEFF Research Database (Denmark)

    Lin, M.; Overgaard, S; Glerup, H

    2001-01-01

    inserted bilaterally into the femoral condyles of 10 skeletally mature mongrel dogs. The implants were initially surrounded by a 2 mm gap. Implants with 0.3 microg rhTGF-beta1 were compared with implants without growth factor. The dogs were sacrificed after six weeks. Bone remodeling was evaluated...... by histomorphometry on Goldner-stained undecalcified sections. The bone volume in the gap was increased significantly from 17.6% in the control group to 25.6% in the rhTGF-beta1 group (p = 0.03). Also bone surface was increased in the rhTGF-beta1 group. The osteoclast covered surfaces were increased from 3.......6% in the control group to 5.9% in the rhTGF-beta1 group (p = 0.02). In the surrounding trabecular bone no significant changes in bone remodeling parameters was demonstrated. This study suggests that rhTGF-beta1 adsorbed onto TCP-ceramic coated implants accelerates repair activity in the newly formed bone close...

  20. Development of Bioactive Ceramic Coating on Titanium Alloy substrate for Biomedical Application Using Dip Coating Method

    Science.gov (United States)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.

    2017-08-01

    Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.

  1. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    International Nuclear Information System (INIS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  2. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.

    Science.gov (United States)

    Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan

    2016-05-01

    Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs

  3. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    Science.gov (United States)

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  4. Hydroxyapatite coating on stainless steel by biomimetic method

    International Nuclear Information System (INIS)

    Dias, V.M.; Maia Filho, A.L.M.; Silva, G.; Sousa, E. de; Cardoso, K.R.

    2010-01-01

    Austenitic stainless steels are widely used in implants due to their high mechanical strength and corrosion, however, are not able to connect to bone tissue and were classified as bioinert. The calcium phosphate ceramics such as hydroxyapatite (HA) are bioactive materials and create strong chemical bonds with bone tissue, but its brittleness and low fracture toughness render its use in conditions of high mechanical stress. The coating of steel with the bioactive ceramics such as HA, combines the properties of interest of both materials, accelerating bone formation around the implant. In this study, austenitic stainless steel samples were coated with apatite using the biomimetic method. The effect of three different surface conditions of steel and the immersion time in the SBF solution on the coating was evaluated. The samples were characterized by SEM, EDS and X-ray diffraction. (author)

  5. Osteogenetic property of a biodegradable three-dimensional macroporous hydrogel coating on titanium implants fabricated via EPD

    International Nuclear Information System (INIS)

    Ma, Kena; Cai, Xinjie; Zhou, Yi; Jiang, Tao; Wang, Yining; Zhang, Zhen

    2014-01-01

    The potential for a successful integration of implants with surrounding tissue may be jeopardized in a number of compromised conditions. Biochemical surface modification is one of the choices to extend the spectrum of indications. We have previously successfully fabricated chitosan–gelatin (CS/G) coatings on a titanium surface via electrophoretic deposition, which may be promising candidates for further loading of functional agents. In this study, we have identified the microstructure, physicochemical properties and biological performance of CS/G coatings in vitro and in vivo. The in vitro degradation test indicated that CS/G coatings in the presence of lysozyme showed a significant weight loss after 28 days. The results of the cell culture exhibited that CS/G coatings could sustain MC3T3-E1 cell attachment, proliferation and migration. In vivo osteogenetic behavior evaluated by Micro-CT and histomorphometrical analysis revealed significant new bone formation around CS/G implants at 8 and 12 weeks, compared to sandblasted/acid-etched implants. Moreover, histological evaluation suggested the majority of CS/G coatings were degraded at 12 weeks. Therefore, we have concluded that the three-dimensional porous structure of scaffold-like CS/G coatings may facilitate osteogenesis and that such coatings can be biodegraded in the early bone healing process. (paper)

  6. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects

    Directory of Open Access Journals (Sweden)

    Laura Roland

    2015-12-01

    Full Text Available For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL and poly-(3-hydroxybutyrate/poly-(4-hydroxybutyrate (P(3HB/P(4HB. As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB. Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI with Green fluorescent protein (GFP-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF and High Mobility Group Box 1 (HMGB1 were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  7. X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings

    International Nuclear Information System (INIS)

    McLeod, K.; Kumar, S.; Dutta, N.K.; Smart, R.St.C.; Voelcker, N.H.; Anderson, G.I.

    2010-01-01

    Hydroxyapatite (HA) thin-film coatings grown biomimetically using simulated body fluid (SBF) are desirable for a range of applications such as improved fixation of fine- and complex-shaped orthopedic and dental implants, tissue engineering scaffolds and localized and sustained drug delivery. There is a dearth of knowledge on two key aspects of SBF-grown HA coatings: (i) the growth kinetics over short deposition periods, hours rather than weeks; and (ii) possible difference between the coatings deposited with and without periodic SBF replenishment. A study centred on these aspects is reported. X-ray photoelectron spectroscopy (XPS) has been used to study the growth kinetics of SBF-grown HA coatings for deposition periods ranging from 0.5 h to 21 days. The coatings were deposited with and without periodic replenishment of SBF. The XPS studies revealed that: (i) a continuous, stable HA coating fully covered the titanium substrate after a growth period of 13 h without SBF replenishment; (ii) thicker HA coatings about 1 μm in thickness resulted after a growth period of 21 days, both with and without SBF replenishment; and (iii) the Ca/P ratio at the surface of the HA coating was significantly lower than that in its bulk. No significant difference between HA grown with and without periodic replenishment of SBF was found. The coatings were determined to be carbonated, a characteristic desirable for improved implant fixation. The atomic force and scanning electron microscopies results suggested that heterogeneous nucleation and growth are the primary deposition mode for these coatings. Primary osteoblast cell studies demonstrated the biocompatibility of these coatings, i.e., osteoblast colony coverage of approximately 80%, similar to the control substrate (tissue culture polystyrene).

  8. X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, K. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Kumar, S., E-mail: sunil.kumar@unisa.edu.au [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Dutta, N.K. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Smart, R.St.C. [Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes, SA 5095 (Australia); Voelcker, N.H. [School of Chemistry, Physics and Earth Sciences, Flinders University of South Australia, GPO Box 2100, Adelaide 5001 (Australia); Anderson, G.I. [School of Veterinary Science, University of Adelaide, Adelaide, SA 5005 (Australia)

    2010-09-15

    Hydroxyapatite (HA) thin-film coatings grown biomimetically using simulated body fluid (SBF) are desirable for a range of applications such as improved fixation of fine- and complex-shaped orthopedic and dental implants, tissue engineering scaffolds and localized and sustained drug delivery. There is a dearth of knowledge on two key aspects of SBF-grown HA coatings: (i) the growth kinetics over short deposition periods, hours rather than weeks; and (ii) possible difference between the coatings deposited with and without periodic SBF replenishment. A study centred on these aspects is reported. X-ray photoelectron spectroscopy (XPS) has been used to study the growth kinetics of SBF-grown HA coatings for deposition periods ranging from 0.5 h to 21 days. The coatings were deposited with and without periodic replenishment of SBF. The XPS studies revealed that: (i) a continuous, stable HA coating fully covered the titanium substrate after a growth period of 13 h without SBF replenishment; (ii) thicker HA coatings about 1 {mu}m in thickness resulted after a growth period of 21 days, both with and without SBF replenishment; and (iii) the Ca/P ratio at the surface of the HA coating was significantly lower than that in its bulk. No significant difference between HA grown with and without periodic replenishment of SBF was found. The coatings were determined to be carbonated, a characteristic desirable for improved implant fixation. The atomic force and scanning electron microscopies results suggested that heterogeneous nucleation and growth are the primary deposition mode for these coatings. Primary osteoblast cell studies demonstrated the biocompatibility of these coatings, i.e., osteoblast colony coverage of approximately 80%, similar to the control substrate (tissue culture polystyrene).

  9. Investigation of morphology and bioactive properties of composite coating of HA/vinyl acetate on pure titanium

    International Nuclear Information System (INIS)

    Afshar, Abdollahe; Yousefpour, Mardali; Xiudong, Yang; Li Xudong; Yang Bangcheng; Wu Yao; Chen Jiyong; Zhang Xingdong

    2006-01-01

    Electrochemical co-deposition approach was expanded to prepare composite bio-ceramic coating of hydroxyapatite (HA)/polyvinyl acetate on the surface of titanium. The role is to improve the bioactive and crystallization properties. The results of XRD, XPS, SEM and TEM characterization showed that by increasing amount of vinyl acetate in the composite bio-ceramic coating before and after immersing in the simulated body fluid (SBF), an oriented growth of HA planes on the (0 0 2) direction had been observed on titanium substrate. Also significant surface morphology changes were obtained

  10. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    International Nuclear Information System (INIS)

    Laranjeira, Marta S; Carvalho, Ângela; Ferraz, Maria Pia; Monteiro, Fernando Jorge; Pelaez-Vargas, Alejandro; Hansford, Derek; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena

    2014-01-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior. (paper)

  11. Osseointegration of implants with dendrimers surface characteristics installed conventionally or with Piezosurgery®. A comparative study in the dog.

    Science.gov (United States)

    Bengazi, Franco; Lang, Niklaus P; Canciani, Elena; Viganò, Paolo; Velez, Joaquin Urbizo; Botticelli, Daniele

    2014-01-01

    The first aim of the present experiment was to compare bone healing at implants installed in recipient sites prepared with conventional drills or a piezoelectric device. The second aim was to compare implant osseointegration onto surfaces with and without dendrimers coatings. Six Beagles dogs were used in this study. Five implants with two different surfaces, three with a ZirTi(®) surface (zirconia sand blasted, acid etched), and two with a ZirTi(®)-modified surface with dendrimers of phosphoserine and polylysine were installed in the right side of the mandible. In the most anterior region (P2, P3), two recipient sites were prepared with drills, and one implant ZirTi(®) surface and one coated with dendrimers implants were installed at random. In the posterior region (P4 and M1), three recipient sites were randomly prepared: two sites with a Piezosurgery(®) instrument and one site with drill and two ZirTi(®) surface and one coated with dendrimers implants installed. Three months after the surgery, the animals were sacrificed for histological analysis. No complications occurred during the healing period. Three implants were found not integrated and were excluded from analysis. However, n = 6 was obtained. The distance IS-B at the buccal aspect was 2.2 ± 0.8 and 1.8 ± 0.5 mm, while IS-C was 1.5 ± 0.9 and 1.4 ± 0.6 mm at the Piezosurgery(®) and drill groups, respectively. Similar values were obtained between the dendrimers-coated and ZirTi(®) surface implants. The BIC% values were higher at the drill (72%) compared to the Piezosurgery(®) (67%) sites. The BIC% were also found to be higher at the ZirTi(®) (74%) compared to the dendrimers-coated (65%) implants, the difference being statistically significant. This study has revealed that oral implants may osseointegrate equally well irrespective of whether their bed was prepared utilizing conventional drills with abundant cooling or Piezosurgery(®). Moreover, the surface coating of implants with dendrimers

  12. Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood.

    Science.gov (United States)

    Campelo, Clayton S; Chevallier, Pascale; Vaz, Juliana M; Vieira, Rodrigo S; Mantovani, Diego

    2017-03-01

    Thrombosis and calcification constitute the main clinical problems when blood-interacting devices are implanted in the body. Coatings with thin polymer layers represent an acknowledged strategy to modulate interactions between the material surface and the blood environment. To ensure the implant success, at short-term the coating should limit platelets adhesion and delay the clot formation, and at long-term it should delay the calcification process. Sulfonated chitosan, if compared to native chitosan, shows the unique ability to reduce proteins adsorption, decrease thrombogenic properties and limit calcification. In this work, stainless steel surfaces, commonly used for cardiovascular applications, were coated with sulfonated chitosan, by using dopamine and PEG as anchors, and the effect of these grafted surfaces on platelet adhesion, clot formation as well as on calcification were investigated. Surface characterization techniques evidenced that the coating formation was successful, and the sulfonated chitosan grafted sample exhibited a higher roughness and hydrophilicity, if compared to native chitosan one. Moreover, sulfonated surface limited platelet activation and the process of clot formation, thus confirming its high biological performances in blood. Calcium deposits were also lower on the sulfonated chitosan sample compared to the chitosan one, thus showing that calcification was minimal in presence of sulfonate groups. In conclusion, this sulfonated-modified surface has potential to be as blood-interacting material. Copyright © 2016. Published by Elsevier B.V.

  13. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, C.T.; Wong, P.K. [Department of Electromechanical Engineering, University of Macau, Macau (China); Cheng, F.T., E-mail: apaftche@polyu.edu.hk [Department of Applied Physics, Hong Kong Polytechnic University (Hong Kong); Man, H.C. [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University (Hong Kong)

    2009-04-15

    In order to increase the bone bioactivity of the metallic implants, hydroxyapatite (HA) is often coated on their surface so that a real bond with the surrounding bone tissue can be formed. Plasma spraying of HA coatings is currently the only commercial process in use but long-term stability of plasma sprayed coatings could be a problem because of their high degree of porosities, poor bond strength, presence of a small amount of amorphous phase with non-stoichiometric composition, and non-uniformity. In the present study, cathodic electrophoretic deposition (EPD) has been attempted for depositing HA coatings on Ti6Al4V followed by vacuum sintering at 800 deg. C. Submicron HA powders with different morphologies including spherical, needle-shaped and flake-shaped were used in the EDP process to produce dense coatings. Moreover, carbon nanotubes (CNTs) were also used to reinforce the HA coating for enhancing its hardness. The surface morphology, compositions and microstructure of the HA coated Ti6Al4V were investigated by electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffractometry, respectively. Electrochemical corrosion behavior of the HA coatings in Hanks' solution at 37 deg. C was investigated by means of open-circuit potential measurement and cyclic potentiodynamic polarization tests. Surface hardness, adhesion strength and bone bioactivity of the coatings were also studied. All HA coated specimens had a thickness of about 10 {mu}m and free of cracks, with corrosion resistance higher than that of the substrate and adhesion strength higher than that of plasma sprayed coating. The enhanced properties could be attributed to the use of submicron-sized HA particles in the low-temperature EDP process. Among the three types of HA powder, spherical powder yielded the densest coating whereas the flake-shaped powder yielded the most porous coatings. Compared with monolithic HA coating, the CNT-reinforced HA coating markedly increased the coating

  14. Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying

    Science.gov (United States)

    Chen, Xiuyong; Zhang, Botao; Gong, Yongfeng; Zhou, Ping; Li, Hua

    2018-05-01

    Hydroxyapatite (HA) coatings suffer from poor mechanical properties, which can be enhanced via incorporation of secondary bioinert reinforcement material. Nanodiamond (ND) possesses excellent mechanical properties to play the role as reinforcement for improving the mechanical properties of brittle HA bioceramic coatings. The major persistent challenge yet is the development of proper deposition techniques for fabricating the ND reinforced HA coatings. In this study, we present a novel deposition approach by plasma spraying the mixtures of ND suspension and micron-sized HA powder feedstock. The effect of ND reinforcement on the microstructure and the mechanical properties of the coatings such as hardness, adhesive strength and friction coefficient were examined. The results showed that the ND-reinforced HA coatings display lower porosity, fewer unmelted particles and uniform microstructure, in turn leading to significantly enhanced mechanical properties. The study presented a promising approach to fabricate ND-reinforced HA composite coatings on metal-based medical implants for potential clinical application.

  15. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yong [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang Yingjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Nan Kaihui [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Han Yong [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-09-15

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and {beta}-glycerol phosphate disodium salt pentahydrate ({beta}-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 {mu}m, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  16. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.

    Science.gov (United States)

    Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong

    2007-09-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  17. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Huang Yong; Wang Yingjun; Ning Chengyun; Nan Kaihui; Han Yong

    2007-01-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 μm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints

  18. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  19. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    Science.gov (United States)

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary.

  20. Comparison of titanium mesh implants with PLA-hydroxyapatite coatings for maxillofacial cancer reconstruction

    Science.gov (United States)

    Tverdokhlebov, S. I.; Choinzonov, E. L.; Kolokolova, O. V.; Cherdyntseva, N. V.

    2016-08-01

    Since 2013 physics of TPU and oncologists from the TCRI with participation of the "ConMet" company (Moscow) and the "Sintel" company (Tomsk Special Economic Zone resident) have been working on the theme entitled "Development of the composite implants for reconstructive surgery of a craniofacial areas of the traumatological and oncological patients" supported with the Federal Program "R&D, part 1.3". The goal was to develop the maxillo-facial implants on the basis of the transformable titanium mesh with PLA & hydroxyapatite coating. According to the Contract No. 14.578.21.0031, the team of developers had to start supplying these advanced implants to the industrial partners up to 2017. This research was supported with the preliminary market researches by the ISPMS SB RAS and the TP "MF". The stages of preliminary market researches were: 1) research of the Worldwide CMF market; 2) forecasting the BRIC CMF market up to 2020; 3) the total Russian market (epidemiology) estimation as a sum of official calculations and statistics; 4) looking for the best foreign analogue prices, comparing their and our implant properties; 5) search for the best Russian analogues; 6) the investigation of the world patent database Espacenet for the last years, and finding the owners and applicants of patents of CMF osteosynthesis plates on the basis of titanium coated with PLA & hydroxyapatite; 7) comparison of the domestic implants, and making conclusions. Several variants of the meshes have got the equal quality with the best foreign and Russian implants. The closest analogues were titanium, polyethylene, PEEK composite meshes suited to the patient shape by the Synthes company in 2014, and the only hybrid titanium "Grey" implant with layers of gelatin, dextran, collagen, HAP & BMP-2 was found. This implant was produced by Russian institution, and it was mentioned in the report on clinical trials by L.A. Pavlova et al., 2014 [1]. There are no manufacturers of the coated implants in Russia

  1. In vivo study of nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on magnesium alloy as biodegradable orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mrzavi2659@gmail.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Heidari, Fariba; Manshaei, Maziar [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@okstate.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-09-15

    Highlights: • In vitro biocompatibility of biodegradable Mg alloy was improved by diopside coating. • In vivo biocompatibility of biodegradable Mg alloy was improved by diopside coating. • Degradation behavior of biodegradable Mg alloy was improved by diopside coating. - Abstract: In order to improve the corrosion resistance and bioactivity of a biodegradable magnesium alloy, we have recently prepared a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on AZ91 magnesium alloy through a combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method (reported elsewhere). In this work, we performed a detailed biocompatibility analysis of the implants made by this material and compared their performance with those of the uncoated and micro arc oxidized magnesium implants. The biocompatibility evaluation of samples was performed by culturing L-929 cells and in vivo animal study, including implantation of samples in greater trochanter of rabbits, radiography and histological examinations. The results from both the in vitro and in vivo studies indicated that the diopside/MAO coated magnesium implant significantly enhanced cell viability, biodegradation resistance and new bone formation compared with both the uncoated and the micro-arc oxidized magnesium implants. Our data provides an example of how the proper surface treatment of magnesium implants can overcome their drawbacks in terms of high degradation rate and gas bubble formation under physiological conditions.

  2. Studies on the surface modification of TiN coatings using MEVVA ion implantation with selected metallic species

    International Nuclear Information System (INIS)

    Ward, L.P.; Purushotham, K.P.; Manory, R.R.

    2016-01-01

    Highlights: • Reduced surface roughness was observed after ion implantation. • W implantation increased residual stress. • Reduced friction and wear accompanied Mo implantation. • Mo implanted layer was more resistant to breakdown during wear testing. • Ion implantation effects can be complex on various implanting species properties. - Abstract: Improvement in the performance of TiN coatings can be achieved using surface modification techniques such as ion implantation. In the present study, physical vapor deposited (PVD) TiN coatings were implanted with Cr, Zr, Nb, Mo and W using the metal evaporation vacuum arc (MEVVA) technique at a constant nominal dose of 4 × 10 16 ions cm −2 for all species. The samples were characterized before and after implantation, using Rutherford backscattering (RBS), glancing incident angle X-ray diffraction (GIXRD), atomic force microscopy (AFM) and optical microscopy. Friction and wear studies were performed under dry sliding conditions using a pin-on-disc CSEM Tribometer at 1 N load and 450 m sliding distance. A reduction in the grain size and surface roughness was observed after implantation with all five species. Little variation was observed in the residual stress values for all implanted TiN coatings, except for W implanted TiN which showed a pronounced increase in compressive residual stress. Mo-implanted samples showed a lower coefficient of friction and higher resistance to breakdown during the initial stages of testing than as-received samples. Significant reduction in wear rate was observed after implanting with Zr and Mo ions compared with unimplanted TiN. The presence of the Ti 2 N phase was observed with Cr implantation.

  3. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    Science.gov (United States)

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  4. Effects of nacre-coated titanium surfaces on cell proliferation and ...

    African Journals Online (AJOL)

    Titanium is widely used for dental implants because of its superior mechanical properties, low modulus, excellent corrosion resistance, and good biocompatibility. However, even when they are used in combination with a protective coating, such as hydroxyapatite (HA), titanium implants have been reported to have several ...

  5. Employment of an ion implantation technique for catalyst coating on various substrates

    International Nuclear Information System (INIS)

    Bannikov, M.G.; Chattha, J.A.; Zlobin, V.N.; Vasilve, I.P.; Cherkasov, J.A.; Gawrilenko, P.N.

    2001-01-01

    Catalysts are widely used in the chemical industry as well as in the production of vehicle catalytic converters. Precious metals are employed increasingly as catalytic materials. Traditional methods of coating, such as impregnation, are thought to reduce the porosity and specific area of catalyst thus reducing the catalytic efficiency. Apart from that, impregnation technology leads to the high expense of precious metals. To reduce the content of noble metals in catalysts the ion implantation method of coating has been investigated. Several samples of catalysts on various substrates were prepared by ion implantation technique and tested. New catalysts have shown high nitric oxides (NO/sub x/) and carbon monoxide (CO) conversion efficiency, with the content of noble metals reduced substantially. Experiment has also shown that specific area of substrates coated by an ion implantation had not decreased. Schematic of an ion implanter and experimental results are provided. (author)

  6. Hybrid micro/nano-topography of a TiO2 nanotube-coated commercial zirconia femoral knee implant promotes bone cell adhesion in vitro.

    Science.gov (United States)

    Frandsen, Christine J; Noh, Kunbae; Brammer, Karla S; Johnston, Gary; Jin, Sungho

    2013-07-01

    Various approaches have been studied to engineer the implant surface to enhance bone in-growth properties, particularly using micro- and nano-topography. In this study, the behavior of osteoblast (bone) cells was analyzed in response to a titanium oxide (TiO2) nanotube-coated commercial zirconia femoral knee implant consisting of a combined surface structure of a micro-roughened surface with the nanotube coating. The osteoblast cells demonstrated high degrees of adhesion and integration into the surface of the nanotube-coated implant material, indicating preferential cell behavior on this surface when compared to the bare implant. The results of this brief study provide sufficient evidence to encourage future studies. The development of such hierarchical micro- and nano-topographical features, as demonstrated in this work, can provide insightful designs for advanced bone-inducing material coatings on ceramic orthopedic implant surfaces. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Development of strontium and magnesium substituted porous hydroxyapatite/poly(3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells.

    Science.gov (United States)

    Gopi, D; Ramya, S; Rajeswari, D; Surendiran, M; Kavitha, L

    2014-02-01

    The present study deals with the successful development of bilayer coatings by electropolymerisation of poly(3,4-ethylenedioxythiophene) (PEDOT) on surgical grade stainless steel (316L SS) followed by the electrodeposition of strontium (Sr) and magnesium (Mg) substituted porous hydroxyapatite (Sr, Mg-HA). The bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM). Corrosion resistance of the obtained coatings was investigated in Ringer's solution by electrochemical techniques and the results were in good agreement with those obtained from chemical analysis, namely inductively coupled plasma atomic emission spectrometry (ICP-AES). Also, the mechanical and biological properties of the bilayer coatings were analyzed. From the obtained results it was evident that the PEDOT/Sr, Mg-HA bilayer exhibited greater adhesion strength than the Sr, Mg-HA coated 316L SS. In vitro cell adhesion test of the Sr, Mg-HA coating on PEDOT coated specimen is found to be more bioactive compared to that of the single substituted hydroxyapatite (Sr or Mg-HA) on the PEDOT coated 316L SS. Thus, the PEDOT/Sr, Mg-HA bilayer coated 316L SS can serve as a prospective implant material for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate Bone Cement on Mechanical Properties and Bioactivity.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA bone cement after addition of the nano-hydroxyapatite(HA coated bone collagen (mineralized collagen, MC.The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis.15.0%(wt impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA.MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values.

  9. Colorimetric properties of TiN coating implanted by aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.G. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: zhouqg99@mails.tsinghua.edu.cn; Bai, X.D. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xue, X.Y. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ling, Y.H. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chen, X.W. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xu, J. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China); Wang, D.R. [Beijing Great Wall Ti-Gold Corporation, Beijing 100095 (China)

    2005-04-05

    TiN coating was prepared by cathodic arc deposition and implanted aluminum using a metal vacuum vapor arc ion source with doses ranging from 5 x 10{sup 16} to 2 x 10{sup 17} ions/cm{sup 2}. The purpose of this work was to determine the dependence of the colorimetric properties of TiN films on the implanting conditions, especially by the aluminum ion implantation. The colorimetry of coatings was evaluated quantitatively in terms of CIE L * a * b *. The color coordinate values L *, a *, and b * provide a numerical representation of the color of the surface. With the dose increasing, the surface color has no obvious change but the surface turns brighter, and a * as well as b * values all decline. The X-ray diffraction patterns showed that the aluminum implantation induced a slight shift of diffraction peaks. X-ray photoemission spectroscopy was employed to analyze the surface valence states. The oxygen in surface top layer does not decrease a * and b * values, it partially combined with nitrogen.

  10. Electrospun Porous PDLLA Fiber Membrane Coated with nHA

    Directory of Open Access Journals (Sweden)

    Linhui Qiang

    2018-05-01

    Full Text Available Porous poly- D, L-lactic acid (PDLLA electrospinning fiber membrane was prepared, and nano-hydroxyapatite (nHA was adsorbed and wrapped into it during the unique shrinking process of the PDLLA fiber membrane to fabricate the PDLLA/nHA composite membrane scaffold for tissue engineering. Compare with the composite fibers prepared by blend electrospinning, most of nHA particles are observed to distribute on the surface of new type composite fibers, which could significantly improve the water wettability and induce the cellular adherence. FTIR analysis indicated that the PDLLA/nHA composite fibrous membrane was formed by physical adsorption. The combination was probed by scanning electron microscope, thermo-gravimetric, water contact angle and mechanical property analysis. It was proved that the nHA particles’ content and distribution, surface wettability, modulus and tensile strength of PDLLA/nHA composite fibrous membrane were influenced by the concentration of nHA dispersion and pores on the PDLLA fiber surface. The 10.6 wt % PDLLA/nHA composite fibrous membrane exhibits a more balanced tensile strength (3.28 MPa and surface wettability (with a water contact angle of 0° of the composite mats. Scanning electron microscope and confocal laser scanning microscopy images of chondrocyte proliferation further showed that the composite scaffold is non-toxic. The adherence and proliferation of chondrocytes on the 10.6 wt % PDLLA/nHA fibrous membrane was significantly improved, compared with PDLLA mat. The 10.6 wt % PDLLA/nHA composite fibrous membrane has potential application value as scaffold material in tissue engineering.

  11. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.

    Science.gov (United States)

    Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki

    2018-06-08

    Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.

  12. Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration.

    Science.gov (United States)

    Bai, Yixin; Zhou, Rui; Cao, Jianyun; Wei, Daqing; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-07-01

    The sub-microporous microarc oxidation (MAO) coating covered Ti implant with micro-scale gouges has been fabricated via a multi-step MAO process to overcome the compromised bone-implant integration. The as-prepared implant has been further mediated by post-heat treatment to compare the effects of -OH functional group and the nano-scale orange peel-like morphology on osseointegration. The bone regeneration, bone-implant contact interface, and biomechanical push-out force of the modified Ti implant have been discussed thoroughly in this work. The greatly improved push-out force for the MAO coated Ti implants with micro-scale gouges could be attributed to the excellent mechanical interlocking effect between implants and biologically meshed bone tissues. Attributed to the -OH functional group which promotes synostosis between the biologically meshed bone and the gouge surface of implant, the multi-step MAO process could be an effective strategy to improve the osseointegration of Ti implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD

    Directory of Open Access Journals (Sweden)

    Matthias J. Frank

    2014-03-01

    Full Text Available The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity.

  14. In vivo evaluation of CaO-SiO2-P2O5-B2O3 glass-ceramics coating on Steinman pins.

    Science.gov (United States)

    Lee, Jae Hyup; Hong, Kug Sun; Baek, Hae-Ri; Seo, Jun-Hyuk; Lee, Kyung Mee; Ryu, Hyun-Seung; Lee, Hyun-Kyung

    2013-07-01

    Surface coating using ceramics improves the bone bonding strength of an implant. We questioned whether a new type of glass-ceramics (BGS-7) coating (CaO-SiO2 -P2 O5 -B2 O3 ) would improve the osseointegration of Steinman pins (S-pins) both biomechanically and histomorphometrically. An in vivo study was performed using rabbits by inserting three S-pins into each iliac bone. The pins were 2.2-mm S-pins with a coating of 30-μm-thick BGS-7 and 550-nm-thick hydroxyapatite (HA), as opposed to an S-pin without coating. A tensile strength test and histomorphometrical evaluation was performed. In the 2-week group, the BGS-7 implant showed a significantly higher tensile strength than the S-pin. In the 4- and 8-week groups, the BGS-7 implants had significantly higher tensile strengths than the S-pins and HA implants. The histomorphometrical study revealed that the BGS-7 implant had a significantly higher contact ratio than the S-pin and HA implants in the 4-week group. The biomechanical and histomorphometrical tests showed that the BGS-7 coating had superior bone bonding properties than the groups without the coating from the initial stage of insertion. The BGS-7 coating of an S-pin will enhance the bone bonding strength, and there might also be an advantage in human bone bonding. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Reduction of metallosis in hip implant using thin film coating

    Science.gov (United States)

    Rajeshshyam, R.; Chockalingam, K.; Gayathri, V.; Prakash, T.

    2018-04-01

    Hip implant finds its emerging attraction due to it continuous demand over the years. The hip implants (femoral head) and acetabulum cup) mainly fabricated by metals such as stainless steel, cobalt chrome and titanium alloys, other than that ceramics and polyethylene have been used. The metal-on-metal hip implant was found to be best implant material for most of the surgeons due to its high surface finish, low wear rate and low chance of dislocation from its position after implanting. Where in metal based hip implant shows less wear rate of 0.01mm3/year. Metal-on-metal implant finds its advantage over other materials both in its mechanical and physical stability against human load. In M-O-M Cobalt- chromium alloys induce metal allergy. The metal allergy (particulate debris) that is generated by wear, fretting, fragmentation and which is unavoidable when a prosthesis is implanted, can induce an inflammatory reaction in some circumstances. The objectives of this research to evaluate thin film coating with Nano particle additives to reduce the wear leads to regarding metal ion release. Experimental results reveals that thin film Sol-Gel coating with 4wt. % of specimen reduced the cobalt and chromium ion release and reduces the wear rate. Wear rate reduced by 98% for 4wt. % graphene in 20N and 95% for 4wt. % graphene in 10N.

  16. Characterization and Mineralization of Strontium Doped Nano Hydroxyapatite Coating on Titanium Rods

    Directory of Open Access Journals (Sweden)

    Chuang WANG

    2017-08-01

    Full Text Available Pure nano hydroxyapatite (nHA and strontium doped nano hydroxyapatite (Sr-nHA, Sr/(Ca+Sr =10% were prepared by a one-step method which mainly used the principle of homogeneous phase co-precipitation. Fourier transform infrared spectroscopy (FT-IR revealed that the intensity of absorption was decreased with Sr doping. X-ray diffraction (XRD showed that special peak position of Sr-nHA shifted to a smaller 2θ angle compared with the pure nHA. Both the pure nHA (39.46±11.19nm in length and 15.90±3.65 nm in width and Sr-nHA (32.95±10.21 nm in length and 13.18±3.18 nm in width samples showed a tiny nano-rod feature. Moreover, Tc4 (Ti-6Al-4V rods (1 mm in diameter and 20 mm in length coated with pure nHA or Sr-nHA were prepared by high-energy plasma spraying. Elements of calcium (Ca, phosphorus (P, oxygen (O and Sr were detected on the Sr-nHA coating surface by Energy Dispersive Spectrometry (EDS. XRD result also indicates the chemical composition almost did not change significantly after spraying. By immersion in the simulated body fluid (SBF, in vitro mineralization ability was estimated and the superficial coats were evaluated by scanning electron microscopy (SEM and XRD. The results showed that Sr-nHA spraying surface has a better mineralization ability than the pure nHA coating. Therefore, the synthesized Sr-nHA would have potential for biological prostheses and other implantable materials.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.17254

  17. Carbon nanotubes/pectin/minerals substituted apatite nanocomposite depositions on anodized titanium for hard tissue implant: In vivo biological performance"†

    International Nuclear Information System (INIS)

    Govindaraj, Dharman; Rajan, Mariappan; Munusamy, Murugan A.; Alarfaj, Abdullah A.; Higuchi, Akon; Suresh Kumar, S.

    2017-01-01

    A surface deposition approach enveloping the use of biocompatible trace components and strengthening materials will affect the physicochemical and osseointegration properties of nanocomposite deposited implants. The current work is aimed at the development of functionalized carbon nanotubes (f-CNT)/Pectin (P)/mineralized hydroxyapatite (M-HA) ((f-CNT/P/M-HA)) nanocomposite depositions by electrophoretic deposition on anodized titanium (TiO_2) implant. The capacity of f-CNT manages the cost of mechanical strength, while pectin (extracted from pomegranate peel) and minerals (strontium, magnesium, and zinc) enhance the biocompatibility of the HA deposition was investigate utilizing different methods. The functional and morphological analyses were done by FTIR, XRD, XPS, SEM-EDX and TEM. The mechanical depiction results show improved adherence quality for the nanocomposite deposition. Additionally, an enhanced viability of osteoblast cells (MG63 (HOS)) was monitored in vitro on the f-CNT/P/M-HA nanocomposite deposition. The capacity of the nanocomposite deposited TiO_2 implant to encourage bone development was assessed in vivo. Hence, the as-synthesized nanocomposite deposited TiO_2 that joins the comfort osteoconductivity of mineralized hydroxyapatite, pectin collectively with the compressive strength of f-CNT can have numerous uses in orthopaedics since it could enhance implant fixation in human bone. - Highlights: • Successful development of CNTs–Pectin reinforced M-HA nanocomposite coating on TiO_2 by electrodeposition. • The success of nanocomposite coatings was evidenced with FTIR, XRD, XPS, SEM-EDX, and TEM. • Nanocomposite coating on TiO_2 is bio-resistive, better candidate for implant applications. • The fabricate nanocomposite coatings showed good biocompatibility and no adverse effect from in vitro and in vivo tests.

  18. Synthesis and Characterization of Calcium Phosphate Powders for Biomedical Applications by Plasma Spray Coating

    OpenAIRE

    Sasidharan Pillai, Rahul

    2015-01-01

    This PhD work mainly focus on the synthesis and characterization of calcium phosphate powders for plasma spray coating. The preparation of high temperature phase stabilized βTCP and HA/βTCP powders for plasma spray coating applications has been the topic of investigation. Nowadays plasma sprayed coatings are widely used for biomedical applications especially in the dental and orthopaedic implantation field. Previously Ti based alloys were widely used for the orthopaedic and dental implant ap...

  19. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A., E-mail: a.markwitz@gns.cri.nz [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, B.; Leveneur, J. [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)

    2014-07-15

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C{sub 3}H{sub y}{sup +} ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm{sup −3}. Raman spectroscopy was performed to probe for sp{sup 2}/sp{sup 3} bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp{sup 3} content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  20. In vivo bioactivity of titanium and fluorinated apatite coatings for orthopaedic implants: a vibrational study

    Science.gov (United States)

    Taddei, Paola; Tinti, Anna; Reggiani, Matteo; Monti, Patrizia; Fagnano, Concezio

    2003-06-01

    The bone integration of implants is a complex process which depends on chemical composition and surface morphology. To accelerate osteointegration, metal implants are coated with porous metal or apatites which have been reported to increase mineralisation, improving prosthesis fixation. To study the influence of composition and morphology on the in vivo bioactivity, titanium screws coated by Plasma Flame Spraying (PFS) with titanium or fluorinated apatite (K690) were implanted in sheep tibia and femur for 10 weeks and studied by micro-Raman and IR spectroscopy. The same techniques, together with thermogravimetry, were used for characterising the pre-coating K690 powder. Contrary to the manufacturer report, the K690 pre-coating revealed to be composed of a partially fluorinated apatite containing impurities of Ca(OH) 2 and CaCO 3. By effect of PFS, the impurities were decomposed and the crystallinity degree of the coating was found to decrease. The vibrational spectra recorded on the implanted screws revealed the presence of newly formed bone; for the K690-coated screws at least, a high level of osteointegration was evidenced.

  1. Coating hydroxiapatite on stainless steel 316 L by using sago starch as binder with dip-coating method

    Science.gov (United States)

    Fadli, A.; Akbar, F.; Prabowo, A.; Hidayah, P. H.

    2018-04-01

    Hydroxyapatite (HA) is a mineral form of naturally occurring apatite calcium with Ca10(PO4)6(OH)2 formula. One of the major innovations in the field of bone reconstruction is to apply HA as a surface coating on a mechanically strong implant metal and to improve the stability of bone implants thereby increasing the lifetime of the metal implants. Pure hydroxyapatite has poor mechanical properties so it is necessary to add sago starch as a binder to combine the strength and hardness of metal surfaces with bioactive properties of hydroxyapatite by Dip Coating method. Stainless steel 316L is the most commonly used alloy as an implant for bones and teeth due to its excellent corrosion and oxidation resistance and is easily formed. In this study, hydroxyapatite coatings used fixed variables as hydroxyapatite mass (10 grams), aquades mass (20 grams), dipping time (20 seconds), and calcination conditions (800°C, 1 hour). The variables are sago starch mass (1, 1.25, 1.5 gram) and stirring time (16, 20, 24 hours). The shear strength value is higher in the addition of 1.25, 10, 20, and again in the binder ratio of 1.5; 10; 20. The addition of stirring time causes a decrease in shear strength. The highest shear strength value obtained was 3.07 MPa. The layer attached to the substrate is a hydroxyapatite with a composition of 99.4% as evidenced by the results of XRD analysis.

  2. Carbon nanotubes/pectin/minerals substituted apatite nanocomposite depositions on anodized titanium for hard tissue implant: In vivo biological performance{sup †}

    Energy Technology Data Exchange (ETDEWEB)

    Govindaraj, Dharman [Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Rajan, Mariappan, E-mail: rajanm153@gmail.com [Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Munusamy, Murugan A.; Alarfaj, Abdullah A. [Department of Botany and Microbiology, College of Science, King Saud University, Riyadh (Saudi Arabia); Higuchi, Akon [Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan, 32001 Taiwan (China); Suresh Kumar, S. [Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang (Malaysia)

    2017-06-15

    A surface deposition approach enveloping the use of biocompatible trace components and strengthening materials will affect the physicochemical and osseointegration properties of nanocomposite deposited implants. The current work is aimed at the development of functionalized carbon nanotubes (f-CNT)/Pectin (P)/mineralized hydroxyapatite (M-HA) ((f-CNT/P/M-HA)) nanocomposite depositions by electrophoretic deposition on anodized titanium (TiO{sub 2}) implant. The capacity of f-CNT manages the cost of mechanical strength, while pectin (extracted from pomegranate peel) and minerals (strontium, magnesium, and zinc) enhance the biocompatibility of the HA deposition was investigate utilizing different methods. The functional and morphological analyses were done by FTIR, XRD, XPS, SEM-EDX and TEM. The mechanical depiction results show improved adherence quality for the nanocomposite deposition. Additionally, an enhanced viability of osteoblast cells (MG63 (HOS)) was monitored in vitro on the f-CNT/P/M-HA nanocomposite deposition. The capacity of the nanocomposite deposited TiO{sub 2} implant to encourage bone development was assessed in vivo. Hence, the as-synthesized nanocomposite deposited TiO{sub 2} that joins the comfort osteoconductivity of mineralized hydroxyapatite, pectin collectively with the compressive strength of f-CNT can have numerous uses in orthopaedics since it could enhance implant fixation in human bone. - Highlights: • Successful development of CNTs–Pectin reinforced M-HA nanocomposite coating on TiO{sub 2} by electrodeposition. • The success of nanocomposite coatings was evidenced with FTIR, XRD, XPS, SEM-EDX, and TEM. • Nanocomposite coating on TiO{sub 2} is bio-resistive, better candidate for implant applications. • The fabricate nanocomposite coatings showed good biocompatibility and no adverse effect from in vitro and in vivo tests.

  3. Tribological behavior of duplex coating improved by ion implantation

    International Nuclear Information System (INIS)

    Kakas, D.; Skoric, B.; Rakita, M.

    2004-01-01

    In the present paper the tribological behavior of the coatings are discussed. Duplex coatings were applied on cold working steel 100Cr6. Samples were plasma nitrided at different thickness of plasma surface layers. TiN was deposited with a classic BALZERS PVD equipment and subsequent ion implantation. Ion implantation was provided with N 5+ ions. The other samples were produced with IBAD technology in DANFYSIK chamber. Wear resistance and exchanges of friction coefficient were measured with on-line test using special designed tribology equipment. Following the tests, the wear zone morphology and characteristics of surface layer structure as well as important properties were investigated by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Scratch adhesion testing was performed using commercially available equipment. Energy dispersive X-ray analysis (EDAX) of the wear-scars on pins provided essential information on the wear characteristics. In this paper some results related to influence of duplex coating production methodology on tribological behavior for cold working steel was presented

  4. Development of industrial ion implantation and ion assisted coating processes: A perspective

    International Nuclear Information System (INIS)

    Legg, K.O.; Solnick-Legg, H.

    1989-01-01

    Ion beam processes have gone through a series of developmental stages, from being the mainstay of the semiconductor industry for production of integrated circuits, to new commercial processes for biomedical, aerospace and other industries. Although research is still continuing on surface modification using ion beam methods, ion implantation and ion assisted coatings for treatment of metals, ceramics, polymers and composites must now be considered viable industrial processes of benefit in a wide variety of applications. However, ion implantation methods face various barriers to acceptability, in terms not only of other surface treatment processes, but for implantation itself. This paper will discuss some of the challenges faced by a small company whose primary business is development and marketing of ion implantation and ion-assisted coating processes. (orig.)

  5. Implementation of TiAIN and CrN coatings and ion implantation in the modern plastics moulding industry

    International Nuclear Information System (INIS)

    Bienk, E.J.; Mikkelsen, N.J.

    1997-01-01

    Two methods of surface improvement widely used in the modern plastics industry are compared, with a view to improving productivity and product quality. Ion implantation of plastics and physical vapour deposition coatings both offer surface engineering advantages. Each method is described and evaluated with reference to plastics moulding. TiAIN coatings are used to protect hard bulk materials, subjected to evenly distributed loads. The more ductile CrN coatings are used for softer materials which give less support to the coatings. (UK)

  6. The Effect of Hydroxyapatite Coatings on the Passivation Behavior of Oxidized and Unoxidized Superelastic Nitinol Alloys

    Science.gov (United States)

    Etminanfar, M. R.; Khalil-Allafi, J.; Sheykholeslami, S. O. R.

    2018-02-01

    Nitinol alloys have been used in various biological applications due to their superior properties. In this study, a bipolar pulsed current electrodeposition technique was applied to produce a hydroxyapatite (HA) film on the Nitinol alloy. Also, the protection performance of the coating was evaluated on both abraded and thermochemically modified alloy. According to obtained data, reducing the electrocrystallization rate by the pulse deposition technique can promote HA formation on both abraded and modified substrates. Based on scanning electron microscopy and high-resolution transmission electron microscopy data, the HA coatings revealed a flake-like morphology and each flake was composed of nano-crystalline grains. Atomic force microscopy images revealed that flakes on the abraded substrate were smaller in size than that of the modified alloy. Comparing the corrosion resistance of the bare substrates revealed that the modified alloy has a higher corrosion resistance than the abraded alloy and the modified surface is well passivized during anodic polarization in Ringer's solution. However, this condition is reversed after the deposition of HA film. It seems that because of the lower crystallization sites on the abraded alloy, the produced HA film is denser and more protective against the corrosive mediums as compared to the coating on the modified alloy. Although the HA coating can improve the bioactivity of both substrates, the resulted film on the oxidized alloy is porous and deteriorates the implant permanence in the vicinity of body fluids.

  7. Effect of polymer coating on the osseointegration of CP-Ti dental implant

    Science.gov (United States)

    Al-Hassani, Emad; Al-Hassani, Fatima; Najim, Manar

    2018-05-01

    Modifications achieved coatings of titanium samples were investigated in order to improve their surface characteristics so as to facilitate bio-integration. Chitosan coating was use for commercial pure Ti alloys manufactured by two different methods in which commercial pure titanium rod converted in form of implant screw by using wire cut machine and lathe, second method included the used of powder technology for producing the implant screws. The coating process of chitosan polymer was carried out using advance technology (electrospnning process) to create fibrous structure from Nano to micro scale of the chitosan on the implant surface which result in a bioactive surface. The characterization includes; microstructure observation, surface chemical composition analysis (EDS), surface roughness (AFM), and the histological analysis. from the SEM No morphological differences were observed among the implants surfaces except for some inconsiderable morphological differences that results from the manufacturing process, by using EDX analysis the surfaces chemical compositions were completely changed and there was large decrease in the percentage of titanium element at the surface which indicates that the surface is covered with chitosan and had a new surface composition and topography. The sample was produced by powder technology process have higher roughness (845.36 nm) than sample produced by machining without any surface treatment (531.7nm),finally The histological view of implant samples after 4weeks of implantation, showed active bone formation in all implant surface which give clear indication of tissue acceptance.

  8. Engineering of bone fixation metal implants biointerface-Application of parylene C as versatile protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Cieslik, Monika, E-mail: cieslik@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Institute of Metallurgy and Materials Science, PAS, W. Reymonta 25, 30-059 Krakow (Poland); Zimowski, Slawomir [AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Al. Mickiewicza 30, 30-059 Krakow (Poland); Golda, Monika [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Institute of Metallurgy and Materials Science, PAS, W. Reymonta 25, 30-059 Krakow (Poland); Engvall, Klas [KTH Royal Institute of Technology, Department of Chemical Engineering and Technology, Division of Chemical Technology, Drottning Kristinas vaeg. 42, SE-100 44 Stockholm (Sweden); Pan, Jinshan [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas vaeg. 51, SE-100 44 Stockholm (Sweden); Rakowski, Wieslaw [AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Al. Mickiewicza 30, 30-059 Krakow (Poland); Kotarba, Andrzej, E-mail: kotarba@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2012-12-01

    The tribological and protective properties of parylene C coatings (2-20 {mu}m) on stainless steel 316L implant materials were investigated by means of electrochemical measurements and wear tests. The thickness and morphology of the CVD prepared coatings were characterized by scanning electron and laser confocal microscopy. The stability of the coatings was examined in contact with Hanks' solution and H{sub 2}O{sub 2} (simulating the inflammatory response). It was concluded that silane-parylene C coating with the optimum thickness of 8 {mu}m exhibits excellent wear resistance properties and limits the wear formation. The engineered versatile coating demonstrates sufficient elastomer properties, essential to sustain the implantation surgery strains and micromotions during long-term usage in the body. - Highlights: Black-Right-Pointing-Pointer A versatile coating for protection of metal implant surface is proposed. Black-Right-Pointing-Pointer The protective properties of 2-20 {mu}m silane-parylene C coating were examined. Black-Right-Pointing-Pointer The engineered material proves its high anticorrosive and wear resistance. Black-Right-Pointing-Pointer The practical implications of the coating properties were discussed.

  9. Bone Loss at Implant with Titanium Abutments Coated by Soda Lime Glass Containing Silver Nanoparticles: A Histological Study in the Dog

    Science.gov (United States)

    Martinez, Arturo; Guitián, Francisco; López-Píriz, Roberto; Bartolomé, José F.; Cabal, Belén; Esteban-Tejeda, Leticia; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments. Three implants were placed in each mandible quadrant: in 2 of them, Glass/n-Ag coated abutments were connected to implant platform, 1 was covered with a Ti-mechanized abutment. Experimental peri-implantitis was induced in all implants after the submarginal placement of cotton ligatures, and three months after animals were euthanatized. Thickness and morphology of coating was studied in abutment cross-sections by SEM. Histology and histo-morphometric studies were carried on in undecalfied ground slides. After the induced peri-implantitis: 1.The abutment coating shown losing of thickness and cracking. 2. The histometry showed a significant less bone loss in the implants with glass/n-Ag coated abutments. A more symmetric cone of bone resorption was observed in the coated group. There were no significant differences in the peri-implantitis histological characteristics between both groups of implants. Within the limits of this in-vivo study, it could be affirmed that abutments coated with biocide soda-lime-glass-silver nanoparticles can reduce bone loss in experimental peri-implantitis. This achievement makes this coating a suggestive material to control peri-implantitis development and progression. PMID:24466292

  10. Bone loss at implant with titanium abutments coated by soda lime glass containing silver nanoparticles: a histological study in the dog.

    Directory of Open Access Journals (Sweden)

    Arturo Martinez

    Full Text Available The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments. Three implants were placed in each mandible quadrant: in 2 of them, Glass/n-Ag coated abutments were connected to implant platform, 1 was covered with a Ti-mechanized abutment. Experimental peri-implantitis was induced in all implants after the submarginal placement of cotton ligatures, and three months after animals were euthanatized. Thickness and morphology of coating was studied in abutment cross-sections by SEM. Histology and histo-morphometric studies were carried on in undecalfied ground slides. After the induced peri-implantitis: 1.The abutment coating shown losing of thickness and cracking. 2. The histometry showed a significant less bone loss in the implants with glass/n-Ag coated abutments. A more symmetric cone of bone resorption was observed in the coated group. There were no significant differences in the peri-implantitis histological characteristics between both groups of implants. Within the limits of this in-vivo study, it could be affirmed that abutments coated with biocide soda-lime-glass-silver nanoparticles can reduce bone loss in experimental peri-implantitis. This achievement makes this coating a suggestive material to control peri-implantitis development and progression.

  11. In vitro corrosion and cytocompatibility properties of nano-whisker hydroxyapatite coating on magnesium alloy for bone tissue engineering applications.

    Science.gov (United States)

    Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei

    2015-03-17

    We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  12. Osseoconductive and Corrosion-Inhibiting Plasma-Sprayed Calcium Phosphate Coatings for Metallic Medical Implants

    Directory of Open Access Journals (Sweden)

    Robert B. Heimann

    2017-11-01

    Full Text Available During the last several decades, research into bioceramic coatings for medical implants has emerged as a hot topic among materials scientists and clinical practitioners alike. In particular, today, calcium phosphate-based bioceramic materials are ubiquitously used in clinical applications to coat the stems of metallic endoprosthetic hips as well as the surfaces of dental root implants. Such implants frequently consist of titanium alloys, CoCrMo alloy, or austenitic surgical stainless steels, and aim at replacing lost body parts or restoring functions to diseased or damaged tissues of the human body. In addition, besides such inherently corrosion-resistant metals, increasingly, biodegradable metals such as magnesium alloys are being researched for osseosynthetic devices and coronary stents both of which are intended to remain in the human body for only a short time. Biocompatible coatings provide not only vital biological functions by supporting osseoconductivity but may serve also to protect the metallic parts of implants from corrosion in the aggressive metabolic environment. Moreover, the essential properties of hydroxylapatite-based bioceramic coatings including their in vitro alteration in contact with simulated body fluids will be addressed in this current review paper. In addition, a paradigmatic shift is suggested towards the development of transition metal-substituted calcium hexa-orthophosphates with the NaSiCON (Na superionic conductor structure to be used for implant coatings with superior degradation resistance in the corrosive body environment and with pronounced ionic conductivity that might be utilized in novel devices for electrical bone growth stimulation.

  13. Effect of Diamondlike Carbon Coating on Reliability of Implant-Supported Crowns.

    Science.gov (United States)

    Hirata, Ronaldo; Machado, Lucas Silveira; Bonfante, Estevam A; Yamaguchi, Satoshi; Imazato, Satoshi; Coelho, Paulo G

    2015-01-01

    To evaluate the effect of diamondlike carbon (DLC) coating on abutments and/or abutment screws on the reliability, characteristic strength, and Weibull modulus of implant-supported single crowns. Seventy-two external hexagon implants (Emfills Implant 4 mm diameter, 10 mm length, Emfills) were divided into four groups (n = 18 each), according to the presence or not of a DLC coating in the abutment and/or abutment screw, as follows: abutment without coating, screw without coating (AwcSwc); abutment without coating with coated screw (AwcSC); abutment coated with noncoated screw (ACSwc), and coated abutment with coated screw (ACSC). Abutments and screws were evaluated with scanning electron microscopy. The specimens were subjected to step-stress accelerated life testing in water. Use-level probability Weibull curves and reliability for a mission of 100,000 cycles at 150 N (90% two-sided confidence intervals) were calculated. Polarized light and scanning electron microscopes were used for fractographic analysis. For a mission of 100,000 cycles at 150 N, reliability was 0.45 (0.20 to 0.67), 0.12 (0.00 to 0.47), 0.56 (0.17 to 0.82), and 0.44 (0.07 to 0.77) for AwcSwc, AwcSC, ACSwc, and ACSC, respectively. The probability Weibull calculation showed a Weibull modulus (m) of m = 5.50, m = 11.64, m = 16.96, and m = 15.08 and the characteristic strengths (η, which indicates the load at which 63.2% of the specimens of each group fail) of η = 202.67 N, ŋ = 206.64 N, ŋ = 192.54 N, and ŋ = 203.59 N for AwcSwc, AwcSC, ACSwc, and ACSC, respectively. Abutment screw fracture was the chief failure outcome in all groups. Characteristic strength values were not different among groups; neither was reliability. However, an increase in Weibull modulus (indicating low variability of the results) was observed with DLC coating of abutment or screw or both.

  14. Synthesis and Characterization of Hydroxyapatite-Collagen-Chitosan (HA/Col/Chi) Composite Coated on Ti6Al4V

    Science.gov (United States)

    Charlena; Bikharudin, Ahmad; Wahyudi, Setyanto Tri

    2018-01-01

    HA-collagen-chitosan (HA/col/chi) composite is developed to increase bioactivity adhesiveness between the metal and the material composite and to improve corrosion resistance. The Ti6Al4V alloy was coated by soaking in HA/col/chi composite at room temperature and then allowed to stand for 5, 6, and 7 days. Diffraction pattern analysis of the coated Ti6Al4V alloy showed that the dominant phase were HA and Ti6Al4V alloy. Corrosion resistance test in media by using 0.9% NaCl showed the corrosion rate at the level of 0.3567 mpy, which was better than that of the uncoated Ti6Al4V alloy (0.4152 mpy). In vitro cytocompatibility assay on endothelial cell of calf pulmonary artery endothelium (CPAE) (ATCC-CCL 209) showed there was no toxicity in the cell culture with the percent inhibition of 33.33% after 72 hours of incubation.

  15. Study of ion implantation in grown layers of multilayer coatings under ion-plasma vacuum deposition

    International Nuclear Information System (INIS)

    Voevodin, A.A.; Erokhin, A.L.

    1993-01-01

    The model of ion implantation into growing layers of a multilayer coating produced with vacuum ion-plasma deposition was developed. The model takes into account a possibility for ions to pass through the growing layer and alloys to find the distribution of implanted atoms over the coating thickness. The experimental vitrification of the model was carried out on deposition of Ti and TiN coatings

  16. Chlorhexidine-releasing implant coating on intramedullary nail reduces infection in a rat model

    Directory of Open Access Journals (Sweden)

    SM Shiels

    2018-03-01

    Full Text Available The use of internal intramedullary nails for long bone fracture fixation is a common practice among surgeons. Bacteria naturally attach to these devices, increasing the risk for wound infection, which can result in non- or malunion, additional surgical procedures and extended hospital stays. Intramedullary nail surface properties can be modified to reduce bacterial colonisation and potentially infectious complications. In the current study, a coating combining a non-fouling property with leaching chlorhexidine for orthopaedic implantation was tested. Coating stability and chlorhexidine release were evaluated in vitro. Using a rat model of intramedullary fixation and infection, the effect of the coating on microbial colonisation and fracture healing was evaluated in vivo by quantitative microbiology, micro-computed tomography, plain radiography, three-point bending and/or histology. Low dose systemic cefazolin was administered to increase the similarities to clinical practice, without overshadowing the effect of the anti-infective coating. When introduced into a contaminated wound, the non-fouling chlorhexidine-coated implant reduced the overall bacteria colonisation within the bone and on the implant, reduced the osteolysis and increased the radiographic union, confirming its potential for reducing complications in wounds at high risk of infection. However, when implanted into a sterile wound, non-union increased. Further studies are required to best optimise the anti-microbial effectiveness, while not sacrificing fracture union.

  17. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Covarrubias, Cristian, E-mail: ccovarrubias@odontologia.uchile.cl [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Mattmann, Matías [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Von Marttens, Alfredo [Department of Prosthesis, Faculty of Dentistry, University of Chile, Santiago (Chile); Caviedes, Pablo; Arriagada, Cristián [Laboratory of Cell Therapy, ICBM, Faculty of Medicine, University of Chile (Chile); Valenzuela, Francisco [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Rodríguez, Juan Pablo [Laboratory of Cell Biology, INTA, University of Chile, Santiago (Chile); Corral, Camila [Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago (Chile)

    2016-02-15

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  18. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    International Nuclear Information System (INIS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-01-01

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  19. RF Magnetron Sputtering Coating Of Hydroxyapatite On Alkali Solution Treated Titanate Nanorods

    Directory of Open Access Journals (Sweden)

    Lee K.

    2015-06-01

    Full Text Available Hydroxyapatite (HA is a material with outstanding biocompatibility. It is chemically similar to natural bone tissue, and has therefore been favored for use as a coating material for dental and orthopedic implants. In this study, RF magnetron sputtering was applied for HA coating. And Alkali treatment was performed in a 5 M NaOH solution at 60°C. The coated HA thin film was heat-treated at a range of temperatures from 300 to 600°C. The morphological characterization and crystal structures of the coated specimens were then obtained via FE-SEM, XRD, and FT-IR. The amorphous thin film obtained on hydrothermally treated nanorods transformed into a crystalline thin film after the heat treatment. The change in the phase transformation, with an enhanced crystallinity, showed a reduced wettability. The hydrothermally treated nanorods with an amorphous thin film, on the other hand, showed an outstanding wettability. The HA thin film perpendicularly coated the nanorods in the upper and inner parts via RF magnetron sputtering, and the FT-IR results confirmed that the molecular bonding of the coated film had an HA structure.

  20. In Vitro Corrosion and Cytocompatibility Properties of Nano-Whisker Hydroxyapatite Coating on Magnesium Alloy for Bone Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Huawei Yang

    2015-03-01

    Full Text Available We report here the successful fabrication of nano-whisker hydroxyapatite (nHA coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  1. Influence of PEEK Coating on Hip Implant Stress Shielding: A Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Jesica Anguiano-Sanchez

    2016-01-01

    Full Text Available Stress shielding is a well-known failure factor in hip implants. This work proposes a design concept for hip implants, using a combination of metallic stem with a polymer coating (polyether ether ketone (PEEK. The proposed design concept is simulated using titanium alloy stems and PEEK coatings with thicknesses varying from 100 to 400 μm. The Finite Element analysis of the cancellous bone surrounding the implant shows promising results. The effective von Mises stress increases between 81 and 92% for the complete volume of cancellous bone. When focusing on the proximal zone of the implant, the increased stress transmission to the cancellous bone reaches between 47 and 60%. This increment in load transferred to the bone can influence mineral bone loss due to stress shielding, minimizing such effect, and thus prolonging implant lifespan.

  2. Combined PIXE and SEM study of the behaviour of trace elements in gel formed around implant coated with bioactive glass

    Science.gov (United States)

    Oudadesse, H.; Irigaray, J. L.; Barbotteau, Y.; Brun, V.; Moretto, Ph.

    2002-05-01

    Bioactive glasses are used as coating biomaterials to facilitate anchorage of metallic prostheses implanted into the body. The aim of this work is to study the behavior of gel formed in contact with alloys and BVA and BVH bioactive glasses implanted. Cylinders of metallic implants composed by Ti, Al and V, are coated with bioactive glass. Three sheep were implanted for different time length: 3, 6 and 12 months in the femoral epiphysis. Results obtained with particle induced X-ray emission and scanning electron microscopy show that BVA coating induces a better contact between the metallic implant and bone. On the other hand, BVH coating prevents corrosion from the metallic implant.

  3. Corrosion behavior of coated and uncoated bio implants in SBF(simulated body fluid)

    International Nuclear Information System (INIS)

    Iqbal, W.; Zahra, N.; Alam, S.; Habib, F.; Irfan, M.

    2013-01-01

    Surgical implants used in medical applications are basically the specific type of stainless steel materials. Stainless steel has been used widely and successfully for various types of trauma and orthopedic reconstructions. If an uncoated (bare) stainless steel metal piece is implanted in any part of the body, it will get corrode in Simulated Body Fluid (SBF) present inside the human body (a mixture of different salts). To overcome this problem a coating of Titanium Nitride (TiN) was developed on stainless steel bio-implants using physical vapor deposition (PVD) method. Both coated and uncoated implants were kept dipped in Simulated Body Fluid for five months. The samples were removed and tested for corrosion life assessment after every fifteen days using weight loss method. (author)

  4. Urinary catheter with polyurethane coating modified by ion implantation

    International Nuclear Information System (INIS)

    Kondyurina, I.; Nechitailo, G.S.; Svistkov, A.L.; Kondyurin, A.; Bilek, M.

    2015-01-01

    A low friction urinary catheter that could be used without a lubricant is proposed in this work. A polyurethane coating was synthesised on the surface of a metal guide wire catheter. Ion implantation was applied to surface modify the polyurethane coating. FTIR ATR, wetting angle, AFM and friction tests were used for analysis. Low friction was found to be provided by the formation of a hard carbonised layer on the polyurethane surface

  5. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs

    DEFF Research Database (Denmark)

    Gallardo, Maria Godoy; Manzanares-Céspedes, Maria Cristina; Sevilla, Pablo

    2016-01-01

    _Ag (silver electrodeposition treatment, 10 units), and Ti_TSP (silanization treatment, 10 units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated...

  6. [Osseontegration of trial implants of carbon fiber reinforced plastics].

    Science.gov (United States)

    Schreiner, U; Schwarz, M; Scheller, G; Schroeder-Boersch, H; Jani, L

    2000-01-01

    To what extent are carbon fibre-reinforced plastics (CFRP) suitable as an osseous integration surface for implants? CFRP test implants having a plexus-structured, rhombus-structured, and plexus-structured, hydroxyapatite surface were implanted in the femura of mini-plgs. Exposure time lasted 12 weeks. The implants were subjected to a macroradiological, a histological-histomorphometrical, and a fluorescence-microscopical evaluation. One half of the uncoated, plexus-structured implants were not osteointegrated, the other half displayed an osteointegration rate of 11.8% in the spongy area and 29.8% in the cortex layer. The HA-coated test implants showed an osteointegration of 29.5% in the spongiosa and 56.8% in the cortex layer. The rhombus-structured test implants had an osteointegration of 29.2% (spongiosa) and 46.2% (cortex layer). Compared to the osteointegration of metallic, especially titanium surfaces the CFRP surfaces tested by us fared worse, especially the uncoated, plexus-structured surfaces. For this reason we view very critically the use of carbon-fibre reinforced plastics together with the surfaces tested by us as osteointegrating surfaces.

  7. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating.

    Science.gov (United States)

    Tan, Lili; Wang, Qiang; Lin, Xiao; Wan, Peng; Zhang, Guangdao; Zhang, Qiang; Yang, Ke

    2014-05-01

    In this study the loss of mechanical properties and the interface strength of coated AZ31B magnesium alloy (a magnesium-aluminum alloy) screws with surrounding host tissues were investigated and compared with non-coated AZ31B, degradable polymer and biostable titanium alloy screws in a rabbit animal model after 1, 4, 12 and 21weeks of implantation. The interface strength was evaluated in terms of the extraction torque required to back out the screws. The loss of mechanical properties over time was indicated by one-point bending load loss of the screws after these were extracted at different times. AZ31B samples with a silicon-containing coating had a decreased degradation rate and improved biological properties. The extraction torque of Ti6Al4V, poly-l-lactide (PLLA) and coated AZ31B increased significantly from 1week to 4weeks post-implantation, indicating a rapid osteosynthesis process over 3weeks. The extraction torque of coated AZ31B increased with implantation time, and was higher than that of PLLA after 4weeks of implantation, equalling that of Ti6Al4V at 12weeks and was higher at 21weeks. The bending loads of non-coated AZ31B and PLLA screws degraded sharply after implantation, and that of coated AZ31B degraded more slowly. The biodegradation mechanism, the coating to control the degradation rate and the bioactivity of magnesium alloys influencing the mechanical properties loss over time and bone-implant interface strength are discussed in this study and it is concluded that a suitable degradation rate will result in an improvement in the mechanical performance of magnesium alloys, making them more suitable for clinical application. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Hydroxyapatite coatings of fracture fixation plates for orthopedic applications

    International Nuclear Information System (INIS)

    Omar, M.A.; Abdullah, N.S.; Yahya, N.M.; Subuki, I.; Hassan, N.; Mohamad, S.M.

    2007-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to improve their adhesion to bone. The present study investigates the plasma sprayed process of HA on the fracture fixation plates fabricated by metal injection moulding process. The phase and microstructure of the coatings were studied and their microhardness measured. The phase composition of coatings was analyzed by the use of X-ray diffraction method. The homogeneity of the deposit and coating thickness were evaluated using scanning electron microscope (SEM). The results suggest that the nature of the coating morphology, phase and crystallinity changes with respect to the plasma sprayed processing parameters. The XRD revealed the presence of both amorphous and crystalline phases. In addition, the powder particles also melt partially in some region and coating microstructure varied from a porous structure to a smooth glassy structure or a typical lamellar structure. (author)

  9. Influence of bioactive material coating of Ti dental implant surfaces on early healing and osseointegration of bone

    International Nuclear Information System (INIS)

    Yeo, In-Sung; Min, Seung-Ki; An, Young-Bai

    2010-01-01

    The dental implant surface type is one of many factors that determine the long-term clinical success of implant restoration. The implant surface consists of bioinert titanium oxide, but recently coatings with bioactive calcium phosphate ceramics have often been used on Ti implant surfaces. Bio-active surfaces are known to significantly improve the healing time of the human bone around the inserted dental implant. In this study, we characterized two types of coated implant surfaces by scanning electron microscopy, energy dispersive spectrometry, and surface roughness testing. The effect of surface modification on early bone healing was then tested by using the rabbit tibia model to measure bone-to-implant contact ratios and removal torque values. These modified surfaces showed different characteristics in terms of surface topography, chemical composition, and surface roughness. However, no significant differences were found in the bone-to-implant contact and the resistance to removal torque between these surfaces. Both the coated implants may induce similar favorable early bone responses in terms of the early functioning and healing of dental implants even though they differed in their surface characteristics.

  10. Spectral luminescent properties of bacteriochlorin and aluminum phthalocyanine nanoparticles as hydroxyapatite implant surface coating

    Directory of Open Access Journals (Sweden)

    Yu. S. Maklygina

    2016-01-01

    Full Text Available The development and the spectral research of unique coating as crystalline nanoparticles of IR photosensitizers were performed for the creation of hydroxyapatite implants with photobactericidal properties. It has been proved that by the interaction of nanoparticles covering implant with the polar solvent, which simulates the interaction of the implant with the biocomponents in vivo (fast proliferating and with immunocompetent cells, photosensitizers nanoparticles change the spectroscopic properties, becoming fluorescent and phototoxic. Thus, the developed coating based on crystalline photosensitizer nanoparticles with studied specific properties should have antibacterial, anti-inflammatory effect by the photodynamic treatment in the near implant area. This research opens the prospect of the local prevention of inflammatory and autoimmune reactions in the area of implantation. The results of the study suggest a promising this technology in order to create implants with photobactericidal properties.

  11. Chemical changes in DMP1-null murine bone & silica based pecvd coatings for titanium implant osseoapplications

    Science.gov (United States)

    Maginot, Megen

    In order to improve clinical outcomes in bone-implant systems, a thorough understanding of both local bone chemistry and implant surface chemistry is necessary. This study consists, therefore, of two main parts: one focused on determining the nature of the changes in bone chemistry in a DMP1-null transgenic disease model and the other on the development of amorphous silica-based coatings for potential use as titanium bone implant coatings. For the study of bone mineral in the DMP1 transgenic model, which is known to have low serum phosphate levels, transgenic DMP1-null and wild type mice were fed a high phosphate diet, sacrificed, and had their long bone harvested. This bone was characterized using SEM, FTIR, microCT and XANES and compared to DMP1-null and wild type control groups to assess the therapeutic effect of high Pi levels on the phenotype and the role of DMP1 in mineralization in vivo. Findings suggest that though the high phosphate diet results in restoring serum phosphate levels, it does not completely rescue the bone mineral phenotype at an ultrastructural level and implicates DMP1 in phosphate nucleation. Since plasma enhanced chemical vapor deposition (PECVD) silica like coatings have not previously been fabricated for use in oessoapplications, the second part of this study initially focused on the characterization of novel SiOx chemistries fabricated via a chemical vapor deposition process that were designed specifically to act as bioactive coatings with a loose, hydrogenated structure. These coatings were then investigated for their potential initial stage response to bone tissue through immersion in a simulated body fluid and through the culture of MC3T3 cells on the coating surfaces. Coating surfaces were characterized by SEM, FTIR, contact angle measurements, and XANES. Coating dissolution and ionic release were also investigated by ICP-OES. Findings suggest that some SiOx chemistries may form a bioactive coating while more highly substituted

  12. The effect of ion implantation on the oxidation resistance of vacuum plasma sprayed CoNiCrAlY coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jie [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhao Huayu; Zhou Xiaming [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Tao Shunyan, E-mail: shunyantao@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Ding Chuanxian [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We used ion implantation to improve the oxidation resistance of CoNiCrAlY coating. Black-Right-Pointing-Pointer The oxidation process of CoNiCrAlY coating at 1100 Degree-Sign C for 1000 h was studied. Black-Right-Pointing-Pointer The Nb ion implanted coating exhibited better oxidation resistance. Black-Right-Pointing-Pointer The influences of Nb and Al ion implantation into CoNiCrAlY coatings were evaluated. - Abstract: CoNiCrAlY coatings prepared by vacuum plasma spraying (VPS) were implanted with Nb and Al ions at a fluence of 10{sup 17} atoms/cm{sup 2}. The effects of ion implantation on the oxidation resistance of CoNiCrAlY coatings were investigated. The thermally grown oxide (TGO) formed on each specimen was characterized by XRD, SEM and EDS, respectively. The results showed that the oxidation process of CoNiCrAlY coatings could be divided into four stages and the key to obtaining good oxidation resistance was to remain high enough amount of Al and promote the lateral growth of TGO. The implantation of Nb resulted in the formation of continuous and dense Al{sub 2}O{sub 3} scale to improve the oxidation resistance. The Al implanted coating could form Al{sub 2}O{sub 3} scale at the initial stage, however, the scale was soon broken and TGO transformed to non-protective spinel.

  13. Peri- and intra-implant bone response to microporous Ti coatings with surface modification.

    Science.gov (United States)

    Braem, Annabel; Chaudhari, Amol; Vivan Cardoso, Marcio; Schrooten, Jan; Duyck, Joke; Vleugels, Jozef

    2014-02-01

    Bone growth on and into implants exhibiting substantial surface porosity is a promising strategy in order to improve the long-term stable fixation of bone implants. However, the reliability in clinical applications remains a point of discussion. Most attention has been dedicated to the role of macroporosity, leading to the general consensus of a minimal pore size of 50-100 μm in order to allow bone ingrowth. In this in vivo study, we assessed the feasibility of early bone ingrowth into a predominantly microporous Ti coating with an average thickness of 150 μm and the hypothesis of improving the bone response through surface modification of the porous coating. Implants were placed in the cortical bone of rabbit tibiae for periods of 2 and 4 weeks and evaluated histologically and histomorphometrically using light microscopy and scanning electron microscopy. Bone with osteocytes encased in the mineralized matrix was found throughout the porous Ti coating up to the coating/substrate interface, highlighting that osseointegration of microporosities (coating in the host bone in the long term is possible. When surface modifications inside the porous structure further reduced the interconnective pore size to the submicrometer level, bone ingrowth was impaired. On the other hand, application of a sol-gel-derived bioactive glass-ceramic coating without altering the pore characteristics was found to significantly improve bone regeneration around the coating, while still supporting bone ingrowth. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Anticorrosive effects and in vitro cytocompatibility of calcium silicate/zinc-doped hydroxyapatite composite coatings on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong, E-mail: xfpang@aliyun.com [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Honglei [College of Chemistry Environmental Science, Hebei University, Baoding 071000 (China); Qiao, Haixia; Nian, Xiaofeng [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Zhang, Xuejiao, E-mail: 527238610@qq.com [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Wang, Wendong; Zhang, Xiaoyun; Chang, Xiaotong [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Han, Shuguang [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); International Centre for Materials Physics, Chinese Academy of Science, Shenyang 110015 (China)

    2015-12-01

    Highlights: • We developed a ZnHA/CS-coated Ti implant by using an ED method. • The obtained ZnHA/CS coatings presented a net-like micro-porous. • The ZnHA/CS coating possessed an excellent corrosion protection ability. • The composite coated CP-Ti possesses favourable cytocompatibility. - Abstract: This work elucidated the corrosion resistance and cytocompatibility of electroplated Zn- and Si-containing bioactive calcium silicate/zinc-doped hydroxyapatite (ZnHA/CS) ceramic coatings on commercially pure titanium (CP-Ti). The formation of ZnHA/CS coating was investigated through Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray and inductively coupled plasma analyses. The XRD image showed that the reaction layer was mainly composed of HA and CaSiO{sub 3}. The fabricated ZnHA/CS coatings presented a porous structure and appropriate thickness for possible applications in orthopaedic surgery. Potentiodynamic polarization tests showed that ZnHA/CS coatings exhibited higher corrosion resistance than CP-Ti. Dissolution tests on the coating also revealed that Si{sup 4+} and Zn{sup 2+} were leached at low levels. Moreover, MC3T3-E1 cells cultured on ZnHA/CS featured improved cell morphology, adhesion, spreading, proliferation and expression of alkaline phosphatase than those cultured on HA. The high cytocompatibility of ZnHA/CS could be mainly attributed to the combination of micro-porous surface effects and ion release (Zn{sup 2+} and Si{sup 4+}). All these results indicate that ZnHA/CS composite-coated CP-Ti may be a potential material for orthopaedic applications.

  15. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J.H. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhenzhou 450002 (China); Guan, S.K., E-mail: skguan@zzu.edu.cn [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhenzhou 450002 (China); Chen, J. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhenzhou 450002 (China); Division of Materials and Manufacturing Science, Osaka University, Osaka 567-0047 (Japan); Wang, L.G.; Zhu, S.J.; Hu, J.H.; Ren, Z.W. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhenzhou 450002 (China)

    2011-01-01

    The poor corrosion resistance of magnesium alloys is a dominant problem that limits their clinical application. In order to solve this challenge, micro-arc oxidation (MAO) was used to fabricate a porous coating on magnesium alloys and then electrochemical deposition (ED) was done to fabricate rod-like nano-hydroxyapatite (RNHA) on MAO coating. The cross-section morphology of the composite coatings and its corresponding energy dispersion spectroscopy (EDS) surficial scanning map of calcium revealed that HA rods were successfully deposited into the pores. The three dimensional morphology and scanning electron microscopy (SEM) image of the composite coatings showed that the distribution of the HA rods was dense and uniform. Atomic force microscope (AFM) observation of the composite coatings showed that the diameters of HA rods varied from 95 nm to 116 nm and the root mean square roughness (RMS) of the composite coatings was about 42 nm, which were favorable for cellular survival. The bonding strength between the HA film and MAO coating increased to 12.3 MPa, almost two times higher than that of the direct electrochemical deposition coating (6.3 MPa). Compared with that of the substrate, the corrosion potential of Mg-Zn-Ca alloy with composite coatings increased by 161 mV and its corrosion current density decreased from 3.36 x 10{sup -4} A/cm{sup 2} to 2.40 x 10{sup -7} A/cm{sup 2} which was due to the enhancement of bonding strength and the deposition of RNHA in the MAO pores. Immersion tests were carried out at 36.5 {+-} 0.5 deg. C in simulated body fluid (SBF). It was found that RNHA can induce the rapid precipitation of calcium orthophosphates in comparison with conventional HA coatings. Thus magnesium alloy coated with the composite coatings is a promising candidate as biodegradable bone implants.

  16. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy

    Science.gov (United States)

    Gao, J. H.; Guan, S. K.; Chen, J.; Wang, L. G.; Zhu, S. J.; Hu, J. H.; Ren, Z. W.

    2011-01-01

    The poor corrosion resistance of magnesium alloys is a dominant problem that limits their clinical application. In order to solve this challenge, micro-arc oxidation (MAO) was used to fabricate a porous coating on magnesium alloys and then electrochemical deposition (ED) was done to fabricate rod-like nano-hydroxyapatite (RNHA) on MAO coating. The cross-section morphology of the composite coatings and its corresponding energy dispersion spectroscopy (EDS) surficial scanning map of calcium revealed that HA rods were successfully deposited into the pores. The three dimensional morphology and scanning electron microscopy (SEM) image of the composite coatings showed that the distribution of the HA rods was dense and uniform. Atomic force microscope (AFM) observation of the composite coatings showed that the diameters of HA rods varied from 95 nm to 116 nm and the root mean square roughness (RMS) of the composite coatings was about 42 nm, which were favorable for cellular survival. The bonding strength between the HA film and MAO coating increased to 12.3 MPa, almost two times higher than that of the direct electrochemical deposition coating (6.3 MPa). Compared with that of the substrate, the corrosion potential of Mg-Zn-Ca alloy with composite coatings increased by 161 mV and its corrosion current density decreased from 3.36 × 10 -4 A/cm 2 to 2.40 × 10 -7 A/cm 2 which was due to the enhancement of bonding strength and the deposition of RNHA in the MAO pores. Immersion tests were carried out at 36.5 ± 0.5 °C in simulated body fluid (SBF). It was found that RNHA can induce the rapid precipitation of calcium orthophosphates in comparison with conventional HA coatings. Thus magnesium alloy coated with the composite coatings is a promising candidate as biodegradable bone implants.

  17. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy

    International Nuclear Information System (INIS)

    Gao, J.H.; Guan, S.K.; Chen, J.; Wang, L.G.; Zhu, S.J.; Hu, J.H.; Ren, Z.W.

    2011-01-01

    The poor corrosion resistance of magnesium alloys is a dominant problem that limits their clinical application. In order to solve this challenge, micro-arc oxidation (MAO) was used to fabricate a porous coating on magnesium alloys and then electrochemical deposition (ED) was done to fabricate rod-like nano-hydroxyapatite (RNHA) on MAO coating. The cross-section morphology of the composite coatings and its corresponding energy dispersion spectroscopy (EDS) surficial scanning map of calcium revealed that HA rods were successfully deposited into the pores. The three dimensional morphology and scanning electron microscopy (SEM) image of the composite coatings showed that the distribution of the HA rods was dense and uniform. Atomic force microscope (AFM) observation of the composite coatings showed that the diameters of HA rods varied from 95 nm to 116 nm and the root mean square roughness (RMS) of the composite coatings was about 42 nm, which were favorable for cellular survival. The bonding strength between the HA film and MAO coating increased to 12.3 MPa, almost two times higher than that of the direct electrochemical deposition coating (6.3 MPa). Compared with that of the substrate, the corrosion potential of Mg-Zn-Ca alloy with composite coatings increased by 161 mV and its corrosion current density decreased from 3.36 x 10 -4 A/cm 2 to 2.40 x 10 -7 A/cm 2 which was due to the enhancement of bonding strength and the deposition of RNHA in the MAO pores. Immersion tests were carried out at 36.5 ± 0.5 deg. C in simulated body fluid (SBF). It was found that RNHA can induce the rapid precipitation of calcium orthophosphates in comparison with conventional HA coatings. Thus magnesium alloy coated with the composite coatings is a promising candidate as biodegradable bone implants.

  18. Transition Metal Ion Implantation into Diamond-Like Carbon Coatings: Development of a Base Material for Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Andreas Markwitz

    2015-01-01

    Full Text Available Micrometre thick diamond-like carbon (DLC coatings produced by direct ion deposition were implanted with 30 keV Ar+ and transition metal ions in the lower percentage (<10 at.% range. Theoretical calculations showed that the ions are implanted just beneath the surface, which was confirmed with RBS measurements. Atomic force microscope scans revealed that the surface roughness increases when implanted with Ar+ and Cu+ ions, whereas a smoothing of the surface from 5.2 to 2.7 nm and a grain size reduction from 175 to 93 nm are measured for Ag+ implanted coatings with a fluence of 1.24×1016 at. cm−2. Calculated hydrogen and carbon depth profiles showed surprisingly significant changes in concentrations in the near-surface region of the DLC coatings, particularly when implanted with Ag+ ions. Hydrogen accumulates up to 32 at.% and the minimum of the carbon distribution is shifted towards the surface which may be the cause of the surface smoothing effect. The ion implantations caused an increase in electrical conductivity of the DLC coatings, which is important for the development of solid-state gas sensors based on DLC coatings.

  19. A preliminary report on a novel electrospray technique for nanoparticle based biomedical implants coating: precision electrospraying.

    Science.gov (United States)

    Kumbar, Sangamesh G; Bhattacharyya, Subhabrata; Sethuraman, Swaminathan; Laurencin, Cato T

    2007-04-01

    The compatibility and biological efficacy of biomedical implants can be enhanced by coating their surface with appropriate agents. For predictable functioning of implants in situ, it is often desirable to obtain an extremely uniform coating thickness without effects on component dimensions or functions. Conventional coating techniques require rigorous processing conditions and often have limited adhesion and composition properties. In the present study, the authors report a novel precision electrospraying technique that allows both degradable and nondegradable coatings to be placed. Thin metallic slabs, springs, and biodegradable sintered microsphere scaffolds were coated with poly(lactide-co-glycolide) (PLAGA) using this technique. The effects of process parameters such as coating material concentration and applied voltage were studied using PLAGA and poly(ethylene glycol) coatings. Morphologies of coated surfaces were qualitatively characterized by scanning electron microscopy. Qualitative observations suggested that the coatings were composed of particles of various size/shape and agglomerates with different porous architectures. PLAGA coatings of uniform thickness were observed on all surfaces. Spherical nanoparticle poly(ethylene glycol) coatings (462-930 nm) were observed at all concentrations studied. This study found that the precision electrospraying technique is elegant, rapid, and reproducible with precise control over coating thickness (mum to mm) and is a useful alternative method for surface modification of biomedical implants. (c) 2006 Wiley Periodicals, Inc.

  20. Microstructure and properties of nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhiwen [University of Science and Technology Liaoning, Anshan 114051 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Chen, Qiang, E-mail: 2009chenqiang@163.com [Southwest Technique and Engineering Research Institute, Chongqing 400039 (China); Chen, Tian [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Gao, Xu; Yu, Xiaoguang; Song, Hua; Feng, Yongjun [University of Science and Technology Liaoning, Anshan 114051 (China)

    2015-06-15

    The novel nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings are fabricated on the AM60 magnesium alloys. The microstructure, tribological and electrochemical properties of the duplex coatings are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, nano-indenter, electrochemical corrosion and wear tester. These studies reveal that the MoS{sub 2}-phenolic resin coating has a two-phase microstructure crystalline MoS{sub 2} particles embedded in the amorphous phenolic resin matrix. The single-layer MoS{sub 2}-phenolic resin enhances the corrosion resistance of magnesium alloys, but shows poor wear resistance due to the low substrate's load bearing capacity. The addition of nitrogen ion implantation/AlN/CrAlN interlayer in the MoS{sub 2}-phenolic resin/substrate system greatly enhances the substrate's load bearing capacity. The AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coating with a high load bearing capacity demonstrates super wear resistance (i.e., long wear life and low friction coefficient). In addition, the nitrogen ion implantation/AlN interlayer greatly depresses the effect of galvanic corrosion because its potential is close to that of the magnesium alloys, but the nitrogen ion implantation/AlN/CrAlN interlayer is inefficient in reducing the galvanic corrosion due to the large potential difference between the CrN phase and the substrate. As a result, the nitrogen ion implantation/AlN/MoS{sub 2}-phenolic resin duplex coating shows a better corrosion resistance compared to the nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin. - Highlights: • Ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings were presented. • Ion implantation/AlN/CrAlN interlayer greatly enhanced the load bearing capacity. • Ion implantation/AlN interlayer greatly depressed the effect of galvanic corrosion. • The

  1. Morphological Effects of HA on the Cell Compatibility of Electrospun HA/PLGA Composite Nanofiber Scaffolds

    Directory of Open Access Journals (Sweden)

    Adnan Haider

    2014-01-01

    Full Text Available Tissue engineering is faced with an uphill challenge to design a platform with appropriate topography and suitable surface chemistry, which could encourage desired cellular activities and guide bone tissue regeneration. To develop such scaffolds, composite nanofiber scaffolds of nHA and sHA with PLGA were fabricated using electrospinning technique. nHA was synthesized using precipitation method, whereas sHA was purchased. The nHA and sHA were suspended in PLGA solution separately and electrospun at optimized electrospinning parameters. The composite nanofiber scaffolds were characterized by FE-SEM, EDX analysis, TEM, XRD analysis, FTIR, and X-ray photoelectron. The potential of the HA/PLGA composite nanofiber as bone scaffolds in terms of their bioactivity and biocompatibility was assessed by culturing the osteoblastic cells onto the composite nanofiber scaffolds. The results from in vitro studies revealed that the nHA/PLGA composite nanofiber scaffolds showed higher cellular adhesion, proliferation, and enhanced osteogenesis performance, along with increased Ca+2 ions release compared to the sHA/PLGA composite nanofiber scaffolds and pristine PLGA nanofiber scaffold. The results show that the structural dependent property of HA might affect its potential as bone scaffold and implantable materials in regenerative medicine and clinical tissue engineering.

  2. Large area diamond-like carbon coatings by ion implantation

    International Nuclear Information System (INIS)

    McCabe, A.R.; Proctor, G.; Jones, A.M.; Bull, S.J.; Chivers, D.J.

    1993-01-01

    Diamond-like Carbon (DLC) coatings have been deposited onto large geometry components in the Harwell Blue Tank ion implantation facility. To modify the substrate surface and to crack the low vapour pressure oil which is evaporated and condensed onto the surface, a 40 Kev nitrogen ion bucket ion source is used. The coating of areas up to 1 metre in diameter is common and with component manipulation larger areas may be coated. Since the component temperature never exceeds 80 o C during the process, a wide range of materials may be coated including specialist tool steels and even certain high density polymers. In order to produce hard wear resistant coatings with extremely low coefficients of friction (0.02-0.15) and a range of mechanical and electrical properties, various oil precursors have been investigated. The production and assessment of such coatings, including measurements of their tribiological performance, is presented. Applications for wear resistance, corrosion protection and electrically conducting coatings are discussed with examples drawn from engineering, electronics and biomedicine. (7 figures, 13 references). (UK)

  3. Hybrid calcium phosphate coatings for implants

    Science.gov (United States)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  4. Does hydroxyapatite coating have no advantage over porous coating in primary total hip arthroplasty? A meta-analysis.

    Science.gov (United States)

    Chen, Yun-Lin; Lin, Tiao; Liu, An; Shi, Ming-Min; Hu, Bin; Shi, Zhong-Li; Yan, Shi-Gui

    2015-01-28

    There are some arguments between the use of hydroxyapatite and porous coating. Some studies have shown that there is no difference between these two coatings in total hip arthroplasty (THA), while several other studies have shown that hydroxyapatite has advantages over the porous one. We have collected the studies in Pubmed, MEDLINE, EMBASE, and the Cochrane library from the earliest possible years to present, with the search strategy of "(HA OR hydroxyapatite) AND ((total hip arthroplasty) OR (total hip replacement)) AND (RCT* OR randomiz* OR control* OR compar* OR trial*)". The randomized controlled trials and comparative observation trials that evaluated the clinical and radiographic effects between hydroxyapatite coating and porous coating were included. Our main outcome measurements were Harris hip score (HHS) and survival, while the secondary outcome measurements were osteolysis, radiolucent lines, and polyethylene wear. Twelve RCTs and 9 comparative observation trials were included. Hydroxyapatite coating could improve the HHS (p hydroxyapatite coating had no advantages on survival (p = 0.32), polyethylene wear (p = 0.08), and radiolucent lines (p = 0.78). Hydroxyapatite coating has shown to have an advantage over porous coating. The HHS and survival was duration-dependent-if given the sufficient duration of follow-up, hydroxyapatite coating would be better than porous coating for the survival. The properties of hydroxyapatite and the implant design had influence on thigh pain incidence, femoral osteolysis, and polyethylene wear. Thickness of 50 to 80 μm and purity larger than 90% increased the thigh pain incidence. Anatomic design had less polyethylene wear.

  5. The Influence of Spray Parameters on the Characteristics of Hydroxyapatite In-Flight Particles, Splats and Coatings by Micro-plasma Spraying

    Science.gov (United States)

    Liu, Xiao-mei; He, Ding-yong; Wang, Yi-ming; Zhou, Zheng; Wang, Guo-hong; Tan, Zhen; Wang, Zeng-jie

    2018-04-01

    Hydroxyapatite (HA) is one of the most important bioceramic materials used in medical implants. The structure of HA coatings is closely related to their manufacturing process. In the present study, HA coatings were deposited on Ti-6Al-4V substrate by micro-plasma spraying. Results show that three distinct HA coatings could be obtained by changing the spraying power from 0.5 to 1.0 kW and spraying stand-off distance from 60 to 110 mm: (1) high crystallinity (93.3%) coatings with porous structure, (2) high crystallinity coatings (86%) with columnar structure, (3) higher amorphous calcium phosphate (ACP, 50%) coatings with dense structure. The in-flight particles melting state and splat topography was analyzed to better understand the formation mechanism of three distinct HA coatings. Results show that HA coatings sprayed at low spraying power and short stand-off distance exhibit high crystallinity and porosity is attributed to the presence of partially melted particles. High crystallinity HA coatings with (002) crystallographic texture could be deposited due to the complete melting of the in-flight particles and low cooling rate of the disk shape splats under higher spraying power and shorter SOD. However, splashed shape splats with relative high cooling can be provided by increasing SOD, which leads to the formation of ACP.

  6. Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties

    Science.gov (United States)

    Heimann, Robert B.

    2016-06-01

    This contribution discusses salient properties and functions of hydroxylapatite (HA)-based plasma-sprayed coatings, including the effect on biomedical efficacy of coating thickness, phase composition and distribution, amorphicity and crystallinity, porosity and surface roughness, cohesion and adhesion, micro- and nano-structured surface morphology, and residual coating stresses. In addition, it will provide details of the thermal alteration that HA particles undergo in the extremely hot plasma jet that leads to dehydroxylated phases such as oxyhydroxylapatite (OHA) and oxyapatite (OA) as well as thermal decomposition products such as tri-(TCP) and tetracalcium phosphates (TTCP), and quenched phases such as amorphous calcium phosphate (ACP). The contribution will further explain the role of ACP during the in vitro interaction of the as-deposited coatings with simulated body fluid resembling the composition of extracellular fluid (ECF) as well as the in vivo responses of coatings to the ECF and the host tissue, respectively. Finally, it will briefly describe performance profiles required to fulfill biological functions of osteoconductive bioceramic coatings designed to improve osseointegration of hip endoprostheses and dental root implants. In large parts, the content of this contribution is a targeted review of work done by the author and his students and coworkers over the last two decades. In addition, it is considered a stepping stone toward a standard operation procedure aimed at depositing plasma-sprayed bioceramic implant coatings with optimum properties.

  7. Cinnamon Oil and Chitosan Coating on Orthopaedic Implant Surface for Prevention of Staphylococcus Epidermidis Biofilm Formation

    OpenAIRE

    R Magetsari; P Dewo; BK Saputro; Z Lanodiyu

    2014-01-01

    S. Epidermidis is among the most frequently isolated microorganisms found in -infection related to implanted devices and the formation of biofilm will be more resistantcompared to the planktonic form. This study was carried out determine the effect of coating on stainless steel orthopaedic implants surfaces with cinnamon oil and chitosan as bioadhesive to prevent biofilms formation of S. Epidermidis.The rod shaped stainless steel 316 L orthopaedic implant with 5 mm diameters was coated 2 t...

  8. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Andreasen, Christina Møller; Dencker, Mads L.

    2015-01-01

    hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could...

  9. Scientific Fundamentals and Technological Development of Novel Biocompatible/Corrosion Resistant Ultrananocrystalline Diamond (UNCD) Coating Enabling Next Generation Superior Metal-Based Dental Implants

    Science.gov (United States)

    Kang, Karam

    Current Ti-based dental implants exhibit failure (2-10%), due to various mechanisms, including chemical corrosion of the surface of the TiO2 naturally covered Ti-based implants. This thesis focused on developing a unique biocompatible/bio-inert/corrosion resistant/low cost Ultrananocrystalline Diamond (UNCD) coating (with 3-5 nm grain size) for encapsulation of Tibased micro-implants to potentially eliminate the corrosion/mechanical induced failure of current commercial Ti-based dental implants. Microwave Plasma Chemical Vapor Deposition (MPCVD) and Hot Filament Chemical Vapor Deposition (HFCVD) processes were used to grow UNCD coatings. The surface topography and chemistry of UNCD coatings were characterized using scanning electron microscopy (SEM), Raman, and X-ray photoelectron spectroscopies (XPS) respectively. In conclusion, this thesis contributed to establish the optimal conditions to grow UNCD coatings on the complex 3-D geometry of Ti-based micro-implants, with geometry similar to real implants, relevant to developing UNCD-coated Ti-based dental implants with superior mechanical/chemical performance than current Ti-based implants.

  10. A Bone Graft Substitutes Hydroxyapatite Coated Gentamycin (Bonigent) As Drug Delivery System

    International Nuclear Information System (INIS)

    Rusnah Mustaffa; Fauziah Othman; Asmah Rahmat; Mohd Reusmaazran Yusof; Shaaban Kasim; Narimah Abu Baka; Nasani Nasrul

    2014-01-01

    Porous hydroxyapatite coated with antibiotic gentamycin for drug delivery system is namely Bonigent. In this product, antibiotic (gentamycin) is coated into the scaffolds HA porous and Would then be released slowly into the bone tissue upon implantation, this way would increase drug penetration, thus avoiding systemic infection, preventing the formation of biofilm and improved healing. When a foreign material (implants or scaffolds of bone graft substitutes) is introduced into the body, there would be normally formation of biofilm that can lead to systemic infection and cause device failure. Surgeon will use antibiotic such as gentamycin to avoid these effects. The purpose of this project is to investigate the feasibility of fabricating a drug delivery system (DDS) that serves dual functions, to combating biofilms and to enhance bone in growths. We also successfully producing a scaffold HA bone graft substitutes incorporated with antibiotic gentamycin to combating bio-film and prevent the failure medical device implant for healthy and human nation. Bone graft substitutes into porous scaffolds suitable for drug delivery; loading the scaffolds with gentamycin; and study release rate in vivo were studied. Porous bone grafts substitutes are coated with antibiotic gentamycin by immerse technique. In order to limit biofilm formation, biomaterials loaded with suitable antibiotics can be used as a preventative measure. The biomaterials hydroxyapatite (HA) is an osteoconductive space filler and is produced locally by Malaysian Nuclear Agency. Porous HA and HA/ TCP has the potential to be used as synthetic bone graft materials because it is bioactive and biocompatible with bone tissues. Development of a product as bone graft substitute (BGS) with special ability of delivering drug (gentamycin) to bone tissue for better and more effective healing process. Characterization of the physical analysis, porosity, surface morphology by Scanning Electron Microscopy Analysis (SEM) and

  11. Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiang Li

    Full Text Available BACKGROUND: High strength porous titanium implants are widely used for the reconstruction of craniofacial defects because of their similar mechanical properties to those of bone. The recent introduction of electron beam melting (EBM technique allows a direct digitally enabled fabrication of patient specific porous titanium implants, whereas both their in vitro and in vivo biological performance need further investigation. METHODS: In the present study, we fabricated porous Ti6Al4V implants with controlled porous structure by EBM process, analyzed their mechanical properties, and conducted the surface modification with biomimetic approach. The bioactivities of EBM porous titanium in vitro and in vivo were evaluated between implants with and without biomimetic apatite coating. RESULTS: The physical property of the porous implants, containing the compressive strength being 163 - 286 MPa and the Young's modulus being 14.5-38.5 GPa, is similar to cortical bone. The in vitro culture of osteoblasts on the porous Ti6Al4V implants has shown a favorable circumstance for cell attachment and proliferation as well as cell morphology and spreading, which were comparable with the implants coating with bone-like apatite. In vivo, histological analysis has obtained a rapid ingrowth of bone tissue from calvarial margins toward the center of bone defect in 12 weeks. We observed similar increasing rate of bone ingrowth and percentage of bone formation within coated and uncoated implants, all of which achieved a successful bridging of the defect in 12 weeks after the implantation. CONCLUSIONS: This study demonstrated that the EBM porous Ti6Al4V implant not only reduced the stress-shielding but also exerted appropriate osteoconductive properties, as well as the apatite coated group. The results opened up the possibility of using purely porous titanium alloy scaffolds to reconstruct specific bone defects in the maxillofacial and orthopedic fields.

  12. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    Science.gov (United States)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  13. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone.

    Science.gov (United States)

    Sulaiman, Shamsul Bin; Keong, Tan Kok; Cheng, Chen Hui; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2013-06-01

    Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering. HA-SMC and TCP/HA-SMC constructs were induced in the osteogenic medium for three weeks prior to implantation in nude mice. The HA-SMC and TCP/HA-SMC constructs were implanted subcutaneously on the dorsum of nude mice on each side of the midline. These constructs were harvested after 8 wk of implantation. Constructs before and after implantation were analyzed through histological staining, scanning electron microscope (SEM) and gene expression analysis. The HA-SMC constructs demonstrated minimal bone formation. TCP/HA-SMC construct showed bone formation eight weeks after implantation. The bone formation started on the surface of the ceramic and proceeded to the centre of the pores. H&E and Alizarin Red staining demonstrated new bone tissue. Gene expression of collagen type 1 increased significantly for both constructs, but more superior for TCP/HA-SMC. SEM results showed the formation of thick collagen fibers encapsulating TCP/HA-SMC more than HA-SMC. Cells attached to both constructs surface proliferated and secreted collagen fibers. The findings suggest that TCP/HA-SMC constructs with better osteogenic potential compared to HA-SMC constructs can be a potential candidate for the formation of tissue engineered bone.

  14. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants

    Science.gov (United States)

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  15. The Influence of 1α.25-Dihydroxyvitamin D3 Coating on Implant Osseointegration in the Rabbit Tibia

    Directory of Open Access Journals (Sweden)

    Yoshihito

    2014-10-01

    Full Text Available Objectives: This study aims to evaluate bone response to an implant surface modified by 1α,25-dihydroxyvitamin D3 [1.25-(OH2D3] in vivo and the potential link between 1.25-(OH 2D3 surface concentration and bone response. Material and Methods: Twenty-eight implants were divided into 4 groups (1 uncoated control, 3 groups coated with 1.25-(OH2D3 in concentrations of 10-8, 10-7 and 10-6 M respectively, placed in the rabbit tibia for 6 weeks. Topographical analyses were carried out on coated and uncoated discs using interferometer and atomic-force-microscope (AFM. Twenty-eight implants were histologically observed (bone-to-implant-contact [BIC] and new-bone-area [NBA]. Results: The results showed that the 1.25-(OH2D3 coated implants presented a tendency to osseointegrate better than the non-coated surfaces, the differences were not significant (P > 0.05. Conclusions: The effect of 1.25-(OH2D3 coating to implants suggested possible dose dependent effects, however no statistical differences could be found. It is thought that the base substrate topography (turned could not sustain sufficient amount of 1.25-(OH2D3 enough to present significant biologic responses. Thus, development a base substrate that can sustain 1.25-(OH2D3 for a long period is necessary in future studies.

  16. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Science.gov (United States)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  17. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    OBJECTIVES: The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. MATERIAL AND METHODS: A MEDLINE (PubMed), Embase and Cochrane library search...... of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment...... loss around implants with a scalloped implant-abutment connection. CONCLUSIONS: A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must...

  18. Powder injection molding of HA/Ti6Al4V composite using palm stearin as based binder for implant material

    International Nuclear Information System (INIS)

    Arifin, Amir; Sulong, Abu Bakar; Muhamad, Norhamidi; Syarif, Junaidi; Ramli, Mohd Ikram

    2015-01-01

    Highlights: • Fabrication of HA/Ti6Al4V composite using powder injection molding. • Rheological results show that palm stearin is suitable as binder. • Resulted mechanical properties in between titanium alloy and HA values. • Micro porous enable accelerated bioactivity based on in vitro test. - Abstract: Titanium alloy (Ti6Al4V) and hydroxyapatite (HA) are well-known materials applied in implants. Ti6Al4V shows good mechanical properties and corrosion resistance, whereas HA possesses excellent biocompatibility and bioactivity but weak mechanical properties. The combination of the Ti6Al4V and HA properties is expected to produce a superior material for bio-implants. This study aimed to analyze the feasibility of fabricating HA/Ti6Al4V composites through powder injection molding (PIM) using palm stearin as base binder. In this study, 90 wt% Ti6Al4V and 10 wt% HA were mixed with the palm stearin and polyethylene binder system. The HA/Ti6Al4V feedstock showed pseudoplastic properties, suggesting its suitability for PIM. Flexural test revealed that the strength of the sintered composite ranges from 67.12 MPa to 112.97 MPa and its Young’s modulus ranges from 39.28 GPa to 44.25 GPa. The X-ray diffraction patterns and energy-dispersive X-ray spectra of the composite showed that the HA decomposed and formed secondary phases. Isotropic porous structure was observed on the sintered sample because of HA decomposition. Results showed that the palm stearin can be used as based binder in fabricating HA/Ti6Al4V composites via PIM. The mechanical properties of the sintered composites are nearly similar to those of the human bone. In addition, the increase in weight of the sintered composite during in vitro tests indicated the nucleation and growth of the Ca–P phase, which exhibited the biocompatibility of the fabricated HA/Ti6Al4V composite

  19. Corrosion processes of physical vapor deposition-coated metallic implants.

    Science.gov (United States)

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2009-01-01

    Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.

  20. Effect of humic acid (HA) on sulfonamide sorption by biochars

    International Nuclear Information System (INIS)

    Lian, Fei; Sun, Binbin; Chen, Xi; Zhu, Lingyan; Liu, Zhongqi; Xing, Baoshan

    2015-01-01

    Effect of quantity and fractionation of loaded humic acid (HA) on biochar sorption for sulfonamides was investigated. The HA was applied in two different modes, i.e. pre-coating and co-introduction with sorbate. In pre-coating mode, the polar fractions of HA tended to interact with low-temperature biochars via H-bonding, while the hydrophobic fractions were likely to be adsorbed by high-temperature biochars through hydrophobic and π-π interactions, leading to different composition and structure of the HA adlayers. The influences of HA fractionation on biochar sorption for sulfonamides varied significantly, depending on the nature of interaction between HA fraction and sorbate. Meanwhile, co-introduction of HA with sulfonamides revealed that the effect of HA on sulfonamide sorption was also dependent on HA concentration. These findings suggest that the amount and fractionation of adsorbed HA are tailored by the surface properties of underlying biochars, which differently affect the sorption for organic contaminants. - Highlights: • Effect of quantity and fractionation of coated HA on sorption of sulfonamides by BC was studied. • Fractionation of coated HA is tailored by surface properties of BC. • Roles of HA in BC sorption depend on interaction between HA adlayer and sorbate. • Roles of HA in sulfonamide sorption by BC also depend on HA aqueous concentration. - The quantity and fractionation of adsorbed HA play a major role in sulfonamide sorption by biochars

  1. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings

    International Nuclear Information System (INIS)

    Testrich, H.; Rebl, H.; Finke, B.; Hempel, F.; Nebe, B.; Meichsner, J.

    2013-01-01

    Thin plasma polymer films from ethylenediamine were deposited on planar substrates placed on the powered electrode of a low pressure capacitively coupled 13.56 MHz discharge. The chemical composition of the plasma polymer films was analyzed by Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) as well as by X-ray photoelectron spectroscopy (XPS) after derivatization of the primary amino groups. The PPEDA films undergo an alteration during the storage in ambient air, particularly, due to reactions with oxygen. The molecular changes in PPEDA films were studied over a long-time period of 360 days. Simultaneously, the adhesion of human osteoblast-like cells MG-63 (ATCC) was investigated on PPEDA coated corundum blasted titanium alloy (Ti-6Al-4V), which is applied as implant material in orthopedic surgery. The cell adhesion was determined by flow cytometry and the cell shape was analyzed by scanning electron microscopy. Compared to uncoated reference samples a significantly enhanced cell adhesion and proliferation were measured for PPEDA coated samples, which have been maintained after long-time storage in ambient air and additional sterilization by γ−irradiation. - Highlights: • Development of cell-adhesive nitrogen-rich coatings for biomedical applications. • Plasma polymer films from low pressure 13.56 MHz discharge in argon-ethylenediamine. • Enhanced osteoblast adhesion/proliferation on coated implant material (Ti-6Al-4V). • Despite film aging over 360 days the enhanced cell adhesion of the coating remains. • No influence of additional y-sterilization on the enhanced cell adhesion

  2. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    Science.gov (United States)

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants. © The Author(s) 2015.

  3. Effects of surface coating on reducing friction and wear of orthopaedic implants

    International Nuclear Information System (INIS)

    Ching, Hee Ay; Choudhury, Dipankar; Nine, Md Julker; Abu Osman, Noor Azuan

    2014-01-01

    Coatings such as diamond-like carbon (DLC) and titanium nitride (TiN) are employed in joint implants due to their excellent tribological properties. Recently, graphite-like carbon (GLC) and tantalum (Ta) have been proven to have good potential as coating as they possess mechanical properties similar to bones—high hardness and high flexibility. The purpose of this systematic literature review is to summarize the coating techniques of these four materials in order to compare their mechanical properties and tribological outcomes. Eighteen studies published between January 2000 and February 2013 have met the inclusion criteria for this review. Details of their fabrication parameters, material and mechanical properties along with the tribological outcomes, such as friction and wear rate, were identified and are presented in a systematic way. Although experiment conditions varied, we conclude that Ta has the lowest wear rate compared to DLC, GLC and TiN because it has a lower wear rate with high contact pressure as well as higher hardness to elasticity ratio. However, a further tribology test is needed in an environment which replicates artificial joints to confirm the acceptability of these findings. (review)

  4. Effects of surface coating on reducing friction and wear of orthopaedic implants.

    Science.gov (United States)

    Ching, Hee Ay; Choudhury, Dipankar; Nine, Md Julker; Abu Osman, Noor Azuan

    2014-02-01

    Coatings such as diamond-like carbon (DLC) and titanium nitride (TiN) are employed in joint implants due to their excellent tribological properties. Recently, graphite-like carbon (GLC) and tantalum (Ta) have been proven to have good potential as coating as they possess mechanical properties similar to bones-high hardness and high flexibility. The purpose of this systematic literature review is to summarize the coating techniques of these four materials in order to compare their mechanical properties and tribological outcomes. Eighteen studies published between January 2000 and February 2013 have met the inclusion criteria for this review. Details of their fabrication parameters, material and mechanical properties along with the tribological outcomes, such as friction and wear rate, were identified and are presented in a systematic way. Although experiment conditions varied, we conclude that Ta has the lowest wear rate compared to DLC, GLC and TiN because it has a lower wear rate with high contact pressure as well as higher hardness to elasticity ratio. However, a further tribology test is needed in an environment which replicates artificial joints to confirm the acceptability of these findings.

  5. Bacterial colonization of polymer brush-coated and pristine silicone rubber implanted in infected pockets in mice

    NARCIS (Netherlands)

    Nejadnik, M.R.; Engelsman, A.F.; Fernandez, I.C.S.; Busscher, H.J.; Norde, W.; Mei, van der H.C.

    2008-01-01

    Curing biomaterial-associated infection (BAI) frequently includes antibiotic treatment, implant removal and re-implantation. However, revision implants are at a greater risk of infection as they may attract bacteria from their infected surroundings. Polymer brush-coatings attract low numbers of

  6. Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model.

    Science.gov (United States)

    Prinz, Cornelia; Elhensheri, Mohamed; Rychly, Joachim; Neumann, Hans-Georg

    2017-08-01

    Current strategies in implant technology are directed to generate bioactive implants that are capable to activate the regenerative potential of the surrounding tissue. On the other hand, implant-related infections are a common problem in orthopaedic trauma patients. To meet both challenges, i.e. to generate a bone implant with regenerative and antimicrobial characteristics, we tested the use of copper coated nails for surgical fixation in a rabbit model. Copper acetate was galvanically deposited with a copper load of 1 µg/mm 2 onto a porous oxide layer of Ti6Al4V nails, which were used for the fixation of a tibia fracture, inoculated with bacteria. After implantation of the nail the concentration of copper ions did not increase in blood which indicates that copper released from the implant was locally restricted to the fracture site. After four weeks, analyses of the extracted implants revealed a distinct antimicrobial effect of copper, because copper completely prevented both a weak adhesion and firm attachment of biofilm-forming bacteria on the titanium implant. To evaluate fracture healing, radiographic examination demonstrated an increased callus index in animals with copper coated nails. This result indicates a stimulated bone formation by releasing copper ions. We conclude that the use of implants with a defined load of copper ions enables both prevention of bacterial infection and the stimulation of regenerative processes.

  7. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants

    NARCIS (Netherlands)

    Barrère, F.; van der Valk, Chantal M.; Dalmeijer, Remco A.J.; Meijer, Gert; van Blitterswijk, Clemens; de Groot, K.; Layrolle, Pierre

    2003-01-01

    The biomimetic route allows the homogeneous deposition of calcium phosphate (Ca-P) coatings on porous implants by immersion in simulated physiologic solution. In addition, various Ca-P phases, such as octacalcium phosphate (OCP) or bone-like carbonated apatite (BCA), which are stable only at low

  8. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: an in vitro study.

    Science.gov (United States)

    Abrishamchian, Alireza; Hooshmand, Tabassom; Mohammadi, Mohammadreza; Najafi, Farhood

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti-6Al-4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol-gel method. The structural characterization and electron microscopy results confirmed well crystallized HA-MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol-gel-derived HA/MWCNT composite coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. A systematic review on the long-term success of calcium phosphate plasma-spray-coated dental implants.

    Science.gov (United States)

    van Oirschot, B A J A; Bronkhorst, E M; van den Beucken, J J J P; Meijer, G J; Jansen, J A; Junker, R

    2016-09-01

    The objectives of the current review were (1) to systematically appraise, and (2) to evaluate long-term success data of calcium phosphate (CaP) plasma-spray-coated dental implants in clinical trials with at least 5 years of follow-up. To describe the long-term efficacy of functional implants, the outcome variables were (a) percentage annual complication rate (ACR) and (b) cumulative success rate (CSR), as presented in the selected articles. The electronic search yielded 645 titles. On the basis of the inclusion criteria, 8 studies were finally included. The percentage of implants in function after the first year was estimated to be 98.4 % in the maxilla and 99.2 % in the mandible. The estimates of the weighted mean ACR-percentage increased over the years up to 2.6 (SE 0.7) during the fifth year of function for the maxilla and to 9.4 (SE 8.4) for the mandible in the tenth year of function. After 10 years, the mean percentage of successful implants was estimated to be 71.1 % in the maxilla and 72.2 % in the mandible. The estimates seem to confirm the proposed, long-term progressive bone loss pattern of CaP-ceramic-coated dental implants. Within the limits of this meta-analytic approach to the literature, we conclude that: (1) published long-term success data for calcium phosphate plasma-spray-coated dental implants are limited, (2) comparison of the data is difficult due to differences in success criteria among the studies, and (3) long-term CSRs demonstrate very weak evidence for progressive complications around calcium phosphate plasma-spray-coated dental implants.

  10. Synthesis and characterization of Cerium-doped hydroxyapatite/polylactic acid composite coatings on metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Qiuhua, E-mail: yuanqiuh@szu.edu.cn; Qin, Caoping; Wu, Jianbo; Xu, Anping; Zhang, Ziqiang; Liao, Junquan; Lin, Songxin; Ren, Xiangzhong; Zhang, Peixin

    2016-10-01

    Ce-doped hydroxyapatite/polylactic acid (HA/PLA) composites serving as implant coatings have rarely been studied by other researchers in recent years. This paper was focused to study the existence of Ce ions in structure, chemical composition and surface morphology of HA and its composite coatings. Ce-doped HA powders were synthesized by chemical precipitation method with different Ce molar fractions (0(pure HA), 0.5 mol%, 1 mol% and 2 mol%). And Ce-doped HA/PLA composite coatings were fabricated for the first time on stainless steel substrates by spin coating technique. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) coupled with energy dispersive X-ray detector (EDX), thermo gravimetric-differential thermal analysis (TG-DTA) and X-ray photoelectron spectroscopy (XPS). The results showed that Ce ions were doped into the crystal lattice of apatite successfully. The (Ce + Ca)/P atomic ratios in the doped HA/PLA samples ranged from 1.614 to 1.673, which were very close to the theoretical value of 1.67 for the stoichiometric HA. The addition of PLA could keep metal substrates from catalyzing the decomposition of HA. TG-DTA analysis indicated that Ce-doped HA powder had high thermal stability, and the SEM micrographs revealed that the surface topography of Ce-doped HA/PLA composite coatings was uniform and dense when the Ce molar fraction was 2 mol%. XPS results indicated that the Ce ions doped in HA showed mixed valences of Ce{sup 3+} and Ce{sup 4+}. - Highlights: • Ce-doped HA composite coatings were synthesized by spin-coating technique for the first time. • Ce ions were demonstrated to dope into HA crystal lattice successfully. • The addition of PLA could keep metal substrates from catalyzing the decomposition of HA. • XPS results showed that Ce ions doped in HA have mixed valences of Ce{sup 3+} and Ce{sup 4+}.

  11. Periprosthetic bone densitometry of the hip: Influence of design and hydroxyapatite coating on regional bone remodeling; 5 year follow-up

    International Nuclear Information System (INIS)

    Rosenthall

    2002-01-01

    Aim: To determine bone mineral density changes surrounding two differently designed titanium alloy porous-coated femoral hip prostheses (S-ROM and Multilock) as a function of time. Materials and Methods: The periprosthetic bone regions were defined by the seven Gruen zones. Measurements were obtained by DXA utilizing a dedicated software program (LUNAR ORTH). Inclusion criteria required that the patients were asymptomatic with Harris hip scores >95, showed no radiographic evidence of loosening and that they had primary implants. The protocol specified that bone measurements be obtained within one week after implantation as a baseline reference and at 6 months, 12 months and yearly thereafter. 111 consecutive S-ROM and 65 consecutive Multilock patients were enrolled in this ongoing prospective study. Of the 65 patients with Multilock implants, 25 had a 50 micron thick coating of hydroxyapatite-tricalcium phosphate (HA) sprayed over the porous surface and 40 were without coating. Results: At 6 months the mean BMD of all zones showed a significant decrease relative to the baseline measurement, varying from 6% to 17%. Gruen zones 2 to 6 exhibited variable degrees of recovery by 60 months. The maximum mineral losses were registered proximally in zone 1 (greater trochanter) and zone 7 (calcar and lesser trochanter), which are recognized sites of prosthetic stress shielding. The detailed results at 60 months are presented. In Gruen zone 1 the mineral loss in the S-ROM implant is significantly less the than either Multilock type. Also, mineral loss with Multilock-HA is about 55% less than the Multilock-uncoated. In Gruen zone 7 there is no difference between S-ROM and Multilock-uncoated, but Multilock-HA lost 44% less density than Multilock-uncoated. Conclusion: Regional bone remodeling appears to be related to prosthesis design. HA coating substantially and significantly reduces mineral loss in the proximal porous area; the mechanism is speculative

  12. Sol-Gel Derived Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopedic Application

    Science.gov (United States)

    Singh, Sanjay; Manoj Kumar, R.; Kuntal, Kishor Kumar; Gupta, Pallavi; Das, Snehashish; Jayaganthan, R.; Roy, Partha; Lahiri, Debrupa

    2015-04-01

    In recent years, magnesium and its alloys have gained a lot of interest as orthopedic implant constituents because their biodegradability and mechanical properties are closer to that of human bone. However, one major concern with Mg in orthopedics is its high corrosion rate that results in the reduction of mechanical integrity before healing the bone tissue. The current study evaluates the sol-gel-derived hydroxyapatite (HA) coating on a selected Mg alloy (Mg-3Zn) for decreasing the corrosion rate and increasing the bioactivity of the Mg surface. The mechanical integrity of the coating is established as a function of the surface roughness of the substrate and the sintering temperature of the coating. Coating on a substrate roughness of 15-20 nm and sintering at 400°C shows the mechanical properties in similar range of bone, thus making it suitable to avoid the stress-shielding effect. The hydroxyapatite coating on the Mg alloy surface also increases corrosion resistance very significantly by 40 times. Bone cells are also found proliferating better in the HA-coated surface. All these benefits together establish the candidature of sol-gel HA-coated Mg-3Zn alloy in orthopedic application.

  13. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    International Nuclear Information System (INIS)

    Shi, Xingling; Xu, Lingli; Munar, Melvin L.; Ishikawa, Kunio

    2015-01-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl 2 solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant

  14. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xingling, E-mail: shixingling1985@hotmail.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Xu, Lingli [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Munar, Melvin L.; Ishikawa, Kunio [Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2015-04-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl{sub 2} solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant.

  15. Bioceramic coatings for medical implants trends and techniques

    CERN Document Server

    Heimann, Robert B

    2015-01-01

    Reflecting the progress in recent years, this book provides in-depth information on the preparation, chemistry, and engineering of bioceramic coatings for medical implants. It is authored by two renowned experts with over 30 years of experience in industry and academia, who know the potentials and pitfalls of the techniques concerned. Following an introduction to the principles of biocompatibility, they present the structures and properties of various bioceramics from alumina to zirconia. The main part of the work focuses on coating technologies, such as chemical vapor deposition, sol-gel deposition and thermal spraying. There then follows a discussion of the major interactions of bioceramics with bone or tissue cells, complemented by an overview of the in-vitro testing methods of the biomineralization properties of bioceramics. The text is rounded off by chapters on the functionalization of bioceramic coatings and a look at future trends. As a result, the authors bring together all aspects of the latest tech...

  16. Ion implantation and diamond-like coatings of aluminum alloys

    Science.gov (United States)

    Malaczynski, G. W.; Hamdi, A. H.; Elmoursi, A. A.; Qiu, X.

    1997-04-01

    In an attempt to increase the wear resistance of some key automotive components, General Motors Research and Development Center initiated a study to determine the potential of surface modification as a means of improving the tribological properties of automotive parts, and to investigate the feasibility of mass producing such parts. This paper describes the plasma immersion ion implantation system that was designed for the study of various options for surface treatment, and it discusses bench testing procedures used for evaluating the surface-treated samples. In particular, both tribological and microstructural analyses are discussed for nitrogen implants and diamond-like hydrocarbon coatings of some aluminum alloys.

  17. Radiographic Bone Density around Dental Implants with Surface Modification by Laser Ablation followed by Hydroxyapatite Coating: A Study in Rabbit Tibiae

    DEFF Research Database (Denmark)

    Cazelato, Tiago; Spin-Neto, Rubens; Morais, J

    followed by hydroxyapatite coating with a surface that was oxide-blasted followed by acid etching. On this study twenty-four rabbits received two implants in each tibia, an oxide-blasted + acid-etched (ATS) and a hydroxyapatite-coated (HAP) implant. Radiographs of the implants were recorded after 4, 8...

  18. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shih-Ping [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2015-08-15

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications.

  19. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    International Nuclear Information System (INIS)

    Yang, Shih-Ping; Lee, Tzer-Min; Lui, Truan-Sheng

    2015-01-01

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications

  20. Antibacterial TiO2Coating Incorporating Silver Nanoparticles by Micro arc Oxidation and Ion Implantation

    International Nuclear Information System (INIS)

    Zhang, P.; Zhang, Z.; Li, W.

    2013-01-01

    Infection associated with titanium implants remains the most common serious complication in hard tissue replacement surgery. Since such postoperative infections are usually difficult to cure, it is critical to find optimal strategies for preventing infections. In this study, TiO 2 coating incorporating silver (Ag) nanoparticles were fabricated on pure titanium by micro arc oxidation and ion implantation. The antibacterial activity was evaluated by exposing the specimens to Staphylococcus aureus and comparing the reaction of the pathogens to Ti-MAO-Ag with Ti-MAO controls. Ti-MAO-Ag clearly inhibited bacterial colonization more than the control specimen. The coating’s antibacterial ability was enhanced by increasing the dose of silver ion implantation, and Ti-MAO-Ag 20.0 had the best antibacterial ability. In addition, cytocompatibility was assessed by culturing cell colonies on the specimens. The cells grew well on both specimens. These findings indicate that surface modification by means of this process combining MAO and silver ion implantation is useful in providing antibacterial activity and exhibits cytocompatibility with titanium implants

  1. Ion implantation and ion assisted coatings for wear resistance in metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The implantation of electrically accelerated ions of chosen elements into the surface of material provides a method for improving surface properties such as wear resistance. High concentrations of nitrogen implanted into metals create obstacles to dislocation movement, and certain combinations of metallic and non-metallic species will also strengthen the surface. The process is best applied to situations involving mild abrasive wear and operating temperatures that are not too high. Some dramatic increases in life have been reported under such favourable conditions. A more recent development has been the combination of a thin coating with reactive ion bombardment designed to enhance adhesion by ion mixing at the interface and so provide hardness by the formation of finely dispersed nitrides, including cubic boron nitride. These coatings often possess vivid and decorative colours as an added benefit. Developments in the equipment for industrial ion implantation now offer more attractive costs per unit area and a potentially greater throughput of work. A versatile group of related hard vacuum treatments is now emerging, involving the use of intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (author)

  2. Development and characterization of multi-element doped hydroxyapatite bioceramic coatings on metallic implants for orthopedic applications

    International Nuclear Information System (INIS)

    Furko, M.; Havasi, V.; Kónya, Z.; Grünewald, D.; Detsch, R.; Boccaccini, A.R.; Balázsi, C.

    2018-01-01

    Multi-element modified bioactive hydroxyapatite bioceramic (mHAp) coatings were successfully developed onto surgical grade titanium alloy material (Ti6Al4V). The coatings were prepared by pulse current deposition from electrolyte containing adequate amounts of calcium nitrate and ammonium dihydrogen phosphate at 70C. The pure HAp layer was doped and co-deposited with Ag, Zn, Mg, Sr ions. The biocompatible properties of layers were investigated by seeding osteoblast-like MG-63 cells onto the samples’ surface. The biocompatible measurements revealed enhanced bioactivity of modified HAp compared to uncoated implant materials and pure bioceramic coating. The morphology and structure of coatings and cells were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) as well as FT-IR and XRD measurements. The biodegradable properties of samples were investigated by electrochemical potentiodynamic measurements. [es

  3. A doxycycline-loaded polymer-lipid encapsulation matrix coating for the prevention of implant-related osteomyelitis due to doxycycline-resistant methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Metsemakers, Willem-Jan; Emanuel, Noam; Cohen, Or; Reichart, Malka; Potapova, Inga; Schmid, Tanja; Segal, David; Riool, Martijn; Kwakman, Paulus H S; de Boer, Leonie; de Breij, Anna; Nibbering, Peter H; Richards, R Geoff; Zaat, Sebastian A J; Moriarty, T Fintan

    2015-07-10

    Implant-associated bone infections caused by antibiotic-resistant pathogens pose significant clinical challenges to treating physicians. Prophylactic strategies that act against resistant organisms, such as methicillin-resistant Staphylococcus aureus (MRSA), are urgently required. In the present study, we investigated the efficacy of a biodegradable Polymer-Lipid Encapsulation MatriX (PLEX) loaded with the antibiotic doxycycline as a local prophylactic strategy against implant-associated osteomyelitis. Activity was tested against both a doxycycline-susceptible (doxy(S)) methicillin-susceptible S. aureus (MSSA) as well as a doxycycline-resistant (doxy(R)) methicillin-resistant S. aureus (MRSA). In vitro elution studies revealed that 25% of the doxycycline was released from the PLEX-coated implants within the first day, followed by a 3% release per day up to day 28. The released doxycycline was highly effective against doxy(S) MSSA for at least 14days in vitro. A bolus injection of doxycycline mimicking a one day release from the PLEX-coating reduced, but did not eliminate, mouse subcutaneous implant-associated infection (doxy(S) MSSA). In a rabbit intramedullary nail-related infection model, all rabbits receiving a PLEX-doxycycline-coated nail were culture negative in the doxy(S) MSSA-group and the surrounding bone displayed a normal physiological appearance in both histological sections and radiographs. In the doxy(R) MRSA inoculated rabbits, a statistically significant reduction in the number of culture-positive samples was observed for the PLEX-doxycycline-coated group when compared to the animals that had received an uncoated nail, although the reduction in bacterial burden did not reach statistical significance. In conclusion, the PLEX-doxycycline coating on titanium alloy implants provided complete protection against implant-associated MSSA osteomyelitis, and resulted in a significant reduction in the number of culture positive samples when challenged with a

  4. Influence of hydroxyapatite coating thickness and powder particle size on corrosion performance of MA8M magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sonmez, S. [Hakkari University, Dept. of Biomedical Eng., 30000 Hakkari (Turkey); Aksakal, B., E-mail: baksakal@yildiz.edu.tr [Yildiz Technical University, Chemical Metallurgy Faculty, Dept. of Metall and Mater Eng., Istanbul (Turkey); Dikici, B. [Yuzuncu Yil University, Dept. of Mechanical Eng., 65080 Van (Turkey)

    2014-05-01

    Graphical abstract: The corrosion resistance of magnesium alloys is the primary concern in biomedical applications. Micron and nano-scale hydroxyapatite (HA) was coated successfully on MA8M magnesium alloy substrates by using a sol–gel deposition. In this study, the effects of coating thicknesses and HA powder particle sizes on the adhesion strength and corrosion behavior were investigated. Potentiodynamic polarization tests were performed in a Ringer solution. The coatings before and after corrosion tests were characterized by adhesion tests, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. The anodic activity of the micro-scale-HA coatings increased with increased coating thickness and the corrosion resistance of Mg substrates decreased. Corrosion susceptibilities of the nano-scale-HA coated samples were affected inversely. The coated film provided good barrier characteristics and achieved good corrosion protection for Mg substrates when compared to substrates without coatings. For micro-scale-HA coatings, anodic and cathodic activities were more intense for thicker films. When HA coatings are compared to nano-scale HA coatings, the micro-scale-HA coatings produced better current density values. Overall, as shown in Fig. 1, the best corrosion behavior of the Mg alloys was achieved using micro-scale HA powders at 30 μm coating thickness. - Highlights: • Nano and micro-scale-HA coatings provided good anti-corrosion performance compared to the uncoated ones. • The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. • The best corrosion behavior was achieved for the micro-scale HA powders at 30 μm coating thickness. • Anodic activity decrease and cathodic activity increase with increasing film thickness. - Abstract: To improve the corrosion resistance of MA8M magnesium alloy, sol

  5. In Vitro and In Vivo Osteogenic Activity of Titanium Implants Coated by Pulsed Laser Deposition with a Thin Film of Fluoridated Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2018-04-01

    Full Text Available To enhance biocompatibility, osteogenesis, and osseointegration, we coated titanium implants, by krypton fluoride (KrF pulsed laser deposition, with a thin film of fluoridated hydroxyapatite (FHA. Coating was confirmed by scanning electron microscopy (SEM and scanning probe microscopy (SPM, while physicochemical properties were evaluated by attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Calcium deposition, osteocalcin production, and expression of osteoblast genes were significantly higher in rat bone marrow mesenchymal stem cells seeded on FHA-coated titanium than in cells seeded on uncoated titanium. Implantation into rat femurs also showed that the FHA-coated material had superior osteoinductive and osseointegration activity in comparison with that of traditional implants, as assessed by microcomputed tomography and histology. Thus, titanium coated with FHA holds promise as a dental implant material.

  6. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants

    Energy Technology Data Exchange (ETDEWEB)

    Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V., E-mail: veerajendran@gmail.com

    2013-10-15

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58–1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Highlights: • Hydroxyapatite particles are prepared with various silicon concentration • Prepared composites are blended with chitosan and coated on the implant • Corrosion resistance in simulated body fluid improves its stability • Increase in silicon concentration improves the antibacterial activity • Coated plate exhibit high in-vitro bioactivity in simulated body fluid.

  7. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants

    International Nuclear Information System (INIS)

    Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V.

    2013-01-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58–1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Highlights: • Hydroxyapatite particles are prepared with various silicon concentration • Prepared composites are blended with chitosan and coated on the implant • Corrosion resistance in simulated body fluid improves its stability • Increase in silicon concentration improves the antibacterial activity • Coated plate exhibit high in-vitro bioactivity in simulated body fluid

  8. Silica–polyethylene glycol hybrids synthesized by sol–gel: Biocompatibility improvement of titanium implants by coating

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Ferrara, C.; Mustarelli, P. [Department of Chemistry, University of Pavia and INSTM, Via Taramelli 12, 27100 Pavia (Italy)

    2015-10-01

    Although metallic implants are the most used in dental and orthopaedic fields, they can early fail due to low tissue tolerance or osseointegration ability. To overcome this drawback, functional coatings can be applied on the metallic surface to provide a firm fixation of the implants. The objective of the present study was twofold: to synthesize and to characterize silica/polyethylene glycol (PEG) hybrid materials using sol–gel technique and to investigate their capability to dip-coat titanium grade 4 (Ti-gr4) substrates to improve their biological properties. Various hybrid systems have been synthesized by changing the ratio between the organic and inorganic phases in order to study the influence of the polymer amount on the structure and, thus, on the properties of the coatings. Fourier transform infrared (FTIR) spectroscopy and solid state Nuclear Magnetic Resonance (NMR) allowed us to detect the formation of hydrogen bonds between the inorganic sol–gel matrix and the organic component. SEM analysis showed that high PEG content enables to obtain crack free-coating. Moreover, the effective improvement in biological properties of Ti-gr4 implants has been evaluated by performing in vitro tests. The bioactivity of the hybrid coatings has been showed by the hydroxyapatite formation on the surface of SiO{sub 2}/PEG coated Ti-gr4 substrates after soaking in a simulated body fluid and the lack of cytotoxicity by the WST-8 Assay. The results showed that the coated substrates are more bioactive and biocompatible than the uncoated ones and that the bioactivity is not significantly affected by PEG amount whereas its addition makes the films more biocompatible. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at various PEG percentages • Hybrid coating of titanium substrate with dip-coating technology • Chemical and morphological characterization of hybrids and coating • Biocompatibility improvement of coated titanium with high

  9. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy

    NARCIS (Netherlands)

    Stigter, M.; Bezemer, J.M.; de Groot, K.; Layrolle, P.

    2004-01-01

    Carbonated hydroxyapatite (CHA) coatings were applied onto titanium implants by using a biomimetic precipitation method. Different antibiotics were incorporated into the CHA coatings and their release and efficacy against bacteria growth were studied in vitro. The following antibiotics were used

  10. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    OBJECTIVES: The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. MATERIAL AND METHODS: A MEDLINE (PubMed), Embase and Cochrane library search......-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone...... loss around implants with a scalloped implant-abutment connection. CONCLUSIONS: A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must...

  11. Development of HA/Ag-NPs Composite Coating from Green Process for Hip Applications.

    Science.gov (United States)

    Lozoya-Rodríguez, Denisse A; de Lima, Renata; Fraceto, Leonardo F; Ledezma Pérez, Antonio; Bazaldua Domínguez, Mercedes; Gómez Batres, Roberto; Reyes Rojas, Armando; Orozco Carmona, Víctor

    2017-08-08

    In the present study, biological hydroxyapatite (HA) was obtained from bovine bones through a thermal process. A total of 0% and 1% of silver nanoparticles (Ag-NPs) synthesized from Opuntia ficus (nopal) were added to the biological hydroxyapatite coatings using an atmospheric plasma spray (APS) on a Ti6Al4V substrate. Following this, its antimicrobial efficiency was evaluated against the following bacterial strains: Escherichia coli , Staphylococcus aureus , and Pseudomonas aeruginosa . This was conducted according to the Japanese Industrial Standard (JIS) Z2801:2000 "Antimicrobial Product-Test for Antimicrobial Activity and Efficacy". Scanning electron microscopy (SEM) showed that the silver nanoparticles (Ag-NPs) were evenly distributed on the coating surface. Energy dispersive X-ray spectroscopy (EDX) shows that apatite deposition occurs on a daily basis, maintaining a Ca/P rate between 2.12 and 1.45. Biocompatibility properties were evaluated with osteoblast-like cells (MC3T3-E1) by single-cell gel electrophoresis assay and Tali image cytometry.

  12. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.J.; Sood, D.K.; Manory, R.R. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  13. Surface modification of commercial tin coatings by carbon ion implantation

    International Nuclear Information System (INIS)

    Liu, L.J.; Sood, D.K.; Manory, R.R.

    1993-01-01

    Commercial TiN coatings of about 2 μm thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10 17 - 8x10 17 ions cm -2 . Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs

  14. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L J; Sood, D K; Manory, R R [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  15. Fixation of Hydroxyapatite-Coated Revision Implants Is Improved by the Surgical Technique of Cracking the Sclerotic Bone Rim

    Science.gov (United States)

    Elmengaard, Brian; Bechtold, Joan E.; Chen, Xinqian; Søballe, Kjeld

    2013-01-01

    Revision joint replacement has poorer outcomes that have been associated with poorer mechanical fixation. We investigate a new bone-sparing surgical technique that locally cracks the sclerotic bone rim formed during aseptic loosening. We inserted 16 hydroxyapatite-coated implants bilaterally in the distal femur of eight dogs, using a controlled weight-bearing experimental model that replicates important features of a typical revision setting. At 8 weeks, a control revision procedure and a crack revision procedure were performed on contralateral implants. The crack procedure used a splined tool to perform a systematic local perforation of the sclerotic bone rim of the revision cavity. After 4 weeks, the hydroxyapatite-coated implants were evaluated for mechanical fixation by a push-out test and for tissue distribution by histomorphometry. The cracking revision procedure resulted in significantly improved mechanical fixation, significantly more bone ongrowth and bone volume in the gap, and reduced fibrous tissue compared to the control revision procedure. The study demonstrates that the sclerotic bone rim prevents bone ingrowth and promotes fixation by fibrous tissue. The effect of the cracking technique may be due to improved access to the vascular compartment of the bone. The cracking technique is a simple surgical method that potentially can improve the fixation of revision implants in sclerotic regions important for obtaining the fixation critical for overall implant stability. PMID:19148940

  16. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2014-12-15

    Highlights: • Adding CeO{sub 2}/ZrO{sub 2} nano-particles to modify the properties of n-MAO coating. • A bio-ceramic n-MAO/EPD composite coating was prepared by two-step methods. • The n-MAO/EPD composite coating with HA has a favorable anti-corrosion effect. - Abstract: A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO{sub 2} and ZrO{sub 2} nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO{sub 2} and ZrO{sub 2} peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  17. Friction and wear of stainless steel, titanium and aluminium with various surface treatments, ion implantation and overlay hard coatings

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1979-01-01

    This paper deals with the evaluation of the wear properties of 304 stainless steel, commercial grade titanium and commercial grade aluminium without and with different surface treatments, i.e., ion implantation of boron and nitrogen, and overlay coating of superhard materials, titanium carbide and nitride by the Biased Activated Reactive Evaporation (BARE) process. Wear properties were evaluated in adhesive, erosive and abrasive modes of wear. In the case of adhesive wear, ion implantation resulted in an improved wear behaviour in lubricated conditions but had no beneficial effect in dry wear conditions. Overlay coatings on the other hand resulted in improved wear behaviour for both the dry and lubricating conditions. In the case of erosive wear with SiC particles at high velocities, overlay coatings showed higher erosion rates (typical of brittle materials in normal impingement) whereas ion implanted materials behaved similarly as untreated materials; i.e., a lower wear rate than the specimens with overlay coatings. In the case of abrasive wear, it was again observed that the wear rates of overlay coatings is far lower than the wear rates of untreated or ion implanted materials. (author)

  18. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

    Directory of Open Access Journals (Sweden)

    Amirreza Shayganpour

    2015-11-01

    Full Text Available Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities.

  19. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance.

    Science.gov (United States)

    Kose, Nusret; Otuzbir, Ali; Pekşen, Ceren; Kiremitçi, Abdurrahman; Doğan, Aydin

    2013-08-01

    Despite progress in surgical techniques, 1% to 2% of joint arthroplasties become complicated by infection. Coating implant surfaces with antimicrobial agents have been attempted to prevent initial bacterial adhesion to implants with varying success rates. We developed a silver ion-containing calcium phosphate-based ceramic nanopowder coating to provide antibacterial activity for orthopaedic implants. We asked whether titanium prostheses coated with this nanopowder would show resistance to bacterial colonization as compared with uncoated prostheses. We inserted titanium implants (uncoated [n = 9], hydroxyapatite-coated [n = 9], silver-coated [n = 9]) simulating knee prostheses into 27 rabbits' knees. Before implantation, 5 × 10(2) colony-forming units of Staphylococcus aureus were inoculated into the femoral canal. Radiology, microbiology, and histology findings were quantified at Week 6 to define the infection, microbiologically by increased rate of implant colonization/positive cultures, histologically by leukocyte infiltration, necrosis, foreign-body granuloma, and devitalized bone, and radiographically by periosteal reaction, osteolysis, or sequestrum formation. Swab samples taken from medullary canals and implants revealed a lower proportion of positive culture in silver-coated implants (one of nine) than in uncoated (eight of nine) or hydroxyapatite-coated (five of nine) implants. Silver-coated implants also had a lower rate of colonization. No cellular inflammation or foreign-body granuloma was observed around the silver-coated prostheses. Silver ion-doped ceramic nanopowder coating of titanium implants led to an increase in resistance to bacterial colonization compared to uncoated implants. Silver-coated orthopaedic implants may be useful for resistance to local infection but will require in vivo confirmation.

  20. In vitro color evaluation of esthetic coatings for metallic dental implants and implant prosthetic appliances.

    Science.gov (United States)

    Pecnik, Christina M; Roos, Malgorzata; Muff, Daniel; Spolenak, Ralph; Sailer, Irena

    2015-05-01

    The aim of this study was to characterize the optical properties of newly developed esthetic coatings for metallic implants and components for an improved peri-implant soft tissue appearance. Pig maxillae (n = 6) were used for the in vitro color evaluation of coated and uncoated samples. Three different coating systems (Ti-ZrO(2), Ti-Al-ZrO(2), and Ti-Ag-ZrO(2)) were deposited on titanium substrates, which exhibited different roughness (polished, machined, and sand-blasted) and interference colors (pink, yellow, and white). Spectrophotometric measurements were made of samples below three different mucosa thicknesses (1 mm, 2 mm, and 3 mm) and titanium served as negative control. Color difference ΔE was calculated using ΔL, Δa, and Δb values for each sample (in total 30 samples). ΔE values were significantly above the threshold value of 3.70 for sand-blasted Ti and Ti-ZrO(2) samples when tested below 1 mm thick soft tissue, hence resulted in a dark appearance of the soft tissues. In contrast, Ti-Al-ZrO(2) and Ti-Ag-ZrO(2) samples showed significant ΔL values below 1 mm, which indicates a brightening of the covering tissue. In general, ΔE values decreased with increasing thickness of the tissue. At 3 mm thick tissue, ΔE values were significantly below 3.70 for Ti-Al-ZrO(2) and Ti-Ag-ZrO(2) samples. The preferable substrate surface should be machined due increased color brightness, good soft tissue integration and improved adhesion between coating and substrates. Improvement of the optical appearance of the metal was achieved with the coating systems Ti-Al-ZrO(2) and Ti-Ag-ZrO(2). Darkening effects could not be observed for these systems, and partially light brightening of the tissue was observed. Advantageous colors were suggested to be pink and yellow. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Physicochemical Characterization and In Vivo Evaluation of Amorphous and Partially Crystalline Calcium Phosphate Coatings Fabricated on Ti-6Al-4V Implants by the Plasma Spray Method

    Directory of Open Access Journals (Sweden)

    Estevam A. Bonfante

    2012-01-01

    Full Text Available Objective. To characterize the topographic and chemical properties of 2 bioceramic coated plateau root form implant surfaces and evaluate their histomorphometric differences at 6 and 12 weeks in vivo. Methods. Plasma sprayed hydroxyapatite (PSHA and amorphous calcium phosphate (ACP surfaces were characterized by scanning electron microscopy (SEM, interferometry (IFM, X-ray diffraction (XRD, and Fourier transform infrared spectroscopy (FT-IR. Implants were placed in the radius epiphysis, and the right limb of dogs provided implants that remained for 6 weeks, and the left limb provided implants that remained 12 weeks in vivo. Thin sections were prepared for bone-to-implant contact (BIC and bone-area-fraction occupancy (BAFO measurements (evaluated by Friedman analysis <0.05. Results. Significantly, higher Sa (<0.03 and Sq (<0.02 were observed for ACP relative to PSHA. Chemical analysis revealed significantly higher HA, calcium phosphate, and calcium pyrophosphate for the PSHA surface. BIC and BAFO measurements showed no differences between surfaces. Lamellar bone formation in close contact with implant surfaces and within the healing chambers was observed for both groups. Conclusion. Given topographical and chemical differences between PSHA and ACP surfaces, bone morphology and histomorphometric evaluated parameters showed that both surfaces were osseoconductive in plateau root form implants.

  2. Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor

    Directory of Open Access Journals (Sweden)

    Su-Jin Kim

    2012-03-01

    Full Text Available As the applications for implantable medical devices have increased, the need for biocompatible packaging materials has become important. Recently, we reported an implantable sensor for real-time monitoring of the changes in bladder volume, which necessitated finding a safe coating material for use in bladder tissue. At present, materials like polyethylene glycol (PEG, polydimethylsiloxane (PDMS and parylene-C are used in biomedical devices or as coating materials, owing to their excellent safety in various medical fields. However, few studies have assessed their safety in bladder tissue, therefore, we evaluated the biocompatibility of PEG, PDMS and parylene-C in the bladder. All three materials turned out to be safe in in vitro tests of live/dead staining and cell viability. In vivo tests with hematoxylin and eosin and immunofluorescence staining with MAC387 showed no persistent inflammation. Therefore, we consider that the three materials are biocompatible in bladder tissue. Despite this safety, however, PEG has biodegradable characteristics and thus is not suitable for use as packaging. We suggest that PDMS and parylene-C can be used as safe coating materials for the implantable bladder volume sensor reported previously.

  3. Phosphate conversion coating reduces the degradation rate and suppresses side effects of metallic magnesium implants in an animal model.

    Science.gov (United States)

    Rahim, Muhammad Imran; Tavares, Ana; Evertz, Florian; Kieke, Marc; Seitz, Jan-Marten; Eifler, Rainer; Weizbauer, Andreas; Willbold, Elmar; Jürgen Maier, Hans; Glasmacher, Birgit; Behrens, Peter; Hauser, Hansjörg; Mueller, Peter P

    2017-08-01

    Magnesium alloys have promising mechanical and biological properties for the development of degradable implants. However, rapid implant corrosion and gas accumulations in tissue impede clinical applications. With time, the implant degradation rate is reduced by a highly biocompatible, phosphate-containing corrosion layer. To circumvent initial side effects after implantation it was attempted to develop a simple in vitro procedure to generate a similarly protective phosphate corrosion layer. To this end magnesium samples were pre-incubated in phosphate solutions. The resulting coating was well adherent during routine handling procedures. It completely suppressed the initial burst of corrosion and it reduced the average in vitro magnesium degradation rate over 56 days almost two-fold. In a small animal model phosphate coatings on magnesium implants were highly biocompatible and abrogated the appearance of gas cavities in the tissue. After implantation, the phosphate coating was replaced by a layer with an elemental composition that was highly similar to the corrosion layer that had formed on plain magnesium implants. The data demonstrate that a simple pre-treatment could improve clinically relevant properties of magnesium-based implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1622-1635, 2017. © 2016 Wiley Periodicals, Inc.

  4. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

    Science.gov (United States)

    Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V

    2013-10-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Enhancing the bioactivity of Poly(lactic-co-glycolic acid scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model

    Directory of Open Access Journals (Sweden)

    Wang DX

    2013-05-01

    Full Text Available De-Xin Wang,1,* Yao He,2,* Long Bi1,* Ze-Hua Qu,2 Ji-Wei Zou,1 Zhen Pan,2 Jun-Jun Fan,1 Liang Chen,2 Xin Dong,1 Xiang-Nan Liu,2 Guo-Xian Pei,1 Jian-Dong Ding,21Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China; 2State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China*These authors contributed equally to this workPurpose: Poly(lactic-co-glycolic acid (PLGA is excellent as a scaffolding matrix due to feasibility of processing and tunable biodegradability, yet the virgin scaffolds lack osteoconduction and osteoinduction. In this study, nano-hydroxyapatite (nHA was coated on the interior surfaces of PLGA scaffolds in order to facilitate in vivo bone defect restoration using biomimetic ceramics while keeping the polyester skeleton of the scaffolds.Methods: PLGA porous scaffolds were prepared and surface modification was carried out by incubation in modified simulated body fluids. The nHA coated PLGA scaffolds were compared to the virgin PLGA scaffolds both in vitro and in vivo. Viability and proliferation rate of bone marrow stromal cells of rabbits were examined. The constructs of scaffolds and autogenous bone marrow stromal cells were implanted into the segmental bone defect in the rabbit model, and the bone regeneration effects were observed.Results: In contrast to the relative smooth pore surface of the virgin PLGA scaffold, a biomimetic hierarchical nanostructure was found on the surface of the interior pores of the nHA coated PLGA scaffolds by scanning electron microscopy. Both the viability and proliferation rate of the cells seeded in nHA coated PLGA scaffolds were higher than those in PLGA scaffolds. For bone defect repairing, the radius defects had, after 12 weeks implantation of nHA coated PLGA scaffolds, completely recuperated with significantly better bone formation than in

  6. Sectioning studies of biomimetic collagen-hydroxyapatite coatings on Ti-6Al-4V substrates using focused ion beam

    Science.gov (United States)

    Hu, Changmin; Yu, Le; Wei, Mei

    2018-06-01

    A biomimetic bone-like collagen-hydroxyapatite (Col-HA) composite coating was formed on a surface-treated Ti-6Al-4V alloy substrate via simultaneous collagen self-assembly and hydroxyapatite nucleation. The coating process has been carried out by immersing sand-blasted, acid-etched and UV irradiated Ti-6Al-4V alloy in type I collagen-containing modified simulated body fluid (m-SBF). The surface morphology and phase composition of the coating were characterized using various techniques. More importantly, dual-beam FIB/SEMs with either gallium ion source (GFIB) or xenon plasma ion source (PFIB) were used to investigate the cross-sectional features of the biomimetic Col-HA composite coating in great details. As a result, the cross-sectional images and thin transmission electron microscopy (TEM) specimens were successfully obtained from the composite coating with no obvious damages or milling ion implantations. Both the cross-sectional SEM and TEM results have confirmed that the Col-HA coating demonstrates a similar microstructure to that of pure HA coating with homogeneously distributed elements across the whole cross section. Both coatings consist of a uniform, crack-free gradient structure with a dense layer adjacent to the interface between the Ti-6Al-4V substrate and the coating facilitating a strong bonding, while a porous structure at the coating surface aiding cell attachment.

  7. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating.

    Science.gov (United States)

    Li, Yong; Yang, Wei; Li, Xiaokang; Zhang, Xing; Wang, Cairu; Meng, Xiangfei; Pei, Yifeng; Fan, Xiangli; Lan, Pingheng; Wang, Chunhui; Li, Xiaojie; Guo, Zheng

    2015-03-18

    Titanium alloys with various porous structures can be fabricated by advanced additive manufacturing techniques, which are attractive for use as scaffolds for bone defect repair. However, modification of the scaffold surfaces, particularly inner surfaces, is critical to improve the osteointegration of these scaffolds. In this study, a biomimetic approach was employed to construct polydopamine-assisted hydroxyapatite coating (HA/pDA) onto porous Ti6Al4V scaffolds fabricated by the electron beam melting method. The surface modification was characterized with the field emission scanning electron microscopy, energy dispersive spectroscopy, water contact angle measurement, and confocal laser scanning microscopy. Attachment and proliferation of MC3T3-E1 cells on the scaffold surface were significantly enhanced by the HA/pDA coating compared to the unmodified surfaces. Additionally, MC3T3-E1 cells grown on the HA/pDA-coated Ti6Al4V scaffolds displayed significantly higher expression of runt-related transcription factor-2, alkaline phosphatase, osteocalcin, osteopontin, and collagen type-1 compared with bare Ti6Al4V scaffolds after culture for 14 days. Moreover, microcomputed tomography analysis and Van-Gieson staining of histological sections showed that HA/pDA coating on surfaces of porous Ti6Al4V scaffolds enhanced osteointegration and significantly promoted bone regeneration after implantation in rabbit femoral condylar defects for 4 and 12 weeks. Therefore, this study provides an alternative to biofunctionalized porous Ti6Al4V scaffolds with improved osteointegration and osteogenesis functions for orthopedic applications.

  8. Insertion torques influenced by bone density and surface roughness of HA–TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, T.; Chen, Y.; Nie, X., E-mail: xnie@uwindsor.ca

    2013-12-31

    Bio-ceramic TiO{sub 2} coatings containing calcium (Ca) and phosphorous (P) were deposited onto Ti–6Al–4V alloy screws using plasma electrolytic oxidation (PEO) processes in an alkaline electrolyte with hydroxyapatite (HA) suspension. Coating on each screw had different surface roughness and morphology. Insertion torque (IT) of the coated screws in low (10 pcf, pounds per cubic feet), medium–high (20 pcf), and high (40 pcf) density of artificial bones was measured in comparison with that of the uncoated and sandblasted screws having similar surface roughness. Higher insertion torques and final seating torques were obtained in the coated screws which may result in less micro-movement during the primary implantation stage and thus lower the risk of implant failure. Scanning electron microscopy (SEM) analysis indicated that all coatings still adhesively remained on the screw surfaces after inserted into the bones with different densities. The relationship between coefficient of friction and surface roughness was also addressed to better understand the results of insertion torque. It was found that a lower density bone (similar to aged bone) would need a surface-rougher coated screw to achieve a high torque while a high density bone can have a wide range of selections for surface roughness of the screw. - Highlights: • The insertion torque of PEO-coated screws is higher than machined and sandblasting implants. • Lower density bone needs a rougher coated implant to increase the insertion torque. • The composite HA–TiO{sub 2} coating could benefit dental implants in both primary and secondary stability stages.

  9. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits

    Directory of Open Access Journals (Sweden)

    Liu D

    2017-07-01

    Full Text Available Denghui Liu,1,* Chongru He,2,* Zhongtang Liu,2 Weidong Xu2 1Department of Orthopedics, the 113 Military Hospital, Ningbo, 2Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Titanium and titanium alloy are widely used as orthopedic implants for their favorable mechanical properties and satisfactory biocompatibility. The aim of the present study was to investigate the antibacterial effect and bone cell biocompatibility of a novel implant made with nanotubular anodized titanium coated with gentamicin (NTATi-G through in vivo study in ­rabbits. The animals were divided into four groups, each receiving different kinds of implants, that is, NTATi-G, titanium coated with gentamicin (Ti-G, nanotubular anodized titanium uncoated with gentamicin (NTATi and titanium uncoated with gentamicin (Ti. The results showed that NTATi-G implant prevented implant-related osteomyelitis and enhanced bone biocompatibility in vivo. Moreover, the body temperature of rabbits in NTATi-G and Ti-G groups was lower than those in Ti groups, while the weight of rabbits in NTATi-G and Ti-G groups was heavier than those in NTATi and Ti groups, respectively. White blood cell counts in NTATi-G group were lower than NTATi and Ti groups. Features of myelitis were observed by X-ray films in the NTATi and Ti groups, but not in the NTATi-G and Ti-G groups. The radiographic scores, which assessed pathology and histopathology in bone tissues, were significantly lower in the NTATi-G and Ti-G groups than those in the NTATi and Ti groups, respectively (P<0.05. Meanwhile, explants and bone tissue culture demonstrated significantly less bacterial growth in the NTATi-G and Ti-G groups than in the NTATi and Ti groups, respectively (P<0.01. The bone volume in NTATi-G group was greater than Ti-G group, and little bone formation was seen in NTATi and Ti

  10. Sustained release vancomycin-coated titanium alloy using a novel electrostatic dry powder coating technique may be a potential strategy to reduce implant-related infection.

    Science.gov (United States)

    Han, Jing; Yang, Yi; Lu, Junren; Wang, Chenzhong; Xie, Youtao; Zheng, Xuebin; Yao, Zhenjun; Zhang, Chi

    2017-07-24

    In order to tackle the implant-related infection, a novel way was developed in this study to coat vancomycin particles mixed with controlled release coating materials onto the surface of titanium alloy by using an electrostatic dry powder coating technique. To characterize this sustained release antibacterial coating, surface morphology, in vitro and in vivo drug release were sequentially evaluated. In vitro cytotoxicity was tested by Cell Counting Kit-8 (CCK-8) assay and cytological changes were observed by inverted microscope. The antibacterial properties against MRSA, including a bacterial growth inhibition assay and a colony-counting test by spread plate method were performed. Results indicated that the vancomycin-coated sample was biocompatible for Human osteoblast cell line MG-63 and displayed effective antibacterial ability against MRSA. The coating film was revealed uniform by scanning electron microscopy. Both the in vitro and in vivo drug release kinetics showed an initially high release rate, followed by an extended period of sustained drug release over 7 days. These results suggest that with good biocompatibility and antibacterial ability, the sustained release antibacterial coating of titanium alloy using our novel electrostatic dry powder coating process may provide a promising candidate for the treatment of orthopedic implant-related infection.

  11. Incorporation of cerium oxide into hydroxyapatite coating regulates osteogenic activity of mesenchymal stem cell and macrophage polarization.

    Science.gov (United States)

    Li, Kai; Shen, Qingyi; Xie, Youtao; You, Mingyu; Huang, Liping; Zheng, Xuebin

    2017-02-01

    Biomedical coatings for orthopedic implants should facilitate osseointegration and mitigate implant-induced inflammatory reactions. Cerium oxide (CeO 2 ) ceramics possess anti-oxidative properties and can be used to decrease mediators of inflammation, which makes them attractive for biomedical applications. In our work, two kinds of CeO 2 incorporated hydroxyapatite coatings (HA-10Ce and HA-30Ce) were prepared via plasma spraying technique and the effects of CeO 2 addition on the responses of bone mesenchymal stem cells (BMSCs) and RAW264.7 macrophages were investigated. An increase in CeO 2 content in the HA coatings resulted in better osteogenic behaviors of BMSCs in terms of cell proliferation, alkaline phosphatase (ALP) activity and mineralized nodule formation. RT-PCR and western blot analysis suggested that the incorporation of CeO 2 may promote the osteogenic differentiation of BMSCs through the Smad-dependent BMP signaling pathway, which activated Runx2 expression and subsequently enhanced the expression of ALP and OCN. The expression profiles of macrophages cultured on the CeO 2 modified coating revealed a tendency toward a M2 phenotype, because of an upregulation of M2 surface markers (CD163 and CD206), anti-inflammatory cytokines (TNF-α and IL-6) and osteoblastogenesis-related genes (BMP2 and TGF-β1) as well as a downregulation of M1 surface markers (CCR7 and CD11c), proinflammatory cytokines (IL-10 and IL-1ra) and reactive oxygen species production. The results suggested the regulation of BMSCs behaviors and macrophage-mediated responses at the coating's surface were associated with CeO 2 incorporation. The incorporation of CeO 2 in HA coatings can be a valuable strategy to promote osteogenic responses and reduce inflammatory reactions.

  12. Mechanistic investigation on microbial toxicity of nano hydroxyapatite on implant associated pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Baskar, K. [Department of Biotechnology, University of Madras, Guindy Campus, Chennai, Tamil Nadu (India); Anusuya, T. [Department of Nanotechnology, SRM University, Kattankulathur, Tamil Nadu (India); Devanand Venkatasubbu, G., E-mail: gdevanandvenkatasubbu@gmail.com [Department of Nanotechnology, SRM University, Kattankulathur, Tamil Nadu (India)

    2017-04-01

    The use of atomic scale inorganic nanoparticles (NPs) to fight against pathogenic microorganisms is a recent trend in biomedical area which overcomes the limitations of organic compounds in terms of stability, shelf life and bioactivity. One such Calcium phosphate based biomaterial is hydroxyapatite (HA), considered as potential bioactive compound with excellent biocompatibility, osteointegrity and biodegradability. Osteomyelitis, the implant associated infection, is the major problem worldwide responsible for the majority of implant failure cases. Since HA is used as a coating material of implants, only few reports were available on its antimicrobial activity and cytotoxicity whereas no reports on its possible antimicrobial mechanism. In this present study, the HA-NPs were synthesized by wet chemical precipitation and were characterized using X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The synthesized HA-NPs were evaluated for antimicrobial activity against implant associated bacterial pathogens. The study also explores the mechanistic action of HA-NPs in killing of bacteria by determining the reactive oxygen species (ROS) generation, DNA fragmentation, Lactate dehydrogenase (LDH) leakage and cellular interaction. In addition the cytotoxicity of HA-NPs was determined by MTT assay and Fluorescence Microscopic analysis. The results revealed that, the synthesized HA-NPs showed good antibacterial activity for tested bacterial species and the possible antibacterial mechanism were due to the lack of membrane integrity and cytotoxic studies shows the concentration dependent changes in cell viability. - Highlights: • Antibacterial activity against Gram − ve bacterium • Mechanism of antibacterial activity is analyzed. • DNA fragmentation, growth curve, LDH, ROS are analyzed. • The mechanism is by damaging cell membrane. • Hydroxyapatite is biocompatible.

  13. Osseointegration of loaded dental implant with KrF laser hydroxylapatite films on Ti6Al4V alloy by minipigs

    Science.gov (United States)

    Dostalova, Tatjana; Himmlova, Lucia; Jelinek, Miroslav; Grivas, Christos

    2001-04-01

    This study was performed with the objective of evaluating osseointegration of titanium alloy Ti6Al4V dental implants coated with hydroxylapatite (HA) deposited by a KrF laser. For this a KrF excimer laser and stainless-steel deposition chamber were used. The thickness of the HA films was approximately 1 micrometers . IN this investigation experimental animals minipigs were used; the implants were placed vertically into the lower jaw. After 14 weeks of unloaded osseointegration, metal-ceramic crowns were inserted and, at the same time, fluorescent solution was injected into the experimental animals. Six months after insertion of crowns the animals were sacrificed. The vertical position of the implants was checked by a radiograph. Microscopic sections were cut and ground, and the sections were examined under polarized and fluorescent light using a microscope with a charge coupled device camera. The six month long osseointegration in the lower jaw has confirmed the presence of newly formed bone around all the implants. In the experimental group, which had a laser-deposited coating, the layer of fibrous connective tissue was seen only randomly. In the control group (titanium implant without a cover) the fibrous connective tissue between the implant and the newly formed bone was observed more frequently, but this difference was not significant.

  14. Bio-Corrosion Behavior of Ceramic Coatings Containing Hydroxyapatite on Mg-Zn-Ca Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Hong-Yan Ding

    2018-04-01

    Full Text Available Ceramic coatings containing hydroxyapatite (HA were fabricated on a biodegradable Mg66Zn29Ca5 magnesium alloy through micro-arc oxidation by adding HA particles into the electrolytes. The phase composition and surface morphology of the coatings were characterized by X-ray diffraction and scanning electron microscopy analyses, respectively. Electrochemical experiments and immersion tests were performed in Hank’s solution at 37 °C to measure the corrosion resistance of the coatings. Blood compatibility was evaluated by in vitro blood platelet adhesion tests and static water contact angle measurement. The results show that the typical ceramic coatings with a porous structure were prepared on the magnesium alloy surface with the main phases of MgO and MgSiO3 and a small amount of Mg3(PO42 and HA. The optimal surface morphology appeared at HA concentration of 0.4 g/L. The electrochemical experiments and immersion tests reveal a significant improvement in the corrosion resistance of the ceramic coatings containing HA compared with the coatings without HA or bare Mg66Zn29Ca5 magnesium alloy. The static water contact angle of the HA-containing ceramic coatings is 18.7°, which is lower than that of the coatings without HA (40.1°. The in vitro blood platelet adhesion tests indicate that the HA-containing ceramic coatings possess improved blood compatibility compared with the coatings without HA. Utilizing HA-containing ceramic coatings may be an effective way to improve the surface biocompatibility and corrosion resistance of magnesium alloys.

  15. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4V by sol–gel method for biomedical applications: An in vitro study

    International Nuclear Information System (INIS)

    Abrishamchian, Alireza; Hooshmand, Tabassom; Mohammadi, Mohammadreza; Najafi, Farhood

    2013-01-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti–6Al–4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol–gel method. The structural characterization and electron microscopy results confirmed well crystallized HA–MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol–gel-derived HA/MWCNT composite coatings. - Highlights: ► Carbon nanotube/hydroxyapatite composite was successfully dip-coated on Ti by sol–gel. ► Well-crystallized HA–MWCNT and homogenous dispersion of nanotubes were obtained. ► Low concentration of CNTs improved the mechanical properties of composite coating. ► Biocompatibility of the prepared sol–gel-derived HA/MWCNT films was ascertained

  16. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4V by sol–gel method for biomedical applications: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Abrishamchian, Alireza [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hooshmand, Tabassom, E-mail: hoshmand@sina.tums.ac.ir [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohammadi, Mohammadreza [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti–6Al–4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol–gel method. The structural characterization and electron microscopy results confirmed well crystallized HA–MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol–gel-derived HA/MWCNT composite coatings. - Highlights: ► Carbon nanotube/hydroxyapatite composite was successfully dip-coated on Ti by sol–gel. ► Well-crystallized HA–MWCNT and homogenous dispersion of nanotubes were obtained. ► Low concentration of CNTs improved the mechanical properties of composite coating. ► Biocompatibility of the prepared sol–gel-derived HA/MWCNT films was ascertained.

  17. Hyaluronic Acid-Based Hydrogel Coating Does Not Affect Bone Apposition at the Implant Surface in a Rabbit Model

    NARCIS (Netherlands)

    Boot, W.; Gawlitta, Debby; Nikkels, P. G J; Pouran, B.; van Rijen, M. H P; Dhert, W. J A; Vogely, H. C.

    Background: Uncemented orthopaedic implants rely on the bone-implant interface to provide stability, therefore it is essential that a coating does not interfere with the bone-forming processes occurring at the implant interface. In addition, local application of high concentrations of antibiotics

  18. Hyaluronic Acid-Based Hydrogel Coating Does Not Affect Bone Apposition at the Implant Surface in a Rabbit Model

    NARCIS (Netherlands)

    Boot, W; Gawlitta, D; Nikkels, P G J; Pouran, B; van Rijen, M H P; Dhert, W J A|info:eu-repo/dai/nl/10261847X; Vogely, H Ch

    BACKGROUND: Uncemented orthopaedic implants rely on the bone-implant interface to provide stability, therefore it is essential that a coating does not interfere with the bone-forming processes occurring at the implant interface. In addition, local application of high concentrations of antibiotics

  19. Particle morphology of hydroxyapatite and its influence on the properties of biocomposite plasma coatings

    Directory of Open Access Journals (Sweden)

    Melnikova I.P.

    2013-09-01

    Full Text Available The purpose of the article is to identify patterns of change in the properties of biocompatible coatings during modernization of its structure by changing the morphology and crystallinity of the starting powder particles of hydroxyapatite (HA for agglomeration and subsequent grinding. Material and methods. We investigated the morphology, degree of crystallinity and internal tension in HA powder with a particle size of 40-90 microns in the initial state and after the agglomeration process and structure piasmasprayed HA coatings application methods ray analysis (XRF and XRD on DRON-3, infrared spectroscopy (FT-IR spectrometer Nicolet 6700, optical (MIM-8 and atomic force microscopy (SMM-2000, the laser microprobe (Spectrum 2000. Results: It was shown that change in particle morphology HA agglomerated and subsequently grinding increases the uniformity of the porous structure, its crystallinity, reduce internal stresses developing surface morphology of the coating and its nanostructuring. Conclusion. It is recommended for the improvement of characteristics of the porous structure (uniformity, strength, adhesion, and the surface morphology of implant to use agglomerating starting powders and their subsequent grinding.

  20. Do textured breast implants decrease the rate of capsular contracture compared to smooth implants?

    Directory of Open Access Journals (Sweden)

    Ignacio Cifuentes

    2017-08-01

    Full Text Available Resumen El uso de implantes mamarios con propósitos estéticos y reconstructivos se ha convertido en uno de los procedimientos más comunes realizados por los cirujanos plásticos. Existen diversos modelos de implantes mamarios, los cuales difieren en su tamaño, relleno, forma y característica de la envoltura, pudiendo ser lisa o texturizada. La contractura capsular es una de las principales complicaciones del uso de implantes mamarios y se ha planteado que las prótesis texturizadas podrían disminuir la incidencia de contractura capsular. Para responder esta pregunta utilizamos Epistemonikos, la mayor base de datos de revisiones sistemáticas en salud a nivel mundial, la cual es mantenida mediante búsquedas en múltiples fuentes de información, incluyendo MEDLINE, EMBASE, Cochrane, entre otras. Identificamos cinco revisiones sistemáticas que en conjunto incluyen 15 estudios primarios, 13 de ellos correspondientes a ensayos aleatorizados pertinentes a la pregunta de interés. Extrajimos los datos desde las revisiones identificadas, reanalizamos los datos de los estudios primarios, realizamos un metanálisis y preparamos tablas de resumen de los resultados utilizando el método GRADE. Concluimos que el uso de prótesis mamaria texturizada probablemente disminuye el riesgo de contractura capsular, sin embargo, podría asociarse a un aumento en el riesgo de linfoma anaplásico de células grandes.

  1. Friction and wear study of diamond-like carbon gradient coatings on Ti6Al4V substrate prepared by plasma source ion implant-ion beam enhanced deposition

    International Nuclear Information System (INIS)

    Jiang, Shuwen; Jiang Bin; Li Yan; Li Yanrong; Yin Guangfu; Zheng Changqiong

    2004-01-01

    DLC gradient coatings had been deposited on Ti6Al4V alloy substrate by plasma source ion implantation-ion beam enhanced deposition method and their friction and wear behavior sliding against ultra high molecular weight polyethylene counterpart were investigated. The results showed that DLC gradient coated Ti6Al4V had low friction coefficient, which reduced 24, 14 and 10% compared with non-coated Ti6Al4V alloy under dry sliding, lubrication of bovine serum and 0.9% NaCl solution, respectively. DLC gradient coated Ti6Al4V showed significantly improved wear resistance, the wear rate was about half of non-coated Ti6Al4V alloy. The wear of ultra high molecular weight polyethylene counterpart was also reduced. High adhesion to Ti6Al4V substrate of DLC gradient coatings and surface structure played important roles in improved tribological performance, serious oxidative wear was eliminated when DLC gradient coating was applied to the Ti6Al4V alloy

  2. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. aureus (MRSA Mediated Orthopaedic Device Related Infections.

    Directory of Open Access Journals (Sweden)

    Sandeep Kaur

    Full Text Available Staphylococcus comprises up to two-thirds of all pathogens in orthopaedic implant infections with two species respectively Staphylococcus aureus and Staphylococcus epidermidis, being the predominate etiological agents isolated. Further, with the emergence of methicillin-resistant S. aureus (MRSA, treatment of S. aureus implant infections has become more difficult, thus representing a devastating complication. Use of local delivery system consisting of S.aureus specific phage along with linezolid (incorporated in biopolymer allowing gradual release of the two agents at the implant site represents a new, still unexplored treatment option (against orthopaedic implant infections that has been studied in an animal model of prosthetic joint infection. Naked wire, hydroxypropyl methylcellulose (HPMC coated wire and phage and /or linezolid coated K-wire were surgically implanted into the intra-medullary canal of mouse femur bone of respective groups followed by inoculation of S.aureus ATCC 43300(MRSA. Mice implanted with K-wire coated with both the agents i.e phage as well as linezolid (dual coated wires showed maximum reduction in bacterial adherence, associated inflammation of the joint as well as faster resumption of locomotion and motor function of the limb. Also, all the coating treatments showed no emergence of resistant mutants. Use of dual coated implants incorporating lytic phage (capable of self-multiplication as well as linezolid presents an attractive and aggressive early approach in preventing as well as treating implant associated infections caused by methicillin resistant S. aureus strains as assessed in a murine model of experimental joint infection.

  3. Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model

    NARCIS (Netherlands)

    Alghamdi, H.S.A.; Oirschot, B.A. van; Bosco, R.; Beucken, J.J. van den; Aldosari, A.A.; Anil, S.; Jansen, J.A.

    2013-01-01

    OBJECTIVE: The current study aimed to evaluate the osteogenic potential of electrosprayed organic and non-organic surface coatings in a gap-implant model over 4 and 12 weeks of implantation into the dog mandible. MATERIAL AND METHODS: Sixteen Beagle dogs received experimental titanium implants in

  4. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants.

    Science.gov (United States)

    Cheng, Yicheng; Gao, Bo; Liu, Xianghui; Zhao, Xianghui; Sun, Weige; Ren, Huifang; Wu, Jiang

    2016-01-01

    To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs' mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (Pmicroscope observation and histological examination showed that more new bone was formed on the surface of the experimental and positive control groups. It can be concluded that the antibacterial coating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage.

  5. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Science.gov (United States)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  6. Composite polymer-containing coatings on Mg alloys perspective for industry and implant surgery

    Science.gov (United States)

    Gnedenkov, S. V.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Imshinetskiy, I. M.; Gnedenkov, A. S.; Minaev, A. N.

    2017-09-01

    In order to improve the corrosion resistance of magnesium alloys the ways of composite protective coating formation were developed by means of plasma electrolytic oxidation (PEO) as well as electrophoretic deposition methods. Electrochemical, corrosion, tribological, and morphological properties of the MAS magnesium alloy composite coatings were studied. The composite polymer-containing coating decrease the corrosion current density values by three orders of magnitude (Ic = 2.0 . 10-10 A/cm2), in comparison with the base PEO-layer. These polymer-containing layers enable one to expand the practical usage area of Mg alloys. The application of such coatings provides the increasing the bioactivity and regulate the corrosion rate of resorbable magnesium implants.

  7. Au{sup 3+} ion implantation on FTO coated glasses: Effect on structural, electrical, optical and phonon properties

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Bindu; Dey, Ranajit; Bajpai, P.K., E-mail: bajpai.pk1@gmail.com

    2017-06-01

    Highlights: • Effects of 11.00 MeV Au{sup 3+} ions implanted in FTO coated (thickness ≈300 nm) silicate glasses at varying fluence. • Metal clustering near the surface and subsurface region below glass-FTO interface changes electrical and optical properties significantly. • Ion implantation does not affect the crystalline structure of the coated films; however, the tetragonal distortion increases with increasing ion fluence. • Significant surface reconstruction takes place with ion beam fluence; The average roughness also decreases with increasing fluence. • The sheet resistivity increases with increasing fluence. • Raman analysis also corroborates the re-crystallization process inducing due to ion implantation. • Optical properties of the implanted surfaces changes significantly. - Abstract: Effects of 11.00 MeV Au{sup 3+} ions implanted in FTO coated (thickness ≈300 nm) silicate glasses on structural, electrical optical and phonon behavior have been explored. It has been observed that metal clustering near the surface and sub-surface region below glass-FTO interface changes electrical and optical properties significantly. Ion implantation does not affect the crystalline structure of the coated films; however, the unit cell volume decreases with increase in fluence and the tetragonal distortion (c/a ratio) also decreases systematically in the implanted samples. The sheet resistivity of the films increases from 11 × 10{sup −5} ohm-cm (in pristine) to 7.5 × 10{sup −4} ohm-cm for highest ion beam fluence ≈10{sup 15} ions/cm{sup 2}. The optical absorption decreases with increasing fluence whereas, the optical transmittance as well as reflectance increases with increasing fluence. The Raman spectra are observed at ∼530 cm{sup −1} and ∼1103 cm{sup −1} in pristine sample. The broad band at 530 cm{sup −1} shifts towards higher wave number in the irradiated samples. This may be correlated with increased disorder and strain relaxation in

  8. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings.

    Science.gov (United States)

    Shen, Jie; Burgess, Diane J

    2012-01-17

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces

    DEFF Research Database (Denmark)

    Dolatshahi-Pirouz, A; Jensen, Thomas Hartvig Lindkjær; Kolind, Kristian

    2011-01-01

    In order to identify the cellular mechanisms leading to the biocompatibility of hydroxyapatite implants, we studied the interaction of human bone marrow derived stromal (mesenchymal) stem cells (hMSCs) with fibronectin-coated gold (Au) and hydroxyapatite (HA) surfaces. The adsorption of fibronectin...

  10. Coating of Bio-mimetic Minerals-Substituted Hydroxyapatite on Surgical Grade Stainless Steel 316L by Electrophoretic Deposition for Hard tissue Applications

    Science.gov (United States)

    Govindaraj, Dharman; Rajan, Mariappan

    2018-02-01

    Third-era bio-implant materials intend to empower particular live cell reactions at the atomic level, these materials represented with a resorbable and biocompatibility that bodies recuperate once they have been embedded. Necessitate to decrease expenses in public health services has required the utilization of surgical grade stainless steel (SS 316L) as the most inexpensive choice for orthodontic and orthopaedic implants. 316L SS is one of the broadly used implant biomaterials in orthodontic and orthopaedic surgeries. Yet, frequently those discharge for toxic metal ions is confirm from the implants and hence a second surgery is required will remove those implant material. One approach to managing the discharge of toxic metal ions is to coat the implant substance with bio-mimetic minerals in hydroxyapatite (HA). Bio-mimetic minerals such as magnesium (Mg), strontium (Sr), also zinc (Zn) were revealed with animate bone growth furthermore restrain bone resorption both in vitro and in vivo. The present work deals with the electrophoretic deposition (EPD) for multi minerals substituted hydroxyapatite (M-HA) on the surface treated 316L SS under distinctive temperatures (27°C, (room temperature), 60 and 80°C). The resultant coatings were characterized by FT-IR, XRD, SEM-EDX, adhesion strength and leach out analysis.

  11. Morphological Studies of Local Influence of Implants with Coatings Based on Superhard Compounds on Bone Tissue under Conditions of Induced Trauma

    Directory of Open Access Journals (Sweden)

    Galimzyan KABIROV

    2015-07-01

    Full Text Available In this paper we analyze the response of bone tissue to a transosseous introduction of implants made of copper (Cu, medical steel 12X18H9T, steel with nitrides of titanium and hafnium coatings (TiN + HfN, as well as steel coated with titanium and zirconium nitrides (TiN + ZrN into the diaphysis of the tibia of experimental rats. The obtained results showed that the restoration of the injured bone and bone marrow in groups with implants made of steel 12X18H9T occurred without the participation of the granulation and cartilaginous tissues, but with implants made of steel coated with titanium and hafnium nitrides (TiN + HfN, this bone recovery also took place in the early term. At the same time, in groups, where the implants were made of copper (Cu, implants were made of steel coated with titanium and zirconium nitrides (TiN + ZrN were used, such phenomena as necrosis, lysis and destruction of the bone were registered and the bone tissue repair went through formation of the cartilaginous tissue.

  12. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Khalili, V., E-mail: V_khalili@sut.ac.ir [Department of Materials Engineering, Engineering Faculty, University of Bonab, Bonab (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Frenzel, J.; Eggeler, G. [Institute for Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum, 44801 Bochum (Germany)

    2017-02-01

    In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20 wt% silicon, 1 wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10 days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37 °C. The results indicate that the compact structure of hydroxyapatite-20 wt% silicon and hydroxyapatite-20 wt% silicon-1 wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. - Highlights: • The composite coatings of HA, Si and MWCNTs was prepared using electrophoretic deposition. • The presence of 1 wt.% MWCNTs in the HA coating provides more nucleation cites of apatite crystallites in SBF. • The presence of Si in HA coating increases the growth rate of apatite crystallites with the Ca/P atomic ratio of 1.67. • The EIS indicate the compact HA-20%Si and HA-20%Si-1%MWCNTs coatings efficiently increase corrosion resistance of NiTi. • The porous HA and HA-1%MWCNTs do not increase significantly corrosion resistance due to the easy diffusion path.

  13. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Zhen [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Renfeng [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072 (China); Zhuo, Xianglong, E-mail: doctorzhuo@139.com [Department of Spinal Surgery, Liuzhou Worker' s Hospital, Liuzhou 545001 (China); Li, Zhaoyang, E-mail: zyli@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Huang, Yongcan [Orthopedics Research Center, Peking University Shenzhen Hospital, Shenzhen 518036 (China); Ma, Lili; Cui, Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhu, Shengli [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Liang, Yanqin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Yunde; Bao, Huijing; Li, Xue; Huo, Qianyu; Liu, Zhili [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072 (China); Yang, Xianjin, E-mail: xjyang@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2017-02-01

    Implant-related infection in primary total joint prostheses has attracted considerable research attention. As a measure to improve the antimicrobial properties of implant materials, silver (Ag) was incorporated into calcium phosphate (CaP) coatings on Titanium (Ti) via a hydrothermal method. Further, strontium (Sr) was added as a binary dopant to reduce the cytotoxicity of Ag in the coatings. Results showed that the CaP coatings were uniformly deposited on Ti with enhanced hydrophilicity and nanoscale surface roughness. Moreover, cell adhesion, proliferation, and differentiation were improved after the CaP coating deposition. The antibacterial properties of the coatings were distinctly improved by the incorporation of Ag, but the cell proliferation and differentiation were significantly decreased. Owing to the incorporation of Sr, the Ag-CaP coatings were able to effectively counteract the negative effects of Ag while maintaining good antibacterial properties. In summary, hydrothermally deposited CaP coatings doped with Ag and Sr exhibit excellent biocompatibility and antimicrobial activity. Thus, such co-doped CaP coatings have considerable potential for orthopaedic implant modification. - Highlights: • Ag- and Sr-substituted HA coating is deposited on titanium by hydrothermal method. • This coating shows a remarkable antibacterial activity and good biocompatibility. • The coating process is simple and suitable for large-scale fabrication. • The possible mechanism of Sr{sup 2+} is proposed.

  14. In Vitro Corrosion and Cytocompatibility of ZK60 Magnesium Alloy Coated with Hydroxyapatite by a Simple Chemical Conversion Process for Orthopedic Applications

    Science.gov (United States)

    Wang, Bing; Huang, Ping; Ou, Caiwen; Li, Kaikai; Yan, Biao; Lu, Wei

    2013-01-01

    Magnesium and its alloys—a new class of degradable metallic biomaterials—are being increasingly investigated as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. However, the high corrosion rate in physiological environments prevents the clinical application of Mg-based materials. Therefore, the objective of this study was to develop a hydroxyapatite (HA) coating on ZK60 magnesium alloy substrates to mediate the rapid degradation of Mg while improving its cytocompatibility for orthopedic applications. A simple chemical conversion process was applied to prepare HA coating on ZK60 magnesium alloy. Surface morphology, elemental compositions, and crystal structures were characterized using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, respectively. The corrosion properties of samples were investigated by immersion test and electrochemical test. Murine fibroblast L-929 cells were harvested and cultured with coated and non-coated ZK60 samples to determine cytocompatibility. The degradation results suggested that the HA coatings decreased the degradation of ZK60 alloy. No significant deterioration in compression strength was observed for all the uncoated and coated samples after 2 and 4 weeks’ immersion in simulated body fluid (SBF). Cytotoxicity test indicated that the coatings, especially HA coating, improved cytocompatibility of ZK60 alloy for L929 cells. PMID:24300096

  15. Accelerator based synthesis of hydroxyapatite by MeV ion implantation

    International Nuclear Information System (INIS)

    Rautray, Tapash R.; Narayanan, R.; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-01-01

    Accelerator based MeV ion implantation of Ca 2+ and P 2+ into the titanium substrate to form hydroxyapatite (HA) has been carried out. Calcium hydroxide was formed after heating the calcium implanted titanium in air at 80 o C for 3 h. Upon subsequent annealing for 5 min at 600 o C HA was formed on the surface. Penetration depth of the HA layer in this method is much higher as compared to keV ion implantation. By elemental analysis, Ca/P ratio of the HA was found to be 1.76 which is higher than the ideal 1.67. This higher Ca/P ratio is attributed to the higher penetration depth of the MeV technique used.

  16. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Reza Tavakoli-Darestani

    2013-05-01

    Full Text Available Please cite this article as: Tavakoli-Darestani R, Kazemian GH, Emami M, Kamrani-Rad A. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering. Novel Biomed 2013;1:8-15.Background: A combination of polymeric nanofibrous scaffold and bioactive materials is potentially useful in bone regeneration applications.Materials and Methods: In the present study, Poly (lactide-co-glycolide (PLGA nanofibrous scaffolds, fabricated via electrospinning, were initially coated with Type I collagen and then with nano-hydroxyapatite. The prepared scaffolds were then characterized using SEM and their ability for bone regeneration was investigated in a rat critical size bone defect using digital mammography, multislice spiral-computed tomography (MSCT imaging, and histological analysis.Results: Electrospun scaffolds had nanofibrous structure with homogenous distribution of n-HA on collagen-grafted PLGA. After 8 weeks of implantation, no sign of inflammation or complication was observed at the site of surgery. According to digital mammography and MSCT, PLGA nanofibers coated simultaneously with collagen and HA showed the highest regeneration in rat calvarium. In addition, no significant difference was observed in bone repair in the group which received PLGA and the untreated control. This amount was lower than that observed in the group implanted with collagen-coated PLGA. Histological studies confirmed these data and showed osteointegration to the surrounding tissue.Conclusion: Taking all together, it was demonstrated that nanofibrous structures can be used as appropriate support for tissue-engineered scaffolds, and coating them with bioactive materials will provide ideal synthetic grafts. Fabricated PLGA coated with Type I collagen and HA can be used as new bone graft substitutes in orthopaedic surgery and is capable of enhancing bone regeneration via characteristics such as osteoconductivity and

  17. Diamond-like carbon coatings on a CoCrMo implant alloy: A detailed XPS analysis of the chemical states at the interface

    International Nuclear Information System (INIS)

    Mueller, U.; Falub, C.V.; Thorwarth, G.; Voisard, C.; Hauert, R.

    2011-01-01

    Low friction and wear resistant coatings have a long history of successful applications in industry. It has long been hoped that these coatings, especially diamond-like carbon (DLC), could also be used successfully in load-bearing joint implants, extending implant life time considerably. However, despite several medical studies carried out so far, no regular DLC-coated implants are available on the market. In most cases, failure was due to insufficient long-term stability of the adhesion of such coatings on implants in vivo. That is because introducing a coated implant not only brings the coating into contact with the body environment but also the interface that controls the adhesion. This usually reactively formed interface must be considered to be at least one additional material which must be not only biocompatible, but also unsusceptible to corrosive attack. The aim of this paper is to analyze in detail the interface, i.e., the transition region between the substrate and the coating. This knowledge is necessary in order to find the right measures to ensure the long-term stability of the adhesion. Results for DLC coatings on a cobalt-chromium-molybdenum alloy are presented. It is shown that a very thin interface layer is formed, with the alloy on one side and the carbon film on the other side. This layer consists of a mixture of carbides from all the metals of the base material. This result is obtained by means of measuring depth profiles using X-ray photoelectron spectroscopy because these spectra yield not only the chemical composition of the interface but a detailed analysis provides information on the chemical states across the interface.

  18. Preparation of bioactive porous HA/PCL composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Guo, L.Y.; Yang, X.B. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng, J. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jweng@swjtu.cn

    2008-12-30

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  19. Preparation of bioactive porous HA/PCL composite scaffolds

    International Nuclear Information System (INIS)

    Zhao, J.; Guo, L.Y.; Yang, X.B.; Weng, J.

    2008-01-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications

  20. Hybrid coating on a magnesium alloy for minimizing the localized degradation for load-bearing biodegradable mini-implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au; Liyanaarachchi, S.

    2013-10-01

    The effect of a hybrid coating, calcium phosphate (CaP) + polylactic acid (PLA), on a magnesium alloy on its in vitro degradation (general and localized) behaviour was studied for potential load-bearing biodegradable mini-implant applications. CaP was coated on a magnesium alloy, AZ91, using an electrochemical deposition method. A spin coating method was used to coat PLA on the CaP coated alloy. In vitro degradation performance of the alloy with hybrid coating was evaluated using electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF). The EIS results showed that the hybrid coating enhanced the degradation resistance of the alloy by more than two-order of magnitude as compared to the bare alloy and one-order of magnitude higher than that of the CaP coated alloy, after 1 h exposure in simulated body fluid (SBF). Long-term (48 h) EIS results also confirmed that the hybrid coating performed better than the bare alloy and the CaP coated alloy. Importantly, the hybrid coating improved the localized degradation resistance of the alloy significantly, which is critical for better in service mechanical integrity. - Highlights: • A hybrid coating (CaP + PLA) was applied on a magnesium-based alloy. • The hybrid coating enhanced the in vitro degradation resistance of the alloy. • Localized degradation resistance was also improved by the hybrid coating.

  1. Hybrid coating on a magnesium alloy for minimizing the localized degradation for load-bearing biodegradable mini-implant applications

    International Nuclear Information System (INIS)

    Kannan, M. Bobby; Liyanaarachchi, S.

    2013-01-01

    The effect of a hybrid coating, calcium phosphate (CaP) + polylactic acid (PLA), on a magnesium alloy on its in vitro degradation (general and localized) behaviour was studied for potential load-bearing biodegradable mini-implant applications. CaP was coated on a magnesium alloy, AZ91, using an electrochemical deposition method. A spin coating method was used to coat PLA on the CaP coated alloy. In vitro degradation performance of the alloy with hybrid coating was evaluated using electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF). The EIS results showed that the hybrid coating enhanced the degradation resistance of the alloy by more than two-order of magnitude as compared to the bare alloy and one-order of magnitude higher than that of the CaP coated alloy, after 1 h exposure in simulated body fluid (SBF). Long-term (48 h) EIS results also confirmed that the hybrid coating performed better than the bare alloy and the CaP coated alloy. Importantly, the hybrid coating improved the localized degradation resistance of the alloy significantly, which is critical for better in service mechanical integrity. - Highlights: • A hybrid coating (CaP + PLA) was applied on a magnesium-based alloy. • The hybrid coating enhanced the in vitro degradation resistance of the alloy. • Localized degradation resistance was also improved by the hybrid coating

  2. Improved cell viability and hydroxyapatite growth on nitrogen ion-implanted surfaces

    Science.gov (United States)

    Shafique, Muhammad Ahsan; Murtaza, G.; Saadat, Shahzad; Uddin, Muhammad K. H.; Ahmad, Riaz

    2017-08-01

    Stainless steel 306 is implanted with various doses of nitrogen ions using a 2 MV pelletron accelerator for the improvement of its surface biomedical properties. Raman spectroscopy reveals incubation of hydroxyapatite (HA) on all the samples and it is found that the growth of incubated HA is greater in higher ion dose samples. SEM profiles depict uniform growth and greater spread of HA with higher ion implantation. Human oral fibroblast response is also found consistent with Raman spectroscopy and SEM results; the cell viability is found maximum in samples treated with the highest (more than 300%) dose. XRD profiles signified greater peak intensity of HA with ion implantation; a contact angle study revealed hydrophilic behavior of all the samples but the treated samples were found to be lesser hydrophilic compared to the control samples. Nitrogen implantation yields greater bioactivity, improved surface affinity for HA incubation and improved hardness of the surface.

  3. Biocompatibility and anti-microbiological activity characterization of novel coatings for dental implants: A primer for non-biologists

    Directory of Open Access Journals (Sweden)

    Thomas K Monsees

    2016-08-01

    Full Text Available With regard to biocompatibility, the cardinal requirement for dental implants and other medical devices that are in long-term contact with tissue is that the material does not cause any adverse effect to the patient. To warrant stability and function of the implant, proper osseointegration is a further prerequisite. Cells interact with the implant surface as the interface between bulk material and biological tissue. Whereas structuring, deposition of a thin film or other modifications of the surface are crucial parameters in determining favorable adhesion of cells, corrosion of metal surfaces and release of ions can affect cell viability. Both parameters are usually tested using in vitro cytotoxicity and adhesion assays with bone or fibroblasts cells. For bioactive surface modifications, further tests should be considered for biocompatibility evaluation. Depending on the type of modification, this may include analysis of specific cell functions or the determination of antimicrobial activities. The latter is of special importance as bacteria and yeast present in the oral cavity can be introduced during the implantation process and this may lead to chronic infections and implant failure. An antimicrobial coating of the implant is a way to avoid that. This review describes the essential biocompatibility assays for evaluation of new implant materials required by ISO 10993 and also gives an overview on recent test methods for specific coatings of dental implants.

  4. Biocompatibility and anti-microbiological activity characterization of novel coatings for dental implants: A primer for non-biologists

    Science.gov (United States)

    Monsees, Thomas

    2016-08-01

    With regard to biocompatibility, the cardinal requirement for dental implants and other medical devices that are in long-term contact with tissue is that the material does not cause any adverse effect to the patient. To warrant stability and function of the implant, proper osseointegration is a further prerequisite. Cells interact with the implant surface as the interface between bulk material and biological tissue. Whereas structuring, deposition of a thin film or other modifications of the surface are crucial parameters in determining favorable adhesion of cells, corrosion of metal surfaces and release of ions can affect cell viability. Both parameters are usually tested using in vitro cytotoxicity and adhesion assays with bone or fibroblasts cells. For bioactive surface modifications, further tests should be considered for biocompatibility evaluation. Depending on the type of modification, this may include analysis of specific cell functions or the determination of antimicrobial activities. The latter is of special importance as bacteria and yeast present in the oral cavity can be introduced during the implantation process and this may lead to chronic infections and implant failure. An antimicrobial coating of the implant is a way to avoid that. This review describes the essential biocompatibility assays for evaluation of new implant materials required by ISO 10993 and also gives an overview on recent test methods for specific coatings of dental implants.

  5. New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations.

    Science.gov (United States)

    Mick, Enrico; Markhoff, Jana; Mitrovic, Aurica; Jonitz, Anika; Bader, Rainer

    2013-09-11

    Ceramics are a very popular material in dental implant technology due to their tribological properties, their biocompatibility and their esthetic appearance. However, their natural surface structure lacks the ability of proper osseointegration, which constitutes a crucial process for the stability and, thus, the functionality of a bone implant. We investigated the application of a glass solder matrix in three configurations-consisting mainly of SiO₂, Al₂O₃, K₂O and Na₂O to TZP-A ceramic specimens. The corresponding adhesive strength and surface roughness of the coatings on ceramic specimens have been analyzed. Thereby, high adhesive strength (70.3 ± 7.9 MPa) was found for the three different coatings. The obtained roughness (R z ) amounted to 18.24 ± 2.48 µm in average, with significant differences between the glass solder configurations. Furthermore, one configuration was also tested after additional etching which did not lead to significant increase of surface roughness (19.37 ± 1.04 µm) or adhesive strength (57.2 ± 5.8 MPa). In conclusion, coating with glass solder matrix seems to be a promising surface modification technique that may enable direct insertion of ceramic implants in dental and orthopaedic surgery.

  6. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release.

    Science.gov (United States)

    Zou, Qin; Li, Junfeng; Niu, Lulu; Zuo, Yi; Li, Jidong; Li, Yubao

    2017-09-01

    The dipping-drying procedure and cross-linking method were used to make drug-loaded chitosan (CS) coating on nano-hydroxyapatite/polyamide66 (nHA/PA66) composite porous scaffold, endowing the scaffold controlled drug release functionality. The prefabricated scaffold was immersed into an aqueous drug/CS solution in a vacuum condition and then crosslinked by vanillin. The structure, porosity, composition, compressive strength, swelling ratio, drug release and cytocompatibility of the pristine and coating scaffolds were investigated. After coating, the scaffold porosity and pore interconnection were slightly decreased. Cytocompatibility performance was observed through an in vitro experiment based on cell attachment and the MTT assay by MG63 cells which revealed positive cell viability and increasing proliferation over the 11-day period in vitro. The drug could effectively release from the coated scaffold in a controlled fashion and the release rate was sustained for a long period and highly dependent on coating swelling, suggesting the possibility of a controlled drug release. Our results demonstrate that the scaffold with drug-loaded crosslinked CS coating can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to be a promising high performance biomaterial in bone tissue engineering.

  7. Osseointegration of KrF laser hydroxylapatite films on Ti6A14V alloy by mini-pigs: loaded osseointegration of dental implants

    Science.gov (United States)

    Dostalova, Tatjana; Jelinek, Miroslav; Himmlova, Lucia; Grivas, Christos

    1999-05-01

    Aim of study was to evaluate osseointegration of the KrF laser hydroxyapatite coated titanium alloy Ti6Al4V dental implants. For deposition KrF excimer laser in stainless- steel deposition chamber was used. Thickness of HA films were round 1 μm . Mini-pigs were used in this investigation. Implants were placed vertically into the lower jaw. After 14 weeks unloaded osseointegration the metal ceramic crowns were inserted. the experimental animals were sacrificed (1 year post insertion). The vertical position of implants was controlled with a radiograph. Microscopical sections were cut and ground. Sections were viewed using microscope with CCD camera. 1 year osseointegration in lower jaw confirmed by all implants presence of newly formed bone around the all implants. Laser-deposited coating the layer of fibrous connective tissue was seen only seldom. In the control group (titamium implant without cover) the fibrous connective tissue was seen between implant and newly formed bone.

  8. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications.

    Science.gov (United States)

    Rau, J V; Antoniac, I; Fosca, M; De Bonis, A; Blajan, A I; Cotrut, C; Graziani, V; Curcio, M; Cricenti, A; Niculescu, M; Ortenzi, M; Teghil, R

    2016-07-01

    Biodegradable metals and alloys are promising candidates for biomedical bone implant applications. However, due to the high rate of their biodegradation in human body environment, they should be coated with less reactive materials, such, for example, as bioactive glasses or glass-ceramics. Fort this scope, RKKP composition glass-ceramic coatings have been deposited on Mg-Ca(1.4wt%) alloy substrates by Pulsed Laser Deposition method, and their properties have been characterized by a number of techniques. The prepared coatings consist of hydroxyapatite and wollastonite phases, having composition close to that of the bulk target material used for depositions. The 100μm thick films are characterized by dense, compact and rough morphology. They are composed of a glassy matrix with various size (from micro- to nano-) granular inclusions. The average surface roughness is about 295±30nm due to the contribution of micrometric aggregates, while the roughness of the fine-texture particulates is approximately 47±4nm. The results of the electrochemical corrosion evaluation tests evidence that the RKKP coating improves the corrosion resistance of the Mg-Ca (1.4wt%) alloy in Simulated Body Fluid. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  10. Cytokine induction of sol–gel-derived TiO2 and SiO2 coatings on metallic substrates after implantation to rat femur

    Science.gov (United States)

    Urbanski, Wiktor; Marycz, Krzysztof; Krzak, Justyna; Pezowicz, Celina; Dragan, Szymon Feliks

    2017-01-01

    Material surface is a key determinant of host response on implanted biomaterial. Therefore, modification of the implant surface may optimize implant–tissue reactions. Inflammatory reaction is inevitable after biomaterial implantation, but prolonged inflammation may lead to adverse reactions and subsequent implant failure. Proinflammatory activities of cytokines like interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α) are attractive indicators of these processes and ultimately characterize biocompatibility. The objective of the study was to evaluate local cytokine production after implantation of stainless steel 316L (SS) and titanium alloy (Ti6Al4V) biomaterials coated with titanium dioxide (TiO2) and silica (SiO2) coatings prepared by sol–gel method. Biomaterials were implanted into rat femur and after 12 weeks, bones were harvested. Bone–implant tissue interface was evaluated; immunohistochemical staining was performed to identify IL-6, TNF-α, and Caspase-1. Histomorphometry (AxioVision Rel. 4.6.3 software) of tissue samples was performed in order to quantify the cytokine levels. Both the oxide coatings on SS and Ti6Al4V significantly reduced cytokine production. However, the lowest cytokine levels were observed in TiO2 groups. Cytokine content in uncoated groups was lower in Ti6Al4V than in SS, although coating of either metal reduced cytokine production to similar levels. Sol–gel TiO2 or SiO2 coatings reduced significantly the production of proinflammatory cytokines by local tissues, irrespective of the material used as a substrate, that is, either Ti6Al4V or SS. This suggests lower inflammatory response, which directly points out improvement of materials’ biocompatibility. PMID:28280331

  11. Evaluation of Osseointegration of Titanium Alloyed Implants Modified by Plasma Polymerization

    Directory of Open Access Journals (Sweden)

    Carolin Gabler

    2014-02-01

    Full Text Available By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V coated with plasma-polymerized allylamine (PPAAm and plasma-polymerized ethylenediamine (PPEDA versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%. Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5% and implants with PPEDA a significantly increased BIC (63.7%. In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces.

  12. Functionalized Antimicrobial Composite Thin Films Printing for Stainless Steel Implant Coatings

    Directory of Open Access Journals (Sweden)

    Laura Floroian

    2016-06-01

    Full Text Available In this work we try to address the large interest existing nowadays in the better understanding of the interaction between microbial biofilms and metallic implants. Our aimed was to identify a new preventive strategy to control drug release, biofilm formation and contamination of medical devices with microbes. The transfer and printing of novel bioactive glass-polymer-antibiotic composites by Matrix-Assisted Pulsed Laser Evaporation into uniform thin films onto 316 L stainless steel substrates of the type used in implants are reported. The targets were prepared by freezing in liquid nitrogen mixtures containing polymer and antibiotic reinforced with bioglass powder. The cryogenic targets were submitted to multipulse evaporation by irradiation with an UV KrF* (λ = 248 nm, τFWHM ≤ 25 ns excimer laser source. The prepared structures were analyzed by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and profilometry, before and after immersion in physiological fluids. The bioactivity and the release of the antibiotic have been evaluated. We showed that the incorporated antibiotic underwent a gradually dissolution in physiological fluids thus supporting a high local treatment efficiency. Electrochemical measurements including linear sweep voltammetry and impedance spectroscopy studies were carried out to investigate the corrosion resistance of the coatings in physiological environments. The in vitro biocompatibility assay using the MG63 mammalian cell line revealed that the obtained nanostructured composite films are non-cytotoxic. The antimicrobial effect of the coatings was tested against Staphylococcus aureus and Escherichia coli strains, usually present in implant-associated infections. An anti-biofilm activity was evidenced, stronger against E. coli than the S. aureus strain. The results proved that the applied method allows for the fabrication of implantable biomaterials which shield metal ion release

  13. Functionalized Antimicrobial Composite Thin Films Printing for Stainless Steel Implant Coatings.

    Science.gov (United States)

    Floroian, Laura; Ristoscu, Carmen; Mihailescu, Natalia; Negut, Irina; Badea, Mihaela; Ursutiu, Doru; Chifiriuc, Mariana Carmen; Urzica, Iuliana; Dyia, Hussien Mohammed; Bleotu, Coralia; Mihailescu, Ion N

    2016-06-09

    In this work we try to address the large interest existing nowadays in the better understanding of the interaction between microbial biofilms and metallic implants. Our aimed was to identify a new preventive strategy to control drug release, biofilm formation and contamination of medical devices with microbes. The transfer and printing of novel bioactive glass-polymer-antibiotic composites by Matrix-Assisted Pulsed Laser Evaporation into uniform thin films onto 316 L stainless steel substrates of the type used in implants are reported. The targets were prepared by freezing in liquid nitrogen mixtures containing polymer and antibiotic reinforced with bioglass powder. The cryogenic targets were submitted to multipulse evaporation by irradiation with an UV KrF* (λ = 248 nm, τFWHM ≤ 25 ns) excimer laser source. The prepared structures were analyzed by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and profilometry, before and after immersion in physiological fluids. The bioactivity and the release of the antibiotic have been evaluated. We showed that the incorporated antibiotic underwent a gradually dissolution in physiological fluids thus supporting a high local treatment efficiency. Electrochemical measurements including linear sweep voltammetry and impedance spectroscopy studies were carried out to investigate the corrosion resistance of the coatings in physiological environments. The in vitro biocompatibility assay using the MG63 mammalian cell line revealed that the obtained nanostructured composite films are non-cytotoxic. The antimicrobial effect of the coatings was tested against Staphylococcus aureus and Escherichia coli strains, usually present in implant-associated infections. An anti-biofilm activity was evidenced, stronger against E. coli than the S. aureus strain. The results proved that the applied method allows for the fabrication of implantable biomaterials which shield metal ion release and possess

  14. Medical implants and methods of making medical implants

    Science.gov (United States)

    Shaw, Wendy J; Yonker, Clement R; Fulton, John L; Tarasevich, Barbara J; McClain, James B; Taylor, Doug

    2014-09-16

    A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.

  15. 1020 steel coated with Ti/TiN by Cathodic Arc and Ion Implantation

    International Nuclear Information System (INIS)

    Bermeo, F; Quintana, J P; Kleiman, A; Márquez, A; Sequeda, F

    2017-01-01

    TiN coatings have been widely studied in order to improve mechanical properties of steels. In this work, thin Ti/TiN films were prepared by plasma based immersion ion implantation and deposition (PBII and D) with a cathodic arc on AISI 1020 steel substrates. Substrates were exposed to the discharge during 1 min in vacuum for the deposition of a Tiunderlayer with the aim of improving the adhesion to the substrate. Then, a TiN layer was deposited during 6 min in a nitrogen environment at a pressure of 3xl0 -4 mbar. Samples were obtained at room temperature and at 300 °C, and with or without ion implantation in order to analyze differences between the effects of each treatment on the tribological properties. The mechanical and tribological properties of the films were characterized. The coatings deposited by PBII and D at 300 °C presented the highest hardness and young modulus, the best wear resistance and corrosion performance. (paper)

  16. Cytokine induction of sol–gel-derived TiO2 and SiO2 coatings on metallic substrates after implantation to rat femur

    Directory of Open Access Journals (Sweden)

    Urbanski W

    2017-02-01

    Full Text Available Wiktor Urbanski,1 Krzysztof Marycz,2 Justyna Krzak,3 Celina Pezowicz,4 Szymon Feliks Dragan1 1Department of Orthopaedic Surgery and Traumatology, Wroclaw University Hospital, 2Electron Microscope Laboratory, Wroclaw University of Environmental and Life Sciences, 3Institute of Materials Science and Applied Mechanics, 4Division of Biomedical Engineering and Experimental Mechanics, Wroclaw University of Technology, Wroclaw, Poland Abstract: Material surface is a key determinant of host response on implanted biomaterial. Therefore, modification of the implant surface may optimize implant–tissue reactions. Inflammatory reaction is inevitable after biomaterial implantation, but prolonged inflammation may lead to adverse reactions and subsequent implant failure. Proinflammatory activities of cytokines like interleukin (IL-1, IL-6, and tumor necrosis factor-alpha (TNF-α are attractive indicators of these processes and ultimately characterize biocompatibility. The objective of the study was to evaluate local cytokine production after implantation of stainless steel 316L (SS and titanium alloy (Ti6Al4V biomaterials coated with titanium dioxide (TiO2 and silica (SiO2 coatings prepared by sol–gel method. Biomaterials were implanted into rat femur and after 12 weeks, bones were harvested. Bone–implant tissue interface was evaluated; immunohistochemical staining was performed to identify IL-6, TNF-α, and Caspase-1. Histomorphometry (AxioVision Rel. 4.6.3 software of tissue samples was performed in order to quantify the cytokine levels. Both the oxide coatings on SS and Ti6Al4V significantly reduced cytokine production. However, the lowest cytokine levels were observed in TiO2 groups. Cytokine content in uncoated groups was lower in Ti6Al4V than in SS, although coating of either metal reduced cytokine production to similar levels. Sol–gel TiO2 or SiO2 coatings reduced significantly the production of proinflammatory cytokines by local tissues

  17. The modulation of stem cell behaviors by functionalized nanoceramic coatings on Ti-based implants

    Directory of Open Access Journals (Sweden)

    Xiangmei Liu

    2016-09-01

    Full Text Available Nanoceramic coating on the surface of Ti-based metallic implants is a clinical potential option in orthopedic surgery. Stem cells have been found to have osteogenic capabilities. It is necessary to study the influences of functionalized nanoceramic coatings on the differentiation and proliferation of stem cells in vitro or in vivo. In this paper, we summarized the recent advance on the modulation of stem cells behaviors through controlling the properties of nanoceramic coatings, including surface chemistry, surface roughness and microporosity. In addition, mechanotransduction pathways have also been discussed to reveal the interaction mechanisms between the stem cells and ceramic coatings on Ti-based metals. In the final part, the osteoinduction and osteoconduction of ceramic coating have been also presented when it was used as carrier of BMPs in new bone formation.

  18. New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations

    Directory of Open Access Journals (Sweden)

    Rainer Bader

    2013-09-01

    Full Text Available Ceramics are a very popular material in dental implant technology due to their tribological properties, their biocompatibility and their esthetic appearance. However, their natural surface structure lacks the ability of proper osseointegration, which constitutes a crucial process for the stability and, thus, the functionality of a bone implant. We investigated the application of a glass solder matrix in three configurations—consisting mainly of SiO2, Al2O3, K2O and Na2O to TZP-A ceramic specimens. The corresponding adhesive strength and surface roughness of the coatings on ceramic specimens have been analyzed. Thereby, high adhesive strength (70.3 ± 7.9 MPa was found for the three different coatings. The obtained roughness (Rz amounted to 18.24 ± 2.48 µm in average, with significant differences between the glass solder configurations. Furthermore, one configuration was also tested after additional etching which did not lead to significant increase of surface roughness (19.37 ± 1.04 µm or adhesive strength (57.2 ± 5.8 MPa. In conclusion, coating with glass solder matrix seems to be a promising surface modification technique that may enable direct insertion of ceramic implants in dental and orthopaedic surgery.

  19. Fosfomycin Addition to Poly(D,L-Lactide Coating Does Not Affect Prophylaxis Efficacy in Rat Implant-Related Infection Model, But That of Gentamicin Does.

    Directory of Open Access Journals (Sweden)

    Anil Gulcu

    Full Text Available Gentamicin is the preferred antimicrobial agent used in implant coating for the prevention of implant-related infections (IRI. However, the present heavy local and systemic administration of gentamicin can lead to increased resistance, which has made its future use uncertain, together with related preventive technologies. Fosfomycin is an alternative antimicrobial agent that lacks the cross-resistance presented by other classes of antibiotics. We evaluated the efficacy of prophylaxis of 10% fosfomycin-containing poly(D,L-lactide (PDL coated K-wires in a rat IRI model and compared it with uncoated (Control 1, PDL-coated (Control 2, and 10% gentamicin-containing PDL-coated groups with a single layer of coating. Stainless steel K-wires were implanted and methicillin-resistant Staphylococcus aureus (ATCC 43300 suspensions (103 CFU/10 μl were injected into a cavity in the left tibiae. Thereafter, K-wires were removed and cultured in tryptic soy broth and then 5% sheep blood agar mediums. Sliced sections were removed from the tibiae, stained with hematoxylin-eosin, and semi-quantitatively evaluated with X-rays. The addition of fosfomycin into PDL did not affect the X-ray and histopathological evaluation scores; however, the addition of gentamicin lowered them. The addition of gentamicin showed a protective effect after the 28th day of X-ray evaluations. PDL-only coating provided no protection, while adding fosfomycin to PDL offered a 20% level protection and adding gentamicin offered 80%. Furthermore, there were 103 CFU level growths in the gentamicin-added group, while the other groups had 105. Thus, the addition of fosfomycin to PDL does not affect the efficacy of prophylaxis, but the addition of gentamicin does. We therefore do not advise the use of fosfomycin as a single antimicrobial agent in coating for IRI prophylaxis.

  20. Bone Morphogenetic Protein Coating on Titanium Implant Surface: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Haim Haimov

    2017-06-01

    Full Text Available Objectives: The purpose of the study is to systematically review the osseointegration process improvement by bone morphogenetic protein coating on titanium implant surface. Material and Methods: An electronic literature search was conducted through the MEDLINE (PubMed and EMBASE databases. The search was restricted for articles published during the last 10 years from October 2006 to September 2016 and articles were limited to English language. Results: A total of 41 articles were reviewed, and 8 of the most relevant articles that are suitable to the criteria were selected. Articles were analysed regarding concentration of bone morphogenetic protein (BMP, delivery systems, adverse reactions and the influence of the BMP on the bone and peri-implant surface in vivo. Finally, the present data included 340 implants and 236 models. Conclusions: It’s clearly shown from most of the examined studies that bone morphogenetic protein increases bone regeneration. Further studies should be done in order to induce and sustain bone formation activity. Osteogenic agent should be gradually liberated and not rapidly released with priority to three-dimension reservoir (incorporated titanium implant surface in order to avoid following severe side effects: inflammation, bleeding, haematoma, oedema, erythema, and graft failure.

  1. Effects of orthopedic implants with a polycaprolactone polymer coating containing bone morphogenetic protein-2 on osseointegration in bones of sheep.

    Science.gov (United States)

    Niehaus, Andrew J; Anderson, David E; Samii, Valerie F; Weisbrode, Steven E; Johnson, Jed K; Noon, Mike S; Tomasko, David L; Lannutti, John J

    2009-11-01

    To determine elution characteristics of bone morphogenetic protein (BMP)-2 from a polycaprolactone coating applied to orthopedic implants and determine effects of this coating on osseointegration. 6 sheep. An in vitro study was conducted to determine BMP-2 elution from polycaprolactone-coated implants. An in vivo study was conducted to determine the effects on osseointegration when the polycaprolactone with BMP-2 coating was applied to bone screws. Osseointegration was assessed via radiography, measurement of peak removal torque and bone mineral density, and histomorphometric analysis. Physiologic response was assessed by measuring serum bone-specific alkaline phosphatase activity and uptake of bone markers. Mean +/- SD elution on day 1 of the in vitro study was 263 +/- 152 pg/d, which then maintained a plateau at 59.8 +/- 29.1 pg/d. Mean peak removal torque for screws coated with polycalprolactone and BMP-2 (0.91 +/- 0.65 dN x m) and screws coated with polycaprolactone alone (0.97 +/- 1.30 dN.m) did not differ significantly from that for the control screws (2.34 +/- 1.62 dN x m). Mean bone mineral densities were 0.535 +/- 0.060 g/cm(2), 0.596 +/- 0.093 g/cm(2), and 0.524 +/- 0.142 g/cm(2) for the polycaprolactone-BMP-2-coated, polycaprolactone-coated, and control screws, respectively, and did not differ significantly among groups. Histologically, bone was in closer apposition to the implant with the control screws than with either of the coated screws. BMP-2 within the polycaprolactone coating did not stimulate osteogenesis. The polycaprolactone coating appeared to cause a barrier effect that prevented formation of new bone. A longer period or use of another carrier polymer may result in increased osseointegration.

  2. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Energy Technology Data Exchange (ETDEWEB)

    Abdal-hay, Abdalla [Departmentt of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Dewidar, Montasser [Department of Materials and Mechanical Design, Faculty of Energy Engineering, South Valley University, Aswan (Egypt); Lim, Jae Kyoo, E-mail: jklim@jbnu.ac.kr [Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The corrosion behavior of magnesium for orthopedic applications is extremely poor. Black-Right-Pointing-Pointer The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. Black-Right-Pointing-Pointer Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. Black-Right-Pointing-Pointer Treated samples indicated significant damping for the degradation rate. Black-Right-Pointing-Pointer Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might

  3. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    International Nuclear Information System (INIS)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-01-01

    Highlights: ► The corrosion behavior of magnesium for orthopedic applications is extremely poor. ► The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. ► Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. ► Treated samples indicated significant damping for the degradation rate. ► Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc–solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  4. Results of bone regenerate study after osteosynthesis with bioinert and calcium phosphate-coated bioactive implants in experimental femoral neck fractures (experimental study

    Directory of Open Access Journals (Sweden)

    K. S. Kazanin

    2015-01-01

    Full Text Available Objective - to analyze the results of X-ray, cytomorphometric and immunohistochemistry experimental studies of bone regenerates after osteosynthesis with bioinert and calcium phosphate-coated bioactive implants. Material and methods. The study was conducted on experimental femoral neck fractures in rabbit males. Reparative osteogenesis processes were studied in groups of bioinert titanium implant osteosynthesis and calcium phosphate-coated bioactive titanium implant osteosynthesis. The animals were clinically followed-up during the postoperative period. X-ray, cytomorphometric and immunohistochemistry studies of samples extracted from femoral bones were conducted over time on days 1, 7, 14, 30 and 60. The animal experiments were kept and treated according to recommendations of international standards, Helsinki Declaration on animal welfare and approved by the local ethics committee. All surgeries were performed under anesthesia, and all efforts were made to minimize the suffering of the animals. Results. In the animal group without femoral neck fracture osteosynthesis, femoral neck pseudoarthrosis was observed at the end of the experiment. The results of cytomorphometric and immunohistochemistry studies conducted on day 60 of the experiment confirmed that the cellular composition of the bone regenerate in the group of calcium phosphate-coated bioactive titanium implants corresponded to a more mature bone tissue than in the group of bioinert titanium implants. Conclusion. The results of the statistical analysis of cytomorphometric and immunohistochemistry data show that the use of calcium phosphate-coated bioactive titanium implants allows to achieve significantly earlier bone tissue regeneration.

  5. The micropolyurethane foam-coated Diagon/Gel4Two implant in aesthetic and reconstructive breast surgery – 3-year results of an ongoing study

    Directory of Open Access Journals (Sweden)

    Brunnert, Klaus E.

    2015-12-01

    Full Text Available Background: Breast implants are worldwide in use since 1962. Initially there were some problems with capsular contracture and the palpability of the rim of the implant. In 1968 this led to the introduction of the micropolyurethane foam-coating and then in 1970 to the first micropolyurethane foam-coated implant by F.A. Ashley. As a result of additional technical refinements in manufacturing this new implant design significantly reduced complications i.e. capsular contracture and implant rotation. Methods: This study reports a single surgeon’s experience with aesthetic and reconstructive breast surgery, in primary and secondary cases with the sole use of micropolyurethane foam-coated Diagon/gel4Two implants, partly in combination with the additional use of synthetic meshes, acellular dermal matrices and lipofilling. The trial is a prospective, single center cohort study designed to demonstrate the safety and effectiveness of the new implant design in primary and secondary aesthetic and reconstructive breast surgery. The reported data provide an interim report of the implantations performed from November 2010 to December 2013.Results: 90 patients were admitted to the study with 152 implants. The majority of the implants (n=95, 62.5% were used in reoperative cases for either oncological (n=52, 34.2% or aesthetic reasons (n=43, 28.3%. The median age of the study cohort was 45 years; the median body mass index was 21; the median observation time is 41 months. There was a very low complication rate, both short term within 6 weeks after the implantation of the silicone gel implant and in the follow up in November 2015. There were no serious complications needing explantation, no capsular fibrosis or implant rotation or rupture so far. There were only 4 minor complications (1.97%. There was 1 local recurrence 4 years after skin and nipple sparing mastectomy.Conclusion: The micropolyurethane foam-coated Diagon/gel4Two implant is a very reliable silicone

  6. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Science.gov (United States)

    Tang, Hui; Yu, Dezhen; Luo, Yan; Wang, Fuping

    2013-01-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  7. In Vitro Evaluation of PCL and P(3HB) as Coating Materials for Selective Laser Melted Porous Titanium Implants.

    Science.gov (United States)

    Grau, Michael; Matena, Julia; Teske, Michael; Petersen, Svea; Aliuos, Pooyan; Roland, Laura; Grabow, Niels; Murua Escobar, Hugo; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2017-11-23

    Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young's modulus differs from bone tissue, the resulting "stress shielding" could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young's modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL) and the biopolymer poly(3-hydroxybutyrate) (P(3HB)) were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM) and coated with PCL or P(3HB) via dip coating. To test the biocompatibility, Live Cell Imaging (LCI) as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM) and energy-dispersive X-ray (EDX) analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB). Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB) in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL coating ensured the

  8. In Vitro Evaluation of PCL and P(3HB as Coating Materials for Selective Laser Melted Porous Titanium Implants

    Directory of Open Access Journals (Sweden)

    Michael Grau

    2017-11-01

    Full Text Available Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young’s modulus differs from bone tissue, the resulting “stress shielding” could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young’s modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL and the biopolymer poly(3-hydroxybutyrate (P(3HB were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM and coated with PCL or P(3HB via dip coating. To test the biocompatibility, Live Cell Imaging (LCI as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM and energy-dispersive X-ray (EDX analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB. Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL

  9. A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold.

    Science.gov (United States)

    Han, Yong; Zhou, Jianhong; Zhang, Lan; Xu, Kewei

    2011-07-08

    We report here, for the first time, a novel multi-scaled hybrid orthopedic implant material consisting of a macroporous Ti scaffold, whose macropores' walls have a microporous titania layer which is fully covered with nanofibers of Sr-doped hydroxyapatite (Sr-HA). The microporous titania layer is formed on and within the Ti scaffold by micro-arc oxidation, which firmly binds to the Ti substrate and contains Ca2+, Sr2+ and PO4(3-) ions. It is then hydrothermally treated to form Sr-HA nanofibers. During the hydrothermal treatment, Sr-HA nanoprisms nucleate from Ca0.5Sr0.5TiO3 pre-formed on the TiO2 and grow in length to nanofibers at the expense of Ca2+, Sr2+ and PO4(3-) ions that migrate from the TiO2. These Sr-HA nanofibers construct a network structure similar to the hierarchical organization of bone extracellular matrix (ECM), and the resulting nanofibrous surface displays a firm adhesion to substrate, superhydrophilicity and apatite-inducing ability. The induced apatite prefers to nucleate on the basal-faceted surfaces of Sr-HA nanofibers. The nanofiber-walled scaffold has a great potential for load-bearing orthotopic use.

  10. Coating dental implant abutment screws with diamondlike carbon doped with diamond nanoparticles: the effect on maintaining torque after mechanical cycling.

    Science.gov (United States)

    Lepesqueur, Laura Soares; de Figueiredo, Viviane Maria Gonçalves; Ferreira, Leandro Lameirão; Sobrinho, Argemiro Soares da Silva; Massi, Marcos; Bottino, Marco Antônio; Nogueira Junior, Lafayette

    2015-01-01

    To determine the effect of maintaining torque after mechanical cycling of abutment screws that are coated with diamondlike carbon and coated with diamondlike carbon doped with diamond nanoparticles, with external and internal hex connections. Sixty implants were divided into six groups according to the type of connection (external or internal hex) and the type of abutment screw (uncoated, coated with diamondlike carbon, and coated with diamondlike carbon doped with diamond nanoparticles). The implants were inserted into polyurethane resin and crowns of nickel chrome were cemented on the implants. The crowns had a hole for access to the screw. The initial torque and the torque after mechanical cycling were measured. The torque values maintained (in percentages) were evaluated. Statistical analysis was performed using one-way analysis of variance and the Tukey test, with a significance level of 5%. The largest torque value was maintained in uncoated screws with external hex connections, a finding that was statistically significant (P = .0001). No statistically significant differences were seen between the groups with and without coating in maintaining torque for screws with internal hex connections (P = .5476). After mechanical cycling, the diamondlike carbon with and without diamond doping on the abutment screws showed no improvement in maintaining torque in external and internal hex connections.

  11. Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections

    Energy Technology Data Exchange (ETDEWEB)

    Rădulescu, Dragoş [Bucharest University Hospital, Department of Orthopedics and Traumatology, Bucharest (Romania); Grumezescu, Valentina [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Lasers Department, National Institute for Lasers, Plasma & Radiation Physics, Magurele, Bucharest (Romania); Andronescu, Ecaterina [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Holban, Alina Maria [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 1–3 Portocalelor Lane, Sector 5, 77206 Bucharest (Romania); Research Institute of the University of Bucharest –ICUB, 91-95 Splaiul Independentei, 050095 Bucharest (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Socol, Gabriel [Lasers Department, National Institute for Lasers, Plasma & Radiation Physics, Magurele, Bucharest (Romania); Oprea, Alexandra Elena [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest (Romania); Rădulescu, Marius [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); and others

    2016-06-30

    Graphical abstract: - Highlights: • HAp/PLGA thin coatings by Matrix Assisted Pulsed Laser Evaporation. • Anti-adherent coating on medical surfaces against S. aureus and P. aeruginosa colonization. • Coatings with potential applications in implant osseointegration. - Abstract: In this study we aimed to obtain functionalized thin films based on hydroxyapatite/poly(lactic-co-glycolic acid) (HAp/PLGA) containing ceftriaxone/cefuroxime antibiotics (ATBs) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The prepared thin films were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), selected area electron diffraction (SAED), and infra red (IR) analysis. HAp/PLGA/ATBs thin films sustained the growth of human osteoblasts, proving their good biocompatibility. The microscopic evaluation and the culture-based quantitative assay of the E. coli biofilm development showed that the thin films inhibited the initial step of microbial attachment as well as the subsequent colonization and biofilm development on the respective surfaces. This study demonstrates that MAPLE technique could represent an appealing technique for the fabrication of antibiotics-containing polymeric implant coatings. The bioevaluation results recommend this type of surfaces for the prevention of bone implant microbial contamination and for the enhanced stimulation of the implant osseointegration process.

  12. Osteointegration of Porous Poly-ε-Caprolactone-Coated and Previtalised Magnesium Implants in Critically Sized Calvarial Bone Defects in the Mouse Model

    Directory of Open Access Journals (Sweden)

    Michael Grau

    2017-12-01

    Full Text Available Metallic biomaterials are widely used in maxillofacial surgery. While titanium is presumed to be the gold standard, magnesium-based implants are a current topic of interest and investigation due to their biocompatible, osteoconductive and degradable properties. This study investigates the effects of poly-ε-caprolactone-coated and previtalised magnesium implants on osteointegration within murine calvarial bone defects: After setting a 3 mm × 3 mm defect into the calvaria of 40 BALB/c mice the animals were treated with poly-ε-caprolactone-coated porous magnesium implants (without previtalisation or previtalised with either osteoblasts or adipose derived mesenchymal stem cells, porous Ti6Al4V implants or without any implant. To evaluate bone formation and implant degradation, micro-computertomographic scans were performed at day 0, 28, 56 and 84 after surgery. Additionally, histological thin sections were prepared and evaluated histomorphometrically. The outcomes revealed no significant differences within the differently treated groups regarding bone formation and the amount of osteoid. While the implant degradation resulted in implant shifting, both implant geometry and previtalisation appeared to have positive effects on vascularisation. Although adjustments in degradation behaviour and implant fixation are indicated, this study still considers magnesium as a promising alternative to titanium-based implants in maxillofacial surgery in future.

  13. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration

    Science.gov (United States)

    Zhang, Wenjie; Cao, Huiliang; Zhang, Xiaochen; Li, Guanglong; Chang, Qing; Zhao, Jun; Qiao, Yuqin; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan

    2016-02-01

    Rapid osseointegration of dental implants will shorten the period of treatment and enhance the comfort of patients. Due to the vital role of angiogenesis played during bone development and regeneration, it might be feasible to promote rapid osseointegration by modifying the implant surface to gain a combined angiogenesis/osteogenesis inducing capacity. In this study, a novel coating (MAO-Sr) with strontium-incorporated nanoporous structures on titanium implants was generated via a new micro-arc oxidation, in an attempt to induce angiogenesis and osteogenesis to enhance rapid osseointegration. In vitro, the nanoporous structure significantly enhanced the initial adhesion of canine BMSCs. More importantly, sustained release of strontium ions also displayed a stronger effect on the BMSCs in facilitating their osteogenic differentiation and promoting the angiogenic growth factor secretion to recruit endothelial cells and promote blood vessel formation. Advanced mechanism analyses indicated that MAPK/Erk and PI3K/Akt signaling pathways were involved in these effects of the MAO-Sr coating. Finally, in the canine dental implantation study, the MAO-Sr coating induced faster bone formation within the initial six weeks and the osseointegration effect was comparable to that of the commercially available ITI implants. These results suggest that the MAO-Sr coating has the potential for future use in dental implants.Rapid osseointegration of dental implants will shorten the period of treatment and enhance the comfort of patients. Due to the vital role of angiogenesis played during bone development and regeneration, it might be feasible to promote rapid osseointegration by modifying the implant surface to gain a combined angiogenesis/osteogenesis inducing capacity. In this study, a novel coating (MAO-Sr) with strontium-incorporated nanoporous structures on titanium implants was generated via a new micro-arc oxidation, in an attempt to induce angiogenesis and osteogenesis to

  14. A Comparative Analysis of Master Casts Obtained using Different Surface Treatments on Impression Copings for Single Tooth Implant Replacement -An In vitro Study.

    Science.gov (United States)

    Abrol, Surbhi; Nagpal, Archana; Kaur, Rupandeep; Verma, Ramit; Katna, Vishal; Gupt, Parikshit

    2017-08-01

    Minor rotation of impression coping secured in the impression is an avoidable error that needs to be minimized to ensure precise positioning of implant analog in master cast. The aim of the study was to compare the precision in obtaining master casts by improving the stability of impression copings in the impression with the use of tray adhesive along various surface treatments to increase surface area and by mechanical locking. A total of 60 samples were made (15 samples for each group). A total of 15 samples for Group I were prepared with untreated impression copings, 15 samples for Group II with impression copings treated and modified by application of tray adhesive only. Group III includes 15 samples which were fabricated with impression copings modified by making four vertical grooves on surface of impression coping and coated with adhesive. Group IV had 15 samples which were fabricated with impression copings sandblasted with 50 μm aluminum oxide powder and coated with adhesive. Profile projector was used to evaluate the rotational accuracy of the implant analogs by comparing Molar Implant Angle (MIA) and Premolar Implant Angle (PIA) of test samples with reference model. One-way ANOVA and Student t-test were used to analyze the data. One-way ANOVA didn't show any significant differences for both MIA and PIA between the Groups I, II, III and IV. Student's unpaired t-test revealed no significant difference in the mean MIA and mean PIA. Conclusion: Though results were statistically non-significant, all types of surface treatments of the impression copings showed more accurate transfer than those with no treatment. Sandblasted and adhesive coated impression copings showed minimum amount of rotation followed by those with vertical slots and adhesive coated impression copings.

  15. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    Science.gov (United States)

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-02

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.

  16. Enhancing surface properties of breast implants by using electrospun silk fibroin.

    Science.gov (United States)

    Valencia-Lazcano, A A; Román-Doval, R; De La Cruz-Burelo, E; Millán-Casarrubias, E J; Rodríguez-Ortega, A

    2017-08-24

    In the present study, a new electrospun silk fibroin coating of silicone breast implants with improved biocompatibility and mechanical properties was obtained. Fibrous scaffolds were produced by electrospinning a solution containing silk fibroin, derived from Bombyx mori cocoons, and polyethylene oxide (PEO) to be used as a coating of breast implants. A randomly oriented structure of fibroin/PEO was electrospun on implants as assessed by SEM analysis, roughness measurements and ATR-FTIR spectroscopy. The scaffold showed 0.25 µm diameter fibres, 0.76 µm size superficial pores, arithmetic roughness of 0.632 ± 0.12 µm and texture aspect ratio of 0.893 ± 0.04. ATR-FTIR spectroscopy demonstrates the presence of PEO and fibroin in the coating. The mechanical characterisation of the implants before and after being coated with fibroin/PEO demonstrated that the fibroin/PEO scaffold contributes to the increase in the elastic modulus from 0.392 ± 0.02 to 0.560 ± 0.03 MPa and to a more elastic behaviour of the breast implants. Using the fibroin/PEO coating, human fibroblasts seeded on this matrix increased viability up to 30% compared to conventional breast implants. Electrospun silk fibroin could represent a clinically compatible, viable form to coat breast implants. Low cytotoxicity by the fibroin coating and its physico-chemical and mechanical properties may find application in improving breast implants biocompatibility. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  17. Effect of ion implantation on thin hard coatings

    International Nuclear Information System (INIS)

    Auner, G.; Hsieh, Y.F.; Padmanabhan, K.R.; Chevallier, J.; Soerensen, G.

    1983-01-01

    The surface mechanical properties of thin hard coatings of carbides, nitrides and borides deposited by r.f. sputtering were improved after deposition by ion implantation. The thickness and the stoichiometry of the films were measured by Rutherford backscattering spectrometry and nuclear reaction analysis before and after ion bombardment. The post ion bombardment was achieved with heavy inert ions such as Kr + and Xe + with an energy sufficient to penetrate the film and to reach the substrate. Both the film adhesion and the microhardness were consistently improved. In order to achieve a more detailed understanding, Rb + and Ni + ions were also used as projectiles, and it was found that these ions were more effective than the inert gas ions. (Auth.)

  18. Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration

    International Nuclear Information System (INIS)

    Nishimura, Ichiro; Huang Yuhong; Butz, Frank; Ogawa, Takahiro; Lin, Audrey; Wang, Chiachien Jake

    2007-01-01

    We report here a new versatile method to deposit discrete hydroxyapatite (HA) nanoparticles on a titanium (Ti) implant with predisposing substrate microtopography, which exhibited an unexpectedly robust biological effect. Commercially pure Ti substrates were treated with 3-aminopropyltriethoxysilane, on which HA nanoparticles (20 nm) were deposited and chemically bonded to TiO 2 . The HA deposition rate was linearly related to the treatment time and HA nanoparticles were deposited on up to 50% of the substrate surface. As a result, the discrete deposition of HA nanoparticles generated novel 20-40 nm nanotopography on the Ti substrate with microtopography that was smooth (turned) or roughened by double acid etching (DAE). The experimental implants with or without HA nanoparticles were surgically placed in rat femur and an implant push-in test was performed after two weeks of healing. The deposition of HA nanoparticles on the DAE surface increased the mechanical withstanding load by 129% and 782% as compared to the control DAE and turned implants, respectively. Micro-computed tomography-based 3D bone morphometry revealed equivalent bone volumes around the DAE implant with or without HA nanoparticles. These data suggest that the discrete deposition of HA nanoparticles accelerates the early osseointegration process, likely through increased shear bonding strengths

  19. Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Ichiro [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Huang Yuhong [Chemat Technology, Incorporated, Northridge, CA (United States); Butz, Frank [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Ogawa, Takahiro [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Lin, Audrey [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Wang, Chiachien Jake [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States)

    2007-06-20

    We report here a new versatile method to deposit discrete hydroxyapatite (HA) nanoparticles on a titanium (Ti) implant with predisposing substrate microtopography, which exhibited an unexpectedly robust biological effect. Commercially pure Ti substrates were treated with 3-aminopropyltriethoxysilane, on which HA nanoparticles (20 nm) were deposited and chemically bonded to TiO{sub 2}. The HA deposition rate was linearly related to the treatment time and HA nanoparticles were deposited on up to 50% of the substrate surface. As a result, the discrete deposition of HA nanoparticles generated novel 20-40 nm nanotopography on the Ti substrate with microtopography that was smooth (turned) or roughened by double acid etching (DAE). The experimental implants with or without HA nanoparticles were surgically placed in rat femur and an implant push-in test was performed after two weeks of healing. The deposition of HA nanoparticles on the DAE surface increased the mechanical withstanding load by 129% and 782% as compared to the control DAE and turned implants, respectively. Micro-computed tomography-based 3D bone morphometry revealed equivalent bone volumes around the DAE implant with or without HA nanoparticles. These data suggest that the discrete deposition of HA nanoparticles accelerates the early osseointegration process, likely through increased shear bonding strengths.

  20. Improvement of the titanium implant biological properties by coating with poly (ε-caprolactone)-based hybrid nanocomposites synthesized via sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy)

    2016-05-18

    When bioactive coatings are applied to medical implants by means of sol-gel dip coating technique, the biological proprieties of the implant surface can be modified to match the properties of the surrounding tissues. In this study organo-inorganic nanocomposites materials were synthesized via sol-gel. They consisted of an inorganic zirconium-based and silica-based matrix, in which a biodegradable polymer (the poly-ε-caprolactone, PCL) was incorporated in different weight percentages. The synthesized materials, in sol phase, were used to dip-coat a substrate of commercially pure titanium grade 4 (CP Ti gr. 4) in order to improve its biological properties. A microstructural analysis of the obtained films was carried out by scanning electron microscopy (SEM) and attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR). Biological proprieties of the coated substrates were investigated by means of in vitro tests.

  1. A three-dimensional finite element study on the effect of hydroxyapatite coating thickness on the stress distribution of the surrounding dental implant-bone interface

    Directory of Open Access Journals (Sweden)

    Hadi Asgharzadeh Shirazi

    2014-06-01

    Full Text Available   Background and Aims: Hydroxyapatite coating has allocated a special place in dentistry due to its biocompatibility and bioactivity. The purpose of this study was to evaluate the relation between the hydroxyapatite thickness and stress distribution by using finite element method.   Materials and Methods: In this paper, the effect of hydroxyapatite coating thickness on dental implants was studied using finite element method in the range between 0 to 200 microns. A 3D model including one section of mandible bone was modeled by a thick layer of cortical surrounding dense cancellous and a Nobel Biocare commercial brand dental implant was simulated and analyzed under static load in the Abaqus software.   Results The diagram of maximum von Mises stress versus coating thickness was plotted for the cancellous and cortical bones in the range between 0 to 200 microns. The obtained results showed that the magnitude of maximum von Mises stress of bone decreased as the hydroxyapatite coating thickness increased. Also, the thickness of coating exhibited smoother stress distribution and milder variations of maximum von Mises stress in a range between 60 to 120 microns.   Conclusion: In present study, the stress was decreased in the mandible bone where hydroxyapatite coating was used. This stress reduction leads to a faster stabilization and fixation of implant in the mandible bone. Using hydroxyapatite coating as a biocompatible and bioactive material could play an important role in bone formation of implant- bone interface.

  2. Electrochemical behavior of hydroxyapatite/TiN multi-layer coatings on Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Ju [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    The electrochemical behavior of hydroxyapatite (HA) and titanium nitride (TiN) multi-layer coatings on Ti–Nb–Zr alloys was investigated by a variety of surface analytical methods. The HA/TiN layers were deposited using a magnetron sputtering system. The HA target was made of human tooth-ash sintered at 1300 °C for 1 h and had an average Ca/P ratio of 1.9. From X-ray diffraction patterns, the Ti–29Nb–5Zr alloy was composed entirely of equiaxed β-phase exhibiting the principal (110) reflection, and the coating exhibited the (111) and (200) reflections for TiN and the (112) and (202) reflections for HA. At the coating surface the HA films consisted of granular particles, and the surface roughness was 4.22 nm. The thickness of the coating layers increased in the order of HA/TiN (lowest), TiN, and HA (highest). Potentiodynamic polarization measurements revealed that the corrosion current density was the lowest, and the corrosion potential and polarization resistance the highest, when the Ti–29Nb–5Zr surface was covered by the HA/TiN film, compared to solely HA or TiN films. - Highlights: • HA/TiN films were deposited by magnetron sputtering on a Ti–29Nb–5Zr biomedical alloy. • The corrosion current density for the HA/TiN films was lower than that of the non-coated alloy. • The polarization resistance of the HA/TiN films was higher than that of the non-coated alloy.

  3. Electrochemical behavior of hydroxyapatite/TiN multi-layer coatings on Ti alloys

    International Nuclear Information System (INIS)

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2014-01-01

    The electrochemical behavior of hydroxyapatite (HA) and titanium nitride (TiN) multi-layer coatings on Ti–Nb–Zr alloys was investigated by a variety of surface analytical methods. The HA/TiN layers were deposited using a magnetron sputtering system. The HA target was made of human tooth-ash sintered at 1300 °C for 1 h and had an average Ca/P ratio of 1.9. From X-ray diffraction patterns, the Ti–29Nb–5Zr alloy was composed entirely of equiaxed β-phase exhibiting the principal (110) reflection, and the coating exhibited the (111) and (200) reflections for TiN and the (112) and (202) reflections for HA. At the coating surface the HA films consisted of granular particles, and the surface roughness was 4.22 nm. The thickness of the coating layers increased in the order of HA/TiN (lowest), TiN, and HA (highest). Potentiodynamic polarization measurements revealed that the corrosion current density was the lowest, and the corrosion potential and polarization resistance the highest, when the Ti–29Nb–5Zr surface was covered by the HA/TiN film, compared to solely HA or TiN films. - Highlights: • HA/TiN films were deposited by magnetron sputtering on a Ti–29Nb–5Zr biomedical alloy. • The corrosion current density for the HA/TiN films was lower than that of the non-coated alloy. • The polarization resistance of the HA/TiN films was higher than that of the non-coated alloy

  4. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs

    International Nuclear Information System (INIS)

    Godoy-Gallardo, Maria; Manzanares-Céspedes, Maria Cristina; Sevilla, Pablo; Nart, José; Manzanares, Norberto; Manero, José M.; Gil, Francisco Javier; Boyd, Steven K.; Rodríguez, Daniel

    2016-01-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10 units), Ti-Ag (silver electrodeposition treatment, 10 units), and Ti-TSP (silanization treatment, 10 units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2 months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P < 0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. - Highlights: • Dental implants were modified with two antibacterial treatments, silver and TESPSA silanization. • Performance of the modified dental implants was studied in vivo. • Treated implants showed less peri-implant bone resorption. • Decrease in bone resorption was attributed to the antibacterial surface treatments. • Silane treatment enhanced bone regeneration around dental implants.

  5. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria [Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby (Denmark); Manzanares-Céspedes, Maria Cristina [Unidad de Anatomía y Embriología Humana, Faculty of Dentistry, University of Barcelona, Barcelona (Spain); Sevilla, Pablo [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), Barcelona (Spain); Nart, José [Department of Periodontology, School of Dentistry, Universitat Internacional de Catalunya, Sant Cugat (Spain); Manzanares, Norberto [Unidad de Anatomía y Embriología Humana, Faculty of Dentistry, University of Barcelona, Barcelona (Spain); Manero, José M. [Biomaterials, Biomechanics and Tissue Engineering Group, Dept. Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC-BarcelonaTECH), Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), UPC-BarcelonaTECH, Barcelona (Spain); Gil, Francisco Javier [Universitat Internacional de Catalunya, Sant Cugat (Spain); Boyd, Steven K. [McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta (Canada); Rodríguez, Daniel, E-mail: daniel.rodriguez.rius@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Dept. Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC-BarcelonaTECH), Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), UPC-BarcelonaTECH, Barcelona (Spain)

    2016-12-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10 units), Ti-Ag (silver electrodeposition treatment, 10 units), and Ti-TSP (silanization treatment, 10 units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2 months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P < 0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. - Highlights: • Dental implants were modified with two antibacterial treatments, silver and TESPSA silanization. • Performance of the modified dental implants was studied in vivo. • Treated implants showed less peri-implant bone resorption. • Decrease in bone resorption was attributed to the antibacterial surface treatments. • Silane treatment enhanced bone regeneration around dental implants.

  6. Surface modification of coronary artery stent by Ti-O/Ti-N complex film coating prepared with plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Huang, N.; Leng, Y.X.; Yang, P.

    2006-01-01

    This paper reported the work of surface coating of Ti-O/Ti-N complex films on coronary stents by means of the plasma immersion ion implantation/deposition process. The deformation behavior of the Ti-O/Ti-N coated stainless steel stents was investigated. In vivo investigation of the anticoagulation behavior of Ti-O coated coronary stents was also performed. The results of mechanical characterization of the Ti-O/Ti-N coated stents show that the film has strong binding strength, and to some extent the ability to withstand plastic deformation. The biological response behavior of the coated stent surface was significantly different from the uncoated. The results of implantation of stents into rabbit ventral aorta show no thrombus formation on the surfaces of the Ti-O coated stents, although serious coagulation had occurred on the surfaces of unmodified stents over a period of 4 weeks under conditions with no anticoagulant

  7. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.

    Science.gov (United States)

    Ishack, Stephanie; Mediero, Aranzazu; Wilder, Tuere; Ricci, John L; Cronstein, Bruce N

    2017-02-01

    Bone defects resulting from trauma or infection need timely and effective treatments to restore damaged bone. Using specialized three-dimensional (3D) printing technology we have created custom 3D scaffolds of hydroxyapatite (HA)/beta-tri-calcium phosphate (β-TCP) to promote bone repair. To further enhance bone regeneration we have coated the scaffolds with dipyridamole, an agent that increases local adenosine levels by blocking cellular uptake of adenosine. Nearly 15% HA:85% β-TCP scaffolds were designed using Robocad software, fabricated using a 3D Robocasting system, and sintered at 1100°C for 4 h. Scaffolds were coated with BMP-2 (200 ng mL -1 ), dypiridamole 100 µM or saline and implanted in C57B6 and adenosine A2A receptor knockout (A2AKO) mice with 3 mm cranial critical bone defects for 2-8 weeks. Dipyridamole release from scaffold was assayed spectrophotometrically. MicroCT and histological analysis were performed. Micro-computed tomography (microCT) showed significant bone formation and remodeling in HA/β-TCP-dipyridamole and HA/β-TCP-BMP-2 scaffolds when compared to scaffolds immersed in vehicle at 2, 4, and 8 weeks (n = 5 per group; p ≤ 0.05, p ≤ 0.05, and p ≤ 0.01, respectively). Histological analysis showed increased bone formation and a trend toward increased remodeling in HA/β-TCP- dipyridamole and HA/β-TCP-BMP-2 scaffolds. Coating scaffolds with dipyridamole did not enhance bone regeneration in A2AKO mice. In conclusion, scaffolds printed with HA/β-TCP promote bone regeneration in critical bone defects and coating these scaffolds with agents that stimulate A2A receptors and growth factors can further enhance bone regeneration. These coated scaffolds may be very useful for treating critical bone defects due to trauma, infection or other causes. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 366-375, 2017. © 2015 Wiley Periodicals, Inc.

  8. Microporous Ti implant compact coated with hydroxyapatite produced by electro-discharge-sintering and electrostatic-spray-deposition.

    Science.gov (United States)

    Jo, Y J; Kim, Y H; Jo, Y H; Seong, J G; Chang, S Y; Van Tyne, C J; Lee, W H

    2014-11-01

    A single pulse of 1.5 kJ/0.7 g of atomized spherical Ti powder from 300 μF capacitor was applied to produce the porous-surfaced Ti implant compact by electro-discharge-sintering (EDS). A solid core surrounded by porous layer was self-consolidated by a discharge in the middle of the compact in 122 μsec. Average pore size, porosity, and compressive yield strength of EDS Ti compact were estimated to be about 68.2 μm, 25.5%, and 266.4 MPa, respectively. Coatings with hydroxyapatite (HAp) on the Ti compact were conducted by electrostatic-spray-deposition (ESD) method. As-deposited HAp coating was in the form of porous structure and consisted of HAp particles which were uniformly distributed on the Ti porous structure. By heat-treatment at 700 degrees C, HAp particles were agglomerated each other and melted to form a highly smooth and homogeneous HAp thin film consisted of equiaxed nano-scaled grains. Porous-surfaced Ti implant compacts coated with highly crystalline apatite phase were successfully obtained by using the EDS and ESD techniques.

  9. A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Han Yong; Zhou Jianhong; Zhang Lan; Xu Kewei, E-mail: yonghan@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2011-07-08

    We report here, for the first time, a novel multi-scaled hybrid orthopedic implant material consisting of a macroporous Ti scaffold, whose macropores' walls have a microporous titania layer which is fully covered with nanofibers of Sr-doped hydroxyapatite (Sr-HA). The microporous titania layer is formed on and within the Ti scaffold by micro-arc oxidation, which firmly binds to the Ti substrate and contains Ca{sup 2+}, Sr{sup 2+} and PO{sub 4}{sup 3-} ions. It is then hydrothermally treated to form Sr-HA nanofibers. During the hydrothermal treatment, Sr-HA nanoprisms nucleate from Ca{sub 0.5}Sr{sub 0.5}TiO{sub 3} pre-formed on the TiO{sub 2} and grow in length to nanofibers at the expense of Ca{sup 2+}, Sr{sup 2+} and PO{sub 4}{sup 3-} ions that migrate from the TiO{sub 2}. These Sr-HA nanofibers construct a network structure similar to the hierarchical organization of bone extracellular matrix (ECM), and the resulting nanofibrous surface displays a firm adhesion to substrate, superhydrophilicity and apatite-inducing ability. The induced apatite prefers to nucleate on the basal-faceted surfaces of Sr-HA nanofibers. The nanofiber-walled scaffold has a great potential for load-bearing orthotopic use.

  10. Nanostructured multielement (TiHfZrNbVTa)N coatings before and after implantation of N+ ions (10{sup 18} cm{sup −2}): Their structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Pogrebnjak, A.D., E-mail: alexp@i.ua [Sumy State University, Department of Nanoelectronics, 40007, R.-Korsakova 2, Sumy (Ukraine); Bondar, O.V., E-mail: oleksandr.v.bondar@gmail.com [Sumy State University, Department of Nanoelectronics, 40007, R.-Korsakova 2, Sumy (Ukraine); Borba, S.O. [Sumy State University, Department of Nanoelectronics, 40007, R.-Korsakova 2, Sumy (Ukraine); Abadias, G. [Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F86962 Futuroscope Chasseneuil (France); Konarski, P. [Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw (Poland); Plotnikov, S.V. [D. Serikbaev East-Kazakhstan State Technical University, 070004, Ust-Kamenogorsk, 69 Protozanov St. (Kazakhstan); Beresnev, V.M. [V.N. Karazin Kharkiv National University, 61022, Svobody Sq. 4, Kharkiv (Ukraine); Kassenova, L.G. [Kazakh University of Economics, Finance and International Trade, St. Zhubanov 7, 010005 Astana (Kazakhstan); Drodziel, P. [Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

    2016-10-15

    Highlights: • (TiZrHfVNbTa)N coatings were deposited by vacuum–arc evaporation of a cathode. • Nanostructured coatings were investigated experimentally and by MD simulations. • Good correlation between experimental data and simulation results is observed. • Ion implantation formed amorphous, nanocrystalline and nanostructured layers. • Hardness changed from 12 GPa in the implanted layer to 38 GPa with the depth. - Abstract: Multielement high entropy alloy (HEA) nitride (TiHfZrNbVTa)N coatings were deposited by vacuum arc and their structural and mechanical stability after implantation of high doses of N{sup +} ions, 10{sup 18} cm{sup −2}, were investigated. The crystal structure and phase composition were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy, while depth-resolved nanoindentation tests were used to determine the evolution of hardness and elastic modulus along the implantation depth. XRD patterns show that coatings exhibit a main phase with fcc structure, which preferred orientation varies from (1 1 1) to (2 0 0), depending on the deposition conditions. First-principles calculations reveal that the presence of Nb atoms could favor the formation of solid solution with fcc structure in multielement HEA nitride. TEM results showed that amorphous and nanostructured phases were formed in the implanted coating sub-surface layer (∼100 nm depth). Concentration of nitrogen reached 90 at% in the near-surface layer after implantation, and decreased at higher depth. Nanohardness of the as-deposited coatings varied from 27 to 38 GPa depending on the deposition conditions. Ion implantation led to a significant decrease of the nanohardness to 12 GPa in the implanted region, while it reaches 24 GPa at larger depths. However, the H/E ratio is ⩾0.1 in the sub-surface layer due to N{sup +} implantation, which is expected to have beneficial effect on the wear properties.

  11. Electrochemical Evaluation of Hydroxyapatite/ZrN Coated Magnesium Biodegradable Alloy in Ringer Solution as a Simulated Body Fluid

    OpenAIRE

    Seyed Rahim Kiahosseini; Abdollah Afshar; Majid Mojtahedzadeh Larijani; Mardali Yousefpour

    2015-01-01

    Magnesium alloys as biodegradable materials can be used in body as an implant materials but since they have poor corrosion resistance, it is required to decrease their corrosion rate by biocompatible coatings. In this study, hydroxyapatite (HA) coatings in the presence of an intermediate layer of ZrN as a biocompatible material, deposited on AZ91 magnesium alloy by ion beam sputtering method at 300 °C temperature and at different times 180, 240, 300, 360 and 420 min. Then changes in corrosion...

  12. Comparing Two Antibacterial Treatments for Bioceramic Coatings at Short Culture Times

    Science.gov (United States)

    Melero, H.; Madrid, C.; Fernández, J.; Guilemany, J. M.

    2014-04-01

    Plasma-sprayed hydroxyapatite coatings were employed industrially for decades to improve osteointegration of articular implants, but many studies have warned about the problems inherent to this procedure (mechanical properties, harmful phases). Consequently, a combination of hydroxyapatite with TiO2 sprayed by high velocity oxy-fuel spray was considered in this study. As infection after joint replacement surgery is one of the most critical concerns when considering implant performance, it is necessary to study possible ways to reduce or eliminate it. Two coating treatments were chosen for this study: addition of a percentage of ZnO and immersion in gentamicin for 24 h. Furthermore, three bacteria were considered: Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The evolution of bacteria viability in solution was measured at 0, 2, and 4 h; and plate assays were performed to study antibacterial effects by diffusion. The results show an important antibacterial effect of the as-sprayed coating, attributed to the presence of -OH radicals on the surface. The presence of ZnO did not have any additional influence on bacteria viability, but gentamicin-treated samples showed an improvement in antibacterial behavior for Gram-negative bacteria in solution, as well as a bactericidal effect in diffusion conditions.

  13. Conducting polymer coated neural recording electrodes

    Science.gov (United States)

    Harris, Alexander R.; Morgan, Simeon J.; Chen, Jun; Kapsa, Robert M. I.; Wallace, Gordon G.; Paolini, Antonio G.

    2013-02-01

    Objective. Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. Significance. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during

  14. In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants

    International Nuclear Information System (INIS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    The high corrosion rate of Mg alloys has hindered their application in various areas, particularly for orthopedic applications. In order to decrease the corrosion rate and to improve the bioactivity, mechanical stability and cytocompatibility of the Mg alloy, nanostructured diopside (CaMgSi 2 O 6 ) has been coated on AZ91 Mg alloy using a combined micro arc oxidation (MAO) and electrophoretic deposition (EPD) method. The crystalline structure, the morphology and the composition of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Electrochemical corrosion test, immersion test, and compression test were used to evaluate the corrosion resistance, the in vitro bioactivity and the mechanical stability of the samples, respectively. The cytocompatibility of the samples was tested by the cell viability and the cell attachment of L-929 cells. The results confirmed that the diopside coating not only slows down the corrosion rate, but also enhances the in vitro bioactivity, mechanical stability and cytocompatibility of AZ91 Mg alloy. Therefore, Mg alloy coated with nanostructured diopside offers a promising approach for biodegradable bone implants. - Highlights: • The diopside coating was applied on Mg alloy using the combined MAO and EPD methods. • The corrosion resistance of the diopside coated Mg alloy was noticeably improved. • The in vitro bioactivity of the diopside coated Mg alloy was considerably increased. • The mechanical stability of biodegradable Mg alloy was enhanced by diopside coating. • The cytocompatibility of the Mg alloy was improved employing diopside coating

  15. In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mehdi.razavi@okstate.edu [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@okstate.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-08-01

    The high corrosion rate of Mg alloys has hindered their application in various areas, particularly for orthopedic applications. In order to decrease the corrosion rate and to improve the bioactivity, mechanical stability and cytocompatibility of the Mg alloy, nanostructured diopside (CaMgSi{sub 2}O{sub 6}) has been coated on AZ91 Mg alloy using a combined micro arc oxidation (MAO) and electrophoretic deposition (EPD) method. The crystalline structure, the morphology and the composition of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Electrochemical corrosion test, immersion test, and compression test were used to evaluate the corrosion resistance, the in vitro bioactivity and the mechanical stability of the samples, respectively. The cytocompatibility of the samples was tested by the cell viability and the cell attachment of L-929 cells. The results confirmed that the diopside coating not only slows down the corrosion rate, but also enhances the in vitro bioactivity, mechanical stability and cytocompatibility of AZ91 Mg alloy. Therefore, Mg alloy coated with nanostructured diopside offers a promising approach for biodegradable bone implants. - Highlights: • The diopside coating was applied on Mg alloy using the combined MAO and EPD methods. • The corrosion resistance of the diopside coated Mg alloy was noticeably improved. • The in vitro bioactivity of the diopside coated Mg alloy was considerably increased. • The mechanical stability of biodegradable Mg alloy was enhanced by diopside coating. • The cytocompatibility of the Mg alloy was improved employing diopside coating.

  16. Influence of Statins locally applied from orthopedic implants on osseous integration

    Directory of Open Access Journals (Sweden)

    Pauly Stephan

    2012-10-01

    Full Text Available Abstract Background Simvastatin increases the expression of bone morphogenetic protein 2 (BMP-2 in osteoblasts, therefore it is important to investigate the influence of statins on bone formation, fracture healing and implant integration. The aim of the present study was to investigate the effect of Simvastatin, locally applied from intramedullary coated and bioactive implants, on bone integration using biomechanical and histomorphometrical analyses. Methods Eighty rats received retrograde nailing of the femur with titanium implants: uncoated vs. polymer-only (poly(D,L-lactide vs. polymer plus drug coated (either Simvastatin low- or high dosed; “SIM low/ high”. Femurs were harvested after 56 days for radiographic and histomorphometric or biomechanical analysis (push-out. Results Radiographic analysis revealed no pathological findings for animals of the control and SIM low dose group. However, n=2/10 animals of the SIM high group showed osteolysis next to the implant without evidence of bacterial infection determined by microbiological analysis. Biomechanical results showed a significant decrease in fixation strength for SIM high coated implants vs. the control groups (uncoated and PDLLA. Histomorphometry revealed a significantly reduced total as well as direct bone/implant contact for SIM high- implants vs. controls (uncoated and PDLLA-groups. Total contact was reduced for SIM low vs. uncoated controls. Significantly reduced new bone formation was measured around SIM high coated implants vs. both control groups. Conclusions This animal study suggests impaired implant integration with local application of Simvastatin from intramedullary titanium implants after 8 weeks when compared to uncoated or carrier-only coated controls.

  17. Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis.

    Science.gov (United States)

    Basu, Bikramjit; Sabareeswaran, A; Shenoy, S J

    2015-08-01

    One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2 -3Al2 O3 -1.5P2 O5 -3SrO-2SrF2 for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. © 2014 Wiley Periodicals, Inc.

  18. Synergistic effects of bisphosphonate and calcium phosphate nanoparticles on peri-implant bone responses in osteoporotic rats.

    Science.gov (United States)

    Alghamdi, Hamdan S; Bosco, Ruggero; Both, Sanne K; Iafisco, Michele; Leeuwenburgh, Sander C G; Jansen, John A; van den Beucken, Jeroen J J P

    2014-07-01

    The prevalence of osteoporosis will increase within the next decades due to the aging world population, which can affect the bone healing response to dental and orthopedic implants. Consequently, local drug targeting of peri-implant bone has been proposed as a strategy for the enhancement of bone-implant integration in osteoporotic conditions. In the present study, an established in-vivo femoral condyle implantation model in osteoporotic and healthy bone is used to analyze the osteogenic capacity of titanium implants coated with bisphosphonate (BP)-loaded calcium phosphate nanoparticles (nCaP) under compromised medical conditions. After 4 weeks of implantation, peri-implant bone volume (%BV; by μCT) and bone area (%BA; by histomorphometry) were significantly increased within a distance of 500 μm from implant surfaces functionalized with BP compared to control implants in osteoporotic and healthy conditions. Interestingly, the deposition of nCaP/BP coatings onto implant surfaces increased both peri-implant bone contact (%BIC) and volume (%BV) compared to the deposition of nCaP or BP coatings individually, in osteoporotic and healthy conditions. The results of real-time PCR revealed similar osteogenic gene expression levels to all implant surfaces at 4-weeks post-implantation. In conclusion, simultaneous targeting of bone formation (by nCaP) and bone resorption (by BP) using nCaP/BP surface coatings represents an effective strategy for synergistically improvement of bone-implant integration, especially in osteoporotic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The influence of surface porosity on gap-healing around intra-articular implants in the presence of migrating particles

    DEFF Research Database (Denmark)

    Rahbek, Ole; Kold, Soren; Zippor, Berit

    2005-01-01

    The aim of the present study was to compare the effect of two different porous coatings on bone ongrowth and on the peri-implant migration of polyethylene (PE) particles. Porous-coated cylindrical implants with an either plasma-sprayed closed-pore coating (Pl) or titanium fiber metal open-pore co...

  20. Electrospinning Robot for Regenerative Coating of Implants

    Science.gov (United States)

    Gerstenhaber, Jonathan A.

    Electrospinning of nanofibrous mats and scaffolds enables generation of scaffolding that is not only highly porous, but also has a structure that essentially mimics the natural basement membrane. As a result, the method has proliferated extensively, and is commonly used for diverse applications such as water filtration or tissue engineering, the latter of which may involve the use of natural or synthetic materials. Common laboratory scale electrospinning setups can be built inexpensively with merely a syringe pump, a high voltage supply, and an aluminum foil target. These systems, however, are limited to flat target surface geometries that span several centimeters. While a scaffold can be cut or folded to conform to a bone or other biological surface, spinning directly onto a surface with significant peaks and troughs results in poor fiber uniformity. Furthermore, if an alteration of fiber properties is preferred, the high voltage setup limits user access and customization of parameters during the spinning period. Finally, control of the electric field is compromised by the proximity of grounded electrical components. As its first aim, this project develops a robotic control system to enable custom coatings of arbitrary surfaces. By augmenting the traditional electrospinning system with a three-dimensional robotic control system, electric field focusing fibers, and additional aerodynamic forces terms 'electroblowing', the device can be produced across targets with strong topographic anisotropy. The second aim continues to enhance these attributes with biocompatible soy based scaffolds. Craniofacial implants are often complex in geometry, and conformal bandages are particularly hard to produce in these areas. Soy based scaffolds will be produced for 3D-printed replicas of these situations. Finally, the methods developed across this aim enables the development and use of a handheld electrospinning system that combines a coaxial high velocity air flow with the high

  1. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang Hui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yu Dezhen [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Luo Yan [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wang Fuping, E-mail: hitth001@yahoo.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. Black-Right-Pointing-Pointer The corrosion resistance of the magnesium alloy has been enhanced by micro-arc oxidation and solution treatment. Black-Right-Pointing-Pointer The coating fabricated by micro-arc oxidation and solution treatment exhibits a high ability to form apatite. - Abstract: Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  2. Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants

    International Nuclear Information System (INIS)

    Tsai, Ming-Tzu; Chang, Yin-Yu; Huang, Heng-Li; Hsu, Jui-Ting; Chen, Ya-Chi; Wu, Aaron Yu-Jen

    2013-01-01

    Titanium (Ti)-based materials have been used for dental and orthopedic implants because of their excellent biological compatibility, superior mechanical strength, and high corrosion resistance. The hypothesis of this present study was to manufacture the Zn-doped TiO 2 layer possessing the biocompatibility and antibacterial ability on the surface of Ti specimens. TiO 2 , ZnO, and Ti(Zn)O 2 coatings were deposited on polished pure Ti substrates using a cathodic arc deposition system. Murine osteoblasts (MC3T3-E1) and human Staphylococcus aureus (S. aureus) were cultured onto the surface with different deposited coatings, respectively. The biocompatibility was examined by cell viability and osteogenic gene expression. The antibacterial ability was determined by SYTO9 nucleic acid staining. A porous Zn-doped TiO 2 coating was successfully produced. The ZnO exhibited a fibrous structure with nanorods showing a hydrophobic feature (contact angle approximately 89°). These material properties affected the following biological performance. The antibacterial testing found no apparent difference between the uncoated Ti plate and the TiO 2 coating. However, significantly lower numbers of S. aureus were observed on ZnO and Ti(Zn)O 2 coatings compared to that on the uncoated Ti. The biocompatible testing exhibited that TiO 2 and Ti(Zn)O 2 coatings enhanced greater cell viability and proliferation than the uncoated Ti plate and ZnO coating. The osteogenic gene expression of Dlx-5 and osterix also improved for the TiO 2 and Ti(Zn)O 2 coatings. However, a significant inhibition of cell viability was found for the ZnO coating. These findings suggested that the composite Ti(Zn)O 2 coating with a lower content of Zn (7.6 ± 1.3 at.%) not only improved antibacterial activity, but also maintained the biocompatibility to bone cells. - Highlights: ► TiO 2 , Ti(Zn)O 2 and ZnO coatings were deposited by cathodic arc evaporation. ► Zn may incorporated with Ti to form Zn-doped TiO 2 .

  3. Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Tzu [Department of Biomedical Engineering, Hungkuang University, Taichung 433, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@nfu.edu.tw [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Huang, Heng-Li; Hsu, Jui-Ting [School of Dentistry, College of Medicine China Medical University, Taichung 404, Taiwan (China); Chen, Ya-Chi [Department of Materials Science and Engineering, Mingdao University, Changhua 523, Taiwan (China); Wu, Aaron Yu-Jen [Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan (China)

    2013-01-01

    Titanium (Ti)-based materials have been used for dental and orthopedic implants because of their excellent biological compatibility, superior mechanical strength, and high corrosion resistance. The hypothesis of this present study was to manufacture the Zn-doped TiO{sub 2} layer possessing the biocompatibility and antibacterial ability on the surface of Ti specimens. TiO{sub 2}, ZnO, and Ti(Zn)O{sub 2} coatings were deposited on polished pure Ti substrates using a cathodic arc deposition system. Murine osteoblasts (MC3T3-E1) and human Staphylococcus aureus (S. aureus) were cultured onto the surface with different deposited coatings, respectively. The biocompatibility was examined by cell viability and osteogenic gene expression. The antibacterial ability was determined by SYTO9 nucleic acid staining. A porous Zn-doped TiO{sub 2} coating was successfully produced. The ZnO exhibited a fibrous structure with nanorods showing a hydrophobic feature (contact angle approximately 89°). These material properties affected the following biological performance. The antibacterial testing found no apparent difference between the uncoated Ti plate and the TiO{sub 2} coating. However, significantly lower numbers of S. aureus were observed on ZnO and Ti(Zn)O{sub 2} coatings compared to that on the uncoated Ti. The biocompatible testing exhibited that TiO{sub 2} and Ti(Zn)O{sub 2} coatings enhanced greater cell viability and proliferation than the uncoated Ti plate and ZnO coating. The osteogenic gene expression of Dlx-5 and osterix also improved for the TiO{sub 2} and Ti(Zn)O{sub 2} coatings. However, a significant inhibition of cell viability was found for the ZnO coating. These findings suggested that the composite Ti(Zn)O{sub 2} coating with a lower content of Zn (7.6 ± 1.3 at.%) not only improved antibacterial activity, but also maintained the biocompatibility to bone cells. - Highlights: ► TiO{sub 2}, Ti(Zn)O{sub 2} and ZnO coatings were deposited by cathodic arc

  4. Hydroxyapatite implants with designed internal architecture.

    Science.gov (United States)

    Chu, T M; Halloran, J W; Hollister, S J; Feinberg, S E

    2001-06-01

    Porous hydroxyapatite (HA) has been used as a bone graft material in the clinics for decades. Traditionally, the pores in these HAs are either obtained from the coralline exoskeletal patterns or from the embedded organic particles in the starting HA powder. Both processes offer very limited control on the pore structure. A new method for manufacturing porous HA with designed pore channels has been developed. This method is essentially a lost-mold technique with negative molds made with Stereolithography and a highly loaded curable HA suspension as the ceramic carrier. Implants with designed channels and connection patterns were first generated from a Computer-Aided-Design (CAD) software and Computer Tomography (CT) data. The negative images of the designs were used to build the molds on a stereolithography apparatus with epoxy resins. A 40 vol% HA suspension in propoxylated neopentyl glycol diacrylate (PNPGDA) and iso-bornyl acrylate (IBA) was formulated. HA suspension was cast into the epoxy molds and cured into solid at 85 degrees C. The molds and acrylate binders were removed by pyrolysis, followed by HA green body sintering. With this method, implants with six different channel designs were built successfully and the designed channels were reproduced in the sintered HA implants. The channels created in the sintered HA implants were between 366 microm and 968 microm in diameter with standard deviations of 50 microm or less. The porosity created by the channels were between 26% and 52%. The results show that HA implants with designed connection pattern and well controlled channel size can be built with the technique developed in this study. Copyright 2001 Kluwer Academic Publishers

  5. Improved design and characterization of PLGA/PLA-coated Chitosan based micro-implants for controlled release of hydrophilic drugs.

    Science.gov (United States)

    Manna, Soumyarwit; Donnell, Anna M; Kaval, Necati; Al-Rjoub, Marwan F; Augsburger, James J; Banerjee, Rupak K

    2018-05-29

    Repetitive intravitreal injections of Methotrexate (MTX), a hydrophilic chemotherapeutic drug, are currently used to treat selected vitreoretinal (VR) diseases, such as intraocular lymphoma. To avoid complications associated with the rapid release of MTX from the injections, a Polylactic acid (PLA) and Chitosan (CS)-based MTX micro-implant prototype was fabricated in an earlier study, which showed a sustained therapeutic release rate of 0.2-2.0 µg/day of MTX for a period ∼1 month in vitro and in vivo. In the current study, different combinations of Poly(lactic-co-glycolic) acid (PLGA)/PLA coatings were used for lipophilic surface modification of the CS-MTX micro-implant, such as PLGA 5050, PLGA 6535 and PLGA 7525 (PLA: PGA - 50:50, 65:35, 75:25, respectively; M.W: 54,400 - 103,000) and different PLA, such as PLA 100 and PLA 250 (MW: 102,000 and 257,000, respectively). This improved the duration of total MTX release from the coated CS-MTX micro-implants to ∼3-5 months. With an increase in PLA content in PLGA and molecular weight of PLA, a) the initial burst of MTX and the mean release rate of MTX can be reduced; and b) the swelling and biodegradation of the micro-implants can be delayed. The controlled drug release mechanism is caused by a combination of diffusion process and hydrolysis of the polymer coating, which can be modulated by a) PLA content in PLGA and b) molecular weight of PLA, as inferred from Korsmeyer Peppas model, Zero order, First order and Higuchi model fits. This improved micro-implant formulation has the potential to serve as a platform for controlled release of hydrophilic drugs to treat selected VR diseases. Copyright © 2018. Published by Elsevier B.V.

  6. Investigation of the HA film deposited on the porous Ti6Al4V alloy prepared via additive manufacturing

    International Nuclear Information System (INIS)

    Surmeneva, M; Chudinova, E; Syrtanov, M; Surmenev, R; Koptioug, A

    2015-01-01

    This study is focused on the use of radio frequency magnetron sputtering to modify the surface of porous Ti6Al4V alloy fabricated via additive manufacturing technology. The hydroxyapatite (HA) coated porous Ti6Al4V alloy was studied in respect with its chemical and phase composition, surface morphology, water contact angle and hysteresis, and surface free energy. Thin nanocrystalline HA film was deposited while its structure with diamond-shaped cells remained unchanged. Hysteresis and water contact angle measurements revealed an effect of the deposited HA films, namely an increased water contact angle and contact angle hysteresis. The increase of the contact angle of the coating-substrate system compared to the uncoated substrate was attributed to the multiscale structure of the resulted surfaces. (paper)

  7. Histological study on acute inflammatory reaction to polyurethane-coated silicone implants in rats Estudo histológico da reação inflamatória aguda ao implante de silicone revestido com poliuretano em ratos

    OpenAIRE

    Paulo Roberto da Silva Mendes; Jorge Bins-Ely; Eduardo Arnaut dos Santos Lima; Zulmar Antonio Accioli de Vasconcellos; Armando José d'Acampora; Rodrigo d' Eça Neves

    2008-01-01

    PURPOSE: Evaluating histologically the silicone peri-implant coated by polyurethane inflammation associated to the use of anti-microbial and bacterial contamination. METHODS: It was used 35 Wistar rats. The animals were divided in seven groups: I - Control; II - implant cavity contamination with10 bacteria/ml; III - implant cavity contamination with 10 bacteria/ml; IV - implant cavity contamination with 10 bacteria/ml; V - identical contamination to group II and implant immersions in anti-mic...

  8. Recent advances in dental implants.

    Science.gov (United States)

    Hong, Do Gia Khang; Oh, Ji-Hyeon

    2017-12-01

    Dental implants are a common treatment for the loss of teeth. This paper summarizes current knowledge on implant surfaces, immediate loading versus conventional loading, short implants, sinus lifting, and custom implants using three-dimensional printing. Most of the implant surface modifications showed good osseointegration results. Regarding biomolecular coatings, which have been recently developed and studied, good results were observed in animal experiments. Immediate loading had similar clinical outcomes compared to conventional loading and can be used as a successful treatment because it has the advantage of reducing treatment times and providing early function and aesthetics. Short implants showed similar clinical outcomes compared to standard implants. A variety of sinus augmentation techniques, grafting materials, and alternative techniques, such as tilted implants, zygomatic implants, and short implants, can be used. With the development of new technologies in three-dimension and computer-aided design/computer-aided manufacturing (CAD/CAM) customized implants can be used as an alternative to conventional implant designs. However, there are limitations due to the lack of long-term studies or clinical studies. A long-term clinical trial and a more predictive study are needed.

  9. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride–hydroxy apatite in rat femurs

    Energy Technology Data Exchange (ETDEWEB)

    Atila, Alptug, E-mail: alptugatila@yahoo.com [Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Halici, Zekai; Cadirci, Elif [Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240 (Turkey); Karakus, Emre [Department of Pharmacology and Toxicology, School of Veterinary Medicine, Ataturk University, Erzurum 25240 (Turkey); Palabiyik, Saziye Sezin [Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Ay, Nuran [Department of Material Science and Engineering, Faculty of Engineering, Anadolu University, Eskisehir 26555 (Turkey); Bakan, Feray [Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956 (Turkey); Yilmaz, Sahin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul 34755 (Turkey)

    2016-01-01

    ABSTRACT: Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN–HA composites in rat femurs. All rats were (n = 126) divided into five experimental groups (n = 24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100HA (Group2), femoral defect + %2.5hBN + %97.5HA (Group3), femoral defect + %5hBN + %95HA (Group4), femoral defect + %10hBN + %90 HA (Group5), femoral defect + %100hBN (Group6). The femoral defect was created in the distal femur (3 mm drill-bit). Each implant group was divided into four different groups (n = 24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN–HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN–HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers. - Highlights: • Nano-hBN–HA composites are new targets for biomaterial and implant bioengineers. • Serum boron levels were researched after implantation of nano-hBN–HA composites. • Implantation of hBN–HA composite did not result in increased serum boron levels. • The use of boron in composite form with HA did not change the stability of the implant.

  10. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2016-01-01

    matrix (DBM), alone or in combination with allograft or commercially available human cancellous bone (CB), may replace allografts, as they have the capability of inducing new bone and improving implant fixation through enhancing bone ongrowth. The purpose of this study was to investigate the effect...... of DBM alone, DBM with CB, or allograft on the fixation of porous-coated titanium implants. DBM100 and CB produced from human tissue were included. Both materials are commercially available. DBM granules are placed in pure DBM and do not contain any other carrier. Titanium alloy implants, 10 mm long × 10...... mm diameter, were inserted bilaterally into the femoral condyles of eight skeletally mature sheep. Thus, four implants with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: (a) DBM; (b) DBM:CB at a ratio of 1:3; (c) DBM:allograft at a ratio of 1:3; or (d) allograft...

  11. Inkjet printing of Chitlac-nanosilver—a method to create functional coatings for non-metallic bone implants

    International Nuclear Information System (INIS)

    Nganga, Sara; Moritz, Niko; Jakobsson, Kristina; Vallittu, Pekka K; Kolakovic, Ruzica; Nyman, Johan O; Sandler, Niklas; Borgogna, Massimiliano; Travan, Andrea; Donati, Ivan; Crosera, Matteo

    2014-01-01

    Biostable fiber-reinforced composites, based on bisphenol-A-dimethacrylate and triethyleneglycoldimethacrylate thermoset polymer matrix reinforced with E-glass fibers have been successfully used in cranial reconstructions and the material has been approved for clinical use. As a further refinement of these implants, antimicrobial, non-cytotoxic coatings on the composites were created by an immersion procedure driven by strong electrostatic interactions. Silver nanoparticles (nAg) were immobilized in lactose-modified chitosan (Chitlac) to prepare the bacteriostatic coatings. Herein, we report the use of inkjet technology (a drop-on-demand inkjet printer) to deposit functional Chitlac-nAg coatings on the thermoset substrates. Characterization methods included scanning electron microscopy, scanning white light interferometry and electro-thermal atomic absorption spectroscopy. Inkjet printing enabled the fast and flexible functionalization of the thermoset surfaces with controlled coating patterns. The coatings were not impaired by the printing process: the kinetics of silver release from the coatings created by inkjet printing and conventional immersion technique was similar. Further research is foreseen to optimize printing parameters and to tailor the characteristics of the coatings for specific clinical applications. (note)

  12. Inkjet printing of Chitlac-nanosilver--a method to create functional coatings for non-metallic bone implants.

    Science.gov (United States)

    Nganga, Sara; Moritz, Niko; Kolakovic, Ruzica; Jakobsson, Kristina; Nyman, Johan O; Borgogna, Massimiliano; Travan, Andrea; Crosera, Matteo; Donati, Ivan; Vallittu, Pekka K; Sandler, Niklas

    2014-10-22

    Biostable fiber-reinforced composites, based on bisphenol-A-dimethacrylate and triethyleneglycoldimethacrylate thermoset polymer matrix reinforced with E-glass fibers have been successfully used in cranial reconstructions and the material has been approved for clinical use. As a further refinement of these implants, antimicrobial, non-cytotoxic coatings on the composites were created by an immersion procedure driven by strong electrostatic interactions. Silver nanoparticles (nAg) were immobilized in lactose-modified chitosan (Chitlac) to prepare the bacteriostatic coatings. Herein, we report the use of inkjet technology (a drop-on-demand inkjet printer) to deposit functional Chitlac-nAg coatings on the thermoset substrates. Characterization methods included scanning electron microscopy, scanning white light interferometry and electro-thermal atomic absorption spectroscopy. Inkjet printing enabled the fast and flexible functionalization of the thermoset surfaces with controlled coating patterns. The coatings were not impaired by the printing process: the kinetics of silver release from the coatings created by inkjet printing and conventional immersion technique was similar. Further research is foreseen to optimize printing parameters and to tailor the characteristics of the coatings for specific clinical applications.

  13. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection: a Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted. No language or year of publication restriction was applied. The search provided 298 titles. Three studies fulfilled the inclusion criteria. The included studies were characterized by low or moderate risk of bias. Survival of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone loss around implants with a scalloped implant-abutment connection. A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must be rejected. However, further long-term randomized controlled trials assessing implant treatment outcome with the two treatment modalities are needed before definite conclusions can be provided about the beneficial use of implants with a scalloped implant-abutment connection on preservation of the peri-implant marginal bone level.

  14. Antimicrobial polycaprolactone/polyethylene glycol embedded lysozyme coatings of Ti implants for osteoblast functional properties in tissue engineering

    Science.gov (United States)

    Visan, A.; Cristescu, R.; Stefan, N.; Miroiu, M.; Nita, C.; Socol, M.; Florica, C.; Rasoga, O.; Zgura, I.; Sima, L. E.; Chiritoiu, M.; Chifiriuc, M. C.; Holban, A. M.; Mihailescu, I. N.; Socol, G.

    2017-09-01

    In this study, coatings based on lysozyme embedded into a matrix of polyethylene glycol (PEG) and polycaprolactone (PCL) were fabricated by two different methods (Matrix Assisted Pulsed Laser Evaporation - MAPLE and Dip Coating) for obtaining antimicrobial coatings envisaged for long term medical applications. Coatings with different PEG:PCL compositions (3:1; 1:1; 1:3) were synthesized in order to evaluate the antimicrobial activity of lysozyme embedded into the polymeric matrix. The main surface features, such as roughness and wettability, with impact on the microbial adhesion as well as on the eukaryote cell function were measured. The obtained composite coatings exhibited a significant antibacterial activity against Escherichia coli, Bacillus subtilis, Enterococcus faecalis and Staphylococcus aureus strains. As well, specific blended coatings showed appropriate viability, good spreading and normal cell morphology of SaOs2 human osteoblasts and mesenchymal stem cells (MSCs). These investigations highlight the suitability of biodegradable composites as implant coatings for decreasing the risk of bacterial contamination associated with prosthetic procedures.

  15. Silver-loaded chitosan coating as an integrated approach to face titanium implant-associated infections: analytical characterization and biological activity.

    Science.gov (United States)

    Cometa, Stefania; Bonifacio, Maria A; Baruzzi, Federico; de Candia, Silvia; Giangregorio, Maria M; Giannossa, Lorena C; Dicarlo, Manuela; Mattioli-Belmonte, Monica; Sabbatini, Luigia; De Giglio, Elvira

    2017-12-01

    The present work focuses on the idea to prevent and/or inhibit the colonization of implant surfaces by microbial pathogens responsible for post-operative infections, adjusting antimicrobial properties of the implant surface prior to its insertion. An antibacterial coating based on chitosan and silver was developed by electrodeposition techniques on poly(acrylic acid)-coated titanium substrates. When a silver salt was added during the chitosan deposition step, a stable and scalable silver incorporation was achieved. The physico-chemical composition of the coating was studied by X-ray photoelectron spectroscopy (XPS), while atomic force microscopy in intermittent contact mode (ICAFM) was used to explore the coating morphology. The amount of silver released from the coating up to 21 days was evaluated by inductively coupled plasma mass spectrometry (ICP-MS). The capability of the proposed coating to interact in vitro with the biological environment in terms of compatibility and antibacterial properties was assessed using MG-63 osteoblast-like cell line and S. aureus and P. aeruginosa strains, respectively. These studies revealed that a coating showing a silver surface atomic percentage equal to 0.3% can be effectively used as antibacterial system, while providing good viability of osteoblast-like cells after 7 days. The antibacterial effectiveness of the prepared coating is mainly driven by a contact killing mechanism, although the low concentration of silver released (below 0.1 ppm up to 21 days) is enough to inhibit bacterial growth, advantaging MG-63 cells in the race for the surface.

  16. PIXE characterization of tissues surrounding metallic prostheses coated with biological glasses

    International Nuclear Information System (INIS)

    Barbotteau, Y.; Irigaray, J.L.; Moretto, Ph.

    2004-01-01

    Biological glasses can be used as coatings for metallic prostheses in order to prevent corrosion. According to their composition, these glasses have different properties. We studied, in vivo, two glasses referred to as BVA and BVH. They are used as coatings of Ti6Al4V metallic implant. BVA glass disappears after 3 months of implantation and is replaced by bone. Prostheses initially coated by this glass have a larger osseous contact perimeter compared to the uncoated prostheses. This ensures a better anchoring of the implant and limits the micro-motions which cause wear debris. BVH glass keeps a constant composition during implantation and it is used like a layer which isolates metal implant from biological environment. In order to characterize the bony environment surrounding implants, we have used PIXE and RBS methods. This paper shows results of the behavior of bony tissue under micro-beam, the quality tests of new bone which replaces the BVA glass coating and the evaluation of corrosion effects. Titanium release in bony tissues begins when the metal surface of the prosthesis is exposed to biological fluids. After a few months of implantation, the titanium contamination is stabilized and remains localized within the first tens of micrometers of surrounding bone

  17. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance.

    Science.gov (United States)

    Rasouli, Rahimeh; Barhoum, Ahmed; Uludag, Hasan

    2018-05-10

    The emerging field of nanostructured implants has enormous scope in the areas of medical science and dental implants. Surface nanofeatures provide significant potential solutions to medical problems by the introduction of better biomaterials, improved implant design, and surface engineering techniques such as coating, patterning, functionalization and molecular grafting at the nanoscale. This review is of an interdisciplinary nature, addressing the history and development of dental implants and the emerging area of nanotechnology in dental implants. After a brief introduction to nanotechnology in dental implants and the main classes of dental implants, an overview of different types of nanomaterials (i.e. metals, metal oxides, ceramics, polymers and hydrides) used in dental implant together with their unique properties, the influence of elemental compositions, and surface morphologies and possible applications are presented from a chemical point of view. In the core of this review, the dental implant materials, physical and chemical fabrication techniques and the role of nanotechnology in achieving ideal dental implants have been discussed. Finally, the critical parameters in dental implant design and available data on the current dental implant surfaces that use nanotopography in clinical dentistry have been discussed.

  18. Insulin-like growth factor binding protein-3 affects osteogenic efficacy on dental implants in rat mandible

    Energy Technology Data Exchange (ETDEWEB)

    Bhattarai, Govinda; Lee, Young-Hee [Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Lee, Min-Ho [Department of Dental Materials, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Park, Il-Song [Division of Advanced Materials Engineering, Research Center for Advanced Materials, Development and Institute of Biodegradable Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Yi, Ho-Keun, E-mail: yihokn@chonbuk.ac.kr [Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of)

    2015-10-01

    Insulin like growth factor binding protein-3 (IGFBP-3) in bone cells and its utilization in dental implants have not been well studied. The aim of this study was to determine the osteogenic efficacy of chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 coated titanium (Ti) implants. Ch-GNPs were conjugated with IGFBP-3 plasmid DNA through a coacervation process. Conjugation was cast over Ti surfaces, and cells were seeded on coated surfaces. For in vitro analysis the expression of different proteins was analyzed by immunoblotting. For in vivo analysis, Ch-GNP/IGFBP-3 coated implants were installed in rat mandibles. Four weeks post-implantation, mandibles were examined by microcomputed tomography (μCT), immunohistochemistry, hematoxylin & eosin and tartrate resistance acid phosphatase staining. In vitro overexpressed Ch-GNP/IGFBP-3 coated Ti surfaces was associated with activation of extracellular signal related kinase (ERK), inhibition of the stress activated protein c-Jun N-terminal kinase (JNK) and enhanced bone morphogenetic protein (BMP)-2 and 7 compared to control. Further, in vivo, Ch-GNP/IGFBP-3 coated implants were associated with inhibition of implant induced osteoclastogenesis molecules, receptor activator of nuclear factor kappa-B ligand (RANKL) and enhanced expression of osteogenic molecules including BMP2/7 and osteopontin (OPN). The μCT analysis demonstrated that IGFBP-3 increased the volume of newly formed bone surrounding the implants compared to control (n = 5; p < 0.05). These results support the view that IGFBP-3 overexpression diminishes osteoclastogenesis and enhances osteogenesis of Ti implants, and can serve as a potent molecule for the development of good implantation. - Highlights: • Chitosan gold nanoparticles were conjugated with IGFBP-3 and coated onto surface of the titanium implants for gene delivery to bone. • Implants were inserted in rat mandible for 4 weeks. • Parameters studied: histopathology and radiology.

  19. Insulin-like growth factor binding protein-3 affects osteogenic efficacy on dental implants in rat mandible

    International Nuclear Information System (INIS)

    Bhattarai, Govinda; Lee, Young-Hee; Lee, Min-Ho; Park, Il-Song; Yi, Ho-Keun

    2015-01-01

    Insulin like growth factor binding protein-3 (IGFBP-3) in bone cells and its utilization in dental implants have not been well studied. The aim of this study was to determine the osteogenic efficacy of chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 coated titanium (Ti) implants. Ch-GNPs were conjugated with IGFBP-3 plasmid DNA through a coacervation process. Conjugation was cast over Ti surfaces, and cells were seeded on coated surfaces. For in vitro analysis the expression of different proteins was analyzed by immunoblotting. For in vivo analysis, Ch-GNP/IGFBP-3 coated implants were installed in rat mandibles. Four weeks post-implantation, mandibles were examined by microcomputed tomography (μCT), immunohistochemistry, hematoxylin & eosin and tartrate resistance acid phosphatase staining. In vitro overexpressed Ch-GNP/IGFBP-3 coated Ti surfaces was associated with activation of extracellular signal related kinase (ERK), inhibition of the stress activated protein c-Jun N-terminal kinase (JNK) and enhanced bone morphogenetic protein (BMP)-2 and 7 compared to control. Further, in vivo, Ch-GNP/IGFBP-3 coated implants were associated with inhibition of implant induced osteoclastogenesis molecules, receptor activator of nuclear factor kappa-B ligand (RANKL) and enhanced expression of osteogenic molecules including BMP2/7 and osteopontin (OPN). The μCT analysis demonstrated that IGFBP-3 increased the volume of newly formed bone surrounding the implants compared to control (n = 5; p < 0.05). These results support the view that IGFBP-3 overexpression diminishes osteoclastogenesis and enhances osteogenesis of Ti implants, and can serve as a potent molecule for the development of good implantation. - Highlights: • Chitosan gold nanoparticles were conjugated with IGFBP-3 and coated onto surface of the titanium implants for gene delivery to bone. • Implants were inserted in rat mandible for 4 weeks. • Parameters studied: histopathology and radiology.

  20. Factors influencing the deposition of hydroxyapatite coating onto hollow glass microspheres

    International Nuclear Information System (INIS)

    Jiao, Yan; Xiao, Gui-Yong; Xu, Wen-Hua; Zhu, Rui-Fu; Lu, Yu-Peng

    2013-01-01

    Hydroxyapatite (HA) and HA coated microcarriers for cell culture and delivery have attracted more attention recently, owing to the rapid progress in the field of tissue engineering. In this research, a dense and uniform HA coating with the thickness of about 2 μm was successfully deposited on hollow glass microspheres (HGM) by biomimetic process. The influences of SBF concentration, immersion time, solid/liquid ratio and activation of HGM on the deposition rate and coating characteristics were discussed. X-ray diffraction (XRD) and Fourier transform infrared spectrum (FTIR) analyses revealed that the deposited HA is poorly crystalline. The thickness of HA coating showed almost no increase after immersion in 1.5SBF for more than 15 days with the solid/liquid ratio of 1:150. At the same time, SBF concentration, solid/liquid ratio and activation treatment played vital roles in the formation of HA coating on HGM. This poorly crystallized HA coated HGM could have potential use as microcarrier for cell culture. Highlights: • HA coatings were deposited on hollow glass microspheres by biomimetic process. • The obtained HA coating was poorly crystalline and carbonated. • The influencing factors of deposition rate and coating characteristics were studied. • The thickness of HA coating showed almost no increase after immersion for 15 days

  1. Diamond-like carbon coatings with zirconium-containing interlayers for orthopedic implants.

    Science.gov (United States)

    Choudhury, Dipankar; Lackner, Juergen; Fleming, Robert A; Goss, Josh; Chen, Jingyi; Zou, Min

    2017-04-01

    Six types of diamond-like carbon (DLC) coatings with zirconium (Zr)-containing interlayers on titanium alloy (Ti-6Al-4V) were investigated for improving the biotribological performance of orthopedic implants. The coatings consist of three layers: above the substrate a layer stack of 32 alternating Zr and ZrN sublayers (Zr:ZrN), followed by a layer comprised of Zr and DLC (Zr:DLC), and finally a N-doped DLC layer. The Zr:ZrN layer is designed for increasing load carrying capacity and corrosion resistance; the Zr:DLC layer is for gradual transition of stress, thus enhancing layer adhesion; and the N-doped DLC layer is for decreasing friction, squeaking noises and wear. Biotribological experiments were performed in simulated body fluid employing a ball-on-disc contact with a Si 3 N 4 ball and a rotational oscillating motion to mimic hip motion in terms of gait angle, dynamic contact pressures, speed and body temperature. The results showed that the Zr:DLC layer has a substantial influence on eliminating delamination of the DLC from the substrates. The DLC/Si 3 N 4 pairs significantly reduced friction coefficient, squeaking noise and wear of both the Si 3 N 4 balls and the discs compared to those of the Ti-6Al-4V/Si 3 N 4 pair after testing for a duration that is equivalent to one year of hip motion in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Auditory, Visual, and Auditory-Visual Speech Perception by Individuals with Cochlear Implants versus Individuals with Hearing Aids

    Science.gov (United States)

    Most, Tova; Rothem, Hilla; Luntz, Michal

    2009-01-01

    The researchers evaluated the contribution of cochlear implants (CIs) to speech perception by a sample of prelingually deaf individuals implanted after age 8 years. This group was compared with a group with profound hearing impairment (HA-P), and with a group with severe hearing impairment (HA-S), both of which used hearing aids. Words and…

  3. Surface modification of implants in long bone.

    Science.gov (United States)

    Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C; Worch, Hartmut; Rammelt, Stefan

    2012-01-01

    Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.

  4. Evaluating the effects of hydroxyapatite coating on the corrosion behavior of severely deformed 316Ti SS for surgical implants

    International Nuclear Information System (INIS)

    Mhaede, Mansour; Ahmed, Aymen; Wollmann, Manfred; Wagner, Lothar

    2015-01-01

    The present work investigates the effects of severe plastic deformation by cold rolling on the microstructure, the mechanical properties and the corrosion behavior of austenitic stainless steel (SS) 316Ti. Hydroxyapatite coating (HA) was applied on the deformed material to improve their corrosion resistance. The martensitic transformation due to cold rolling was recorded by X-ray diffraction spectra. The effects of cold rolling on the corrosion behavior were studied using potentiodynamic polarization. The electrochemical tests were carried out in Ringer's solution at 37 ± 1 °C. Cold rolling markedly enhanced the mechanical properties while the electrochemical tests referred to a lower corrosion resistance of the deformed material. The best combination of both high strength and good corrosion resistance was achieved after applying hydroxyapatite coating. - Highlights: • Cold rolling markedly increases the hardness of SS 316Ti from 125 to 460 HV10. • Higher deformation degrees lead to lower corrosion resistance. • Application of HA-coating leads to significant improvement of the corrosion resistance

  5. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    International Nuclear Information System (INIS)

    Furko, M.; Jiang, Y.; Wilkins, T.A.; Balázsi, C.

    2016-01-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO_3)_2 and NH_4H_2PO_4 components. During the electrochemical deposition Ag"+ and Zn"2"+ ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn"2"+ is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  6. Antibacterial Properties of Silver-Loaded Plasma Polymer Coatings

    International Nuclear Information System (INIS)

    Ploux, L.; Mateescu, M.; Anselme, K.; Vasilev, K.

    2012-01-01

    In a previous paper, we proposed new silver nanoparticles (SNPs) based antibacterial coatings able to protect eukaryotic cells from SNPs related toxic effects, while preserving antibacterial efficiency. A SNPs containing n-heptylamine (HA) polymer matrix was deposited by plasma polymerization and coated by a second HA layer. In this paper, we elucidate the antibacterial action of these new coatings. We demonstrated that SNPs-loaded material can be covered by thin HA polymer layer without losing the antibacterial activity to planktonic bacteria living in the near surroundings of the material. SNPs-containing materials also revealed antibacterial effect on adhered bacteria. Adhered bacteria number was significantly reduced compared to pure HA plasma polymer and the physiology of the bacteria was affected. The number of adhered bacteria directly decreased with thickness of the second HA layer. Surprisingly, the quantity of cultivable bacteria harvested by transfer to nutritive agar decreased not only with the presence of SNPs, but also in relation to the covering HA layer thickness, that is, oppositely to the increase in adhered bacteria number. Two hypotheses are proposed for this surprising result (stronger attachment or weaker vitality), which raises the question of the diverse potential ways of action of SNPs entrapped in a polymer matrix.

  7. Osseointegration by bone morphogenetic protein-2 and transforming growth factor beta2 coated titanium implants in femora of New Zealand white rabbits

    Directory of Open Access Journals (Sweden)

    Fritz Thorey

    2011-01-01

    Conclusions: No differences between BMP-2 alone and a combination of BMP-2+TGF-β2 could be seen in the present study. However, the results of this study confirm the results of other studies that a coating with growth factors is able to enhance bone implant ingrowth. This may be of importance in defect situations during revision surgery to support the implant ingrowth and implant anchorage.

  8. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  9. Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO2 nanotubes by ultrasound-assisted pulse electrodeposition.

    Science.gov (United States)

    Fathyunes, Leila; Khalil-Allafi, Jafar; Sheykholeslami, Seyed Omid Reza; Moosavifar, Maryam

    2018-06-01

    In this study, the ultrasound-assisted pulse electrodeposition was introduced to fabricate the graphene oxide (GO)-hydroxyapatite (HA) coating on TiO 2 nanotubes. The results of the X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR), Transmission Electron Microscope (TEM) and micro-Raman spectroscopy showed the successful synthesis of GO. The Scanning Electron Microscope (SEM) images revealed that in the presence of ultrasonic waves and GO sheets a more compact HA-based coating with refined microstructure could be formed on the pretreated titanium. The results of micro-Raman analysis confirmed the successful incorporation of the reinforcement filler of GO into the coating electrodeposited by the ultrasound-assisted method. The FTIR analysis showed that the GO-HA coating was consisted predominantly of the B-type carbonated HA (CHA) phase. The pretreatment of the substrate and incorporation of the GO sheets into the HA coating had a significant effect on improving the bonding strength at the coating-substrate interface. Moreover, the results of the fibroblast cell culture and 3‑(4,5‑dimethylthiazolyl‑2)‑2, 5‑diphenyltetrazolium bromide (MTT) assay after 2 days demonstrated a higher percentage of cell activity for the GO-HA coated sample. Finally, the 7-day exposure to simulated body fluid (SBF) showed a faster rate of apatite precipitation on the GO-HA coating, as compared to the HA coating and pretreated titanium. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A dual-task design of corrosion-controlling and osteo-compatible hexamethylenediaminetetrakis- (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application.

    Science.gov (United States)

    Zhao, Sheng; Chen, Yingqi; Liu, Bo; Chen, Meiyun; Mao, Jinlong; He, Hairuo; Zhao, Yuancong; Huang, Nan; Wan, Guojiang

    2015-05-01

    Magnesium as well as its alloys appears increasingly as a revolutionary bio-metal for biodegradable implants application but the biggest challenges exist in its too fast bio-corrosion/degradation. Both corrosion-controllable and bio-compatible Mg-based bio-metal is highly desirable in clinic. In present work, hexamethylenediaminetetrakis (methylenephosphonic acid) [HDTMPA, (H2 O3 P-CH2 )2 -N-(CH2 )6 -N-(CH2 -PO3 H2 )2 ], as a natural and bioactive organic substance, was covalently immobilized and chelating-deposited onto Mg surface by means of chemical conversion process and dip-coating method, to fullfill dual-task performance of corrosion-protective and osteo-compatible functionalities. The chemical grafting of HDTMPA molecules, by participation of functional groups on pretreated Mg surface, ensured a firmly anchored base layer, and then sub-sequential chelating reactions of HDTMPA molecules guaranteed a homogenous and dense HDTMPA coating deposition on Mg substrate. Electrochemical corrosion and immersion degradation results reveal that the HDTMPA coated Mg provides a significantly better controlled bio-corrosion/degradation behavior in phosphate buffer saline solution as compared with untreated Mg from perspective of clinic requirement. Moreover, the HDTMPA coated Mg exhibits osteo-compatible in that it induces not only bioactivity of bone-like apatite precipitation but also promotes osteoblast cells adhesion and proliferation. Our well-controlled biodegradable and biocompatible HDTMPA modified Mg might bode well for next generation bone implant application. © 2014 Wiley Periodicals, Inc.

  11. Protection of active implant electronics with organosilicon open air plasma coating for plastic overmolding

    Directory of Open Access Journals (Sweden)

    Zeppenfeld Matthias

    2016-09-01

    Full Text Available To overcome challenges for manufacturing of modern smart medical plastic parts by injection molding, e.g. for active implants, the optimization of the interface between electronics and the polymer component concerning adhesion and diffusion behavior is crucial. Our results indicate that a nano-sized SiOxCyHz layer formed by plasma-enhanced chemical vapour deposition (PE-CVD via open air atmospheric pressure plasma jet (APPJ and by use of a hexamthyldisiloxane (HMDSO precursor can form a non-corrosive, anti-permeable and biocompatible coating. Due to the open air character of the APPJ process an inline coating before overmolding could be an easy applicable method and a promising advancement.

  12. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy

    International Nuclear Information System (INIS)

    Kannan, M Bobby; Orr, Lynnley

    2011-01-01

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating.

  13. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, M Bobby; Orr, Lynnley, E-mail: bobby.mathan@jcu.edu.au [Discipline of Chemical Engineering, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia)

    2011-08-15

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating.

  14. Sol-Gel-Derived Hydroxyapatite-Carbon Nanotube/Titania Coatings on Titanium Substrates

    Directory of Open Access Journals (Sweden)

    Chuantong Liu

    2012-04-01

    Full Text Available In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO2 double layer coatings were successfully developed on titanium (Ti substrates intended for biomedical applications. A TiO2 coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO2 coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO2 double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO2 coatings on Ti substrates might be a promising material for bone replacement.

  15. Osseointegration of layer-by-layer polyelectrolyte multilayers loaded with IGF1 and coated on titanium implant under osteoporotic condition

    Directory of Open Access Journals (Sweden)

    Xing H

    2017-10-01

    Full Text Available Helin Xing,1,* Xing Wang,2,* Saisong Xiao,3,* Guilan Zhang,1 Meng Li,1 Peihuan Wang,1 Quan Shi,1 Pengyan Qiao,1 Lingling E,1 Hongchen Liu1 1Institute of Stomatology, Chinese PLA General Hospital, Beijing, 2Hospital of Stomatology, Shanxi Medical University, Taiyuan, 3Department of Anesthesia, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China *These authors contributed equally to this work Purpose: Titanium implant is a widely used method for dental prosthesis restoration. Nevertheless, in patients with systemic diseases, including osteoporosis, diabetes, and cancer, the success rate of the implant is greatly reduced. This study investigates a new implant material loaded with insulin-like growth factor 1 (IGF1, which could potentially improve the implant success rate, accelerate the occurrence of osseointegration, and provide a new strategy for implant treatment in osteoporotic patients. Materials and methods: Biofunctionalized polyelectrolyte multilayers (PEMs with polyethylenimine as the excitation layer and gelatin/chitosan loaded with IGF1 were prepared on the surface of titanium implant by layer-by-layer self-assembly technique. The physical and chemical properties of the biofunctionalized PEMs, the biological characteristics of bone marrow mesenchymal stem cells (BMMSCs, and bone implant contact correlation test indexes were detected and analyzed in vitro and in vivo using osteoporosis rat model. Results: PEMs coatings loaded with IGF1 (TNS-PEM-IGF1-100 implant promoted the early stage of BMMSCs adhesion. Under the action of body fluids, the active coating showed sustained release of growth factors, which in turn promoted the proliferation and differentiation of BMMSCs and the extracellular matrix. At 8 weeks from implant surgery, the new bone around the implants was examined using micro-CT and acid fuchsin/methylene blue staining. The new bone formation increased with time in each group, while the TNS-PEM-IGF1

  16. In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Kyoung-A. [Department of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bio Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Park, Il Song, E-mail: ilsong@chonbuk.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Sook Jeong [Neural Injury Research Lab, Department of Neurology, Asan life Science Institute, University, of Ulsan, College of Medicine, Seoul 138-736 (Korea, Republic of); Bae, Tae Sung [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Min Ho, E-mail: mh@jbnu.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} HA/TiO{sub 2} coating were prepared by a MAO and EPD technique. {center_dot} The NaOH electrolyte solution containing HA particles is employed. {center_dot} MAO and EPD treatment enhances the corrosion resistance and bioactivity of titanium. - Abstract: In situ composite coating of hydroxyapatite (HA)/TiO{sub 2} were produced on titanium (Ti) substrate by micro-arc oxidation coupled with electrophoretic deposition (MAO and EPD) technique with different concentrations of HA particles in the 0.2 M NaOH electrolyte solution. The surface morphology and chemical composition of the hybrid coating were effected by HA concentration. The amount of HA particles incorporated into coating layer increased with increasing HA concentration used in the electrolyte solution. The corrosion behavior of the coating layer in simulated body fluids (SBF) was evaluated using a potentiodynamic polarization test. The corrosion resistance of the coated sample was increased compared to the untreated Ti sample. The in vitro bioactivity assessment showed that the MAO and EPD treated Ti substrate possessed higher apatite-forming ability than the untreated Ti. Moreover, the apatite-forming ability had a positive correlation with HA concentration. In addition, the cell behavior was also examined using cell proliferation assay and alkaline phosphatase ability. The coating formed at HA concentration of 5 g/L exhibited the highest cell ability.

  17. Surface characterization of insulin-coated Ti6Al4V medical implants conditioned in cell culture medium: An XPS study

    Energy Technology Data Exchange (ETDEWEB)

    Shchukarev, Andrey, E-mail: andrey.shchukarev@umu.se [Department of Chemistry, Umeå University, Umeå SE-90187 (Sweden); Malekzadeh, Behnosh Öhrnell [Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Ransjö, Maria [Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Tengvall, Pentti [Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Westerlund, Anna [Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden)

    2017-04-15

    Highlights: • In the absence of FBS, chemically immobilized insulin layer remains intact; • The immobilized insulin expose hydrophobic domains outward the implant; • In the presence of FBS, a partial replacement of insulin occurs; • The immobilized insulin stabilizes the secondary structure of adsorbed proteins. - Abstract: Surface characterization of insulin-coated Ti6Al4V medical implants, after incubation in α-minimum essential medium (α-MEM), was done by X-ray photoelectron spectroscopy (XPS), in order to analyze the insulin behavior at the implant – α-MEM interface. In the absence of serum proteins in cell culture medium, the coated insulin layer remained intact, but experienced a time-dependent structural transformation exposing hydrophobic parts of the protein toward the solution. The presence of fetal bovine serum (FBS) in the medium resulted in partial substitution of insulin by serum proteins. In spite of some insulin release, the remaining coated layer demonstrated a direct surface effect by stabilizing the structure of protein competitors, and by supporting the accumulation of calcium and phosphate ions at the interface. A structurally stable protein layer with incorporated calcium and phosphate ions at the implant–tissue interface could be an important prerequisite for enhanced bone formation.

  18. Surface characterization of insulin-coated Ti6Al4V medical implants conditioned in cell culture medium: An XPS study

    International Nuclear Information System (INIS)

    Shchukarev, Andrey; Malekzadeh, Behnosh Öhrnell; Ransjö, Maria; Tengvall, Pentti; Westerlund, Anna

    2017-01-01

    Highlights: • In the absence of FBS, chemically immobilized insulin layer remains intact; • The immobilized insulin expose hydrophobic domains outward the implant; • In the presence of FBS, a partial replacement of insulin occurs; • The immobilized insulin stabilizes the secondary structure of adsorbed proteins. - Abstract: Surface characterization of insulin-coated Ti6Al4V medical implants, after incubation in α-minimum essential medium (α-MEM), was done by X-ray photoelectron spectroscopy (XPS), in order to analyze the insulin behavior at the implant – α-MEM interface. In the absence of serum proteins in cell culture medium, the coated insulin layer remained intact, but experienced a time-dependent structural transformation exposing hydrophobic parts of the protein toward the solution. The presence of fetal bovine serum (FBS) in the medium resulted in partial substitution of insulin by serum proteins. In spite of some insulin release, the remaining coated layer demonstrated a direct surface effect by stabilizing the structure of protein competitors, and by supporting the accumulation of calcium and phosphate ions at the interface. A structurally stable protein layer with incorporated calcium and phosphate ions at the implant–tissue interface could be an important prerequisite for enhanced bone formation.

  19. Does hydroxyapatite coating enhance ingrowth and improve longevity of a Zweymuller type stem? A double-blinded randomised RSA trial.

    Science.gov (United States)

    Hoornenborg, Daniel; Sierevelt, Inger N; Spuijbroek, Joost A; Cheung, John; van der Vis, Harm M; Beimers, Lijkele; Haverkamp, Daniel

    2017-09-11

    An ongoing discussion is whether using a hydroxyapatite coating enhances the ingrowth and longevity of a femoral stem in total hip arthroplasty. The best way to predict speed of ingrowth and long-term outcome is by evaluating micromotion by radiostereometric analysis. To study the effect of hydroxyapatite (HA) coating on the migration of the SL-PLUS hip stem, we performed a prospective double blind randomised controlled trial comparing the early migration of the hydroxyapatite (HA)-coated SL-PLUS stem compared to the Standard (non-coated) SL-PLUS stem. 51 patients were randomly assigned to receive either an uncoated or a HA-coated femoral component during total hip replacement. RSA images were obtained direct postoperatively and at 6 weeks, 12 weeks, 6 months, 12 months and 24 months. HOOS scores were obtained preoperative and at final follow-up. RSA evaluation demonstrated significant migration up to 3 months postoperatively in both groups. After initial setting no significant migration was observed. There was no significant difference in migration between the HA-coated group and the uncoated group.Both Harris Hip Score (HHS) and HOOS domain scores (pain and ADL) significantly improved compared to baseline at 24 months after surgery in both treatment groups (p<0.001 for all comparisons). Improvement did not differ significantly between the 2 groups. At 2 years follow-up, the HA-coated and uncoated Zweymuller type, distal fitting stem do not show different migration patterns.

  20. A prospective, split-mouth study comparing tilted implants with angulated connection versus conventional implants with angulated abutment.

    Science.gov (United States)

    Van Weehaeghe, Manú; De Bruyn, Hugo; Vandeweghe, Stefan

    2017-12-01

    An angulation of the implant connection could overcome the problems related to angulated abutments. This study compares conventional implants with angulated abutment to tilted implants with an angulated connection. Twenty patients were treated in the edentulous mandible. In the posterior jaw locations, one conventional tilted implant with angulated abutment and one angulated implant without abutment were placed. In the anterior jaw, two conventional implants were placed, one with and one without abutment. Implants were immediately loaded and 3 months later, the final bridge (PFM or monolithic zirconia) was placed. After a follow-up of 48 months, 17 patients were available for clinical examination. The mean overall marginal bone loss (MBL) was 1.26 mm. No significant differences in implant survival, MBL, periodontal indices, patients' satisfaction, or complications was found between implants restored on abutment or implant level, between the posteriorly located angulated implant nor angulated abutment, and between both anterior implants with or without abutment. The posterior implants demonstrated less MBL compared to the anterior implants (P abutment were replaced and four loose bridge screws connected to the angulated abutments had to be tightened. Patients were overall satisfied (4.74/5). An implant with angulated connection may results in a stronger connection but does not affect the marginal bone loss. No difference in MBL was seen between implants restored on abutment or implant level. Zirconia seems to reduce the amount of plaque. © 2017 Wiley Periodicals, Inc.

  1. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    Energy Technology Data Exchange (ETDEWEB)

    Furko, M., E-mail: monika.furko@bayzoltan.hu [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary); Jiang, Y.; Wilkins, T.A. [Institute of Particle Science and Engineering, University of Leeds, LS2 9JT (United Kingdom); Balázsi, C. [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary)

    2016-05-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4} components. During the electrochemical deposition Ag{sup +} and Zn{sup 2+} ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn{sup 2+} is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  2. Characterization of New PEEK/HA Composites with 3D HA Network Fabricated by Extrusion Freeforming.

    Science.gov (United States)

    Vaezi, Mohammad; Black, Cameron; Gibbs, David M R; Oreffo, Richard O C; Brady, Mark; Moshrefi-Torbati, Mohamed; Yang, Shoufeng

    2016-05-26

    Addition of bioactive materials such as calcium phosphates or Bioglass, and incorporation of porosity into polyetheretherketone (PEEK) has been identified as an effective approach to improve bone-implant interfaces and osseointegration of PEEK-based devices. In this paper, a novel production technique based on the extrusion freeforming method is proposed that yields a bioactive PEEK/hydroxyapatite (PEEK/HA) composite with a unique configuration in which the bioactive phase (i.e., HA) distribution is computer-controlled within a PEEK matrix. The 100% interconnectivity of the HA network in the biocomposite confers an advantage over alternative forms of other microstructural configurations. Moreover, the technique can be employed to produce porous PEEK structures with controlled pore size and distribution, facilitating greater cellular infiltration and biological integration of PEEK composites within patient tissue. The results of unconfined, uniaxial compressive tests on these new PEEK/HA biocomposites with 40% HA under both static and cyclic mode were promising, showing the composites possess yield and compressive strength within the range of human cortical bone suitable for load bearing applications. In addition, preliminary evidence supporting initial biological safety of the new technique developed is demonstrated in this paper. Sufficient cell attachment, sustained viability in contact with the sample over a seven-day period, evidence of cell bridging and matrix deposition all confirmed excellent biocompatibility.

  3. Characterization of New PEEK/HA Composites with 3D HA Network Fabricated by Extrusion Freeforming

    Directory of Open Access Journals (Sweden)

    Mohammad Vaezi

    2016-05-01

    Full Text Available Addition of bioactive materials such as calcium phosphates or Bioglass, and incorporation of porosity into polyetheretherketone (PEEK has been identified as an effective approach to improve bone-implant interfaces and osseointegration of PEEK-based devices. In this paper, a novel production technique based on the extrusion freeforming method is proposed that yields a bioactive PEEK/hydroxyapatite (PEEK/HA composite with a unique configuration in which the bioactive phase (i.e., HA distribution is computer-controlled within a PEEK matrix. The 100% interconnectivity of the HA network in the biocomposite confers an advantage over alternative forms of other microstructural configurations. Moreover, the technique can be employed to produce porous PEEK structures with controlled pore size and distribution, facilitating greater cellular infiltration and biological integration of PEEK composites within patient tissue. The results of unconfined, uniaxial compressive tests on these new PEEK/HA biocomposites with 40% HA under both static and cyclic mode were promising, showing the composites possess yield and compressive strength within the range of human cortical bone suitable for load bearing applications. In addition, preliminary evidence supporting initial biological safety of the new technique developed is demonstrated in this paper. Sufficient cell attachment, sustained viability in contact with the sample over a seven-day period, evidence of cell bridging and matrix deposition all confirmed excellent biocompatibility.

  4. Non-infected penile prosthesis cultures during revision surgery; comparison between antibiotic coated and non - coated devices

    Directory of Open Access Journals (Sweden)

    Seyfettin Ciftci

    Full Text Available ABSTRACT Introduction: Aim of this study is to investigate bacterial growth on non-infected devices and compare antibiotic-coated and non-coated implants. Materials and methods: The charts of 71 patients who underwent revision surgeries for penile prosthesis between 1995 and 2013 were reviewed. Of those, 31 devices were antibiotic-coated prostheses, while 40 of the implants were non-coated. Swab cultures were routinely obtained from corporal, pump or reservoir site during the operation. If a bacterial biofilm was determined on the prosthesis, it was also cultured. Results: A total of 5 different organisms were cultured from 18 patients. Of them, 4 devices were antibiotic-coated and the other 14 were non-coated devices. Staphylococcus epidermidis was the most common organism, while Staphylococcus hominis, beta hemolitic streptococcus, Escherichia coli and Proteus mirabilis were also cultured. All patients who had positive cultures were treated with appropriate antibiotics for four weeks postoperatively. Median follow-up time was 41 months, ranging between 8 and 82 months. One prosthesis (non-coated became clinically infected in the follow-up period with a totally different organism. Culture positivity rates of antibiotic-coated and non-coated devices were 13% and 35% respectively and the result was significant (p=0.00254. Conclusions: Positive bacterial cultures are present on non-infected penile prostheses at revision surgeries in some of the patients. Antibiotic coated prostheses have much less positive cultures than non-coated devices.

  5. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    International Nuclear Information System (INIS)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou Anhong

    2010-01-01

    The corrosion behaviors of the TiO 2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO 2 nanoparticles (50-100 nm). It was found that the TiO 2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  6. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    Science.gov (United States)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou, Anhong

    2010-06-01

    The corrosion behaviors of the TiO2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO2 nanoparticles (50-100 nm). It was found that the TiO2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  7. Antibacterial effect of doxycycline-coated dental abutment surfaces

    International Nuclear Information System (INIS)

    Xing, Rui; Tiainen, Hanna; Shabestari, Maziar; Lyngstadaas, Ståle P; Haugen, Håvard J; Witsø, Ingun L; Lönn-Stensrud, Jessica; Jugowiec, Dawid

    2015-01-01

    Biofilm formation on dental abutment may lead to peri-implant mucositis and subsequent peri-implantitis. These cases are clinically treated with antibiotics such as doxycycline (Doxy). Here we used an electrochemical method of cathodic polarization to coat Doxy onto the outer surface of a dental abutment material. The Doxy-coated surface showed a burst release in phosphate-buffered saline during the first 24 h. However, a significant amount of Doxy remained on the surface for at least 2 weeks especially on a 5 mA–3 h sample with a higher Doxy amount, suggesting both an initial and a long-term bacteriostatic potential of the coated surface. Surface chemistry was analyzed by x-ray photoelectron spectroscopy and secondary ion mass spectrometry. Surface topography was evaluated by field emission scanning electron microscopy and blue-light profilometry. Longer polarization time from 1 h to 5 h and higher current density from 1 to 15 mA cm −2 resulted in a higher amount of Doxy on the surface. The surface was covered by a layer of Doxy less than 100 nm without significant changes in surface topography. The antibacterial property of the Doxy-coated surface was analyzed by biofilm and planktonic growth assays using Staphylococcus epidermidis. Doxy-coated samples reduced both biofilm accumulation and planktonic growth in broth culture, and also inhibited bacterial growth on agar plates. The antibacterial effect was stronger for samples of 5 mA–3 h coated with a higher amount of Doxy compared to that of 1 mA–1 h. Accordingly, an abutment surface coated with Doxy has potential for preventing bacterial colonization when exposed to the oral cavity. Doxy-coating could be a viable way to control peri-implant mucositis and prevent its progression into peri-implantitis. (paper)

  8. Chronic Orbital Inflammation Associated to Hydroxyapatite Implants in Anophthalmic Sockets

    Directory of Open Access Journals (Sweden)

    Alicia Galindo-Ferreiro

    2017-12-01

    Full Text Available Purpose: We report 6 patients who received a hydroxyapatite (HA orbital implant in the socket and developed chronic orbital inflammation unresponsive to conventional medical therapy. Case Reports: We assisted 6 cases (4 males, 2 females who received an HA orbital implant in the socket between 2015 and 2016 at King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia, and developed chronic orbital inflammation with chronic discharge, redness, and pain (onset from weeks to over 2 decades after surgery. Computed tomography evaluation indicated inflammation in the orbital tissues, and histological examination showed a foreign body granulomatous reaction mainly localized around and blanching the HA implant. The condition was unresponsive to usual medical treatment and was resolved immediately after implant removal. Conclusions: Chronic inflammation can occur decades after placement of an HA implant in the orbit and can be successfully treated with implant removal.

  9. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-11-15

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF{sub 2} conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  10. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    International Nuclear Information System (INIS)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-01-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF 2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  11. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-11-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  12. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy.

    Science.gov (United States)

    Kannan, M Bobby; Orr, Lynnley

    2011-08-01

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating. © 2011 IOP Publishing Ltd

  13. Nanostructured diamond coatings for orthopaedic applications

    Science.gov (United States)

    CATLEDGE, S.A.; THOMAS, V.; VOHRA, Y.K.

    2013-01-01

    With increasing numbers of orthopaedic devices being implanted, greater emphasis is being placed on ceramic coating technology to reduce friction and wear in mating total joint replacement components, in order to improve implant function and increase device lifespan. In this chapter, we consider ultra-hard carbon coatings, with emphasis on nanostructured diamond, as alternative bearing surfaces for metallic components. Such coatings have great potential for use in biomedical implants as a result of their extreme hardness, wear resistance, low friction and biocompatibility. These ultra-hard carbon coatings can be deposited by several techniques resulting in a wide variety of structures and properties. PMID:25285213

  14. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography.

    Science.gov (United States)

    Schouten, Corinne; Meijer, Gert J; van den Beucken, Jeroen J J P; Spauwen, Paul H M; Jansen, John A

    2009-09-01

    In the present study, the effects of implant design and surface properties on peri-implant bone response were evaluated with both conventional histomorphometry and micro-computed tomography (micro-CT), using two geometrically different dental implants (Screw type, St; Push-in, Pi) either or not surface-modified (non-coated, CaP-coated, or CaP-coated+TGF-beta1). After 12 weeks of implantation in a goat femoral condyle model, peri-implant bone response was evaluated in three different zones (inner: 0-500 microm; middle: 500-1000 microm; and outer: 1000-1500 microm) around the implant. Results indicated superiority of conventional histomorphometry over micro-CT, as the latter is hampered by deficits in the discrimination at the implant/tissue interface. Beyond this interface, both analysis techniques can be regarded as complementary. Histomorphometrical analysis showed an overall higher bone volume around St compared to Pi implants, but no effects of surface modification were observed. St implants showed lowest bone volumes in the outer zone, whereas inner zones were lowest for Pi implants. These results implicate that for Pi implants bone formation started from two different directions (contact- and distance osteogenesis). For St implants it was concluded that undersized implantation technique and loosening of bone fragments compress the zones for contact and distant osteogenesis, thereby improving bone volume at the interface significantly.

  15. A Simple Method to Functionalize the Surface of Plasma Electrolytic Oxidation Produced TiO2 Coatings for Growing Hydroxyapatite

    International Nuclear Information System (INIS)

    Teng, Huan-Ping; Yang, Chia-Jung; Lin, Jia-Fu; Huang, Yu-Hsin; Lu, Fu-Hsing

    2016-01-01

    Highlights: • TiO 2 coatings with porous surfaces were produced by plasma electrolytic oxidation. • Simple pre-immersion in K 2 HPO 4 could functionalize the surfaces of the TiO 2 . • Such pre-immersion enhanced substantially the growth of hydroxyapatite in SBF. • Growth mechanisms of hydroxyapatite via the pre-immersion have been proposed. • MTT assay shows great osteoblast-like cell activity on the obtained hydroxyapatite. - Abstract: Conventionally, hydrothermal treatment was often used to modify the TiO 2 surface prior to the growth of hydroxyapatite (HA) that is one of the most important implant biomaterials. In this work, a simple pre-immersion of the obtained TiO 2 in a weak base, instead of the conventionally high pressure-temperature hydrothermal pre-treatment, was conducted prior to the growth of HA. Firstly, anatase TiO 2 coatings with porous surfaces were produced by plasma electrolytic oxidation with optimized processing parameters. X-ray diffraction patterns and field-emission microscopy reveal that the anatase TiO 2 films with porous surfaces were produced by plasma electrolytic oxidation. Subsequently, the films were pre-immersed in 0.1–2 M K 2 HPO 4 solutions for only 10 min. Fourier transform infrared spectroscopy shows that the −OH functional groups were generated after such pre-immersion, which could enhance significantly the growth of a single phase of HA in simulated body fluid (SBF). Growth mechanisms of HA via the pre-immersion treatment and soaking in SBF have been proposed. Moreover, the proliferation rate and attachment of the MG-63 osteoblast cells were greatly enhanced on the obtained HA compared to that without the immersion pre-treatment from the MTT assay and morphology analyses. This simple immersion pre-treatment evidently provides an easy route for the growth of HA and has great potential for biomedical applications.

  16. Tribological study of lubricious DLC biocompatible coatings.

    Science.gov (United States)

    Brizuela, M; Garcia-Luis, A; Viviente, J L; Braceras, I; Oñate, J I

    2002-12-01

    DLC (diamond-like carbon) coatings have remarkable tribological properties due mainly to their good frictional behavior. These coatings can be applied in many industrial and biomedical applications, where sliding can generate wear and frictional forces on the components, such as orthopaedic metal implants. This work reports on the development and tribological characterization of functionally gradient titanium alloyed DLC coatings. A PVD-magnetron sputtering technique has been used as the deposition method. The aim of this work was to study the tribological performance of the DLC coating when metal to metal contact (cobalt chromium or titanium alloys) takes place under dry and lubricated test conditions. Prior work by the authors demonstrates that the DLC coating reduced considerably the wear of the ultra-high-molecular-weight polyethylene (UHMWPE). The DLC coating during mechanical testing exhibited a high elastic recovery (65%) compared to the values obtained from Co-Cr-Mo (15%) and Ti-6Al-4V (23%). The coating exhibited an excellent tribo-performance against the Ti-6Al-4V and Co-Cr-Mo alloys, especially under dry conditions presenting a friction value of 0.12 and almost negligible wear. This coating has passed biocompatibility tests for implant devices on tissue/bone contact according to international standards (ISO 10993).

  17. Comparative study on the biodegradation and biocompatibility of silicate bioceramic coatings on biodegradable magnesium alloy as biodegradable biomaterial

    Science.gov (United States)

    Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.

    2014-03-01

    Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.

  18. Comparative Clinical Study of Conventional Dental Implants and Mini Dental Implants for Mandibular Overdentures: A Randomized Clinical Trial.

    Science.gov (United States)

    Aunmeungtong, Weerapan; Kumchai, Thongnard; Strietzel, Frank P; Reichart, Peter A; Khongkhunthian, Pathawee

    2017-04-01

    Dental implant-retained overdentures have been chosen as the treatment of choice for complete mandibular removable dentures. Dental implants, such as mini dental implants, and components for retaining overdentures, are commercially available. However, comparative clinical studies comparing mini dental implants and conventional dental implants using different attachment for implant-retained overdentures have not been well documented. To compare the clinical outcomes of using two mini dental implants with Equator ® attachments, four mini dental implants with Equator attachments, or two conventional dental implants with ball attachments, by means of a randomized clinical trial. Sixty patients received implant-retained mandibular overdentures in the interforaminal region. The patients were divided into three groups. In Groups 1 and 2, two and four mini dental implants, respectively, were placed and immediately loaded by overdentures, using Equator ® attachments. In Group 3, conventional implants were placed. After osseointegration, the implants were loaded by overdentures, using ball attachments. The study distribution was randomized and double-blinded. Outcome measures included changes in radiological peri-implant bone level from surgery to 12 months postinsertion, prosthodontic complications and patient satisfaction. The cumulative survival rate in the three clinical groups after one year was 100%. There was no significant difference (p < 0.05) in clinical results regarding the number (two or four) of mini dental implants with Equator attachments. However, there was a significant difference in marginal bone loss and patient satisfaction between those receiving mini dental implants with Equator attachments and conventional dental implants with ball attachments. The marginal bone resorption in Group 3 was significantly higher than in Groups 1 and 2 (p < 0.05); there were no significant differences between Groups 1 and 2. There was no significant difference in

  19. Comparative silicone breast implant evaluation using mammography, sonography, and magnetic resonance imaging: experience with 59 implants.

    Science.gov (United States)

    Ahn, C Y; DeBruhl, N D; Gorczyca, D P; Shaw, W W; Bassett, L W

    1994-10-01

    With the current controversy regarding the safety of silicone implants, the detection and evaluation of implant rupture are causing concern for both plastic surgeons and patients. Our study obtained comparative value analysis of mammography, sonography, and magnetic resonance imaging (MRI) in the detection of silicone implant rupture. Twenty-nine symptomatic patients (total of 59 silicone implants) were entered into the study. Intraoperative findings revealed 21 ruptured implants (36 percent). During physical examination, a positive "squeeze test" was highly suggestive of implant rupture. Mammograms were obtained of 51 implants (sensitivity 11 percent, specificity 89 percent). Sonography was performed on 57 implants (sensitivity 70 percent, specificity 92 percent). MRI was performed on 55 implants (sensitivity 81 percent, specificity 92 percent). Sonographically, implant rupture is demonstrated by the "stepladder sign." Double-lumen implants may appear as false-positive results for rupture on sonography. On MRI, the "linguine sign" represents disrupted fragments of a ruptured implant. The most reliable imaging modality for implant rupture detection is MRI, followed by sonogram. Mammogram is the least reliable. Our study supports the clinical indication and diagnostic value of sonogram and MRI in the evaluation of symptomatic breast implant patients.

  20. Surface microstructure and cell biocompatibility of silicon-substituted hydroxyapatite coating on titanium substrate prepared by a biomimetic process

    International Nuclear Information System (INIS)

    Zhang Erlin; Zou Chunming; Yu Guoning

    2009-01-01

    Silicon-substituted hydroxyapatite (Si-HA) coatings with 0.14 to 1.14 at.% Si on pure titanium were prepared by a biomimetic process. The microstructure characterization and the cell compatibility of the Si-HA coatings were studied in comparison with that of hydroxyapatite (HA) coating prepared in the same way. The prepared Si-HA coatings and HA coating were only partially crystallized or in nano-scaled crystals. The introduction of Si element in HA significantly reduced P and Ca content, but densified the coating. The atom ratio of Ca to (P + Si) in the Si-HA coatings was in a range of 1.61-1.73, increasing slightly with an increase in the Si content. FTIR results displayed that Si entered HA in a form of SiO 4 unit by substituting for PO 4 unit. The cell attachment test showed that the HA and Si-HA coatings exhibited better cell response than the uncoated titanium, but no difference was observed in the cell response between the HA coating and the Si-HA coatings. Both the HA coating and the Si-HA coatings demonstrated a significantly higher cell growth rate than the uncoated pure titanium (p < 0.05) in all incubation periods while the Si-HA coating exhibited a significantly higher cell growth rate than the HA coating (p < 0.05). Si-HA with 0.42 at.% Si presented the best cell biocompatibility in all of the incubation periods. It was suggested that the synthesis mode of HA and Si-HA coatings in a simulated body environment in the biomimetic process contribute significantly to good cell biocompatibility

  1. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    Science.gov (United States)

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. In situ synthesis of hydroxyapatite coating by laser cladding.

    Science.gov (United States)

    Wang, D G; Chen, C Z; Ma, J; Zhang, G

    2008-10-15

    HA bioceramic coatings were synthesized on titanium substrate by laser cladding using cheap calcium carbonate and calcium hydrogen phosphate. The thermodynamic condition for synthesizing HA was calculated by software Matlab 5.0, the microstructure and phase analysis of laser clad HA bioceramic coatings were studied by electron probe microanalyser (EPMA), X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The theoretical results show that the Gibbs free enthalpy for the synthesis of HA phase is satisfied, and the presence of HA phase in the clad coatings was then further verified by XRD and the selected area diffraction patterns. When the laser power is 600W and the scanning speed is 3.5mm/s, the compact HA bioceramic coatings were obtained, which have cellular dendritic structure and consist of the phases of HA, alpha-Ca(2)P(2)O(7), CaO and CaTiO(3).

  3. Dextran as a fast resorbable and mechanically stiff coating for flexible neural probes

    Science.gov (United States)

    Kil, D.; Brancato, L.; Puers, R.

    2017-11-01

    In this paper we report on the use of dextran as a temporary, fast dissolving stiff coating for flexible neural probes. Although polymer-based neural implants offer several advantages, compared to their rigid silicon counterparts, they pose significant challenges during implantation. Due to their extreme flexibility, they have the tendency to buckle under the axial load applied during insertion. The structural stiffness of the implants can be temporarily increased by applying a bioresorbable dextran coating which eases the penetration of neural tissue. For this application three types of dextran with different molecular weights are analysed. The dissolution rate of the coatings is reported as well as the increased bending stiffness resulting from the dextran coating of Parylene C neural probes. Based on these findings the dissolution rate can be linked to parameters such as molecular weight, coating thickness and the surface area exposed to the dissolution medium. The mechanical characterization yields information on how the structural stiffness of neural probes can be tuned by varying the dextran’s molecular weight and coating thickness.

  4. The development of bioresorbable composite polymeric implants with high mechanical strength

    Science.gov (United States)

    Sharma, Upma; Concagh, Danny; Core, Lee; Kuang, Yina; You, Changcheng; Pham, Quynh; Zugates, Greg; Busold, Rany; Webber, Stephanie; Merlo, Jonathan; Langer, Robert; Whitesides, George M.; Palasis, Maria

    2018-01-01

    Implants for the treatment of tissue defects should mimic the mechanical properties of the native tissue of interest and should be resorbable as well as biocompatible. In this work, we developed a scaffold from variants of poly(glycolic) acid which were braided and coated with an elastomer of poly(glycolide-co-caprolactone) and crosslinked. The coating of the scaffold with the elastomer led to higher mechanical strength in terms of compression, expansion and elasticity compared to braids without the elastomer coating. These composite scaffolds were found to have expansion properties similar to metallic stents, utilizing materials which are typically much weaker than metal. We optimized the mechanical properties of the implant by tuning the elastomer branching structure, crosslink density, and molecular weight. The scaffolds were shown to be highly resorbable following implantation in a porcine femoral artery. Biocompatibility was studied in vivo in an ovine model by implanting the scaffolds into femoral arteries. The scaffolds were able to support an expanded open lumen over 12 months in vivo and also fully resorbed by 18 months in the ovine model.

  5. Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug.

    Science.gov (United States)

    Carlyle, Wenda C; McClain, James B; Tzafriri, Abraham R; Bailey, Lynn; Zani, Brett G; Markham, Peter M; Stanley, James R L; Edelman, Elazer R

    2012-09-28

    Current drug eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug delivery. A novel, absorbable-coating sirolimus-eluting stent (AC-SES) was evaluated for its capacity to deliver drug more evenly within the intimal area rather than concentrating drug around the stent struts and for its ability to match coating erosion with drug release. The coating consisted of absorbable poly-lactide-co-glycolic acid (PLGA) and crystalline sirolimus deposited by a dry-powder electrostatic process. The AC-SES demonstrated enhanced drug stability under simulated use conditions and consistent drug delivery balanced with coating erosion in a porcine coronary implant model. The initial drug burst was eliminated and drug release was sustained after implantation. The coating was absorbed within 90 days. Following implantation into porcine coronary arteries the AC-SES coating is distributed in the surrounding intimal tissue over the course of several weeks. Computational modeling of drug delivery characteristics demonstrates how distributed coating optimizes the load of drug immediately around each stent strut and extends drug delivery between stent struts. The result was a highly efficient arterial uptake of drug with superior performance to a clinical bare metal stent (BMS). Neointimal thickness (0.17±0.07 mm vs. 0.28±0.11 mm) and area percent stenosis (22±9% vs. 35±12%) were significantly reduced (pstent implantation in an overlap configuration in porcine coronary arteries. Inflammation was significantly reduced in the AC-SES compared to the BMS at both 30 and 90 days after implantation. Biocompatible, rapidly absorbable stent coatings enable the matching of drug release with coating erosion and provide for the controlled migration of coating material into tissue to reduce vicissitudes in drug tissue levels, optimizing efficacy and reducing potential toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A decomposable silica-based antibacterial coating for percutaneous titanium implant

    Directory of Open Access Journals (Sweden)

    Wang J

    2017-01-01

    antibacterial titanium coating continuously released gentamycin and inhibited S. aureus growth. In vitro investigation showed that the obtained nanodelivery system has good biocompatibility. Therefore, this design can be further investigated as a method to prevent infection around percutaneous implants. Keywords: silica nanoparticles, microarc oxidation, gentamycin, control release, fibroblasts

  7. Long-term corrosion inhibition mechanism of microarc oxidation coated AZ31 Mg alloys for biomedical applications

    International Nuclear Information System (INIS)

    Gu, Yanhong; Bandopadhyay, Sukumar; Chen, Cheng-fu; Ning, Chengyun; Guo, Yuanjun

    2013-01-01

    Highlights: ► The corrosion behavior is significantly affected by the long-term immersion. ► The degradation is inhibited due to the corrosion product layer. ► The corrosion resistance is enhanced by optimized MAO electrolyte concentrations. ► The corrosion inhibition mechanism is presented by a Flash animation. - Abstract: This paper addresses the long-term corrosion behavior of microarc oxidation coated Mg alloys immersed in simulated body fluid for 28 days. The coatings on AZ31 Mg alloys were produced in the electrolyte of sodium phosphate (Na 3 PO 4 ) at the concentration of 20 g/L, 30 g/L and 40 g/L, respectively. Scanning electron microscope (SEM) and optical micrograph were used to observe the microstructure of the samples before and after corrosion. The composition of the MAO coating and corrosion products were determined by X-Ray Diffraction (XRD). Corrosion product identification showed that hydroxyapatite (HA) was formed on the surface of the corroded samples. The ratio of Ca/P in HA determined by the X-ray Fluorescence (XRF) technique showed that HA is an acceptable biocompatible implant material. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were employed to characterize the corrosion rate and the electrochemical impedance. The corrosion resistance of the coated Mg alloys can be enhanced by optimizing the electrolyte concentrations for fabricating samples, and is enhanced after immersing the coated samples in simulated body fluid for more than 14 days. The enhanced corrosion resistance after long-term immersion is attributed to a corrosion product layer formed on the sample surface. The inhibition mechanism of the corrosion process is discussed and presented with an animation

  8. Modified cementless total coxofemoral prosthesis: development, implantation and clinical evaluation

    Directory of Open Access Journals (Sweden)

    S.A. Arias

    2013-12-01

    Full Text Available The aim of this study was to modify canine coxofemoral prostheses and the clinical evaluation of the implantation. Fifteen canine hips and femora of cadavers were used in order to study the surface points of modification in prostheses and develop a perforation guide. Femoral stems and acetabular components were perforated and coated with biphasic calcium phosphate layer. Twelve young adult male mongrel dogs were implanted with coxofemoral prostheses. Six were operated upon and implanted with cemented canine modular hip prostheses, establishing the control group. The remaining six were implanted with a novel design of cementless porous tricalcic phosphate-hydroxyapatite coated hip prostheses. Clinical and orthopedic performance, complications, and thigh muscular hypotrophy were assessed up to the 120th post-operatory day. After 120 days, animals with cementless prostheses had similar clinical and orthopedic performance compared to the cemented group despite the increased pain thigh hypotrophy. Animals that underwent cementless hip prosthesis evidenced more pain, compared to animals with cemented hip prosthesis that required longer recuperation time. No luxations, two fractures and two isquiatic neurapraxies were identified in the course of the study. Using both the cemented and the bioactive coated cementless model were suitable to dogs, showing clinical satisfactory results. Osseointegration and biological fixation were observed in the animals with the modified cementless hip prosthesis.

  9. In vitro and in vivo evaluations of nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF as a novel bioactive bone screw.

    Directory of Open Access Journals (Sweden)

    Bao Su

    Full Text Available In this study, we prepared nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF bioactive bone screws. The microstructure, morphology and coating of the screws were characterised, and the adhesion, proliferation and viability of MC3T3-E1 cells on n-HA/PA66/GF scaffolds were determined using scanning electron microscope, CCK-8 assays and cellular immunofluorescence analysis. The results confirmed that n-HA/PA66/GF scaffolds were biocompatible and had no negative effect on MC3T3-E1 cells in vitro. To investigate the in vivo biocompatibility, internal fixation properties and osteogenesis of the bioactive screws, both n-HA/PA66/GF screws and metallic screws were used to repair intercondylar femur fractures in dogs. General photography, CT examination, micro-CT examination, histological staining and biomechanical assays were performed at 4, 8, 12 and 24 weeks after operation. The n-HA/PA66/GF screws exhibited good biocompatibility, high mechanical strength and extensive osteogenesis in the host bone. Moreover, 24 weeks after implantation, the maximum push-out load of the bioactive screws was greater than that of the metallic screws. As shown by their good cytocompatibility, excellent biomechanical strength and fast formation and ingrowth of new bone, n-HA/PA66/GF screws are thus suitable for orthopaedic clinical applications.

  10. Electrocrystallization, growth and characterization of calcium phosphate ceramics on magnesium alloys

    International Nuclear Information System (INIS)

    Grubač, Z.; Metikoš-Huković, M.; Babić, R.

    2013-01-01

    Highlights: • HA coating preparation on Mg-alloy includes electrochemical and chemical processes. • Two step coating formation is a convenient method for bone-like coating formation. • Electrochemically assisted deposition enables to coat implants with a complex shape. • Electrocrystallization of CaHPO 4 film occurs as 3D instantaneous nucleation. • Bioactive properties of HA coatings were directly identified with Ca/P mole ratio. -- Abstract: In order to make biodegradable magnesium alloys corrosion resistant for a potential orthopaedic and bio-implant application, their surface should be modified with bioactive bone-like hydroxyapatite (HA) coatings. In the present paper, the initial step of coating formation on Mg alloy was studied by electrochemical techniques. The electrocrystallization and growth of the surface film occur as an instantaneous 3D nucleation under diffusion control, as was extracted from a fitting procedure of current-time transient data to the various nucleation models. Electrodeposited calcium hydrogenphosphate coatings were converted into bone-like HA (calcium deficient HA) in an alkaline treatment. The bioactive properties of HA coatings have been directly identified with a Ca/P mole ratio. Their morphology, composition and barrier properties were identified using scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), and voltammetry

  11. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride-hydroxy apatite in rat femurs.

    Science.gov (United States)

    Atila, Alptug; Halici, Zekai; Cadirci, Elif; Karakus, Emre; Palabiyik, Saziye Sezin; Ay, Nuran; Bakan, Feray; Yilmaz, Sahin

    2016-01-01

    Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN-HA composites in rat femurs. All rats were (n=126) divided into five experimental groups (n=24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100 HA (Group2), femoral defect + %2.5 hBN + %97.5 HA (Group3), femoral defect + %5 hBN + %95 HA (Group4), femoral defect + %10 hBN + %90 HA (Group5), femoral defect + %100 hBN (Group6). The femoral defect was created in the distal femur (3mm drill-bit). Each implant group was divided into four different groups (n=24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN-HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN-HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Carbon film coating of abutment surfaces: effect on the abutment screw removal torque.

    Science.gov (United States)

    Corazza, Pedro Henrique; de Moura Silva, Alecsandro; Cavalcanti Queiroz, José Renato; Salazar Marocho, Susana María; Bottino, Marco Antonia; Massi, Marcos; de Assunção e Souza, Rodrigo Othávio

    2014-08-01

    To evaluate the effect of diamond-like carbon (DLC) coating of prefabricated implant abutment on screw removal torque (RT) before and after mechanical cycling (MC). Fifty-four abutments for external-hex implants were divided among 6 groups (n = 9): S, straight abutment (control); SC, straight coated abutment; SCy, straight abutment and MC; SCCy, straight coated abutment and MC; ACy, angled abutment and MC; and ACCy, angled coated abutment and MC. The abutments were attached to the implants by a titanium screw. RT values were measured and registered. Data (in Newton centimeter) were analyzed with analysis of variance and Dunnet test (α = 0.05). RT values were significantly affected by MC (P = 0.001) and the interaction between DLC coating and MC (P = 0.038). SCy and ACy showed the lowest RT values, statistically different from the control. The abutment coated groups had no statistical difference compared with the control. Scanning electron microscopy analysis showed DLC film with a thickness of 3 μm uniformly coating the hexagonal abutment. DLC film deposited on the abutment can be used as an alternative procedure to reduce abutment screw loosening.

  13. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials.

    Science.gov (United States)

    Schildhauer, Thomas A; Robie, Bruce; Muhr, Gert; Köller, Manfred

    2006-07-01

    Evaluation of bacterial adhesion to pure tantalum and tantalum-coated stainless steel versus commercially pure titanium, titanium alloy (Ti-6Al-4V), and grit-blasted and polished stainless steel. Experimental in vitro cell culture study using Staphylococcus aureus and Staphylococcus epidermidis to evaluate qualitatively and quantitatively bacterial adherence to metallic implants. A bacterial adhesion assay was performed by culturing S. aureus (ATCC 6538) and S. epidermidis (clinical isolate) for one hour with tantalum, tantalum-coated stainless steel, titanium, titanium alloy, grit-blasted and polished stainless steel metallic implant discs. Adhered living and dead bacteria were stained using a 2-color fluorescence assay. Adherence was then quantitatively evaluated by fluorescence microscopy and digital image processing. Qualitative adherence of the bacteria was analyzed with a scanning electron microscope. The quantitative data were related to the implant surface roughness (Pa-value) as measured by confocal laser scanning microscopy. Bacterial adherence of S. aureus varied significantly (p = 0.0035) with the type of metallic implant. Pure tantalum presented with significantly (p titanium alloy, polished stainless steel, and tantalum-coated stainless steel. Furthermore, pure tantalum had a lower, though not significantly, adhesion than commercially pure titanium and grit-blasted stainless steel. Additionally, there was a significantly higher S. aureus adherence to titanium alloy than to commercially pure titanium (p = 0.014). S. epidermidis adherence was not significantly different among the tested materials. There was no statistically significant correlation between bacterial adherence and surface roughness of the tested implants. Pure tantalum presents with a lower or similar S. aureus and S. epidermidis adhesion when compared with commonly used materials in orthopedic implants. Because bacterial adhesion is an important predisposing factor in the development of

  14. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections

    DEFF Research Database (Denmark)

    Kazemzadeh-Narbat, Mehdi; Kindrachuk, Jason; Duan, Ke

    2010-01-01

    of this study was to develop a technique that enables the loading and local delivery of a unique group of cationic antimicrobial peptides (AMP) through implant surfaces. A thin layer of micro-porous calcium phosphate (CaP) coating was processed by electrolytic deposition onto the surface of titanium as the drug......Prevention of implant-associated infections has been one of the main challenges in orthopaedic surgery. This challenge is further complicated by the concern over the development of antibiotic resistance as a result of using traditional antibiotics for infection prophylaxis. The objective......) bacteria with 106-fold reductions of both bacterial strains within 30 min as assessed by measuring colony-forming units (CFU). Repeated CFU assays on the same CaP-Tet213 specimen demonstrated retention of antimicrobial activity by the CaP-Tet213 surfaces through four test cycles. The susceptibility...

  15. From acid etching treatments to tribocorrosive properties of dental implants: do some experimental results on surface treatments have an influence on the tribocorrosion behaviour of dental implants?

    International Nuclear Information System (INIS)

    Geringer, Jean; Demanget, Nicolas; Pellier, Julie

    2013-01-01

    Surface treatments of dental implants aim at promoting osseointegration, i.e. the anchorage of the metallic part. Titanium-, grade II–V, based material is used as a bulk material for dental implants. For promoting the anchorage of this metallic biomaterial in human jaw, some strategies have been applied for improving the surface state, i.e. roughness, topography and coatings. A case study, experimental study, is described with the method of acid etching on titanium grade 4, CpTi. The main goal is to find the right proportion in a mixture of two acids in order to obtain the best surface state. Finally, a pure theoretical prediction is quite impossible and some experimental investigations are necessary to improve the surface state. The described acid etching is compared with some other acid etching treatments and some coatings available on dental implants. Thus, the discussion is focused on the tribocorrosion behaviour of titanium-based materials. The purpose of the coating is that the lifetime under tribocorrosion is limited. Moreover, the surgery related to the implantation has a huge impact on the stability of dental implants. Thus, the performance of dental implants depends on factors related to surgery (implantation) that are difficult to predict from the biomaterial characteristics. From the tribocorrosion point of view, i.e. during the mastication step, the titanium material is submitted to some deleterious factors that cause the performance of dental implants to decrease. (paper)

  16. Hybrid biocomposites based on titania nanotubes and a hydroxyapatite coating deposited by RF-magnetron sputtering: Surface topography, structure, and mechanical properties

    Science.gov (United States)

    Chernozem, Roman V.; Surmeneva, Maria A.; Krause, Bärbel; Baumbach, Tilo; Ignatov, Viktor P.; Tyurin, Alexander I.; Loza, Kateryna; Epple, Matthias; Surmenev, Roman A.

    2017-12-01

    In this study, biocomposites based on porous titanium oxide structures and a calcium phosphate (CaP) or hydroxyapatite (HA) coating are described and prepared. Nanotubes (NTs) with different pore dimensions were processed using anodic oxidation of Ti substrates in a NH4F-containing electrolyte solution at anodization voltages of 30 and 60 V with a DC power supply. The external diameters of the nanotubes prepared at 30 V and 60 V were 53 ± 10 and 98 ± 16 nm, respectively. RF-magnetron sputtering of the HA target in a single deposition run was performed to prepare a coating on the surface of TiO2 NTs prepared at 30 and 60 V. The thickness of the CaP coating deposited on the mirror-polished Si substrate in the same deposition run with TiO2 NTs was determined by optical ellipsometry (SE) 95 ± 5 nm. Uncoated and CaP-coated NTs were annealed at 500 °C in air. Afterwards, the presence of TiO2 (anatase) was observed. The scanning electron microscopy (SEM), X-ray diffraction (XRD), photoelectron spectroscopy (XPS) and nanoindentation results revealed the influence that the NT dimensions had on the CaP coating deposition process. The tubular surfaces of the NTs were completely coated with the HA coating when prepared at 30 V, and no homogeneous CaP coating was observed when prepared at 60 V. The XRD patterns show peaks assigned to crystalline HA only for the coated TiO2 NTs prepared at 30 V. High-resolution XPS spectra show binding energies (BE) of Ca 2p, P 2p and O 1s core-levels corresponding to HA and amorphous calcium phosphate on TiO2 NTs prepared at 30 V and 60 V, respectively. Fabrication of TiO2 NTs results in a significant decrease to the elastic modulus and nanohardness compared to the Ti substrate. The porous structure of the NTs causes an increase in the elastic strain to failure of the coating (H/E) and the parameter used to describe the resistance of the material to plastic deformation (H3/E2) at the nanoscale level compared to the Ti substrate. Furthermore

  17. Osteogenesis of bone marrow mesenchymal stem cells on strontium-substituted nano-hydroxyapatite coated roughened titanium surfaces

    OpenAIRE

    Yang, Hua-Wei; Lin, Mao-Han; Xu, Yuan-Zhi; Shang, Guang-Wei; Wang, Rao-Rao; Chen, Kai

    2015-01-01

    Objective: To investigate osteogenesis of bone marrow mesenchymal stem cells (BMSCs) on strontium-substituted nano-hydroxyapatite (Sr-HA) coated roughened titanium surfaces. Methods: Sr-HA coating and HA coating were fabricated on roughened titanium surfaces by electrochemical deposition technique and characterized by field emission scanning electron microscope (FESM). BMSCs were cultured on Sr-HA coating, HA coating and roughened titanium surfaces respectively. Cell proliferation, alkaline p...

  18. [Construction of porous hydroxyapatite (HA) block loaded with cultured chondrocytes].

    Science.gov (United States)

    Yan, M; Dang, G

    1999-07-01

    To construct a kind of bone healing enhancing implant with cultured chondrocytes bound to hydroxyapatite (HA). Chondrocytes were obtained from the costicartilage of rat and were cultured on the porous HA blocks, 3 mm x 3 mm x 4 mm size, for three and seven days. Scanning electron micrograph was taken to show whether the cells grew outside and inside the pore of HA block. The cells cultured on tiny glass sheet for 2 days were used to prove where the cells come from by in situ hybridization technique with alpha1 (II) cDNA probe. Scanning electron micrographs showed that the pores of the HA surface and inside of the blocks are filled with cultured cells, especially the longer cultured block. The cells were chondrocytes confirmed by in situ hybridization. The porous HA can be used as cell cultured substrate and chondrocyte can adhere and proliferate inside the porous HA block.

  19. Fabrication and evaluation of porous Ti–HA bio-nanomaterial by leaching process

    Directory of Open Access Journals (Sweden)

    A.M. Omran

    2015-05-01

    Full Text Available A porous surface of Ti–HA composite was successfully fabricated by pulsed current activated sintering (PCAS, followed by leaching using diluted H3PO4. The Ti and HA powders were mixed at different contents of the HA, Ti-5, 10, 30 and 40 wt% HA powders. The mixed powders were pressed in a coated graphite die using pulsed current activated sintering (PCAS under pressure of 60 MPa at temperature of 1000 °C for 5 min. The sintered Ti–HA specimens were immersed in the eight kinds of leaching solutions at room temperature for 24 h. The leached specimen’s surfaces were characterized using XRD, SEM, EDX and Rockwell hardness. The XRD patterns after sintering show that many phases were detected at the sintered specimen surfaces such as; Ti2O, CaO, CaTiO3, TixPy in addition to the remaining Ti and HA. Furthermore, the high concentration H3PO4 leaching solution is more efficient than the low concentration. Also the produced porous surfaces of Ti–HA materials containing more than 30% HA have a low relative density and hardness than the commercial Ti–6Al–4V ELI alloy. In a word, the presence of porous surface coated by HA will promote the nucleation of the biological apatite created with the human tissue and increase the bonding between them. So, the produced porous materials are considered so easy for the muscle cells to permeate after transplanted with high coherence.

  20. Gelatin functionalised porous titanium alloy implants for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Vanderleyden, E. [Polymer Chemistry and Biomaterials Research Group, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S4, 9000 Ghent (Belgium); Van Bael, S. [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300c, Box 2419, 3001 Heverlee (Belgium); Chai, Y.C. [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Kruth, J.-P. [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Schrooten, J. [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, Bus 2450, 3001 Leuven (Belgium); Dubruel, P., E-mail: pbmugent@gmail.com [Polymer Chemistry and Biomaterials Research Group, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S4, 9000 Ghent (Belgium)

    2014-09-01

    In the present work, we studied the immobilisation of the biopolymer gelatin onto the surface of three dimensional (3D) regular Ti6Al4V porous implants to improve their surface bio-activity. The successful immobilisation of the gelatin coating was made possible by a polydopamine interlayer, a polymer coating inspired by the adhesive nature of mussels. The presence of both coatings was first optimised on two dimensional titanium (2D Ti) substrates and confirmed by different techniques including X-ray photelectron spectroscopy, contact angle measurements, atomic force microscopy and fluorescence microscopy. Results showed homogeneous coatings that are stable for at least 24 h in phosphate buffer at 37 °C. In a next step, the coating procedure was successfully transferred to 3D Ti6Al4V porous implants, which indicates the versatility of the applied coating procedure with regard to complex surface morphologies. Furthermore, the bio-activity of these stable gelatin coatings was enhanced by applying a third and final coating using the cell-attractive protein fibronectin. The reproducible immobilisation process allowed for a controlled biomolecule presentation to the surrounding tissue. This newly developed coating procedure outperformed the previously reported silanisation procedure for immobilising gelatin. In vitro cell adhesion and culture studies with human periosteum-derived cells showed that the investigated coatings did not compromise the biocompatible nature of Ti6Al4V porous implants, but no distinct biological differences between the coatings were found. - Highlights: • Ti6Al4V porous implants were produced by selective laser melting. • A procedure to obtain a stable gelatin coating was developed. • Successful transfer of the coating procedure from 2D to 3D Ti6Al4V porous implants. • In vitro cell studies showed that the developed coatings supported cell growth.